Science.gov

Sample records for particle physics quantum

  1. Quantum Gravity: The View From Particle Physics

    NASA Astrophysics Data System (ADS)

    Nicolai, Hermann

    This lecture reviews aspects of and prospects for progress towards a theory of quantum gravity from a particle physics perspective, also paying attention to recent findings of the LHC experiments at CERN.

  2. Counterfactual quantum-information transfer without transmitting any physical particles.

    PubMed

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2015-02-12

    We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants.

  3. Counterfactual quantum-information transfer without transmitting any physical particles.

    PubMed

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2015-01-01

    We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants. PMID:25672936

  4. Counterfactual quantum-information transfer without transmitting any physical particles

    PubMed Central

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2015-01-01

    We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants. PMID:25672936

  5. Quantum Optics, Diffraction Theory, and Elementary Particle Physics

    ScienceCinema

    None

    2016-07-12

    Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.

  6. Quantum Physics

    NASA Astrophysics Data System (ADS)

    Le Bellac, Michel

    2006-03-01

    Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises

  7. Quantum physics without quantum philosophy

    NASA Astrophysics Data System (ADS)

    Dürr, Detlef; Goldstein, Sheldon; Zanghì, Nino

    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrödinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are analyzed according to this theory. When the quantum formalism is regarded as arising in this way, the paradoxes and perplexities so often associated with quantum theory simply evaporate.

  8. Quantum Physics for Beginners.

    ERIC Educational Resources Information Center

    Strand, J.

    1981-01-01

    Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)

  9. Research in theoretical particle physics

    SciTech Connect

    McKay, D.W.; Munczek, H.; Ralston, J.

    1992-05-01

    This report discusses the following topics in high energy physics: dynamical symmetry breaking and Schwinger-Dyson equation; consistency bound on the minimal model Higgs mass; tests of physics beyond the standard model; particle astrophysics; the interface between perturbative and non-perturbative QCD; cosmology; anisotropy in quantum networks and integer quantum hall behavior; anomalous color transparency; quantum treatment of solitons; color transparency; quantum stabilization of skyrmions; and casimir effect. (LSP)

  10. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Arguin, J.-F.; Barnett, R. M.; Copic, K.; Dahl, O.; Groom, D. E.; Lin, C.-J.; Lys, J.; Murayama, H.; Wohl, C. G.; Yao, W.-M.; Zyla, P. A.; Amsler, C.; Antonelli, M.; Asner, D. M.; Baer, H.; Band, H. R.; Basaglia, T.; Bauer, C. W.; Beatty, J. J.; Belousov, V. I.; Bergren, E.; Bernardi, G.; Bertl, W.; Bethke, S.; Bichsel, H.; Biebel, O.; Blucher, E.; Blusk, S.; Brooijmans, G.; Buchmueller, O.; Cahn, R. N.; Carena, M.; Ceccucci, A.; Chakraborty, D.; Chen, M.-C.; Chivukula, R. S.; Cowan, G.; D'Ambrosio, G.; Damour, T.; de Florian, D.; de Gouvêa, A.; DeGrand, T.; de Jong, P.; Dissertori, G.; Dobrescu, B.; Doser, M.; Drees, M.; Edwards, D. A.; Eidelman, S.; Erler, J.; Ezhela, V. V.; Fetscher, W.; Fields, B. D.; Foster, B.; Gaisser, T. K.; Garren, L.; Gerber, H.-J.; Gerbier, G.; Gherghetta, T.; Golwala, S.; Goodman, M.; Grab, C.; Gritsan, A. V.; Grivaz, J.-F.; Grünewald, M.; Gurtu, A.; Gutsche, T.; Haber, H. E.; Hagiwara, K.; Hagmann, C.; Hanhart, C.; Hashimoto, S.; Hayes, K. G.; Heffner, M.; Heltsley, B.; Hernández-Rey, J. J.; Hikasa, K.; Höcker, A.; Holder, J.; Holtkamp, A.; Huston, J.; Jackson, J. D.; Johnson, K. F.; Junk, T.; Karlen, D.; Kirkby, D.; Klein, S. R.; Klempt, E.; Kowalewski, R. V.; Krauss, F.; Kreps, M.; Krusche, B.; Kuyanov, Yu. V.; Kwon, Y.; Lahav, O.; Laiho, J.; Langacker, P.; Liddle, A.; Ligeti, Z.; Liss, T. M.; Littenberg, L.; Lugovsky, K. S.; Lugovsky, S. B.; Mannel, T.; Manohar, A. V.; Marciano, W. J.; Martin, A. D.; Masoni, A.; Matthews, J.; Milstead, D.; Miquel, R.; Mönig, K.; Moortgat, F.; Nakamura, K.; Narain, M.; Nason, P.; Navas, S.; Neubert, M.; Nevski, P.; Nir, Y.; Olive, K. A.; Pape, L.; Parsons, J.; Patrignani, C.; Peacock, J. A.; Petcov, S. T.; Piepke, A.; Pomarol, A.; Punzi, G.; Quadt, A.; Raby, S.; Raffelt, G.; Ratcliff, B. N.; Richardson, P.; Roesler, S.; Rolli, S.; Romaniouk, A.; Rosenberg, L. J.; Rosner, J. L.; Sachrajda, C. T.; Sakai, Y.; Salam, G. P.; Sarkar, S.; Sauli, F.; Schneider, O.; Scholberg, K.; Scott, D.; Seligman, W. G.; Shaevitz, M. H.; Sharpe, S. R.; Silari, M.; Sjöstrand, T.; Skands, P.; Smith, J. G.; Smoot, G. F.; Spanier, S.; Spieler, H.; Stahl, A.; Stanev, T.; Stone, S. L.; Sumiyoshi, T.; Syphers, M. J.; Takahashi, F.; Tanabashi, M.; Terning, J.; Titov, M.; Tkachenko, N. P.; Törnqvist, N. A.; Tovey, D.; Valencia, G.; van Bibber, K.; Venanzoni, G.; Vincter, M. G.; Vogel, P.; Vogt, A.; Walkowiak, W.; Walter, C. W.; Ward, D. R.; Watari, T.; Weiglein, G.; Weinberg, E. J.; Wiencke, L. R.; Wolfenstein, L.; Womersley, J.; Woody, C. L.; Workman, R. L.; Yamamoto, A.; Zeller, G. P.; Zenin, O. V.; Zhang, J.; Zhu, R.-Y.; Harper, G.; Lugovsky, V. S.; Schaffner, P.

    2012-07-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, Vcb & Vub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter.A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov/.The 2012 edition of Review of Particle Physics is published for the Particle Data Group as article 010001 in volume 86 of Physical Review D.This edition should be cited as: J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

  11. "Loops and Legs in Quantum Field Theory", 12th DESY Workshop on Elementary Particle Physics

    NASA Astrophysics Data System (ADS)

    The bi-annual international conference "Loops and Legs in Quantum Field Theory" has been held at Weimar, Germany, from April 27 to May 02, 2014. It has been the 12th conference of this series, started in 1992. The main focus of the conference are precision calculations of multi- loop and multi-leg processes in elementary particle physics for processes at present and future high-energy facilities within and beyond the Standard Model. At present many physics questions studied deal with processes at the LHC and future facilities like the ILC. A growing number of contributions deals with important developments in the field of computational technologies and algorithmic methods, including large-scale computer algebra, efficient methods to compute large numbers of Feynman diagrams, analytic summation and integration methods of various kinds, new related function spaces, precise numerical methods and Monte Carlo simulations. The present conference has been attended by more than 110 participants from all over the world, presenting more than 75 contributions, most of which have been written up for these pro- ceedings. The present volume demonstrates in an impressive way the enormous development of the field during the last few years, reaching the level of 5-loop calculations in QCD and a like- wise impressive development in massive next-to-leading order and next-to-next-to-leading order processes. Computer algebraic and numerical calculations require terabyte storage and many CPU years, even after intense parallelization, to obtain state-of-the-art theoretical predictions. The city of Weimar gave a suitable frame to the conference, with its rich history, especially in literature, music, arts, and architecture. Goethe, Schiller, Wieland, Herder, Bach and Liszt lived there and created many of their masterpieces. The many young participants signal that our field is prosperous and faces an exciting future. The conference hotel "Kaiserin Augusta" offered a warm hospitality and

  12. How to take particle physics seriously: A further defence of axiomatic quantum field theory

    NASA Astrophysics Data System (ADS)

    Fraser, Doreen

    Further arguments are offered in defence of the position that the variant of quantum field theory (QFT) that should be subject to interpretation and foundational analysis is axiomatic quantum field theory. I argue that the successful application of renormalization group (RG) methods within alternative formulations of QFT illuminates the empirical content of QFT, but not the theoretical content. RG methods corroborate the point of view that QFT is a case of the underdetermination of theory by empirical evidence. I also urge caution in extrapolating interpretive conclusions about QFT from the application of RG methods in other contexts (e.g., condensed matter physics). This paper replies to criticisms advanced by David Wallace, but aims to be self-contained.

  13. Quantum Physics in School.

    ERIC Educational Resources Information Center

    Lawrence, I.

    1996-01-01

    Discusses a teaching strategy for introducing quantum ideas into the school classroom using modern devices. Develops the concepts of quantization, wave-particle duality, nonlocality, and tunneling. (JRH)

  14. Statistical Physics of Particles

    NASA Astrophysics Data System (ADS)

    Kardar, Mehran

    2006-06-01

    Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. Based on lectures for a course in statistical mechanics taught by Professor Kardar at Massachusetts Institute of Technology, this textbook introduces the central concepts and tools of statistical physics. It contains a chapter on probability and related issues such as the central limit theorem and information theory, and covers interacting particles, with an extensive description of the van der Waals equation and its derivation by mean field approximation. It also contains an integrated set of problems, with solutions to selected problems at the end of the book. It will be invaluable for graduate and advanced undergraduate courses in statistical physics. A complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873420. Based on lecture notes from a course on Statistical Mechanics taught by the author at MIT Contains 89 exercises, with solutions to selected problems Contains chapters on probability and interacting particles Ideal for graduate courses in Statistical Mechanics

  15. The Birth of Elementary-Particle Physics.

    ERIC Educational Resources Information Center

    Brown, Laurie M.; Hoddeson, Lillian

    1982-01-01

    Traces the origin and development of particle physics, concentrating on the roles of cosmic rays and theory. Includes charts highlighting significant events in the development of cosmic-ray physics and quantum field theory. (SK)

  16. Quantum physics meets biology.

    PubMed

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  17. Introducing Quantum Physics

    ERIC Educational Resources Information Center

    Ogborn, Jon

    1974-01-01

    Describes the way in which quantum ideas are incorporated into the Nuffield advanced physics course. Quantum theory is presented as an enormous intellectual leap to be excited by, puzzled over and thought about, not as a set of results and equations to be packed away in the mind. (Author/MLH)

  18. Experimental Particle Physics

    SciTech Connect

    Rosenfeld, Carl; Mishra, Sanjib R.; Petti, Roberto; Purohit, Milind V.

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the BaBar experiment

  19. Finite groups and quantum physics

    SciTech Connect

    Kornyak, V. V.

    2013-02-15

    Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.

  20. Quantum physics meets biology

    PubMed Central

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-01-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a “pedestrian guide” to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future “quantum biology,” its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena. PMID:20234806

  1. Advanced Level Physics Students' Conceptions of Quantum Physics.

    ERIC Educational Resources Information Center

    Mashhadi, Azam

    This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…

  2. Research program in particle physics

    SciTech Connect

    Sudarshan, E.C.G.; Dicus, D.A.; Ritchie, J.L.; Lang, K.

    1992-07-01

    This report discusses the following topics: Quantum Gravity and Mathematical Physics; Phenomenology; Quantum Mechanics and Quantum Field Theory; Status of BNL Expt. 791; BNL Expt. 791; BNL Expt. 888; and SSC Activities.

