NASA Astrophysics Data System (ADS)
Yakovlev, A. B.
2018-05-01
The analysis of the motion of micro-particles with radii of several dozens of nanometers in the Earth's plasmasphere has confirmed that the earlier proved statement about conservation of the form for an orbit of a particle with constant electric charge which moves in superposition of the central gravitational field and the field of a magnetic dipole is true also for the case of a quasi-equilibrium electric charge. For a wide range of altitudes and the sizes of micro-particles other forces that act on the charged grain make considerably smaller impact on its motion. On the basis of numerical simulation it has been shown that for motion in an equatorial plane the field of co-rotation leads to very small monotonous growth of the semimajor axis and an orbit eccentricity, and for not-equatorial orbits there are fluctuations of the semimajor axis, an eccentricity and an inclination of an orbit with the period that considerably exceeds the period of orbital motion. In this paper, on the basis of the analysis of the canonical equations of the motion of a micro-particle in superposition of the central gravitational field and the field of co-rotation the explanation of the time dependences obtained numerically for the basic characteristics of an orbit of a micro-particle is proposed.
Particle Orbit Analysis in the Finite Beta Plasma of the Large Helical Device using Real Coordinates
NASA Astrophysics Data System (ADS)
Seki, Ryousuke; Matsumoto, Yutaka; Suzuki, Yasuhiro; Watanabe, Kiyomasa; Itagaki, Masafumi
High-energy particles in a finite beta plasma of the Large Helical Device (LHD) are numerically traced in a real coordinate system. We investigate particle orbits by changing the beta value and/or the magnetic field strength. No significant difference is found in the particle orbit classifications between the vacuum magnetic field and the finite beta plasma cases. The deviation of a banana orbit from the flux surfaces strongly depends on the beta value, although the deviation of the orbit of a passing particle is independent of the beta value. In addition, the deviation of the orbit of the passing particle, rather than that of the banana-orbit particles, depends on the magnetic field strength. We also examine the effect of re-entering particles, which repeatedly pass in and out of the last closed flux surface, in the finite beta plasma of the LHD. It is found that the number of re-entering particles in the finite beta plasma is larger than that in the vacuum magnetic field. As a result, the role of reentering particles in the finite beta plasma of the LHD is more important than that in the vacuum magnetic field, and the effect of the charge-exchange reaction on particle confinement in the finite beta plasma is large.
Re-Analysis of Data on the Space Radiation Environment above South-East Asia
1989-11-01
the cosmic ray flux with geomagnetic latitude, and also show expected increases due to the South Atlantic Anomaly (SAA) and outer belt electrons. How...TECHNIQUES USED 8 3.1 Orbital analysis 8 3.2 Analysis of cosmic ray effects 9 3.3 Analysis of trapped particle effects 11 3.4 Geomagnetic and...magnetospheric activity 12 4 UNCERTAINTIES AND SOURCES OF ERROR 13 4.1 Orbital analysis 13 4.2 Analysis of cosmic ray effects 13 4.3 Analysis of trapped particle
On the orbital evolution of the Lyrid meteoroid stream
NASA Astrophysics Data System (ADS)
Kornoš, Leonard; Tóth, Juraj; Porubčan, Vladimír; Klačka, Jozef; Nagy, Roman; Rudawska, Regina
2015-12-01
A detailed analysis of the Lyrid video orbits from the EDMOND database is performed. Applying selective methods, the weighted mean orbit and mean geophysical parameters are derived. The occurrence of orbits with the semimajor axes smaller than 35 AU, in comparison with the value of 55 AU of the parent comet Thatcher, is about 80%, in the set of higher quality data of the Lyrids in the EDMOND database. The gravitational orbital evolutions of Thatcher and modelled particles ejected in five perihelion passages of the comet in the past are studied. Both, orbits of the comet and modelled particles, are under quite strong disturbing influence of Jupiter, Saturn and Earth. After the integration to the present, the mean theoretical radiants, the mean geocentric velocities and periods of activity of particles approaching the Earth's orbit were calculated. The mean orbits of the modelled streams of particles ejected from different perihelia match well the mean Lyrid orbit from the IAU MDC and the observed video Lyrids from the EDMOND database. The particles released in the two oldest simulated perihelion passages of the parent comet are most responsible for the occurrence of the Earth-crossing orbits with the semimajor axes smaller than 35 AU, but no one below 20 AU. The influence of non-gravitational effects, mainly solar radiation, may shorten semimajor axis of a submilimeter particle with density of 0.3 g/cm3 by more than half during an evolution of 50 000 years. A common influence of gravitational perturbations and non-gravitational effects can provide a dynamical way to the short-period orbits. However, this process is for millimeter and larger particles (video and photographic) less effective.
NASA Technical Reports Server (NTRS)
Roberts, William W., Jr.; Stewart, Glen R.
1987-01-01
The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.
NASA Astrophysics Data System (ADS)
Li, Jiaqiang; Choutko, Vitaly; Xiao, Liyi
2018-03-01
Based on the collection of error data from the Alpha Magnetic Spectrometer (AMS) Digital Signal Processors (DSP), on-orbit Single Event Upsets (SEUs) of the DSP program memory are analyzed. The daily error distribution and time intervals between errors are calculated to evaluate the reliability of the system. The particle density distribution of International Space Station (ISS) orbit is presented and the effects from the South Atlantic Anomaly (SAA) and the geomagnetic poles are analyzed. The impact of solar events on the DSP program memory is carried out combining data analysis and Monte Carlo simulation (MC). From the analysis and simulation results, it is concluded that the area corresponding to the SAA is the main source of errors on the ISS orbit. Solar events can also cause errors on DSP program memory, but the effect depends on the on-orbit particle density.
NASA Technical Reports Server (NTRS)
Hyde, T. W.; Alexander, W. M.
1989-01-01
In 1967, Lunar Explorer 35 was launched from the earth and placed into a stable orbit around the moon. The data from the dust particle experiment on this spacecraft were essentially continuous over a 5-yr period from the time of insertion in lunar orbit. Analysis of this data has been interpreted to show that micron-sized lunar ejecta leave the moon and traverse through selenocentric and cislunar space and obtain either interplanetary/heliocentric orbits or intercept the earth's magnetosphere and move into geocentric orbits. Extensive studies of the orbital trajectories of lunar particles in this size range have now been conducted that include a calculation of the solar radiation force using the full Mie scattering theory. A significant flux of particles with radii less than 0.1 micron are found to intercept the earth's magnetopause surface. This flux is shown to be strongly dependent upon both the particle's density and its index of refraction.
Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit
NASA Technical Reports Server (NTRS)
Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1992-01-01
The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.
Analytical slave-spin mean-field approach to orbital selective Mott insulators
NASA Astrophysics Data System (ADS)
Komijani, Yashar; Kotliar, Gabriel
2017-09-01
We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band Hubbard models in the presence of Hund's coupling interaction. By analytical analysis of the Hamiltonian, we show that the locking of the two orbitals vs orbital selective Mott transition can be formulated within a Landau-Ginzburg framework. By applying the slave-spin mean field to impurity problems, we are able to make a correspondence between impurity and lattice. We also consider the stability of the orbital selective Mott phase to the hybridization between the orbitals and study the limitations of the slave-spin method for treating interorbital tunnelings in the case of multiorbital Bethe lattices with particle-hole symmetry.
NASA Technical Reports Server (NTRS)
Araki, Suguru
1991-01-01
The modeling of the dynamics of particle collisions within planetary rings is discussed. Particles in the rings collide with one another because they have small random motions in addition to their orbital velocity. The orbital speed is roughly 10 km/s, while the random motions have an average speed of about a tenth of a millimeter per second. As a result, the particle collisions are very gentle. Numerical analysis and simulation of the ring dynamics, performed with the aid of a supercomputer, is outlined.
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek
2016-06-01
The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation field at the position of the payload and resulting spatial- and time-correlated radiation maps of cumulative dose rate along the satellite orbit.
NASA Astrophysics Data System (ADS)
Gusev, G. A.; Lomonosov, B. N.; Ryabov, Vladimir A.; Chechin, V. A.
2010-12-01
The problem of detecting nature's most energetic particles—cosmic rays and neutrinos—is reviewed. Prospects for using orbital radio detectors for these highest-energy particles are examined. Apertures are calculated for space experiments using the Moon and similar-sized ice satellites of planets of the Solar System as targets for the interaction of cosmic-ray particles and neutrinos. A comparative analysis shows that using the Moon as a target is the most promising scenario.
Representation of Probability Density Functions from Orbit Determination using the Particle Filter
NASA Technical Reports Server (NTRS)
Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell
2012-01-01
Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.
An analysis of the orbital distribution of solid rocket motor slag
NASA Astrophysics Data System (ADS)
Horstman, Matthew F.; Mulrooney, Mark
2009-01-01
The contribution by solid rocket motors (SRMs) to the orbital debris environment is potentially significant and insufficiently studied. Design and combustion processes can lead to the emission of enough by-products to warrant assessment of their contribution to orbital debris. These particles are formed during SRM tail-off, or burn termination, by the rapid solidification of molten Al2O3 slag accumulated during the burn. The propensity of SRMs to generate particles larger than 100μm raises concerns regarding the debris environment. Sizes as large as 1 cm have been witnessed in ground tests, and comparable sizes have been estimated via observations of sub-orbital tail-off events. Utilizing previous research we have developed more sophisticated size distributions and modeled the time evolution of resultant orbital populations using a historical database of SRM launches, propellant, and likely location and time of tail-off. This analysis indicates that SRM ejecta is a significant component of the debris environment.
Sources of zodiacal dust particles
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2007-08-01
The orbital evolution of dust particles produced by asteroids, comets, and trans- Neptunian objects was integrated [1-3]. Analysis of results of these integrations testify in favor of a considerable fraction of particles produced by comets among overall zodiacal dust particles, but it does not contradict to >30% of asteroidal dust needed for explanation of formation of dust bands. Fractions of asteroidal particles, particles originating beyond Jupiter's orbit (including trans-Neptunian particles), and cometary particles originating inside of Jupiter's orbit are estimated to be about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. Comparison of the plots of the number density vs. the distance R from the Sun obtained for particles produced by different small bodies with the plots based on observations shows that asteroidal and trans- Neptunian particles alone can not explain the observed almost constant number density at R ∼3-18 AU and a lot of particles must be produced by comets at R ∼5-10 AU [2-3]. Comparison of the WHAM (Wisconsin H-Alpha Mapper spectrometer) observations of spectra of zodiacal light with our models showed [4-5] that a significant fraction of particles produced by short-period comets is required to fit the observations of the width and velocity of the Mg I line. Comparison of the observations of the number density inside Jupiter's orbit with the number density of particles produced by different small bodies leads to the same conclusion about a considerable fraction of cometary particles. This comparison does not make limitations on cometary particles produced beyond Jupiter's orbit, but it shows that the fraction of particles produced by Encke-type comets (with eccentricities ∼0.8-0.9) does not exceed 0.15 of the overall population. The estimated fraction of particles produced by long-period and Halley-type comets among zodiacal dust also does not exceed 0.1-0.15. Though trans-Neptunian particles fit different observations of dust inside Jupiter's orbit, they can not be dominant in the zodiacal cloud because they can not be dominant between orbits of Jupiter and Saturn. The conclusion on a considerable fraction of cometary dust is also in an agreement with our studies [6] of the dynamics of Jupiter-family comets, which showed that some former cometary objects could get high eccentric orbits located entirely inside of Jupiter's orbit and stay in these orbits for a long time. Some of these objects could disintegrate producing a substantial amount of dust. [1] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [2] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [3] Ipatov S.I. and Mather J.C., (2007) Dust in Planetary Systems, ed. by H. Krüger and A. Graps, ESA Publications, SP-643, p. 91-94. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471. [5] Ipatov S.I. et al., astro-ph/0608141. [6] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80.
Accelerated orbits in black hole fields: the static case
NASA Astrophysics Data System (ADS)
Bini, Donato; de Felice, Fernando; Geralico, Andrea
2011-11-01
We study non-geodesic orbits of test particles endowed with a structure, assuming the Schwarzschild spacetime as background. We develop a formalism which allows one to recognize the geometrical characterization of those orbits in terms of their Frenet-Serret parameters and apply it to explicit cases as those of spatially circular orbits which witness the equilibrium under conflicting types of interactions. In our general analysis, we solve the equations of motion offering a detailed picture of the dynamics having in mind a check with a possible astronomical setup. We focus on certain ambiguities which plague the interpretation of the measurements preventing one from identifying the particular structure carried by the particle.
NASA Technical Reports Server (NTRS)
Miller, Joshua E.
2016-01-01
Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.
Effects of solar radiation on the orbits of small particles
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1976-01-01
A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.
An Analysis of the Orbital Distribution of Solid Rocket Motor Slag
NASA Technical Reports Server (NTRS)
Horstman, Matthew F.; Mulrooney, Mark
2007-01-01
The contribution made by orbiting solid rocket motors (SRMs) to the orbital debris environment is both potentially significant and insufficiently studied. A combination of rocket motor design and the mechanisms of the combustion process can lead to the emission of sufficiently large and numerous by-products to warrant assessment of their contribution to the orbital debris environment. These particles are formed during SRM tail-off, or the termination of burn, by the rapid expansion, dissemination, and solidification of the molten Al2O3 slag pool accumulated during the main burn phase of SRMs utilizing immersion-type nozzles. Though the usage of SRMs is low compared to the usage of liquid fueled motors, the propensity of SRMs to generate particles in the 100 m and larger size regime has caused concern regarding their contributing to the debris environment. Particle sizes as large as 1 cm have been witnessed in ground tests conducted under vacuum conditions and comparable sizes have been estimated via ground-based telescopic and in-situ observations of sub-orbital SRM tail-off events. Using sub-orbital and post recovery observations, a simplistic number-size-velocity distribution of slag from on-orbit SRM firings was postulated. In this paper we have developed more elaborate distributions and emission scenarios and modeled the resultant orbital population and its time evolution by incorporating a historical database of SRM launches, propellant masses, and likely location and time of particulate deposition. From this analysis a more comprehensive understanding has been obtained of the role of SRM ejecta in the orbital debris environment, indicating that SRM slag is a significant component of the current and future population.
NASA Technical Reports Server (NTRS)
Clevenger, W. B., Jr.; Tabakoff, W.
1974-01-01
The particle motion in two-dimensional free and forced inward flowing vortices is considered. A particle in such a flow field experiences a balance between the aerodynamic drag forces that tend to drive erosive particles toward the axis, and centrifugal forces that prevent these particles from traveling toward the axis. Results predict that certain sizes of particles will achieve a stable orbit about the turbine axis in the inward flowing free vortex. In this condition, the radial drag force is equal to the centrifugal force. The sizes of particles that will achieve a stable orbit is shown to be related to the gas flow velocity diagram at a particular radius. A second analysis yields a description of particle sizes that will experience a centrifugal force that is greater than the radial component of the aerodynamic drag force for a more general type of particle motion.
NASA Technical Reports Server (NTRS)
Benson, J. L.
1974-01-01
Protons with energies ranging from about 500 eV to 3,500 eV were observed by the Suprathermal Ion Detector Experiment (SIDE) on both the dusk and dawn sides of the magnetosphere. On each lunation these particles appeared as a rather continuous phenomenon for 3 to 5 days after crossing from the dawn-side magnetosheath into the solar wind and for about 2 days prior to entering the dusk-side magnetosheath. Data from the SIDE and from the Explorer 35 lunar orbiting magnetometer were analyzed and these data indicated that the transverse ion flows observed by the SIDE in the pre and post bow shock crossing regions of the lunar orbit are due to these deviated solar wind particles. A computer model based on drift trajectories for particles leaving the shock was developed and synthetic particle data produced by this model are in good agreement with the observed data.
Final Results of Shuttle MMOD Impact Database
NASA Technical Reports Server (NTRS)
Hyde, J. L.; Christiansen, E. L.; Lear, D. M.
2015-01-01
The Shuttle Hypervelocity Impact Database documents damage features on each Orbiter thought to be from micrometeoroids (MM) or orbital debris (OD). Data is divided into tables for crew module windows, payload bay door radiators and thermal protection systems along with other miscellaneous regions. The combined number of records in the database is nearly 3000. Each database record provides impact feature dimensions, location on the vehicle and relevant mission information. Additional detail on the type and size of particle that produced the damage site is provided when sampling data and definitive spectroscopic analysis results are available. Guidelines are described which were used in determining whether impact damage is from micrometeoroid or orbital debris impact based on the findings from scanning electron microscopy chemical analysis. Relationships assumed when converting from observed feature sizes in different shuttle materials to particle sizes will be presented. A small number of significant impacts on the windows, radiators and wing leading edge will be highlighted and discussed in detail, including the hypervelocity impact testing performed to estimate particle sizes that produced the damage.
Analysis of IRAS data for orbital debris
NASA Technical Reports Server (NTRS)
Anz-Meador, P. D.; Oro, D. M.; Kessler, D. J.; Pitts, D. E.
1986-01-01
The Infrared Astronomical Satellite (IRAS) was launched in 1983 for the purpose of surveying the sky in a broad area of the infrared portion of the spectrum. While the primary objects of interest of IRAS were stars and nebulae, other types of space-related objects could also be observed. These include comets, asteroids, and earth orbiting objects. Theoretical analysis indicates that IRAS could observe objects with a diameter of 1-mm at a range of 100-km and objects with a diameter of 1-cm at a range of 1000-km, while current ground-based observations of particles in low earth orbit are limited to objects larger than 1-cm. Thus, these data offer a unique opportunity to ascertain the number density of particles below the present observable limit. At NASA/JSC a preliminary analysis of an IRAS data set has been performed to detect and describe this population, and the results of this study are presented.
Frequency maps as a probe of secular evolution in the Milky Way
NASA Astrophysics Data System (ADS)
Valluri, Monica
2015-03-01
The frequency analysis of the orbits of halo stars and dark matter particles from a cosmological hydrodynamical simulation of a disk galaxy from the MUGS collaboration (Stinson et al. 2010) shows that even if the shape of the dark matter halo is nearly oblate, only about 50% of its orbits are on short-axis tubes, confirming a previous result: under baryonic condensation all orbit families can deform their shapes without changing orbital type (Valluri et al. 2010). Orbits of dark matter particles and halo stars are very similar reflecting their common accretion origin and the influence of baryons. Frequency maps provide a compact representation of the 6-D phase space distribution that also reveals the history of the halo (Valluri et al. 2012). The 6-D phase space coordinates for a large population of halo stars in the Milky Way that will be obtained from future surveys can be used to reconstruct the phase-space distribution function of the stellar halo. The similarity between the frequency maps of halo stars and dark matter particles (Fig. 1) implies that reconstruction of the stellar halo distribution function can reveal the phase space distribution of the unseen dark matter particles and provide evidence for secular evolution. MV is supported by NSF grant AST-0908346 and the Elizabeth Crosby grant.
Particle orbits in model current sheet with a nonzero B(y) component
NASA Technical Reports Server (NTRS)
Zhu, Zhongwei; Parks, George
1993-01-01
The problem of charged particle motions in magnetotaillike model current sheets is revisited with the inclusion of a nonzero dawn-dusk magnetic field component. Three cases are examined considering both trapped and escaped orbits. The results show that a nonzero B(y) component disturbs the particle orbits by destroying orbit symmetry in the phase space about the z = 0 plane. It also changes the bounce frequency of particle orbits. The presence of B(y) thus modifies the Speiser orbits, particularly near the ejection phase. The process of ejected particle such as ejection direction, ejection velocity, and pitch angles are shown to depend on the sign of the charge.
The Splashback Radius of Halos from Particle Dynamics. I. The SPARTA Algorithm
NASA Astrophysics Data System (ADS)
Diemer, Benedikt
2017-07-01
Motivated by the recent proposal of the splashback radius as a physical boundary of dark-matter halos, we present a parallel computer code for Subhalo and PARticle Trajectory Analysis (SPARTA). The code analyzes the orbits of all simulation particles in all host halos, billions of orbits in the case of typical cosmological N-body simulations. Within this general framework, we develop an algorithm that accurately extracts the location of the first apocenter of particles after infall into a halo, or splashback. We define the splashback radius of a halo as the smoothed average of the apocenter radii of individual particles. This definition allows us to reliably measure the splashback radii of 95% of host halos above a resolution limit of 1000 particles. We show that, on average, the splashback radius and mass are converged to better than 5% accuracy with respect to mass resolution, snapshot spacing, and all free parameters of the method.
Orion Exploration Flight Test Post-Flight Inspection and Analysis
NASA Technical Reports Server (NTRS)
Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.
2017-01-01
The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.
The detection of ultra-relativistic electrons in low Earth orbit
NASA Astrophysics Data System (ADS)
Katsiyannis, Athanassios C.; Dominique, Marie; Pierrard, Viviane; Rosson, Graciela Lopez; Keyser, Johan De; Berghmans, David; Kruglanski, Michel; Dammasch, Ingolf E.; Donder, Erwin De
2018-01-01
Aims: To better understand the radiation environment in low Earth orbit (LEO), the analysis of in-situ observations of a variety of particles, at different atmospheric heights, and in a wide range of energies, is needed. Methods: We present an analysis of energetic particles, indirectly detected by the large yield radiometer (LYRA) instrument on board ESA's project for on-board autonomy 2 (PROBA2) satellite as background signal. Combining energetic particle telescope (EPT) observations with LYRA data for an overlapping period of time, we identified these particles as electrons with an energy range of 2 to 8 MeV. Results: The observed events are strongly correlated to geo-magnetic activity and appear even during modest disturbances. They are also well confined geographically within the L = 4-6 McIlwain zone, which makes it possible to identify their source. Conclusions: Although highly energetic particles are commonly perturbing data acquisition of space instruments, we show in this work that ultra-relativistic electrons with energies in the range of 2-8 MeV are detected only at high latitudes, while not present in the South Atlantic Anomaly region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ball et al.
1999-05-04
Experimental data on particle motion near the separatrix of the one dimensional (1-D) fourth-integer islands are an-alyzed. When the beam bunch is initially kicked to the separatrix orbit, we observed a strong decoherence in the coherent betatron motion. We find that, through intensive particle tracking simulation analysis, the decoherence has resulted from the beam being split into beamlets in the beta-tron phase space. However, we also observe an unexpected recoherence of coherence signal, which may result form a modulated closed orbit or the homoclinic structure near the separatrix.
NASA Technical Reports Server (NTRS)
Smith, S. D.
1984-01-01
The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.
Dynamics and Distribution of Interplanetary Dust
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2005-08-01
We integrated the orbital evolution of 12,000 asteroidal, cometary, and trans-Neptunian dust particles, under the gravitational influence of planets, Poynting-Robertson drag, radiation pressure, and solar wind drag (Annals of the New York Academy of Sciences, v. 1017, 66-80, 2004; Advances in Space Research, in press, 2005). The orbital evolution of 30,000 Jupiter-family comets (JFCs) was also integrated (Annals of the New York Academy of Sciences, v. 1017, 46-65, 2004). For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4 (for silicates, such values correspond to particle diameters between >1000 and 1 microns). The considered cometary particles started from comets 2P, 10P, and 39P. The probability of a collision of an asteroidal or cometary dust particle with the Earth during a lifetime of the particle was maximum at diameter about 100 microns; this is in accordance with cratering records. Our different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Some JFCs can reach orbits entirely located inside Jupiter's orbit and remain in such orbits for millions of years. Such former comets could disintegrate during millions of years and produce a lot of mini-comets and dust. (2) The spatial density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can migrate outside Jupiter's orbit. Therefore cometary dust particles are needed to explain the observed constant spatial density of dust particles at 3-18 AU from the Sun. (3) Comparison of the velocities of zodiacal dust particles obtained in our runs with the observations of velocities of these particles made by Reynolds et al. (Ap.J., 2004, v. 612, 1206-1213) shows that only asteroidal dust particles cannot explain these observations, and particles produced by high-eccentricity comets (such as Comet Encke) are needed for such explanation. Several our recent papers are presented on astro-ph.
A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Erie
2010-01-01
A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.
NASA Astrophysics Data System (ADS)
Rodríguez, J. F.; Rueda, J. A.; Ruffini, R.
2018-01-01
We have used the perturbations of the exact solutions of the Einstein equations to estimate the relativistic wave emission of a test particle orbiting around a black hole. We show how the hamiltonian equations of motion of a test particle augmented with the radiation-reaction force can establish a priori constraints on the possible phenomena occurring in the merger of compact objects. The dynamical evolution consists of a helicoidal sequence of quasi-circular orbits, induced by the radiation-reaction and the background spacetime. Near the innermost stable circular orbit the evolution is followed by a smooth transition and finally plunges geodesically into the black hole horizon. This analysis gives physical insight of the merger of two equal masses objects.
Stable Orbits in the Didymos Binary Asteroid System - Useful Platforms for Exploration
NASA Astrophysics Data System (ADS)
Damme, Friedrich; Hussmann, Hauke; Wickhusen, Kai; Enrico, Mai; Oberst, Jürgen
2016-04-01
We have analyzed particle motion in binary asteroid systems to search for stable orbits. In particular, we studied the motion of particles near the asteroid 1996 GT (Didymos), proposed as a target for the AIDA mission. The combined gravity fields of the odd-shaped rotating objects moving about each other are complex. In addition, orbiting spacecraft or dust particles are affected by radiation pressure, possibly exceeding the faint gravitational forces. For the numerical integrations, we adopt parameters for size, shape, and rotation from telescopic observations. To simulate the effect of radiation pressure during a spacecraft mission, we apply a spacecraft wing-box shape model. Integrations were carried out beginning in near-circular orbits over 11 days, during which the motion of the particles were examined. Most orbits are unstable with particles escaping quickly or colliding with the asteroid bodies. However, with carefully chosen initial positions, we found stable motion (in the orbiting plane of the secondary) associated with the Lagrangian points (L4 and L5), in addition to horseshoe orbits, where particles move from one of the Lagrangian point to the other. Finally, we examined orbits in 1:2 resonances with the motion of the orbital period of the secondary. Stable conditions depend strongly on season caused by the inclination of the mutual orbit plane with respect to Didymos solar orbit. At larger distance from the asteroid pair, we find the well-known terminator orbits where gravitational attraction is balanced against radiation pressure. Stable orbits and long motion arcs are useful for long tracking runs by radio or Laser instruments and are well-suited for modelling of the ephemerides of the asteroid pair and gravity field mapping. Furthermore, these orbits may be useful as observing posts or as platforms for approach. These orbits may also represent traps for dust particles, an opportunity for dust collection - or possibly a hazard to spacecraft operation.
Critical Gradient Behavior of Alfvén Eigenmode Induced Fast-Ion Transport in Phase Space
NASA Astrophysics Data System (ADS)
Collins, C. S.; Pace, D. C.; van Zeeland, M. A.; Heidbrink, W. W.; Stagner, L.; Zhu, Y. B.; Kramer, G. J.; Podesta, M.; White, R. B.
2016-10-01
Experiments on DIII-D have shown that energetic particle (EP) transport suddenly increases when multiple Alfvén eigenmodes (AEs) cause particle orbits to become stochastic. Several key features have been observed; (1) the transport threshold is phase-space dependent and occurs above the AE linear stability threshold, (2) EP losses become intermittent above threshold and appear to depend on the types of AEs present, and (3) stiff transport causes the EP density profile to remain unchanged even if the source increases. Theoretical analysis using the NOVA and ORBIT codes shows that the threshold corresponds to when particle orbits become stochastic due to wave-particle resonances with AEs in the region of phase space measured by the diagnostics. The kick model in NUBEAM (TRANSP) is used to evolve the EP distribution function to study which modes cause the most transport and further characterize intermittent bursts of EP losses, which are associated with large scale redistribution through the domino effect. Work supported by the US DOE under DE-FC02-04ER54698.
The Solar Poynting-Robertson Effect On Particles Orbiting Solar System Bodies: Circular Orbits
NASA Technical Reports Server (NTRS)
Rubincam, David P.
2013-01-01
The Poynting-Robertson effect from sunlight impinging directly on a particle which orbits a Solar System body (planet, asteroid, comet) is considered from the Sun's rest frame. There appear to be no significant first-order terms in V(sub b)/c for circular orbits, where V(sub b) is the body's speed in its orbit about the Sun and c is the speed of light, when the particle's orbital semimajor axis is much smaller than the body's orbital semimajor axis about the Sun as is mainly the case in the Solar System.
Isometry group orbit quantization of spinning strings in AdS3 × S3
NASA Astrophysics Data System (ADS)
Heinze, Martin; Jorjadze, George; Megrelidze, Luka
2015-03-01
Describing the bosonic AdS3 × S3 particle and string in SU(1,1) × SU(2) group variables, we provide a Hamiltonian treatment of the isometry group orbits of solutions via analysis of the pre-symplectic form. For the particle we obtain a one-parameter family of orbits parameterized by creation-annihilation variables, which leads to the Holstein-Primakoff realization of the isometry group generators. The scheme is then applied to spinning string solutions characterized by one winding number in AdS3 and two winding numbers in S3. We find a two-parameter family of orbits, where quantization again provides the Holstein-Primakoff realization of the symmetry generators with an oscillator-type energy spectrum. Analyzing the minimal energy at strong coupling, we verify the spectrum of short strings at special values of winding numbers.
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anglin, J.R.; Schmiedmayer, J.
2004-02-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict themore » precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.« less
The Capture of Interstellar Dust: The Pure Poynting-Robertson Case
NASA Technical Reports Server (NTRS)
Jackson, A. A.
2001-01-01
Ulysses and Galileo spacecraft have discovered interstellar dust particles entering the solar system. In general, particles trajectories not altered by Lorentz forces or radiation pressure should encounter the sun on open orbits. Under Newtonian forces alone these particles return to the interstellar medium. Dissipative forces, such as Poynting Robertson (PR) and corpuscular drag and non-dissipative Lorentz forces can modify open orbits to become closed. In particular, it is possible for the orbits of particles that pass close to the Sun to become closed due to PR drag. Further, solar irradiation will cause modification of the size of the dust particle by evaporation. The combination of these processes gives rise a class of capture orbits and bound orbits with evaporation. Considering only the case of pure PR drag a minimum impact parameter is derived for initial capture by Poynting-Robertson drag. Orbits in the solar radiation field are computed numerically accounting for evaporation with optical and material properties for ideal interstellar particles modeled. The properties of this kind of particle capture are discussed for the Sun but is applicable to other stars.
NASA Technical Reports Server (NTRS)
Anderson, K. A.; Chase, L. M.; Lin, R. P.; Mccoy, J. E.; Mcguire, R. E.
1974-01-01
The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance.
Photometric analysis of a space shuttle water venting
NASA Technical Reports Server (NTRS)
Viereck, R. A.; Murad, E.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Satayesh, A.; Berk, A.; Elgin, J. B.
1991-01-01
Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment.
NASA Astrophysics Data System (ADS)
Yang, Hongu; Ishiguro, Masateru
2018-02-01
In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.
A Secondary Ion Mass Analyzer for Remote Surface Composition Analysis of the Galilean Moons
NASA Technical Reports Server (NTRS)
Krueger, H.; Srama, R.; Johnson, T. V.; Henkel, H.; vonHoerner, H.; Koch, A.; Horanyi, M.; Gruen, E.; Kissel, J.; Krueger, F.
2003-01-01
Galileo in-situ dust measurements have shown that the Galilean moons are surrounded by tenuous dust clouds formed by collisional ejecta from their icy surfaces, kicked up by impacts of interplanetary micrometeoroids. The majority of the ejecta dust particles have been sensed at altitudes below five between 0.5 and 1 micron, just above the detector threshold, indicating a size distribution decreasing towards bigger particles. their parent bodies. They carry information about the properties of the surface from which they have been kicked up. In particular, these grains may carry organic compounds and other chemicals of biological relevance if they exist on the icy Galilean moons. In-situ analysis of the grain composition with a sophisticated dust analyzer instrument flying on a Jupiter Icy Moons Orbiter can provide important information about geochemical and geophysical processes during the evolutionary histories of these moons which are not accessible with other techniques from an orbiter spacecraft. Thus, spacecraft-based in-situ dust measurements can be used as a diagnostic tool for the analysis of the surface composition of the moons. This way, the in-situ measurements turn into a remote sensing technique by using the dust instrument like a telescope for surface investigation. An instrument capable of very high resolution composition analysis of dust particles is the Cometary Secondary Ion Mass Analyzer (COSIMA). The instrument was originally developed for the Comet Rendezvous and Asteroid Flyby (CRAF) mission and has now been built for ESA'S comet orbiter Rosetta. Dust particles are collected on a target and are later located by an optical microscope camera. A pulsed primary indium ion gun partially ionizes the dust grains. The generated secondary ions are accelerated in an electric field and travel through a reflectron-type time-of-flight ion mass spectrometer.
Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field
NASA Technical Reports Server (NTRS)
Chen, J.; Palmadesso, P. J.
1986-01-01
The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.
Innermost stable circular orbit of spinning particle in charged spinning black hole background
NASA Astrophysics Data System (ADS)
Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao
2018-04-01
In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.
Debris and meteoroid proportions deduced from impact crater residue analysis
NASA Technical Reports Server (NTRS)
Berthoud, Lucinda; Mandeville, Jean-Claude; Durin, Christian; Borg, Janet
1995-01-01
This study is a further investigation of space-exposed samples recovered from the LDEF satellite and the Franco-Russian 'Aragatz' dust collection experiment on the Mir Space Station. Impact craters with diameters ranging from 1 to 900 micron were found on the retrieved samples. Elemental analysis of residues found in the impact craters was carried out using Energy Dispersive X-ray spectrometry (EDX). The analyses show evidence of micrometeoroid and orbital debris origins for the impacts. The proportions of these two components vary according to particle size and experimental position with respect to the leading edge of the spacecraft. On the LDEF leading edge 17 percent of the impacts were apparently caused by micrometeoroids and 11 percent by debris; on the LDEF trailing edge 23 percent of the impacts are apparently caused by micrometeoroids and 4 percent consist of debris particles - mostly larger than 3 micron in diameter - in elliptical orbits around the Earth. For Mir, the analyses indicate that micrometeoroids form 23 percent of impacts and debris 9 percent. However, we note that 60-70 percent of the craters are unidentifiable, so the definitive proportions of natural v. man-made particles are yet to be determined. Experiments carried out using a light gas gun to accelerate glass spheres and fragments demonstrate the influence of particle shape on crater morphology. The experiments also show that it is more difficult to analyze the residues produced by an irregular fragment than those produced by a spherical projectile. If the particle is travelling above a certain velocity, it vaporizes upon impact and no residues are left. Simulation experiments carried out with an electrostatic accelerator indicate that this limit is about 14 km/s for Fe particles impacting Al targets. This chemical analysis cut-off may bias interpretations of the relative populations of meteoroid and orbital debris. Oblique impacts and multiple foil detectors provide a higher likelihood of detection of residues as the velocities involved are lower.
Micrometeoroids and debris on LDEF comparison with MIR data
NASA Technical Reports Server (NTRS)
Mandeville, Jean-Claude; Berthoud, Lucinda
1995-01-01
Part of the LDEF tray allocated to French experiments (FRECOPA) has been devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Crater size distributions have made possible the evaluation of the incident microparticle flux in the near-Earth environment. Comparisons are made with measurements obtained on the other faces of LDEF (tray clamps), on the leading edge (MAP) and with results of a similar experiment flown on the MIR space station. The geometry of impact craters, depth in particular, provides useful information on the nature of impacting particles and the correlation of geometry with the chemical analysis of projectile remnants inside craters make possible a discrimination between meteoroids and orbital debris. Emphasis has been laid on the size distribution of small craters in order to assess a cut-off in the distribution of particles in LEO. Special attention has been paid to the phenomenon of secondary impacts. A comparison of flight data with current models of meteoroids and space debris shows a fair agreement for LDEF, except for the smaller particles: the possible contribution of orbital debris in GTO orbits to the LDEF trailing edge flux is discussed. For MIR, flight results show differences with current modeling: the possible enhancement of orbital debris could be due to the contaminating presence of a permanently manned space station.
The Poynting-Robertson effect in the Newtonian potential with a Yukawa correction
NASA Astrophysics Data System (ADS)
Haranas, Ioannis; Ragos, Omiros; Gkigkitzis, Ioannis; Kotsireas, Ilias; Martz, Connor; Van Middekoop, Sheldon
2018-01-01
We consider a Yukawa-type gravitational potential combined with the Poynting-Robertson effect. Dust particles originating within the asteroid belt and moving on circular and elliptic trajectories are studied and expressions for the time rate of change of their orbital radii and semimajor axes, respectively, are obtained. These expressions are written in terms of basic particle parameters, namely their density and diameter. Then, they are applied to produce expressions for the time required by the dust particles to reach the orbit of Earth. For the Yukawa gravitational potential, dust particles of diameter 10^{ - 3} m in circular orbits require times of the order of 8.557 × 106 yr and for elliptic orbits of eccentricities e =0.1, 0.5 require times of 9.396 × 106 and 2.129 × 106 yr respectively to reach Earth's orbit. Finally, various cases of the Yukawa potential are studied and the corresponding particle times to reach Earth's are derived per case along with numerical results for circular and various elliptical orbits.
Improving The Near-Earth Meteoroid And Orbital Debris Environment Definition With LAD-C
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. C.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Tabata, M.; Stansbery, E. G.; Westphal, A. J.; Yano, H.
2006-01-01
To improve the near-Earth meteoroid and orbital debris environment definition, a large area particle sensor/collector is being developed to be placed on the International Space Station (ISS). This instrument, the Large Area Debris Collector (LAD-C), will attempt to record meteoroid and orbital debris impact flux, and capture the same particles with aerogel. After at least one year of deployment, the whole system will be brought back for additional laboratory analysis of the captured meteoroids and orbital debris. This project is led by the U.S. Naval Research Laboratory (NRL) while the U.S. Department of Defense (DoD) Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. Additional contributing team members of the consortium include the NASA Orbital Debris Program Office, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of Kent (UK), and University of California at Berkeley. The deployment of LAD-C on the ISS is planned for 2008, with the system retrieval in late 2009.
Transition from normal to ballistic diffusion in a one-dimensional impact system
NASA Astrophysics Data System (ADS)
Livorati, André L. P.; Kroetz, Tiago; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.
2018-03-01
We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.
Transition from normal to ballistic diffusion in a one-dimensional impact system.
Livorati, André L P; Kroetz, Tiago; Dettmann, Carl P; Caldas, Iberê L; Leonel, Edson D
2018-03-01
We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.
Automated detection and analysis of particle beams in laser-plasma accelerator simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.
Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread inmore » momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran et al. presented a comprehensive report on applying graph-based techniques for orbit classification. They used the KAM classifier to label points and components in single and multiple orbits. Love et al. conducted an image space analysis of coherent structures in plasma simulations. They used a number of segmentation and region-growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed particle accelerator data, targeting the system dynamics in terms of particle orbits. However, they did not address particle dynamics as a function of time or inspected the behavior of bunches of particles. Ruebel et al. addressed the visual analysis of massive laser wakefield acceleration (LWFA) simulation data using interactive procedures to query the data. Sophisticated visualization tools were provided to inspect the data manually. Ruebel et al. have integrated these tools to the visualization and analysis system VisIt, in addition to utilizing efficient data management based on HDF5, H5Part, and the index/query tool FastBit. In Ruebel et al. proposed automatic beam path analysis using a suite of methods to classify particles in simulation data and to analyze their temporal evolution. To enable researchers to accurately define particle beams, the method computes a set of measures based on the path of particles relative to the distance of the particles to a beam. To achieve good performance, this framework uses an analysis pipeline designed to quickly reduce the amount of data that needs to be considered in the actual path distance computation. As part of this process, region-growing methods are utilized to detect particle bunches at single time steps. Efficient data reduction is essential to enable automated analysis of large data sets as described in the next section, where data reduction methods are steered to the particular requirements of our clustering analysis. Previously, we have described the application of a set of algorithms to automate the data analysis and classification of particle beams in the LWFA simulation data, identifying locations with high density of high energy particles. These algorithms detected high density locations (nodes) in each time step, i.e. maximum points on the particle distribution for only one spatial variable. Each node was correlated to a node in previous or later time steps by linking these nodes according to a pruned minimum spanning tree (PMST). We call the PMST representation 'a lifetime diagram', which is a graphical tool to show temporal information of high dense groups of particles in the longitudinal direction for the time series. Electron bunch compactness was described by another step of the processing, designed to partition each time step, using fuzzy clustering, into a fixed number of clusters.« less
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Christiansen, Eric L.; Fleming, Michael L.
1990-01-01
A great deal of experimentation and analysis was performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration was found to depend upon mission specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. An approach is described which was developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to requirements over the expected lifetime.
Full particle orbit effects in regular and stochastic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier
Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.« less
Full particle orbit effects in regular and stochastic magnetic fields
Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier; ...
2016-07-18
Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.« less
Full particle orbit effects in regular and stochastic magnetic fields
NASA Astrophysics Data System (ADS)
Ogawa, Shun; Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; del Castillo-Negrete, Diego; Dif-Pradalier, Guilhem; Garbet, Xavier
2016-07-01
We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.
Robust Extraction and Multi-Technique Analysis of Micrometeoroids Captured in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Graham, G. A.; Bench, G.; Brennan, S.; Luening, K.; Pianetta, P.; Keller, L. P.; Flynn, G. J.; Snead, C.; Dominquez, G.
2003-01-01
The use of low-density silica aerogel as the primary capture cell technology for the NASA Discovery mission Stardust to Comet Wild-2 [1] is a strong motivation for researchers within the Meteoritics community to develop techniques to handle this material. The unique properties of silica aerogel allow dust particles to be captured at hypervelocity speeds and to remain partially intact. The same unique properties present difficulties in the preparation of particles for analysis. Using tools borrowed from microbiologists, we have developed techniques for robustly extracting captured hypervelocity dust particles and their residues from aerogel collectors[2-3]. It is important not only to refine these extraction techniques but also to develop protocols for analyzing the captured particles. Since Stardust does not return material to Earth until 2006, researchers must either analyze particles that are impacted in the laboratory using light-gasgun facilities [e.g. 41 or examine aerogel collectors that have been exposed in low-Earth orbit (LEO) [5]. While there are certainly benefits in laboratory shots, i.e. accelerating known compositions of projectiles into aerogel, the LEO capture particles offer the opportunity to investigate real particles captured under real conditions. The aerogel collectors used in this research are part of the NASA Orbital Debris Collection Experiment that was exposed on the MIR Space Station for 18 months [5]. We have developed the capability at the UCB Space Sciences Laboratory to extract tiny volumes of aerogel that completely contain each impact event, and to mount them on micromachined fixtures so that they can be analyzed with no interfering support (Fig.1). These aerogel keystones simultaneously bring the terminal particle and the particle track to within 10 m (15 g cm- ) of the nearest aerogel surface. The extracted aerogel wedges containing both the impact tracks and the captured particles have been characterized using the synchrotron total external reflection X-ray fluorescence (TXRF) microprobe at SSRL, the Nuclear Microprobe at LLNL, synchrotron infrared microscopy at the ALS facility at LBL and the NSLS at BNL, and the Total Reflection X-ray Fluorescence (TXRF) facility at SLAC.
Synchronization of finite-size particles by a traveling wave in a cylindrical flow
NASA Astrophysics Data System (ADS)
Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.
2013-09-01
Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.
Dynamics of particles in central Encke ringlet
NASA Astrophysics Data System (ADS)
Sun, K.-L.; Spahn, F.; Schmidt, J.
2012-09-01
The Encke gap is a 320 km wide division in the Saturn A ring centered at 133,581 km. There are at least 3 ringlets in Encke gap, and the central one shares the orbit with Pan [1]. Observations suggest that these ringlets are mainly composed of micronsized particles [2]. The lifetime of these particles are restricted, mechanisms must be at work to replenish these ringlets. The kinetic balance of dust production, dynamical evolution, and loss of dust has been investigated in [3]. In this work, we focus on the particle dynamics in the Encke gap. Our results show that in the central Encke ringlet: (1) The solar radiation pressure provides a minimum particle radius of 7μm; (2) The plasma drag force pushes particle outward in a rate of ˜ 1km/yr; (3) Particles are in a 'modified' horseshoe orbit which is the result of horseshoe orbit plus plasma drag, this orbit prevent particles to reach large co-rotational longitudes of Pan.
Particle orbits in two-dimensional equilibrium models for the magnetotail
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.
1990-01-01
Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.
Orbital dynamics in the post-Newtonian planar circular restricted Sun-Jupiter system
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Dubeibe, F. L.
The theory of the post-Newtonian (PN) planar circular restricted three-body problem is used for numerically investigating the orbital dynamics of a test particle (e.g. a comet, asteroid, meteor or spacecraft) in the planar Sun-Jupiter system with a scattering region around Jupiter. For determining the orbital properties of the test particle, we classify large sets of initial conditions of orbits for several values of the Jacobi constant in all possible Hill region configurations. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) collisional. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. In order to get a spherical view of the dynamics of the system, the grids of the initial conditions of the orbits are defined on different types of two-dimensional planes. We locate the different types of basins and we also relate them with the corresponding spatial distributions of the escape and collision time. Our thorough analysis exposes the high complexity of the orbital dynamics and exhibits an appreciable difference between the final states of the orbits in the classical and PN approaches. Furthermore, our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant, along with a remarkable presence of fractal basin boundaries. Our outcomes are compared with the earlier ones regarding other planetary systems.
Analysis of Microcrafters in Materials Specimens after Long-Term Exposure on ISS Surface
NASA Technical Reports Server (NTRS)
Shaevich, S. K.; Aleksandrov, N. G.; Shumov, A. E.; Novikov, L. S.; Chernik, V. N.; Samokhina, M. S.; Golden, J. L.; Graves, R. F.; Kravchenko, M.; Christiansen, E. L.;
2012-01-01
The "Komplast" experiment has been carried out on the ISS by the Khrunichev Space Center jointly with other Russian scientific centers since 1998. The experiment incorporates the "Komplast" cartridges on the FGB exterior, which are fitted with materials specimens and sensors. The cartridges were sent into orbit together with FGB on 20 November 1998. In March 2011, two of the cartridges were taken back from the ISS by the "Discovery" American space shuttle after being exposed in the open space for 12 years. In the framework of this experiment the subject of analysis is the effect of the space environment on the exposed specimens of various materials. This report covers the analysis results of the surface morphology of various materials taken from the "Komplast" cartridges exposed to hits of micrometeors and micronic particles of space debris. Analysis is made of microcraters of 5 to 250 mcm in specimens of polished metals and silicone comprised in the sensor for micrometeoric particles. The report represents optic and scanning electron microscope images of craters formed in the specimens by high-velocity and low-velocity particles impacting the surface. By virtue of the electronic microscope, data on composition of the substance in the craters and of the substance of the low-velocity particles are obtained. The data make it possible to differentiate the particles as the natural-origin particles or anthropogenic-origin space debris particles. Distribution of craters and low-velocity particles in the size range of 5 to 50 mcm is obtained. The data are compared with the existing models of fluxes of natural-origin and artificial-origin microparticles on the ISS orbit. Inhomogeneous particles of complicated configuration are discovered on the surface of the analyzed specimens, whose origin are not uniquely determined and are to be the subject of further study.
Migration of Interplanetary Dust and Comets
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4. For silicates, such values correspond to particle diameters between >1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation. The fraction of particles started from Encke-type comets is not large (<0.15) in order to fit the observational distributions of particles over their distances from the Sun. Studies of velocities of MgI line and corresponding eccentricities and inclinations in our runs showed that the mean eccentricity of zodiacal dust particles is about 0.5. [1] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 46- 65. [2] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [3] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471.
Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan; Wardell, Barry
2017-04-01
If a small "particle" of mass μ M (with μ ≪1 ) orbits a black hole of mass M , the leading-order radiation-reaction effect is an O (μ2) "self-force" acting on the particle, with a corresponding O (μ ) "self-acceleration" of the particle away from a geodesic. Such "extreme-mass-ratio inspiral" systems are likely to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we consider the "toy model" problem of computing the self-force for a scalar-field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regularization with a 4th-order puncture field, followed by an ei m ϕ ("m -mode") Fourier decomposition and a separate time-domain numerical evolution in 2 +1 dimensions for each m . We introduce a finite worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner so that the effective source is only used within the worldtube. Viewed as a spatial region, the worldtube moves to follow the particle's orbital motion. We use slices of constant Boyer-Lindquist time in the region of the particle's motion, deformed to be asymptotically hyperboloidal and compactified near the horizon and J+ . Our numerical evolution uses Berger-Oliger mesh refinement with 4th-order finite differencing in space and time. Our computational scheme allows computation for highly eccentric orbits and should be generalizable to orbital evolution in the future. Our present implementation is restricted to equatorial geodesic orbits, but this restriction is not fundamental. We present numerical results for a number of test cases with orbital eccentricities as high as 0.98. In some cases we find large oscillations ("wiggles") in the self-force on the outgoing leg of the orbit shortly after periastron passage; these appear to be caused by the passage of the orbit through the strong-field region close to the background Kerr black hole.
Flux of Millimetric Space Debris
NASA Technical Reports Server (NTRS)
Goldstein, R. M.; Goldstein, S. J., Jr.
1995-01-01
In 21.4 hr of zenith radar observations on 4 days at 8510 MHz, we found 831 particles with altitudes between 177 and 1662 km. From the duration of the echoes and the angular size (0.030 deg) of the antenna beam 157 particles were identified as passing through the side lobes and not through the main beam. Our analysis is based on the 674 particles that did not broaden the beam. On the assumptions that these particles went through the main beam, their radar cross sections vary between 0.02 and 260 sq mm , and their radial velocities vary between +/- 700 m/s. If they are conducting spheres, their diameters lie between 2 and 18 mm. If not, they must be larger. The flux of these particles, that is the number per sq km day, was determined in 100 km intervals. The maximum flux, 3.3 particles per sq km day, occurs at 950 km altitude. The small and large particles are not well mixed. The largest particles occur beyond 1000 km and middle-sized particles are missing below 300 km. If the earth's atmosphere caused the smallest particles to lose energy from initial orbits identical to those of the large particles, the orbits would have lower eccentricity at low altitudes. We find a larger eccentricity for the inner particles, and conclude that two or more populations are present.
Use of ground radar to detect reentering debris
NASA Technical Reports Server (NTRS)
Crews, J. L.
1985-01-01
The velocity of the particles is required to identify the type of particles producing the ionization trails. A method of approximating the velocity of a meteor from radar data was developed. The method requires the time between the spacings of the Fresnel interference fringes, the range to the ionization trail, and the wavelength of the radar system. The orbital mechanics of the problem are evaluated, if the particles originate with the shuttle, the orbital mechanics will substantiate the relative position of the particles with the position of the shuttle. A program to determine spacecraft orbital decay due to perturbations is utilized for a preliminary evaluation of the orbital mechanics of the problem. Many assumptions concerning the size, shape, density, etc. of the particles are necessary for the preliminary evaluation. The results do not negate the possibility that the events observed by the radar are reentering particles originating from the shuttle.
Spin, tumble, and twirl - beyond Jeffery orbits in the rotation of real-world particles
NASA Astrophysics Data System (ADS)
Variano, E. A.; Pujara, N.
2016-12-01
The classical theory of particle rotation explained by Jeffery's 1922 paper has guided how people think about the motion of non-spherical particles. The resulting concept of Jeffery orbits has been useful in guiding intuition, but is limited by some restrictive assumptions. We present a picture of what happens when some of these restrictions are relaxed. First, we review recent results from a variety of researchers showing how inertia causes Jeffery orbits to collapse. Next, we present our results from numerical simulations of particle particle motion in turbulence to show how Jeffery orbits `survive' in unsteady flows. Finally, we combine the two and discuss the motion expected for inertial particles in turbulent flow. The presentation uses a number of videos to illustrate these motions, and indicates a youtube channel on which they can be accessed for teaching purposes.
NASA Technical Reports Server (NTRS)
Rubincam, David P.
2013-01-01
The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.
g Dependent particle concentration due to sedimentation
NASA Astrophysics Data System (ADS)
Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D.
2012-11-01
Sedimentation of particles in a fluid has long been used to characterize particle size distribution. Stokes' law is used to determine an unknown distribution of spherical particle sizes by measuring the time required for the particles to settle a known distance in a fluid of known viscosity and density. In this paper, we study the effects of gravity on sedimentation by examining the resulting particle concentration distributed in an equilibrium profile of concentration C m, n above the bottom of a container. This is for an experiment on the surface of the Earth and therefore the acceleration of gravity had been corrected for the oblateness of the Earth and its rotation. Next, at the orbital altitude of the spacecraft in orbit around Earth the acceleration due to the central field is corrected for the oblateness of the Earth. Our results show that for experiments taking place in circular or elliptical orbits of various inclinations around the Earth the concentration ratio C m, n / C m, ave , the inclination seems to be the most ineffective in affecting the concentration among all the orbital elements. For orbital experiment that use particles of diameter d p =0.001 μm the concentration ratios for circular and slightly elliptical orbits in the range e=0-0.1 exhibit a 0.009 % difference. The concentration ratio increases with the increase of eccentricity, which increases more for particles of larger diameters. Finally, for particles of the same diameter concentration ratios between Earth and Mars surface experiments are related in the following way C_{(m,n)_{mathit{Earth}}} = 0.99962 C_{(m,n)_{mathit{Mars}}}.
Computational chemistry and aeroassisted orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.
1985-01-01
An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.
Collision Index and Stability of Elliptic Relative Equilibria in Planar {n}-body Problem
NASA Astrophysics Data System (ADS)
Hu, Xijun; Ou, Yuwei
2016-12-01
It is well known that a planar central configuration of the {n}-body problem gives rise to solutions where each particle moves on a specific Keplerian orbit while the totality of the particles move on a homographic motion. When the eccentricity {e} of the Keplerian orbit belongs in {[0,1)}, following Meyer and Schmidt, we call such solutions elliptic relative equilibria (shortly, ERE). In order to study the linear stability of ERE in the near-collision case, namely when {1-e} is small enough, we introduce the collision index for planar central configurations. The collision index is a Maslov-type index for heteroclinic orbits and orbits parametrised by half-lines that, according to the definition given by Hu and Portaluri (An index theory for unbounded motions of Hamiltonian systems, Hu and Portaluri (2015, preprint)), we shall refer to as half-clinic orbits and whose definition in this context, is essentially based on a blow up technique in the case {e=1}. We get the fundamental properties of collision index and approximation theorems. As applications, we give some new hyperbolic criteria and prove that, generically, the ERE of minimal central configurations are hyperbolic in the near-collision case, and we give a detailed analysis of Euler collinear orbits in the near-collision case.
NASA Astrophysics Data System (ADS)
Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao
2017-10-01
The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.
Chen, Xi; Heidbrink, William W.; Kramer, Gerrit J.; ...
2014-08-04
Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred frommore » the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. Finally, an analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; General Atomics, P.O. Box 85608, San Diego, California 92186; Heidbrink, W. W.
2014-08-15
Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred frommore » the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.« less
NASA Astrophysics Data System (ADS)
Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei
2014-10-01
Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.
It is shown that potato orbits in the near-axis region of a high beta tokamak are squeezed in a magnetic well. The squeezing factor is the same as that for the banana orbits derived in an earlier work [Phys. Plasmas 3, 2843 (1996)]. It depends on the energy of the particle. For high-energy particles, the size of the squeezed orbits is independent of their energy. This implies improved confinement for high-energy particles and for high beta tokamaks with advanced fuels.
Numerical simulations of particle orbits around 2060 Chiron
NASA Technical Reports Server (NTRS)
Stern, S. A.; Jackson, A. A.; Boice, D. C.
1994-01-01
Scattered light from orbiting or coorbiting dust is a primary signature by which Earth-based observers study the activity and atmosphere of the unusual outer solar system object 2060 Chiron. Therefore, it is important to understand the lifetime, dynamics, and loss rates of dust in its coma. We report here dynamical simulations of particles in Chiron's collisionless coma. The orbits of 17,920 dust particles were numerically integrated under the gravitational influence of Chiron, the Sun, and solar radiation pressure. These simulations show that particles ejected from Chiron are more likely to follow suborbital trajectories, or to escape altogether, than to enter quasistable orbits. Significant orbital lifetimes can only be achieved for very specific launch conditions. These results call into question models of a long-term, bound coma generated by discrete outbursts, and instead suggest that Chiron's coma state is closely coupled to the nearly instantaneous level of Chiron's surface activity.
The detection of earth orbiting objects by IRAS
NASA Technical Reports Server (NTRS)
Dow, Kimberly L.; Sykes, Mark V.; Low, Frank J.; Vilas, Faith
1990-01-01
A systematic examination of 1836 images of the sky constructed from scans made by the Infrared Astronomical Satellite has resulted in the detection of 466 objects which are shown to be in earth orbit. Analysis of the spatial and size distribution and thermal properties of these objets, which may include payloads, rocket bodies and debris particles, is being conducted as one step in a feasibility study for space-based debris detection technologies.
NASA Astrophysics Data System (ADS)
Bini, Donato; Damour, Thibault; Geralico, Andrea; Kavanagh, Chris
2018-05-01
We study the metric perturbations induced by a classical spinning particle moving along a circular orbit on a Schwarzschild background, limiting the analysis to effects which are first order in spin. The particle is assumed to move on the equatorial plane and has its spin aligned with the z axis. The metric perturbations are obtained by using two different approaches, i.e., by working in two different gauges: the Regge-Wheeler gauge (using the Regge-Wheeler-Zerilli formalism) and a radiation gauge (using the Teukolsky formalism). We then compute the linear-in-spin contribution to the first-order self-force contribution to Detweiler's redshift invariant up to the 8.5 post-Newtonian order. We check that our result is the same in both gauges, as appropriate for a gauge-invariant quantity, and agrees with the currently known 3.5 post-Newtonian results.
Software package for modeling spin-orbit motion in storage rings
NASA Astrophysics Data System (ADS)
Zyuzin, D. V.
2015-12-01
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.
Particles Co-orbital to Janus and to Epimetheus: A Firefly Planetary Ring
NASA Astrophysics Data System (ADS)
Winter, Othon C.; Souza, Alexandre P. S.; Sfair, Rafael; Giuliatti Winter, Silvia M.; Mourão, Daniela C.; Foryta, Dietmar W.
2018-01-01
The Cassini spacecraft found a new and unique ring that shares the trajectory of Janus and Epimetheus, co-orbital satellites of Saturn. Performing image analysis, we found this to be a continuous ring. Its width is between 30% and 50% larger than previously announced. We also verified that the ring behaves like a firefly. It can only be seen from time to time, when Cassini, the ring, and the Sun are arranged in a particular geometric configuration, in very high phase angles. Otherwise, it remains “in the dark,” invisible to Cassini’s cameras. Through numerical simulations, we found a very short lifetime for the ring particles, less than a couple of decades. Consequently, the ring needs to be constantly replenished. Using a model of particle production due to micrometeorites impacts on the surfaces of Janus and Epimetheus, we reproduce the ring, explaining its existence and the “firefly” behavior.
Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
Zhang, Jiaolong; Xu, Xinpeng; Qian, Tiezheng
2015-03-01
The hydrodynamic reciprocal theorem for Stokes flows is generalized to incorporate the Navier slip boundary condition, which can be derived from Onsager's variational principle of least energy dissipation. The hydrodynamic reciprocal relations and the Jeffery orbit, both of which arise from the motion of a slippery anisotropic particle in a simple viscous shear flow, are investigated theoretically and numerically using the fluid particle dynamics method [Phys. Rev. Lett. 85, 1338 (2000)]. For a slippery elliptical particle in a linear shear flow, the hydrodynamic reciprocal relations between the rotational torque and the shear stress are studied and related to the Jeffery orbit, showing that the boundary slip can effectively enhance the anisotropy of the particle. Physically, by replacing the no-slip boundary condition with the Navier slip condition at the particle surface, the cross coupling between the rotational torque and the shear stress is enhanced, as manifested through a dimensionless parameter in both of the hydrodynamic reciprocal relations and the Jeffery orbit. In addition, simulations for a circular particle patterned with portions of no-slip and Navier slip are carried out, showing that the particle possesses an effective anisotropy and follows the Jeffery orbit as well. This effective anisotropy can be tuned by changing the ratio of no-slip portion to slip potion. The connection of the present work to nematic liquid crystals' constitutive relations is discussed.
NASA Technical Reports Server (NTRS)
Sastry, V. S.
1980-01-01
The nature of Brownian motion and historical theoretical investigations of the phenomemon are reviewed. The feasibility of using a laser anemometer to perform small particle experiments in an orbiting space laboratory was investigated using latex particles suspended in water in a plastic container. The optical equipment and the particle Doppler analysis processor are described. The values of the standard deviation obtained for the latex particle motion experiment were significantly large compared to corresponding velocity, therefore, their accuracy was suspect and no attempt was made to draw meaningful conclusions from the results.
Relativistic spin-orbit interactions of photons and electrons
NASA Astrophysics Data System (ADS)
Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.
2018-04-01
Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.
Dust grain resonant capture: A statistical study
NASA Technical Reports Server (NTRS)
Marzari, F.; Vanzani, V.; Weidenschilling, S. J.
1993-01-01
A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.
Morphology correlation of craters formed by hypervelocity impacts
NASA Technical Reports Server (NTRS)
Crawford, Gary D.; Rose, M. Frank; Zee, Ralph H.
1993-01-01
Dust-sized olivine particles were fired at a copper plate using the Space Power Institute hypervelocity facility, simulating micrometeoroid damage from natural debris to spacecraft in low-Earth orbit (LEO). Techniques were developed for measuring crater volume, particle volume, and particle velocity, with the particle velocities ranging from 5.6 to 8.7 km/s. A roughly linear correlation was found between crater volume and particle energy which suggested that micrometeoroids follow standard hypervelocity relationships. The residual debris analysis showed that for olivine impacts of up to 8.7 km/s, particle residue is found in the crater. By using the Space Power Institute hypervelocity facility, micrometeoroid damage to satellites can be accurately modeled.
Exploring potential Pluto-generated neutral tori
NASA Astrophysics Data System (ADS)
Smith, Howard T.; Hill, Matthew; KollMann, Peter; McHutt, Ralph
2015-11-01
The NASA New Horizons mission to Pluto is providing unprecedented insight into this mysterious outer solar system body. Escaping molecular nitrogen is of particular interest and possibly analogous to similar features observed at moons of Saturn and Jupiter. Such escaping N2 has the potential of creating molecular nitrogen and N (as a result of molecular dissociation) tori or partial toroidal extended particle distributions. The presence of these features would present the first confirmation of an extended toroidal neutral feature on a planetary scale in our solar system. While escape velocities are anticipated to be lower than those at Enceladus, Io or even Europa, particle lifetimes are much longer in Pluto’s orbit because as a result of much weaker solar interaction processes along Pluto’s orbit (on the order of tens of years). Thus, with a ~248 year orbit, Pluto may in fact be generating an extended toroidal feature along it orbit.For this work, we modify and apply our 3-D Monte Carlo neutral torus model (previously used at Saturn, Jupiter and Mercury) to study/analyze the theoretical possibility and scope of potential Pluto-generated neutral tori. Our model injects weighted particles and tracks their trajectories under the influence of all gravitational fields with interactions with other particles, solar photons and Pluto collisions. We present anticipated N2 and N tori based on current estimates of source characterization and environmental conditions. We also present an analysis of sensitivity to assumed initial conditions. Such results can provide insight into the Pluto system as well as valuable interpretation of New Horizon’s observational data.
Determination of broken KAM surfaces for particle orbits in toroidal confinement systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R. B.
2015-10-05
Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.
The recognition and interpretation of micro-particle impacts on space craft surfaces
NASA Astrophysics Data System (ADS)
Kearsley, Anton
Modern analysis instruments now allow the rapid examination of returned spacecraft surfaces, enabling the location and identification of impact features, and the attribution of their impactor origins. This paper describes application of novel electron, ion and micro-X-ray Fluorescence techniques to impacts on diverse compositions of substrate, including solar cell glass, poly-sulfone and fluoro-polymer-impregnated glass fibre composites, multilayer insulation foils, aluminium and titanium alloys. Examples will include two generations of solar cells and stiffener materials from the Hubble Space Telescope (HST), Beta-cloth from the NASA Mir-Trek cover blanket, aluminised Kapton foils from the Japanese Space Flyer Unit (SFU) and the European Retrievable Carrier (EuReCa), Al-alloy plates from the Long Duration Exposure Facility (LDEF), Al foils from the NASA Stardust mission, Al-alloy and Zinc orthotitanate (ZOT) painted alloy plate from HST, and titanium alloys from a re-entered titanium pressure tank. Each type of spacecraft surface poses unique problems of analysis, especially in the recognition of extraneous signatures from the impacting particle, especially if a complex chemical composition is already present in the target. For example, solar cells provide an excellent capture and analysis medium for monitoring fluxes of micrometre-scale orbital debris from solid rocket motor firings in low Earth orbit. However, they provide a hard and dense capture medium upon which substantial modification of the impactor may occur, making the precise identification of micrometeoroid components difficult. Unfortunately, extensive spallation by larger (> 100 micrometre) particle impacts on the thin and brittle structure of solar cells also usually results in complete loss of impactor signature. Although thick alloy surfaces may prevent complete impact penetration, the analysis of particle residues within their deep concavity has proven difficult, until the recent introduction of new high-efficiency energy dispersive X-ray (EDX) detectors. Along with Particle Induced X-ray Emission and micro-XRF imaging systems, the new EDX detectors allow recognition of subtle trace quantities of residue from even millimetre-scale craters and thin foil penetrations. Data from these differing substrates and techniques need to be integrated if we are to fully document micro-particle populations from the wide range of natural (cometary and asteroidal, i.e. micrometeoroid) and artificial (i.e. orbital debris) sources.
The Kirillov picture for the Wigner particle
NASA Astrophysics Data System (ADS)
Gracia-Bondía, J. M.; Lizzi, F.; Várilly, J. C.; Vitale, P.
2018-06-01
We discuss the Kirillov method for massless Wigner particles, usually (mis)named ‘continuous spin’ or ‘infinite spin’ particles. These appear in Wigner’s classification of the unitary representations of the Poincaré group, labelled by elements of the enveloping algebra of the Poincaré Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described. In memory of E C G Sudarshan.
Migration of small bodies and dust to the terrestrial planets
NASA Astrophysics Data System (ADS)
Ipatov, Sergei I.; Mather, John C.
2005-02-01
We integrated the orbital evolution of 30,000 Jupiter-family comets, 1300 resonant asteroids, and 7000 asteroidal, trans-Neptunian, and cometary dust particles. For initial orbital elements of bodies close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three objects (from 2P and 10P runs) even got inner-Earth orbits (with aphelion distance Q<0.983 AU) and Aten orbits for Myrs. Our results show that the trans-Neptunian belt can provide a significant portion of near-Earth objects, or the number of trans-Neptunian objects migrating inside the solar system can be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got near-Earth object orbits for millions of years disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes. The probability of a collision of an asteroidal or cometary particle during its lifetime with the Earth was maximum at diameter d˜ 100 mum. At d<10 mum such probability for trans-Neptunian particles was less than that for asteroidal particles by less than an order of magnitude, so the fraction of trans-Neptunian particles with such diameter near Earth can be considerable.
NASA Astrophysics Data System (ADS)
Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.
2010-03-01
The problem of a compact binary system whose components move on circular orbits is addressed using two different approximation techniques in general relativity. The post-Newtonian (PN) approximation involves an expansion in powers of v/c≪1, and is most appropriate for small orbital velocities v. The perturbative self-force analysis requires an extreme mass ratio m1/m2≪1 for the components of the binary. A particular coordinate-invariant observable is determined as a function of the orbital frequency of the system using these two different approximations. The post-Newtonian calculation is pushed up to the third post-Newtonian (3PN) order. It involves the metric generated by two point particles and evaluated at the location of one of the particles. We regularize the divergent self-field of the particle by means of dimensional regularization. We show that the poles ∝(d-3)-1 appearing in dimensional regularization at the 3PN order cancel out from the final gauge invariant observable. The 3PN analytical result, through first order in the mass ratio, and the numerical self-force calculation are found to agree well. The consistency of this cross cultural comparison confirms the soundness of both approximations in describing compact binary systems. In particular, it provides an independent test of the very different regularization procedures invoked in the two approximation schemes.
The orbit's evolution of particles ejected from the surface of Phobos
NASA Astrophysics Data System (ADS)
Mineeva, Svetlana; Lupovka, Valery
2016-04-01
1. Introduction It is known that all giant planets have ring systems. Generally there are faint rings, such as "gossamer rings" of Jupiter. One of the basic theories of faint's origin of rings is their formation from the dust ejected in collisions of meteorite material with the natural satellites. Thus, a question of possible existence of Mars's dust rings arises. Mars has two natural satellites, which are subjected to bombardment. Evidences of this are impact craters of different sizes that cover the surface of both satellites. 2. Methods To test the theory, a calculation of the movement of simulated particles, which could be ejected from the surface of Phobos by meteorite impact, was made. The initial coordinates of 650 particles on Phobos surface were simulated using regular grid 10° × 10°. Uniform distribution of the velocity was set to the absolute value in the range of 0.5 km/s to 3 km/sec; direction of the velocity vector was assigned randomly. In this study effect of the gravitational attraction of the Sun, Earth, Mars, Jupiter, Phobos and Deimos was taken into account as an attraction of the central mass. Using software package for orbital dynamic MERCURY6 [1] - an integration of the equations of motion of particles was performed using Everhart method with a Radau spacing of the 15th order [2]. 3. Results Motion of 650 particles was considered at the time interval of 10 000 years. As a result of calculation: 202 of the particles (31.1%) returned to Phobos; 132 of the particles (20.3%) fell to Mars; 173 particles (26.6%) had a hyperbolic orbit; 143 particles rotated on their orbits around Mars, and they represent 22.0% of the total number of simulated particles. The orbits of the particles are elongated: eccentricity is within the range from 0.1 to 0.95; pericentric distance varies from 3 500 km to 48 100 km; respectively apocenteric distance is from 9000 to 421 400 km. In the space, orbits are inclined to the ecliptic from 1 to 73 degrees, so trajectories of the particles can form a kind of toroidal structure around Mars. 4. Conclusions As conditions which previously discussed, a cluster of ejected particles creates a dust torus around Mars, resistant to disturbances for 10 thousand years. According to statistics, nearly a quarter of the ejected particles stay on orbit around Mars. However, the formation of a dense ring, visible using by any optics, raises doubts. Orbits of particles take a variety of configurations. So, we cannot yet specify the location of area with increased density of particles. Acknowledgments: This work was supported by the Russian Science Foundation under project 14-22-00197. References: 1. http://www.arm.ac.uk/~jec/home.html 2. Chambers J. E. «Manual for the MERCURY integrator», 2001.
Scientific Research in the Lunar Orbiting Mission
NASA Astrophysics Data System (ADS)
Sasaki, S.; Iijima, Y.; Tanaka, K.; Kato, M.; Hashimoto, M.; Mizutani, H.; Takizawa, Y.
2002-01-01
and technology development. The launch was rescheduled last summer in the rearrangement of HII-A launch schedule. The main objective of the mission is to study the origin and evolution of the Moon. The spacecraft consists of a main orbiter at about 100 km altitude in the polar circular orbit and two subsatellites in the elliptical orbits with the apolune at 2400 km and 800 km. The main orbiter will carry instruments for scientific investigation including mapping of lunar topography and surface composition, measurement of the magnetic fields, and observation of lunar and solar terrestrial plasma environment. The mission period will be one year. If extra fuel is available, the mission will be extended. The elemental abundances are measured by the x-ray and gamma-ray spectrometers. Alpha particles from the radon gas and polonium are detected by an alpha particle spectrometer. The mineralogical characterization is performed by a multi-band imager. The mineralogical composition is identified by a spectral profiler, a continuous spectral analyzer. The surface topographic data are obtained by a high resolution terrain camera and a laser altimeter. The inside structure up to 5 km below the lunar surface is observed by the radar sounder experiment using a 5 MHz radio wave. The magnetometer provides data on the lunar surface magnetic field which will be used to understand the origin of lunar paleomagnetism and paleomagnetism. Doppler tracking of the orbiter via the relay satellite when the orbiter is in the far side is used to determine the gravity field of the far side. Radio sources on the two subsatellites are used to conduct the differential VLBI observation from ground stations. The lunar environment of high energy particles, electromagnetic fields, and plasma, is also measured by the main orbiter. The radio science using coherent x and s band carriers from the orbiter will be conducted to detect the tenuous lunar ionosphere. For the solar-terrestrial plasma observation, an imaging observation of the earth will be made to clarify the macroscopic dynamics of the terrestrial plasma environment and aurora activities. The observation of planetary radiation from the Jupiter and Saturn is also planned. Besides the scientific instruments, a high definition camera system to observe the earth and lunar surface will be onboard for publicity. A mission operation and data analysis center for SELENE is now under development. All scientific data are stored and some of them are transmitted to the PI team members outside the center for operation monitor and data analysis. Data will be open to the public one year after completion of the nominal mission.
Rings of earth. [orbiting bands of space debris
NASA Technical Reports Server (NTRS)
Goldstein, Richard M.; Randolph, L. W.
1992-01-01
Small particles moving at an orbital velocity of 7.6 kilometers per second can present a considerable hazard to human activity in space. For astronauts outside of the protective shielding of their space vehicles, such particles can be lethal. The powerful radar at NASA's Goldstone Deep Communications Complex was used to monitor such orbital debris. This radar can detect metallic objects as small as 1.8 mm in diameter at 600 km altitude. The results of the preliminary survey show a flux (at 600 km altitude) of 6.4 objects per square kilometer per day of equivalent size of 1.8 mm or larger. Forty percent of the observed particles appear to be concentrated into two orbits. An orbital ring with the same inclination as the radar (35.1 degrees) is suggested. However, an orbital band with a much higher inclination (66 degrees) is also a possibility.
Results in orbital evolution of objects in the geosynchronous region
NASA Technical Reports Server (NTRS)
Friesen, Larry Jay; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1990-01-01
The orbital evolution of objects at or near geosynchronous orbit (GEO) has been simulated to investigate possible hazards to working geosynchronous satellites. Orbits of both large satellites and small particles have been simulated, subject to perturbations by nonspherical geopotential terms, lunar and solar gravity, and solar radiation pressure. Large satellites in initially circular orbits show an expected cycle of inclination change driven by lunar and solar gravity, but very little altitude change. They thus have little chance of colliding with objects at other altitudes. However, if such a satellite is disrupted, debris can reach thousands of kilometers above or below the initial satellite altitude. Small particles in GEO experience two cycles driven by solar radiation: an expected eccentricity cycle and an inclination cycle not expected. Particles generated by GEO insertion stage solid rocket motors typically hit the earth or escape promptly; a small fraction appear to remain in persistent orbits.
NASA Astrophysics Data System (ADS)
Krupp, N.; Roussos, E.; Mitchell, D. G.; Kollmann, P.; Paranicas, C.; Krimigis, S. M.; Hedman, M. M.; Dougherty, M. K.
2017-12-01
After 13 years in orbit around Saturn Cassini came to an end on 15 September 2017. The last phase of the mission was called the "Grand Finale" and consisted of high latitude orbits crossing the F-Ring 22 times between Nov 2016 and April 2017 followed by the so called proximal orbits passing the ring plane inside the D-ring. The roughly 7-day long F-ring orbits with periapsis at nearly the same local time allowed to study temporal variations of the particle distributions in the inner part of Saturn's magnetosphere while during the proximal orbits Cassini measured for the first time the charged particle environment in-situ inside the D-ring up to 2500 km above the 1-bar cloud level of the planet. In this presentation first results of the Low Energy Magnetospheric Measurement System LEMMS, part of the Magnetosphere Imaging Instrument MIMI during the "Grand Finale" will be summarized in detail, including the discovery of MeV particles close to Saturn, higher intensities of charged particles when Cassini was magnetically connected to the D-Ring, sharp dropouts at the inner edge of the D-ring as well as unexpected features and asymmetries in the particle measurements related to newly discovered ring arcs in the inner magnetosphere.
Radiation forces on small particles in the solar system
NASA Technical Reports Server (NTRS)
Burns, J. A.; Lamy, P. L.; Soter, S.
1979-01-01
Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.
LDEX-PLUS: Lunar Dust Experiment with Chemical Analysis Capability to search for Water
NASA Astrophysics Data System (ADS)
Horanyi, M.; Sternovsky, Z.; Gruen, E.; Kempf, S.; Srama, R.; Postberg, F.
2010-12-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphee and Dust Explorer Mission (LADEE) is scheduled for launch in early 2013. It will map the variability of the density and size distributions of dust in the lunar vicinity. LDEX is an impact ionization instrument, at an impact speed of > 1.6 km/s, it is capable of measuring the mass of grains with m > 10^(-11) g, and it can also identify a population of smaller grains with m > 10^(-14) kg with a density of n > 10^(-4) cm^(-3). This talk is to introduce the LDEX-PLUS instrument that extends the LDEX capabilities to also measure the chemical composition of the impacting particles with a mass resolution of M/ΔM > 30. We will summarize the science goals, measurement requirements, and the resource needs of this instrument. Traditional methods to analyze surfaces of airless planetary objects from an orbiter are IR and gamma ray spectroscopy, and neutron backscatter measurements. Here we present a complementary method to analyze dust particles as samples of planetary objects from which they were released. The Moon, Mercury, and all other airless planetary object are exposed to the ambient meteoroid bombardment that erodes their surface and generates secondary ejecta particles. Therefore, such objects are enshrouded in clouds of dust particles that have been lifted from their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition, and the origin of each analyzed grain can be determined with an accuracy at the surface that is approximately the altitude of the orbit. Since the detection rates can be on the order of thousands per day, a spatially resolved mapping of the surface composition can be achieved. Possible enhancements include the addition of a dust trajectory sensor to improve the spatial resolution on the surface to ~ 10 km from an altitude of 100 km, and a reflectron type instrument geometry to increase the chemical composition mass resolution to M/ΔM >> 100, enabling isotopic measurements. This ‘dust spectrometer’ approach provides key chemical and isotopic constraints for varying provinces on the surfaces, leading to better understanding of the body’s geological evolution. The method is in principal applicable to orbiters about any planetary object with a radius > 1000 km and with only a thin or no atmosphere. Here we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth’s Moon, as LDEX-PLUS is of particular interest to verify from orbit the presence of water ice in the permanently shadowed lunar craters.
Backgrounds, radiation damage, and spacecraft orbits
NASA Astrophysics Data System (ADS)
Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.
2017-08-01
The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.
The narrow rings of Jupiter, Saturn and Uranus
NASA Technical Reports Server (NTRS)
Dermott, S. F.; Murray, C. D.; Sinclair, A. T.
1980-01-01
The origin of the newly discovered narrow ring systems around Jupiter, Saturn and Uranus is considered. It is pointed out that both the Uranian and Jovian ring systems have mean orbital radii of 1.8 planetary radii and lie within the Roche zones of their respective planets, and it is suggested that the Jovian ring is the product of the disintegration of a satellite that entered the Roche zone, and that large numbers of small particles are now in horseshoe orbits about the Lagrangian equilibrium points of the remnant chunks. Analysis of the path of a ring particle in a horseshoe orbit is shown to result in ring structures in agreement with those observed for the circular rings of Jupiter and the highly eccentric ring of Uranus. The stability of these ring systems is then considered, and it is suggested that the F ring of Saturn, which lies outside the Roche zone, represents primordial matter not yet accreted by small satellites just inside the Mimas first-order resonances.
The charged particle radiation environment for AXAF
NASA Technical Reports Server (NTRS)
Joy, Marshall
1990-01-01
The Advanced X Ray Astrophysics Facility (AXAF) will be subjected to several sources of charged particle radiation during its 15-year orbital lifetime: geomagnetically-trapped electrons and protons, galactic cosmic ray particles, and solar flare events. These radiation levels are presented for the AXAF orbit for use in the design of the observatory's science instruments.
Study of cosmic dust particles on board LDEF: The FRECOPA experiments AO138-1 and AO138-2
NASA Technical Reports Server (NTRS)
Mandeville, J. C.; Borg, Janet
1992-01-01
Two experiments, within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust, were flown on the LDEF. A variety of sensors and collecting devices have made possible the study of impact processes on materials of technological interest. Preliminary examination of hypervelocity impact features gives valuable data on size distribution and nature of interplanetary dust particles in low earth orbit, within the 0.5 to 300 micrometer size range. Most of the events detected on the trailing face of LDEF are expected to be the result of impacts of meteoritic particles only. So far, chemical analysis of craters by EDS clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. Systematic occurrence of C and O in crater residues is an important result, to be compared with the existence of CHON particles detected in P-Halley comet nucleus. Crater size distribution is in good agreement with results from other dust experiments flown on LDEF. However, no crater smaller than 1.5 micron was observed, thus suggesting a cutoff in the near earth particle distribution. Possible origin and orbital evolution of micrometeoroids is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Yin, Z. P.; Wu, S. F.
In the iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d xy orbital than on the d xz/d yz orbital yield quasi-particles with d xy orbital character having larger mass renormalization and abnormal temperature evolution. However, the physical origin of this orbital di erentiation is debated between the Hund's coupling induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasi-particle (QP) anomaly in LiFeAs. Lastly, the excellent agreement between our photoemission measurements and first-principlesmore » many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling.« less
Miao, H.; Yin, Z. P.; Wu, S. F.; ...
2016-11-14
In the iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d xy orbital than on the d xz/d yz orbital yield quasi-particles with d xy orbital character having larger mass renormalization and abnormal temperature evolution. However, the physical origin of this orbital di erentiation is debated between the Hund's coupling induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasi-particle (QP) anomaly in LiFeAs. Lastly, the excellent agreement between our photoemission measurements and first-principlesmore » many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling.« less
Orbital debris and meteoroids: Results from retrieved spacecraft surfaces
NASA Astrophysics Data System (ADS)
Mandeville, J. C.
1993-08-01
Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.
Summary of Orbital Debris Workshop
NASA Technical Reports Server (NTRS)
Kessler, D. J.
1982-01-01
An Orbital Debris Workshop was conducted in July 1982. The working groups established were related to measurements of large particles, modeling of large particles, measurements of small particles, spacecraft hazard and shielding requirements, and space object management. The results of the Orbital Debris Workshop reaffirm the need for research to better understand the character of orbital debris, its effects on future spacecraft, and the related requirements for policy. A clear charter is required for this research to receive the necessary support, focus, and coordination. It was recommended that NASA assume the role of lead agency. The first task is to develop an overall plan with both Department of Defense and the North American Aerospace Defense Command participation.
Solar particle events observed at Mars: dosimetry measurements and model calculations
NASA Astrophysics Data System (ADS)
Cleghorn, T.; Saganti, P.; Zeitlin, C.; Cucinotta, F.
The first solar particle events from a Martian orbit are observed with the MARIE (Martian Radiation Environment Experiment) on the 2001 Mars Odyssey space -craft that is currently in orbit and collecting the mapping data of the red planet. These solar particle events observed at Mars during March and April 2002, are correlated with the GOES-8 and ACE satellite data from the same time period at Earth orbits. Dosimetry measurements for the Mars orbit from the period of March 13t h through April 29t h . Particle count rate and the corresponding dose rate enhancements were observed on March 16t h through 20t h and on April 22n d corresponding to solar particle events that were observed at Earth orbit on March 16t h through 21s t and beginning on April 21s t respectively. The model calculations with the HZETRN (High Z=atomic number and high Energy Transport) code estimated the background GCR (Galactic Cosmic Rays) dose rates. The dose rates observed by the MARIE instrument are within 10% of the model calculations. Dosimetry measurements and model calculation will be presented.
Compositional mapping of planetary moons by mass spectrometry of dust ejecta
NASA Astrophysics Data System (ADS)
Postberg, Frank; Grün, Eberhard; Horanyi, Mihaly; Kempf, Sascha; Krüger, Harald; Schmidt, Jürgen; Spahn, Frank; Srama, Ralf; Sternovsky, Zoltan; Trieloff, Mario
2011-11-01
Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.
Debris Detector Verification by Hvi-Tests
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin
Information regarding Space Debris (SD) or Micrometeoroids (MM) impacting on spacecraft (S/C) or payloads (P/L) can be obtained by using environmental models e.g. MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured or orbital observed data. The latter is utilised for large particles and can be obtained from ground based or space based radars or telescopes. Data regarding very small but abundant particles can also be gained by analysis of retrieved hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are brought from orbit back to Earth. Furthermore, in-situ impact detectors are an essential source for information on small size meteoroids and space debris. These kind of detectors are placed in orbit and collect impact data regarding SD and MM, sending data near real time via telemetry. Compared to the impact data which is gained by analysis of retrieved surfaces, the detected data comprise additional information regarding exact impact time and, depending on the type of detector, on the orbit and particles composition. Nevertheless, existing detectors have limitations. Since the detection area is small, statistically meaningful number of impacts are obtained for very small particles only. Measurements of particles in the size range of hundreds of microns to mm which are potentially damaging to S/C require larger sensor areas. To make use of the advantages of in-situ impact detectors and to increase the amount of impact data an innovative impact detector concept is currently under development at DLR in Bremen. Different to all previous impact detectors the Solar Generator based Impact Detector (SOLID) is not an add-on component on the S/C. SOLID makes use of existing subsystems of the S/C and adopts them for impact detection purposes. Since the number of impacts on a target in space depends linearly on the exposed area, the S/C solar panels offer a unique opportunity to use them for impact detection. Considering that the SOLID method could be applied to several S/Cs in different orbits, the spatial coverage in space concerning SD and MM can be significantly increased. In this way the method allows to generate large amount of impact data, which can be used for environmental model validation. This paper focuses on the verification of the SOLID method by Hypervelocity Impact (HVI) tests performed at Fraunhofer EMI. The test set-up as well as achieved results are presented and discussed.
Compositional Mapping of Planetary moons by Mass Spectrometry of Dust Ejecta
NASA Astrophysics Data System (ADS)
Postberg, F.; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger, H.; Schmidt, J.; Spahn, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.
2011-12-01
Classical methods to analyze the surface composition of planetary objects from a space craft are IR and gamma ray spectroscopy and neutron backscatter measurements. We present a complementary method to analyze rocky or icy dust particles as samples of planetary objects from where they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets - they are enshrouded in clouds of ballistic dust particles. In situ mass spectroscopic analysis of these grains impacting on to a detector on a spacecraft reveals their composition as characteristic samples of planetary surfaces at flybys or from an orbiter. The well established approach of dust detection by impact ionization has recently shown its capabilities by analyzing ice particles expelled by subsurface salt water on Saturn's moon Enceladus. Applying the method on micro-meteoroid ejecta of less active moons would allow for the qualitative and quantitative analysis of a huge number of samples from various surface areas, thus combining the advantages of remote sensing and a lander. Utilizing the heritage of the dust detectors onboard Ghiotto, Ulysses, Galileo, and Cassini a variety of improved, low-mass lab-models have been build and tested. They allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since achievable detection rates are on the order of thousand per orbit, an orbiter can create a compositional map of samples taken from a greater part of the surface. Flybies allow an investigation of certain surface areas of interest. Dust impact velocities are in general sufficiently high for impact ionization at orbiters about planetary objects with a radius of at least 1000km and with only a thin or no atmosphere. Thus, this method is ideal on a spacecraft orbiting Earth's Moon or Jupiter's Galilean satellites. The approach has a ppm-level sensitivity to salts and many rock forming materials as well as water and organic compounds. It provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution. Regions which were subject to endogenic or exogenic alteration (resurfacing, radiation, old/new regions) could be distinguished and investigated. In particular exchange processes with subsurface ocean on the Galileian moons could be determined with high quantitative precision.
NASA Technical Reports Server (NTRS)
Lind, Don
1985-01-01
The Interstellar Gas Experiment (IGE) is designed to collect particles of the interstellar gas - a wind of interstellar media particles moving in the vicinity of the solar system. These particles will be returned to earth where the isotopic ratios of the noble gases among these particles will be measured. IGE was designed and programmed to expose 7 sets of six copper-beryllium metallic collecting foils to the flux of neutral interstellar gas particles which penetrate the heliosphere to the vicinity of the earth's orbit. These particles are trapped in the collecting foils and will be returned to earth for mass-spectrographic analysis when Long Duration Exposure Facility (LDEF) on which IGE was launched, is recovered.
Characterizing Secondary Debris Impact Ejecta
NASA Technical Reports Server (NTRS)
Schonberg, W. P.
1999-01-01
All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.
Orbital Evolution of Particles and Stable Zones at the F Ring Core
NASA Astrophysics Data System (ADS)
Whizin, Akbar; Cuzzi, J.; Hogan, R.; Dobrovolskis, A.; Colwell, J.; Scargle, J.; Dones, L.; Showalter, M.
2012-10-01
The F ring of Saturn is often thought of as a ‘shepherded’ ring; however, it is closer to the more massive of its two shepherd satellites, Prometheus. Pandora, the outer satellite, is near a 3:2 mean motion resonance with larger Mimas causing periodic fluctuations in its orbit. The perturbations from the Saturnian satellites result in chaotic orbits throughout the F ring region (Scargle et al 1993 DPS 25, #26.04, Winter et al 2007 MNRAS 380, L54; 2010 A&A 523, A67). We follow the approach of Cuzzi et al. (abstract this meeting) in exploring zones of relative stability in the F ring region using a N-body Bulirsch-Stoer orbital integrator that includes the 14 main satellites of Saturn. We find relatively stable zones situated among the tightly packed Prometheus and Pandora resonances that we dub “anti-resonances.” At these locations ring particles have much smaller changes in their semi-major axes and eccentricities than particles outside of anti-resonance zones. We present high radial resolution simulations where we track the orbital evolution of 6000 test particles over time in a 200km region and find that the variance of the semi-major axes of particles in anti-resonances can be less than 1km over a period of 32 years, while just 5km away in either radial direction the variance can be tens of km’s. More importantly, particles outside of these stable zones can migrate into one due to chaotic orbits, but once they enter an anti-resonance zone they remain there. The anti-resonances act as long-lived sinks for ring particles and explain the location of the F ring core even though it is not in overall torque balance with the shepherd moons.
Orbital debris and meteoroid population as estimated from LDEF impact data
NASA Technical Reports Server (NTRS)
Zhang, Jingchang; Kessler, Donald J.
1995-01-01
Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.
Rational orbits around charged black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Vedant; Levin, Janna; Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, New York 10027
2010-10-15
We show that all eccentric timelike orbits in Reissner-Nordstroem spacetime can be classified using a taxonomy that draws upon an isomorphism between periodic orbits and the set of rational numbers. By virtue of the fact that the rationals are dense, the taxonomy can be used to approximate aperiodic orbits with periodic orbits. This may help reduce computational overhead for calculations in gravitational wave astronomy. Our dynamical systems approach enables us to study orbits for both charged and uncharged particles in spite of the fact that charged particle orbits around a charged black hole do not admit a simple one-dimensional effectivemore » potential description. Finally, we show that comparing periodic orbits in the Reissner-Nordstroem and Schwarzschild geometries enables us to distinguish charged and uncharged spacetimes by looking only at the orbital dynamics.« less
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.; Izzo, V.
2018-05-01
Numerical simulations of runaway electrons (REs) with a particular emphasis on orbit dependent effects in 3-D magnetic fields are presented. The simulations were performed using the recently developed Kinetic Orbit Runaway electron Code (KORC) that computes the full-orbit relativistic dynamics in prescribed electric and magnetic fields including radiation damping and collisions. The two main problems of interest are synchrotron radiation and impurity-based RE dissipation. Synchrotron radiation is studied in axisymmetric fields and in 3-D magnetic configurations exhibiting magnetic islands and stochasticity. For passing particles in axisymmetric fields, neglecting orbit effects might underestimate or overestimate the total radiation power depending on the direction of the radial shift of the drift orbits. For trapped particles, the spatial distribution of synchrotron radiation exhibits localized "hot" spots at the tips of the banana orbits. In general, the radiation power per particle for trapped particles is higher than the power emitted by passing particles. The spatial distribution of synchrotron radiation in stochastic magnetic fields, obtained using the MHD code NIMROD, is strongly influenced by the presence of magnetic islands. 3-D magnetic fields also introduce a toroidal dependence on the synchrotron spectra, and neglecting orbit effects underestimates the total radiation power. In the presence of magnetic islands, the radiation damping of trapped particles is larger than the radiation damping of passing particles. Results modeling synchrotron emission by RE in DIII-D quiescent plasmas are also presented. The computation uses EFIT reconstructed magnetic fields and RE energy distributions fitted to the experimental measurements. Qualitative agreement is observed between the numerical simulations and the experiments for simplified RE pitch angle distributions. However, it is noted that to achieve quantitative agreement, it is necessary to use pitch angle distributions that depart from simplified 2-D Fokker-Planck equilibria. Finally, using the guiding center orbit model (KORC-GC), a preliminary study of pellet mitigated discharges in DIII-D is presented. The dependence of RE energy decay and current dissipation on initial energy and ionization levels of neon impurities is studied. The computed decay rates are within the range of experimental observations.
Software package for modeling spin–orbit motion in storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de
2015-12-15
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less
NASA Astrophysics Data System (ADS)
Sternovsky, Z.; Gruen, E.; Postberg, F.; Srama, R.; Kempf, S.; Horanyi, M.
2009-12-01
In the upcoming joint ESA/NASA mission two flagship spacecraft wills be launched to study the Jovian system. In the second phase of operation the spacecrafts will settle into orbits around Ganymede and Europa, respectively. Of primary interests are the characterization of the icy shells, the global surface composition and chemistry in order to understand geological evolution, confirm the presence of liquid water under the icy core and investigate the habitability of these interesting planetary objects. On their orbit around the moons, the spacecrafts will be bombarded by micron-sized particles originating from the surface. These dust particles are kicked-up to high altitudes by the continual micrometeoroid bombardment of the surface. This permanently present dust cloud enshrouding the moons has already been detected by the Galileo spacecraft. These particles are a direct link to the place of origin (surface) and their composition can be analyzed by existing instruments. The mass analysis is based on the time-of-flight mass analysis of the ions generated upon the impact of the dust on the instrument’s target surface. The high scientific value of this method was recently demonstrated by the analysis of particles originating from Enceladus’s plumes by the Cosmic Dust Analyzer onboard the Cassini spacecraft [Postberg et al., Nature 459, 1098, 2009]. This analyzing method is particularly sensitive to salts and other minerals as well as organic compounds embedded in the ice as the ionization of these is greatly enhanced. (Resent experiments showed that we are sensitive to organic compounds at least down to 0.001% mixing ratio). The small abundance of these elements are difficult to detect by other methods, yet they are considerable scientific significance as proof of interaction between the rocky core and the liquid water underneath the icy surface, for example. In this presentation we review capabilities of the existing instrument and the applicability of this method to Europa and Ganymede. The speed of a spacecraft orbiting either of the moons will be > 1 km/s, which is sufficient to get chemical information from a highly resolved impact ionization mass spectrum. Instruments far exceeding the sensitivity and mass resolution of CDA are now available and can greatly enhance the science return and answer many question of the next Jupiter mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Lei, E-mail: lye@ipp.ac.cn; Guo, Wenfeng; Xiao, Xiaotao
2014-12-15
A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile canmore » be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.« less
CLASHING BEAM PARTICLE ACCELERATOR
Burleigh, R.J.
1961-04-11
A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.
Migration of Dust Particles and Their Collisions with the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Mather, J. C.
2004-01-01
Our review of previously published papers on dust migration can be found in [1], where we also present different distributions of migrating dust particles. We considered a different set of initial orbits for the dust particles than those in the previous papers. Below we pay the main attention to the collisional probabilities of migrating dust particles with the planets based on a set of orbital elements during their evolution. Such probabilities were not calculated earlier.