  3. Elementary particle physics

    NASA Technical Reports Server (NTRS)

    Perkins, D. H.

    1986-01-01

    Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.

  4. RESEARCH IN PARTICLE PHYSICS

    SciTech Connect

    Kearns, Edward

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  5. Particle physics and cosmology

    SciTech Connect

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.

  6. Cosmology and Particle Physics

    NASA Astrophysics Data System (ADS)

    Steigman, G.

    1982-01-01

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses. In the last few years we have witnessed the birth and growth to healthy adolescence of a new collaboration between astrophysicists and particle physicists. The most notable success of this cooperative effort has been to provide the framework for understanding, within the context of GUTs and the hot big-bang cosmology, the universal baryon asymmetry. The most exciting new predictions this effort has spawned are that exotic relics may exist in detectable abundances. In particular, we may live in a neutrino-dominated Universe. In the next few years, accummulating laboratory data (for example proton decay, neutrino masses and oscillations) coupled with theoritical work in particle physics and cosmology will ensure the growth to maturity of this joint effort.

  7. Research in particle physics

    SciTech Connect

    Not Available

    1993-08-01

    This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e{sup +}e{sup {minus}} and {bar p}p collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment.

  8. Quantum optics. Gravity meets quantum physics

    SciTech Connect

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  9. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task. PMID:21974665

  10. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.

  11. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Amsler, C.; Doser, M.; Antonelli, M.; Asner, D. M.; Babu, K. S.; Baer, H.; Band, H. R.; Barnett, R. M.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M.-C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; D'Ambrosio, G.; Damour, T.; de Gouvêa, A.; DeGrand, T.; Dobrescu, B.; Drees, M.; Edwards, D. A.; Eidelman, S.; Elvira, V. D.; Erler, J.; Ezhela, V. V.; Feng, J. L.; Fetscher, W.; Fields, B. D.; Foster, B.; Gaisser, T. K.; Garren, L.; Gerber, H.-J.; Gerbier, G.; Gherghetta, T.; Giudice, G. F.; Goodman, M.; Grab, C.; Gritsan, A. V.; Grivaz, J.-F.; Groom, D. E.; Grünewald, M.; Gurtu, A.; Gutsche, T.; Haber, H. E.; Hagiwara, K.; Hagmann, C.; Hayes, K. G.; Hernández-Rey, J. J.; Hikasa, K.; Hinchliffe, I.; Höcker, A.; Huston, J.; Igo-Kemenes, P.; Jackson, J. D.; Johnson, K. F.; Junk, T.; Karlen, D.; Kayser, B.; Kirkby, D.; Klein, S. R.; Knowles, I. G.; Kolda, C.; Kowalewski, R. V.; Kreitz, P.; Krusche, B.; Kuyanov, Yu. V.; Kwon, Y.; Lahav, O.; Langacker, P.; Liddle, A.; Ligeti, Z.; Lin, C.-J.; Liss, T. M.; Littenberg, L.; Liu, J. C.; Lugovsky, K. S.; Lugovsky, S. B.; Mahlke, H.; Mangano, M. L.; Mannel, T.; Manohar, A. V.; Marciano, W. J.; Martin, A. D.; Masoni, A.; Milstead, D.; Miquel, R.; Mönig, K.; Murayama, H.; Nakamura, K.; Narain, M.; Nason, P.; Navas, S.; Nevski, P.; Nir, Y.; Olive, K. A.; Pape, L.; Patrignani, C.; Peacock, J. A.; Piepke, A.; Punzi, G.; Quadt, A.; Raby, S.; Raffelt, G.; Ratcliff, B. N.; Renk, B.; Richardson, P.; Roesler, S.; Rolli, S.; Romaniouk, A.; Rosenberg, L. J.; Rosner, J. L.; Sachrajda, C. T.; Sakai, Y.; Sarkar, S.; Sauli, F.; Schneider, O.; Scott, D.; Seligman, W. G.; Shaevitz, M. H.; Sjöstrand, T.; Smith, J. G.; Smoot, G. F.; Spanier, S.; Spieler, H.; Stahl, A.; Stanev, T.; Stone, S. L.; Sumiyoshi, T.; Tanabashi, M.; Terning, J.; Titov, M.; Tkachenko, N. P.; Törnqvist, N. A.; Tovey, D.; Trilling, G. H.; Trippe, T. G.; Valencia, G.; van Bibber, K.; Vincter, M. G.; Vogel, P.; Ward, D. R.; Watari, T.; Webber, B. R.; Weiglein, G.; Wells, J. D.; Whalley, M.; Wheeler, A.; Wohl, C. G.; Wolfenstein, L.; Womersley, J.; Woody, C. L.; Workman, R. L.; Yamamoto, A.; Yao, W.-M.; Zenin, O. V.; Zhang, J.; Zhu, R.-Y.; Zyla, P. A.; Harper, G.; Lugovsky, V. S.; Schaffner, P.; Particle Data Group

    2008-09-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, V ud & V us, V cb & V ub, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

  12. Algebraic formulation of quantum theory, particle identity and entanglement

    NASA Astrophysics Data System (ADS)

    Govindarajan, T. R.

    2016-08-01

    Quantum theory as formulated in conventional framework using statevectors in Hilbert spaces misses the statistical nature of the underlying quantum physics. Formulation using operators 𝒞∗ algebra and density matrices appropriately captures this feature in addition leading to the correct formulation of particle identity. In this framework, Hilbert space is an emergent concept. Problems related to anomalies and quantum epistemology are discussed.

  13. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Olive, K. A.; Particle Data Group

    2014-08-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (4.4 MB) IntroductionAcrobat PDF (595 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (204 KB) LeptonsAcrobat PDF (167 KB) QuarksAcrobat PDF (115 KB) MesonsAcrobat PDF (976 KB) BaryonsAcrobat PDF (384 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (120 KB) Tests of conservation lawsAcrobat PDF (383 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (73 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (395 KB) Standard Model and Related TopicsAcrobat PDF (8.37 MB) Astrophysics and CosmologyAcrobat PDF (3.79 MB) Experimental Methods and CollidersAcrobat PDF (3.82 MB) Mathematical Tools of Statistics, Monte Carlo, Group Theory Acrobat

  14. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Olive, K. A.; Particle Data Group; et al.

    2016-10-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (150 KB) IntroductionAcrobat PDF (456 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (155 KB) LeptonsAcrobat PDF (134 KB) QuarksAcrobat PDF (84 KB) MesonsAcrobat PDF (871 KB) BaryonsAcrobat PDF (300 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (91 KB) Tests of conservation lawsAcrobat PDF (330 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (37 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (278 KB) Standard Model and Related TopicsAcrobat PDF (7.3 MB) Astrophysics and CosmologyAcrobat PDF (2.7 MB) Experimental Methods and CollidersAcrobat PDF (3.8 MB) Mathematical Tools or Statistics, Monte Carlo, Group

  15. Quantum vacuum noise in physics and cosmology.

    PubMed

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics. PMID:12779491

  16. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2003-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  17. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2001-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  18. Particle physics -- Future directions

    SciTech Connect

    Chris Quigg

    2001-11-29

    Wonderful opportunities await particle physics over the next decade, with the coming of the Large Hadron Collider at CERN to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop our understanding of the problem of identity: what makes a neutrino a neutrino and a top quark a top quark. Here I have in mind the work of the B factories and the Tevatron collider on CP violation and the weak interactions of the b quark; the wonderfully sensitive experiments at Brookhaven, CERN, Fermilab, and Frascati on CP violation and rare decays of kaons; the prospect of definitive accelerator experiments on neutrino oscillations and the nature of the neutrinos; and a host of new experiments on the sensitivity frontier. We might even learn to read experiment for clues about the dimensionality of spacetime. If we are inventive enough, we may be able to follow this rich menu with the physics opportunities offered by a linear collider and a (muon storage ring) neutrino factory. I expect a remarkable flowering of experimental particle physics, and of theoretical physics that engages with experiment. I describe some of the great questions before us and the challenges of providing the instruments that will be needed to define them more fully and eventually to answer them.

  19. Quantum computing classical physics.

    PubMed

    Meyer, David A

    2002-03-15

    In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers.

  20. The Physics of Quantum Computation

    NASA Astrophysics Data System (ADS)

    Falci, Giuseppe; Paladino, Elisabette

    2015-10-01

    Quantum Computation has emerged in the past decades as a consequence of down-scaling of electronic devices to the mesoscopic regime and of advances in the ability of controlling and measuring microscopic quantum systems. QC has many interdisciplinary aspects, ranging from physics and chemistry to mathematics and computer science. In these lecture notes we focus on physical hardware, present day challenges and future directions for design of quantum architectures.

  1. Cosmology and particle physics

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  2. Physics of windblown particles

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Leach, Rodman; Marshall, John R.; White, Bruce; Iversen, James D.; Nickling, William G.; Gillette, Dale; Sorensen, Michael

    1987-01-01

    A laboratory facility proposed for the Space Station to investigate fundamental aspects of windblown particles is described. The experiments would take advantage of the environment afforded in earth orbit and would be an extension of research currently being conducted on the geology and physics of windblown sediments on earth, Mars, and Venus. Aeolian (wind) processes are reviewed in the planetary context, the scientific rational is given for specific experiments to be conducted, the experiment apparatus (the Carousel Wind Tunnel, or CWT) is described, and a plan presented for implementing the proposed research program.

  3. Parables of physics and a quantum romance

    NASA Astrophysics Data System (ADS)

    Machacek, A. C.

    2014-01-01

    Teachers regularly use stories to amplify the concepts taught and to encourage student engagement. The literary form of a parable is particularly suitable for classroom use, and examples are given, including a longer one intended to stimulate discussion on the nature of quantum physics (and the wave-particle duality in particular).

  4. Parables of Physics and a Quantum Romance

    ERIC Educational Resources Information Center

    Machacek, A. C.

    2014-01-01

    Teachers regularly use stories to amplify the concepts taught and to encourage student engagement. The literary form of a parable is particularly suitable for classroom use, and examples are given, including a longer one intended to stimulate discussion on the nature of quantum physics (and the wave-particle duality in particular).

  5. Quantum chaos in nuclear physics

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.

    2016-07-01

    A definition of classical and quantum chaos on the basis of the Liouville-Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.

  6. Particle physics---Experimental

    SciTech Connect

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-08-21

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

  7. Teaching Quantum Physics without Paradoxes

    ERIC Educational Resources Information Center

    Hobson, Art

    2007-01-01

    Although the resolution to the wave-particle paradox has been known for 80 years, it is seldom presented. Briefly, the resolution is that material particles and photons are the quanta of extended spatially continuous but energetically quantized fields. But because the resolution resides in quantum field theory and is not usually spelled out in…

  8. Higher-dimensional oscillations of quantum particles

    NASA Astrophysics Data System (ADS)

    Hedin, Eric

    2013-04-01

    A theoretical framework is developed in which elementary particles have a component of their wave function extending into higher spatial dimensions, based on an extension of the Schr"odinger equation to include 4^th and 5^th spatial components [E. R. Hedin, Physics Essays 25, 2 (2012)]. A higher-dimensional harmonic oscillator confining potential localizes particles into 3-d space (characterizing the ``brane tension'' which confines Standard Model particles to the sub-manifold). Several consistency checks of this model are: a match with the quantum phenomenon of ``zitterbewegung''; the predicted intrinsic spin angular momentum is of order h/2π; the magnetic moment of the electron is determined (with a gyromagnetic ratio of 2); the nuclear force ``hard core'' radius is accurately predicted; the ratio of quark masses (of the up and down quarks) is found to be consistent with QCD theory; and possible explanations of the Planck mass and Planck length. An application of higher-dimensional particle effects to the astrophysics of stars shows that radical physical inconsistencies are not evident. Finally, this model suggests a possible explanation of dark matter as the fractional probability manifestations of a ladder of the higher-dimensional symmetric excited states of ordinary particles.

  9. Quantum physics and complex networks

    NASA Astrophysics Data System (ADS)

    Biamonte, Jacob

    2014-03-01

    There is a widely used and successful theory of ``chemical reaction networks,'' which provides a framework describing systems governed by mass action kinetics. Computer science and population biology use the same ideas under a different name: ``stochastic Petri nets.'' But if we look at these theories from the perspective of quantum theory, they turn out to involve creation and annihilation operators, coherent states and other well-known ideas--yet in a context where probabilities replace amplitudes. I will explain this connection as part of a detailed analogy between quantum mechanics and stochastic mechanics which we've produced several results on recently, including the recent analytical results uniting quantum physics and complex networks. Our general idea is about merging concepts from quantum physics and complex network theory to provide a bidirectional bridge between both disciplines. Support is acknowledged from the Foundational Questions Institute (FQXi) and the Compagnia di San Paolo Foundation.

  10. From Waves to Particle Tracks and Quantum Probabilities

    NASA Astrophysics Data System (ADS)

    Falkenburg, Brigitte

    Here, the measurement methods for identifying massive charged particles are investigated. They have been used from early cosmic ray studies up to the present day. Laws such as the classical Lorentz force and Einstein's relativistic kinematics were established before the rise of quantum mechanics. Later, it became crucial to measure the energy loss of charged particles in matter. In 1930, Bethe developed a semi-classical model based on the quantum mechanics of scattering. In the early 1930s, he and others calculated the passage of charged particles through matter including pair creation and bremsstrahlung. Due to missing trust in quantum electrodynamics, however, only semi-empirical methods were employed in order to estimate the mass and charge from the features of particle tracks. In 1932, Anderson inserted a lead plate into the cloud chamber in order to determine the flight direction and charge of the `positive electron'. In the 1940s, nuclear emulsions helped to resolve puzzles about particle identification and quantum electrodynamics. Later, the measurement theory was extended in a cumulative process by adding conservation laws for dynamic properties, probabilistic quantum formulas for resonances, scattering cross sections, etc. The measurement method was taken over from cosmic ray studies to the era of particle accelerators, and finally taken back from there to astroparticle physics. The measurement methods remained the same, but in the transition from particle to astroparticle physics the focus of interest shifted. Indeed, the experimental methods of both fields explore the grounds of `new physics' in complementary ways.

  11. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Statistics of an ideal homogeneous Bose gas with a fixed number of particles

    NASA Astrophysics Data System (ADS)

    Alekseev, Vladimir A.

    2001-05-01

    The distribution function w0(n0) of the number n0 of particles is found for the condensate of an ideal gas of free bosons with a fixed total number N of particles. It is shown that above the critical temperature (T > Tc) this function has the usual form w0(n0) = (1 — eμ)eμn0, where μ is the chemical potential in temperature units. In a narrow vicinity of the critical temperature |T/Tc — 1| <= N-1/3, this distribution changes and at T < Tc acquires the form of a resonance. The width of the resonance depends on the shape of the volume occupied by the gas and it has exponential (but not the Gaussian) wings. As the temperature is lowered, the resonance maximum shifts to larger values of n0 and its width tends to zero, which corresponds to the suppression of fluctuations. For N → ∞, this change occurs abruptly. The distribution function of the number of particles in excited states for the systems with a fixed and a variable number of particles (when only a mean number of particles is fixed) prove to be identical and have the usual form.

  12. Dark Energy, Particle Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.

    2012-05-01

    Dark energy and cosmic acceleration is one of the three pillars of the current cosmological paradigm. Moreover, both raise fundamental issues in cosmology and particle physics. In particle physics, the dark energy problem is intimately related to the perplexing issue of why the quantum energy of the vacuum is so small. In cosmology, the nature of the dark energy is crucial to understanding the destiny of the Universe. I will discuss the status of current models for dark energy -- including vacuum energy and rolling scalar fields -- their implications for cosmology and for particle physics and how they can be tested by WFIRST. I will also address the status of the possibility that cosmic acceleration is explained by modifying or replacing general relativity.

  13. Quantum Hamiltonian Physics with Supercomputers

    NASA Astrophysics Data System (ADS)

    Vary, James P.

    2014-06-01

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark-gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.

  14. Towards testing quantum physics in deep space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  15. Particle Physics Masterclass

    ScienceCinema

    Helio Takai

    2016-07-12

    Students from six local high schools -- Farmingdale, Sachem East, Shoreham, Smithtown East, Ward Melville, and William Floyd -- came to Brookhaven National Laboratory to experience research with particle physicist Helio Takai. They were among more than 6,

  16. Particle Physics Masterclass

    SciTech Connect

    Helio Takai

    2009-04-10

    Students from six local high schools -- Farmingdale, Sachem East, Shoreham, Smithtown East, Ward Melville, and William Floyd -- came to Brookhaven National Laboratory to experience research with particle physicist Helio Takai. They were among more than 6,

  17. Particle statistics affects quantum decay and Fano interference.

    PubMed

    Crespi, Andrea; Sansoni, Linda; Della Valle, Giuseppe; Ciamei, Alessio; Ramponi, Roberta; Sciarrino, Fabio; Mataloni, Paolo; Longhi, Stefano; Osellame, Roberto

    2015-03-01

    Quantum mechanical decay, Fano interference, and bound states with energy in the continuum are ubiquitous phenomena in different areas of physics. Here we experimentally demonstrate that particle statistics strongly affects quantum mechanical decay in a multiparticle system. By considering propagation of two-photon states in engineered photonic lattices, we simulate quantum decay of two noninteracting particles in a multilevel Fano-Anderson model. Remarkably, when the system sustains a bound state in the continuum, fractional decay is observed for bosonic particles, but not for fermionic ones. Complete decay in the fermionic case arises because of the Pauli exclusion principle, which forbids the bound state to be occupied by the two fermions. Our experiment indicates that particle statistics can tune many-body quantum decay from fractional to complete.

  18. Quantum simulations of physics problems

    NASA Astrophysics Data System (ADS)

    Somma, Rolando D.; Ortiz, Gerardo; Knill, Emanuel H.; Gubernatis, James

    2003-08-01

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical "questions" more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed showing quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  19. The quantum physics of photosynthesis.

    PubMed

    Ritz, Thorsten; Damjanović, Ana; Schulten, Klaus

    2002-03-12

    Biological cells contain nanoscale machineries that exhibit a unique combination of high efficiency, high adaptability to changing environmental conditions, and high reliability. Recent progress in obtaining atomically resolved structures provide an opportunity for an atomic-level explanation of the biological function of cellular machineries and the underlying physical mechanisms. A prime example in this regard is the apparatus with which purple bacteria harvest the light of the sun. Its highly symmetrical architecture and close interplay of biological functionality with quantum physical processes allow an illuminating demonstration of the fact that properties of living beings ultimately rely on and are determined by the laws of physics.

  20. Nuclear physics and particle therapy

    NASA Astrophysics Data System (ADS)

    Battistoni, G.

    2016-05-01

    The use of charged particles and nuclei in cancer therapy is one of the most successful cases of application of nuclear physics to medicine. The physical advantages in terms of precision and selectivity, combined with the biological properties of densely ionizing radiation, make charged particle approach an elective choice in a number of cases. Hadron therapy is in continuous development and nuclear physicists can give important contributions to this discipline. In this work some of the relevant aspects in nuclear physics will be reviewed, summarizing the most important directions of research and development.

  1. Clothed Particles in Quantum Electrodynamics and Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Shebeko, Alexander

    2016-03-01

    The notion of clothing in quantum field theory (QFT), put forward by Greenberg and Schweber and developed by M. Shirokov, is applied in quantum electrodynamics (QED) and quantum chromodynamics (QCD). Along the guideline we have derived a novel analytic expression for the QED Hamiltonian in the clothed particle representation (CPR). In addition, we are trying to realize this notion in QCD (to be definite for the gauge group SU(3)) when drawing parallels between QCD and QED.

  2. Unifying Quantum Physics with Biology

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2014-09-01

    We find that the natural logarithm of the age of the universe in quantum mechanical units is close to 137. Since science is not religion, it is our moral duty to recognize the importance of this finding on the following ground. The experimentally obtained number 137 is a mystical number in science, as if written by the hand of God. It is found in cosmology; unlike other theories, it works in biology too. A formula by Boltzmann also works in both: biology and physics, as if it is in the heart of God. His formula simply leads to finding the logarithm of microstates. One of the two conflicting theories of physics (1) Einstein's theory of General Relativity and (2) Quantum Physics, the first applies only in cosmology, but the second applies in biology too. Since we have to convert the age of the universe, 13 billion years, into 1,300,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Planck times to get close to 137, quantum physics clearly shows the characteristics of unifying with biology. The proof of its validity also lies in its ability to extend information system observed in biology.

  3. Review of Particle Physics

    NASA Astrophysics Data System (ADS)

    Particle Data Group; Eidelman, S.; Hayes, K. G.; Olive, K. A.; Aguilar-Benitez, M.; Amsler, C.; Asner, D.; Babu, K. S.; Barnett, R. M.; Beringer, J.; Burchat, P. R.; Carone, C. D.; Caso, S.; Conforto, G.; Dahl, O.; D'Ambrosio, G.; Doser, M.; Feng, J. L.; Gherghetta, T.; Gibbons, L.; Goodman, M.; Grab, C.; Groom, D. E.; Gurtu, A.; Hagiwara, K.; Hernández-Rey, J. J.; Hikasa, K.; Honscheid, K.; Jawahery, H.; Kolda, C.; Kwon, Y.; Mangano, M. L.; Manohar, A. V.; March-Russell, J.; Masoni, A.; Miquel, R.; Mönig, K.; Murayama, H.; Nakamura, K.; Navas, S.; Pape, L.; Patrignani, C.; Piepke, A.; Raffelt, G.; Roos, M.; Tanabashi, M.; Terning, J.; Törnqvist, N. A.; Trippe, T. G.; Vogel, P.; Wohl, C. G.; Workman, R. L.; Yao, W.-M.; Zyla, P. A.; Armstrong, B.; Gee, P. S.; Harper, G.; Lugovsky, K. S.; Lugovsky, S. B.; Lugovsky, V. S.; Rom, A.; Artuso, M.; Barberio, E.; Battaglia, M.; Bichsel, H.; Biebel, O.; Bloch, P.; Cahn, R. N.; Casper, D.; Cattai, A.; Chivukula, R. S.; Cowan, G.; Damour, T.; Desler, K.; Dobbs, M. A.; Drees, M.; Edwards, A.; Edwards, D. A.; Elvira, V. D.; Erler, J.; Ezhela, V. V.; Fetscher, W.; Fields, B. D.; Foster, B.; Froidevaux, D.; Fukugita, M.; Gaisser, T. K.; Garren, L.; Gerber, H.-J.; Gerbier, G.; Gilman, F. J.; Haber, H. E.; Hagmann, C.; Hewett, J.; Hinchliffe, I.; Hogan, C. J.; Höhler, G.; Igo-Kemenes, P.; Jackson, J. D.; Johnson, K. F.; Karlen, D.; Kayser, B.; Kirkby, D.; Klein, S. R.; Kleinknecht, K.; Knowles, I. G.; Kreitz, P.; Kuyanov, Yu. V.; Lahav, O.; Langacker, P.; Liddle, A.; Littenberg, L.; Manley, D. M.; Martin, A. D.; Narain, M.; Nason, P.; Nir, Y.; Peacock, J. A.; Quinn, H. R.; Raby, S.; Ratcliff, B. N.; Razuvaev, E. A.; Renk, B.; Rolandi, G.; Ronan, M. T.; Rosenberg, L. J.; Sachrajda, C. T.; Sakai, Y.; Sanda, A. I.; Sarkar, S.; Schmitt, M.; Schneider, O.; Scott, D.; Seligman, W. G.; Shaevitz, M. H.; Sjöstrand, T.; Smoot, G. F.; Spanier, S.; Spieler, H.; Spooner, N. J. C.; Srednicki, M.; Stahl, A.; Stanev, T.; Suzuki, M.; Tkachenko, N. P.; Trilling, G. H.; Valencia, G.; van Bibber, K.; Vincter, M. G.; Ward, D. R.; Webber, B. R.; Whalley, M.; Wolfenstein, L.; Womersley, J.; Woody, C. L.; Zenin, O. V.; Zhu, R.-Y.