Adaptive particle swarm optimization for optimal orbital elements of binary stars
NASA Astrophysics Data System (ADS)
Attia, Abdel-Fattah
2016-12-01
The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.
Nongyrotropic electron orbits in collisionless magnetic reconnection
NASA Astrophysics Data System (ADS)
Zenitani, S.
2016-12-01
In order to study inner workings of magnetic reconnection, NASA has recently launched Magnetospheric MultiScale (MMS) spacecraft. It is expected to observe electron velocity distribution functions (VDFs) at high resolution in magnetotail reconnection sites in 2017. Since VDFs are outcomes of many particle orbits, it is important to understand the relation between electron orbits and VDFs. In this work, we study electron orbits and associated VDFs in the electron current layer in magnetic reconnection, by using a two-dimensional particle-in-cell (PIC) simulation. By analyzing millions of electron orbits, we discover several new orbits: (1) Figure-eight-shaped regular orbits inside the super-Alfvenic electron jet, (2) noncrossing Speiser orbits that do not cross the midplane, (3) noncrossing regular orbits on the jet flanks, and (4) nongyrotropic electrons in the downstream of the jet termination region. Properties of these orbits are organized by a theory on particle orbits (Buchner & Zelenyi 1989 JGR). The noncrossing orbits are mediated by the polarization electric field (Hall electric field E_z) near the midplane. These orbits can be understood as electrostatic extensions of the conventional theory. Properties of the super-Alfvenic electron jet are attributed to the traditional Speiser-orbit electrons. On the other hand, the noncrossing electrons are the majority in number density in the jet flanks. This raise a serious question to our present understanding of physics of collisionless magnetic reconnection, which only assumes crossing populations. We will also discuss spatial distribution of energetic electrons and observational signatures of noncrossing electrons. Reference: Zenitani & Nagai (2016), submitted to Phys. Plasmas.
Particle tracing modeling of ion fluxes at geosynchronous orbit
Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.; ...
2017-10-31
The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less
Particle tracing modeling of ion fluxes at geosynchronous orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.
The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less
NASA Technical Reports Server (NTRS)
Hoerz, Friedrich; Cress, Glen; Zolensky, Mike; See, Thomas H.; Bernhard, Ronald P.; Warren, Jack L.
1999-01-01
The Mir Environmental Effects Package (MEEP) was deployed on the Mir station and retrieved after 18 months in space. The payload included the orbital debris collector (ODC), designed and built at the Johnson Space Center to capture and return analyzable residues of the man-made and natural particulate environment in low-Earth orbit for a detailed assessment of its compositional makeup and potential origins. The ODC exposed 2 identical trays, with highly porous, low-density SiO2 aerogel as the basic collector medium, pointed in opposite directions. The aerogel was expected to gently decelerate and capture hypervelocity particles, as opposed to other media that resulted in melting or vaporization of many impactors. Even cursory examination of the returned ODC collectors revealed a surprising variety of impact features. The compositional analyses using scanning electron "miccroscope-energy-dispersive X-ray spectroscopy concentrated on a survey-type inventory of diverse particle types and associated impact features. Detections, in the form of carrot-shaped tracks and shallow pits, included metallic Al, stainless steel, soldering compounds, human waste, and paint flakes. Many pits contained no detectable impactor residue (it was assumed to have vaporized), but most of the tracks contained analyzable residue. The study showed that aerogel would be useful for future low-velocity impact analysis.
A new method for shape and texture classification of orthopedic wear nanoparticles.
Zhang, Dongning; Page, Janet R; Kavanaugh, Aaron E; Billi, Fabrizio
2012-09-27
Detailed morphologic analysis of particles produced during wear of orthopedic implants is important in determining a correlation among material, wear, and biological effects. However, the use of simple shape descriptors is insufficient to categorize the data and to compare the nature of wear particles generated by different implants. An approach based on Discrete Fourier Transform (DFT) is presented for describing particle shape and surface texture. Four metal-on-metal bearing couples were tested in an orbital wear simulator under standard and adverse (steep-angled cups) wear simulator conditions. Digitized Scanning Electron Microscope (SEM) images of the wear particles were imported into MATLAB to carry out Fourier descriptor calculations via a specifically developed algorithm. The descriptors were then used for studying particle characteristics (shape and texture) as well as for cluster classification. Analysis of the particles demonstrated the validity of the proposed model by showing that steep-angle Co-Cr wear particles were more asymmetric, compressed, extended, triangular, square, and roughened at 3 Mc than after 0.25 Mc. In contrast, particles from standard angle samples were only more compressed and extended after 3 Mc compared to 0.25 Mc. Cluster analysis revealed that the 0.25 Mc steep-angle particle distribution was a subset of the 3 Mc distribution.
Differential memory in the trilinear model magnetotail
NASA Technical Reports Server (NTRS)
Chen, James; Mitchell, Horage G.; Palmadesso, Peter J.
1990-01-01
The previously proposed concept of 'differential memory' is quantitatively demonstrated using an idealized analytical model of particle dynamics in the magnetotail geometry. In this model (the 'trilinear' tail model) the magnetotail is divided into three regions. The particle orbits are solved exactly in each region, thus reducing the orbit integration to an analytical mapping. It is shown that the trilinear model reproduces the essential phase space features of the earlier model (Chen and Palmadesso, 1986), possessing well-defined entry and exit regions, and stochastic, integrable (regular), and transient orbits, occupying disjoint phase space regions. Different regions have widely separated characteristic time scales corresponding to different types of particle motion. Using the analytical model, the evolution of single-particle distribution functions is calculated.
The Space Debris Environment for the ISS Orbit
NASA Technical Reports Server (NTRS)
Theall, Jeff; Liou, Jer-Chyi; Matney, Mark; Kessler, Don
2001-01-01
With thirty-five planned missions over the next five years, the International Space Station (ISS) will be the focus for manned space activity. At least 6 different vehicles will transport crew and supplies to and from the nominally 400 km, 51.6 degree orbit. When completed, the ISS will be the largest space structure ever assembled and hence the largest target for space debris. Recent work at the Johnson Space Center has focused on updating the existing space debris models. The Orbital Debris Engineering Model, has been restructured to take advantage of state of the art desktop computing capability and revised with recent measurements from Haystack and Goldstone radars, additional analysis of LDEF and STS impacts, and the most recent SSN catalog. The new model also contains the capability to extrapolate the current environment in time to the year 2030. A revised meteoroid model based on the work of Divine has also been developed, and is called the JSC Meteoroid Model. The new model defines flux on the target per unit angle per unit speed, and for Earth orbit, includes the meteor showers. This paper quantifies the space debris environment for the ISS orbit from natural and anthropogenic sources. Particle flux and velocity distributions as functions of size and angle are be given for particles 10 microns and larger for altitudes from 350 to 450 km. The environment is projected forward in time until 2030.
Orbital-angular-momentum transfer to optically levitated microparticles in vacuum
NASA Astrophysics Data System (ADS)
Mazilu, Michael; Arita, Yoshihiko; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan
2016-11-01
We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present.
NASA Technical Reports Server (NTRS)
Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.
1986-01-01
The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.
NASA Astrophysics Data System (ADS)
Menicucci, Alessandra; Drolshagen, Gerhard; Kuitunen, Juha; Butenko, Yuriy; Mooney, Cathal
2013-08-01
DEBIE2 (Debris-in-orbit-evaluator) was launched in February 2008 as part of the European Technology Exposure Facility (EuTEF) and installed on the exterior of Columbus on ISS. DEBIE2 is an active detector, composed by 3 sensor units able to monitor the sub-micron micro-meteoroid and debris population in space. Each DEBIE sensor consists of a thin aluminium foil coupled with 2 wire grids sensitive to the plasma generated by particles impacting on the foil where also 2 piezoelectric sensors are glued. If the particle penetrates the foil, this can be detected by a third electron plasma detector located just behind the foil. The combination of these information allows to estimate the micro-particles and debris fluxes. EuTEF and DEBIE2 were retrieved after 18 months in flight and returned to Earth with the Space Shuttle Mission STS-128. In this paper, the results of the analysis of in-flight impact data are presented as well as the comparison with the models. The DEBIE2 sensor pointing the Zenith direction, was found to have one wire of the upper grid cut in two pieces by an impact. The postflight analysis focused on this sensor and included optical and SEM/EDX scanning. The results from this inspection will be also presented in this paper.
Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors
NASA Technical Reports Server (NTRS)
Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego
2012-01-01
The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D < or approx. 10 microns are blown out from the solar system by radiation pressure, while those with D > or approx. 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D approx. 100 microns represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a approx. 1 AU. They are expected to produce meteors with radiants near the apex of the Earth s orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e approx. 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.
NASA Astrophysics Data System (ADS)
Živković, Tomislav P.
1984-09-01
The configuration interaction (CI) space Xn built upon n electrons moving over 2n orthonormalized orbitals χi is considered. It is shown that the space Xn splits into two complementary subspaces X+n and X-n having special properties: each state Ψ+∈X+n and Ψ-∈X-n is ``alternantlike'' in the sense that it has a uniform charge density distribution over all orbitals χi and vanishing bond-orders between all orbitals of the same parity. In addition, matrix elements Γ(ij;kl) of a two-particle density matrix vanish whenever four distinct orbitals are involved and there is an odd number of orbitals of the same parity. Further, Γ(ij;lj)=γ(il)/4 ( j≠i,l), whenever (i) and (l) are of different parity. This last relation shows the connection between a two-particle (Γ) and a one-particle (γ) density matrix. ``Elementary'' alternant and antialternant operators are identified. These operators connect either only the states in the same subspace, or only the states in different subspaces, and each one- and two-particle symmetric operator can be represented by their linear combination. Alternant Hamiltonians, which can be represented as linear combinations of elementary alternant operators, have alternantlike eigenstates. It is also shown that each symmetric Hamiltonian possessing alternantlike eigenstates can be represented as such a linear combination. In particular, the PPP Hamiltonian describing an alternant hydrocarbon system is such a case. Complementary subspaces X+n and X-n can be explicitly constructed using the so-called regular resonance structures (RRS's) which are normalized determinants containing mutually disjunct bond orbitals. Expressions for the derivation of matrix elements of one- and two-particle operators between different RRS's are also derived.
The Particle Accelerator Simulation Code PyORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M
2015-01-01
The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less
The effects of particulates from solid rocket motors fired in space
NASA Technical Reports Server (NTRS)
Mueller, A. C.; Kessler, D. J.
1985-01-01
The orbits attained by kick motor solid propellant particulates are modeled, and an estimate is made of the number of particulates which will remain in orbit. The fuel, Al2O3, is burned while inserting spacecraft into a transfer orbit and again while circularizing the GEO station. It is shown that 23 percent of 1 micron particles deorbit immediately, while most particles enter a retrograde orbit. The resulting flux is an order of magnitude larger than the micrometeoroid flux. The pressures exerted by solar radiation ensure that only 5 percent of the original flux is still in orbit after the first year. The estimates provided are valid for a large number of transfer orbit operations, but will vary widely over the short term.
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
NASA Astrophysics Data System (ADS)
Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D.; Haranas, Maria K.; Kirk, Samantha
2014-11-01
In this chapter, we study Sedimentation -- the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well for particles with density ρ p = 1,300 kg/m3, diameters d p = 1, 3, 5 μm, and residence times t = 0.0272, 0.2 s, respectively. For particles of diameter 1 μm we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the ones at the equator. Similarly, on the surface of the Earth we find that the deposition probabilities exhibit 0.5 and 0.4 % higher percentage difference at the poles when compared to that of the equator, for the corresponding residence times. Moreover in orbit equatorial orbits result to higher deposition probabilities when compared to polar ones. For both residence times particles with the diameters considered above in circular and elliptical orbits around Mars, the deposition probabilities appear to be the same for all orbital inclinations. Sedimentation probability increases drastically with particle diameter and orbital eccentricity of the orbiting spacecraft. Finally, as an alternative framework for the study of interaction and the effect of gravity in biology, and in particular gravity and the respiratory system we introduce is the term information in a way Shannon has introduced it, considering the sedimentation probability as a random variable. This can be thought as a way in which gravity enters the cognitive processes of the system (processing of information) in the cybernetic sense.
Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D; Haranas, Maria K; Kirk, Samantha
2015-01-01
In this chapter, we study the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well for particles with density ρ p = 1,300 kg/m³, diameters d p = 1, 3, 5 μm, and residence times t = 0.0272, 0.2 , respectively. For particles of diameter 1 μm we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the ones at the equator. Similarly, on the surface of the Earth we find that the deposition probabilities exhibit 0.5 and 0.4 % higher percentage difference at the poles when compared to that of the equator, for the corresponding residence times. Moreover in orbit equatorial orbits result to higher deposition probabilities when compared to polar ones. For both residence times particles with the diameters considered above in circular and elliptical orbits around Mars, the deposition probabilities appear to be the same for all orbital inclinations. Sedimentation probability increases drastically with particle diameter and orbital eccentricity of the orbiting spacecraft. Finally, as an alternative framework for the study of interaction and the effect of gravity in biology, and in particular gravity and the respiratory system we introduce is the term information in a way Shannon has introduced it, considering the sedimentation probability as a random variable. This can be thought as a way in which gravity enters the cognitive processes of the system (processing of information) in the cybernetic sense.
Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals
NASA Astrophysics Data System (ADS)
Liu, Junzi; Shen, Yue; Asthana, Ayush; Cheng, Lan
2018-01-01
A novel implementation of the two-component spin-orbit (SO) coupled-cluster singles and doubles (CCSD) method and the CCSD augmented with the perturbative inclusion of triple excitations [CCSD(T)] method using mean-field SO integrals is reported. The new formulation of SO-CCSD(T) features an atomic-orbital-based algorithm for the particle-particle ladder term in the CCSD equation, which not only removes the computational bottleneck associated with the large molecular-orbital integral file but also accelerates the evaluation of the particle-particle ladder term by around a factor of 4 by taking advantage of the spin-free nature of the instantaneous electron-electron Coulomb interaction. Benchmark calculations of the SO splittings for the thallium atom and a set of diatomic 2Π radicals as well as of the bond lengths and harmonic frequencies for a set of closed-shell diatomic molecules are presented. The basis-set and core-correlation effects in the calculations of these properties have been carefully analyzed.
Particle motion around magnetized black holes: Preston-Poisson space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konoplya, R. A.
We analyze the motion of massless and massive particles around black holes immersed in an asymptotically uniform magnetic field and surrounded by some mechanical structure, which provides the magnetic field. The space-time is described by the Preston-Poisson metric, which is the generalization of the well-known Ernst metric with a new parameter, tidal force, characterizing the surrounding structure. The Hamilton-Jacobi equations allow the separation of variables in the equatorial plane. The presence of a tidal force from the surroundings considerably changes the parameters of the test particle motion: it increases the radius of circular orbits of particles and increases the bindingmore » energy of massive particles going from a given circular orbit to the innermost stable orbit near the black hole. In addition, it increases the distance of the minimal approach, time delay, and bending angle for a ray of light propagating near the black hole.« less
Conceptual study and key technology development for Mars Aeroflyby sample collection
NASA Astrophysics Data System (ADS)
Fujita, K.; Ozawa, T.; Okudaira, K.; Mikouchi, T.; Suzuki, T.; Takayanagi, H.; Tsuda, Y.; Ogawa, N.; Tachibana, S.; Satoh, T.
2014-01-01
Conceptual study of Mars Aeroflyby Sample Collection (MASC) is conducted as a part of the next Mars exploration mission currently entertained in Japan Aerospace Exploration Agency. In the mission scenario, an atmospheric entry vehicle is flown into the Martian atmosphere, collects the Martian dust particles as well as atmospheric gases during the guided hypersonic flight, exits the Martian atmosphere, and is inserted into a parking orbit from which a return system departs for the earth to deliver the dust and gas samples. In order to accomplish a controlled flight and a successful orbit insertion, aeroassist orbit transfer technologies are introduced into the guidance and control system. System analysis is conducted to assess the feasibility and to make a conceptual design, finding that the MASC system is feasible at the minimum system mass of 600 kg approximately. The aerogel, which is one of the candidates for the dust sample collector, is assessed by arcjet heating tests to examine its behavior when exposed to high-temperature gases, as well as by particle impingement tests to evaluate its dust capturing capability.
Neoclassical transport caused by collisionless scattering across an asymmetric separatrix.
Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A
2010-10-29
Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma confinement. When the plasma equilibrium has locally trapped particle populations partitioned by a separatrix from one another and from passing particles, the asymmetry transport is enhanced. The trapped and passing particle populations react differently to the asymmetries, leading to the standard 1/ν and sqrt[ν] transport regimes of superbanana orbit theory as particles collisionally scatter from one orbit type to another. However, when the separatrix is itself asymmetric, particles can collisionlessly transit from trapped to passing and back, leading to enhanced transport.
Charged Particle Environment Definition for NGST: L2 Plasma Environment Statistics
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, William C.; Neergaard, Linda F.; Evans, Steven W.; Hardage, Donna M.; Owens, Jerry K.
2000-01-01
The plasma environment encountered by the Next Generation Space Telescope satellite in a halo orbit about L2 can include the Earth's magnetotail and magnetosheath in addition to the solar wind depending on the orbital radius chosen for the mission. Analysis of plasma environment impacts on the satellite requires knowledge of the average and extreme plasma characteristics to assess the magnitude of spacecraft charging and materials degradation expected for the mission lifetime. This report describes the analysis of plasma data from instruments onboard the IMP 8 and Geotail spacecraft used to produce the plasma database for the LRAD engineering-level phenomenology code developed to provide the NGST L2 environment definition.
Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine
NASA Astrophysics Data System (ADS)
Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.
2018-06-01
Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.
NASA Technical Reports Server (NTRS)
1991-01-01
The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take approximately six months and the system is designed to allow for a 30 deg inclination change on the outgoing and incoming trips of the transfer vehicle.
Statistical analysis of micrometeoroids at the heliocentric distance of Mercury
NASA Astrophysics Data System (ADS)
Borin, P.; Cremonese, G.; Marzari, F.
2007-08-01
This work shows preliminary results of a study of the orbital evolution of dust particles originating from the Main Belt in order to obtain a statistical analysis, then to provide an estimate of the flux of particles hitting the Mercury's surface. We can distinguish two population of meteoroids depending on their dynamical evolution: small particles (r < 1 cm) dominated by the Poynting-Robertson drag, and large particles (r > 1 cm) driven by gravity only. In this work we consider small particles and, in particular, the micrometeoroids produced by collisional fragmentation of cometary or asteroidal bodies. The main effects that determine the distribution of dust in the Solar System are the gravitational attractions of the Sun and planets, Poynting-Robertson drag, solar radiation pressure, solar wind pressure and the effects of different magnetic fields. In order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. We will perform numerical simulations with different initial conditions for the dust particles, depending on the sources, with the aim of estimating to flux of dust on the surface of Mercury. Meteoroid impacts have a very important role in the evolution of Mercury's surface and exosphere. Since the exobase is presently on the surface of the planet, the sources and sinks of the exosphere are tightly linked to the composition and structure of the planet surface. We intend also to evaluate a possible asymmetry between the leading and trailing surface of Mercury in terms of impact frequency.
Super massive black hole in galactic nuclei with tidal disruption of stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer
Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters formore » a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.« less
Super Massive Black Hole in Galactic Nuclei with Tidal Disruption of Stars
NASA Astrophysics Data System (ADS)
Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer
2014-09-01
Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank & Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.
Studies of neutron and proton nuclear activation in low-Earth orbit
NASA Technical Reports Server (NTRS)
Laird, C. E.
1982-01-01
The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.
NASA Astrophysics Data System (ADS)
Belich, H.; Bakke, K.
2015-07-01
We start by investigating the arising of a spin-orbit coupling and a Darwin-type term that stem from Lorentz symmetry breaking effects in the CPT-odd sector of the Standard Model Extension. Then, we establish a possible scenario of the violation of the Lorentz symmetry that gives rise to a linear confining potential and an effective electric field in which determines the spin-orbit coupling for a neutral particle analogous to the Rashba coupling [E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)]. Finally, we confine the neutral particle to a quantum dot [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)] and analyze the influence of the linear confining potential and the spin-orbit coupling on the spectrum of energy.
"Diffusion" region of magnetic reconnection: electron orbits and the phase space mixing
NASA Astrophysics Data System (ADS)
Kropotkin, Alexey P.
2018-05-01
The nonlinear dynamics of electrons in the vicinity of magnetic field neutral lines during magnetic reconnection, deep inside the diffusion
region where the electron motion is nonadiabatic, has been numerically analyzed. Test particle orbits are examined in that vicinity, for a prescribed planar two-dimensional magnetic field configuration and with a prescribed uniform electric field in the neutral line direction. On electron orbits, a strong particle acceleration occurs due to the reconnection electric field. Local instability of orbits in the neighborhood of the neutral line is pointed out. It combines with finiteness of orbits due to particle trapping by the magnetic field, and this should lead to the effect of mixing in the phase space, and the appearance of dynamical chaos. The latter may presumably be viewed as a mechanism producing finite conductivity
in collisionless plasma near the neutral line. That conductivity is necessary to provide violation of the magnetic field frozen-in condition, i.e., for magnetic reconnection to occur in that region.
Stability criteria for wide binary stars harboring Oort Clouds
NASA Astrophysics Data System (ADS)
Calandra, M. F.; Correa-Otto, J. A.; Gil-Hutton, R. A.
2018-03-01
Context. In recent years, several numerical studies have been done in the field of the stability limit. Although, many of them included the analysis of asteroids or planets, is not possible to find in the literature any work on how the presence of a binary star could affect other possible configurations in a three-body problem. In order to develop this subject we consider other structures like Oort Clouds in wide binary systems. Regarding the existence of Oort Clouds in extrasolar systems there are recent works that do not reject its possible existence. Aim. The aim of this work is to obtain the stability limit for Oort Cloud objects considering different masses of the secondary star and zero and non-zero inclinations of the particles. We improve our numerical treatment getting a mathematical fit that allows us to find the limit and compare our results with other previous works in the field. Methods: We use a symplectic integrator to integrate binary systems where the primary star is m1 = 1 M⊙ and the secondary, m2, takes 0.25 M⊙ and 0.66 M⊙ in two sets of simulations S1 and S2. The orbital parameters of the secondary star were varied in order to study different scenarios. We also used two different integration times (one shorter than the other) and included the presence of 1000 to 10 000 massless particles in circular orbits to form the Oort Cloud. The particles were disposed in four different inclination planes to investigate how the presence of the binary companion could affect the stability limit. Results: Using the Maximum Eccentricity Method, emax, together with the critical semimajor axis acrit we found that the emax criteria could reduce the integration times to find the limit. For those cases where the particles were in inclined orbits we found that there are particle groups that survive the integration time with a high eccentricity. These particle groups are found for our two sets of simulations, meaning that they are independent of the secondary mass. We also find for the co-planar case that the numerical value of the stability limit for retrograde orbits is higher than those found for prograde orbits. These results are in agreement with several published studies. Finally, the results obtained in this work allow us to build a numerical expression depending of the mass ratio, e2 and ip to find acrit, which can be compared with other recent works in the field.
Tidal Disruption of Strengthless Rubble Piles: A Dimensional Analysis
NASA Technical Reports Server (NTRS)
Hahn, Joseph M.; Rettig, Terrence W.
1998-01-01
A relatively simple prescription for estimating the number of debris clumps (n) that form after a catastrophic tidal disruption event is presented. Following the breakup event, it is assumed that the individual debris particles follow keplerian orbits about the planet until the debris' gravitational contraction timescale (t(sub c)) becomes shorter than its orbital spreading timescale (t(sub s)). When the two timescales become comparable, self-gravity breaks up the debris train into n = L/D clumps, which is the debris length/diameter ratio at that instant. The clumps subsequently orbit the planet independent of each other. The predicted number of clumps n is in good agreement with more sophisticated N-body treatments of tidal breakup for parabolic encounters, and the dependence of n upon the progenitor's density as well as its orbit is also mapped out for hyperbolic encounters. These findings may be used to further constrain both the orbits and densities of the tidally disrupted bodies that struck Callisto and Ganymede. A cursory analysis shows that the Gomul and Gipul crater chains on Callisto, which have the greatest number of craters among the known chains, were formed by projectiles having comet-like densities estimated at rho(sub o) < 1 gm/cc.
Analytical tools and isolation of TOF events
NASA Technical Reports Server (NTRS)
Wolf, H.
1974-01-01
Analytical tools are presented in two reports. The first is a probability analysis of the orbital distribution of events in relation to dust flux density observed in Pioneer 8 and 9 distributions. A distinction is drawn between asymmetries caused by random fluctuations and systematic variations, by calculating the probability of any particular asymmetry. The second article discusses particle trajectories for a repulsive force field. The force on a particle due to solar radiation pressure is directed along the particle's radius vector, from the sun, and is inversely proportional to its distance from the sun. Equations of motion which describe both solar radiation pressure and gravitational attraction are presented.
Characterization of plasma wake excitation and particle trapping in the nonlinear bubble regime
NASA Astrophysics Data System (ADS)
Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim
2010-11-01
We investigate the excitation of nonlinear wake (bubble) formation by an ultra-short (kpL ˜2), intense (e Alaser/mc^2 > 2) laser pulse interacting with an underdense plasma. A detailed analysis of particle orbits in the wakefield is performed by using reduced analytical models and numerical simulations performed with the 2D cylindrical, envelope, ponderomotive, hybrid PIC/fluid code INF&RNO, recently developed at LBNL. In particular we study the requirements for injection and/or trapping of background plasma electrons in the nonlinear wake. Characterization of the phase-space properties of the injected particle bunch will also be discussed.
Study of the one-way speed of light anisotropy with particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtsekhowski, Bogdan B.
Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.
Study of the one-way speed of light anisotropy with particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtsekhowski, Bogdan
2017-04-01
Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.
NASA Astrophysics Data System (ADS)
Li, Daohai; Christou, Apostolos A.
2017-09-01
In extending the analysis of the four secular resonances between close orbits in Li and Christou (Celest Mech Dyn Astron 125:133-160, 2016) (Paper I), we generalise the semianalytical model so that it applies to both prograde and retrograde orbits with a one-to-one map between the resonances in the two regimes. We propose the general form of the critical angle to be a linear combination of apsidal and nodal differences between the two orbits b_1 Δ π + b_2 Δ Ω, forming a collection of secular resonances in which the ones studied in Paper I are among the strongest. Test of the model in the orbital vicinity of massive satellites with physical and orbital parameters similar to those of the irregular satellites Himalia at Jupiter and Phoebe at Saturn shows that {>}20 and {>}40% of phase space is affected by these resonances, respectively. The survivability of the resonances is confirmed using numerical integration of the full Newtonian equations of motion. We observe that the lowest order resonances with b_1+|b_2|≤ 3 persist, while even higher-order resonances, up to b_1+|b_2|≥ 7, survive. Depending on the mass, between 10 and 60% of the integrated test particles are captured in these secular resonances, in agreement with the phase space analysis in the semianalytical model.
Use of particle beams for lunar prospecting
NASA Technical Reports Server (NTRS)
Toepfer, A. J.; Eppler, D.; Friedlander, A.; Weitz, R.
1993-01-01
A key issue in choosing the appropriate site for a manned lunar base is the availability of resources, particularly oxygen and hydrogen for the production of water, and ores for the production of fuels and building materials. NASA has proposed two Lunar Scout missions that would orbit the Moon and use, among other instruments, a hard X-ray spectrometer, a neutron spectrometer, and a Ge gamma ray spectrometer to map the lunar surface. This passive instrumentation will have low resolution (tens of kilometers) due to the low signal levels produced by natural radioactivity and the interaction of cosmic rays and the solar wind with the lunar surface. This paper presents the results of a concept definition effort for a neutral particle beam lunar mapper probe. The idea of using particle beam probes to survey asteroids was first proposed by Sagdeev et al., and an ion beam device was fielded on the 1988 Soviet probe to the Mars moon Phobos. During the past five years, significant advances in the technology of neutral particle beams (NPB) have led to a suborbital flight of a neutral hydrogen beam device in the SDIO-sponsored BEAR experiment. An orbital experiment, the Neutral Particle Beam Far Field Optics Experiment (NPB-FOX) is presently in the preliminary design phase. The development of NPB accelerators that are space-operable leads one to consider the utility of these devices for probing the surface of the Moon using gamma ray, X-ray, and optical/UV spectroscopy to locate various elements and compounds. We consider the utility of the NPB-FOX satellite containing a 5-MeV particle beam accelerator as a probe in lunar orbit. Irradiation of the lunar surface by the particle beam will induce secondary and back scattered radiation from the lunar surface to be detected by a sensor that may be co-orbital with or on the particle beam satellite platform, or may be in a separate orbit. The secondary radiation is characteristic of the make-up of the lunar surface. The size of the spot irradiated by the beam is less than 1 km wide along the ground track of the satellite, resulting in the potential for high resolution. The fact that the probe could be placed in polar orbit would result in global coverage of the lunar surface. The orbital particle beam probe could provide the basis for selection of sites for more detailed prospecting by surface rovers.
The bar-halo interaction - I. From fundamental dynamics to revised N-body requirements
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.; Katz, Neal
2007-02-01
A galaxy remains near equilibrium for most of its history. Only through resonances can non-axisymmetric features, such as spiral arms and bars, exert torques over large scales and change the overall structure of the galaxy. In this paper, we describe the resonant interaction mechanism in detail, derive explicit criteria for the particle number required to simulate these dynamical processes accurately using N-body simulations, and illustrate them with numerical experiments. To do this, we perform a direct numerical solution of perturbation theory, in short, by solving for each orbit in an ensemble and make detailed comparisons with N-body simulations. The criteria include: sufficient particle coverage in phase space near the resonance and enough particles to minimize gravitational potential fluctuations that will change the dynamics of the resonant encounter. These criteria are general in concept and can be applied to any dynamical interaction. We use the bar-halo interaction as our primary example owing to its technical simplicity and astronomical ubiquity. Some of our more surprising findings are as follows. First, the inner Lindblad like resonance, responsible for coupling the bar to the central halo cusp, requires more than equal-mass particles within the virial radius or inside the bar radius for a Milky Way like bar in a Navarro, Frenk & White profile. Secondly, orbits that linger near the resonance receive more angular momentum than orbits that move through the resonance quickly. Small-scale fluctuations present in state-of-the-art particle-particle simulations can knock orbits out of resonance, preventing them from lingering and, thereby, decrease the torque per orbit. This can be offset by the larger number of orbits affected by the resonance due to the diffusion. However, noise from orbiting substructure remains at least an order of magnitude too small to be of consequence. Applied to N-body simulations, the required particle numbers are sufficiently high for scenarios of interest that apparent convergence in particle number is misleading: the convergence with N may still be in the noise-dominated regime. State-of-the-art simulations are not adequate to follow all aspects of secular evolution driven by the bar-halo interaction. It is not possible to derive particle number requirements that apply to all situations, for example, more subtle interactions may be even more difficult to simulate. Therefore, we present a procedure to test the requirements for individual N-body codes to the actual problem of interest.
EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko
2013-04-20
The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a resultmore » of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.« less
Migration of Small Bodies and Dust to Near-Earth Space
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
Computer simulations of the orbital evolution of Jupiter-family comets (JFCs), resonant asteroids, and asteroidal, kuiperoidal, and cometary dust particles were made. The gravitational influence of planets (exclusive of Pluto and sometimes of Mercury) was taken into account. For dust particles we also considered radiation pressure, Poynting-Robertson drag, and solar wind drag. A few JFCs got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distance Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three considered former JFCs even got inner-Earth orbits (with Q<0.983 AU) or Aten orbits for Myrs. The probability of a collision of one of such objects, which move for millions of years inside Jupiter's orbit, with a terrestrial planet can be greater than analogous total probability for thousands other objects. Results obtained by the Bulirsch-Stoer method and by a symplectic method were mainly similar (except for probabilities of close encounters with the Sun when they were high). The fraction of asteroids migrated from the 3:1 resonance with Jupiter that collided with the Earth was greater by a factor of several than that for the 5:2 resonance. Our results show that the trans-Neptunian belt can provide a significant portion of near-Earth objects, or the number of trans-Neptunian objects migrating inside solar system could be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got near-Earth object orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. In our runs for dust particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 0.0004 to 0.4 (for silicates, such values correspond to particle diameters between 1000 and 1 microns). For β >0.01 the collision probabilities of dust particles with the terrestrial planets during lifetimes of particles were considerably greater for larger asteroidal and cometary particles. At β ≥ 0.1 and β ≤ 0.001 some asteroidal particles migrated beyond Jupiter's orbit. The peaks in the distribution of migrating asteroidal dust particles with semi-major axis corresponding to the n:(n+1) resonances with Earth and Venus and the gaps associated with the 1:1 resonances with these planets are more pronounced for larger particles. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448, 0308450). This work was supported by INTAS (00-240) and NASA (NAG5-10776).
NASA Technical Reports Server (NTRS)
1987-01-01
Microspheres are tiny plastic beads that represent the first commercial products manufactured in orbit. An example of how they are used is a new aerodynamic particle sizer designated APS 33B produced by TSI Incorporated. TSI purchased the microspheres from the National Bureau of Standards which certified their exact size and the company uses them in calibration of the APS 33B* instrument, latest in a line of TSI systems for generating counting and weighing minute particles of submicron size. Instruments are used for evaluating air pollution control devices, quantifying environments, meteorological research, testing filters, inhalation, toxicology and other areas where generation or analysis of small airborne particles is required. * The APS 33B is no longer being manufactured. An improved version, APS 3320, is now being manufactured. 2/28/97
Electric fields in Earth orbital space
NASA Astrophysics Data System (ADS)
Olson, W. P.; Pfitzer, K. A.; Scotti, S. J.
1982-05-01
This is a report of progress during the past year. The work was performed in three areas with a long term goal understanding the formation and maintenance of electrostatic fields in the earth's magnetosphere. The entry of low energy charged particles into a magnetically closed magnetosphere has been examined in some detail. Entry is permitted because of the non-uniform nature of the magnetic field over the magnetopause surface. Electrostatic fields may be formed across the tail of the magnetosphere because fo the different 'entry efficiencies ' of protons and electrons. The consequences of this particle entry mechanism for the plasma sheet, plasma mantle, and boundary plasmas in the magnetosphere are examined. The mathematics of particle entry was investigated in a one-dimensional boundary using both kinetic theory and bulk MHD parameters. From our participation in the 6th Coordinated Data Analysis Workshop, we have determined that at least during disturbed magnetic conditions, currents persist near geosynchronous orbit in the nightime region which are presently not included in our dynamic magnetic field models. These currents are probably associated with the field aligned currents which close in the ionosphere near auroral latitudes.
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
Sandford, S A; Bradley, J P
1989-01-01
The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a nongravitational force important in the orbital evolution of dust in the Solar System.
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2018-04-01
Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.
Particle orbits in a force-balanced, wave-driven, rotating torus
Ochs, I. E.; Fisch, N. J.
2017-09-01
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less
Particle orbits in a force-balanced, wave-driven, rotating torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, I. E.; Fisch, N. J.
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less
Particle orbits in a force-balanced, wave-driven, rotating torus
NASA Astrophysics Data System (ADS)
Ochs, I. E.; Fisch, N. J.
2017-09-01
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.
Nymmik, R A
1999-10-01
A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes.
Drag balance Cubesat attitude motion effects on in-situ thermosphere density measurements
NASA Astrophysics Data System (ADS)
Felicetti, Leonard; Santoni, Fabio
2014-08-01
The dynamics of Cubesats carrying a drag balance instrument (DBI) for in situ atmosphere density measurements is analyzed. Atmospheric drag force is measured by the displacement of two light plates exposed to the incoming particle flow. This system is well suited for a distributed sensor network in orbit, to get simultaneous in situ local (non orbit averaged) measurements in multiple positions and orbit heights, contributing to the development and validation of global atmosphere models. The implementation of the DBI leads to orbit normal pointing spinning two body system. The use of a spin-magnetic attitude control system is suggested, based only on magnetometer readings, contributing to making the system simple, inexpensive, and reliable. It is shown, by an averaging technique, that this system provides for orbit normal spin axis pointing. The effect of the coupling between the attitude dynamics and the DBI is evaluated, analyzing its frequency content and showing that no frequency components arise, affecting the DBI performance. The analysis is confirmed by Monte Carlo numerical simulation results.
Correlation of molecular valence- and K-shell photoionization resonances with bond lengths
NASA Technical Reports Server (NTRS)
Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.
1989-01-01
The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.
Performance trade studies of a solar electric orbit transfer mission
NASA Astrophysics Data System (ADS)
Sutton, D. M.; McLain, M. G.; Kechichian, J. A.
An analysis of several electric orbit transfer trade studies investigating the performance of a solar-powered electric orbit transfer vehicle (EOTV) is presented. One trade illustrates how the greatest payload capability for time-of-flight constrained transfers can be obtained by optimizing specific impulse. Various methods of reducing the accumulated fluence of charged particles during transit are evaluated in a second trade study. The reduction in fluence obtained by shaping the trajectory to avoid high radiation flux density regions is compared with reductions obtained by using a hybrid chemical/electric vehicle, by additional radiation-protective coverslide material added to the solar array, and by increasing the power of the vehicle. It is shown that a trajectory shaped to minimize fluence may be an advantage to the complete EOTV design. A final trade study shows how park orbit altitude influences the initial thrust-to-drag ratio of an EOTV.
Dynamical and photometric investigation of cometary type 2 tails
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1975-01-01
The absolute calibration of the photometric profile of the antitail of Comet Kohoutek 1973 XII on plates taken with the Curtis Schmidt telescope of the University of Michigan at the Cerro Tololo Inter-American Observatory is described in detail. The formula for the determination of the air mass, and the correction for atmospheric absorption and for the loss of light due to vignetting are included. The calibration stars were used to derive the coefficients converting the relative intensity scale to the absolute surface-brightness units. The extensive results of the study of the orbital evolution of vaporizing dust particles are listed in a tabular form. Gradual evaporation from the surface of a particle results typically in its expulsion from the solar system. The properties of the particle and the elements of its orbit at expulsion are given as functions of the particle's properties and orbit before appreciable evaporation commenced. Also given are circumstances at an encounter of an expelled particle with the earth as a function of the particle's properties. A few specific cases are represented graphically.
Charged particle and magnetic field research in space
NASA Technical Reports Server (NTRS)
1972-01-01
Research completed and in progress is described, related publications and reports are listed, and abstracts of papers and talks on results of the research are given. The charged particle research centered on OGO-5 and OGO-6 electron spectrometer data, and theoretical radiation belt studies. Work on the ATS-1 magnetometer project included development of production data reduction programs, development of spectral analysis procedures, and scientific studies of ULF waves at synchronous orbit. The magnetic fields research also included work on the Mariner project and theoretical studies on the solar wind.
Viscosity of dilute suspensions of rodlike particles: A numerical simulation method
NASA Astrophysics Data System (ADS)
Yamamoto, Satoru; Matsuoka, Takaaki
1994-02-01
The recently developed simulation method, named as the particle simulation method (PSM), is extended to predict the viscosity of dilute suspensions of rodlike particles. In this method a rodlike particle is modeled by bonded spheres. Each bond has three types of springs for stretching, bending, and twisting deformation. The rod model can therefore deform by changing the bond distance, bond angle, and torsion angle between paired spheres. The rod model can represent a variety of rigidity by modifying the bond parameters related to Young's modulus and the shear modulus of the real particle. The time evolution of each constituent sphere of the rod model is followed by molecular-dynamics-type approach. The intrinsic viscosity of a suspension of rodlike particles is derived from calculating an increased energy dissipation for each sphere of the rod model in a viscous fluid. With and without deformation of the particle, the motion of the rodlike particle was numerically simulated in a three-dimensional simple shear flow at a low particle Reynolds number and without Brownian motion of particles. The intrinsic viscosity of the suspension of rodlike particles was investigated on orientation angle, rotation orbit, deformation, and aspect ratio of the particle. For the rigid rodlike particle, the simulated rotation orbit compared extremely well with theoretical one which was obtained for a rigid ellipsoidal particle by use of Jeffery's equation. The simulated dependence of the intrinsic viscosity on various factors was also identical with that of theories for suspensions of rigid rodlike particles. For the flexible rodlike particle, the rotation orbit could be obtained by the particle simulation method and it was also cleared that the intrinsic viscosity decreased as occurring of recoverable deformation of the rodlike particle induced by flow.
NASA Technical Reports Server (NTRS)
Paul, Klaus G.
1995-01-01
This paper describes the work that is done at the Lehrstuhl fur Raumfahrttechnik (lrt) at the Technische Universitat Munchen to examine particle impacts into germanium surfaces which were flown on board the LDEF satellite. Besides the description of the processing of the samples, a brief overview of the particle launchers at our institute is given together with descriptions of impact morphology of high- and hypervelocity particles into germanium. Since germanium is a brittle, almost glass-like material, the impact morphology may also be interesting for anyone dealing with materials such as optics and solar cells. The main focus of our investigations is to learn about the impacting particle's properties, for example mass, velocity and direction. This is done by examining the morphology, various geometry parameters, crater obliqueness and crater volume.
Particle astronomy and particle physics from the moon - The particle observatory
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
1990-01-01
Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.
Poelmans, Ward; Van Raemdonck, Mario; Verstichel, Brecht; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Alcoba, Diego R; Bultinck, Patrick; Van Neck, Dimitri
2015-09-08
We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework.
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.; Schramm, L. S.; Barrett, R. A.; Mckay, D. S.; Zook, H. A.
1986-01-01
The physical properties of impact features in the Solar Max main electronics box thermal blanket are consistent with hypervelocity impacts of particles in the near-earth space environment. The majority of particles are orbital debris and include spacecraft paints and bismuth-rich particles. At least 30 percent of all impact features are caused by micrometeorites, which include silicates and sulfides. Some micrometeorites survive impact with only minor shock-metamorphic effects or chemical fractionation. Currently calibration experiments are under way to relate flux to particle diameter (or mass).
Trajectories of ballistic impact ejecta on a rotating Earth
NASA Technical Reports Server (NTRS)
Alvarez, W.
1994-01-01
On an airless, slowly rotating planetary body like the Moon, ejecta particles from an impact follow simple ballistic trajectories. If gaseous interactions in the fireball are ignored, ejecta particles follow elliptical orbits with the center of the planetary body at one focus until they encounter the surface at the point of reimpact. The partial elliptical orbit of the ejecta particle lies in a plane in inertial (galactic) coordinates. Because of the slow rotation rate (for example, 360 degrees/28 days for the Moon), the intersection of the orbital plane and the surface remains nearly a great circle during the flight time of the ejecta. For this reason, lunar rays, representing concentrations of ejecta with the same azimuth but different velocities and/or ejecta angles, lie essentially along great circles. Ejecta from airless but more rapidly rotating bodies will follow more complicated, curving trajectories when plotted in the coordinate frame of the rotating planet or viewed as rays on the planetary surface. The curvature of trajectories of ejecta particles can be treated as a manifestation of the Coriolis effect, with the particles being accelerated by Coriolis pseudoforces. However, it is more straightforward to calculate the elliptical orbit in inertial space and then determine how far the planet rotates beneath the orbiting ejecta particle before reimpact. The Earth's eastward rotation affects ballistic ejecta in two ways: (1) the eastward velocity component increases the velocity of eastbound ejecta and reduces the velocity of westbound ejecta; and (2) the Earth turns underneath inflight ejecta, so that although the latitude of reimpact is not changed, the longitude is displaced westward, with the displacement increasing as a function of the time the ejecta remains aloft.
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan
2016-07-01
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Yang, Haizhao
2017-07-01
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, W. W.; Persico, E. A. D.; Austin, M. E.
2016-02-09
Here, neutral-beam ions that are deflected onto loss orbits by Alfvén eigenmodes (AE) on their first bounce orbit and are detected by a fast-ion loss detector (FILD) satisfy the “local resonance” condition. This theory qualitatively explains FILD observations for a wide variety of AE-particle interactions. When coherent losses are measured for multiple AE, oscillations at the sum and difference frequencies of the independent modes are often observed. The amplitudes of the sum and difference peaks correlate with the amplitudes of the fundamental loss-signal amplitudes but do not correlate with the measured mode amplitudes. In contrast to a simple uniform-plasma theorymore » of the interaction, the loss-signal amplitude at the sum frequency is often larger than the loss-signal amplitude at the difference frequency, indicating a more detailed computation of the orbital trajectories through the mode eigenfunctions is needed.« less
Liverseed, David R.
2013-01-01
Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects. PMID:23065674
Liverseed, David R; Logan, Perry W; Johnson, Carl E; Morey, Sandy Z; Raynor, Peter C
2013-03-01
Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects.
LDEF data: Comparisons with existing models
NASA Astrophysics Data System (ADS)
Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.
1993-04-01
The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.
LDEF data: Comparisons with existing models
NASA Technical Reports Server (NTRS)
Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.
1993-01-01
The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.
Using CubeSats to Monitor Debris Flux
NASA Technical Reports Server (NTRS)
Matney, Mark
2016-01-01
Recent updates to NASA's Orbital Debris Engineering Model (ORDEM 3.0) include a population of small particles (1-2 mm in size) composed of high-density materials (e.g., steel) that drive much of the predicted risk for satellites in the 700-1000 km altitude regime. This modeled population was based on the analysis of returned surfaces of the Shuttle, which flew below 600 km altitude. The cessation of Shuttle missions, plus the lack of in situ data above 600 km means that a data source is being sought to either confirm or modify this high-density population. One possible data source would be a database of anomalous sporadic changes in spacecraft orbit/orientation that might be due to momentum transfer from small particles too small to seriously damage the spacecraft. Because the momentum imparted from an impact would be tiny, it would most likely show up in the orbital behavior of cubesats and other small satellites. While such small satellites were few in number, this was not a particularly attractive option, but now with the proliferation of cubesats in multiple orbit planes and altitudes, the possible collecting area has increased significantly. This presentation will discuss the physics of momentum-transferring impacts from hypervelocity collisions, and make predictions about rates, directions, and locations of such impacts. In addition, it will include recommendations for satellite users on what kind of data might be worth archiving and investigating.
Solar heavy ion Heinrich fluence spectrum at low earth orbit.
Croley, D R; Spitale, G C
1998-01-01
Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.
NASA Technical Reports Server (NTRS)
Krisko, Paula H.; Opiela, John N.; Liou, Jer-Chyi; Anz-Meador, Phillip D.; Theall, Jeffrey R.
1999-01-01
The latest update of the NASA orbital debris environment model, EVOLVE 4.0, has been used to study the effect of various proposed debris mitigation measures, including the NASA 25-year guideline. EVOLVE 4.0, which includes updates of the NASA breakup, solar activity, and the orbit propagator models, a GEO analysis option, and non-fragmentation debris source models, allows for the statistical modeling and predicted growth of the particle population >1 mm in characteristic length in LEO and GEO orbits. The initial implementation of this &odel has been to study the sensitivity of the overall LEO debris environment to mitigation measures designed to limit the lifetime of intact objects in LEO orbits. The mitigation measures test matrix for this study included several commonly accepted testing schemes, i.e., the variance of the maximum LEO lifetime from 10 to 50 years, the date of the initial implementation of this policy, the shut off of all explosions at some specified date, and the inclusion of disposal orbits. All are timely studies in that all scenarios have been suggested by researchers and satellite operators as options for the removal of debris from LEO orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierwage, Andreas; Shinohara, Kouji
2016-04-15
The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150–400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectramore » of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.« less
The electromagnetic analogy of a ball on a rotating conical turntable
NASA Astrophysics Data System (ADS)
Zengel, Keith
2017-12-01
A ball on a flat rotating turntable executes circular orbits analogous to those of a charged particle in a uniform magnetic field. Stable circular orbits are also possible on rotating conical turntables and are analogous to those of a charged particle in an axial magnetic field superimposed on a radial electric field. The existence and stability of these orbits is derived and discussed. Further, parallels are drawn between the mechanical and electromagnetic cases, with particular attention to the magnetic vector potential. Finally, an experimental confirmation is reported and discussed.