    2004-07-01

    A critical review is given of the current status of cosmological nucleosynthesis. In the framework of the standard model with 3 types of relativistic neutrinos, the baryon-to-photon ratio, \\eta, corresponding to the inferred primordial abundances of helium-4 and lithium-7 is presently ~2 \\sigma below the value implied by the abundance of deuterium. The latter value is also coincident with the independent determination of \\eta from WMAP observations of CMB anisotropy. However taking systematic uncertainties in the abundance estimates into account, there is overall concordance in the range \\eta = (3.4 - 6.9) x 10^{-10} @ 95% c.l. corresponding to a cosmological baryon density \\Omega_B h^2 = 0.012 - 0.025. If the above discrepancy is due to a neutrino chemical potential, then upto 7.1 effective neutrino species are allowed by nucleosynthesis. Other constraints on new physics are briefly discussed.

  4. Particle Physics and Instrumentation - Physics and Technology

    NASA Astrophysics Data System (ADS)

    Lipton, Ronald

    2013-04-01

    The impact of experimental science is defined by the capabilities of its instruments. Particle Physics, reaching to increasingly small scales, depends on advances both in accelerator and detector technology to explore high energies and rare processes. The importance of Instrumentation to the Particle Physics program has been recognized by the creation of an ``Instrumentation Frontier'' within the 2013 DPF ``Snowmass'' planning process. We give examples of how physics needs have guided development of technologies for the Energy and Intensity Frontiers. We describe how current technology has limited our reach and what new technologies may be on the horizon. We will also discuss the status of the Instrumentation Frontier work in preparation for the Community Summer Study this summer in Minneapolis.

  5. The Physics of Particle Detectors

    NASA Astrophysics Data System (ADS)

    Green, Dan

    2000-08-01

    Here is a comprehensive introduction to the physical principles and design of particle detectors, covering all major detector types in use today. After discussing the size and energy scales involved in different physical processes, the book considers nondestructive methods, including the photoelectric effect, photomultipliers, scintillators, Cerenkov and transition radiation, scattering and ionization, and the use of magnetic fields in drift and wire chambers. A complete chapter is devoted to silicon detectors. In the final part of the book, Green discusses destructive measurement techniques. Throughout, he emphasizes the physical principles underlying detection and shows, through appropriate examples, how those principles are best utilized in real detectors. Exercises and detailed further reading lists are included.

  6. A research Program in Elementary Particle Physics

    SciTech Connect

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  7. Quantum counting algorithm and its application in mesoscopic physics

    SciTech Connect

    Lesovik, G. B.; Suslov, M. V.; Blatter, G.

    2010-07-15

    We discuss a quantum counting algorithm which transforms a physical particle-number state (and superpositions thereof) into a binary number. The algorithm involves two quantum Fourier transformations. One transformation is in physical space, where a stream of nparticles is coupled to K qubits, rotating their states by prescribed angles. The second transformation is within the Hilbert space of qubits and serves to read out the particle number in a binary form. Applications include a divisibility check characterizing the size of a finite train of particles in a quantum wire and a scheme allowing one to entangle multiparticle wave functions in a Mach-Zehnder interferometer, generating Bell, Greenberger-Horne-Zeilinger, or Dicke states.

  8. EPR paradox, quantum nonlocality and physical reality

    NASA Astrophysics Data System (ADS)

    Kupczynski, M.

    2016-03-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced

  9. Particle Physics, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Martin, B. R.; Shaw, G.

    1998-01-01

    Particle Physics, Second Edition is a concise and lucid account of the fundamental constituents of matter. The standard model of particle physics is developed carefully and systematically, without heavy mathematical formalism, to make this stimulating subject accessible to undergraduate students. Throughout, the emphasis is on the interpretation of experimental data in terms of the basic properties of quarks and leptons, and extensive use is made of symmetry principles and Feynman diagrams, which are introduced early in the book. The Second Edition brings the book fully up to date, including the discovery of the top quark and the search for the Higgs boson. A final short chapter is devoted to the continuing search for new physics beyond the standard model. Particle Physics, Second Edition features: * A carefully structured and written text to help students understand this exciting and demanding subject. * Many worked examples and problems to aid student learning. Hints for solving the problems are given in an Appendix. * Optional "starred" sections and appendices, containing more specialised and advanced material for the more ambitious reader.

  10. Repelling, binding, and oscillating of two-particle discrete-time quantum walks

    NASA Astrophysics Data System (ADS)

    Wang, Qinghao; Li, Zhi-Jian

    2016-10-01

    In this paper, we investigate the effects of particle-particle interaction and static force on the propagation of probability distribution in two-particle discrete-time quantum walk, where the interaction and static force are expressed as a collision phase and a linear position-dependent phase, respectively. It is found that the interaction can lead to boson repelling and fermion binding. The static force also induces Bloch oscillation and results in a continuous transition from boson bunching to fermion anti-bunching. The interplays of particle-particle interaction, quantum interference, and Bloch oscillation provide a versatile framework to study and simulate many-particle physics via quantum walks.

  11. Introduction to Quantum Sensors in Cryogenic Particle Detection

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hamb; Kim, Sun Kee

    Cryogenic detectors have been important tools in many aspects of science because their sensitivities can provide more than extreme limits of conventional semiconductor based detectors. The sensor developments in cryogenic particle detection are based on the precise measurement of noble properties of condensed matter in low temperatures. The major measurement technologies originate from quantum measurements, phase transitions and superconducting electronics. Although the early developments of cryogenic detectors were initiated by applications to elementary particle physics, they have been adopted in biology, forensics, and security as well as astronomy and nuclear science. Various types of cryogenic detectors cover a wide energy range from THz radiations to hundreds MeV particles. We review the recent development of sensor technologies in cryogenic particle detection. The measurement principles are covered together with applications to elementary particle physics and THz measurement.

  12. Supersymmetry in Elementary Particle Physics

    SciTech Connect

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  13. Physical synthesis of quantum circuits using templates

    NASA Astrophysics Data System (ADS)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-06-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of "physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  14. Physical synthesis of quantum circuits using templates

    NASA Astrophysics Data System (ADS)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-10-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of " physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  15. Quantum and classical dissipation of charged particles

    SciTech Connect

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  16. Research in particle physics. [Dept. of Physics, Boston Univ

    SciTech Connect

    Whitaker, Scott J.

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron[endash]positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  17. Quantum Security for the Physical Layer

    SciTech Connect

    Humble, Travis S

    2013-01-01

    The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allow quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security.

  18. Teaching Elementary Particle Physics: Part I1

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2011-01-01

    I'll outline suggestions for teaching elementary particle physics, often called high energy physics, in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a great way to make a fascinating topic meaningless. Students need a conceptual framework from which to view the elementary particles. That conceptual framework is quantum field theory (QFT). Teachers and students alike tend to quake at this topic, but bear with me. We're talking here about concepts, not technicalities. My approach will be conceptual and suitable for non-scientists and scientists; if mathematical details are added in courses for future scientists, they should be simple and sparse. Introductory students should not be expected to do QFT, but only to understand its concepts. Those concepts take some getting used to, but they are simple and can be understood by any literate person, be she plumber, attorney, musician, or physicist.

  19. Innovative quantum technologies for microgravity fundamental physics and biological research

    NASA Technical Reports Server (NTRS)

    Kierk, I.; Israelsson, U.; Lee, M.

    2001-01-01

    This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.

  20. Innovative quantum technologies for microgravity fundamental physics and biological research

    NASA Technical Reports Server (NTRS)

    Kierk, I. K.

    2002-01-01

    This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.

  1. [Quantum physics, medicine and insurance].

    PubMed

    Lambeck, M

    2007-12-01

    Medicine based on natural sciences explains the action of remedies by the chemical bonding of the molecules of the remedy and of the body. This bonding takes place at distances of about 10(-10) m. Several insurance companies pay all medical treatments listed in the Hufeland catalogue of special therapeutical methods. Many of these methods contradict the mechanism mentioned above: Homoeopathy and anthroposophical medicine use substances in which the remedy is not present as matter. Bioenergetic methods like electroacupuncture according to Voll (EAV) and bioresonance use the remedies not inside the body but outside of it. They claim to substitute the chemical bonding of matter waves with the information of electromagnetic waves. The explanation given in the Hufeland catalogue by means of quantum physics is discussed and further investigations are proposed.

  2. Particle creation from the quantum stress tensor

    NASA Astrophysics Data System (ADS)

    Firouzjaee, Javad T.; Ellis, George F. R.

    2015-05-01

    Among the different methods to derive particle creation, finding the quantum stress tensor expectation value gives a covariant quantity which can be used for examining the backreaction issue. However this tensor also includes vacuum polarization in a way that depends on the vacuum chosen. Here we review different aspects of particle creation by looking at energy conservation and at the quantum stress tensor. We show that in the case of general spherically symmetric black holes that have a dynamical horizon, as occurs in a cosmological context, one cannot have pair creation on the horizon because this violates energy conservation. This confirms the results obtained in other ways in a previous paper [J. T. Firouzjaee and G. F. R. Ellis, Gen. Relativ. Gravit. 47, 6 (2015)]. Looking at the expectation value of the quantum stress tensor with three different definitions of the vacuum state, we study the nature of particle creation and vacuum polarization in black hole and cosmological models, and the associated stress-energy tensors. We show that the thermal temperature that is calculated from the particle flux given by the quantum stress tensor is compatible with the temperature determined by the affine null parameter approach. Finally, we show that in the spherically symmetric dynamic case, we can neglect the backscattering term and only consider the s-wave term near the future apparent horizon.

  3. Final Report: Particle Physics Research Program

    SciTech Connect

    Karchin, Paul E.

    2011-09-01

    We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

  4. A proposed physical analog for a quantum probability amplitude

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey

    What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.

  5. Non-accelerator particle physics

    SciTech Connect

    Steinberg, R.I.; Lane, C.E.

    1991-09-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the {nu}IMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs.

  6. Research in Elementary Particle Physics

    SciTech Connect

    White, Andrew Paul; De, Kaushik; Brandt, Andrew; Yu, Jaehoon; Farbin, Amir

    2015-02-02

    This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.

  7. Quantum physics: Teleportation for two

    NASA Astrophysics Data System (ADS)

    Tittel, Wolfgang

    2015-02-01

    The 'no-cloning' theorem of quantum mechanics forbids the perfect copying of properties of photons or electrons. But quantum teleportation allows their flawless transfer -- now even for two properties simultaneously. See Letter p.516

  8. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    ERIC Educational Resources Information Center

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  9. Non-Perturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations

    SciTech Connect

    Lindesay, James V

    2002-03-19

    We here use our non-perturbative, cluster decomposable relativistic scattering formalism to calculate photon-spinor scattering, including the related particle-antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it unitary two-particle amplitude for quantum-particle scattering. We verify that we have done this correctly by showing that our calculated photon-spinor amplitude reduces in the weak coupling limit to the usual lowest order, manifestly covariant (QED) result with the correct normalization. That we are able to successfully do this directly demonstrates that renormalizability need not be a fundamental requirement for all physically viable models.

  10. Quantum Random Walks with General Particle States

    NASA Astrophysics Data System (ADS)

    Belton, Alexander C. R.

    2014-06-01

    A convergence theorem is obtained for quantum random walks with particles in an arbitrary normal state. This unifies and extends previous work on repeated-interactions models, including that of Attal and Pautrat (Ann Henri Poincaré 7:59-104 2006) and Belton (J Lond Math Soc 81:412-434, 2010; Commun Math Phys 300:317-329, 2010). When the random-walk generator acts by ampliation and either multiplication or conjugation by a unitary operator, it is shown that the quantum stochastic cocycle which arises in the limit is driven by a unitary process.

  11. Links between quantum physics and thought.

    PubMed

    Robson, Barry

    2009-01-01

    Quantum mechanics (QM) provides a variety of ideas that can assist in developing Artificial Intelligence for healthcare, and opens the possibility of developing a unified system of Best Practice for inference that will embrace both QM and classical inference. Of particular interest is inference in the hyperbolic-complex plane, the counterpart of the normal i-complex plane of basic QM. There are two reasons. First, QM appears to rotate from i-complex Hilbert space to hyperbolic-complex descriptions when observations are made on wave functions as particles, yielding classical results, and classical laws of probability manipulation (e.g. the law of composition of probabilities) then hold, whereas in the i-complex plane they do not. Second, i-complex Hilbert space is not the whole story in physics. Hyperbolic complex planes arise in extension from the Dirac-Clifford calculus to particle physics, in relativistic correction thereby, and in regard to spinors and twisters. Generalization of these forms resemble grammatical constructions and promote the idea that probability-weighted algebraic elements can be used to hold dimensions of syntactic and semantic meaning. It is also starting to look as though when a solution is reached by an inference system in the hyperbolic-complex, the hyperbolic-imaginary values disappear, while conversely hyperbolic-imaginary values are associated with the un-queried state of a system and goal seeking behavior.

  12. Research in theoretical particle physics. Technical progress report, May 1, 1991--April 30, 1992

    SciTech Connect

    McKay, D.W.; Munczek, H.; Ralston, J.

    1992-05-01

    This report discusses the following topics in high energy physics: dynamical symmetry breaking and Schwinger-Dyson equation; consistency bound on the minimal model Higgs mass; tests of physics beyond the standard model; particle astrophysics; the interface between perturbative and non-perturbative QCD; cosmology; anisotropy in quantum networks and integer quantum hall behavior; anomalous color transparency; quantum treatment of solitons; color transparency; quantum stabilization of skyrmions; and casimir effect. (LSP)

  13. A signed particle formulation of non-relativistic quantum mechanics

    SciTech Connect

    Sellier, Jean Michel

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.

  14. H-theorem in quantum physics

    NASA Astrophysics Data System (ADS)

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.

    2016-09-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  15. H-theorem in quantum physics

    PubMed Central

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.

    2016-01-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571

  16. H-theorem in quantum physics.

    PubMed

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-01-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571

  17. H-theorem in quantum physics.

    PubMed

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  18. The dialogue between particle physics and cosmology

    SciTech Connect

    Sadoulet, B.

    1988-04-01

    In the last decade, a very close relationship has developed between particle physics and cosmology. The purpose of these lectures is to introduce particle physicists to the many scientific connections between the two fields. Before entering into the discussion of specific topics, it will first be shown that particle physics and cosmology are completely interdependent. 173 refs., 35 figs., 5 tabs.

  19. Physics: Quantum problems solved through games

    NASA Astrophysics Data System (ADS)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  20. Particle Physics on the Eve of Lhc

    NASA Astrophysics Data System (ADS)

    Studenikin, Alexander I.

    2009-01-01

    Fundamentals of particle physics. The quantum number of color, colored quarks and dynamic models of Hadrons composed of quasifree quarks / V. Matveev, A. Tavkhelidze. Discovery of the color degree of freedom in particle physics: a personal perspective / O. W. Greenberg. The evolution of the concepts of energy, momentum, and mass from Newton and Lomonosov to Einstein and Feynman / L. Okun -- Physics at accelerators and studies in SM and beyond. Search for new physics at LHC (CMS) / N. Krasnikov. Measuring the Higgs Boson(s) at ATLAS / C. Kourkoumelis. Beyond the standard model physics reach of the ATLAS experiment / G. Unel. The status of the International Linear Collider / B. Foster. Review of results of the electron-proton collider HERA / V. Chekelian. Recent results from the Tevatron on CKM matrix elements from Bs oscillations and single top production, and studies of CP violation in Bs Decays / J. P. Fernández. Direct observation of the strange b Barion [symbol] / L. Vertogradov. Search for new physics in rare B Decays at LHCb / V. Egorychev. CKM angle measurements at LHCb / S. Barsuk. Collider searches for extra spatial dimensions and black holes / G. Landsberg -- Neutrino Physics. Results of the MiniBooNE neutrino oscillation experiment / Z. Djurcic. MINOS results and prospects / J. P. Ochoa-Ricoux. The new result of the neutrino magnetic moment measurement in the GEMMA experiment / A. G. Beda ... [et al.]. The Baikal neutrino experiment: status, selected physics results, and perspectives / V. Aynutdinov ... [et al.]. Neutrino telescopes in the deep sea / V. Flaminio. Double beta decay: present status / A. S. Barabash. Beta-beams / C. Volpe. T2K experiment / K. Sakashita. Non-standard neutrino physics probed by Tokai-to-Kamioka-Korea two-detector complex / N. Cipriano Ribeiro ... [et al.]. Sterile neutrinos: from cosmology to the LHC / F. Vannucci. From Cuoricino to Cuore towards the inverted hierarchy region / C. Nones. The MARE experiment: calorimetric

  1. Computer Visualization of Many-Particle Quantum Dynamics

    SciTech Connect

    Ozhigov, A. Y.

    2009-03-10

    In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.

  2. Computer Visualization of Many-Particle Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Ozhigov, A. Y.

    2009-03-01

    In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.

  3. Quantum circuit physical design methodology with emphasis on physical synthesis

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Naser; Saheb Zamani, Morteza; Sedighi, Mehdi

    2013-11-01

    In our previous works, we have introduced the concept of "physical synthesis" as a method to consider the mutual effects of quantum circuit synthesis and physical design. While physical synthesis can involve various techniques to improve the characteristics of the resulting quantum circuit, we have proposed two techniques (namely gate exchanging and auxiliary qubit selection) to demonstrate the effectiveness of the physical synthesis. However, the previous contributions focused mainly on the physical synthesis concept, and the techniques were proposed only as a proof of concept. In this paper, we propose a methodological framework for physical synthesis that involves all previously proposed techniques along with a newly introduced one (called auxiliary qubit insertion). We will show that the entire flow can be seen as one monolithic methodology. The proposed methodology is analyzed using a large set of benchmarks. Experimental results show that the proposed methodology decreases the average latency of quantum circuits by about 36.81 % for the attempted benchmarks.

  4. Studies in theoretical particle physics

    SciTech Connect

    Kaplan, D.B.

    1991-07-01

    This proposal focuses on research on three distinct areas of particle physics: (1) Nonperturbative QCD. I tend to continue work on analytic modelling of nonperturbative effects in the strong interactions. I have been investigating the theoretical connection between the nonrelativistic quark model and QCD. The primary motivation has been to understand the experimental observation of nonzero matrix elements involving current strange quarks in ordinary matter -- which in the quark model has no strange quark component. This has led to my present work on understanding constituent (quark model) quarks as collective excitations of QCD degrees of freedom. (2) Weak Scale Baryogenesis. A continuation of work on baryogenesis in the early universe from weak interactions. In particular, an investigation of baryogenesis occurring during the weak phase transition through anomalous baryon violating processes in the standard model of weak interactions. (3) Flavor and Compositeness. Further investigation of a new mechanism that I recently discovered for dynamical mass generation for fermions, which naturally leads to a family hierarchy structure. A discussion of recent past work is found in the next section, followed by an outline of the proposed research. A recent publication from each of these three areas is attached to this proposal.

  5. Teaching Quantum Physics: What Is An Electron?

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2008-04-01

    Quantum field theorists have understood for decades that electrons and other material ``particles'' are quanta of the electron-positron field and other fields, just as photons are quanta of the electromagnetic field, and that a field quantum is a discrete and irreducible portion (or ``chunk,'' or ``bundle'') of a field, occupying an extended spatial region. But this understanding has not seeped through to most teachers and textbook writers at the introductory or undergraduate levels. Hence, there is still much discussion, and perplexity, about the supposed wave-particle paradox. But there is no paradox. Electrons are field quanta, extending spatially throughout the delta-x of the uncertainty principle, not particles. I will present a simple experiment-based method of teaching these quantum fundamentals. The experiments are the double-slit experiment for light and for electrons using intense beams (demonstrating interference) and dim beams (demonstrating discrete interactions).

  6. Quantum mechanics for applied physics and engineering

    NASA Astrophysics Data System (ADS)

    Fromhold, A. T., Jr.

    An introduction to quantum mechanics is provided, taking into account wave-particle duality, classical wave motion, the wave nature of particles the development of the time-dependent and time-independent Schroedinger wave equations, the wave-packet solutions and the uncertainty relation, and the expectation values for quantum-mechanical operators. Many-particle systems and quantum statistics are considered along with a free-electron model and the Boltzmann equation, the Wentzel-Kramers-Brillouin approximation and electron tunneling, perturbation theory, diffraction of valence electrons, and the nearly-free-electron model. The periodicity of crystalline solids is examined, and Bloch's theorem and energy bands for a periodic potential are discussed, giving attention to the periodic potential characteristic of the perfect monocrystal, the Hamiltonian for an electron in a periodic potential, and energy bands from the viewpoint of the one-electron atomic levels.

  7. Quantum dynamics and topological excitations in interacting dipolar particles

    NASA Astrophysics Data System (ADS)

    Rey, Ana

    2016-05-01

    Dipole-dipole interactions, long-range and anisotropic interactions that arise due to the virtual exchange of photons, are of fundamental importance in optical physics, and are enabling a range of new quantum technologies including quantum networks and optical lattice atomic clocks. In this talk I will first discuss how arrays of dipolar particles with a simple J = 0- J = 1 internal level structure can naturally host topological and chiral excitations including Weyl quasi-particles. Weyl fermions were first predicted to exist in the context of high energy physics but only recently have been observed in solid state systems. I will discuss a proposal of using Mott insulators of Sr atoms to observe and probe the Weyl excitation spectrum and its non-trivial chirality. Finally I will report on a recent experiment done at JILA which validates the underlying microscopic model that predicts the existence of these excitations. The experiment measured the collective emission from a coherently driven gas of ultracold 88 Sr atoms and observed a highly directional and anisotropic emission intensity and a substantial broadening of the atomic spectral lines. All of the measurements are well reproduced by the theoretical model. These investigations open the door for the exploration of novel quantum many-body systems involving strongly interacting atoms and photons, and are useful guides for further developments of optical atomic clocks and other applications involving dense atomic ensembles. AFOSR, MURI-AFOSR, ARO,NSF-PHY-1521080, JILA-NSF-PFC-1125844.

  8. On foundation of quantum physics

    SciTech Connect

    Solov'ev, E. A.

    2009-05-15

    Some aspects of the interpretation of quantum theory are discussed. It is emphasized that quantum theory is formulated in the Cartesian coordinate system; in other coordinates the result obtained with the help of the Hamiltonian formalism and commutator relations between 'canonically conjugated' coordinate and momentum operators leads to a wrong version of quantum mechanics. The origin of time is analyzed by the example of atomic collision theory in detail; it is shown that the time-dependent Schroedinger equation is meaningless since in the high-impact-energy limit it transforms into an equation with two time-like variables. Following the Einstein-Rozen-Podolsky experiment and Bell's inequality, the wave function is interpreted as an actual field of information in the elementary form. The concept 'measurement' is also discussed.