NASA Technical Reports Server (NTRS)
Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell
2012-01-01
The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.
On the stability of dust orbits in mean-motion resonances perturbed by from an interstellar wind
NASA Astrophysics Data System (ADS)
Pástor, Pavol
2014-09-01
Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange's planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting-Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.
Inverse-Square Orbits: A Geometric Approach.
ERIC Educational Resources Information Center
Rainwater, James C.; Weinstock, Robert
1979-01-01
Presents a derivation of Kepler's first law of planetary motion from Newtonian principles. Analogus derivations of the hyperbolic and parabolic orbits of nonreturning comets and the hyperbolic orbit for a particle in a repulsive inverse-square field are also presented. (HM)
NASA Astrophysics Data System (ADS)
Orsini, S.; Npa-Serena Team
The Neutral Particle Analyser SERENA, proposed on board the BepiColombo Mer- cury Planetary Orbiter (MPO), has the purpose of investigating the Hermean exo- spheric and energetic neutral populations. Local and detailed analysis of the exo- spheric composition will be performed by a ram-pointing sensor (MAIA), while en- ergetic neutrals produced through sputtering and charge-exchange processes will be collected by two nadir-pointing sensors (L-ENA, MH-ENA). A central problem in the understanding of the evolution of solar system bodies is the role played by the so- lar wind, solar radiation and micro-meteorite bombardment in controlling mass losses. The direct in situ detection of the Hermean exosphere, the gas evolving from the planet as a product of the different physical processes acting onto the surface, is of crucial importance to understand the past and present evolution of the crust. Current knowl- edge of the origin and evolution of the solar system is based on detailed measurement of chemical, elemental, and isotopic composition of matter. The proposed instrument suite is unique in its capability to perform quantitative analysis and resolve exospheric gas composition under all these three aspects. The value of neutral particles mea- surements for getting a comprehensive picture of the solar wind-planets interaction has been appreciated since the late eighties. Comparison of the measurements in the Mercury environment with those achieved by neutral particle imagers already flying around Earth (IMAGE), Mars (Mars Express), Jupiter and Saturn (Cassini) will allow comparative investigations of evolution and dynamics of planetary magnetospheres.
An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.; Barnes, D. C.
2011-08-01
This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampére (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier "energy-conserving" explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.
SPIN EFFECT ON THE POSITION OF REGGE POLES (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azimov, Ya.I.
1962-12-01
An accumulation of poles in the l-plane STAl = -(3n - 5)/2!, found by V. N. Gribov et al. (Phys. Rev. Lett., 9: 239(1962)), imposes a certain limitation on the asymptotic behavior of scattering amplitudes. The effects of particle spin on the position of the accumulations were analyzed using the simple case of two neutral spinless particles ( rature of the d mesons) in which spin particles (nucleon pairs) appear at an intermediate stage. The amplitude near the particle production threshold is proportional to pl, where p is particle production momentum, l is the orbital moment. The l magnitude dependsmore » on the orbital rature of the d -meson moment J and the total particle spin. The minimum value of l is J -- 2 122 to 158 deg , where 122 to 158 deg is the spin of each particle. The analysis indicates accumulation of poles at J = --1/2 + 20. Thus, the accumulation appears in spinless particle scattering amplitudes and all amplitudes related to it by a unitarity condition. Similarly, the n- particle production threshold for identical spins 122 to 158 deg leads to pole accumulations at J == --(3n -- 5)/2 + n 122 to 158 deg . The case of intermediate N-- N pairs was analyzed as a case of pole accumulation at arbitrary energy. In the first postulation relativistic theory considering high particle spin posed certain difficulties, however, elementary particles do not possess spins larger than a 1. Higher spins can be found in nuclei, however, data on nuclear amplitude anomalies are not yet sufficient. The second postulation is more detailed, and it is possible that the liquidation of accumulations could be achieved without special conditions. It was also observed that due to the gradient invariability the two-photon intermediate state does not result in accumulations either in the 1 or in 0. (R.V.J.)« less
Physical Models for Particle Tracking Simulations in the RF Gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishlo, Andrei P.; Holmes, Jeffrey A.
2015-06-01
This document describes the algorithms that are used in the PyORBIT code to track the particles accelerated in the Radio-Frequency cavities. It gives the mathematical description of the algorithms and the assumptions made in each case. The derived formulas have been implemented in the PyORBIT code. The necessary data for each algorithm are described in detail.
Spin-Orbit Coupling and the Conservation of Angular Momentum
ERIC Educational Resources Information Center
Hnizdo, V.
2012-01-01
In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…
Micrometeoroids and debris on LDEF
NASA Technical Reports Server (NTRS)
Mandeville, Jean-Claude
1993-01-01
Two experiments within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust were flown on the Long Duration Exposure Facility (LDEF). A variety of sensors and collecting devices have made possible the study of impact processes on dedicated sensors and on materials of technological interest. Examination of hypervelocity impact features on these experiments gives valuable information on the size distribution and nature of interplanetary dust particles in low-Earth orbit (LEO), within the 0.5-300 micrometer size range. However no crater smaller than 1.5 microns has been observed, thus suggesting a cut-off in the near Earth particle distribution. Chemical investigation of craters by EDX clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. However, remnants of orbital debris have been found in a few craters; this can be the result of particles in eccentric orbits about the Earth and of the 8 deg offset in the orientation of LDEF. Crater size distribution is compared with results from other dust experiments flown on LDEF and with current models. Possible origin and orbital evolution of micrometeoroids is discussed. Use of thin foil detectors for the chemical study of particle remnants looks promising for future experiments.
Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams
NASA Astrophysics Data System (ADS)
Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli
2018-05-01
Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.
Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Hyde, James L.; Bjorkman, Michael D.; Hoffman, Kevin D.; Lear, Dana M.; Prior, Thomas G.
2011-01-01
This report provides results of a Micrometeoroid and Orbital Debris (MMOD) risk assessment of the Mars Sample Return Earth Entry Vehicle (MSR EEV). The assessment was performed using standard risk assessment methodology illustrated in Figure 1-1. Central to the process is the Bumper risk assessment code (Figure 1-2), which calculates the critical penetration risk based on geometry, shielding configurations and flight parameters. The assessment process begins by building a finite element model (FEM) of the spacecraft, which defines the size and shape of the spacecraft as well as the locations of the various shielding configurations. This model is built using the NX I-deas software package from Siemens PLM Software. The FEM is constructed using triangular and quadrilateral elements that define the outer shell of the spacecraft. Bumper-II uses the model file to determine the geometry of the spacecraft for the analysis. The next step of the process is to identify the ballistic limit characteristics for the various shield types. These ballistic limits define the critical size particle that will penetrate a shield at a given impact angle and impact velocity. When the finite element model is built, each individual element is assigned a property identifier (PID) to act as an index for its shielding properties. Using the ballistic limit equations (BLEs) built into the Bumper-II code, the shield characteristics are defined for each and every PID in the model. The final stage of the analysis is to determine the probability of no penetration (PNP) on the spacecraft. This is done using the micrometeoroid and orbital debris environment definitions that are built into the Bumper-II code. These engineering models take into account orbit inclination, altitude, attitude and analysis date in order to predict an impacting particle flux on the spacecraft. Using the geometry and shielding characteristics previously defined for the spacecraft and combining that information with the environment model calculations, the Bumper-II code calculates a probability of no penetration for the spacecraft.
Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles
NASA Astrophysics Data System (ADS)
Rutkowski, Mieszko
2017-01-01
In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.
Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Schmidt, Jrgen
2018-06-01
In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.
Solar particle events observed at Mars: dosimetry measurements and model calculations.
Cleghorn, Timothy F; Saganti, Premkumar B; Zeitlin, Cary J; Cucinotta, Francis A
2004-01-01
During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations. Published by Elsevier Ltd on behalf of COSPAR.
Solar particle events observed at Mars: dosimetry measurements and model calculations
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Saganti, Premkumar B.; Zeitlin, Cary J.; Cucinotta, Francis A.
2004-01-01
During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations. Published by Elsevier Ltd on behalf of COSPAR.
Boberg, P R; Tylka, A J; Adams, J H; Beahm, L P; Fluckiger, E O; Kleis, T; Kobel, E
1996-01-01
The large solar energetic particle (SEP) events and simultaneous large geomagnetic disturbances observed during October 1989 posed a significant, rapidly evolving space radiation hazard. Using data from the GOES-7, NOAA-10, IMP-8 and LDEF satellites, we determined the geomagnetic transmission, heavy ion fluences, mean Fe ionic charge state, and effective radiation hazard observed in low Earth orbit (LEO) for these SEPs. We modeled the geomagnetic transmission by tracing particles through the combination of the internal International Geomagnetic Reference Field (IGRF) and the Tsyganenko (1989) magnetospheric field models, extending the modeling to large geomagnetic disturbances. We used our results to assess the radiation hazard such very large SEP events would pose in the anticipated 52 degrees inclination space station orbit.
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Mather, J. C.
2003-01-01
Using the Bulirsh Stoer method of integration, we investigated the migration of dust particles under the gravitational influence of all planets, radiation pressure, Poynting Robertson drag and solar wind drag for equal to 0.01, 0.05, 0.1, 0.25, and 0.4. For silicate particles such values of correspond to diameters equal to about 40, 9, 4, 2, and 1 microns, respectively [1]. The relative error per integration step was taken to be less than 10sup-8. Initial orbits of the particles were close to the orbits of the first numbered mainbelt asteroids.
NASA Technical Reports Server (NTRS)
Tuzzolino, A. J.; Simpson, J. A.; Mckibben, R. B.; Voss, H. D.; Gursky, H.
1993-01-01
The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized.
High-velocity collision of particles around a rapidly rotating black hole
NASA Astrophysics Data System (ADS)
Harada, T.
2014-03-01
We have derived a general formula for the centre-of-mass (CM) energy for the near-horizon collision of two general geodesic particles around a Kerr black hole. We have found that if the angular momentum of the particle satisfies the critical condition, the CM energy can be arbitrarily high. We have then applied the formula to the collision of a particle orbiting an innermost stable circular orbit (ISCO) and another generic particle near the horizon, and found that the CM energy is arbitrarily high if we take the maximal limit of the black hole spin. In view of the astrophysical significance of the ISCO, this implies that particles can collide around a rapidly rotating black hole with a very high CM energy without any artificial fine-tuning. We have next applied the formula to the collision of general inclined geodesic particles and shown that in the direct collision scenario, the collision with an arbitrarily high CM energy can occur near the horizon of maximally rotating black holes, not only at the equator but also on a belt centred at the equator between two latitudes. This is also true in the scenario through the collision of a last stable orbit particle. This strongly suggests that if signals due to high-energy collision are to be observed, such signals will be generated primarily on this belt.
Proposal for a Universal Particle Detector Experiment
NASA Technical Reports Server (NTRS)
Lesho, J. C.; Cain, R. P; Uy, O. M.
1993-01-01
The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.
Proposal for a universal particle detector experiment
NASA Astrophysics Data System (ADS)
Lesho, J. C.; Cain, R. P.; Uy, O. M.
The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.
Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays
NASA Astrophysics Data System (ADS)
Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.
2014-01-01
We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.
Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun
NASA Astrophysics Data System (ADS)
Shestakova, L. I.; Demchenko, B. I.
2018-03-01
We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.
NASA Technical Reports Server (NTRS)
Simpson, John A.; Garcia-Munoz, Moises
1995-01-01
Research was continued on the origins, acceleration mechanisms, and the propagation modes of the hierarchy of energetic charged particles found in a wide range of astrophysical settings, extending from the cosmic rays arriving from the depth of the galaxy to the energetic particles in the heliosphere and in the near earth environment. In particular this grant has been a vital support in the investigation of the particle radiations in the earth's magnetosphere. The ONR-604 instrument was launched in July 1990 aboard the CRRES spacecraft. The CRRES mission has been a joint program of NASA and the U.S. Air Force Space Test Program which has provided launch support and telemetry coverage. The spacecraft was placed into a low-inclination eccentric orbit with a period of approximately 10 hours, and thus measured charged particle fluxes in both interplanetary space and in the earth's trapped radiation. ONR-604 performed extremely well, both in interplanetary space and in the intense radiation belt environment. We were able to make detailed measurements of interplanetary fluxes and composition into L=4, or for more than 50% of the orbital period. Thus the experiment produced two valuable datasets, one set outside of L=4 for interplanetary studies, and one set inside of L=4 for radiation belt studies. The data returned by the University of Chicago ONR-604 instrument has been the base for 10 papers on magnetospheric and galactic energetic-particle research.
Exact charge and energy conservation in implicit PIC with mapped computational meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guangye; Barnes, D. C.
This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov Poisson formulation), ours is based on a nonlinearly converged Vlasov Amp re (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant Friedrichs Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicitmore » time steps (unlike the earlier energy-conserving explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.« less
Explicit symplectic orbit and spin tracking method for electric storage ring
Hwang, Kilean; Lee, S. Y.
2016-08-18
We develop a symplectic charged particle tracking method for phase space coordinates and polarization in all electric storage rings. Near the magic energy, the spin precession tune is proportional to the fractional momentum deviation δ m from the magic energy, and the amplitude of the radial and longitudinal spin precession is proportional to η/δ m, where η is the electric dipole moment for an initially vertically polarized beam. As a result, the method can be used to extract the electron electric dipole moment of a charged particle by employing narrow band frequency analysis of polarization around the magic energy.
A statistical study of EMIC waves observed by Cluster: 1. Wave properties
NASA Astrophysics Data System (ADS)
Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-01
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gascoyne, Andrew, E-mail: a.d.gascoyne@sheffield.ac.uk
2015-03-15
Using a full orbit test particle approach, we analyse the motion of a single proton in the vicinity of magnetic null point configurations which are solutions to the kinematic, steady state, resistive magnetohydrodynamics equations. We consider two magnetic configurations, namely, the sheared and torsional spine reconnection regimes [E. R. Priest and D. I. Pontin, Phys. Plasmas 16, 122101 (2009); P. Wyper and R. Jain, Phys. Plasmas 17, 092902 (2010)]; each produce an associated electric field and thus the possibility of accelerating charged particles to high energy levels, i.e., > MeV, as observed in solar flares [R. P. Lin, Space Sci. Rev. 124,more » 233 (2006)]. The particle's energy gain is strongly dependent on the location of injection and is characterised by the angle of approach β, with optimum angle of approach β{sub opt} as the value of β which produces the maximum energy gain. We examine the topological features of each regime and analyse the effect on the energy gain of the proton. We also calculate the complete Lyapunov spectrum for the considered dynamical systems in order to correctly quantify the chaotic nature of the particle orbits. We find that the sheared model is a good candidate for the acceleration of particles, and for increased shear, we expect a larger population to be accelerated to higher energy levels. In the strong electric field regime (E{sub 0}=1500 V/m), the torsional model produces chaotic particle orbits quantified by the calculation of multiple positive Lyapunov exponents in the spectrum, whereas the sheared model produces chaotic orbits only in the neighbourhood of the null point.« less
NASA Astrophysics Data System (ADS)
Liu, J.; Angelopoulos, V.; Zhang, X. J.; Turner, D. L.; Gabrielse, C.; Runov, A.; Funsten, H. O.; Spence, H. E.
2015-12-01
Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background field. Although DFBs are known to accelerate particles to create energetic particle injections, their acceleration mechanism and importance in generating injections inside geosynchronous orbit remain open questions. To answer these questions, we investigate DFBs in the inner magnetosphere by conducting a statistical study with data from the Van Allen Probes. The results show that just like DFBs outside geosynchronous orbit, those inside that orbit occur most often in the pre-midnight sector. Half the DFBs are accompanied by energetic particle injection. Statistically, DFBs with injection have an electric field three times that of those without. All the injections accompanying DFBs appear dispersionless within the temporal and energy resolution considered. These findings suggest that the injections are ushered or locally produced by the DFB, and the DFB's strong electric field is an important aspect of the injection generation mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at themore » altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.« less
Primary Surface Particle Motion as a Mechanism for YORP-Driven Binary Asteroid Evolution
NASA Astrophysics Data System (ADS)
Fahnestock, Eugene G.; Scheeres, D. J.
2008-09-01
Within the largest class of binary asteroid systems -- asynchronous binaries typified by 1999 KW4 -- we hypothesize continued YORP spin-up of the rapidly rotating primary leads to recurring episodic lofting motion of primary equator regolith. We theorize this is a mechanism for transporting YORP-injected angular momentum from primary spin into the mutual orbit. This both enables binary primaries to continue to spin at near surface fission rates and produces continued orbit expansion on time scales several times faster than expansion predicted by tidal dissipation alone. This is distinct from the Binary Yorp (BYORP) phenomenon, not studied in this work but to be added to it later. We evaluate our hypotheses using a combination of techniques for an example binary system. First high-fidelity dynamic simulation of surface-originating particles in the full-detail gravity field of the binary components, themselves propagated according to the full two body problem, gives particle final disposition (return impact, transfer impact, escape). Trajectory end states found for regolith lofted at different initial primary spin rates and relative poses are collected into probability matrices, allowing probabilistic propagation of surface particles for long durations at low computational cost. We track changes to mass, inertia dyad, rotation state, and centroid position and velocity for each component in response to this mapped particle motion. This allows tracking of primary, secondary, and mutual orbit angular momenta over time, clearly demonstrating the angular momentum transfer mechanism and validating our hypotheses. We present current orbit expansion rates and estimated orbit size doubling times consistent with this mechanism, for a few binary systems. We also discuss ramifications of this type of rapid binary evolution towards separation, including the frequency with which "divorced binaries" on similar heliocentric orbits are produced, formation of triple systems such as 2001 SN263, and separation timescale dependence on heliocentric distance.
NASA Astrophysics Data System (ADS)
Edwards, C. S.; Piqueux, S.; Hamilton, V. E.; Fergason, R. L.; Herkenhoff, K. E.; Vasavada, A. R.; Sacks, L. E.; Lewis, K. W.; Smith, M. D.
2017-12-01
The surface of Mars has been characterized using orbital thermal infrared observations from the time of the Mariner 9 and Viking missions. More recent observations from missions such as the Thermal Emission Spectrometer onboard the Mars Global Surveyor and the Thermal Emission Imaging System (THEMIS) instrument onboard the 2001 Mars Odyssey orbiter have continued to expand global coverage at progressively higher resolution. THEMIS has been producing 100 m/pixel thermal infrared data with nearly global coverage of the surface for >15 years and has enabled new investigations that successfully link outcrop-scale information to physical properties of the surface. However, significant discrepancies between morphologies and interpreted surface properties derived from orbital thermal measurements remain, requiring a robust link to direct surface measurements. Here, we compare the thermophysical properties and particle sizes derived from the Mars Science Laboratory (MSL) rover's Ground Temperature Sensor (GTS), to those derived orbitally from THEMIS, ultimately linking these measurements to ground truth particle sizes determined from Mars Hand Lens Imager (MAHLI) images. We focus on the relatively homogenous Bagnold dunes, specifically Namib dune, and in general find that all three datasets report consistent particle sizes for the Bagnold dunes ( 110-350 µm, and are within measurement and model uncertainties), indicating that particles sizes of homogeneous materials determined from thermal measurements are reliable. In addition, we assess several potentially significant effects that could influence the derived particle sizes, including: 1) fine-scale (cm-m scale) ripples, and 2) thin (mm-cm) layering of indurated/armored materials. To first order, we find that small scale ripples and thin layers do not significantly affect the determination of bulk thermal inertia determined from orbit. However, a layer of coarser/indurated material and/or fine-scale layering does change the shape of a diurnal curve and thus requires multiple time of day observations to constrain these effects. In summary, thermal inertia and grain sizes of relatively homogeneous materials derived from nighttime orbital data should be considered as reliable, as long as there is not significant sub-pixel anisothermality.
Debris perturbed by radiation pressure: relative velocities across circular orbits
NASA Astrophysics Data System (ADS)
Celestino, C.; Winter, O.; Prado, A.
It is widely know that there is a large amount of space debris and meteoroid particles around the Earth. The objects larger than 10 cm can be tracked by radar and others means allowing the satellites/ships to be maneuvered to avoid collisions. However, the detection and the attendance of the orbital dynamics of objects smaller than 10 cm (particles) is very difficult. These particles can be generated by explosions of larger objects, collisions between large objects, or simply for the reaction of the oxygen in the wall of an object could generate the escape of paint pieces. The importance of studying the dynamics of these particles is that they can have relative high speeds and their effects in a collision could cause damages and even compromise the space missions. In this present work we considered a dynamical system of mm size particles around the Earth subject to the effects of radiation pressure. Our main goal is to study the evolution of its relative velocity to the circular orbits that it crosses.Firstly, it is considered that the particle is initially in circular orbit. The effect of the radiation pressure produces variations in its eccentricity, resulting in a change in its orbital velocity. The results show that the variation of the radial distance and the relative velocity can be divided in three parts: secular, long period and short period. For the radial distance the secular variation is constant, because the semi-axis is constant. The long period variation presents a configuration that repeats with period inferior to the orbital period of the Earth. And, finally, the short period variation presents points of local maxima and minima for the variation of the width of the radial distance. When considering the variation of the relative velocity we have that the secular behavior and of long period are similar to those obtained for the variation of the radial distance. However, for the short period variation, we have a larger number of local maxima and minima in comparison to the radial distance. The relative velocity for particles initially geostationary of size 5,0 mm are around 4,0 km/s. Acknowledgments: The authors thank FAPESP, CNPq and FUNDUNESP for the financial support.
The IRAS radiation environment
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.
1978-01-01
Orbital flux integration for three selected mission altitudes and geographic instantaneous flux-mapping for nominal flight-path altitude were used to determine the external charged particle radiation predicted for the Infrared Astronomy Satellite. A current field model was used for magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions. Innovative analysis features introduced include (1) positional fluxes as a function of time and energy for the most severe pass through the South Atlantic Anomaly; (2) total positional doses as a function of time and shield thickness; (3) comparison mapping fluxes for ratios of positional intensities to orbit integrated averages; and (4) statistical exposure-time history of a trajectory as a function of energy indicating, in percent of total mission duration, the time intervals over which the instantaneous fluxes would exceed the orbit integrated averages. Results are presented in tables and graphs.
A Computational Study of the Mechanics of Gravity-induced Torque on Cells
NASA Astrophysics Data System (ADS)
Haranas, Ioannis; Gkigkitis, Ioannis; Zouganelis, George D.
2013-10-01
In this paper, we study the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well. For particles with density ?p = 1300 kg/m3, diameters dp = 1, 10, 30 μm and residence times t = 0.0272, 0.2 s respectively, we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the ones at the equator. Similarly, when in orbit around Earth we find that the deposition probabilities exhibit 0.0001 % higher percentage difference in equatorial circular and elliptical orbits when compared to polar ones. For both residence times particles with the diameters considered above in circular and elliptical orbits around Mars, the deposition probabilities appear to be the same for all orbital inclinations. Sedimentation probability increases drastically with particle diameter and orbital eccentricity of the orbiting spacecraft. Finally, as an alternative framework for the study of interaction and the effect of gravity in biology, and in particular gravity and the respiratory system we introduce is the term information in a way Shannon has introduced it, considering the sedimentation probability as a random variable. This can be thought as a way in which gravity enters the cognitive processes of the system (processing of information) in the cybernetic sense.
NASA Technical Reports Server (NTRS)
Takahashi, K.; Mcentire, R. W.; Zanetti, L. J.; Lopez, R. E.; Kistler, L. M.
1987-01-01
This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.
A Comparison of Damaging Meteoroid and Orbital Debris Fluxes in Earth Orbit
NASA Technical Reports Server (NTRS)
Cooke, William; Matney, Mark; Moorhead, Althea V.; Vavrin, Andrew
2017-01-01
Low Earth orbit is populated with a substantial amount of orbital debris, and it is usually assumed that the flux from these objects contributes to most of the hypervelocity particle risk to spacecraft in this region. The meteoroid flux is known to be dominant at very low altitudes (<300 km), where atmospheric drag rapidly removes debris, and at very high altitudes beyond GEO (geostationary), where debris is practically non-existent. The vagueness of these boundaries has prompted this work, in which we compare the fluxes of meteoroids and orbital debris capable of penetrating a millimeter thick aluminum plate for circular orbits with altitudes ranging from the top of the atmosphere to 100,000 km. The outputs from the latest NASA debris and meteoroid models, ORDEM 3.0 and MEMR2, are combined with the modified Cour-Palais ballistic limit equation to make a realistic evaluation of the damage-capable particle fluxes, thereby establishing the relative contributions of hazardous debris and meteoroids in near Earth space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauvaud, J.h.; Winckler, J.R.
We discuss two phases of substorm-associated magnetospheric dynamics in terms of the particles and fields at synchronous orbit. The first phase corresponds to the 'decreases' of energetic particle flux first identified by Erickson and Winckler (1973) and discussed by Walker et al. (1976) and Erickson et al. (1979). This phase begins one-half hour to one hour before the substorm onset and is characterized by (1) a distortion of the magnetosphere to a more taillike configuration caused by (2) an intensification and/or motion toward the earth of the cross-tail current and of its earthward part, the partial ring current, (3) amore » shift of trapped particle trajectories closer to the earth on the nightside following contours of constant B causing the particle 'decreases' accompanied by a change in the pitch angle distributions from 'pancake' to 'butterfly' as observed at geostationary orbit, (4) an initiation of a response of the auroral electrojet (AE) index. The decreases of energetic particle flux can correspond to the substorm growth phase as defined initially by McPherron (1970) or the growth or precursor phase of Erickson et al. (1979). Plasma motions and current during decreases tend to be variable, but the description above nevertheless characterizes the large-scale trend. It is suggested that the electric field induced by the increasing tail current near the earth acts opposite to the cross-tail convection field and can temporarily inhibit convection near the geostationary orbit. The second phase is the conventional expansion phase.« less
NASA Technical Reports Server (NTRS)
Kessler, D. J. (Editor); Zarnecki, J. C. (Editor); Matson, D. L. (Editor)
1991-01-01
The present conference on space dust and debris encompasses orbital debris, in situ measurements and laboratory analysis of space-dust particles, comparative studies of comets, asteroids, and dust, the protection and maneuvering of spacecraft in space-debris environments, and the out-of-elliptic distribution of interplanetary dust derived from near-earth flux. Specific issues addressed include asteroid taxonomy, the optical properties of dust from cometary and interplanetary grains, light scattering by rough surfaces on asteroidal/lunar regoliths, and the first results of particulate impacts and foil perforations on the Long Duration Exposure Facility. Also addressed are collision probability and spacecraft disposition in the geostationary orbit, a flash on the moon caused by orbital debris, the limits of population growth in low earth orbit due to collisional cascading, and the simulation of cosmic man-made dust effects on space-vehicle elements in rocket and laboratory experiments.
Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy
NASA Astrophysics Data System (ADS)
Muñoz-Gutiérrez, M. A.; Reyes-Ruiz, M.; Pichardo, B.
2015-03-01
The orbital elements of Comet Halley are known to a very high precision, suggesting that the calculation of its future dynamical evolution is straightforward. In this paper we seek to characterize the chaotic nature of the present day orbit of Comet Halley and to quantify the time-scale over which its motion can be predicted confidently. In addition, we attempt to determine the time-scale over which its present day orbit will remain stable. Numerical simulations of the dynamics of test particles in orbits similar to that of Comet Halley are carried out with the MERCURY 6.2 code. On the basis of these we construct survival time maps to assess the absolute stability of Halley's orbit, frequency analysis maps to study the variability of the orbit, and we calculate the Lyapunov exponent for the orbit for variations in initial conditions at the level of the present day uncertainties in our knowledge of its orbital parameters. On the basis of our calculations of the Lyapunov exponent for Comet Halley, the chaotic nature of its motion is demonstrated. The e-folding time-scale for the divergence of initially very similar orbits is approximately 70 yr. The sensitivity of the dynamics on initial conditions is also evident in the self-similarity character of the survival time and frequency analysis maps in the vicinity of Halley's orbit, which indicates that, on average, it is unstable on a time-scale of hundreds of thousands of years. The chaotic nature of Halley's present day orbit implies that a precise determination of its motion, at the level of the present-day observational uncertainty, is difficult to predict on a time-scale of approximately 100 yr. Furthermore, we also find that the ejection of Halley from the Solar system or its collision with another body could occur on a time-scale as short as 10 000 yr.
A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, Yu V.; Harvey, R. W.
The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less
A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code
Petrov, Yu V.; Harvey, R. W.
2016-09-08
The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less
NASA Astrophysics Data System (ADS)
Miller, A. T.; Nevzgodina, L. V.
Lettuce (Lactuca sativa) seeds were flown on-board the orbital station Salyut 7 for 66-457 days. It was found that a single heavy charged particle (HZE) hitting a seed only slightly affects the subsequent plant growth. However, morphological anomalies of varying type in primordial leaves and roots were observed that show good correlation with the location of the particle track. The most severe damage detected by light and an electron microscopy were ``channels'' in dry and soaked seeds. The appearance of ``channels'' seems to be related to the LET of the incident particle. This finding is of considerable importance for assessment of space flight radiation hazard.
A modern approach to superradiance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endlich, Solomon; Penco, Riccardo
In this paper, we provide a simple and modern discussion of rotational super-radiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particles with orbital angular momentum ℓ = 1, and then extend our analysis to higher values of orbital angular momentum and spin. Along the way, we providemore » a simple derivation of vacuum friction — a ''quantum torque'' acting on spinning objects in empty space. Our results apply not only to black holes but to arbitrary spinning objects. We also discuss superradiant instability due to formation of bound states and, as an illustration, we calculate the instability rate Γ for bound states with massive spin 1 particles. For a black hole with mass M and angular velocity Ω, we find Γ ~ (GMμ) 7Ω when the particle’s Compton wavelength 1/μ is much greater than the size GM of the spinning object. This rate is parametrically much larger than the instability rate for spin 0 particles, which scales like (GM μ) 9Ω. This enhanced instability rate can be used to constrain the existence of ultralight particles beyond the Standard Model.« less
A modern approach to superradiance
Endlich, Solomon; Penco, Riccardo
2017-05-10
In this paper, we provide a simple and modern discussion of rotational super-radiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particles with orbital angular momentum ℓ = 1, and then extend our analysis to higher values of orbital angular momentum and spin. Along the way, we providemore » a simple derivation of vacuum friction — a ''quantum torque'' acting on spinning objects in empty space. Our results apply not only to black holes but to arbitrary spinning objects. We also discuss superradiant instability due to formation of bound states and, as an illustration, we calculate the instability rate Γ for bound states with massive spin 1 particles. For a black hole with mass M and angular velocity Ω, we find Γ ~ (GMμ) 7Ω when the particle’s Compton wavelength 1/μ is much greater than the size GM of the spinning object. This rate is parametrically much larger than the instability rate for spin 0 particles, which scales like (GM μ) 9Ω. This enhanced instability rate can be used to constrain the existence of ultralight particles beyond the Standard Model.« less
NASA Technical Reports Server (NTRS)
Colquitt, Walter
1989-01-01
The main objective is to improve the performance of a specific FORTRAN computer code from the Planetary Sciences Division of NASA/Johnson Space Center when used on a modern vectorizing supercomputer. The code is used to calculate orbits of dust grains that separate from comets and asteroids. This code accounts for influences of the sun and 8 planets (neglecting Pluto), solar wind, and solar light pressure including Poynting-Robertson drag. Calculations allow one to study the motion of these particles as they are influenced by the Earth or one of the other planets. Some of these particles become trapped just beyond the Earth for long periods of time. These integer period resonances vary from 3 orbits of the Earth and 2 orbits of the particles to as high as 14 to 13.
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan; Sospisil, Stanislav; Owens, Alan; Mellab, Karim
2016-08-01
The compact spacecraft payload SATRAM is operating in LEO orbit since 2013 on board the Proba-V satellite from ESA and provides high-resolution wide-range radiation monitoring of the satellite environment. Equipped with the pixel detector Timepix, the technology demonstration payload determines the composition (particle types) and spectral characterization (stopping power) of the mixed radiation field with quantum imaging sensitivity, charged particle tracking, energy loss and directionality capability. With a polar orbit (sun synchronous, 98° inclination) and altitude of 820 km the space radiation field is continuously sampled over the entire planet every few days. Results are given in the form of spatial- and time- correlated maps of dose rate and particle flux. Comparison is made between quiescent and geomagnetic storm activity periods.
Airborne particulate matter and spacecraft internal environments
NASA Technical Reports Server (NTRS)
Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane
1991-01-01
Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sago, Norichika; Barack, Leor; Detweiler, Steven
2008-12-15
Recently, two independent calculations have been presented of finite-mass ('self-force') effects on the orbit of a point mass around a Schwarzschild black hole. While both computations are based on the standard mode-sum method, they differ in several technical aspects, which makes comparison between their results difficult--but also interesting. Barack and Sago [Phys. Rev. D 75, 064021 (2007)] invoke the notion of a self-accelerated motion in a background spacetime, and perform a direct calculation of the local self-force in the Lorenz gauge (using numerical evolution of the perturbation equations in the time domain); Detweiler [Phys. Rev. D 77, 124026 (2008)] describesmore » the motion in terms a geodesic orbit of a (smooth) perturbed spacetime, and calculates the metric perturbation in the Regge-Wheeler gauge (using frequency-domain numerical analysis). Here we establish a formal correspondence between the two analyses, and demonstrate the consistency of their numerical results. Specifically, we compare the value of the conservative O({mu}) shift in u{sup t} (where {mu} is the particle's mass and u{sup t} is the Schwarzschild t component of the particle's four-velocity), suitably mapped between the two orbital descriptions and adjusted for gauge. We find that the two analyses yield the same value for this shift within mere fractional differences of {approx}10{sup -5}-10{sup -7} (depending on the orbital radius)--comparable with the estimated numerical error.« less
Orbital debris removal using ground-based lasers
NASA Technical Reports Server (NTRS)
Taylor, Charles R.
1996-01-01
Orbiting the Earth are spent rocket stages, non-functioning satellites, hardware from satellite deployment and staging, fragments of exploded spacecraft, and other relics of decades of space exploration: orbital debris. The United States Space Command tracks and maintains a catalog of the largest objects. The catalog contains over 7000 objects. Recent studies have assessed the debris environment in an effort to estimate the number of smaller particles and the probability of a collision causing catastrophic damage to a functioning spacecraft. The results of the studies can be used to show, for example, that the likelihood of a collision of a particle larger than about one centimeter in diameter with the International Space Station during a 10-year period is a few percent, roughly in agreement with earlier estimates for Space Station Freedom. Particles greater than about one centimeter in diameter pose the greatest risk to shielded spacecraft. There are on the order of 105 such particles in low Earth orbit. The United States National Space Policy, begun in 1988, is to minimize debris consistent with mission requirements. Measures such as venting unused fuel to prevent explosions, retaining staging and deployment hardware, and shielding against smaller debris have been taken by the U.S. and other space faring nations. There is at present no program to remove debris from orbit. The natural tendency for upper atmospheric drag to remove objects from low Earth orbit is more than balanced by the increase in the number of debris objects from new launches and fragmentation of existing objects. In this paper I describe a concept under study by the Program Development Laboratory of Marshall Space Flight Center and others to remove debris with a ground-based laser. A longer version of this report, including figures, is available from the author.
Energetic Particles Dynamics in Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.
2013-01-01
We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface
Ions lost on their first orbit can impact Alfvén eigenmode stability
Heidbrink, William W.; Fu, Guo -Yong; Van Zeeland, Michael A.
2015-08-13
Some neutral-beam ions are deflected onto loss orbits by Alfvén eigenmodes on their first bounce orbit. Here, the resonance condition for these ions differs from the usual resonance condition for a confined fast ion. Estimates indicate that particles on single-pass loss orbits transfer enough energy to the wave to alter mode stability.
The Dynamics of Orbit-Clearing for Planets on Eccentric Orbits
NASA Astrophysics Data System (ADS)
Hastings, Danielle; Margot, Jean-Luc
2016-10-01
The third requirement in the 2006 International Astronomical Union (IAU) definition of a planet is that the object has cleared the neighborhood around its orbit. Margot (2015) proposed a metric that quantitatively determines if an object has enough mass to clear an orbital zone of a specific extent within a defined time interval. In this metric, the size of the zone to be cleared is given by CRH, where C is a constant and RH is the Hill Radius. Margot (2015) adopts C=2*31/2 to describe the minimum extent of orbital clearing on the basis of the planet's feeding zone. However, this value of C may only apply for eccentricities up to about 0.3 (Quillen & Faber 2006). Here, we explore the timescales and boundaries of orbital clearing for planets over a range of orbital eccentricities and planet-star mass ratios using the MERCURY integration package (Chambers 1999). The basic setup for the integrations includes a single planet orbiting a star and a uniform distribution of massless particles extending beyond CRH. The system is integrated for at least 106 revolutions and the massless particles are tracked in order to quantify the timescale and extent of the clearing.
On the problem of meteor shower's radiants displacement
NASA Astrophysics Data System (ADS)
Tikhomirova, E. N.
2011-06-01
In the context of the perturbed two-body problem a method to evaluate radiant shift for a meteor shower is suggested. We consider the evolution of a meteoroid particle which after every complete revolution "migrates" from one elliptic orbit to another with slightly changed orbital parameters. The obtained analytical solutions of the equations of particle's motion take into account radiation pressure, Poynting-Robertson effect and its corpuscular part.
New Operational Algorithms for Particle Data from Low-Altitude Polar-Orbiting Satellites
NASA Astrophysics Data System (ADS)
Machol, J. L.; Green, J. C.; Rodriguez, J. V.; Onsager, T. G.; Denig, W. F.
2010-12-01
As part of the algorithm development effort started under the former National Polar-orbiting Operational Environmental Satellite System (NPOESS) program, the NOAA Space Weather Prediction Center (SWPC) is developing operational algorithms for the next generation of low-altitude polar-orbiting weather satellites. This presentation reviews the two new algorithms on which SWPC has focused: Energetic Ions (EI) and Auroral Energy Deposition (AED). Both algorithms take advantage of the improved performance of the Space Environment Monitor - Next (SEM-N) sensors over earlier SEM instruments flown on NOAA Polar Orbiting Environmental Satellites (POES). The EI algorithm iterates a piecewise power law fit in order to derive a differential energy flux spectrum for protons with energies from 10-250 MeV. The algorithm provides the data in physical units (MeV/cm2-s-str-keV) instead of just counts/s as was done in the past, making the data generally more useful and easier to integrate into higher level products. The AED algorithm estimates the energy flux deposited into the atmosphere by precipitating low- and medium-energy charged particles. The AED calculations include particle pitch-angle distributions, information that was not available from POES. This presentation also describes methods that we are evaluating for creating higher level products that would specify the global particle environment based on real time measurements.
Collision Models for Particle Orbit Code on SSX
NASA Astrophysics Data System (ADS)
Fisher, M. W.; Dandurand, D.; Gray, T.; Brown, M. R.; Lukin, V. S.
2011-10-01
Coulomb collision models are being developed and incorporated into the Hamiltonian particle pushing code (PPC) for applications to the Swarthmore Spheromak eXperiment (SSX). A Monte Carlo model based on that of Takizuka and Abe [JCP 25, 205 (1977)] performs binary collisions between test particles and thermal plasma field particles randomly drawn from a stationary Maxwellian distribution. A field-based electrostatic fluctuation model scatters particles from a spatially uniform random distribution of positive and negative spherical potentials generated throughout the plasma volume. The number, radii, and amplitude of these potentials are chosen to mimic the correct particle diffusion statistics without the use of random particle draws or collision frequencies. An electromagnetic fluctuating field model will be presented, if available. These numerical collision models will be benchmarked against known analytical solutions, including beam diffusion rates and Spitzer resistivity, as well as each other. The resulting collisional particle orbit models will be used to simulate particle collection with electrostatic probes in the SSX wind tunnel, as well as particle confinement in typical SSX fields. This work has been supported by US DOE, NSF and ONR.
MULPEX: A compact multi-layered polymer foil collector for micrometeoroids and orbital debris
NASA Astrophysics Data System (ADS)
Kearsley, A. T.; Graham, G. A.; Burchell, M. J.; Taylor, E. A.; Drolshagen, G.; Chater, R. J.; McPhail, D.
Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit (LEO). We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MUlti- Layer Polymer EXperiment (MULPEX) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimised for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 and 40 μm) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminium casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilising buck-shot firings of analogues to micrometeoroids (35-38 μm olivine) and space debris (4 μm alumina and 1 mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimetre dimensions. Penetrations of the top foil are easily recognised, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.
MULPEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris.
NASA Astrophysics Data System (ADS)
Kearsley, A. T.; Graham, G. A.; Burchell, M. J.; Taylor, E. A.; Drolshagen, G.; Chater, R. J.; McPhail, D.
Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit (LEO). We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MULPEX (MUlti-Layer Polymer EXperiment) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimised for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 micron and 40 micron) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminium casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilising buck-shot firings of analogues to micrometeoroids (35-38 micron olivine) and space debris (4 micron alumina and 1mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimetre dimensions. Penetrations of the top foil are easily recognised, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.
A study of extended zodiacal structures
NASA Technical Reports Server (NTRS)
Sykes, Mark V.
1990-01-01
Observations of cometary dust trails and zodiacal dust bands, discovered by the Infrared Astronomical Satellite (IRAS) were analyzed in a continuing effort to understand their nature and relationship to comets, asteroids, and processes effecting those bodies. A survey of all trails observed by IRAS has been completed, and analysis of this phenomenon continues. A total of 8 trails have been associated with known short-period comets (Churyumov-Gerasimenko, Encke, Gunn, Kopff, Pons-Winnecke, Schwassmann-Wachmann 1, Tempel 1, and Tempel 2), and a few faint trails have been detected which are not associated with any known comet. It is inferred that all short-period comets may have trails, and that the trails detected were seen as a consequence of observational selection effects. Were IRAS launched today, it would likely observe a largely different set of trails. The Tempel 2 trail exhibits a small but significant excess in color temperature relative to a blackbody at the same heliocentric distance. This excess may be due to the presence of a population of small, low-beta particles deriving from large particles within the trail, or a temperature gradient over the surface of large trail particles. Trails represent the very first stage in the formation and evolution of a meteor stream, and may also be the primary mechanism by which comets contribute to the interplanetary dust complex. A mathematical model of the spatial distribution of orbitally evolved collisional debris was developed which reproduces the zodiacal dust band phenomena and was used in the analysis of dust band observations made by IRAS. This has resulted in the principal zodiacal dust bands being firmly related to the principal Hirayama asteroid families. In addition, evidence for the collisional diffusion of the orbital elements of the dust particles has been found in the case of dust generated in the Eos asteroid family.
On the modulation of the Jovian decametric radiation by Io. I - Acceleration of charged particles
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goertz, C. K.
1978-01-01
A steady-state analysis of the current circuit between Io and the Jovian ionosphere is performed, assuming that the current is carried by electrons accelerated through potential double layers in the Io flux tube. The circuit analysis indicates that electrons may be accelerated up to energies of several hundred keV. Several problems associated with the formation of double layers are also discussed. The parallel potential drops decouple the flux tube from the satellite's orbital motion.
System related testing and analysis of FRECOPA
NASA Technical Reports Server (NTRS)
Durin, Christian
1992-01-01
Results from the French Cooperative Payload (FRECOPA) system analysis are presented. It was one of the numerous experiments which were flown on the Long Duration Exposure Facility (LDEF) satellite. In our flight configuration (LEO orbit, trailing edge), the environment was a better vacuum than the leading edge, with many thermal cycles (32000) and a large amount of UV radiation (11100 equivalent sun hours). Also, the satellite was mainly bombarded by micro-particles. It saw a low atomic flux and minor doses of protons and electrons.
Multi-layered foil capture of micrometeoroids and orbital debris in low Earth orbit
NASA Astrophysics Data System (ADS)
Kearsley, A.; Graham, G.
Much of our knowledge concerning the sub-millimetre orbital debris population that poses a threat to orbiting satellites has been gleaned from examination of surfaces retrieved and subsequently analysed as part of post-flight investigations. The preservation of the hypervelocity impact-derived remnants located on these surfaces is very variable, whether of space debris or micrometeoroid origin. Whilst glass and metallic materials show highly visible impact craters when examined using optical and electron microscopes, complex mixing between the target material and the impacting particle may make unambiguous interpretation of the impactor origin difficult or impossible. Our recent detailed examination of selected multi-layered insulation (MLI) foils from the ISAS Space Flyer Unit (SFU), and our preliminary study of NASA's Trek blanket, exposed on the Mir station, show that these constructions have the potential to preserve abundant residue material of a quality sufficient for detailed analysis. Although there are still limitations on the recognition of certain sources of orbital debris, the foils complement the metal and glass substrates. We suggest that a purpose-built multi-layered foil structure may prove to be extremely effective for rapid collection and unambiguous analysis of impact- derived residues. Such a collector could be used an environmental monitor for ISS, as it would have low mass, high durability, easy deployment, recovery and storage, making it an economically viable and attractive option.
An instrument for discrimination between orbital debris and natural particles in near-Earth space
NASA Astrophysics Data System (ADS)
Tuzzolino, A. J.; Simpson, J. A.; McKibben, R. B.; Voss, H. D.; Gursky, H.
1993-08-01
We discuss a SPAce DUSt instrument (SPADUS) under development for flight on the USA ARGOS mission to measure the flux, mass, velocity and trajectory of near-Earth dust. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. Measurements will cover the dust mass range ~5×10-12 g (2 μm diameter) to ~ 1×10-5g (200 μm diameter), with an expected mean error in particle trajectory of ~7° (isotropic flux).
Polaronic and dressed molecular states in orbital Feshbach resonances
NASA Astrophysics Data System (ADS)
Xu, Junjun; Qi, Ran
2018-04-01
We consider the impurity problem in an orbital Feshbach resonance (OFR), with a single excited clock state | e ↑⟩ atom immersed in a Fermi sea of electronic ground state | g ↓⟩. We calculate the polaron effective mass and quasi-particle residue, as well as the polaron to molecule transition. By including one particle-hole excitation in the molecular state, we find significant correction to the transition point. This transition point moves toward the BCS side for increasing particle densities, which suggests that the corresponding many-body physics is similar to a narrow resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. Y.; Yu, J.; Cao, J. B.
After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less
Li, L. Y.; Yu, J.; Cao, J. B.; ...
2016-11-05
After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less
NASA Technical Reports Server (NTRS)
Adams, Mitzi; HabashKrause, Linda
2012-01-01
Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown here.
HIGH ENERGY PARTICLE ACCELERATOR
Courant, E.D.; Livingston, M.S.; Snyder, H.S.
1959-04-14
An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.
Collision broadened resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-08-01
Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
Resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-06-01
Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
Earth orbiting Sisyphus system study
NASA Technical Reports Server (NTRS)
Jurkevich, I.; Krause, K. W.; Neste, S. L.; Soberman, R. K.
1971-01-01
The feasibility of employing an optical meteoroid detecting system, known as Sisyphus, to measure the near-earth particulates from an earth orbiting vehicle, is considered. A Sisyphus system can discriminate between natural and man-made particles since the system measures orbital characteristics of particles. A Sisyphus system constructed for the Pioneer F/G missions to Jupiter is used as the baseline, and is described. The amount of observing time which can be obtained by a Sisyphus instrument launched into various orbits is determined. Observation time is lost when, (1) the Sun is in or near the field of view, (2) the lighted Earth is in or near the field of view, (3) the instrument is eclipsed by the Earth, and (4) the phase angle measured at the particle between the forward scattering direction and the instrument is less than a certain critical value. The selection of the launch system and the instrument platform with a dedicated, attitude controlled payload package is discussed. Examples of such systems are SATS and SOLRAD 10(C) vehicles, and other possibilities are AVCO Corp. S4 system, the OWL system, and the Delta Payload Experiment Package.
About separation and collision of Saturn rings particles
NASA Astrophysics Data System (ADS)
Tchernyi, Vladimir
There is no yet clear picture of the origin of Saturn's rings. We follow importance of electromag-netic idea that rings could originate and form from the frozen particles of the protoplanetary cloud after the appearance of the magnetic field of Saturn due to electromagnetic interaction of icy particles with the planetary magnetic field. The Sun heats the rings weakly, temperature in the area of the rings is about 70-110 K. It makes possible the existence of the superconduct-ing substance in the space behind the belt of asteroids. Theoretical electromagnetic modeling demonstrates that superconductivity can be the physical reason of the origin of the sombrero of rings of Saturn from the frozen particles of the protoplanetary cloud. The sombrero appears during some time after magnetic field of planet appears. Finally, all the Kepler's orbits of the superconducting particles are localizing as a sombrero disk of rings in the magnetic equator plane, where the energy of particles in the magnetic field of Saturn has a minimum value. Recently space probe "Cassini" discovered collisions and separation of the Saturn's rings parti-cles. It is also important fact that from electromagnetic modeling follows possibility of collide of the rings particles on the vertical direction within the width of the sombrero. It could be a reason for the formation of the particles of the bigger size due to coalescence, until gravity and centrifugal force will destroy them to the particles of smaller size again. From the solution of the electromagnetic problem we will demonstrate how rings of Saturn could be originated from the iced particles located within the protoplanetary cloud. Before appearance of the magnetic field of Saturn all particles within the protoplanetary cloud are located on such an orbit as Kepler's, where there is a balance of the force of gravity and the centrifugal force. With the occurrence of the magnetic field of the Saturn the superconducting particles of the protoplane-tary cloud begin to demonstrate an ideal diamagnetism. Due to appearance of the third force of diamagnetic push-out particles start to interact with the magnetic field and all the orbits of the particles become to be involved in additional azimuth-orbital movement. As a result, eventually, during some time, all orbits of the particles of the protoplanetary cloud should come together to magnetic equator plane and create highly flattening disc around planet. For separa-tion and collision of the particles within the sombrero of rings from solution of electromagnetic problem follows that for two particles which are located on the same plane, both particles will be pushing each other and they will be holding separation distance in between them. Then for another situation both particles are located on the same axis but on the different planes, both particles will be attracting each other, they could even collide or stick together and form bigger pieces or lumps of ice. Both facts have an experimental conformation by Cassini mission. Reference: Tchernyi V.V. Origin of the Saturn rings: electromagnetic model of the sombrero rings formation. Chapter in book: Space Exploration Research. Editors: John H. Denis and Paul D. Aldridge. Series: Space Science, Exploration and Policies. ISBN: 978-1-60692-264-4. Hauppauge, NY, USA, Nova Science Publishers, 2009:
NASA Technical Reports Server (NTRS)
Meech, Karen J.; Belton, Michael J. S.
1990-01-01
An explanation for 2060 Chiron's behavior, which focuses on the influence of Chiron's mass on the development of its dust coma, is presented. It is suggested that dust is entrained by the flow of CO or another gas of similar volatility from an active region. It remains gravitationally bound on orbits confined to a region, roughly 5000 km in extent, that lies between the surface and an exopause imposed by radiation pressure forces. The influence of radiation pressure transforms the initial particle trajectories into satellite orbits with a characteristic period of 20 days and orbital residence time of about 25 revolutions. The particle population in the coma slowly increases, explaining Chiron's photometric behavior.
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Chen, J.
1989-01-01
The integrodifferential equation describing the linear tearing instability in the bi-Maxwellian neutral sheet is solved without approximating the particle orbits or the eigenfunction psi. Results of this calculation are presented. Comparison between the exact solution and the three-region approximation motivates the piecewise-straight-line approximation, a simplification that allows faster solution of the integrodifferential equation, yet retains the important features of the exact solution.
On-orbit Status and Light Attenuation Behavior of the DAMPE-PSD
NASA Astrophysics Data System (ADS)
Li, Y.; Zhang, Y. P.; Zhang, Y. J.; Sun, Z. Y.; Yu, Y. H.; Dong, T. K.; Ma, P. X.; Wang, Y. P.; Yuan, Q.
2017-11-01
The DArk Matter Particle Explorer (DAMPE) is a high-resolution multi-purpose space-borne device for detecting the high-energy cosmic-rays like e±, γ-rays, protons, and heavy-ions, which was launched on 2015 December 17th. The Plastic Scintillator Detector (PSD) is the top-most sub-detector of DAMPE. The PSD is designed to measure the charge of incident high-energy particles, and to serve as a veto detector for discriminating γ-rays from the charged particles. In this paper, the on-orbit status of the PSD after launching in terms of high voltage (HV) and temperature stabilities is presented. The temperature and the HV variations of the PSD are less than 1°C and 0.5%, respectively. By using the on-orbit data, the attenuation lengths of PSD bars are obtained according to an empirical formula. A preliminary charge spectrum reconstructed from the X-layer of the PSD is obtained.
Trapped particle and solar proton radiation prediction for ISEE (IME): Mother-daughter mission
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.
1974-01-01
The charged particle fluxes incident on spacecrafts in very eccentric orbits were investigated in support of the International Sun-Earth Explorer (International Magnetospheric Explorer) For this purpose, two flightpaths were considered having identical inclinations but different perigee altitudes (240 and 1364 kilometers, respectively). Apogee altitude was approximately the same for both cases (about 22 earth radii). For each of the two perigee altitudes investigated, two nominal trajectories were generated, having identical orbital configurations but with their major axes rotated by 180 deg in the plane of orbit, which resulted in placing the initial apogee into into opposite hemispheres. This was done in order to determine the corresponding variation in the vehicle-encountered particle intensities. Estimates of average energetic solar proton fluxes are given for a one year mission duration at selected integranlenergies ranging from E 10 to E 100 MeV. Results are summarized and discussed.
Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter
NASA Technical Reports Server (NTRS)
Fillius, Walker
1988-01-01
There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between the flux tube and the absorber when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities in drift encounters were computed for all regimes of particle energies and absorber sizes.
NASA Astrophysics Data System (ADS)
Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Podgorski, Piotr
2016-07-01
Radiation belts and sporadically arising volumes comprising enhanced charged particle fluxes in the Earth's magnetosphere are typically studied by space-borne telescopes, semiconductor, scintillation, gaseous and other types of detectors. Ambient and internal electron bremsstrahlung in hard X-ray arises as a result of interaction of precipitating particles with the atmosphere (balloon experiments) and with the satellite's housings and instrument boxes (orbital experiments). Theses emissions provide a number of new information on the physics of radiation belts. The energies of primary electrons and their spectra responsible for measured X-ray emissions remain usually unknown. Combined measurements of particle fluxes, and their bremsstrahlung by individual satellite instruments placed next to each other provide insight to respective processes. The satellite telescope of electrons and protons STEP-F and the solar X-ray spectrophotometer SphinX were placed in close proximity to each other aboard CORONAS-Photon, the low, circular and highly inclined orbit satellite. Based on joint analysis of the data we detected new features in the high energy particle distributions of the Earth's magnetosphere during deep minimum of solar activity [1-3]. In this research the bifurcation of Van Allen outer electron radiation belt during the weak geomagnetic storm and during passage of interplanetary shock are discussed. Outer belt bifurcation and growth of electron fluxes in a wide energy range were recorded by both instruments during the recovery phase of May 8, 2009 substorm. STEP-F recorded also barely perceptible outer belt splitting on August 5, 2009, after arrival of interplanetary shock to the Earth's magnetosphere bowshock. The STEP-F and SphinX data are compared with the space weather indexes, and with relativistic electron fluxes observed at geostationary orbit. We discuss possible mechanism of the phenomena consisting in the splitting of drift shells because of Earth's magnetic field asymmetry and/or fast radial and pitch-angle particle diffusion from the outer edge of the magnetosphere. 1. P.Podgórski, O.V.Dudnik, J.Sylwester, S.Gburek, M.Kowaliński, M.Siarkowski, S.Plocieniak, J.Bąkala. Joint analysis of SphinX and STEP-F instruments data on magnetospheric electron flux dynamics at low Earth orbit / in: Abstracts of 39th Scientific Assembly of COSPAR, Mysore, India, July 14-22, 2012, Panel PSW.3: "Space Weather Data: Observations and Exploitation for Research and Applications", STW-C-119 PSW.3-0028-12, P.112. 2. O.V.Dudnik, P.Podgórski, J.Sylwester, S.Gburek, M.Kowalinski, M.Siarkowski, S.Plocieniak, and J.Bakala. X-Ray Spectrophotometer SphinX and Particle Spectrometer STEP-F of the Satellite Experiment CORONAS-PHOTON. Preliminary Results of the Joint Data Analysis / Solar System Research, 2012, V.46, No.2, P.160-169, doi:10.1134/S0038094612020025. 3. O.V.Dudnik, P.Podgórski, J.Sylwester. New perspectives to study the splitting of drift shells at the outer magnetosphere by using STEP-F and SphinX instruments on board the CORONAS-Photon satellite / in: Abstract Book of the Conference "Progress on EUV&X-ray spectroscopy and imaging II", Wroclaw, Poland, November 17-19, 2015, P.8, doi:10.13140/RG.2.1.1872.4889.
NASA Astrophysics Data System (ADS)
Orsini, S.; Livi, S.; Torkar, K.; Barabash, S.; Milillo, A.; Wurz, P.; di Lellis, A. M.; Kallio, E.
2009-06-01
SERENA (`Search for Exospheric Refilling and Emitted Natural Abundances') is an instrument package that will fly on board the BepiColombo Mercury Planetary Orbiter (MPO) it will investigate the Mercury's complex particle environment that surrounds the planet. Such an environment is composed by thermal and directional neutral atoms (exosphere) originating via surface release and charge-exchange processes, and by ionized particles originated through photo-ionization and again by surface release processes. In order to accomplish the scientific goals, in-situ analysis of the environmental elements is necessary, and for such a purpose the SERENA instrument shall include four units: two Neutral Particle Analyzers (ELENA and STROFIO) and two Ion Spectrometers (MIPA and PICAM). The scientific merit of SERENA is presented, and the basic characteristics of the four units are described, with a focus on novel technological aspects.
NASA Astrophysics Data System (ADS)
Milillo, Anna; Livi, Stefano; Orsini, Stefano; Torkar, Klaus; Barabash, Stas; Milillo, Anna; Wurz, Peter; di Lellis, Andrea Maria; Kallio, Esa
SERENA (‘Search for Exospheric Refilling and Emitted Natural Abundances') is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO); it will investigate the Mercury's complex particle environment that surrounds the planet. Such an environment is composed by thermal and directional neutral atoms (exosphere) originating via surface release and charge-exchange processes, and by ionized particles originated through photo-ionization and again by surface release processes. In order to accomplish the scientific goals, in-situ analysis of the environmental elements is necessary, and for such a purpose the SERENA instrument shall include four units: two Neutral Particle Analyzers (ELENA and STROFIO) and two Ion Spectrometers (MIPA and PICAM). The scientific merit of SERENA is presented, and the basic characteristics of the four units are described, with a focus on novel technological aspects.
Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.; Liu Kaijun; Winske, Dan
2009-11-15
This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less
Testing of the on-board attitude determination and control algorithms for SAMPEX
NASA Technical Reports Server (NTRS)
Mccullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.
1993-01-01
Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bietenholz, Wolfgang, E-mail: wolbi@nucleares.unam.mx; Chryssomalakos, Chryssomalis, E-mail: chryss@nucleares.unam.mx; Salgado, Marcelo, E-mail: marcelo@nucleares.unam.mx
We comment on a fatal flaw in the analysis contained in the work of Martínez-y-Romero et al., [J. Math. Phys. 54, 053509 (2013)], which concerns the motion of a point particle in an inverse square potential, and show that most conclusions reached there are wrong. In particular, the manifestly senseless claim that, in the attractive potential case, no bounded orbits exist for negative energies, is traced to a sign error. Several more mistakes, both in the classical and the quantum cases, are pointed out.
ANALYSIS OF DEUTERON STRIPPING EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amado, R.D.
1959-05-01
Deuteron stripping experiments analyzed according to the theory of Butter are a nearly unique source of information on the orbital angular momentum and single-particle widths of nuclear bound states. A number of problems in the Butter theory remain. Chew and Low show that in reactions in which there is a contribution from thc exchange of a single particles there can appear isolated poles in the normalized Born approximation to the cross section and that the residue at these poles can be related to quantities of physical interest. Stripping is such a reactions and the Butter theory is the renormalized Bornmore » approximation. (A.C.)« less
Electroexcitation of Low-Lying Particle-Hole RPA States of 16O with WBP Interaction
NASA Astrophysics Data System (ADS)
Ali, H. Taqi; R. A., Radhi; Adil, M. Hussein
2014-12-01
The nuclear structure of 16O is studied in the framework of the particle-hole random phase approximation (ph RPA). The Hamiltonian is diagonalized within a model space with particle orbits {1d5/2,1d3/2, and 2s1/2} and the hole orbits {1p3/2 and 1p1/2} using Warburton and Brown interaction WBP. The ph RPA calculations are tested, by comparing the electron scattering form factors with the available experimental data. The results of electron scattering form factors and reduced transition strength for the states: 1-, T = 0 (7.116 MeV); 2-, T = 1 (12.968 MeV); 2-, T = 1 (20.412 MeV); and 3-, T = 0 (6.129 MeV) are interpreted in terms of the harmonic-oscillator (HO) wave functions of size parameter b. The occupation probabilities of the single particle and hole orbits are calculated. The spurious states are removed by adding the center of mass (CM) correction to the nuclear Hamiltonian. A comparison with the available experiments data is presented.
Pakdel, Farzad; Hadizadeh, Homayoun; Pirmarzdashty, Niloofar; Kiavash, Victoria
2015-01-01
A 59-year-old patient developed acute proptosis, peri-orbital swelling and restriction of ocular movements 2 days after attempted scleral buckle removal. Initial clinical and orbital MRI findings were suggestive for orbital cellulitis and orbital abscess. Empiric intravenous antibiotics were not effective. Proton magnetic resonance spectroscopy (MRS) revealed a distinctive composition and helped rule out suppurative and neoplastic processes. The patient recovered soon after removing clear liquefied and tiny particles of the hydrogel buckle by an effective peristaltic technique.
A Comparison of Damaging Meteoroid and Orbital Debris Fluxes in Earth Orbit
NASA Technical Reports Server (NTRS)
Cooke, William; Matney, Mark; Moorhead, Althea V.; Vavrin, Andrew
2017-01-01
Low Earth orbit is populated with a substantial amount of orbital debris, and it is usually assumed that the flux from these objects contributes to most of the hypervelocity particle risk to spacecraft in this region. The meteoroid flux is known to be dominant at very low altitudes (less than 300 km), where atmospheric drag rapidly removes debris, and at very high altitudes (beyond geostationary), where debris is practically non-existent. The vagueness of these boundaries and repeated questions from spacecraft projects have prompted this work, in which we compare the fluxes of meteoroids and orbital debris capable of producing a millimeter-deep crater in aluminum for circular orbits with altitudes ranging from the top of the atmosphere to 100,000 km. The outputs from the latest NASA debris and meteoroid models, ORDEM 3.0 and MEMR2, are combined with the modified Cour-Palais ballistic limit equation to make a realistic evaluation of the damage-capable particle fluxes, thereby establishing the relative contributions of hazardous debris and meteoroids throughout near-Earth space.
ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings
NASA Astrophysics Data System (ADS)
Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.
2002-12-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Klyushnikov, G. N.
2018-05-01
In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.
How useful is the `mean stream' in discussing meteoroid stream evolution?
NASA Astrophysics Data System (ADS)
Williams, I. P.; Jones, D. C.
2007-02-01
The current model for meteoroid formation involves particles being ejected from parent objects, usually comets and sometimes asteroids. The orbital speed of any body in the Solar system is much larger than any potential ejection speed of small particles from the body, hence the initial orbit of any meteoroid is fairly similar to that of the parent. However, with the passage of time the effects of gravitational perturbations from the planets and solar radiation will cause the orbits of the meteoroids to evolve away from the parent's orbit. Initially this may cause a meteor shower to occur, but eventually will lead to the dissipation of the stream. When modelling meteoroid streams, it is usually more convenient to use the average orbital elements of all the meteoroids to study their evolution. In this paper, we consider the evolution of the orbits of several sets of meteoroids comparing the effectiveness of using the mean and median values for a stream when modelling the overall evolution. We conclude that although both mean and median provide a good match to the evolution of the real meteoroids for most of the time interval studied, the mean orbit remains more consistently close to the stream.
Post-Newtonian direct and mixed orbital effects due to the oblateness of the central body
NASA Astrophysics Data System (ADS)
Iorio, L.
2015-06-01
The orbital dynamics of a test particle moving in the nonspherically symmetric field of a rotating oblate primary is impacted also by certain indirect, mixed effects arising from the interplay of the different Newtonian and post-Newtonian accelerations which induce known direct perturbations. We systematically calculate the indirect gravitoelectromagnetic shifts per orbit of the Keplerian orbital elements of the test particle arising from the crossing among the first even zonal harmonic J2 of the central body and the post-Newtonian static and stationary components of its gravitational field. We also work out the Newtonian shifts per orbit of order J22, and the direct post-Newtonian gravitoelectric effects of order J2c-2 arising from the equations of motion. In the case of both the indirect and direct gravitoelectric J2c-2 shifts, our calculation holds for an arbitrary orientation of the symmetry axis of the central body. We yield numerical estimates of their relative magnitudes for systems ranging from Earth's artificial satellites to stars orbiting supermassive black holes. As far as their measurability is concerned, highly elliptical orbital configuration are desirable.
Electrically tunable lens speeds up 3D orbital tracking
Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico
2015-01-01
3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
The geocentric particulate distribution: Cometary, asteroidal, or space debris?
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Ratcliff, P. R.
1992-01-01
Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the temporal fluctuations seen on LDEF; space debris could also explain the phenomenon.
Mars Reconnaissance Orbiter Navigation Strategy for the Comet Siding Spring Encounter
NASA Technical Reports Server (NTRS)
Menon, Premkumar R.; Wagner, Sean V.; Martin-Mur, Tomas J.; Jefferson, David C.; Ardalan, Shadan M.; Chung, Min-Kun J.; Lee, Kyong J.; Schulze, William B.
2015-01-01
Comet Siding Spring encountered Mars on October 19, 2014 at a distance of about 140,500 km - the nearest comet flyby of a planet in recorded history. Mars Reconnaissance Orbiter (MRO) was able to detect the comet, gather science data, and capture images of the comet as it approached Mars. To help protect MRO from the incoming comet particles, two propulsive maneuvers were performed to position the spacecraft behind Mars at the arrival time of the expected peak particle fluency. This paper documents the strategy that the MRO Navigation Team executed to mitigate risk from the comet particles while allowing scientific observations of the comet flyby.
The formation of Pluto's low-mass satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu
Motivated by the New Horizons mission, we consider how Pluto's small satellites—currently Styx, Nix, Kerberos, and Hydra—grow in debris from the giant impact that forms the Pluto-Charon binary. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high-velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of coagulation and migration show that collisional evolution within a ring or a disk ofmore » debris leads to a few small satellites orbiting Pluto-Charon. These simulations are the first to demonstrate migration-induced mergers within a particle disk. The final satellite masses correlate with the initial disk mass. More massive disks tend to produce fewer satellites. For the current properties of the satellites, our results strongly favor initial debris masses of 3-10 × 10{sup 19} g and current satellite albedos A ≈ 0.4-1. We also predict an ensemble of smaller satellites, R ≲ 1-3 km, and very small particles, R ≈ 1-100 cm and optical depth τ ≲ 10{sup –10}. These objects should have semimajor axes outside the current orbit of Hydra.« less
Derivation of capture probabilities for the corotation eccentric mean motion resonances
NASA Astrophysics Data System (ADS)
El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan
2017-08-01
We study in this paper the capture of a massless particle into an isolated, first-order corotation eccentric resonance (CER), in the framework of the planar, eccentric and restricted three-body problem near a m + 1: m mean motion commensurability (m integer). While capture into Lindblad eccentric resonances (where the perturber's orbit is circular) has been investigated years ago, capture into CER (where the perturber's orbit is elliptic) has not yet been investigated in detail. Here, we derive the generic equations of motion near a CER in the general case where both the perturber and the test particle migrate. We derive the probability of capture in that context, and we examine more closely two particular cases: (I) if only the perturber is migrating, capture is possible only if the migration is outward from the primary. Notably, the probability of capture is independent of the way the perturber migrates outward; (II) if only the test particle is migrating, then capture is possible only if the algebraic value of its migration rate is a decreasing function of orbital radius. In this case, the probability of capture is proportional to the radial gradient of migration. These results differ from the capture into Lindblad eccentric resonance (LER), where it is necessary that the orbits of the perturber and the test particle converge for capture to be possible.
NASA Astrophysics Data System (ADS)
Clancy, R. T.; Smith, M. D.; Wolff, M. J.; Toigo, A. D.; Seelos, K. D.; Murchie, S. L.
2016-12-01
Since 2009, the CRISM visible-nearIR imaging spectrometer onboard the Mars Reconnaissance Orbiter (MRO) has returned over 70 orbits of Mars limb image scans over the 0-130 km altitude range. Pole-to-pole latitudinal coverage is obtained from the near-polar, sun-synchronous (LT 3pm) MRO orbit for a limited set of surface longitudes centered on Tharsis, Valles Mariners, Meridioni, and Hellas regions. Seasonal coverage extends over the full seasonal range (Ls=0-360°), as accumulated over 2009-2016 (MY 29-33), supporting a range of aerosol and airglow studies (Smith et al., 2013; Clancy et al., 2012, 2013). The 0.4-4.0 μm wavelength range of these CRISM limb observations proves particularly suitable to characterizing aerosol composition and particle sizes, particularly for the Mars mesosphere (z=50-100 km), which has only recently been observed with any dedication by MCS (Sefton-Nash et al, 2013) and CRISM limb measurements. Dust and H2O, CO2 ice aerosols are clearly distinguished by their distinct scattering and absorption behaviors over the key 2-4 μm wavelength region, and their particle sizes are well determined by the 0.4-3 μm wavelength region. Several key attributes are determined for Mars mesospheric aerosols. Dust aerosols are largely undetected, and are apparently injected to such heights only during global dust storms (Clancy et al, 2010). Ice clouds are generally common at 55-75 km altitudes, although in separate halves of the Mars year. CO2 and H2O ice clouds are most prominent during the aphelion and perihelion portions of the Mars orbit, respectively. CO2 ice clouds, which occur at low latitudes over specific surface longitudes, present distinct particle size populations ranging from 0.5 to 1.5 μm (Reff). Mesospheric H2O ice clouds exhibit somewhat smaller particle sizes (Reff=0.3-1 μm) and extend over low to mid latitudes. This orbital dependence for mesospheric ice aerosol composition indicates extreme annual (orbital) variation in mesospheric water vapor.
Perera, Ajith; Gauss, Jürgen; Verma, Prakash; Morales, Jorge A
2017-04-28
We present a parallel implementation to compute electron spin resonance g-tensors at the coupled-cluster singles and doubles (CCSD) level which employs the ACES III domain-specific software tools for scalable parallel programming, i.e., the super instruction architecture language and processor (SIAL and SIP), respectively. A unique feature of the present implementation is the exact (not approximated) inclusion of the five one- and two-particle contributions to the g-tensor [i.e., the mass correction, one- and two-particle paramagnetic spin-orbit, and one- and two-particle diamagnetic spin-orbit terms]. Like in a previous implementation with effective one-electron operators [J. Gauss et al., J. Phys. Chem. A 113, 11541-11549 (2009)], our implementation utilizes analytic CC second derivatives and, therefore, classifies as a true CC linear-response treatment. Therefore, our implementation can unambiguously appraise the accuracy of less costly effective one-particle schemes and provide a rationale for their widespread use. We have considered a large selection of radicals used previously for benchmarking purposes including those studied in earlier work and conclude that at the CCSD level, the effective one-particle scheme satisfactorily captures the two-particle effects less costly than the rigorous two-particle scheme. With respect to the performance of density functional theory (DFT), we note that results obtained with the B3LYP functional exhibit the best agreement with our CCSD results. However, in general, the CCSD results agree better with the experimental data than the best DFT/B3LYP results, although in most cases within the rather large experimental error bars.
Motion and collision of particles in a rotating linear dilaton black hole
NASA Astrophysics Data System (ADS)
González, P. A.; Olivares, Marco; Papantonopoulos, Eleftherios; Vásquez, Yerko
2018-03-01
We study the motion of particles in the background of a four-dimensional linear dilaton black hole. We solve analytically the equations of motion of the test particles, and we describe their motion. We show that the dilaton black hole acts as a particle accelerator by analyzing the energy in the center of mass frame of two colliding particles in the vicinity of its horizon. In particular, we find that there is a critical value of the angular momentum, which depends on the string coupling, and a particle with this critical angular momentum can reach the inner horizon with an arbitrarily high c.m. energy. This is known as the Bañados, Silk, and West process. We also show that the motion and collisions of particles have behavior similar to the three-dimensional Bañados-Teitelboim-Zanelli black hole. In fact, the photons can plunge into the horizon or escape to infinity, and they cannot be deflected, while for massive particles there are no confined orbits of the first kind, like planetary or circular orbits.
Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail
NASA Astrophysics Data System (ADS)
Holland, D. L.; Martin, R. F., Jr.; Burris, C.
2017-12-01
It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.
Amplitude-dependent orbital period in alternating gradient accelerators
Machida, S.; Kelliher, D. J.; Edmonds, C. S.; ...
2016-03-16
Orbital period in a ring accelerator and time of flight in a linear accelerator depend on the amplitude of betatron oscillations. The variation is negligible in ordinary particle accelerators with relatively small beam emittance. In an accelerator for large emittance beams like muons and unstable nuclei, however, this effect cannot be ignored. In this study, we measured orbital period in a linear non-scaling fixed-field alternating-gradient accelerator, which is a candidate for muon acceleration, and compared it with the theoretical prediction. The good agreement between them gives important ground for the design of particle accelerators for a new generation of particlemore » and nuclear physics experiments.« less
Axial interaction free-electron laser
Carlsten, Bruce E.
1997-01-01
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.
Axial interaction free-electron laser
Carlsten, B.E.
1997-09-02
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meech, K.J.; Belton, M.J.S.
An explanation for 2060 Chiron's behavior, which focuses on the influence of Chiron's mass on the development of its dust coma, is presented. It is suggested that dust is entrained by the flow of CO or another gas of similar volatility from an active region. It remains gravitationally bound on orbits confined to a region, roughly 5000 km in extent, that lies between the surface and an exopause imposed by radiation pressure forces. The influence of radiation pressure transforms the initial particle trajectories into satellite orbits with a characteristic period of 20 days and orbital residence time of about 25more » revolutions. The particle population in the coma slowly increases, explaining Chiron's photometric behavior. 74 refs.« less
Heavy Ion Flux Comparison of MARIE and ACE/CRIS Instruments
NASA Technical Reports Server (NTRS)
Lee, K. T.; Andersen, V.; Atwell, W.; Cleghorn, T.; Cucinotta, F.; Pinsky, L.; Saganti, P.; Turner, R.; Zeitlin, C.
2003-01-01
The charged particle spectrum for nuclei from protons to neon, (charge Z=10) has been observed during the cruise phase and in orbit around Mars by the MARIE charge particle spectrometer aboard the Odyssey spacecraft. The cruise data was taken between April 23, 2001 and August 11, 2001. The Mars orbit data was taken from March 5, 2002 through December 2002. Both the cruise data set and the orbital data set are compared with the simultaneous observations made by the CRIS instrument aboard the ACE space-craft, located at L1. Any detectable differences between the two spacecraft data sets could lead to the understanding of the radial dependence of solar modulation.
A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties
Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...
2015-07-23
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less
Orbital Perturbations Due to Massive Rings
NASA Astrophysics Data System (ADS)
Iorio, L.
2012-06-01
We analytically work out the long-term orbital perturbations induced by a homogeneous circular ring of radius R r and mass m r on the motion of a test particle in the cases (I): r > R r and (II): r < R r. In order to extend the validity of our analysis to the orbital configurations of, e.g., some proposed spacecraft-based mission for fundamental physics like LISA and ASTROD, of possible annuli around the supermassive black hole in Sgr A* coming from tidal disruptions of incoming gas clouds, and to the effect of artificial space debris belts around the Earth, we do not restrict ourselves to the case in which the ring and the orbit of the perturbed particle lie just in the same plane. From the corrections Updeltadot\\varpi^{(meas)} to the standard secular perihelion precessions, recently determined by a team of astronomers for some planets of the Solar System, we infer upper bounds on m r for various putative and known annular matter distributions of natural origin (close circumsolar ring with R r = 0.02 - 0.13 au, dust ring with R r = 1 au, minor asteroids, Trans-Neptunian Objects). We find m_r≤ 1.4× 10^{-4} m_{oplus} (circumsolar ring with R r = 0.02 au), m_r≤ 2.6× 10^{-6} m_{oplus} (circumsolar ring with R r = 0.13 au), m_r≤ 8.8× 10^{-7} m_{oplus} (ring with R r = 1 au), m_r≤ 7.3× 10^{-12} M_{odot} (asteroidal ring with R r = 2.80 au), m_r≤ 1.1× 10^{-11} M_{odot} (asteroidal ring with R r = 3.14 au), m_r≤ 2.0× 10^{-8} M_{odot} (TNOs ring with R r = 43 au). In principle, our analysis is valid both for baryonic and non-baryonic Dark Matter distributions.
NASA Astrophysics Data System (ADS)
McClintock, W. E.; Burger, M. H.; Cassidy, T. A.; Killen, R. M.; Merkel, A. W.; Sarantos, M.; Solomon, S. C.; Vervack, R. J., Jr.
2015-12-01
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS), on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, conducted orbital observations of Mercury's dayside and nightside exosphere from 29 March 2011 to the end of the mission on 30 April 2015. Over slightly more than four Earth-years, MASCS measured emission profiles versus altitude for calcium (Ca), sodium (Na), and magnesium (Mg) at a daily cadence. These species exhibit different spatial distributions, suggesting distinct source processes. MASCS observed seasonal variations in all three species that are remarkably repeatable from one Mercury year to the next, and did so consistently during the entire 17-Mercury-year duration of the orbital phase of the mission. Whereas MASCS has characterized the seasonal variation, it has provided, at best, only weak evidence for the episodic behavior observed in ground-based studies of Na. Joint analyses of MASCS observations and surface precipitation patterns for energetic particles inferred from observations by the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS) on MESSENGER have not yielded clear correlations. This lack of correlation may be due in part to the MASCS observational geometries. MASCS has conducted a number of searches for other, weakly emitting species. Hydrogen data from the orbital phase are consistent with profiles observed during MESSENGER's flybys of Mercury. Oxygen detections have proven elusive, and the previously reported observation with a brightness of 4 R may only be an upper limit. Ongoing analysis of weak species data suggests that additional species are present.
Experimental study of the 66Ni(d ,p ) 67Ni one-neutron transfer reaction
NASA Astrophysics Data System (ADS)
Diriken, J.; Patronis, N.; Andreyev, A.; Antalic, S.; Bildstein, V.; Blazhev, A.; Darby, I. G.; De Witte, H.; Eberth, J.; Elseviers, J.; Fedosseev, V. N.; Flavigny, F.; Fransen, Ch.; Georgiev, G.; Gernhauser, R.; Hess, H.; Huyse, M.; Jolie, J.; Kröll, Th.; Krücken, R.; Lutter, R.; Marsh, B. A.; Mertzimekis, T.; Muecher, D.; Orlandi, R.; Pakou, A.; Raabe, R.; Randisi, G.; Reiter, P.; Roger, T.; Seidlitz, M.; Seliverstov, M.; Sotty, C.; Tornqvist, H.; Van De Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.
2015-05-01
The quasi-SU(3) sequence of the positive parity ν g9 /2,d5 /2,s1 /2 orbitals above the N =40 shell gap are assumed to induce strong quadrupole collectivity in the neutron-rich Fe (Z =26 ) and Cr (Z =24 ) isotopes below the nickel region. In this paper the position and strength of these single-particle orbitals are characterized in the neighborhood of 68Ni (Z =28 ,N =40 ) through the 66Ni(d ,p )67Ni one-neutron transfer reaction at 2.95 MeV/nucleon in inverse kinematics, performed at the REX-ISOLDE facility in CERN. A combination of the Miniball γ -array and T-REX particle-detection setup was used and a delayed coincidence technique was employed to investigate the 13.3-μ s isomer at 1007 keV in 67Ni. Excited states up to an excitation energy of 5.8 MeV have been populated. Feeding of the ν g9 /2 (1007 keV) and ν d5 /2 (2207 keV and 3277 keV) positive-parity neutron states and negative parity (ν p f ) states have been observed at low excitation energy. The extracted relative spectroscopic factors, based on a distorted-wave Born approximation analysis, show that the ν d5 /2 single-particle strength is mostly split over these two excited states. The results are also compared to the distribution of the proton single-particle strength in the 90Zr region (Z =40 ,N =50 ) .
Proton Flares in Solar Activity Complexes: Possible Origins and Consequences
NASA Astrophysics Data System (ADS)
Isaeva, E. S.; Tomozov, V. M.; Yazev, S. A.
2018-03-01
Solar flares observed during the 24th solar-activity cycle and accompanied by fluxes of particles detected at the Earth's orbit with intensities exceeding 10 particles cm-2 s-1 and energies of more than 10 MeV per particle mainly occurred in activity complexes (82% of cases), with 80% of these occurring no more than 20 heliographic degrees from the nearest coronal holes. The correlation between the X-ray classes of flares and the proton fluxes detected at the Earth's orbit is weak. The work presented here supports the hypothesis that the leakage of particles into the heliosphere is due to the existence of long-lived magnetic channels, which facilitate the transport of flare-accelerated particles into the boundary regions of open magnetic structures of coronal holes. The possible contribution of exchange reconnection in the formation of such channels and the role of exchange reconnection in the generation of flares are discussed.
NASA Astrophysics Data System (ADS)
Geurts, Bernard J.; Wiegel, Frederik W.; Creswick, Richard J.
1990-05-01
The motion in the plane of an harmonically bound charged particle interacting with a magnetic field and a half-plane barrier along the positive x-axis is studied. The magnetic field is perpendicular to the plane in which the particle moves. This motion is integrable in between collisions of the particle with the barrier. However, the overall motion of the particle is very complicated. Chaotic regions in phase space exist next to island structures associated with linearly stable periodic orbits. We study in detail periodic orbits of low period and in particular their bifurcation behavior. Independent sequences of period doubling bifurcations and resonant bifurcations are observed associated with independent fixed points in the Poincaré section. Due to the perpendicular magnetic field an orientation is induced on the plane and time-reversal symmetry is broken.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Kramer, Gerrit J.; Heidbrink, William W.
2014-05-21
A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE — a change in wave-particle phase k • r by one mode alters the force exerted by the next. Furthermore, the loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ionmore » transport.« less
NASA Technical Reports Server (NTRS)
McKibben, R. B.; Simpson, J. A.; Tuzzolino, A. J.
1997-01-01
The space dust (SPADUS) experiment, to be launched into a sun-synchronous polar orbit at an altitude of 833 km onboard the USAF ARGOS P91-1 mission, will provide time-resolved measurements of the intensity, size spectrum and geocentric trajectories of dust particles encountered during the nominal three year mission. The experiment uses polyvinylidene fluoride dust sensors with a total detector area of 576 sq cm. The SPADUS will measure particle sizes between 2 and 200 microns, particle velocities between 1 and 10 km/s to better than 4 percent, and the direction of incidence with a mean error of 7 percent. These data will identify the particles as being debris or of natural origin.
Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jinxing; Pu Zuyin; Xie Lun
Charged particle dynamics in magnetosphere has temporal and spatial multiscale; therefore, numerical accuracy over a long integration time is required. A variational symplectic integrator (VSI) [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008) and H. Qin, X. Guan, and W. M. Tang, Phys. Plasmas 16, 042510 (2009)] for the guiding-center motion of charged particles in general magnetic field is applied to study the dynamics of charged particles in magnetosphere. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing themore » dynamics. The VSI conserves exactly a discrete Lagrangian symplectic structure and has better numerical properties over a long integration time, compared with standard integrators, such as the standard and adaptive fourth order Runge-Kutta (RK4) methods. Applying the VSI method to guiding-center dynamics in the inner magnetosphere, we can accurately calculate the particles'orbits for an arbitrary long simulating time with good conservation property. When a time-independent convection and corotation electric field is considered, the VSI method can give the accurate single particle orbit, while the RK4 method gives an incorrect orbit due to its intrinsic error accumulation over a long integrating time.« less
Meteoroid stream of 12P/Pons-Brooks, December κ-Draconids, and Northern June Aquilids
NASA Astrophysics Data System (ADS)
Tomko, D.; Neslušan, L.
2016-08-01
Context. It was found that some parent bodies of meteoroid streams can be related to more than one meteor shower observable in the atmosphere of Earth. The orbits of the members of such showers must evolve to the locations, which are far from the orbit of their parent, to cross the orbit of the Earth. An extensive simulation of the stream evolution is necessary to reveal such a complex of showers of the given parent body. Aims: We continue the investigation of the evolution of the theoretical stream originating from the comet 12P/Pons-Brooks to understand its meteor-shower complex in more detail. Methods: We model a theoretical comet stream assuming an ejection of 10 000 particles, representing the meteoroids, from its nucleus in several past perihelion passages. Adding to our previous work, here we also consider the Poynting-Robertson drag in our study of the particles' dynamics. The orbits currently occurring in a vicinity of the Earth's orbit are used to predict the showers associated with comet 12P. Results: Two nighttime and two daytime showers are predicted to originate from 12P. The showers must consist of only relatively large particles, which are influenced to only a small extent by the Poynting-Robertson drag, because in this case, it deflects the particles from the collisional course with the Earth when efficient. The shower predicted to have the most particles is the nighttime shower, which can clearly be identified to the December κ-Draconids, No. 336 in the IAU MDC list. Another predicted nighttime shower has no counterpart in the considered observational data. Some characteristics of this shower are vaguely similar to those of Northern June Aquilids, No. 164. The observed counterparts of two predicted daytime showers were not found in the observational data we used or in the IAU MDC list.
Size Dependence of Dust Distribution around the Earth Orbit
NASA Astrophysics Data System (ADS)
Ueda, Takahiro; Kobayashi, Hiroshi; Takeuchi, Taku; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro
2017-05-01
In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting-Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI. The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μm band and 3.0% in the 18 μm band. In order to reveal dust properties causing leading-trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading-trailing asymmetry so that intermediate sized dust (˜10-100 μm) produces a greater asymmetry than zodiacal light. The leading-trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μm and 18 μm bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μm and 18 μm bands, respectively, if the maximum dust radius is set to be s max = 3000 μm. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ˜10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.
Size Dependence of Dust Distribution around the Earth Orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi
In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and amore » dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.« less
Static Orbits in Rotating Spacetimes
NASA Astrophysics Data System (ADS)
Collodel, Lucas G.; Kleihaus, Burkhard; Kunz, Jutta
2018-05-01
We show that under certain conditions an axisymmetric rotating spacetime contains a ring of points in the equatorial plane, where a particle at rest with respect to an asymptotic static observer remains at rest in a static orbit. We illustrate the emergence of such orbits for boson stars. Further examples are wormholes, hairy black holes, and Kerr-Newman solutions.
Flocking from a quantum analogy: spin-orbit coupling in an active fluid
NASA Astrophysics Data System (ADS)
Loewe, Benjamin; Souslov, Anton; Goldbart, Paul M.
2018-01-01
Systems composed of strongly interacting self-propelled particles can form a spontaneously flowing polar active fluid. The study of the connection between the microscopic dynamics of a single such particle and the macroscopic dynamics of the fluid can yield insights into experimentally realizable active flows, but this connection is well understood in only a few select cases. We introduce a model of self-propelled particles based on an analogy with the motion of electrons that have strong spin-orbit coupling. We find that, within our model, self-propelled particles are subject to an analog of the Heisenberg uncertainty principle that relates translational and rotational noise. Furthermore, by coarse-graining this microscopic model, we establish expressions for the coefficients of the Toner-Tu equations—the hydrodynamic equations that describe an active fluid composed of these ‘active spins.’ The connection between stochastic self-propelled particles and quantum particles with spin may help realize exotic phases of matter using active fluids via analogies with systems composed of strongly correlated electrons.
Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth
Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna
2013-01-01
The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298
Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.
Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna
2013-01-01
The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.
Energy analysis in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Qi, Yi; de Ruiter, Anton
2018-07-01
The gravity assist or flyby is investigated by analysing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. First, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighbourhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the Solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.
Energy Analysis in the Elliptic Restricted Three-body Problem
NASA Astrophysics Data System (ADS)
Qi, Yi; de Ruiter, Anton
2018-05-01
The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.
Simulated orbits of heavy planetary ions at Mars for different IMF configurations
NASA Astrophysics Data System (ADS)
Curry, Shannon; Luhmann, Janet; Livi, Roberto; Hara, Takuya; Dong, Chuanfei; Ma, Yingjuan; McFadden, James; Bougher, Stephen
2014-11-01
We present simulated detections of O+, O2+ and CO2+ ions at Mars along a virtual orbit in the Mars space environment. Planetary pick-up ions are formed through the direct interaction of the solar wind with the neutral upper atmosphere, causing the newly created ions to be picked up and accelerated by the background convective electric field. Because previous missions such as Mars Global Surveyor (MGS) and Mars Express (MEX) have not been able to measure the interplanetary magnetic field (IMF) components simultaneously with plasma measurements, the response of heavy planetary pick-up ions to changes in the IMF has not been well characterized. Using a steady-state multi-species MHD model to provide the background electric and magnetic fields, the Mars Test Particle (MTP) simulation can trace each of these particles along field lines in near-Mars space and construct virtual ion detections from a spacecraft orbit. Specifically, we will present energy-time spectrograms and velocity space distributions (VSDs) for a selection of orbits during different IMF configurations and solar cycle conditions. These simulated orbits have broader implications for how to measure ion escape. Using individual particle traces, the origin and trajectories of different ion populations can be analyzed in order to assess how and where they contribute to the total atmospheric escape rate, which is a major objective of the upcoming MAVEN mission.
Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes
Collins, C. S.; Heidbrink, W. W.; Podestà, M.; ...
2017-06-09
Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less
Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, C. S.; Heidbrink, W. W.; Podestà, M.
Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less
Origins and demonstrations of electrons with orbital angular momentum
Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.
2017-01-01
The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069765
Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels
2014-10-17
For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.
Materials SIG quantification and characterization of surface contaminants
NASA Technical Reports Server (NTRS)
Crutcher, E. Russ
1992-01-01
When LDEF entered orbit its cleanliness was approximately a MIL-STD-1246B Level 2000C. Its burden of contaminants included particles from every part of its history including a relatively small contribution from the shuttle bay itself. Although this satellite was far from what is normally considered clean in the aerospace industry, contaminating events in orbit and from processing after recovery were easily detected. The molecular contaminants carried into orbit were dwarfed by the heavy deposition of UV polymerized films from outgassing urethane paints and silicone based materials. Impacts by relatively small objects in orbit could create particulate contaminants that easily dominated the particle counts within a centimeter of the impact site. During the recovery activities LDEF was 'sprayed' with a liquid high in organics and water soluble salts. With reentry turbulence, vibration, and gravitational loading particulate contaminants were redistributed about LDEF and the shuttle bay.
NASA Technical Reports Server (NTRS)
Mulholland, J. Derral; Simon, Charles G.; Cooke, William J.; Oliver, John P.; Misra, V.
1992-01-01
The electronic sensors of the Interplanetary Dust Experiment (IDE) recorded precise impact times and approximate directions for submicron to approximately 100-micron size particles on all six primary sides of the spacecraft for the first 346 days of the Long Duration Exposure Facility (LDEF) orbital mission. Previously-reported analyses of the timed impact data have established their spatio-temporal features, including the demonstration that a preponderance of the particles in this regime are orbital debris and that a large fraction of the debris particles are encountered as megameter-size clouds, some of which persist for long times. Short-term fluxes within such clouds can rise several orders of magnitude above the long-term average. These finding are consistent with the results of the first catastrophic hypervelocity laboratory impacts on a real satellite, recently reported in the press. Analysis continues on the geometric and evolutionary characteristics of these clouds, as well as on the isolation and characterization of the natural micrometeoroid component in the IDE data, but the unexpectedly large short-term variations in debris flux raises the question of how representative an indication of the multi-year average flux is given by the nearly one year of timed data. It has, therefore, always been one of the goals of IDE to conduct an optical survey of the craters on the IDE detectors, to obtain full-mission fluxes for comparisons with the timed data. This work is underway, and the results presently in hand are significant. Optical scanning of the ram and wake (East and West) panels is complete, and it is clear that the first year was in some respects not representative of the subsequent years. The 5.75-year average flux on East panel was 90 percent of the value predicted by the average flux recorded during the first year, while it was only 34 percent on West panel. This suggests that western hemisphere spacecraft launches are a major contributor to the long-term flux and that their contribution is primarily in the smaller end of the size distribution. This conclusion follows from the fact that a closely-spaced series of launch failures (Titan, Delta, Ariane, and Challenger) caused a virtual hiatus in launch activity during a large part of the later years of the LDEF mission. We hope to provide a quantification of the particle size distribution function in this case.
NASA Astrophysics Data System (ADS)
Fidani, Cristiano
2015-12-01
A study of statistical correlation between low L-shell electrons precipitating into the atmosphere and strong earthquakes is presented. More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA-15 Sun-synchronous polar orbiting satellite were analysed. Electron fluxes were analysed using a set of adiabatic coordinates. From this, significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicentre geographical positions to a given altitude towards the zenith. Counting rates were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. NOAA-15 electron data from July 1998 to December 2011 were compared for nearly 1800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30-100 keV precipitating electrons detected by the vertical NOAA-15 telescope and earthquake epicentre projections at altitudes greater that 1300 km, a significant correlation appeared where a 2-3 h electron precipitation was detected prior to large events in the Sumatra and Philippine Regions. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The Discussion below of satellite orbits and detectors is useful for future satellite missions for earthquake mitigation.
A neural network device for on-line particle identification in cosmic ray experiments
NASA Astrophysics Data System (ADS)
Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.
2004-05-01
On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.
NASA Astrophysics Data System (ADS)
Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas
1996-04-01
The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.
Interaction of Jovian energetic particles with moons and gas tori based on recent Juno/JEDI data
NASA Astrophysics Data System (ADS)
Kollmann, P.; Mauk, B.; Clark, G. B.; Paranicas, C.; Haggerty, D. K.; Rymer, A. M.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.
2016-12-01
Juno is the first spacecraft in a polar orbit around Jupiter. It entered orbit in July 2016, will deliver the first science data from near Jupiter at the end of August, and pass very close to Jupiter 4 more times by December. We will use data from the three JEDI instruments onboard that measure ions and electrons in the tens of keV to MeV range while discriminating among ion species. Recording of the full energy and time-of-flight information of a subset of the detected particles will allow distinguishing foreground from contaminating background in many cases. Since Juno will be mostly at high latitudes, the JEDI measurements will differ from the measurements of previous missions that were mostly in the equatorial plane. The increasingly strong radiation environment inwards of Europa's orbit caused contamination and/or dead time effects in many of the previously flown particle instruments, which made it difficult to study this region with the existing data. We expect that Juno's unique orbit and the JEDI design will largely avoid these problems. During one hour of closest approach, Juno will be on magnetic field lines that map within the orbits of the Galilean moons. We will study the data in this region and analyze the intensity dropouts that are caused by the interaction between the particles that bounce along field lines and drift around the planet with the moons and associated gas and plasma tori. Also, we will analyze the rate of intensity change towards Jupiter that is determined by radial transport, potential local source processes, and the range of pitch angles that can reach the changing latitudes.