  9. Two Dimensional Particle-In-Cell Code for Simulation of Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Decyk, V. K.; Tonge, J.; Dauger, D. E.

    2002-11-01

    We have developed a two dimensional code for simulating quantum plasmas (1). This unique code propagates many quantum particles forward in time self-consistently using the semi-classical approximation. Because of this it can model the statistical properties of interacting quantum particles. We are currently testing this code using small numbers of particles with model problems which we can use to verify the accuracy of the code. The goal is to model from first principles the statistical properties of plasmas where quantum mechanics plays a role such as hot high density plasmas found in stellar interiors (2). (1) D. Dauger, Semiclassical Modeling of Quantum-Mechanical Multiparticle Systems using Parallel Particle-In-Cell Methods, PHD Thesis (2) M. Opher et. al. , Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Physics of Plasma, 8, No. 5, p. 2454 Sponsored by NSF

  10. Thermal equilibrium of two quantum Brownian particles

    SciTech Connect

    Valente, D. M.; Caldeira, A. O.

    2010-01-15

    The influence of the environment in the thermal equilibrium properties of a bipartite continuous variable quantum system is studied. The problem is treated within a system-plus-reservoir approach. The considered model reproduces the Brownian motion when the two particles are isolated and induces an effective interaction between them, depending on the choice of the spectral function of the bath. The coupling between the system and the environment guarantees the translational invariance of the system in the absence of an external potential. The entanglement between the particles is measured by the logarithmic negativity, which is shown to monotonically decrease with the increase of the temperature. A range of finite temperatures is found in which entanglement is still induced by the reservoir.

  11. Quarked!--Adventures in Particle Physics Education

    ERIC Educational Resources Information Center

    MacDonald, Teresa; Bean, Alice

    2009-01-01

    Particle physics is a subject that can send shivers down the spines of students and educators alike--with visions of long mathematical equations and inscrutable ideas. This perception, along with a full curriculum, often leaves this topic the road less traveled until the latter years of school. Particle physics, including quarks, is typically not…

  12. Particle Physics: From School to University.

    ERIC Educational Resources Information Center

    Barlow, Roger

    1992-01-01

    Discusses the teaching of particle physics as part of the A-level physics course in British secondary schools. Utilizes the quark model of hadrons and the conceptual kinematics of particle collisions, as examples, to demonstrate practical instructional possibilities in relation to student expectations. (JJK)

  13. Teaching Elementary Particle Physics: Part I

    ERIC Educational Resources Information Center

    Hobson, Art

    2011-01-01

    I'll outline suggestions for teaching elementary particle physics, often called "high energy physics," in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a…

  14. Quantum Mesoscopic Physics of Electrons and Photons

    NASA Astrophysics Data System (ADS)

    Akkermans, Eric

    2013-03-01

    We first review basic notions of coherent quantum transport at the mesoscopic scale for both electronic and photonic systems. We then show that successful descriptions developed for coherent electronic transport (e.g. weak localization and UCF) and thermodynamics (persistent currents), noise and full counting statistics can be extended and applied to the study of Quantum Electrodynamics of quantum conductors and of quantum optics based on photons emitted by such conductors. In this context, we discuss the two following specific problems : (1) Ramsey fringes and time domain interference for particle creation form a quantum vacuum with a specific application to dynamical Coulomb blockade. In that setup, the current noise of a coherent conductor is biased by two successive voltage pulses. An interference pattern between photon assisted processes is observed which is explained by the contribution of several processes to the probability to emit photons after each pulse. Recent experiments in this context will be discussed. (2) Quantum emitter coupled to a fractal environment. A new and unexpected type of oscillatory structures for the probability of spontaneous emission has been obtained which results from the fractal nature of the quantum vacuum. When applied to the case of a tunnel junction as a quantum emitter of photons, the same oscillatory structure arises for the conductance of the tunnel junction. This work was supported by the Israel Science Foundation Grant No.924/09

  15. International Particle Physics Masterclasses with LHC data

    NASA Astrophysics Data System (ADS)

    Foka, Panagiota

    2014-04-01

    The International Particle Physics Masterclasses is an educational activity developed by the International Particle Physics Outreach Group with the aim to bring the excitement of cutting-edge particle-physics research into the classroom. Since 2005, every year, thousands of pupils in many countries all over the world become "scientists for a day" in research centres or universities close to their schools as they are introduced to the mysteries of particle physics. In 2012, 10 000 students from 148 institutions in 31 countries took part in this popular event over a month period. The program of a typical day includes lectures that give insight to topics and methods of fundamental research followed by a "hands-on" session where students perform measurements on real data from particle-physics experiments themselves. The last two years LHC data from the ALICE, ATLAS and CMS experiments were used. A overview of the performed measurements and the employed methodology is presented.

  16. Beyond relativity and quantum mechanics: space physics

    NASA Astrophysics Data System (ADS)

    Lindner, Henry H.

    2011-09-01

    Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.

  17. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Ponderomotive force, proportional to , acting on a charged particle travelling across an inhomogeneous electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Serov, Alexander V.

    1998-03-01

    A numerical investigation is reported of the passage of charged particles across a spatially inhomogeneous hf field. It is shown that a particle crossing a linearly polarised inhomogeneous wave experiences an average force proportional to . The force has components along the directions of particle motion and wave propagation. Expressions describing this force are obtained in the approximation of a small nonlinear parameter.

  18. Preparation and measurement in quantum physics

    NASA Astrophysics Data System (ADS)

    Park, James L.; Band, William

    1992-05-01

    To honor Henry Margenau on the occasion of his 90th birthday, we attempt in this essay to integrate certain aspects of the physics, philosophy, and pedagogy of quantum mechanics in a manner very much inspired by Margenau's idealist scientific epistemology. Over half a century ago, Margenau was perhaps the first philosopher of science to recognize and elaborate upon the essential distinction between the preparation of a quantum state and the measurement of an observable associated with a system in that state; yet in contemporary quantum texts that distinction rarely receives adequate emphasis even though, as we demonstrate, it may be explicated through a series of simple illustrations.

  19. Toward a physical theory of quantum cognition.

    PubMed

    Takahashi, Taiki

    2014-01-01

    Recently, mathematical models based on quantum formalism have been developed in cognitive science. The target articles in this special issue of Topics in Cognitive Science clearly illustrate how quantum theoretical formalism can account for various aspects of human judgment and decision making in a quantitatively and mathematically rigorous manner. In this commentary, we show how future studies in quantum cognition and decision making should be developed to establish theoretical foundations based on physical theory, by introducing Taketani's three-stage theory of the development of science. Also, implications for neuroeconomics (another rapidly evolving approach to human judgment and decision making) are discussed. PMID:24482329

  20. Toward a physical theory of quantum cognition.

    PubMed

    Takahashi, Taiki

    2014-01-01

    Recently, mathematical models based on quantum formalism have been developed in cognitive science. The target articles in this special issue of Topics in Cognitive Science clearly illustrate how quantum theoretical formalism can account for various aspects of human judgment and decision making in a quantitatively and mathematically rigorous manner. In this commentary, we show how future studies in quantum cognition and decision making should be developed to establish theoretical foundations based on physical theory, by introducing Taketani's three-stage theory of the development of science. Also, implications for neuroeconomics (another rapidly evolving approach to human judgment and decision making) are discussed.

  1. Particle Physics Implications for Astrophysics

    NASA Astrophysics Data System (ADS)

    Stochaj, Steve

    2012-10-01

    New Mexico State University's involvement in the measurement of cosmic rays (space borne energetic particles) dates back to the 1970's. Measurements of these particles can contribute to our understanding of the most energetic processes in the Universe. The talk will cover the contributions of NMSU to the measurements of the antimatter components of the cosmic radiation and the study of solar energetic particles with PAMELA, Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA was launched on a Russian Resurs-DK1 spacecraft into a polar orbit in June 2006 and remains operational to date. A summary of the PAMELA results and their connection to astrophysics will be given.

  2. The Particle inside a Ring: A Two-Dimensional Quantum Problem Visualized by Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Ellison, Mark D.

    2008-01-01

    The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…

  3. [Elementary particle physics. Annual report

    SciTech Connect

    Izen, J.M.; Lou, X.

    1998-12-31

    The BABAR construction phase is ending and first data is expected during May, 1999. During construction, UTD has developed analysis framework software, contributed to the BABAR Physics Book, assembled a first rate computing facility, and pioneered Internet-based video techniques for the collaboration. The authors are now defining the physics goals, and are participating in the formation physics analysis groups. They are starting to use their computing facility for BABAR production jobs.

  4. Standard Model of Particle Physics--a health physics perspective.

    PubMed

    Bevelacqua, J J

    2010-11-01

    The Standard Model of Particle Physics is reviewed with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health physics are emphasized and specific applications are presented. The capability of the Standard Model to provide health physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the calculation of the neutron mean lifetime.

  5. Charged particle therapy: the physics of interaction.

    PubMed

    Lomax, Antony J

    2009-01-01

    Particle therapy has a long and distinguished history with more than 50,000 patients having been treated, mainly with high-energy proton therapy. Particularly, for proton therapy, there is an increasing interest in exploiting the physical characteristics of charged particles for further improving the potential of radiation therapy. In this article, we review the most important interactions of charged particles with matter and describe the basic physical principles that underlie why particle beams behave the way they do and why such a behavior could bring many benefits in radiation therapy.

  6. Maxwell's equations, quantum physics and the quantum graviton

    NASA Astrophysics Data System (ADS)

    Gersten, Alexander; Moalem, Amnon

    2011-12-01

    Quantum wave equations for massless particles and arbitrary spin are derived by factorizing the d'Alembertian operator. The procedure is extensively applied to the spin one photon equation which is related to Maxwell's equations via the proportionality of the photon wavefunction Ψ to the sum E + iB of the electric and magnetic fields. Thus Maxwell's equations can be considered as the first quantized one-photon equation. The photon wave equation is written in two forms, one with additional explicit subsidiary conditions and second with the subsidiary conditions implicitly included in the main equation. The second equation was obtained by factorizing the d'Alembertian with 4×4 matrix representation of "relativistic quaternions". Furthermore, scalar Lagrangian formalism, consistent with quantization requirements is developed using derived conserved current of probability and normalization condition for the wavefunction. Lessons learned from the derivation of the photon equation are used in the derivation of the spin two quantum equation, which we call the quantum graviton. Quantum wave equation with implicit subsidiary conditions, which factorizes the d'Alembertian with 8×8 matrix representation of relativistic quaternions, is derived. Scalar Lagrangian is formulated and conserved probability current and wavefunction normalization are found, both consistent with the definitions of quantum operators and their expectation values. We are showing that the derived equations are the first quantized equations of the photon and the graviton.

  7. Particle physics after the Higgs discovery: Philosophical perspectives

    NASA Astrophysics Data System (ADS)

    Friederich, Simon; Lehmkuhl, Dennis

    2015-08-01

    The recent discovery at the LHC of a particle with properties matching those expected of the Higgs boson is a decisive event in the history of particle physics. The present special section combines three contributions that approach conceptual and methodological challenges related to this event and the current situation in particle physics from different angles. One contribution studies the experimental practices of contemporary particle physics by investigating the role of computer simulations in these practices; in particular, it focuses on the status of simulations as compared to experiments that in some circumstances have analogous functions. One contribution investigates the status of the controversial naturalness problem that many physicists see as the most severe shortcoming of the Standard Model of elementary particle physics. Finally, a third contribution critically assesses the impact of suggested no-go theorems concerning the interpretability of rigorous algebraic quantum field theory in terms of particles at the phenomenological level. In what follows we present a short overview of these contributions, highlighting some of their central ideas and arguments and putting them into context.

  8. Quantum chaos and thermalization in isolated systems of interacting particles

    NASA Astrophysics Data System (ADS)

    Borgonovi, F.; Izrailev, F. M.; Santos, L. F.; Zelevinsky, V. G.

    2016-04-01

    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.

  9. Quantum Particles from Classical Probabilities in Phase Space

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2012-10-01

    Quantum particles in a potential are described by classical statistical probabilities. We formulate a basic time evolution law for the probability distribution of classical position and momentum such that all known quantum phenomena follow, including interference or tunneling. The appropriate quantum observables for position and momentum contain a statistical part which reflects the roughness of the probability distribution. "Zwitters" realize a continuous interpolation between quantum and classical particles. Such objects may provide for an effective one-particle description of classical or quantum collective states as droplets of a liquid, macromolecules or a Bose-Einstein condensate. They may also be used for quantitative fundamental tests of quantum mechanics. We show that the ground state for zwitters has no longer a sharp energy. This feature permits to put quantitative experimental bounds on a small parameter for possible deviations from quantum mechanics.

  10. Quantum supremacy of many-particle thermal machines

    NASA Astrophysics Data System (ADS)

    Jaramillo, J.; Beau, M.; del Campo, A.

    2016-07-01

    While the emergent field of quantum thermodynamics has the potential to impact energy science, the performance of thermal machines is often classical. We ask whether quantum effects can boost the performance of a thermal machine to reach quantum supremacy, i.e., surpassing both the efficiency and power achieved in classical thermodynamics. To this end, we introduce a nonadiabatic quantum heat engine operating an Otto cycle with a many-particle working medium, consisting of an interacting Bose gas confined in a time-dependent harmonic trap. It is shown that thanks to the interplay of nonadiabatic and many-particle quantum effects, this thermal machine can outperform an ensemble of single-particle heat engines with same resources, demonstrating the quantum supremacy of many-particle thermal machines.

  11. Counting statistics of many-particle quantum walks

    SciTech Connect

    Mayer, Klaus; Tichy, Malte C.; Buchleitner, Andreas; Mintert, Florian; Konrad, Thomas

    2011-06-15

    We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.

  12. PREFACE: Particles and Fields: Classical and Quantum

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Clemente-Gallardo, J.; Marmo, G.

    2007-07-01

    This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee George Sudarshan George Sudarshan

    International Advisory Committee

    A. Ashtekhar (Pennsylvania State University, USA)
    L. J. Boya (Universidad de Zaragoza, Spain)
    I. Cirac (Max Planck Institute, Garching

  13. Medium energy elementary particle physics

    SciTech Connect

    Not Available

    1991-01-01

    This report discusses the following topics: muon beam development at LAMPF; muon physics; a new precision measurement of the muon g-2 value; measurement of the spin-dependent structure functions of the neutron and proton; and meson factories. (LSP)

  14. Particle Physics on the Eve of Lhc

    NASA Astrophysics Data System (ADS)

    Studenikin, Alexander I.

    2009-01-01

    Fundamentals of particle physics. The quantum number of color, colored quarks and dynamic models of Hadrons composed of quasifree quarks / V. Matveev, A. Tavkhelidze. Discovery of the color degree of freedom in particle physics: a personal perspective / O. W. Greenberg. The evolution of the concepts of energy, momentum, and mass from Newton and Lomonosov to Einstein and Feynman / L. Okun -- Physics at accelerators and studies in SM and beyond. Search for new physics at LHC (CMS) / N. Krasnikov. Measuring the Higgs Boson(s) at ATLAS / C. Kourkoumelis. Beyond the standard model physics reach of the ATLAS experiment / G. Unel. The status of the International Linear Collider / B. Foster. Review of results of the electron-proton collider HERA / V. Chekelian. Recent results from the Tevatron on CKM matrix elements from Bs oscillations and single top production, and studies of CP violation in Bs Decays / J. P. Fernández. Direct observation of the strange b Barion [symbol] / L. Vertogradov. Search for new physics in rare B Decays at LHCb / V. Egorychev. CKM angle measurements at LHCb / S. Barsuk. Collider searches for extra spatial dimensions and black holes / G. Landsberg -- Neutrino Physics. Results of the MiniBooNE neutrino oscillation experiment / Z. Djurcic. MINOS results and prospects / J. P. Ochoa-Ricoux. The new result of the neutrino magnetic moment measurement in the GEMMA experiment / A. G. Beda ... [et al.]. The Baikal neutrino experiment: status, selected physics results, and perspectives / V. Aynutdinov ... [et al.]. Neutrino telescopes in the deep sea / V. Flaminio. Double beta decay: present status / A. S. Barabash. Beta-beams / C. Volpe. T2K experiment / K. Sakashita. Non-standard neutrino physics probed by Tokai-to-Kamioka-Korea two-detector complex / N. Cipriano Ribeiro ... [et al.]. Sterile neutrinos: from cosmology to the LHC / F. Vannucci. From Cuoricino to Cuore towards the inverted hierarchy region / C. Nones. The MARE experiment: calorimetric

  15. Master Equation for a Quantum Particle in a Gas

    SciTech Connect

    Hornberger, Klaus

    2006-08-11

    The equation for the quantum motion of a Brownian particle in a gaseous environment is derived by means of S-matrix theory. This quantum version of the linear Boltzmann equation accounts nonperturbatively for the quantum effects of the scattering dynamics and describes decoherence and dissipation in a unified framework. As a completely positive master equation it incorporates both the known equation for an infinitely massive Brownian particle and the classical linear Boltzmann equation as limiting cases.

  16. Master equation for a quantum particle in a gas.

    PubMed

    Hornberger, Klaus

    2006-08-11

    The equation for the quantum motion of a Brownian particle in a gaseous environment is derived by means of S-matrix theory. This quantum version of the linear Boltzmann equation accounts nonperturbatively for the quantum effects of the scattering dynamics and describes decoherence and dissipation in a unified framework. As a completely positive master equation it incorporates both the known equation for an infinitely massive Brownian particle and the classical linear Boltzmann equation as limiting cases.

  17. Unification of quantum theory and classical physics

    SciTech Connect

    Stapp, H.P.

    1985-07-01

    A program is described for unifying quantum theory and classical physics on the basis of the Copenhagen-interpretation idea of external reality and a recently discovered classical part of the electromagnetic field. The program effects an integration of the intuitions of Heisenberg, Bohr, and Einstein.

  18. Quantum Inferential Leaps: The Rhetoric of Physics.

    ERIC Educational Resources Information Center

    McPhail, Mark Lawrence

    1992-01-01

    Considers the epistemological implications of a changing understanding of reality, based on contemporary connections between rhetoric as epistemic (questioning underlying assumptions about modernist conceptualizations of science and language) and quantum physics (rejecting the notion of an objective reality existing independent of observers).…

  19. Introduction to Statistical Issues in Particle Physics

    NASA Astrophysics Data System (ADS)

    Barlow, Roger

    An account is given of the methods of working of Experimental High Energy Particle Physics, from the viewpoint of statisticians and others unfamiliar with the field. Current statistical problems, techniques, and hot topics are introduced and discussed.

  20. Introduction to Elementary Particle Physics

    NASA Astrophysics Data System (ADS)

    Bettini, Alessandro

    The Standard Model is the most comprehensive physical theory ever developed. This textbook conveys the basic elements of the Standard Model using elementary concepts, without the theoretical rigor found in most other texts on this subject. It contains examples of basic experiments, allowing readers to see how measurements and theory interplay in the development of physics. The author examines leptons, hadrons and quarks, before presenting the dynamics and the surprising properties of the charges of the different forces. The textbook concludes with a brief discussion on the recent discoveries of physics beyond the Standard Model, and its connections with cosmology. Quantitative examples are given, and the reader is guided through the necessary calculations. Each chapter ends in the exercises, and solutions to some problems are included in the book. Complete solutions are available to instructors at www.cambridge.org/9780521880213. This textbook is suitable for advanced undergraduate students and graduate students.

    1. Physics on the boundary between classical and quantum mechanics

      NASA Astrophysics Data System (ADS)

      't Hooft, Gerard

      2014-04-01

      Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?

    2. Quantum physics reimagined for the general public

      NASA Astrophysics Data System (ADS)

      Bobroff, Julien

      2015-03-01

      Quantum Physics has always been a challenging issue for outreach. It is invisible, non-intuitive and written in sophisticated mathematics. In our ``Physics Reimagined'' research group, we explore new ways to present that field to the general public. Our approach is to develop close collaborations between physicists and designers or graphic artists. By developing this new kind of dialogue, we seek to find new ways to present complex phenomena and recent research topics to the public at large. For example, we created with web-illustrators a series of 3D animations about basic quantum laws and research topics (graphene, Bose-Einstein condensation, decoherence, pump-probe techniques, ARPES...). We collaborated with designers to develop original setups, from quantum wave animated models or foldings to a superconducting circus with levitating animals. With illustrators, we produced exhibits, comic strips or postcards displaying the physicists in their labs, either famous ones or even our own colleagues in their daily life as researchers. With artists, we recently made a stop-motion picture to explain in an esthetic way the process of discovery and scientific publication. We will discuss how these new types of outreach projects allowed us to engage the public with modern physics both on a scientific and cultural level and how the concepts and process can easily be replicated and expanded by other physicists. We are at the precise time when creative tools, interfaces, and ways of sharing and learning are rapidly evolving (wikipedia, MOOCs, smartphones...). If scientists don't step forward to employ these tools and develop new resources, other people will, and the integrity of the science and underlying character of research risks being compromised. All our productions are free to use and can be downloaded at www.PhysicsReimagined.com (for 3D quantum videos, specific link: www.QuantumMadeSimple.com) This work benefited from the support of the Chair ``Physics Reimagined

    3. Quantum backreaction through the Bohmian particle.

      PubMed

      Prezhdo, O V; Brooksby, C

      2001-04-01

      A novel solution to the quantum backreaction problem in a mixed quantum-classical simulation is provided using the Bohmian interpretation of quantum mechanics. The Bohmian backreaction is unique, computationally simple, features reaction channel branching, and easily gives the full classical limit. The Bohmian quantum-classical method is illustrated by application to a model of O2 interacting with a Pt surface.

    4. On the photoelectric quantum yield of small dust particles

      NASA Astrophysics Data System (ADS)

      Kimura, Hiroshi

      2016-07-01

      Photoelectron emission is crucial to electric charging of dust particles around main-sequence stars and gas heating in various dusty environments. An estimate of the photoelectric processes contains an ill-defined parameter called the photoelectric quantum yield, which is the total number of electrons ejected from a dust particle per absorbed photon. Here we revisit the so-called small particle effect of photoelectron emission and provide an analytical model to estimate photoelectric quantum yields of small dust particles in sizes down to nanometers. We show that the small particle effect elevates the photoelectric quantum yields of nanoparticles up to by a factor of 103 for carbon, water ice, and organics, and a factor of 102 for silicate, silicon carbide, and iron. We conclude the surface curvature of the particles is a quantity of great importance to the small particle effect, unless the particles are submicrometers in radius or larger.

    5. Particle transport and deposition: basic physics of particle kinetics

      PubMed Central

      Tsuda, Akira; Henry, Frank S.; Butler, James P.

      2015-01-01

      The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

    6. Particle transport and deposition: basic physics of particle kinetics.

      PubMed

      Tsuda, Akira; Henry, Frank S; Butler, James P

      2013-10-01

      The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research.