Angular momentum exchange in white dwarf binaries accreting through direct impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepinsky, J. F.; Kalogera, V., E-mail: jeremy.sepinsky@scranton.edu, E-mail: vicky@northwestern.edu
We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, asmore » well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected numbers of events/systems for which double white dwarfs may be a progenitor, e.g., Type Ia supernovae, Type.Ia supernovae, and AM CVn.« less
Potential Jupiter-Family comet contamination of the main asteroid belt
NASA Astrophysics Data System (ADS)
Hsieh, Henry H.; Haghighipour, Nader
2016-10-01
We present the results of "snapshot" numerical integrations of test particles representing comet-like and asteroid-like objects in the inner Solar System aimed at investigating the short-term dynamical evolution of objects close to the dynamical boundary between asteroids and comets as defined by the Tisserand parameter with respect to Jupiter, TJ (i.e., TJ = 3). As expected, we find that TJ for individual test particles is not always a reliable indicator of initial orbit types. Furthermore, we find that a few percent of test particles with comet-like starting elements (i.e., similar to those of Jupiter-family comets) reach main-belt-like orbits (at least temporarily) during our 2 Myr integrations, even without the inclusion of non-gravitational forces, apparently via a combination of gravitational interactions with the terrestrial planets and temporary trapping by mean-motion resonances with Jupiter. We estimate that the fraction of real Jupiter-family comets occasionally reaching main-belt-like orbits on Myr timescales could be on the order of ∼ 0.1-1%, although the fraction that remain on such orbits for appreciable lengths of time is certainly far lower. For this reason, the number of JFC-like interlopers in the main-belt population at any given time is likely to be small, but still non-zero, a finding with significant implications for efforts to use apparently icy yet dynamically asteroidal main-belt comets as tracers of the primordial distribution of volatile material in the inner Solar System. The test particles with comet-like starting orbital elements that transition onto main-belt-like orbits in our integrations appear to be largely prevented from reaching low eccentricity, low inclination orbits, suggesting that the real-world population of main-belt objects with both low eccentricities and inclinations may be largely free of this potential occasional Jupiter-family comet contamination. We therefore find that low-eccentricity, low-inclination main-belt comets may provide a more reliable means for tracing the primordial ice content of the main asteroid belt than the main-belt comet population as a whole.
NASA Astrophysics Data System (ADS)
Parker, Charles Walter
This work describes the design and implementation of a high-sensitivity telescope (HST) for in situ detection and energy analysis of energetic charged particles in the Earth's radiation belts from a near-equatorial orbit that will range over geocentric distances from ≈ 2--3.5 Earth radii as part of the US Air Force's Demonstrations and Science eXperiment (DSX) mission. The HST employs a two element silicon solid state detector telescope that has a geometrical factor of 0.1 cm2 sr with a 14° field-of-view centered on the on-orbit local magnetic field vector to detect ≈ 100 particles s-1 cm-2 sr-1 in the geomagnetic bounce loss cone. The pointing direction of the HST is guaranteed by the active attitude control subsystem of the spacecraft. A novel implementation of a knife-edged baffled collimator design restricts the field-of-view and provides a sharp cutoff (≈ 103) in the angular response to all particle species with energies from ≈ 40--800 keV. The HST detectors are shielded with 5g cm-2 of aluminum followed by 3.1 g cm-2 of tungsten in all non-look directions to reduce the background fluxes incident on the detectors through the orbit (>107 particles cm -2 s-1 for electrons and protons individually) to levels that will allow the detection of the target flux in the loss cone. The HST has been extensively characterized on the ground and is capable of analyzing the energies of particles over the range of 25--850 keV with an energy resolution of 3.7keV and a noise FWHM of 15keV. The calibration has been established using 241Am and 133Ba X-ray sources and verified using additional beta- and X-ray sources and the electron beams produced by the 2 MeV Van de Graaff accelerator at the NASA Goddard Spaceflight Center's Radiation Effects Facility. The instrument's calibration has been shown to vary by less than 2% over the operational temperature range of --20 to +35°C. Electromagnetic interference testing has proven that the HST is unaffected by strong VLF fields of peak amplitude 1.5 kV.
Modeling the effects of an offset of the center of symmetry in the zodiacal cloud
NASA Astrophysics Data System (ADS)
Holmes, E. K.; Dermott, S. F.; Xu, Y. L.; Wyatt, M.; Jayaraman, S.
1998-04-01
There is a possible connection between structure in circumstellar dust clouds and the presence of planets, our own zodiacal cloud being the prime example. Asymmetries in such clouds could be diagnostic of planets which would be otherwise undetectable. One such feature is an offset of the center of symmetry of the disk with respect to the central star. The offset is caused by the forced eccentricities (ef) of particles in the cloud. The orbit of a particle can be described by a set of five orbital elements: the semi-major axis (a), eccentricity (e), inclination (I), longitude of ascending node (Omega) and the argument of pericenter (omega). In low order secular perturbation theory, osculating elements of small bodies are decomposed into proper and forced elements. The proper elements are dependent on initial conditions while the forced elements are imposed on the particle's orbit by the gravitational perturbations of the planets. This decomposition is still applicable in the presence of drag forces. We compare COBE observations of the variation in average polar brightness of the background cloud, (N + S)/2, with ecliptic longitude of Earth with those of a model cloud made of asteroidal particles which populate the inner solar system according to a 1/rgamma where (gamma) = 1 (Poynting Robertson light drag) distribution. The variation with ecliptic longitude of Earth in mean polar brightness is shown in for the 25 micron waveband. Sine curves are fit to both the COBE observations and the model. The variation in (N+S)/2 with ecliptic longitude of Earth can be represented as a superposition of two sine curves: one for the variation in (N + S)/2 due to the Earth's eccentric orbit and the other for the variation in (N + S)/2 due to the forced eccentricities of particles in the cloud. If the cloud were symmetric about the Sun (i.e., if there were no offset), the maximum and minimum brightnesses of the cloud would occur at perihelion and aphelion, respectively. Looking at the model, one can see that the minimum does occur at Earth's aphelion (282.9 deg). However, the minimum of the COBE curve is clearly displaced from aphelion, showing that the center of symmetry of the cloud is displaced from the Sun. If we could turn off the effect of the Earth's eccentricity, we could isolate the sine curve due to ef. When we do this for the model cloud however, we do not see a variation in (N + S)/2 for two reasons: 1) Although the particle orbits are circularized due to Poynting Robertson drag (PR drag), the wedge shape of the cloud cancels out any number density variation as a function of radial distance; and 2) Even though we would expect the orbits of the particles to be more densely spaced at perihelion than at aphelion (provided all the particles had the same ef and omegaf, due to Kepler's Second Law the particles spend less time at perihelion than at aphelion thus canceling out any noticeable effect on the number density. However, when we build a new model cloud governed by a constant distribution of particles (1/rgamma where gamma = 0) instead of a 1/r distribution, we do see a sinusoidal variation in (N + S)/2 with ecliptic longitude of Earth. These results imply that the particles contributing to the observed offset do not have a PR drag distribution (i.e., they are not simply asteroidal particles). Future work will determine whether cometary particles (having a theoretical gamma = 1.5), collisionally evolved asteroidal particles, or a combination of both types of particles are responsible for the offset of the center of symmetry of the zodiacal cloud.
In situ dust measurements by the Cassini Cosmic Dust Analyzer in 2014 and beyond
NASA Astrophysics Data System (ADS)
Srama, R.
2015-10-01
Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 11 years in orbit around Saturn. Many discoveries like the Saturn nanodust streams or the large extended Ering were achieved. CDA provided unique results regarding Enceladus, his plume and the liquid water below the icy crust. In 2014 and 2015 CDA focuses on extended inclination and equatorial scans of the ring particle densities. Furthermore, scans are performed of the Pallene and Helene regions. Special attention is also given to the search of the dust cloud around Dione and to the Titan region. Long integration times are needed in order to characterize the flux and composition of exogenous dust (including interstellar dust) or possible retrograde dust particles. Finally, dedicated observation campaigns focus on the coupling of nanodust streams to Saturn's magnetosphere and the search of possible periodicities in the stream data. Saturn's rotation frequency was identified in the impact rate of nanodust particles at a Saturn distance of 40 Saturn radii. A special geometry in 2014-065 lead to an occultation of the dust stream by the moon Titan and its atmosphere when Titan crossed the line-of-sight between Saturn and Cassini. Here, CDA pointed towards Saturn for the measurement of stream particles. Around closest approach when Cassini was behind Titan, the flux of stream particles went down to zero (Fig. 1). This "dust occultation" is a new method to analyse the properties of the stream particles (speed, composition, mass) or the properties of Titans atmosphere (density). Furthermore, the particle trajectories can be constrained for a better analysis of their origin. In the final three years CDA performs exogenous and interstellar dust campaigns, studies of the composition and origin of Saturn's main rings by unique ring ejecta measurements, long-duration nano-dust stream observations, high-resolution maps of small moon orbit crossings, studies of the dust cloud around Dione and studies of the E-ring interaction with the large moon Titan.
Angular behavior of synchrotron radiation harmonics.
Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T
2004-04-01
The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.
Capability of GPGPU for Faster Thermal Analysis Used in Data Assimilation
NASA Astrophysics Data System (ADS)
Takaki, Ryoji; Akita, Takeshi; Shima, Eiji
A thermal mathematical model plays an important role in operations on orbit as well as spacecraft thermal designs. The thermal mathematical model has some uncertain thermal characteristic parameters, such as thermal contact resistances between components, effective emittances of multilayer insulation (MLI) blankets, discouraging make up efficiency and accuracy of the model. A particle filter which is one of successive data assimilation methods has been applied to construct spacecraft thermal mathematical models. This method conducts a lot of ensemble computations, which require large computational power. Recently, General Purpose computing in Graphics Processing Unit (GPGPU) has been attracted attention in high performance computing. Therefore GPGPU is applied to increase the computational speed of thermal analysis used in the particle filter. This paper shows the speed-up results by using GPGPU as well as the application method of GPGPU.
Black hole binary inspiral: Analysis of the plunge
NASA Astrophysics Data System (ADS)
Price, Richard H.; Nampalliwar, Sourabh; Khanna, Gaurav
2016-02-01
Binary black hole coalescence has its peak of gravitational-wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing (QNR). Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plunge comparable to that of the early and late stages. Here we make progress in developing such understanding by relying on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier-domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the plunge radiation and the excitation of QNR. That insight is then shown to successfully explain results obtained for particle motion in a Schwarzschild background.
Sediment-transport experiments in zero-gravity
NASA Technical Reports Server (NTRS)
Iversen, James D.; Greeley, Ronald
1987-01-01
One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.
Sediment-transport experiments in zero-gravity
NASA Technical Reports Server (NTRS)
Iversen, J. D.; Greeley, R.
1986-01-01
One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in Earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Wells, W. C.
1980-01-01
A study of long term risks is presented that treats an additional pathway that could result in earth reentry, namely, small radioactive particles released in solar orbit due to payload fragmentation by accidental explosion or meteoroid impact. A characterization of such an event and of the initial mass size distribution of particles is given for two extremes of waste form strength. Attention is given to numerical results showing the mass-time distribution of material and the fraction of initial mass intercepted by earth. It is concluded that it appears that program planners need not be to concerned about the risks of this particular failure mechanism and return pathway.
NASA Astrophysics Data System (ADS)
Doi, Hideo; Okuwaki, Koji; Mochizuki, Yuji; Ozawa, Taku; Yasuoka, Kenji
2017-09-01
In dissipative particle dynamics (DPD) simulations, it is necessary to use the so-called χ parameter set that express the effective interactions between particles. Recently, we have developed a new scheme to evaluate the χ parameters in a non-empirical way through a series of fragment molecular orbital (FMO) calculations. As a challenging test, we have performed the DPD simulations using the FMO-based χ parameters for a mixture of 1-Palmitoyl-2-oleoyl phosphatidyl choline (POPC) and water. The structures of both membrane and vesicle were formed successfully. The calculated structural parameters of membrane were in good agreement with experimental results.
NASA Technical Reports Server (NTRS)
Edwards, H. W.
1981-01-01
The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn
2016-10-01
We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.
Heavy ion observations by MARIE in cruise phase and Mars orbit
NASA Technical Reports Server (NTRS)
Lee, K. T.; Cleghorn, T.; Cucinotta, F.; Pinsky, L.; Zeitlin, C.
2004-01-01
The charged particle spectrum for nuclei from protons to neon, (charge Z=10) was observed during the cruise phase and orbit around Mars by the MARIE charged particle spectrometer on the Odyssey spacecraft. The cruise data were taken between April 23, 2001 and mid-August 2001. The Mars orbit data were taken March 5, 2002 through May 2002 and are scheduled to continue until August 2004. Charge peaks are clearly separated for charges up to Z=10. Especially prominent are the carbon and oxygen peaks, with boron and nitrogen also clearly visible. Although heavy ions are much less abundant than protons in the cosmic ray environment, it is important to determine their abundances because their ionization energy losses (proportional to Z2) are far more dangerous to humans and to instruments. Thus the higher charged nuclei make a significant contribution to dose and dose equivalent received in space. Results of the charged particle spectrum measurements will be reported. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Franklin, F. A.; Lecar, M.; Lin, D. N. C.; Papaloizou, J.
1980-01-01
Conditions leading to the truncation, at the 2:1 resonance, of a disk of infrequently colliding particles surrounding the primary of a binary system are studied numerically and analytically. Attention is given to the case in which the mass ratio, q, is sufficiently small (less than about 0.1) and the radius of the disk centered on the primary allowably larger, so that first-order orbit-orbit resonances between ring material and the secondary can lie within it. Collisions are found to be less frequent than q to the -2/3 power orbital periods (the period of the forced eccentricity at the 2:1 resonance), and truncation occurs and Kirkwood gaps are produced only if the particle eccentricity is less than some critical value, estimated to be of order q to the 5/9 power, or approximately 0.02 for the sun-Jupiter case having q equal to 10 to the -3rd power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey, Weston M.; Schumann, Matthew T.
A more detailed calculation strategy for the evaluation of ion orbit loss of thermalized plasma ions in the edge of tokamaks is presented. In both this and previous papers, the direct loss of particles from internal flux surfaces is calculated from the conservation of canonical angular momentum, energy, and magnetic moment. The previous result that almost all of the ion energy and particle fluxes crossing the last closed flux surface are in the form of ion orbit fluxes is confirmed, and the new result that the distributions of these fluxes crossing the last closed flux surface into the scrape-off layermore » are very strongly peaked about the outboard midplane is demonstrated. Previous results of a preferential loss of counter current particles leading to a co-current intrinsic rotation peaking just inside of the last closed flux surface are confirmed. Various physical details are discussed.« less
Efficient topological chaos embedded in the blinking vortex system.
Kin, Eiko; Sakajo, Takashi
2005-06-01
We consider the particle mixing in the plane by two vortex points appearing one after the other, called the blinking vortex system. Mathematical and numerical studies of the system reveal that the chaotic particle mixing, i.e., the chaotic advection, is observed due to the homoclinic chaos, but the mixing region is restricted locally in the neighborhood of the vortex points. The present article shows that it is possible to realize a global and efficient chaotic advection in the blinking vortex system with the help of the Thurston-Nielsen theory, which classifies periodic orbits for homeomorphisms in the plane into three types: periodic, reducible, and pseudo-Anosov (pA). It is mathematically shown that periodic orbits of pA type generate a complicated dynamics, which is called topological chaos. We show that the combination of the local chaotic mixing due to the topological chaos and the dipole-like return orbits realize an efficient and global particle mixing in the blinking vortex system.
In Situ Measurement Activities at the NASA Orbital Debris Program Office
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Burchell, M.; Corsaro, R.; Drolshagen, G.; Giovane, F.; Pisacane, V.; Stansbery, E.
2009-01-01
The NASA Orbital Debris Program Office has been involved in the development of several particle impact instruments since 2003. The main objective of this development is to eventually conduct in situ measurements to better characterize the small (millimeter or smaller) orbital debris and micrometeoroid populations in the near-Earth environment. In addition, the Office also supports similar instrument development to define the micrometeoroid and lunar secondary ejecta environment for future lunar exploration activities. The instruments include impact acoustic sensors, resistive grid sensors, fiber optic displacement sensors, and impact ionization sensors. They rely on different mechanisms and detection principles to identify particle impacts. A system consisting of these different sensors will provide data that are complimentary to each other, and will provide a better description of the physical and dynamical properties (e.g., size, mass, and impact speed) of the particles in the environment. Details of several systems being considered by the Office and their intended mission objectives are summarized in this paper.
DYNAMICAL INSTABILITIES IN HIGH-OBLIQUITY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamayo, D.; Nicholson, P. D.; Burns, J. A.
2013-03-01
High-inclination circumplanetary orbits that are gravitationally perturbed by the central star can undergo Kozai oscillations-large-amplitude, coupled variations in the orbital eccentricity and inclination. We first study how this effect is modified by incorporating perturbations from the planetary oblateness. Tremaine et al. found that, for planets with obliquities >68. Degree-Sign 875, orbits in the equilibrium local Laplace plane are unstable to eccentricity perturbations over a finite radial range and execute large-amplitude chaotic oscillations in eccentricity and inclination. In the hope of making that treatment more easily understandable, we analyze the problem using orbital elements, confirming this threshold obliquity. Furthermore, we findmore » that orbits inclined to the Laplace plane will be unstable over a broader radial range, and that such orbits can go unstable for obliquities less than 68. Degree-Sign 875. Finally, we analyze the added effects of radiation pressure, which are important for dust grains and provide a natural mechanism for particle semimajor axes to sweep via Poynting-Robertson drag through any unstable range. For low-eccentricity orbits in the equilibrium Laplace plane, we find that generally the effect persists; however, the unstable radial range is shifted and small retrograde particles can avoid the instability altogether. We argue that this occurs because radiation pressure modifies the equilibrium Laplace plane.« less
Dust Transport from Enceladus to the moons of Saturn
NASA Astrophysics Data System (ADS)
Juhasz, A.; Hsu, H. W.; Kempf, S.; Horanyi, M.
2016-12-01
Saturn's vast E-ring engulfs the satellites Mimas, Enceladus, Tethys, Dione, and Rea, reaching even beyond Titan, while its inner edge is adjacent with the outskirts of the A-ring. The E-ring is comprised of characteristically micron and submicron sized particles, originating mainly from the active plumes of Enceladus, and possibly the other moons as well due to their continual bombardment by interplanetary dust particles. The dynamics of the E-ring grains can be surprising as in addition to the gravity of Saturn and its moons, their motion is governed by radiation pressure, plasma drag, and electromagnetic forces as they collect charges interacting with the magnetospheric plasma environment of Saturn. Due to sputtering, their mass is diminishing and, hence, their charge-to-mass ratio is increasing in time. A "young" gravitationally dominated micron-sized particle will "mature" into a nanometer-sized grain whose motion resembles that of a heavy ion. Simultaneously with their mass loss, the dust particles are pushed outwards by plasma drag. Time to time, their evolving orbits intersect the orbits of the Saturnian moons and the E-ring particles can be deposited onto their surfaces, possibly altering their makeup and spectral properties. Using the Cassini magnetospheric observations, we have followed the orbital evolution of E-ring particles, through their entire life, starting at Enceladus, ending in: a) a collision with the A-ring or any of the satellites; or b) losing all their mass due to sputtering; or c) leave the magnetosphere of Saturn. This presentation will focus on the deposition rates and maps of E-ring particles to the surfaces of the moons.
EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Dampingmore » and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.« less
Measurement of particle directions in low earth orbit with a Timepix
NASA Astrophysics Data System (ADS)
Gohl, St.; Bergmann, B.; Granja, C.; Owens, A.; Pichotka, M.; Polansky, S.; Pospisil, S.
2016-11-01
In Low Earth Orbit (LEO) in space electronic equipment aboard satellites and space crews are exposed to high ionizing radiation levels. To reduce radiation damage and the exposure of astronauts, to improve shielding and to assess dose levels, it is valuable to know the composition of the radiation fields and particle directions. The presented measurements are carried out with the Space Application of Timepix Radiation Monitor (SATRAM). There, a Timepix detector (300 μm thick silicon sensor, pixel pitch 55 μm, 256 × 256 pixels) is attached to the Proba-V, an earth observing satellite of the European Space Agency (ESA). The Timepix detector's capability was used to determine the directions of energetic charged particles and their corresponding stopping powers. Data are continuously taken at an altitude of 820 km on a sun-synchronous orbit. The particles pitch angles with respect to the sensor layer were measured and converted to an Earth Centred Earth Fixed (ECEF) coordinate system. Deviations from an isotropic field are extracted by normalization of the observed angular distributions by a Geant4 Monte Carlo simulation —taking the systematics of the reconstruction algorithm and the pixelation into account.
APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS
Heard, H.G.
1961-10-24
A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Chernov, S. V.
2018-05-01
A detailed study of the conditions for the realization of the phenomena of magnetic and gravity capture (MGC) of nanoparticles (NP) injected into the near-Earth space in circular orbits with altitudes and inclinations characteristic for orbits of satellites of navigation systems (GLONASS, GPS, etc.) is carried out. Spherical aluminum oxide particles with radii from 4 to 100 nm were considered as injected particles. It was assumed that injection of NP is performed at various points of circular orbits with a height of 19130 km, an inclination angle to the equatorial plane equal to 64.8 degrees and a longitude of the ascending node of 0, 120 and 240 degrees. Calculations of the motion of nanoparticles in near-Earth space were performed for conditions of low level solar and geomagnetic activity. The results of numerical experiments show that for all the considered spatial orientations of the orbit of the parent body (PB) of the NP motion in the magnetic and gravitational capture mode with extremely long orbital existence times (more than two years) can be realized only for nanoparticles with radii in the narrow gap from 8.6 to 10.2 nm.
Frozen-Orbital and Downfolding Calculations with Auxiliary-Field Quantum Monte Carlo.
Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry
2013-11-12
We describe the implementation of the frozen-orbital and downfolding approximations in the auxiliary-field quantum Monte Carlo (AFQMC) method. These approaches can provide significant computational savings, compared to fully correlating all of the electrons. While the many-body wave function is never explicit in AFQMC, its random walkers are Slater determinants, whose orbitals may be expressed in terms of any one-particle orbital basis. It is therefore straightforward to partition the full N-particle Hilbert space into active and inactive parts to implement the frozen-orbital method. In the frozen-core approximation, for example, the core electrons can be eliminated in the correlated part of the calculations, greatly increasing the computational efficiency, especially for heavy atoms. Scalar relativistic effects are easily included using the Douglas-Kroll-Hess theory. Using this method, we obtain a way to effectively eliminate the error due to single-projector, norm-conserving pseudopotentials in AFQMC. We also illustrate a generalization of the frozen-orbital approach that downfolds high-energy basis states to a physically relevant low-energy sector, which allows a systematic approach to produce realistic model Hamiltonians to further increase efficiency for extended systems.
Data Reduction and Analysis of Pioneer Venus Orbital Ion Mass Spectrometer
NASA Technical Reports Server (NTRS)
Cloutier, Paul A.
1996-01-01
Research was carried out on developing a flow field interaction model for both the dayside and nightside ionosphere of Venus. Specific topics related to the dayside ionosphere included: (1) wave particle mechanisms at the ionopause, (2) structure and dynamics of the Venus ionopause and Ionosphere, and (3) flows and fields in the Venus Ionosphere. The structure and dynamics of ion troughs was also studied in the nightside ionosphere of Venus.
NASA Astrophysics Data System (ADS)
Hu, Renyu
Current-generation Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) offers extensive coverage of the latitudinal and seasonal distribution of CO_2 condensation in Mars’s atmosphere. The atmospheric temperature profiles measured by MCS reveal that the thickness of CO_2 condensation layer reaches a maximum of 10-15 km (north) or ˜20 km (south) during the middle of winter. There is a shrinking of the CO_2 condensation layer from L_S ˜270(°) to ˜300(°) in 2007, probably related to a planet-encircling dust storm. We integrate the condensation area and the condensation occurrence rate synthesized from the MCS observations to estimate cumulative masses of CO2 condensates deposited onto the northern and southern seasonal polar caps. The mass loading of CO_2 condensate particles, when condensation occurs, can be independently inferred from the detections of reflective clouds by the Mars Orbiter Laser Altimetry (MOLA) onboard the Mars Global Surveyor (MGS). Therefore, we approximate the precipitation flux by the particle settling flux, which is estimated using the impulse responses of MOLA filter channels. With our approach, the total atmospheric condensation mass can be estimated from these observational data sets, with average particle size as the only free parameter. By comparison with the seasonal polar cap masses inferred from the time-varying gravity of Mars, our estimates indicate that the average condensate particle radius is 8 - 22 mum in the northern hemisphere and 4 - 13 mum in the southern hemisphere. This multi-instrument data analysis provides new constraints on modeling the microphysics of CO_2 clouds on Mars.
NASA Astrophysics Data System (ADS)
Soobiah, Y. I. J.; Espley, J. R.; Connerney, J. E. P.; Gruesbeck, J.; DiBraccio, G. A.; Schneider, N.; Jain, S.; Brain, D.; Andersson, L.; Halekas, J. S.; Lillis, R. J.; McFadden, J. P.; Mitchell, D. L.; Mazelle, C. X.; Deighan, J.; McClintock, W. E.; Ergun, R.; Jakosky, B. M.
2016-12-01
NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has observed a variety of aurora at Mars and related processes that impact the escape of the Martian atmosphere. So far MAVEN's Imaging Ultraviolet Spectrograph (IUVS) instrument has observed 1) Diffuse aurora over widespread regions of Mars' northern hemisphere; 2) Discrete aurora that is spatially confined to localized patches around regions of crustal magnetic field; and 3) Proton aurora from the limb brightening of Lyman-α emission. MAVEN's Solar Energetic Particle (SEP) instrument has shown the diffuse aurora to be coincident with outbursts of solar energetic particles and disturbed solar wind and magnetospheric conditions. MAVEN Particle and Fields Package (PFP) Solar Wind Ion Analyzer (SWIA) has shown the limb brightening of Lyman-α to correlate with increased upstream solar wind dynamic pressure as associated with increased penetrating protons. So far a conclusive explanation for the discrete aurora has yet to be determined. This study aims to explore the plasma processes related to discrete Martian aurora in greater detail by presenting an overview of PFP measurements during orbits when IUVS observed discrete aurora at Mars. Initial observations from orbit 1600 of MAVEN has shown the almost side-by-side occurrence of a crustal magnetic field associated current sheet measured by MAVEN's Magnetometer Investigation (MAG) near the Mars terminator and IUVS limb observations of discrete aurora in Mars shadow (similar co-latitudes but separated by nearly 1800 km across longitude). This study includes further analysis of magnetic field current sheets and the particle acceleration/energization to investigate the space plasma processes involved in discrete aurora at Mars.
Large space system: Charged particle environment interaction technology
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Grier, N. T.
1979-01-01
Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.
Bass, Deborah S.; Herkenhoff, Kenneth; Paige, David A.
2000-01-01
Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars' north residual polar cap as evidence of interannual variability of ice deposition on the cap. However, these investigators did not consider the possibility that there could be significant changes in the ice coverage within the northern residual cap over the course of the summer season. Our more comprehensive analysis of Mariner 9 and Viking Orbiter imaging data shows that the appearance of the residual cap does not show large-scale variance on an interannual basis. Rather we find evidence that regions that were dark at the beginning of summer look bright by the end of summer and that this seasonal variation of the cap repeats from year to year. Our results suggest that this brightening was due to the deposition of newly formed water ice on the surface. We find that newly formed ice deposits in the summer season have the same red-to-violet band image ratios as permanently bright deposits within the residual cap. We believe the newly formed ice accumulates in a continuous layer. To constrain the minimum amount of deposited ice, we used observed albedo data in conjunction with calculations using Mie theory for single scattering and a delta-Eddington approximation of radiative transfer for multiple scattering. The brightening could have been produced by a minimum of (1) a ~35-μm-thick layer of 50-μm-sized ice particles with 10% dust or (2) a ~14-μm-thick layer of 10-μm-sized ice particles with 50% dust.
NASA Astrophysics Data System (ADS)
Penoyre, Zephyr; Haiman, Zoltán
2018-01-01
In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.
Performance deficit produced by partial body exposures to space radiation
USDA-ARS?s Scientific Manuscript database
On exploratory class missions to other planets, astronauts will be exposed to types of radiation (particles of high energy and charge [HZE particles]) that are not experienced in low earth orbit, where the space shuttle operates. Previous research has shown that exposure to HZE particles can affect...
Measurements of geomagnetically trapped alpha particles, 1968-1970. I - Quiet time distributions
NASA Technical Reports Server (NTRS)
Krimigis, S. M.; Verzariu, P.
1973-01-01
Results of observations of geomagnetically trapped alpha particles over the energy range from 1.18 to 8 MeV performed with the aid of the Injun 5 polar-orbiting satellite during the period from September 1968 to May 1970. Following a presentation of a time history covering this entire period, a detailed analysis is made of the magnetically quiet period from Feb. 11 to 28, 1970. During this period the alpha particle fluxes and the intensity ratio of alpha particles to protons attained their lowest values in approximately 20 months; the alpha particle intensity versus L profile was most similar to the proton profile at the same energy per nucleon interval; the intensity ratio was nearly constant as a function of L in the same energy per nucleon representation, but rose sharply with L when computed in the same total energy interval; the variation of alpha particle intensity with B suggested a steep angular distribution at small equatorial pitch angles, while the intensity ratio showed little dependence on B; and the alpha particle spectral parameter showed a markedly different dependence on L from the equivalent one for protons.
Spacecraft charging analysis with the implicit particle-in-cell code iPic3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deca, J.; Lapenta, G.; Marchand, R.
2013-10-15
We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation resultsmore » with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.« less
Amps particle accelerator definition study
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.
1975-01-01
The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.
Observation of ultrahigh-energy cosmic rays and neutrinos from lunar orbit: LORD space experiment
NASA Astrophysics Data System (ADS)
Ryabov, Vladimir; Chechin, Valery; Gusev, German
The problem of detecting highest-energy cosmic rays and neutrinos in the Universe is reviewed. Nowadays, there becomes clear that observation of these particles requires approaches based on novel principles. Projects based on orbital radio detectors for particles of energies above the CZK cut-off are discussed. We imply the registration of coherent Cherenkov radio emission produced by cascades of most energetic particles in radio-transparent lunar regolith. The Luna-Glob space mission proposed for launching in the near future involves the Lunar Orbital Radio Detector (LORD). The feasibility of LORD space instrument to detect radio signals from cascades initiated by ultrahigh-energy particles interacting with lunar regolith is examined. The comprehensive Monte Carlo calculations were carried out within the energy range of 10 (20) -10 (25) eV with the account for physical properties of the Moon such as its density, the lunar-regolith radiation length, the radio-wave absorption length, the refraction index, and the orbital altitude of a lunar satellite. We may expect that the LORD space experiment will surpass in its apertures and capabilities the majority of well-known current and proposed experiments dealing with the detection of both ultrahigh-energy cosmic rays and neutrinos. The design of the LORD space instrument and its scientific potentialities in registration of low-intense cosmic-ray particle fluxes above the GZK cut-off up to 10 (25) eV is discussed as well. The designed LORD module (including an antenna system, amplifiers, and a data acquisition system) now is under construction. The LORD space experiment will make it possible to obtain important information on the highest-energy particles in the Universe, to verify modern models for the origin and the propagation of ultrahigh-energy cosmic rays and neutrinos. Successful completion of the LORD experiment will permit to consider the next step of the program, namely, a multi-satellite lunar systems to increase the statistics and the accuracy of the experiment. Opportunities and prospects of a multi-satellite system for observation of ultrahigh-energy cosmic rays and neutrinos are also investigated. In addition, possibilities of future missions to Jovian satellites are analyzed, insofar as the largest ice planets of the Solar System (Ganymede and Europe) can be considered as convenient targets for registration of ultrahigh-energy particles by orbiting radio detectors. The expected results are compared to those for the lunar target. The conclusion is made that within the Solar System, there are no objects with better registration efficiency for ultrahigh-energy cosmic rays and neutrinos that can be utilized in space experiments of as an alternative to the future space mission Luna-Glob with the LORD orbital radio detector.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] The Enceladus Ring (labeled) This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background. The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view. Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring. Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione. An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus. One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane. Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally scatters any particles that lie very close to the ringplane, giving them nonzero inclinations. Stray light within the camera system is responsible for the broad, faint 'Y' shape across the image. The image was taken in visible light with the Cassini spacecraft wide-angle camera on March 15, 2006, at a distance of approximately 2.4 million kilometers (1.5 million miles) from Saturn. The image scale on the sky at the distance of Saturn is 142 kilometers (88 miles) per pixel.Emulsion Chamber Technology Experiment (ECT)
NASA Technical Reports Server (NTRS)
Gregory, John C.; Takahashi, Yoshiyuki
1996-01-01
The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.
Secondary impact hazard assessment
NASA Technical Reports Server (NTRS)
1986-01-01
A series of light gas gun shots (4 to 7 km/sec) were performed with 5 mg nylon and aluminum projectiles to determine the size, mass, velocity, and spatial distribution of spall and ejecta from a number of graphite/epoxy targets. Similar determinations were also performed on a few aluminum targets. Target thickness and material were chosen to be representative of proposed Space Station structure. The data from these shots and other information were used to predict the hazard to Space Station elements from secondary particles resulting from impacts of micrometeoroids and orbital debris on the Space Station. This hazard was quantified as an additional flux over and above the primary micrometeoroid and orbital debris flux that must be considered in the design process. In order to simplify the calculations, eject and spall mass were assumed to scale directly with the energy of the projectile. Other scaling systems may be closer to reality. The secondary particles considered are only those particles that may impact other structure immediately after the primary impact. The addition to the orbital debris problem from these primary impacts was not addressed. Data from this study should be fed into the orbital debris model to see if Space Station secondaries make a significant contribution to orbital debris. The hazard to a Space Station element from secondary particles above and beyond the micrometeoroid and orbital debris hazard is categorized in terms of two factors: (1) the 'view factor' of the element to other Space Station structure or the geometry of placement of the element, and (2) the sensitivity to damage, stated in terms of energy. Several example cases were chosen, the Space Station module windows, windows of a Shuttle docked to the Space Station, the habitat module walls, and the photovoltaic solar cell arrays. For the examples chosen the secondary flux contributed no more than 10 percent to the total flux (primary and secondary) above a given calculated critical energy. A key assumption in these calculations is that above a certain critical energy, significant damage will be done. This is not true for all structures. Double-walled, bumpered structures are an example for which damage may be reduced as energy goes up. The critical energy assumption is probably conservative, however, in terms of secondary damage. To understand why the secondary impacts seem to, in general, contribute less than 10 percent of the flux above a given critical energy, consider the case of a meteoroid impact of a given energy on a fixed, large surface. This impact results in a variety of secondary particles, all of which have much less energy than the original impact. Conservation of energy prohibits any other situation. Thus if damage is linked to a critical energy of a particle, the primary flux will always deliver particles of much greater energy. Even if all the secondary particles impacted other Space Station structures, none would have a kinetic energy more than a fraction of the primary impact energy.
The gas drag in a circular binary system
NASA Astrophysics Data System (ADS)
Ciecielä G, P.; Ida, S.; Gawryszczak, A.; Burkert, A.
2007-07-01
We investigate the motion of massless particles orbiting the primary star in a close circular binary system with particular focus on the gas drag effects. These are the first calculations with particles ranging in size from 1 m to 10 km, which account for the presence of a tidally perturbed gaseous disk. We have found numerically that the radial mass transport by the tidal waves plays a crucial role in the orbital evolution of particles. In the outer region of the gaseous disk, where its perturbation is strongest, the migration rate of a particle for all considered sizes is enhanced by a factor of 3 with respect to the axisymmetric disk in radial equilibrium. Similar enhancement is observed in the damping rate of inclinations. We present a simple analytical argument proving that the migration rate of a particle in such a disk is enhanced due to the enhanced mass flux of gas colliding with the particle. Thus the enhancement factor does not depend on the sign of the radial gas velocity, and the migration is always directed inward. Within the framework of the perturbation theory, we derive more general, approximate formulae for short-term variations of the particle semi-major axis, eccentricity, and inclination in a disk out of radial equilibrium. The basic version of the formulae applies to the axisymmetric disk, but we present how to account for departures from axial symmetry by introducing effective components of the gas velocity. Comparison with numerical results proves that our formulae are correct within several percent. We have also found in numerical simulations that the tidal waves introduce coherence in periastron longitude and eccentricity for particles on neighboring orbits. The degree of the coherence depends on the particle size and on the distance from the primary star, being most prominent for particles with 10 m radius. The results are important mainly in the context of planetesimal formation and, to a lesser degree, during the early planetesimal accretion stage.
AMORE: Applied Momentum for Orbital Refuse Elimination
NASA Astrophysics Data System (ADS)
Wolfson, M.
2014-09-01
The need for active orbital debris remediation has increasingly gained acceptance throughout the space community throughout the last decade as the threat to our assets has also increased. While there have been a wide variety of conceptual solutions proposed, a debris removal system has yet to be put in place. The challenges that stand in the way of action are formidable and range from technical to political to economic. The AMORE concept is a nascent technique that has the potential to address these challenges and bring active debris remediation into reality. It uses an on-orbit low energy neutral particle beam (~10 keV, TBD) to impart momentum onto medium (5mm 10 cm) debris objects in Low Earth Orbit (LEO), thereby reducing their kinetic energy and expediting their reentry. The advantage of this technique over other proposed concepts is that it does not require delta-V intensive rendezvous, has an effective range that allows daily access to hundreds of debris objects, and does not create policy concerns over violation of international treaties. In essence, AMORE would be a medium-sized high power satellite with one or more particle beams fed by a large propellant tank, and an on-board tracking sensor that provides beam control. The particle beam would be similar to existing Xenon Hall Effect thrusters being used today, with the addition of a beam lens that would focus and aim the beam. The primary technical challenge of this concept is the focusing, pointing, and closed loop control of the beam that is necessary to maintain effective momentum transfer at ranges up to 100 km. This effective range is critical in order to maximize daily access to debris objects. Even in the densely populated 800 km debris band, it can be expected that a single AMORE system would be within 100 km of a debris object less than an hour a day. Space is big, and range is critical for timely, cost effective debris removal. Initial analysis indicates that a single AMORE vehicle operating in the 800 km regime could lower the perigee of 100 pieces of 1 kg debris to a 25 year reentry orbit annually. The actual performance of a system would be highly dependent on the debris regime. An operational AMORE system would likely involve several vehicles operating autonomously for continuous mitigation of existing and future debris.
The Hubble Space Telescope Servicing Mission 3A Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.
2000-01-01
After nearly 10 years on-orbit, the Hubble Space Telescope (HST) external thermal control materials and paint have degraded due to exposure to the low Earth orbit environment. This presented a potentially large on-orbit contamination source (particles and/or debris). Contamination mitigation techniques were developed to augment existing on-orbit servicing contamination controls. They encompassed mission management, crew training, and crew aids and tools. These techniques were successfully employed during the HST Servicing Mission 3A, December 1999.
Energetic Particles in the far and near Environment of Pluto
NASA Astrophysics Data System (ADS)
Kollmann, P.; Hill, M. E.; McNutt, R. L., Jr.; Brown, L. E.; Kusterer, M. B.; Vandegriff, J. D.; Smith, H. T.; Mitchell, D. G.; Haggerty, D. K.; Bagenal, F.; Krimigis, S. M.; Lisse, C. M.; Delamere, P. A.; Elliott, H. A.; Horanyi, M.; McComas, D. J.; Piquette, M. R.; Poppe, A. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Valek, P. W.; Weidner, S.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, A.
2015-12-01
The New Horizons spacecraft was launched in 2006, passed Jupiter and its magnetotail, took continuous measurements in the solar wind throughout the recent years, and flew by Pluto in July 2015. The onboard PEPSSI instrument measures ion and electron intensities, masses, and energies in the keV to MeV range. The closest approach distance to Pluto was 11 Pluto radii, inside the orbit of Charon. Data taken near Pluto is downlinked throughout August. We will present analysis of this data and set it into context with previous measurements. We expect a number of interesting particle structures around Pluto. Parts of Pluto's molecular nitrogen atmosphere is escaping and will co-orbit with Pluto, potentially forming a partial gas torus. This torus can be additionally sourced by other Kuiper belt objects. The neutrals are eventually ionized and pick-up by the solar wind brings them into the PEPSSI energy range. The measured ion densities can be used to constrain the Pluto torus. Pluto is not expected to have an intrinsic magnetic field, but the energetic particle data can be used to infer its properties, if any. Pluto interacts instead with the solar wind via the pick-up of its ions and the magnetic fields created by currents in its ionosphere. The relative role of these mechanisms can be revealed by the flyby data and directly compared to data that was taken at Jupiter with identical instrumentation.
Dynamical Models of the Solar System Formation and Evolution
NASA Technical Reports Server (NTRS)
Stewart, Glen R.
2002-01-01
Mark Lewis has extended his them is work by completing a series of N-body simulations of a narrow ring that: is in the location of Saturn's F-ring and is perturbed by a single satellite comparable to Prometheus, but on a circular orbit. We had previously shown how the satellite perturbations can cause a broadly distributed sparse population of ring particles to become concentrated into narrow rings that can be maintained outside of any resonance location. For low optical depths, the collisions between ring particles are highly localized in the peaks of the satellite wakes. The inelastic collisions therefore occur at a particular orbital phase angle so as to damp the azimuthal component of the relative velocities. Since particle positions are not changed by collisions, the semimajor axes of the particles are shifted toward the actual particle positions where the collisions occur. Thus, negative radial diffusion can occur while conserving orbital angular momentum so long as the forced eccentricity is continually re-excited by the satellite. We speculated that the separation between the final ringlets was largely determined by the magnitude of the forced eccentricities induced by the satellite at closest approach. We carried out a series of simulations with a variety of different satellite masses in order to vary the magnitude of the forced eccentricity. We found that indeed the final spacing of the ringlets does increase with the magnitude of the forced eccentricity (Lewis and Stewart 2002). This occurs because neighboring eccentric ringlets drift out of phase with one another due to Keplerian shear and eventually collide with one another, leading to a smaller number of more widely spaced ringlets, The time scale required to form narrow ringlets in these simulations is much shorter than one would expect from standard theories based upon the orbit-averaged torque produced by multiple passes by the satellite. We find that the initial ringlets form in less than two synodic periods and the final state is typically reached in 10 to 20 synodic periods. These studies move us closer to understanding the significantly more complex system of Saturn's F ring, where the perturbation magnitude varies over short temporal and spatial time scales due to the orbital eccentricities of the perturbing satellite. We are currently extending the simulation to allow for an eccentric orbit of the satellite.
Orbits of two electrons released from rest in a uniform transverse magnetic field
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2018-03-01
Two identical charged particles released from rest repel each other radially. A uniform perpendicular magnetic field will then cause their trajectories to curve into a flower petal pattern. The orbit of each particle is approximately circular with a long period for a strong magnetic field, whereas it becomes a figure-eight for a weak magnetic field with each lobe completed in a cyclotron period. For example, such radially bound motions arise for two-dimensional electron gases. The level of treatment is appropriate for an undergraduate calculus-based electromagnetism course.
Fundamental frequencies and resonances from eccentric and precessing binary black hole inspirals
NASA Astrophysics Data System (ADS)
Lewis, Adam G. M.; Zimmerman, Aaron; Pfeiffer, Harald P.
2017-06-01
Binary black holes which are both eccentric and undergo precession remain unexplored in numerical simulations. We present simulations of such systems which cover about 50 orbits at comparatively high mass ratios 5 and 7. The configurations correspond to the generic motion of a nonspinning body in a Kerr spacetime, and are chosen to study the transition from finite mass-ratio inspirals to point particle motion in Kerr. We develop techniques to extract analogs of the three fundamental frequencies of Kerr geodesics, compare our frequencies to those of Kerr, and show that the differences are consistent with self-force corrections entering at first order in mass ratio. This analysis also locates orbital resonances where the ratios of our frequencies take rational values. At the considered mass ratios, the binaries pass through resonances in one to two resonant cycles, and we find no discernible effects on the orbital evolution. We also compute the decay of eccentricity during the inspiral and find good agreement with the leading order post-Newtonian prediction.
NASA Technical Reports Server (NTRS)
Kist, R.; Klumpar, D.
1980-01-01
The concentrations of O(+) and NO(+) in the dayside high-latitude cleft region of the ionosphere are investigated based on synoptic particle and plasma measurements obtained by the polar orbiting Aeros-B and Isis-2 satellites. At a time when the orbital planes of the satellites are almost at right angles to each other, three maxima in ion temperature are observed, with two of them accompanied by an increased electron temperature and electron density irregularities, and the density of the molecular ions NO(+) and O2(+) is found to increase at the expense of O(+) density. Results are discussed in terms of a theory relating perpendicular electric fields to oxygen atom reaction rates. Systematic analysis of the Aeros data base reveals 14 additional instances of O(+) to NO(+) conversion, with a large variety of forms and structures reflecting the complex structure and dynamics of the high-latitude dayside ionosphere.
Statistical results from 10 years of Cassini Langmuir probe plasma measurements
NASA Astrophysics Data System (ADS)
Holmberg, M.; Shebanits, O.; Wahlund, J. E.; Morooka, M.; Andre, N.
2016-12-01
We use a new analysis method to obtain 10 years of Cassini RPWS Langmuir probe (LP) measurements to study the structure and dynamics of the inner plasma disk of Saturn. The LP plasma density measurements show good agreement with electron densities derived from the RPWS electric field power spectra and confirms and/or improves a number of previous findings about the structure of the plasma disk. E.g., the Enceladus plume is detected as a localised density maximum at the orbit of Enceladus, but the peak density of the inner plasma disk, excluding Enceladus plume passages, is located closer to 4.7 Rs. No density peaks are recorded at the orbits of the moons Mimas, Tethys, Dione, and Rhea. We confirm the previously detected plasma density dayside/nightside asymmetry, which is likely due to a particle drift in the dusk to dawn direction. Presented is also the LP result on the seasonal dependence of the plasma disk within Enceladus' orbit.
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Lee, H.; Seol, J.; Aydemir, A. Y.
2015-08-01
Theory for neoclassical toroidal plasma viscosity in the low collisionality regime is extended to the vicinity of the magnetic axis in tokamaks with broken symmetry. The toroidal viscosity is induced by particles drifting off the perturbed magnetic surface under the influence of the symmetry breaking magnetic field. In the region away from the magnetic axis, the drift orbit dynamics is governed by the bounce averaged drift kinetic equation in the low collisionality regimes. In the vicinity of the magnetic axis, it is the drift kinetic equation, averaged over the trapped particle orbits, i.e., potato orbits, that governs the drift dynamics. The orbit averaged drift kinetic equation is derived when collision frequency is low enough for trapped particles to complete their potato trajectories. The resultant equation is solved in the 1 /ν regime to obtain transport fluxes and, thus, toroidal plasma viscosity through flux-force relation. Here, ν is the collision frequency. The viscosity does not vanish on the magnetic axis, and has the same scalings as that in the region away from magnetic axis, except that the fraction of bananas is replaced by the fraction of potatoes. It also has a weak radial dependence. Modeling of plasma flow velocity V for the case where the magnetic surfaces are broken is also discussed.
NASA Technical Reports Server (NTRS)
Cour-Palais, B. G.; Kessler, D. J.; Zook, H. A.; Clanton, U. S.
1985-01-01
The possibility that the pitting that occurred in the STS-8 Orbiter windows was caused by dust from the El Chichon volcano eruption in March-April 1982 is considered. The pit density was more than 30/sq cm, most being 2.5-5 microns deep, and showed no evidence of impact melting. An 'alley' of higher incidence of pits in one window coincided with the line of a seam between TPS tiles. The particles causing the sandblasting were concluded to have arrived in parallel and could not be attributed to the ET, SRBs or a dust storm. The sulfuric gas-rich El Chichon plume injected sufficient material into the atmosphere so that the globe was soon encircled. Most of the resulting particulates (480-8400 tons) stayed in the Northern Hemisphere, and H2SO4 and ash concentrations were high during the STS-8 mission. The Orbiter cut through the debris layer at 19.8 km altitude at a 10 deg angle of attack, which matches the particle crater impact angle in the Orbiter windows. Since the passage was at night, larger H2SO4 droplets may have coalesced and formed larger particles on available solid nuclei, thus producing the 20-40 microns cratering observed in the windows.
Order and chaos in the one-dimensional ϕ4 model: N-dependence and the Second Law of Thermodynamics
NASA Astrophysics Data System (ADS)
Hoover, William Graham; Aoki, Kenichiro
2017-08-01
We revisit the equilibrium one-dimensional ϕ4 model from the dynamical systems point of view. We find an infinite number of periodic orbits which are computationally stable. At the same time some of the orbits are found to exhibit positive Lyapunov exponents! The periodic orbits confine every particle in a periodic chain to trace out either the same or a mirror-image trajectory in its two-dimensional phase space. These ;computationally stable; sets of pairs of single-particle orbits are either symmetric or antisymmetric to the very last computational bit. In such a periodic chain the odd-numbered and even-numbered particles' coordinates and momenta are either identical or differ only in sign. ;Positive Lyapunov exponents; can and do result if an infinitesimal perturbation breaking a perfect two-dimensional antisymmetry is introduced so that the motion expands into a four-dimensional phase space. In that extended space a positive exponent results. We formulate a standard initial condition for the investigation of the microcanonical chaotic number dependence of the model. We speculate on the uniqueness of the model's chaotic sea and on the connection of such collections of deterministic and time-reversible states to the Second Law of Thermodynamics.
Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions
NASA Astrophysics Data System (ADS)
Stagner, L.; Heidbrink, W. W.
2017-09-01
Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
Del-Castillo-Negrete, Diego B.; Moradi, Sara; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of -stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value ofmore » the power law decay exponents are linearly proportional to the Levy index. Furthermore, the observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.« less
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
NASA Astrophysics Data System (ADS)
Moradi, Sara; del-Castillo-Negrete, Diego; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of α-stable Lévy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Lévy fluctuations. The absolute value of the power law decay exponents is linearly proportional to the Lévy index α. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.
NASA Astrophysics Data System (ADS)
Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.
2009-04-01
We have modeled the entry of solar energetic particles (SEPs) into the magnetosphere during the November 24-25, 2001 magnetic storm and the trapping of particles in the inner magnetosphere. The study used the technique of following many test particles, protons with energies greater than about 100 keV, in the electric and magnetic fields from a global magnetohydrodynamic (MHD) simulation of the magnetosphere during this storm. SEP protons formed a quasi-trapped and trapped population near and within geosynchronous orbit. Preliminary data comparisons show that the simulation does a reasonably good job of predicting the differential flux measured by geosynchronous spacecraft. Particle trapping took place mainly as a result of particles becoming non-adiabatic and crossing onto closed field lines. Particle flux in the inner magnetosphere increased dramatically as an interplanetary shock impacted and compressed the magnetosphere near 0600 UT, but long term trapping (hours) did not become widespread until about an hour later, during a further compression of the magnetosphere. Trapped and quasi-trapped particles were lost during the simulation by motion through the magnetopause and by precipitation, primarily the former. This caused the particle population near and within geosynchronous orbit to gradually decrease later on during the latter part of the interval.
TRAPPED PROTON FLUXES AT LOW EARTH ORBITS MEASURED BY THE PAMELA EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adriani, O.; Bongi, M.; Barbarino, G. C.
2015-01-20
We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above ∼70 MeV performed by the PAMELA mission at low Earth orbits (350 ÷ 610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra, and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes, placing important constraints on the trapping and interaction processes, and can be usedmore » to validate current trapped particle radiation models.« less
NASA Technical Reports Server (NTRS)
Posner, A.; Bothmer, V.; Kunow, H.; Heber, B.; Mueller-Mellin, R.; Delaboudiniere, J.-P.; Thompson, B. J.; Brueckner, G. E.; Howard, R. A.; Michels, D. J.
1997-01-01
The SOHO satellite, launched on 2 December 1995, combines a unique set of instruments which allow comparative studies of the interior of the sun, the outer corona and solar to be carried out. In its halo orbit around the L1 Lagrangian point of the sun-earth system, SOHO's comprehensive suprathermal and energetic particle analyzer (COSTEP) measures in situ energetic particles in the energy range of 44 keV/particle to greater than 53 MeV/n. The MeV proton, electron and helium nuclei measurements from the COSTEP electron proton helium instrument (EPHIN) were used to investigate the relationships of intensity increases of these particle species with the large-scale structures of the solar corona and heliosphere, including temporal variations. Coronal observatons are provided by the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT). It was found that during times of minimum solar activity, intensity increases of the particles have two well defined sources: corotating interaction regions (CIRs) in the heliosphere related to coronal holes at the sun and coronal mass ejections.
New estimate of the micrometeoroids flux at the heliocentric distance of Mercury
NASA Astrophysics Data System (ADS)
Borin, Patrizia; Cremonese, Gabriele; Marzari, Francesco
This work shows preliminary results of a study of the orbital evolution of dust particles originating from the Main Belt in order to obtain a statistical analysis, then to provide an estimate of the flux of particles hitting the Mercury's surface. Meteoritic flux on Mercury really depends on the particle size, because meteoroids of different size follow different dynamical evolution. In this work we consider meteoritic sizes smaller than 1 cm that are particles with a dynamical evolution dominated by the Poynting-Robertson effect. The meteoroid impact mechanism seems to be an important source of neutral atoms contributing to the exosphere and, according to recent papers, mostly due to particles smaller than 1 cm. Unfortunately the dynamical studies and statistics of meteoroids smaller than 1 cm are based on quite old papers and always extrapolated from calculations made for the Earth. This is the reason why we are working on a dynamical model following small dust particles that may hit the surface of Mercury. Up to now we have taken into account only particles coming from the Main Belt. The main effects that determine the distribution of dust in the Solar System are the gravitational attractions of the Sun and planets, Poynting-Robertson drag, solar radiation pressure, solar wind pressure and the effects of different magnetic fields. In order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. We have performed numerical simulations with different initial conditions for the dust particles, depending on the sources, with the aim of estimating to flux of dust on the surface of Mercury. In this work we will report the first interesting estimate of the flux of small particles, and their velocity distribution, hitting the surface of Mercury. We intend also to evaluate a possible asymmetry between the leading and trailing surface of Mercury in terms of impact frequency.
Semiclassical Origin of Superdeformed Shell Structure in the Spheroidal Cavity Model
NASA Astrophysics Data System (ADS)
Arita, K.; Sugita, A.; Matsuyanagi, K.
1998-12-01
Classical periodic orbits responsible for emergence of the superdeformed shell structures of single-particle motion in spheroidal cavities are identified and their relative contributions to the shell structures are evaluated. Both prolate and oblate superdeformations (axis ratio approximately 2:1) as well as prolate hyperdeformation (axis ratio approximately 3:1) are investigated. Fourier transforms of quantum spectra clearly show that three-dimensional periodic orbits born out of bifurcations of planar orbits in the equatorial plane become predominant at large prolate deformations, while butterfly-shaped planar orbits bifurcated from linear orbits along the minor axis are important at large oblate deformations.
NASA Astrophysics Data System (ADS)
Pimnoo, Ammarin
2016-07-01
Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.
Analytical model for orbital debris environmental management
NASA Technical Reports Server (NTRS)
Talent, David L.
1990-01-01
A differential equation, also referred to as the PIB (particle-in-a-box) model, expressing the time rate of change of the number of objects in orbit, is developed, and its applicability is illustrated. The model can be used as a tool for the assessment of LEO environment stability, and as a starting point for the development of numerical evolutionary models. Within the context of the model, evolutionary scenarios are examined, and found to be sensitive to the growth rate. It is determined that the present environment is slightly unstable to catastrophic growth, and that the number of particles on orbit will continue to increase until approximately 2250-2350 AD, with a maximum of 2,000,000. The model is expandable to the more realistic (complex) case of multiple species in a multiple-tier system.
The mass and angular momentum of reconstructed metric perturbations
NASA Astrophysics Data System (ADS)
van de Meent, Maarten
2017-06-01
We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.
MALBEC: a new CUDA-C ray-tracer in general relativity
NASA Astrophysics Data System (ADS)
Quiroga, G. D.
2018-06-01
A new CUDA-C code for tracing orbits around non-charged black holes is presented. This code, named MALBEC, take advantage of the graphic processing units and the CUDA platform for tracking null and timelike test particles in Schwarzschild and Kerr. Also, a new general set of equations that describe the closed circular orbits of any timelike test particle in the equatorial plane is derived. These equations are extremely important in order to compare the analytical behavior of the orbits with the numerical results and verify the correct implementation of the Runge-Kutta algorithm in MALBEC. Finally, other numerical tests are performed, demonstrating that MALBEC is able to reproduce some well-known results in these metrics in a faster and more efficient way than a conventional CPU implementation.
Many-body calculations with deuteron based single-particle bases and their associated natural orbits
NASA Astrophysics Data System (ADS)
Puddu, G.
2018-06-01
We use the recently introduced single-particle states obtained from localized deuteron wave-functions as a basis for nuclear many-body calculations. We show that energies can be substantially lowered if the natural orbits (NOs) obtained from this basis are used. We use this modified basis for {}10{{B}}, {}16{{O}} and {}24{{Mg}} employing the bare NNLOopt nucleon–nucleon interaction. The lowering of the energies increases with the mass. Although in principle NOs require a full scale preliminary many-body calculation, we found that an approximate preliminary many-body calculation, with a marginal increase in the computational cost, is sufficient. The use of natural orbits based on an harmonic oscillator basis leads to a much smaller lowering of the energies for a comparable computational cost.
Computer modeling of test particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Decker, Robert B.
1988-01-01
The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.
Hydrodynamic capture of microswimmers into sphere-bound orbits.
Takagi, Daisuke; Palacci, Jérémie; Braunschweig, Adam B; Shelley, Michael J; Zhang, Jun
2014-03-21
Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particle is short-range, occurring even for spheres smaller than the particle length, and for a variety of sphere materials. We consider a simple model, based on lubrication theory, of a force- and torque-free swimmer driven by a surface slip (the phoretic propulsion mechanism) and moving near a solid surface. The model demonstrates capture, or movement towards the surface, and yields speeds independent of distance. This study reveals the crucial aspects of activity–driven interactions of self-propelled particles with passive objects, and brings into question the use of colloidal tracers as probes of active matter.
Compact and controlled microfluidic mixing and biological particle capture
NASA Astrophysics Data System (ADS)
Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hesketh, Peter J.; Alexeev, Alexander
2016-11-01
We use three-dimensional simulations and experiments to develop a multifunctional microfluidic device that performs rapid and controllable microfluidic mixing and specific particle capture. Our device uses a compact microfluidic channel decorated with magnetic features. A rotating magnetic field precisely controls individual magnetic microbeads orbiting around the features, enabling effective continuous-flow mixing of fluid streams over a compact mixing region. We use computer simulations to elucidate the underlying physical mechanisms that lead to effective mixing and compare them with experimental mixing results. We study the effect of various system parameters on microfluidic mixing to design an efficient micromixer. We also experimentally and numerically demonstrate that orbiting microbeads can effectively capture particles transported by the fluid, which has major implications in pre-concentration and detection of biological particles including various cells and bacteria, with applications in areas such as point-of-care diagnostics, biohazard detection, and food safety. Support from NSF and USDA is gratefully acknowledged.
Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter
NASA Technical Reports Server (NTRS)
Fillius, Walker
1988-01-01
There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).
Putting Space Physics Data Facility (SPDF) Services to Good Use
NASA Astrophysics Data System (ADS)
Candey, R. M.; Bilitza, D.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Harris, B.; Johnson, R. C.; King, J. H.; Kovalick, T.; Leckner, H.; Liu, M.; McGuire, R. E.; Papitashvili, N. E.; Roberts, A.
2009-12-01
The Space Physics Data Facility (SPDF) project provides heliophysics science-enabling information services and is the most widely used single access point to heliophysics science data and orbits from NASA's solar-heliospheric satellite missions. Our emphasis has been on active service of the best digital data products and key ancillary information with graphics, listings and production of subsetted or merged files (mass downloads or parameter-specific selections). Our services today include the: (1) Heliophysics Resource Gateway (HRG) data finding service (also known as the Virtual Space Physics Observatory or VSPO); (2) Data services including the Coordinated Data Analysis Web (CDAWeb), OMNIweb compilation of interplanetary parameters (mapped to the Earth's bow shock) and related indices, and their large underlying collection of datasets; (3) Orbit information and display services including the Satellite Situation Center (SSCweb) and the 4D Orbit Viewer interactive Java client; and the (4) Common Data Format (CDF) software library and file format and science file format translation suite. (5) Upcoming is the Heliospheric Event List Manager (HELM) to coordinate lists of interesting events and provide a mechanism for tying together the above services and others. We describe several research projects that heavily used SPDF's services and resulted in publications. Although not actually all used at once, the following research scenario shows how SPDF and VxO services can be combined for studying solar events that produce energetic particles and effects at Earth: use the HRG/VPSO to locate data of interest, perhaps query OMNIWeb for times when energetic particle solar activity is high and query the SSCWeb orbit location service for when Cluster, Geotail, Polar/IMAGE are in position to measure the cusp, magnetotail and the Earth's aurora, respectively. Also query SSCweb for times when Polar and magnetometer ground stations are on the same field lines. Using these times, use CDAWeb to browse data from these spacecraft, and add Wind and ACE field and plasma data to identify interplanetary shocks arriving at Earth. Use HRG to find and retrieve SOHO LASCO CME data at SDAC. Use the SSCWeb 4D Orbit Viewer to display the relative spacecraft positions and geophysical boundaries and to follow the magnetic footpoints of the satellites. Confirm auroral substorm activity by a quick browse of IMAGE FUV and TIMED GUVI data as movies showing the expanding and intensifying auroral oval. Finally, pull these data directly into your own analysis tool (such as ViSBARD or some model in IDL) via our web services or simple FTP transfer to complete the analysis.
Parametric analysis: SOC meteoroid and debris protection
NASA Technical Reports Server (NTRS)
Kowalski, R.
1985-01-01
The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.
Exterior spacecraft subsystem protective shielding analysis and design
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.
1990-01-01
All spacecraft are susceptible to impacts by meteoroids and pieces of orbiting space debris. An effective mechanism is developed to protect external spacecraft subsystems against damage by ricochet particles formed during such impacts. Equations and design procedures for protective shield panels are developed based on observed ricochet phenomena and calculated ricochet particle sizes and speeds. It is found that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original project tile diameter, and can travel at speeds between 24 and 36 percent of the original projectile impact velocity. Panel dimensions are shown to be strongly dependent on their inclination to the impact velocity vector and on their distribution around a spacecraft module. It is concluded that obliquity effects of high-speed impacts must be considered in the design of any structure exposed to the meteoroid and space debris environment.
NASA Technical Reports Server (NTRS)
Swimm, Randall; Garrett, Henry B.; Jun, Insoo; Evans, Robin W.
2004-01-01
In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances between 8 and 51 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron fluxes with longitude.
Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection
NASA Technical Reports Server (NTRS)
Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.
2013-01-01
Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.
Compositional analysis and classification of projectile residues in LDEF impact craters
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Bernhard, Ronald P.
1992-01-01
This catalog contains preliminary analyses of residues of hypervelocity projectiles that encountered gold substrates exposed by instrument A0187-1 on the Long Duration Exposure Facility (LDEF). This instrument was on LDEF's trailing edge where relative encounter speeds should be lowest for any non-spinning platform in low Earth orbit (LEO). Approximately 0.6 m(exp 2) of Au substrates yielded 198 impact craters greater than 20 micrometers in diameter. Some 30 percent of the craters were made by natural cosmic dust particles and some 15 percent by man-made objects. Some 50 percent of all features, however, have residues, if any, that are beyond the detection threshold of the SEM-EDXA method used. The purpose of this catalog is to provide detailed evidence and criteria that may be used to arrive at specific particle types on a case-by-case basis and to group such particles into compositional classes. Clearly this is a somewhat interpretative undertaking. For that reason, we encourage and solicit critique and comments from those interested in the systematic analysis of all impact features on LDEF.
Collision of an innermost stable circular orbit particle around a Kerr black hole
NASA Astrophysics Data System (ADS)
Harada, Tomohiro; Kimura, Masashi
2011-01-01
We derive a general formula for the center-of-mass (CM) energy for the near-horizon collision of two particles of the same rest mass on the equatorial plane around a Kerr black hole. We then apply this formula to a particle which plunges from the innermost stable circular orbit (ISCO) and collides with another particle near the horizon. It is found that the maximum value of the CM energy Ecm is given by Ecm/(2m0)≃1.40/1-a*24 for a nearly maximally rotating black hole, where m0 is the rest mass of each particle and a* is the nondimensional Kerr parameter. This coincides with the known upper bound for a particle which begins at rest at infinity within a factor of 2. Moreover, we also consider the collision of a particle orbiting the ISCO with another particle on the ISCO and find that the maximum CM energy is then given by Ecm/(2m0)≃1.77/1-a*26. In view of the astrophysical significance of the ISCO, this result implies that particles can collide around a rotating black hole with an arbitrarily high CM energy without any artificial fine-tuning in an astrophysical context if we can take the maximal limit of the black hole spin or a*→1. On the other hand, even if we take Thorne’s bound on the spin parameter into account, highly or moderately relativistic collisions are expected to occur quite naturally, for Ecm/(2m0) takes 6.95 (maximum) and 3.86 (generic) near the horizon and 4.11 (maximum) and 2.43 (generic) on the ISCO for a*=0.998. This implies that high-velocity collisions of compact objects are naturally expected around a rapidly rotating supermassive black hole. Implications to accretion flows onto a rapidly rotating black hole are also discussed.
Generic effective source for scalar self-force calculations
NASA Astrophysics Data System (ADS)
Wardell, Barry; Vega, Ian; Thornburg, Jonathan; Diener, Peter
2012-05-01
A leading approach to the modeling of extreme mass ratio inspirals involves the treatment of the smaller mass as a point particle and the computation of a regularized self-force acting on that particle. In turn, this computation requires knowledge of the regularized retarded field generated by the particle. A direct calculation of this regularized field may be achieved by replacing the point particle with an effective source and solving directly a wave equation for the regularized field. This has the advantage that all quantities are finite and require no further regularization. In this work, we present a method for computing an effective source which is finite and continuous everywhere, and which is valid for a scalar point particle in arbitrary geodesic motion in an arbitrary background spacetime. We explain in detail various technical and practical considerations that underlie its use in several numerical self-force calculations. We consider as examples the cases of a particle in a circular orbit about Schwarzschild and Kerr black holes, and also the case of a particle following a generic timelike geodesic about a highly spinning Kerr black hole. We provide numerical C code for computing an effective source for various orbital configurations about Schwarzschild and Kerr black holes.
Migration of Dust Particles from Comet 2P Encke
NASA Technical Reports Server (NTRS)
Ipatov, S. I.
2003-01-01
We investigated the migration of dust particles under the gravitational influence of all planets (except for Pluto), radiation pressure, Poynting-Robertson drag and solar wind drag for Beta equal to 0.002, 0.004, 0.01, 0.05, 0.1, 0.2, and 0.4. For silicate particles such values of Beta correspond to diameters equal to about 200, 100, 40, 9, 4, 2, and 1 microns, respectively. We used the Bulirsh-Stoer method of integration, and the relative error per integration step was taken to be less than lo-'. Initial orbits of the particles were close to the orbit of Comet 2P Encke. We considered initial particles near perihelion (runs denoted as Delta tsub o, = 0), near aphelion (Delta tsub o, = 0.5), and also studied their initial positions when the comet moved for Pa/4 after perihelion passage (such runs are denoted as Delta tsub o, =i 0.25), where Pa is the period of the comet. Variations in time T when perihelion was passed was varied with a step 0.1 day for series 'S' and with a step 1 day for series 'L'. For each Beta we considered N = 101 particles for "S" runs and 150 particles for "L" runs.
Energetic particle diffusion and the A ring: Revisiting noise from Cassini's orbital insertion
NASA Astrophysics Data System (ADS)
Crary, Frank; Kollmann, Peter
2016-04-01
Immediately following Cassini's orbital insertion on July 1, 2004 the Cassini spacecraft passed over the Saturn's main rings. In anticipation of the final phase of the Cassini mission, with orbits inside and over the main rings, we have re-examined data from the CAPS instrument taken during the orbital insertion period. One previously-neglected feature is the detector noise in the ELS sensor. This has proven to be a sensitive, relative measure of omni-directional energetic (>5 MeV) electron flux. The data are obtained at 31.25 ms time resolution, corresponding to 0.46 km spatial resolution. Over the A ring, the energetic electron flux was essentially zero (~3 counts per sample.) At the edge of the A ring, this dramatically increased to approximately 2500 counts per sample in the space of 17.5 km. We use these results to derive the energetic particle diffusion rate and the absorption (optical depth) of the ring.
Further Analysis of Micrometeoroid Remnants
NASA Astrophysics Data System (ADS)
Borg, J.; Bibring, J.-P.; Bunch, T. E.; Radicati di Brozolo, F.; Vassent, B.
1992-07-01
Experiments dedicated to the detection of interplanetary dust particles (IDPs) have been exposed on various collectors, since our first experiment COMET-1, exposed in October 1986 to the Giacobini-Zinner meteor stream, on the Saliout 7 spacecraft (Bibring et al. 1988). These collectors are pure metallic targets, in which the impacting particles leave a typical crater, where particle remnants, possibly mixed with the melted target, may be found. We are mainly interested in the analysis of hypervelocity impact features of sizes <=10 micrometers. Up to now, these features have been looked for either in the gold collectors of the COMET-1 experiment or in Al targets of the FRECOPA experiment, loaned to us by J.C. Mandeville, P.I. of the FRECOPA experiment (LDEF west trailing direction). We have recently started the examination or Al samples exposed on the leading face of LDEF, loaned to us by J.A.M. McDonnell, P.I. of the "MAP" experiment, and F. Horz, P.I. of the A0187-1 experiment. The distribution of the impact features leads to the evaluation of the microparticle flux in the near Earth environment. We found for the number of impact features <=10 micrometer in diameter a cumulative flux ~8x10^-2 m^-2 s^-1 for COMET-1 and 2x10^-4 m^-2 s^-1 for FRECOPA. A first estimation for the flux on LDEF leading face would be a factor of 10 higher than on the trailing face, mainly due to orbital debris events. The flux measured for COMET- 1 consists of ~90% orbital debris, while for FRECOPA, the flux value is attributed to extraterrestrial particles, as confirmed by chemical analysis. This value fits with the previous estimations of the micrometeroid particle mass distribution, while for COMET-1, we find a large enhancement. We attribute this enhancement to the fact that the collection occurred during the encounter of the Giacobini-Zinner meteor stream (Borg et al. 1991). In addition, we have obtained composition of impact residues for nontypical orbital debris. These compositions suggest an extraterrestrial origin for the impacting particles. The main elements we identified are usually referred to as "chondritic" elements (Na, Mg, Si, S, Ca, and Fe); intrinsic Al is masked by the Al target and Ni is not observed. Furthermore, C and O are present in 90% of the cases, the C/O peak height ratio varying from 0.1 to 3. These extraterrestrial events are now being subjected to an imagery and analytical protocol that includes FESEM (field emission scanning electron microscopy) for high resolution imagery and LIMS (laser ionization mass spectrometry) for molecular identification. Our first results clearly indicate that such small events show crater features analogous to what is observed at larger sizes; they suggest that N can be present in the IDP remnants in which C and O have been identified by EDS analysis (Borg et al. 1992). More results concerning FRECOPA and COMET-1 analysis will be presented, that could imply that the existence of CHON particles could be a general characteristic of cometary material present in the solar cavity, as this signature is found in the environment of P/Halley (PUMA and PIA experiments), in remnants identified on LDEF collectors and in grains from the Giacobinni-Zinner meteor stream. References Bibring J.-P., Borg J., Katchanov A., Langevin Y., Salvetat P., Surkhov Y.A., and Vassent B. (1988) Lunar Planet. Sci. 19, 73-74. Borg J., Bibring J.-P., and Vassent B. (1991) Meteoritics, 26, 4,321. Borg J., Bunch T. and Radicati di Brozolo F. (1992) To be presented at the LDEF 2 meeting.
RHIC BPM system average orbit calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michnoff,R.; Cerniglia, P.; Degen, C.
2009-05-04
RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed justmore » prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.« less
Natural occupation numbers: when do they vanish?
Giesbertz, K J H; van Leeuwen, R
2013-09-14
The non-vanishing of the natural orbital (NO) occupation numbers of the one-particle density matrix of many-body systems has important consequences for the existence of a density matrix-potential mapping for nonlocal potentials in reduced density matrix functional theory and for the validity of the extended Koopmans' theorem. On the basis of Weyl's theorem we give a connection between the differentiability properties of the ground state wavefunction and the rate at which the natural occupations approach zero when ordered as a descending series. We show, in particular, that the presence of a Coulomb cusp in the wavefunction leads, in general, to a power law decay of the natural occupations, whereas infinitely differentiable wavefunctions typically have natural occupations that decay exponentially. We analyze for a number of explicit examples of two-particle systems that in case the wavefunction is non-analytic at its spatial diagonal (for instance, due to the presence of a Coulomb cusp) the natural orbital occupations are non-vanishing. We further derive a more general criterium for the non-vanishing of NO occupations for two-particle wavefunctions with a certain separability structure. On the basis of this criterium we show that for a two-particle system of harmonically confined electrons with a Coulombic interaction (the so-called Hookium) the natural orbital occupations never vanish.
NASA Technical Reports Server (NTRS)
2005-01-01
This is the sharpest image of Saturn's temperature emissions taken from the ground; it is a mosaic of 35 individual exposures made at the W.M. Keck I Observatory, Mauna Kea, Hawaii on Feb. 4, 2004. The images to create this mosaic were taken with infrared radiation. The mosaic was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The prominent hot spot at the bottom of the image is right at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected. The tropospheric temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole. Ring particles are not at a uniform temperature everywhere in their orbit around Saturn. The ring particles are orbiting clockwise in this image. Particles are coldest just after having cooled down in Saturn's shadow (lower left). As they orbit Saturn, the particles increase in temperature up to a maximum (lower right) just before passing behind Saturn again in shadow. A small section of the ring image is missing because of incomplete mosaic coverage during the observing sequence.ORBIT modelling of fast particle redistribution induced by sawtooth instability
NASA Astrophysics Data System (ADS)
Kim, Doohyun; Podestà, Mario; Poli, Francesca; Princeton Plasma Physics Laboratory Team
2017-10-01
Initial tests on NSTX-U show that introducing energy selectivity for sawtooth (ST) induced fast ion redistribution improves the agreement between experimental and simulated quantities, e.g. neutron rate. Thus, it is expected that a proper description of the fast particle redistribution due to ST can improve the modelling of ST instability and interpretation of experiments using a transport code. In this work, we use ORBIT code to characterise the redistribution of fast particles. In order to simulate a ST crash, a spatial and temporal displacement is implemented as ξ (ρ , t , θ , ϕ) = ∑ξmn (ρ , t) cos (mθ + nϕ) to produce perturbed magnetic fields from the equilibrium field B-> , δB-> = ∇ × (ξ-> × B->) , which affect the fast particle distribution. From ORBIT simulations, we find suitable amplitudes of ξ for each ST crash to reproduce the experimental results. The comparison of the simulation and the experimental results will be discussed as well as the dependence of fast ion redistribution on fast ion phase space variables (i.e. energy, magnetic moment and toroidal angular momentum). Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract Number DE-AC02-09CH11466.
Workshop on Particle Capture, Recovery and Velocity/Trajectory Measurement Technologies
NASA Technical Reports Server (NTRS)
Zolensky, Michael E. (Editor)
1994-01-01
A workshop on particle capture, recovery, and velocity/trajectory measurement technologies was held. The primary areas covered were: (1) parent-daughter orbit divergence; (2) trajectory sensing; (3) capture medium development: laboratory experiments, and (4) future flight opportunities.
NASA Astrophysics Data System (ADS)
Symon, Keith R.
2005-04-01
In the late 1950's and the 1960's the MURA (Midwestern Universities Research Association) working group developed fixed field alternating gradient (FFAG) particle accelerators. FFAG accelerators are a natural corollary of the invention of alternating gradient focusing. The fixed guide field accommodates all orbits from the injection to the final energy. For this reason, the transverse motion in the guide field is nearly decoupled from the longitudinal acceleration. This allows a wide variety of acceleration schemes, using betatron or rf accelerating fields, beam stacking, bucket lifts, phase displacement, etc. It also simplifies theoretical and experimental studies of accelerators. Theoretical studies included an extensive analysis of rf acceleration processes, nonlinear orbit dynamics, and collective instabilities. Two FFAG designs, radial sector and spiral sector, were invented. The MURA team built small electron models of each type, and used them to study orbit dynamics, acceleration processes, orbit instabilities, and space charge limits. A practical result of these studies was the invention of the spiral sector cyclotron. Another was beam stacking, which led to the first practical way of achieving colliding beams. A 50 MeV two-way radial sector model was built in which it proved possible to stack a beam of over 10 amperes of electrons.
The role of near-Sun objects in determining the population of Chelyabinsk-type bodies
NASA Astrophysics Data System (ADS)
Emel'yanenko, V.
2014-07-01
We have calculated the orbit of the Chelyabinsk object, applying the least-squares method directly to its astrometric positions (Emel'yanenko, Naroenkov, Jenniskens, Popova, 2014). A study of the backward dynamical evolution by integrating equations of motion for particles with orbits from the confidence region has shown that the majority of the Chelyabinsk clones reach the near-Sun state. An analysis of other meteorites with well-determined orbits also demonstrates frequent approaches of these bodies to the Sun in the past. In addition, we have found many observed near-Earth asteroids that had small perihelion distances in the past. In extreme near-Sun cases, asteroids should experience thermal and tidal disintegration. It is interesting to note that examples of such near-Sun objects are probably observed now as 'sunskirting comets'. Some members of the Kracht and Marsden families have been observed in a few apparitions. A detailed investigation of their forward motion shows that these bodies evolve to orbits of typical near-Earth objects. Thus they can generate Chelyabinsk-sized bodies in near-Earth space. We conclude that encounters of small bodies with the Sun play an important role in the production of near-Earth objects.
NASA Astrophysics Data System (ADS)
Messina, Francesco; Maldarella, Alberto; Nagar, Alessandro
2018-04-01
The factorization and resummation approach of Nagar and Shah [Phys. Rev. D 94, 104017 (2016), 10.1103/PhysRevD.94.104017], designed to improve the strong-field behavior of the post-Newtonian (PN) residual waveform amplitudes fℓm's entering the effective-one-body, circularized, gravitational waveform for spinning coalescing binaries, is improved and generalized here to all multipoles up to ℓ=6 . For a test particle orbiting a Kerr black hole, each multipolar amplitude is truncated at relative 6 PN order, both for the orbital (nonspinning) and spin factors. By taking a certain Padé approximant (typically the P24 one) of the orbital factor in conjunction with the inverse Taylor (iResum) representation of the spin factor, it is possible to push the analytical/numerical agreement of the energy flux at the level of 5% at the last-stable orbit for a quasimaximally spinning black hole with dimensionless spin parameter +0.99 . When the procedure is generalized to comparable-mass binaries, each orbital factor is kept at relative 3+3 PN order; i.e., the globally 3 PN-accurate comparable-mass terms are hybridized with higher-PN test-particle terms up to 6 PN relative order in each mode. The same Padé resummation is used for continuity. By contrast, the spin factor is only kept at the highest comparable-mass PN order currently available. We illustrate that the consistency between different truncations in the spin content of the waveform amplitudes is more marked in the resummed case than when using the standard Taylor-expanded form of Pan et al. [Phys. Rev. D 83, 064003 (2011), 10.1103/PhysRevD.83.064003]. We finally introduce a method to consistently hybridize comparable-mass and test-particle information also in the presence of spin (including the spin of the particle), discussing it explicitly for the ℓ=m =2 spin-orbit and spin-square terms. The improved, factorized and resummed, multipolar waveform amplitudes presented here are expected to set a new standard for effective one body-based gravitational waveform models.
NASA Technical Reports Server (NTRS)
Shawhan, S. D.
1982-01-01
The objectives, equipment, and techniques for the plasma diagnostics package (PDP) carried by the OSS-1 instrument payload of the STS-4 and scheduled for the Spacelab-2 mission are described. The goals of the first flight were to examine the Orbiter-magnetoplasma interactions by measuring the electric and magnetic field strengths, the ionized particle wakes, and the generated waves. The RMS was employed to lift the unit out of the bay in order to allow characterization of the fields, EM interference, and plasma contamination within 15 m of the Orbiter. The PDP will also be used to examine plasma depletion, chemical reaction rates, waves, and energized plasma produced by firing of the Orbiter thrusters. Operation of the PDP was carried out in the NASA Space Environment Simulation Laboratory test chamber, where the PDP was used to assay the fields, fluxes, wave amplitudes, and particle energy spectra. The PDP instrumentation is also capable of detecting thermal ions, thermal electrons suprathermal particles, VHF/UHF EMI levels, and the S-band field strength.
A Survey of Radiation Measurements Made Aboard Russian Spacecraft in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.
1999-01-01
The accurate prediction of ionizing radiation exposure in low-Earth orbit is necessary in order to minimize risks to astronauts, spacecraft and instrumentation. To this end, models of the radiation environment, the AP-8 trapped proton model and the AE-8 trapped electron model, have been developed for use by spacecraft designers and mission planners. It has been widely acknowledged for some time now by the space radiation community that these models possess some major shortcomings. Both models cover only a limited trapped particle energy region and predictions at low altitudes are extrapolated from higher altitude data. With the launch of the first components of the International Space Station with numerous constellations of low-Earth orbit communications satellites now being planned and deployed, the inadequacies of these trapped particle models need to be addressed. Efforts are now underway both in the U.S. and in Europe to refine the AP-8 and AE-8 trapped particle models. This report is an attempt to collect a significant fraction of data for use in validation of trapped radiation models at low altitudes.
NASA Technical Reports Server (NTRS)
Erickson, K. N.
1980-01-01
The research concerning the ATS-6 synchronous orbit satellite is reported. The completed research and results are discussed along with the research in progress. Abstracts of published papers are included.
Energetic Particles: From Sun to Heliosphere - and vice versa
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Elftmann, R.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Steinhagen, J.; Tammen, J.; Terasa, C.; Yu, J.
2016-12-01
Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.
Energetic Particles: From Sun to Heliosphere - and vice versa
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.
2017-12-01
Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.
Water ice clouds observations with PFS on Mars Express
NASA Astrophysics Data System (ADS)
Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team
The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.
Rosén, T; Einarsson, J; Nordmark, A; Aidun, C K; Lundell, F; Mehlig, B
2015-12-01
We numerically analyze the rotation of a neutrally buoyant spheroid in a shear flow at small shear Reynolds number. Using direct numerical stability analysis of the coupled nonlinear particle-flow problem, we compute the linear stability of the log-rolling orbit at small shear Reynolds number Re(a). As Re(a)→0 and as the box size of the system tends to infinity, we find good agreement between the numerical results and earlier analytical predictions valid to linear order in Re(a) for the case of an unbounded shear. The numerical stability analysis indicates that there are substantial finite-size corrections to the analytical results obtained for the unbounded system. We also compare the analytical results to results of lattice Boltzmann simulations to analyze the stability of the tumbling orbit at shear Reynolds numbers of order unity. Theory for an unbounded system at infinitesimal shear Reynolds number predicts a bifurcation of the tumbling orbit at aspect ratio λ(c)≈0.137 below which tumbling is stable (as well as log rolling). The simulation results show a bifurcation line in the λ-Re(a) plane that reaches λ≈0.1275 at the smallest shear Reynolds number (Re(a)=1) at which we could simulate with the lattice Boltzmann code, in qualitative agreement with the analytical results.
NASA Astrophysics Data System (ADS)
Arita, Yoshihiko; Mazilu, Michael; Chen, Mingzhou; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan
2017-04-01
We demonstrate the transfer of orbital angular momentum to optically levitated microparticles in vacuum [1]. We prepare two-dimensional and three-dimensional optical potentials. In the former case the microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present. This effect was predicted theoretically [2] and can be understood considering the underlying dynamics arising from the link between the magnitude of the azimuthal index and the beam radius [3]. Whilst a Laguerre-Gaussian beam scales in size with azimuthal index `, recently we have created a "perfect" vortex beam whose radial intensity profile and radius are both independent of topological charge [4, 5]. As the Fourier transform of a perfect vortex yields a Bessel beam. Imaging a perfect vortex, with its subsequent propagation thus realises a complex three dimensional optical field. In this scenario we load individual silica microparticles into this field and observe their trajectories. The optical gradient and scattering forces interplay with the inertial and gravitational forces acting on the trapped particle, including the rotational degrees of freedom. As a result the trapped microparticle exhibits a complex three dimensional motion that includes a periodic orbital motion between the Bessel and the perfect vortex beam. We are able to determine the three dimensional optical potential in situ by tracking the particle. This first demonstration of trapping microparticles within a complex three dimensional optical potential in vacuum opens up new possibilities for fundamental studies of many-body dynamics, mesoscopic entanglement [6, 7], and optical binding [8, 9].
Trajectory analysis for the nucleus and dust of comet C/2013 A1 (Siding Spring)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farnocchia, Davide; Chesley, Steven R.; Chodas, Paul W.
Comet C/2013 A1 (Siding Spring) will experience a high velocity encounter with Mars on 2014 October 19 at a distance of 135,000 km ± 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and the dust tail. The nucleus of C/2013 A1 cannot impact on Mars even in the case of unexpectedly large nongravitational perturbations. Furthermore, we compute the required ejection velocities for the dust grains of the tail to reach Mars as a function of particle radius and density and heliocentric distance of the ejection. A comparison between ourmore » results and the most current modeling of the ejection velocities suggests that impacts are possible only for millimeter to centimeter size particles released more than 13 AU from the Sun. However, this level of cometary activity that far from the Sun is considered extremely unlikely. The arrival time of these particles spans a 20-minute time interval centered at 2014 October 19 at 20:09 TDB, i.e., around the time that Mars crosses the orbital plane of C/2013 A1. Ejection velocities larger than currently estimated by a factor >2 would allow impacts for smaller particles ejected as close as 3 AU from the Sun. These particles would reach Mars from 19:13 TDB to 20:40 TDB.« less
On the Early In Situ Formation of Pluto’s Small Satellites
NASA Astrophysics Data System (ADS)
Woo, Jason Man Yin; Lee, Man Hoi
2018-04-01
The formation of Pluto’s small satellites—Styx, Nix, Keberos, and Hydra—remains a mystery. Their orbits are nearly circular and are near mean-motion resonances and nearly coplanar with Charon’s orbit. One scenario suggests that they all formed close to their current locations from a disk of debris that was ejected from the Charon-forming impact before the tidal evolution of Charon. The validity of this scenario is tested by performing N-body simulations with the small satellites treated as test particles and Pluto–Charon evolving tidally from an initial orbit at a few Pluto radii with initial eccentricity e C = 0 or 0.2. After tidal evolution, the free eccentricities e free of the test particles are extracted by applying fast Fourier transformation to the distance between the test particles and the center of mass of the system and compared with the current eccentricities of the four small satellites. The only surviving test particles with e free matching the eccentricities of the current satellites are those not affected by mean-motion resonances during the tidal evolution in a model with Pluto’s effective tidal dissipation function Q = 100 and an initial e C = 0.2 that is damped down rapidly. However, these test particles do not have any preference to be in or near 4:1, 5:1, and 6:1 resonances with Charon. An alternative scenario may be needed to explain the formation of Pluto’s small satellites.
Natural Hazards of the Space Environment
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Kross, Dennis A. (Technical Monitor)
2000-01-01
Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.
NASA Technical Reports Server (NTRS)
Doke, T.; Hayashi, T.; Borak, T. B.; Chatterjee, A. (Principal Investigator)
2001-01-01
Determinations of the LET distribution, phi(L), of charged particles within a spacecraft in low-Earth orbit have been made. One method used a cylindrical tissue-equivalent proportional counter (TEPC), with the assumption that for each measured event, lineal energy, y, is equal to LET and thus phi(L) = phi(y). The other was based on the direct measurement of LETs for individual particles using a charged-particle telescope consisting of position-sensitive silicon detectors called RRMD-III. There were differences of up to a factor of 10 between estimates of phi(L) using the two methods on the same mission. This caused estimates of quality factor to vary by a factor of two between the two methods.
Hypervelocity impact testing of spacecraft optical sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Hypervelocity tests of spacecraft optical sensors were conducted to determine if the optical signature from an impact inside the optical sensor sunshade resembled signals that have been observed on-orbit. Impact tests were conducted in darkness and with the ejected debris illuminated. The tests were conducted at the Johnson Space Center Hypervelocity Impact Test Facility. The projectile masses and velocities that may be obtained at the facility are most representative of the hypervelocity particles thought to be responsible for a group of anomalous optical sensors responses that have been observed on-orbit. The projectiles are a few micrograms, slightly more massive thanmore » the microgram particles thought to be responsible for the signal source. The test velocities were typically 7.3 km/s, which are somewhat slower than typical space particles.« less
The any particle molecular orbital grid-based Hartree-Fock (APMO-GBHF) approach
NASA Astrophysics Data System (ADS)
Posada, Edwin; Moncada, Félix; Reyes, Andrés
2018-02-01
The any particle molecular orbital grid-based Hartree-Fock approach (APMO-GBHF) is proposed as an initial step to perform multi-component post-Hartree-Fock, explicitly correlated, and density functional theory methods without basis set errors. The method has been applied to a number of electronic and multi-species molecular systems. Results of these calculations show that the APMO-GBHF total energies are comparable with those obtained at the APMO-HF complete basis set limit. In addition, results reveal a considerable improvement in the description of the nuclear cusps of electronic and non-electronic densities.
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; ...
2017-11-27
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.
Apollo-Soyuz light-flash observations.
Budinger, T F; Tobias, C A; Huesman, R H; Upham, F T; Wieskamp, T F; Hoffman, R A
1977-01-01
While dark adapted, two Apollo-Soyuz astronauts saw eighty-two light flash events during a complete 51 degrees orbit which passed near the north magnetic pole and through the South Atlantic Anomaly. The frequency of events at the polar parts of the orbit is 25 times that noted in equatorial latitudes and no increased frequency was noted in the South Atlantic Anomaly at the 225-km altitude. The expected flux of heavy particles at the northern and southern points is 1-2 min-1 per eye, and the efficiency for seeing HZE particles which were below the Cerenkov threshold is 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, Robert M.; Sherrill, C. David, E-mail: sherrill@gatech.edu; Hohenstein, Edward G.
2014-05-14
We apply orbital-weighted least-squares tensor hypercontraction decomposition of the electron repulsion integrals to accelerate the coupled cluster singles and doubles (CCSD) method. Using accurate and flexible low-rank factorizations of the electron repulsion integral tensor, we are able to reduce the scaling of the most vexing particle-particle ladder term in CCSD from O(N{sup 6}) to O(N{sup 5}), with remarkably low error. Combined with a T{sub 1}-transformed Hamiltonian, this leads to substantial practical accelerations against an optimized density-fitted CCSD implementation.
NASA Astrophysics Data System (ADS)
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; Kay, B. P.; Deibel, C. M.; Faestermann, T.; Hertenberger, R.; Mitchell, A. J.; Schiffer, J. P.; Szwec, S. V.; Thomas, J. S.; Wirth, H.-F.
2017-11-01
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-β decay of 100Mo have been determined by measuring cross sections in (d ,p ), (p ,d ), (3He,α ), and (3He,d ) reactions on Mo,10098 and Ru,102100 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-β decay of the 100Mo system.
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M. (Editor); Hanner, M. S. (Editor); Kessler, D. J. (Editor)
1986-01-01
These proceedings encompass topics in the fields of extraterrestrial material samples, IRAS solar system and dust model results, and earth orbit debris. Attention is given to chemical fractionation during high velocity impact, particle deceleration and survival in multiple thin foil targets, and IRAS studies of asteroids, comets, cometary tails, the zodiacal background, and the three-dimensional modeling of interplanetary dust. Also discussed are the evolution of an earth orbit debris cloud, orbital debris due to future space activities, collision probabilities in geosynchronous orbits, and a bitelescopic survey of low altitude orbital debris.
Orbital evolution of some Centaurs
NASA Astrophysics Data System (ADS)
Kovalenko, Nataliya; Babenko, Yuri; Churyumov, Klim
2002-11-01
In this work we investigated the dynamical evolution of Centaurs objects 2060 (Chiron), 5145 (Pholus), 7066 (Nessus), 8405 (Asbolus), 10199 (Chariklo), 10370 (Hylonome), and Scattered-Disk object 15874. We have carried out orbital integration of test particles with initial orbits similar to those of these objects. Calculations were produced for +/-600kyr-10Myr starting at epoch and using the implicit single sequence Everhart methods. 12 variational orbits for each of selected Centaurs also have been numerically integrated for +/-200 kyr toward the past and the future. The most probable paths were traced up to +/-1 Myr. The character of orbital elements changes and peculiarities of close approaches to giant planets are discussed.
NASA Technical Reports Server (NTRS)
Montgomery, H. E.; Chan, F. K.
1973-01-01
A study is made of the mathematical solution of the differential equation of motion of a test particle in the equatorial plane of the Kerr gravitational field, using S (Schwarzschild-like) coordinates. A qualitative solution of this equation leads to the conclusion that there can only be 25 different types of orbits. For each value of a, the results are presented in a master diagram for which h and e are the parameters. A master diagram divides the h, e parameter space into regions such that at each point within one of these regions the types of admissible orbits are qualitatively the same. A pictorial representation of the physical orbits in the r, phi plane is also given.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1984-01-01
The cometary hydrogen particle-trajectory model was used successfully to analyze observations of Comet P/Encke. The Pioneer Venus Orbiter Ultraviolet Spectrometer observed the comet at 1216A (hydrogen Lyman-alpha) on 15 April 1984, when the comet was .58 AU from the Sun and 1.02 AU from Venus. The analysis implies a production rate at .58 AU of 3.3 x 10 to the 28th power/sec of the water molecules which photodissociate to produce the observed hydrogen.
Lunar Dust Monitor to BE Onboard the Next Japanese Lunar Mission SELENE-2
NASA Astrophysics Data System (ADS)
Ohashi, Hideo
The next Japanese lunar mission SELENE-2, after a successful mission Kaguya (a project named SELENE), is planned to be launched in mid 2010s and is consisted of a lander, a rover, and an orbiter, as a transmitting satellite to the earth. A dust particle detector LDM (Lunar Dust Monitor) is proposed to be onboard the orbiter. The LDM is an impact ionization detector with dimensions 25 cm × 25 cm × 30 cm, and it has a sensor part (LDM-S, upper module) and an electronics part (LDM-E, lower module). The LDM-S has a large target (gold-plated Al) of 400 cm2 , to which a high voltage of +500 V is applied. The LDM-S also has two meshed grids parallel to the target. The grids are etched stainless steel with 90% transparency: the inner grid is 2 cm apart from the target and the outer grid is 15 cm from the target. When a charged dust particle passes through the outer and inner grids, it induces an electric signal on the grids separated by a certain time interval, determined by the velocity of the incident particle and the distance between the outer and inner grids. By measuring the time interval, we can calculate the velocity of the particle, with the ambiguity of its trajectory to the target. When the incident particle impacts on the target, plasma gas of electrons and ions is generated. The electrons of the plasma are collected by the target and the ions are accelerated toward the inner grids as a result of the electric field. Some of the ions drift through the inner grid and reach the outer grid. The outer and inner grids and the target are connected to charge-sensitive amplifiers, which convert charge signals induced by the electrons and ions to voltage signals that are fed to a following flash ADC driven with 10 MHz. The waveforms from two grids and the target can be stored and be sent back to ground for data analysis. We can deduce the mass and velocity information of the incident dust particle from the recorded waveforms. The orbiter of SELENE-2 is planned to be in operation for one year or more, and the LDM will observe circumlunar dust for as long as possible. We report scientific importance of dust measurement around the Moon, and current status of LDM in this conference.
Energetic-particle-induced geodesic acoustic mode.
Fu, G Y
2008-10-31
A new energetic particle-induced geodesic acoustic mode (EGAM) is shown to exist. The mode frequency and mode structure are determined nonperturbatively by energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high energetic particle pressure and large safety factor. These results are consistent with the recent experimental observation of the beam-driven n=0 mode in DIII-D.
Numerical Researches on Dynamical Systems with Relativistic Spin
NASA Astrophysics Data System (ADS)
Han, W. B.
2010-04-01
It is well known that spinning compact binaries are one of the most important research objects in the universe. Especially, EMRIs (extreme mass ratio inspirals) involving stellar compact objects which orbit massive black holes, are considered to be primary sources of gravitational radiation (GW) which could be detected by the space-based interferometer LISA. GW signals from EMRIs can be used to test general relativity, measure the masses and spins of central black holes and study essential physics near horizons. Compared with the situation without spin, the complexity of extreme objects, most of which rotate very fast, is much higher. So the dynamics of EMRI systems are numerically and analytically studied. We focus on how the spin effects on the dynamics of these systems and the produced GW radiations. Firstly, an ideal model of spinning test particles around Kerr black hole is considered. For equatorial orbits, we present the correct expression of effective potential and analyze the stability of circular orbits. Especially, the gravitational binding energy and frame-dragging effect of extreme Kerr black hole are much bigger than those without spin. For general orbits, spin can monotonically enlarge orbital inclination and destroy the symmetry of orbits about equatorial plane. It is the most important that extreme spin can produce orbital chaos. By carefully investigating the relations between chaos and orbital parameters, we point out that chaos usually appears for orbits with small pericenter, big eccentricity and orbital inclination. It is emphasized that Poincaré section method is invalid to detect the chaos of spinning particles, and the way of systems toward chaos is the period-doubling bifurcation. Furthermore, we study how spins effect on GW radiations from spinning test particles orbiting Kerr black holes. It is found that spins can increase orbit eccentricity and then make h+ component be detected more easily. But for h× component, because spins change orbital inclination in a complicated way, it is more difficult to build GW signal templates. Secondly, based on the scalar gravity theory, a numerical relativistic model of EMRIs is constructed to consider the self-gravity and radiation reaction of low-mass objects. Finally, we develop a new method with multiple steps for Hamilton systems to meet the needs of numerical researches. This method can effectively maintain each conserved quantity of the separable Hamilton system. In addition, for constrained system with a few first integrals, we present a new numerical stabilization method named as adjustment-stabilization method, which can maintain all known conserved quantities in a given dynamical system and greatly improve the numerical accuracy. Our new method is the most complete stabilization method up to now.
Using neutral beams as a light ion beam probe (invited)
Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.; ...
2014-08-05
By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less
Using neutral beams as a light ion beam probe (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi, E-mail: chenxi@fusion.gat.com; Heidbrink, W. W.; Van Zeeland, M. A.
By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less
Using neutral beams as a light ion beam probe (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.
By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less
NASA Astrophysics Data System (ADS)
Petrov, Yuri V.; Harvey, R. W.
2017-10-01
The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.
Comprehensive analysis of airborne contaminants from recent Spacelab missions
NASA Technical Reports Server (NTRS)
Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.
1993-01-01
The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.
Kawaguchi, Yuko; Sugino, Tomohiro; Tabata, Makoto; Okudaira, Kyoko; Imai, Eichi; Yano, Hajime; Hasegawa, Sunao; Hashimoto, Hirofumi; Yabuta, Hikaru; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Yamagishi, Akihiko
2014-02-01
We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.
Fractal cometary dust - a window into the early Solar system
NASA Astrophysics Data System (ADS)
Mannel, T.; Bentley, M. S.; Schmied, R.; Jeszenszky, H.; Levasseur-Regourd, A. C.; Romstedt, J.; Torkar, K.
2016-11-01
The properties of dust in the protoplanetary disc are key to understanding the formation of planets in our Solar system. Many models of dust growth predict the development of fractal structures which evolve into non-fractal, porous dust pebbles representing the main component for planetesimal accretion. In order to understand comets and their origins, the Rosetta orbiter followed comet 67P/Churyumov-Gerasimenko for over two years and carried a dedicated instrument suite for dust analysis. One of these instruments, the MIDAS (Micro-Imaging Dust Analysis System) atomic force microscope, recorded the 3D topography of micro- to nanometre-sized dust. All particles analysed to date have been found to be hierarchical agglomerates. Most show compact packing; however, one is extremely porous. This paper contains a structural description of a compact aggregate and the outstanding porous one. Both particles are tens of micrometres in size and show rather narrow subunit size distributions with noticeably similar mean values of 1.48^{+0.13}_{-0.59} μm for the porous particle and 1.36^{+0.15}_{-0.59} μm for the compact. The porous particle allows a fractal analysis, where a density-density correlation function yields a fractal dimension of Df = 1.70 ± 0.1. GIADA, another dust analysis instrument on board Rosetta, confirms the existence of a dust population with a similar fractal dimension. The fractal particles are interpreted as pristine agglomerates built in the protoplanetary disc and preserved in the comet. The similar subunits of both fractal and compact dust indicate a common origin which is, given the properties of the fractal, dominated by slow agglomeration of equally sized aggregates known as cluster-cluster agglomeration.
Colloidal Bandpass and Bandgap Filters
NASA Astrophysics Data System (ADS)
Yellen, Benjamin; Tahir, Mukarram; Ouyang, Yuyu; Nori, Franco
2013-03-01
Thermally or deterministically-driven transport of objects through asymmetric potential energy landscapes (ratchet-based motion) is of considerable interest as models for biological transport and as methods for controlling the flow of information, material, and energy. Here, we provide a general framework for implementing a colloidal bandpass filter, in which particles of a specific size range can be selectively transported through a periodic lattice, whereas larger or smaller particles are dynamically trapped in closed-orbits. Our approach is based on quasi-static (adiabatic) transition in a tunable potential energy landscape composed of a multi-frequency magnetic field input signal with the static field of a spatially-periodic magnetization. By tuning the phase shifts between the input signal and the relative forcing coefficients, large-sized particles may experience no local energy barriers, medium-sized particles experience only one local energy barrier, and small-sized particles experience two local energy barriers. The odd symmetry present in this system can be used to nudge the medium-sized particles along an open pathway, whereas the large or small beads remain trapped in a closed-orbit, leading to a bandpass filter, and vice versa for a bandgap filter. NSF CMMI - 0800173, Youth 100 Scholars Fund
Effects of prolonged exposure of lettuce seeds to HZE particles on orbital stations
NASA Astrophysics Data System (ADS)
Nevzgodina, L. V.; Maksimova, E. N.; Kaminskaya, E. V.
In a study of the biological effects of cosmic HZE particles, lettuce (Lactuca sativa) seeds were flown on the orbital stations Salyut 6 and 7 for varying periods of time (from 40 to 457 days). The dependence of the biological damage on flight duration, physical parameters and the fact of passage of an HZE particle through the seed was estimated using the criterion of the frequency of aberrant cells. The arrangement of the flight biological container Biobloc made it possible to trace the location of tracks of individual HZE particles with Z>=6 and LET 200 keV/um. In seeds hit by HZE particles, for all exposure times, a statistically significant much higher yield of aberrant cells and also of cells containing multiple chromosome aberrations was observed than in the control material. The frequency of aberrant cells is markedly higher (by a factor of 1,5) in seeds hit than in non-hit ones. The changes of the yield of aberrant cells as a function of the absorbed dose (3.2-63.4 mGy) and the fluence (4.8-44.2 particles/cm2) are linear for the exposure duration ranging from 40 to 457 days.
Adiabatic theory in regions of strong field gradients. [in magnetosphere
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Northrop, T. G.; Birmingham, T. J.
1986-01-01
The theory for the generalized first invariant for adiabatic motion of charged particles in regions where there are large gradients in magnetic or electric fields is developed. The general condition for an invariant to exist in such regions is that the potential well in which the particle oscillates change its shape slowly as the particle drifts. It is shown how the Kruskal (1962) procedure can be applied to obtain expressions for the invariant and for drift velocities that are asymptotic in a smallness parameter epsilon. The procedure is illustrated by obtaining the invariant and drift velocities for particles traversing a perpendicular shock, and the generalized invariant is compared with the magnetic moment, and the drift orbits with the actual orbits, for a particular case. In contrast to the magnetic moment, the generalized first invariant is better for large gyroradii (large kinetic energies) than for small gyroradii. Expressions for the invariant when an electrostatic potential jump is imposed across the perpendicular shock, and when the particle traverses a rotational shear layer with a small normal component of the magnetic field are given.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1976-01-01
The propagation of charged particles through interstellar and interplanetary space has often been described as a random process in which the particles are scattered by ambient electromagnetic turbulence. In general, this changes both the magnitude and direction of the particles' momentum. Some situations for which scattering in direction (pitch angle) is of primary interest were studied. A perturbed orbit, resonant scattering theory for pitch-angle diffusion in magnetostatic turbulence was slightly generalized and then utilized to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field, Kappa. All divergences inherent in the quasilinear formalism when the power spectrum of the fluctuation field falls off as K to the minus Q power (Q less than 2) were removed. Various methods of computing Kappa were compared and limits on the validity of the theory discussed. For Q less than 1 or 2, the various methods give roughly comparable values of Kappa, but use of perturbed orbits systematically results in a somewhat smaller Kappa than can be obtained from quasilinear theory.
NASA Technical Reports Server (NTRS)
Christodoulou, Dimitris M.; Kazanas, Demosthenes
2017-01-01
We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However, it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the bound closed orbits predicted by Bertrand's theorem, which has been known since 1873.
NASA Astrophysics Data System (ADS)
Christodoulou, Dimitris M.; Kazanas, Demosthenes
2017-12-01
We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However, it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the bound closed orbits predicted by Bertrand’s theorem, which has been known since 1873.
NASA Astrophysics Data System (ADS)
Romano, F.; Massuti-Ballester, B.; Binder, T.; Herdrich, G.; Fasoulas, S.; Schönherr, T.
2018-06-01
Challenging space mission scenarios include those in low altitude orbits, where the atmosphere creates significant drag to the S/C and forces their orbit to an early decay. For drag compensation, propulsion systems are needed, requiring propellant to be carried on-board. An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster. Theoretically applicable to any planet with atmosphere, the system might allow to orbit for unlimited time without carrying propellant. A new range of altitudes for continuous operation would become accessible, enabling new scientific missions while reducing costs. Preliminary studies have shown that the collectible propellant flow for an ion thruster (in LEO) might not be enough, and that electrode erosion due to aggressive gases, such as atomic oxygen, will limit the thruster lifetime. In this paper an inductive plasma thruster (IPT) is considered for the ABEP system. The starting point is a small scale inductively heated plasma generator IPG6-S. These devices are electrodeless and have already shown high electric-to-thermal coupling efficiencies using O2 and CO2 . The system analysis is integrated with IPG6-S tests to assess mean mass-specific energies of the plasma plume and estimate exhaust velocities.
Overspinning a Kerr black hole: The effect of the self-force
NASA Astrophysics Data System (ADS)
Colleoni, Marta; Barack, Leor
2015-05-01
We study the scenario in which a massive particle is thrown into a rapidly rotating Kerr black hole in an attempt to spin it up beyond its extremal limit, challenging weak cosmic censorship. We work in black-hole perturbation theory, and focus on nonspinning, uncharged particles sent in on equatorial orbits. We first identify the complete parameter-space region in which overspinning occurs when backreaction effects from the particle's self-gravity are ignored. We find, in particular, that overspinning can be achieved only with particles sent in from infinity. Gravitational self-force effects may prevent overspinning by radiating away a sufficient amount of the particle's angular momentum ("dissipative effect"), and/or by increasing the effective centrifugal repulsion, so that particles with suitable parameters never get captured ("conservative effect"). We analyze the full effect of the self-force, thereby completing previous studies by Jacobson and Sotiriou (who neglected the self-force) and by Barausse, Cardoso and Khanna (who considered the dissipative effect on a subset of orbits). Our main result is an inequality, involving certain self-force quantities, which describes a necessary and sufficient condition for the overspinning scenario to be overruled. This "censorship" condition is formulated on a certain one-parameter family of geodesics in the limit of an extremal Kerr geometry. We find that the censorship condition is insensitive to the dissipative effect (within the first-order self-force approximation used here), except for a subset of perfectly fine-tuned orbits, for which a separate censorship condition is derived. We do not obtain here the self-force input needed to evaluate either of our two conditions, but discuss the prospects for producing the necessary data using state-of-the-art numerical codes.
NASA Astrophysics Data System (ADS)
Turner, D. L.; Fennell, J. F.; Blake, J. B.; Claudepierre, S. G.; Clemmons, J. H.; Jaynes, A. N.; Leonard, T.; Baker, D. N.; Cohen, I. J.; Gkioulidou, M.; Ukhorskiy, A. Y.; Mauk, B. H.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R. J.; Kletzing, C. A.; Le Contel, O.; Spence, H. E.; Torbert, R. B.; Burch, J. L.; Reeves, G. D.
2017-11-01
This study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least six different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.
Contamination on LDEF: Sources, distribution, and history
NASA Technical Reports Server (NTRS)
Pippin, Gary; Crutcher, Russ
1993-01-01
An introduction to contamination effects observed on the Long Duration Exposure Facility (LDEF) is presented. The activities reported are part of Boeing's obligation to the LDEF Materials Special Investigation Group. The contamination films and particles had minimal influence on the thermal performance of the LDEF. Some specific areas did have large changes in optical properties. Films also interfered with recession rate determination by reacting with the oxygen or physically shielding underlying material. Generally, contaminant films lessen the measured recession rate relative to 'clean' surfaces. On orbit generation of particles may be an issue for sensitive optics. Deposition on lenses may lead to artifacts on photographic images or cause sensors to respond inappropriately. Particles in the line of sight of sensors can cause stray light to be scattered into sensors. Particles also represent a hazard for mechanisms in that they can physically block and/or increase friction or wear on moving surfaces. LDEF carried a rather complex mixture of samples and support hardware into orbit. The experiments were assembled under a variety of conditions and time constraints and stored for up to five years before launch. The structure itself was so large that it could not be baked after the interior was painted with chemglaze Z-306 polyurethane based black paint. Any analysis of the effects of molecular and particulate contamination must account for a complex array of sources, wide variation in processes over time, and extreme variation in environment from ground to launch to flight. Surface conditions at certain locations on LDEF were established by outgassing of molecular species from particular materials onto adjacent surfaces, followed by alteration of those species due to exposure to atomic oxygen and/or solar radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Drew L.; Fennell, J. F.; Blake, J. B.
Here, this study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least sixmore » different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.« less
Turner, Drew L.; Fennell, J. F.; Blake, J. B.; ...
2017-09-25
Here, this study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE <300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least sixmore » different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at <600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy <60 keV and enhanced whistler mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.« less
The simulation of the outer Oort cloud formation. The first giga-year of the evolution
NASA Astrophysics Data System (ADS)
Dybczyński, P. A.; Leto, G.; Jakubík, M.; Paulech, T.; Neslušan, L.
2008-08-01
Aims: Considering a model of an initial disk of planetesimals that consists of 10 038 test particles, we simulate the formation of distant-comet reservoirs for the first 1 Gyr. Since only the outer part of the Oort cloud can be formed within this period, we analyse the efficiency of the formation process and describe approximately the structure of the part formed. Methods: The dynamical evolution of the particles is followed by numerical integration of their orbits. We consider the perturbations by four giant planets on their current orbits and with their current masses, in addition to perturbations by the Galactic tide and passing stars. Results: In our simulation, the population size of the outer Oort cloud reaches its maximum value at about 210 Myr. After a subsequent, rapid decrease, it becomes almost stable (with only a moderate decrease) from about 500 Myr. At 1 Gyr, the population size decreases to about 40% of its maximum value. The efficiency of the formation is low. Only about 0.3% of the particles studied still reside in the outer Oort cloud after 1 Gyr. The space density of particles in the comet cloud, beyond the heliocentric distance, r, of 25 000 AU is proportional to r-s, where s = 4.08 ± 0.34. From about 50 Myr to the end of the simulation, the orbits of the Oort cloud comets are not distributed randomly, but high galactic inclinations of the orbital planes are strongly dominant. Among all of the outer perturbers considered, this is most likely caused by the dominant, disk component of the Galactic tide. Movies (cf. caption to Fig. 1) are only available at http://www.aanda.org
Dynamics of Solar Energetic Particles in the Presence of a Shock Wave
NASA Astrophysics Data System (ADS)
Timofeev, V. E.; Petukhov, Ivan; Petukhov, Stanislav; Starodubtsev, Sergei
2003-07-01
From the analysis of problem solutions on the solar energetic particle propagation in the presence of a plane shock wave described by the diffusion convective transport equation, the condition and manifestations for the influence of a shock wave on the SEP propagation in the solar wind have been determined. Solar energetic particles (SEP) in gradual events are generated by shock waves (see, for example, [1] and references there). The SEP generation region is limited, on the whole, by the solar corona. Proton fluxes of 470 MeV to 21 GeV energies, a maximum of which occur at a time when the shock in the atmosphere of the Sun reaches heights equal to 5 10 solar radii [2] indicate to it. It is also confirmed by the significant advancing of the occurrence time of maximum in the SEP intensity with kinetic energies more than 10 MeV relative to the shock front arrival moment to Earth's orbit. model calculations for the particles acceleration by the diffusive mechanism in conditions, typical for the solar corona, show that the time taken to pass the solar atmosphere by the shock is quite sufficient to form the particle spectrum corresponding to the SEP characteristics observed [3,4]. Lee and Ryan [5] investigated the problem of SEP gradual event generation, propagation and confirmed the close association between the diffusive acceleration mechanism and SEP events. The absence of depending of particle diffusion coefficients on the energy is a lack of this model. As an extension of preceding investigations, in this work the temporal dynamics of the particle spectrum in the presence of a plane shock for diffusion coefficients depending on the particle energy and also their change in time is studied. The SEP event from a moment of arising of a shock to a moment of it's arrival on the Earth's orbit can be divided on two stages: the first stage (duration is ˜ 1 hour) is a generation of SEP in the solar corona, the second stage (duration is ˜ 1 day) is a propagation in interplanetary space in the presence of a shock. Here we consider the second stage only which as believed to be began with the injection of the particle spectrum formed during the first stage.
Cassini's First D-Ring Crossing
2017-07-24
The sounds and colorful spectrogram in this still image and video represent data collected by the Radio and Plasma Wave Science, or RPWS, instrument on NASA's Cassini spacecraft, as it crossed through Saturn's D ring on May 28, 2017. This was the first of four passes through the inner edge of the D ring during the 22 orbits of Cassini's final mission phase, called the Grand Finale. During this ring plane crossing, the spacecraft was oriented so that its large high-gain antenna was used as a shield to protect more sensitive components from possible ring-particle impacts. The three 33-foot-long (10-meter-long) RPWS antennas were exposed to the particle environment during the pass. As tiny, dust-sized particles strike Cassini and the RPWS antennas, the particles are vaporized into tiny clouds of plasma, or electrically excited gas. These tiny explosions make a small electrical signal (a voltage impulse) that RPWS can detect. Researchers on the RPWS team convert the data into visible and audio formats, some like those seen here, for analysis. Ring particle hits sound like pops and cracks in the audio. Particle impacts are seen to increase in frequency in the spectrogram and in the audible pops around the time of ring crossing as indicated by the red/orange spike just before 14:23 on the x-axis. Labels on the x-axis indicate time (top line), distance from the planet's center in Saturn radii, or Rs (middle), and latitude on Saturn beneath the spacecraft (bottom). These data can be compared to those recorded during Cassini's first dive through the gap between Saturn and the D ring, on April 26. While it appeared from those earlier data that there were essentially no particles in the gap, scientists later determined the particles there are merely too small to create a voltage detectable by RPWS, but could be detected using Cassini's dust analyzer instrument. After ring plane crossing (about 14:23 onward) a series of high pitched whistles are heard. The RPWS instrument detects such tones during each of the Grand Finale orbits and the team is working to understand their source. The D ring proved to contain larger ring particles, as expected and recorded here, although the environment was determined to be relatively benign -- with less dust than other faint Saturnian rings Cassini has flown through. https://photojournal.jpl.nasa.gov/catalog/PIA21620
Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact
NASA Astrophysics Data System (ADS)
Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.
The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the recent DebrisLV and DebriSat hypervelocity impact experiments, while ablations in high-vacuum provide critical distinctions.
The chaotic interaction of two walkers
NASA Astrophysics Data System (ADS)
Tadrist, Loic; Samara, Naresh; Schlagheck, Peter; Gilet, Tristan
2016-11-01
A droplet bouncing on a vertically vibrated bath may be propelled horizontally by the Faraday waves that it generates at each rebound. This association of a wave and a particle is called a walker. Ten years ago, Yves Couder and co-workers noted that the dynamical encounter of two walkers may lead to either scattered trajectories or orbital motion. In this work, we investigate the interaction of two walkers more systematically. The walkers are launched towards each other with finely controlled initial conditions. Output trajectories are classified in four types: scattering, orbiting, wandering and complex. The interaction appears stochastic: the same set of initial parameters (to the measurement accuracy) can produce different outputs. Our analysis of the underlying chaos provides new insights on the stochastic nature of this experiment. This work is supported by the ARC Quandrops of the Wallonia-Brussels Federation.
Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Dubeibe, Fredy L.; González, Guillermo A.
2018-07-01
The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modelled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping, and (iii) displaying close encounters. Using the smaller alignment index chaos indicator, we further classify bounded orbits into regular, sticky, or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.
Ion irradiation effects on lithium niobate etalons for tunable spectral filters
NASA Astrophysics Data System (ADS)
Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.
2017-11-01
Solar Orbiter is a mission dedicated to solar and heliospheric physics. It was selected as the first mediumclass mission of ESA's Cosmic Vision 2015-2025 Programme. Solar Orbiter will be used to examine how the Sun creates and controls the heliosphere, the vast bubble of charged particles blown by the solar wind into the interstellar medium. One of the scientific payload elements of Solar Orbiter is the Polarimetric and Helioseismic Imager (PHI). The PHI instrument consists of two telescopes, a High Resolution Telescope (HRT) that will image a fraction of the solar disk at a resolution reaching {150 km at perihelion, and a Full Disk Telescope (FDT) to image the full solar disk during all phases of the orbit. PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft. For the spectral analysis, PHI will use an order-sorting filter to isolate a bandpass of the order of 100 mÅ . The FilterGraph (FG) contains an etalon in single pass configuration as tunable spectral filter located inside a temperature stabilized oven. This filter will be made by means of a z-cut LiNbO3 crystal (about 300 microns thick) and multilayer coatings including a conductive one in order to apply a high voltage (up to 5 kV) and induce the required electric field to tune the filter. Solar Orbiter observing mission around the Sun will expose the PHI instrument to extreme radiation conditions, mainly dominated by solar high-energy particles released during severe solar events (protons with energies typically ranging from few keV up to several GeV) and the continuous isotropic background flux of galactic cosmic rays (heavy ions, from Z=1 to Z=92). The main concerns are whether the cumulated radiation damage can degrade the functionality of the filter or, in the worst case, the impact of a single highly ionizing particle, coupled with the HV field, could trigger a dielectric breakdown in the Lithium Niobate. In this paper we present the electro-optical results obtained when exposing a set of LN samples and a lowquality full size etalon to different radiation conditions. In a first irradiation campaign, performed at the Centre for Micro Analysis of Materials (CMAM-Madrid) facilities, we were mainly focused on the long-term degradation effects with a series of high flux (109 cm-2 s-1) proton tests at an energy of 10 MeV. In order to study the possibility of a single ion breakdown, a second campaign was carried out, at the Texas A&M University (TAMU), exposing Lithium Niobate to high LET ion species (78Kr, 40Ar, 129Xe, 197Au) accelerated to the GeV energy range to penetrate or even pass through the entire Lithium Niobate thickness.
Observations of solar energetic particles at a synchronous orbit
NASA Technical Reports Server (NTRS)
Takenaka, T.; Ohi, Y.; Yanagimachi, T.; Ito, K.; Kohno, T.; Sakurai, K.
1985-01-01
The Space Environment Monitors (SEM) on board the Japanese geostationary meteorological satellites (GMS-1 and GMS-2) observed energetic protons, alpha particles and electrons continuously for February 1978 to September 1984. The satellites were at 6.6 Earth radii above 140 deg E equator.
2012-11-01
Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator...Laboratory, Stanford University, Stanford, CA 94305, USA; echarles@slac.stanford.edu 3 Department of Physics, Center for Cosmology and Astro-Particle Physics
Spin-dependent post-Newtonian parameters from EMRI computation in Kerr background
NASA Astrophysics Data System (ADS)
Friedman, John; Le Tiec, Alexandre; Shah, Abhay
2013-04-01
Because the extreme mass-ratio inspiral (EMRI) approximation is accurate to all orders in v/c, it can be used to find high order post-Newtonian parameters that are not yet analytically accessible. We report here on progress in computing spin-dependent, conservative, post-Newtonian parameters from a radiation-gauge computation for a particle in circular orbit in a family of Kerr geometries. For a particle with 4-velocity u^α= U k^α, with k^α the helical Killing vector of the perturbed spacetime, the renormalized perturbation δU, when written as a function of the particle's angular velocity, is invariant under gauge transformations generated by helically symmetric vectors. The EMRI computations are done in a modified radiation gauge. Extracted parameters are compared to previously known and newly computed spin-dependent post-Newtonian terms. This work is modeled on earlier computations by Blanchet, Detweiler, Le Tiec and Whiting of spin-independent terms for a particle in circular orbit in a Schwarzschild geometry.
Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
Ruiz, D. E.; Ellison, C. L.; Dodin, I. Y.
2015-12-16
Here, we report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement with the BMT spin precession equation is shown numerically.more » The commonly known theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions in relativistic spin-1/2 plasmas.« less
Study of transionospheric signal scintillation: Quasi- particle approach
NASA Astrophysics Data System (ADS)
Lyle, Ruthie D.
1998-07-01
A quasi-particle approach is applied to study amplitude scintillation of transionospheric signals caused by Bottomside Sinusoidal (BSS) irregularities. The quasi- particle method exploits wave-particle duality, viewing the wave as a distribution of quasi-particles. This is accomplished by transforming the autocorrelation of the wave function into a Wigner distribution function, which serves as a distribution of quasi-particles in the (/vec r,/ /vec k) phase space. The quasi-particle distribution at any instant of time represents the instantaneous state of the wave. Scattering of the signal by the ionospheric irregularities is equivalent to the evolution of the quasi-particle distribution, due to the collision of the quasi-particles with objects arising from the presence of the BSS irregularities. Subsequently, the perturbed quasi-particle distribution facilitates the computation of average space time propagation properties of the wave. Thus, the scintillation index S4 is determined. Incorporation of essential BSS features in the analysis is accomplished by analytically modeling the power spectrum of the BSS irregularities measured in-situ by the low orbiting Atmosphere-E (AE - E) Satellite. The effect of BSS irregularities on transionospheric signals has been studied. The numerical results agree well with multi-satellite scintillation observations made at Huancayo Peru in close time correspondence with BSS irregularities observed by the AE - E satellite over a few nights (December 8-11, 1979). During this period, the severity of the scintillation varied from moderate to intense, S4 = 0.1-0.8.
The role of Shabansky orbits in the generation of compression-related EMIC waves
NASA Astrophysics Data System (ADS)
McCollough, J. P.; Elkington, S. R.; Baker, D.
2009-12-01
Electromagnetic ion-cyclotron (EMIC) waves arise from temperature anisotropies in trapped warm plasma populations. In particular, EMIC waves at high L values near local noon are often found to be related to magnetospheric compression events. There are several possible mechanisms that can generate these temperature anisotropies: energizing processes, including adiabatic compression and shock-induced and radial transport; and non-energizing processes, such as drift shell splitting and the effects of off-equatorial minima on particle populations. In this work we investigate the role of off-equatorial minima in the generation of temperature anisotropies both at the magnetic equator and at higher latitudes. There are two kinds of behavior particles undergo in response: particles with high equatorial pitch angles (EPAs) are forced to execute so-called Shabanksy orbits and mirror at high latitudes without passing through the equator, and those with lower EPAs will pass through the equator with higher EPAs than before; as a result, perpendicular energies increase at the cost of parallel energies. By using a 3D particle tracing code in a tunable analytic compressed-dipole field, we parameterize the effects of Shabansky orbits on the anisotropy of the warm plasma. These results as well as evidence from simulations of a real event in which EMIC waves were observed (the compression event of 29 June 2007) are presented.
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Ulusen, D.; Ledvina, S. A.; Mandt, K.; Magee, B.; Waite, J. H.; Westlake, J.; Cravens, T. E.; Robertson, I.; Edberg, N.; Agren, K.; Wahlund, J.-E.; Ma, Y.-J.; Wei, H.; Russell, C. T.; Dougherty, M. K.
2012-06-01
In the ˜6 years since the Cassini spacecraft went into orbit around Saturn in 2004, roughly a dozen Titan flybys have occurred for which the Ion Neutral Mass Spectrometer (INMS) measured that moon's ionospheric density and composition. For these, and for the majority of the ˜60 close flybys probing to altitudes down to ˜950 km, Langmuir Probe electron densities were also obtained. These were all complemented by Cassini magnetometer observations of the magnetic fields affected by the Titan plasma interaction. Titan's ionosphere was expected to differ from those of other unmagnetized planetary bodies because of significant contributions from particle impact due to its magnetospheric environment. However, previous analyses of these data clearly showed the dominance of the solar photon source, with the possible exception of the nightside. This paper describes the collected ionospheric data obtained in the period between Cassini's Saturn Orbit Insertion in 2004 and 2009, and examines some of their basic characteristics with the goal of searching for magnetospheric influences. These influences might include effects on the altitude profiles of impact ionization by magnetospheric particles at the Titan orbit location, or by locally produced pickup ions freshly created in Titan's upper atmosphere. The effects of forces on the ionosphere associated with both the draped and penetrating external magnetic fields might also be discernable. A number of challenges arise in such investigations given both the observed order of magnitude variations in the magnetospheric particle sources and the unsteadiness of the magnetospheric magnetic field and plasma flows at Titan's (˜20Rs (Saturn Radius)) orbit. Transterminator flow of ionospheric plasma from the dayside may also supply some of the nightside ionosphere, complicating determination of the magnetospheric contribution. Moreover, we are limited by the sparse sampling of the ionosphere during the mission as the Titan interaction also depends on Saturn Local Time as well as possible intrinsic asymmetries and variations of Titan's neutral atmosphere. We use organizations of the data by key coordinate systems of the plasma interaction with Titan's ionosphere to help interpret the observations. The present analysis does not find clear characteristics of the magnetosphere's role in defining Titan's ionosphere. The observations confirm the presence of an ionosphere produced mainly by sunlight, and an absence of expected ionospheric field signatures in the data. Further investigation of the latter, in particular, may benefit from numerical experiments on the inner boundary conditions of 3D models including the plasma interaction and features such as neutral winds.
Accretion of Interplanetary Dust Particles by the Earth
NASA Astrophysics Data System (ADS)
Kortenkamp, Stephen J.; Dermott, Stanley F.
1998-10-01
Analyses of hypervelocity micrometeoroid impact craters preserved in lunar material and on the panels of the Long Duration Exposure Facility (LDEF) indicate that each year Earth accretes about 3 × 107kg of interplanetary dust particles (IDPs) from the zodiacal cloud (E. Grünet al.1985,Astron. Astrophys.286, 915-924; S. G. Love and D. E. Brownlee, 1993,Science262, 550-553). The size distributions of these lunar and LDEF craters indicate that the mass distribution of IDPs encountering Earth peaks at about 200 μm diameter. This particle-size cutoff may be indicative of collisionally evolved asteroidal dust, where the collisional lifetime of dust particles larger than ∼100 μm is shorter than the time required for their orbits to decay under Poynting-Robertson light drag from the asteroid belt to Earth (B. Å. S. Gustafson, 1994,Annu. Rev. Earth Planet. Sci.22, 553-595). Additionally, analyses of IDPs collected from the stratosphere by high-flying aircraft reveal a diversity in chemical composition which is even narrower than that of the meteorites (G. J. Flynn, 1995,Nature376, 114). Together these findings suggest that IDPs present in the atmosphere and our collections may originate from very limited sources in the asteroid belt. The most abundant sources of dust to be unambiguously linked to the zodiacal cloud are the three asteroid families Eos, Themis, and Koronis-the progenitors of the ten-degree and low-latitude dust bands discovered by the Infrared Astronomical Satellite in 1984. We use direct numerical integration of the full equations of motion to model the orbital evolution of dust particles from these three families as well as from other nonfamily asteroids and from the population of known short period comets. Our simulations include gravitational perturbations from the planets, radiation pressure, and solar wind drag. We find that a large, and perhaps the dominant, fraction of the IDPs accreted by Earth comes from the asteroid families Eos, Themis, and Koronis and that probably fewer than 25% of accreted IDPs come from comets. We also find a seasonal variation in the distribution of ascending nodes of the Themis and Koronis dust particle orbits near Earth. Earth-orbiting instruments utilizing aero-gels could exploit these seasonal variations to collect and return intact samples of these two asteroid families. Finally, we demonstrate how the long-term accretion rate of asteroidal dust from all sources should be anti-correlated with Earth's changing orbital eccentricity.
NASA Astrophysics Data System (ADS)
Springborg, Michael; Molayem, Mohammad; Kirtman, Bernard
2017-09-01
A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, W. W.; Persico, E. A. D.; Austin, M. E.
2016-02-15
Neutral-beam ions that are deflected onto loss orbits by Alfvén eigenmodes (AE) on their first bounce orbit and are detected by a fast-ion loss detector (FILD) satisfy the “local resonance” condition proposed by Zhang et al. [Nucl. Fusion 55, 22002 (2015)]. This theory qualitatively explains FILD observations for a wide variety of AE-particle interactions. When coherent losses are measured for multiple AE, oscillations at the sum and difference frequencies of the independent modes are often observed in the loss signal. The amplitudes of the sum and difference peaks correlate weakly with the amplitudes of the fundamental loss-signal amplitudes but domore » not correlate with the measured mode amplitudes. In contrast to a simple uniform-plasma theory of the interaction [Chen et al., Nucl. Fusion 54, 083005 (2014)], the loss-signal amplitude at the sum frequency is often larger than the loss-signal amplitude at the difference frequency, indicating a more detailed computation of the orbital trajectories through the mode eigenfunctions is needed.« less
Mercury Orbiter: Report of the Science Working Team
NASA Technical Reports Server (NTRS)
Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.
1991-01-01
The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.
1987-01-01
The obliquity (inclination of the Martian equator to the Martian orbital plane) is 23059, very close to Earth’s value of 230271. The orbit of Mars...is inclined 1051’ to the ecliptic . The eccer.;ricity of the orbit (the ratio of the -iistanc, Detween the foci of the elliptical orbit 04.. I A m 1~0...and the major axis of the ellipse) is 0.0934, more .’ than five times the value for Earth (0.0167) (Pasachoff, 1979). The obliquity varies by 13
Subdecoherence time generation and detection of orbital entanglement in quantum dots.
Brange, F; Malkoc, O; Samuelsson, P
2015-05-01
Recent experiments have demonstrated subdecoherence time control of individual single-electron orbital qubits. Here we propose a quantum-dot-based scheme for generation and detection of pairs of orbitally entangled electrons on a time scale much shorter than the decoherence time. The electrons are entangled, via two-particle interference, and transferred to the detectors during a single cotunneling event, making the scheme insensitive to charge noise. For sufficiently long detector dot lifetimes, cross-correlation detection of the dot charges can be performed with real-time counting techniques, providing for an unambiguous short-time Bell inequality test of orbital entanglement.
Coherent excitations revealed and calculated
NASA Astrophysics Data System (ADS)
Georges, Antoine
2018-01-01
Quantum entities manifest themselves as either particles or waves. In a physical system containing a very large number of identical particles, such as electrons in a material, individualistic (particle-like) behavior prevails at high temperatures. At low temperatures, collective behavior emerges, and excitations of the system in this regime are best described as waves—long-lived phenomena that are periodic in both space and time and often dubbed “coherent excitations” by physicists. On page 186 of this issue, Goremychkin et al. (1) used experiment and theory to describe the emergence of coherent excitations in a complex quantum system with strong interactions. They studied a cerium-palladium compound, CePd3, in which the very localized electrons of 4f orbitals of Ce interact with the much more itinerant conduction electrons of the extended d orbitals of Pd at low temperatures to create a wavelike state.
Coupling of the Magnetosphere-Ionosphere/Thermosphere and Oxygen Outflow-- MIT Mission
NASA Astrophysics Data System (ADS)
Fu, S.
2017-12-01
The goal of the MIT mission is to understand the coupling of the magnetosphere and ionosphere from the prospective of particles. It will focus on the outflow of the ionosphere particles (mainly oxygen ions) from the Earth, including the acceleration mechanisms of oxygen ions and their relative importance in different regions, the importance of these ions while transferred into the magnetosphere and the roles they played in magnetosphere activities. A constellation of four satellites orbiting at three elliptical orbits will provide the unique opportunities to observed there ions at three different altitude with temporal changes of the flux of these particles and the magnetic field environments. The conceptual design of the spacecraft and a summary of the payload will be presented. The MIT mission was selected as one of the five candidates for the upcoming mission plan in China.
Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits.
Connerney, J E P; Adriani, A; Allegrini, F; Bagenal, F; Bolton, S J; Bonfond, B; Cowley, S W H; Gerard, J-C; Gladstone, G R; Grodent, D; Hospodarsky, G; Jorgensen, J L; Kurth, W S; Levin, S M; Mauk, B; McComas, D J; Mura, A; Paranicas, C; Smith, E J; Thorne, R M; Valek, P; Waite, J
2017-05-26
The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator. Copyright © 2017, American Association for the Advancement of Science.
Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Cowley, S. W. H.; Gerard, J.-C.; Gladstone, G. R.; Grodent, D.; Hospodarsky, G.; Jorgensen, J. L.; Kurth, W. S.; Levin, S. M.; Mauk, B.; McComas, D. J.; Mura, A.; Paranicas, C.; Smith, E. J.; Thorne, R. M.; Valek, P.; Waite, J.
2017-05-01
The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno’s capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno’s passage over the poles and traverse of Jupiter’s hazardous inner radiation belts. Juno’s energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.
Martian Radiation Environment: Model Calculations and Recent Measurements with "MARIE"
NASA Technical Reports Server (NTRS)
Saganti, P. B.; Cucinotta, F. A.; zeitlin, C. J.; Cleghorn, T. F.
2004-01-01
The Galactic Cosmic Ray spectra in Mars orbit were generated with the recently expanded HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations are compared with the first eighteen months of measured data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft that is currently in Martian orbit. The dose rates observed by the MARIE instrument are within 10% of the model calculated predictions. Model calculations are compared with the MARIE measurements of dose, dose-equivalent values, along with the available particle flux distribution. Model calculated particle flux includes GCR elemental composition of atomic number, Z = 1-28 and mass number, A = 1-58. Particle flux calculations specific for the current MARIE mapping period are reviewed and presented.
Effect of short-range correlations on the single proton 3s1/2 wave function in 206Pb
NASA Astrophysics Data System (ADS)
Shlomo, S.; Talmi, I.; Anders, M. R.; Bonasera, G.
2018-02-01
We consider the experimental data for difference, Δρc (r), between the charge density distributions of the isotones 206Pb - 205Tl, deduced by analysis of elastic electron scattering measurements and corresponds to the shell model 3s1/2 proton orbit. We investigate the effects of two-body short-range correlations. This is done by: (a) Determining the corresponding single particle potential (mean-field), employing a novel method, directly from the single particle proton density and its first and second derivatives. We also carried out least-square fits to parametrized single particle potentials; (b) Determining the short-range correlations effect by employing the Jastrow correlated many-body wave function to derive a correlation factor for the single particle density distribution. The 3s 1/2 wave functions of the determined potentials reproduce fairly well the experimental data within the quoted errors. The calculated charge density difference, Δρc (r), obtained with the inclusion of the short-range correlation effect does not reproduce the experimental data.
NASA Astrophysics Data System (ADS)
Orsini, S.; Livi, S.; Torkar, K.; Barabash, S.; Milillo, A.; Wurz, P.; di Lellis, A. M.; Kallio, E.; The Serena Team
2010-01-01
'Search for Exospheric Refilling and Emitted Natural Abundances' (SERENA) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). It will investigate Mercury's complex particle environment that is composed of thermal and directional neutral atoms (exosphere) caused by surface release and charge-exchange processes, and of ionized particles caused by photo-ionization of neutrals as well by charge exchange and surface release processes. In order to investigate the structure and dynamics of the environment, an in-situ analysis of the key neutral and charged components is necessary, and for this purpose the SERENA instrument shall include four units: two neutral particle analyzers (Emitted Low Energy Neutral Atoms (ELENA) sensor and Start from a Rotating FIeld mass spectrometer (STROFIO)) and two ion spectrometers (Miniature Ion Precipitation Analyzer (MIPA) and Planetary Ion Camera (PICAM)). The scientific merits of SERENA are presented, and the basic characteristics of the four units are described, with a focus on novel technological aspects.
Electron Beam Analysis of Micrometeoroids Captured in Aerogel as Stardust Analogues
NASA Technical Reports Server (NTRS)
Graham, G. A.; Sheffield-Parker, J.; Bradley, P.; Kearsley, A. T.; Dai, Z. R.; Mayo, S. C.; Teslich, N.; Snead, C.; Westphal, A. J.; Ishii, H.
2005-01-01
In January 2004, NASA s Stardust spacecraft passed through the tail of Comet 81P/Wild-2. The on-board dust flux monitor instrument indicated that numerous micro- and nano-meter sized cometary dust particles were captured by the dedicated silica aerogel capture cell. The collected cometary particles will be returned to Earth in January 2006. Current Stardust analogues are: (i) Light-gas-gun accelerated individual mineral grains and carbonaceous meteoritic material in aerogels at the Stardust encounter velocity ca.approximately 6 kilometers per second. (ii) Aerogels exposed in low-Earth orbit (LEO) containing preserved cosmic dust grains. Studies of these impacts offer insight into the potential state of the captured cometary dust by Stardust and the suitability of various analytical techniques. A number of papers have discussed the application of sophisticated synchrotron analytical techniques to analyze Stardust particles. Yet much of the understanding gained on the composition and mineralogy of interplanetary dust particles (IDPs) has come from electron microscopy studies. Here we discuss the application of scanning electron microscopy (SEM) for Stardust during the preliminary phase of post-return investigations.
NASA Technical Reports Server (NTRS)
Krizmanic, John F.
2013-01-01
We have been assessing the effects of background radiation in low-Earth orbit for the next generation of X-ray and Cosmic-ray experiments, in particular for International Space Station orbit. Outside the areas of high fluxes of trapped radiation, we have been using parameterizations developed by the Fermi team to quantify the high-energy induced background. For the low-energy background, we have been using the AE8 and AP8 SPENVIS models to determine the orbit fractions where the fluxes of trapped particles are too high to allow for useful operation of the experiment. One area we are investigating is how the fluxes of SPENVIS predictions at higher energies match the fluxes at the low-energy end of our parameterizations. I will summarize our methodology for background determination from the various sources of cosmogenic and terrestrial radiation and how these compare to SPENVIS predictions in overlapping energy ranges.
NASA Astrophysics Data System (ADS)
Bogomolov, A. V.; Dmitriev, A. V.; Myagkova, I. N.; Ryumin, S. P.; Smirnova, O. N.; Sobolevsky, I. M.
The spectra of neutrons > 10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex ``SALUTE-7''-``KOSMOS-1686'', are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm^-2 s^-1 for neutrons, 0.8 cm^-2 s^-1 for gamma-rays at the equator and 1.2 cm^-2 s^-1, 1.9 cm^-2 s^-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from ``CORONAS-I'' data are near those for albedo particles.
A disk of scattered icy objects and the origin of Jupiter-family comets.
Duncan, M J; Levison, H F
1997-06-13
Orbital integrations carried out for 4 billion years produced a disk of scattered objects beyond the orbit of Neptune. Objects in this disk can be distinguished from Kuiper belt objects by a greater range of eccentricities and inclinations. This disk was formed in the simulations by encounters with Neptune during the early evolution of the outer solar system. After particles first encountered Neptune, the simulations show that about 1 percent of the particles survive in this disk for the age of the solar system. A disk currently containing as few as approximately 6 x 10(8) objects could supply all of the observed Jupiter-family comets. Two recently discovered objects, 1996 RQ20 and 1996 TL66, have orbital elements similar to those predicted for objects in this disk, suggesting that they are thus far the only members of this disk to be identified.
SMM coronagraph observations of particulate contamination
NASA Technical Reports Server (NTRS)
St. Cyr, O. C.; Warner, T.
1991-01-01
Some recent images taken by the white light coronagraph telescope aboard the Solar Maximum Mission (SMM) observatory show bright streaks that are apparently caused by particles associated with the spacecraft. In this report we describe these observations, and we analyze the times of their occurrence. We demonstrate that the sightings occur most often near SMM's orbital dawn, and we speculate that thermal shock is the mechanism that produces the particles. Although these sightings have not seriously affected the coronagraph's scientific operations, the unexpected passage of bright material through the field of view of sensitive spaceborne telescopes can lead to data loss or, in some cases, serious detector damage. The topic of space debris has become a significant concern for designers of both manned and unmanned orbiting platforms. The returned samples from the SMM spacecraft and the observations reported here provide a baseline of experience for future orbital platforms that plan long duration missions.
NASA Astrophysics Data System (ADS)
Niu, Yuekun; Sun, Jian; Ni, Yu; Song, Yun
2018-06-01
The dynamical mean-field theory is employed to study the orbital-selective Mott transition (OSMT) of the two-orbital Hubbard model with nearest neighbor hopping and next-nearest neighbor (NNN) hopping. The NNN hopping breaks the particle-hole symmetry at half filling and gives rise to an asymmetric density of states (DOS). Our calculations show that the broken symmetry of DOS benefits the OSMT, where the region of the orbital-selective Mott phase significantly extends with the increasing NNN hopping integral. We also find that Hund's rule coupling promotes OSMT by blocking the orbital fluctuations, but the influence of NNN hopping is more remarkable.
The NASA JSC Hypervelocity Impact Test Facility (HIT-F)
NASA Technical Reports Server (NTRS)
Crews, Jeanne L.; Christiansen, Eric L.
1992-01-01
The NASA Johnson Space Center Hypervelocity Impact Test Facility was created in 1980 to study the hypervelocity impact characteristics of composite materials. The facility consists of the Hypervelocity Impact Laboratory (HIRL) and the Hypervelocity Analysis Laboratory (HAL). The HIRL supports three different-size light-gas gun ranges which provide the capability of launching particle sizes from 100 micron spheres to 12.7 mm cylinders. The HAL performs three functions: (1) the analysis of data collected from shots in the HIRL, (2) numerical and analytical modeling to predict impact response beyond test conditions, and (3) risk and damage assessments for spacecraft exposed to the meteoroid and orbital debris environments.
The ionizing radiation environment of LDEF prerecovery predictions
NASA Technical Reports Server (NTRS)
Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang
1991-01-01
The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.