    7. Theoretical particle physics, Task A

      SciTech Connect

      Not Available

      1991-07-01

      This report briefly discusses the following topics: The Spin Structure of the Nucleon; Solitons and Discrete Symmetries; Baryon Chiral Perturbation Theory; Constituent Quarks as Collective Excitations; Kaon Condensation; Limits on Neutrino Masses; The 17 KeV Neutrino and Majoron Models; The Strong CP Problem; Renormalization of the CP Violating {Theta} Parameter; Weak Scale Baryogenesis; Chiral Charge in Finite Temperature QED; The Heavy Higgs Mass Bound; The Heavy Top Quark Bound; The Heavy Top Quark Condensate; The Heavy Top Quark Vacuum Instability; Phase Diagram of the Lattice Higgs-Yukawa Model; Anomalies and the Standard Model on the Lattice; Constraint Effective Potential in a Finite Box; Resonance Picture in a Finite Box; Fractal Dimension of Critical Clusters; Goldstone Bosons at Finite Temperature; Cluster Algorithms and Scaling in CP(N) Models; Rare Decay Modes of the Z{degrees} Vector Boson; Parity-Odd Spin-Dependent Structure Functions; Radiative Corrections, Top Mass and LEP Data; Supersymmetric Model with the Higgs as a Lepton; Chiral Change Oscillation in the Schwinger Model; Electric Dipole Moment of the Neutron; DOE Grand Challenge Program; and Lattice Quantum Electrodynamics.

    8. Theoretical particle physics, Task A

      NASA Astrophysics Data System (ADS)

      1991-07-01

      This report briefly discusses the following topics: The Spin Structure of the Nucleon; Solitons and Discrete Symmetries; Baryon Chiral Perturbation Theory; Constituent Quarks as Collective Excitations; Kaon Condensation; Limits on Neutrino Masses; The 17 KeV Neutrino and Majoron Models; The Strong CP Problem; Renormalization of the CP Violating (Theta) Parameter; Weak Scale Baryogenesis; Chiral Charge in Finite Temperature QED; The Heavy Higgs Mass Bound; The Heavy Top Quark Bound; The Heavy Top Quark Condensate; The Heavy Top Quark Vacuum Instability; Phase Diagram of the Lattice Higgs-Yukawa Model; Anomalies and the Standard Model on the Lattice; Constraint Effective Potential in a Finite Box; Resonance Picture in a Finite Box; Fractal Dimension of Critical Clusters; Goldstone Bosons at Finite Temperature; Cluster Algorithms and Scaling in CP(N) Models; Rare Decay Modes of the Z(degrees) Vector Boson; Parity-Odd Spin-Dependent Structure Functions; Radiative Corrections, Top Mass and LEP Data; Supersymmetric Model with the Higgs as a Lepton; Chiral Change Oscillation in the Schwinger Model; Electric Dipole Moment of the Neutron; DOE Grand Challenge Program; and Lattice Quantum Electrodynamics.

    9. Research on elementary particle physics

      SciTech Connect

      Holloway, L.E.; O'Halloran, T.A.

      1992-05-01

      This report describes the activities of the University of Illinois Experimental High Energy Physics Group. The physicists in the University of Illinois High Energy Physics Group are engaged in a wide variety of experiments at current and future accelerator laboratories. These include: (1) The CDF experiment at the Fermilab Tevetron p{bar p} collider. (2) Design and developmental work for the SDC group at SSCL. (3) Experiments at the wide band photon beam at Fermilab. (4) The SLD experiment at SLAC and design studies for a {tau}-charm factor. (5) CP violation experiments at Fermilab. (6) The HiRes cosmic ray experiment at Dugway Proving Grounds, Utah. (7) Computational facilities. (8) Electronics systems development.

    10. Research in Theoretical Particle Physics

      SciTech Connect

      Ralston, John P.

      2013-07-28

      This document is the final report on activity of the University of Kansas theory group supported under DOE Grant Number DE-FG02-04ER14308, ending April 30, 3013. The report covers the most recent three year period period May 1, 2010-April 30, 2013. Faculty supported by the grant during the period were Danny Marfatia (co-I), Douglas McKay (emeritus) and John Ralston (PI). The group's research topics and accomplishments covered numerous different topics subsumed under the {\\it the Energy Frontier, the Intensity Frontier}, and {\\it the Cosmic Frontier}. Many theoretical and experimental results related to the Standard Model and models of new physics were published during the reporting period. The group's research emphasis has been on challenging and confronting {\\it Anything that is Observable} about the physical Universe.

    11. Small Particle May Answer Large Physics Questions

      SciTech Connect

      Hazi, A

      2005-09-20

      In one of those interesting intersections of particle physics, astrophysics, and cosmology, scientists from Lawrence Livermore National Laboratory, the University of California at Berkeley (UCB), the University of Florida (UF), and the National Radio Astronomy Observatory (NRAO) have joined together to try to pin down an elusive particle. This particle, called the axion, if it is found to exist and is not just a hypothesis, would be a long-sought relic from the first fractional second of the birth of the universe and one of the most weakly interacting particles known. Experimental verification of the existence of the axion would not only help ''balance the budget'' for the missing mass of the universe but also clear up one of the thorniest issues in particle physics.

    12. What is a Particle in Classical Physics? A Wave?

      NASA Astrophysics Data System (ADS)

      Mickens, Ronald E.

      2005-11-01

      The concepts of ``particle" and ``wave" play important roles in quantum mechanics in that a given microscopic system can, under the proper circumstances, display properties of each.ootnotetextA Messiah, Quantum Mechanics, Vols. I and II (Wiley, 1961). However, these categories have their genesis in classical mechanicsootnotetextH. Goldstein, Classical Mechanics (Addison-Wesley, 1980, 2nd edition). and we must turn to this area to understand what they mean. In particular, it must be clearly understood that these concepts are idealistic representations of physical phenomena and, as a consequence, each may not correspond to any actual physical system. We discuss the definition of ``particle'' from the perspective of how it has been defined in standard textbooks and carry out a similar analysis for the notion of ``wave.'' We then define ``particle'' and ``wave'' within the context of classical mechanics by means of their respective equations of motion. The general (tentative) conclusion is that within the framework of classical mechanics the concepts of ``particle'' and ``wave'' systems may be unambiguously defined.

    13. Visual Analysis of Quantum Physics Data

      NASA Astrophysics Data System (ADS)

      Hege, Hans-Christian; Koppitz, Michael; Marquardt, Falko; McDonald, Chris; Mielack, Christopher

      During the past two decades data visualization has matured as an own sub-discipline in computer science. Its methods are successfully applied in almost all areas of science, engineering, and medicine, in order to depict and visually analyze data—both from experiment and simulation. The goal of data visualization is to achieve a better understanding of data by intuitive, perceptually efficient and interactively steerable depictions of the data. For this specific data analysis methods are combined with visualization techniques that utilize modern computer graphics. Quantum physics, however, so far remained largely omitted as application area, in particular due to the high dimensionality of the phenomena. However, the situation is not hopeless; on the contrary, there are many ways to visualize quantum mechanical phenomena. In this paper, this will be demonstrated by means of visualizations of simulation data from quantum chemistry and high-harmonic generation.

    14. Quantum correlations of identical particles subject to classical environmental noise

      NASA Astrophysics Data System (ADS)

      Beggi, Andrea; Buscemi, Fabrizio; Bordone, Paolo

      2016-09-01

      In this work, we propose a measure for the quantum discord of indistinguishable particles, based on the definition of entanglement of particles given in Wiseman and Vaccaro (Phys Rev Lett 91:097902, 2003. doi: 10.1103/PhysRevLett.91.097902). This discord of particles is then used to evaluate the quantum correlations in a system of two identical bosons (fermions), where the particles perform a quantum random walk described by the Hubbard Hamiltonian in a 1D lattice. The dynamics of the particles is either unperturbed or subject to a classical environmental noise—such as random telegraph, pink or brown noise. The observed results are consistent with those for the entanglement of particles, and we observe that on-site interaction between particles have an important protective effect on correlations against the decoherence of the system.

    15. Quantum correlations of identical particles subject to classical environmental noise

      NASA Astrophysics Data System (ADS)

      Beggi, Andrea; Buscemi, Fabrizio; Bordone, Paolo

      2016-06-01

      In this work, we propose a measure for the quantum discord of indistinguishable particles, based on the definition of entanglement of particles given in Wiseman and Vaccaro (Phys Rev Lett 91:097902, 2003. doi: 10.1103/PhysRevLett.91.097902). This discord of particles is then used to evaluate the quantum correlations in a system of two identical bosons (fermions), where the particles perform a quantum random walk described by the Hubbard Hamiltonian in a 1D lattice. The dynamics of the particles is either unperturbed or subject to a classical environmental noise—such as random telegraph, pink or brown noise. The observed results are consistent with those for the entanglement of particles, and we observe that on-site interaction between particles have an important protective effect on correlations against the decoherence of the system.

    16. Coherent States of Quantum Free Particle on the Spherical Space

      NASA Astrophysics Data System (ADS)

      Dehdashti, Shahram; Roknizadeh, Rasoul; Mahdifar, Ali; Chen, Hongsheng

      2016-01-01

      In this paper, we study the quantum free particle on the spherical space by applying da costa approach for quantum particle on the curved space. We obtain the discrete energy eigenvalues and associated normalized eigenfunctions of the free particle on the sphere. In addition, we introduce the Gazeau-Klauder coherent states of free particle on the sphere. Then, the Gaussian coherent states is defined, which is used to describe the localized particle on the spherical space. Finally, we study the relation between the f-deformed coherent states and Gazeau-Klauder ones for this system.

    17. Elementary particle physics at the University of Florida

      SciTech Connect

      Not Available

      1991-12-01

      This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

    18. Plato's TIMAIOσ (TIMAEUS) and Modern Particle Physics

      NASA Astrophysics Data System (ADS)

      Machleidt, Ruprecht

      2005-04-01

      It is generally known that the question, ``What are the smallest particles (elementary particles) that all matter is made from?'', was posed already in the antiquity. The Greek natural philosophers Leucippus and Democritus were the first to suggest that all matter was made from atoms. Therefore, most people perceive them as the ancient fathers of elementary particle physics. It will be the purpose of my contribution to point out that this perception is wrong. Modern particle physics is not just a primitive atomism. More important than the materialistic particles are the underlying symmetries (e. g., SU(3) and SU(6)). A similar idea was first advanced by Plato in his dialog TIMAIOσ (Latin translation: TIMAEUS): Geometric symmetries generate the materialistic particles from a few even more elementary items. Plato's vision is amazingly close to the ideas of modern particle physics. This fact, which is unfortunately little known, has been pointed out repeatedly by Heisenberg (see, e. g., Werner Heisenberg, Across the Frontiers, Harper & Row, New York, 1974).

    19. Quantum effects for particles channeling in a bent crystal

      NASA Astrophysics Data System (ADS)

      Feranchuk, Ilya; San, Nguyen Quang

      2016-09-01

      Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.

    20. Quantum Mechanics for Beginning Physics Students

      NASA Astrophysics Data System (ADS)

      Schneider, Mark B.

      2010-10-01

      The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For example, Halliday, Resnick, and Walker describe the origin of atomic quantum numbers as such: "The restrictions on the values of the quantum number for the hydrogen atom, as listed in Table 39-2, are not arbitrary but come out of the solution to Schrödinger's equation." They give no further justification, but do point out the values are in conflict with the predictions of the Bohr model.

    1. Research in Theoretical Particle Physics

      SciTech Connect

      Feldman, Hume A; Marfatia, Danny

      2014-09-24

      This document is the final report on activity supported under DOE Grant Number DE-FG02-13ER42024. The report covers the period July 15, 2013 – March 31, 2014. Faculty supported by the grant during the period were Danny Marfatia (1.0 FTE) and Hume Feldman (1% FTE). The grant partly supported University of Hawaii students, David Yaylali and Keita Fukushima, who are supervised by Jason Kumar. Both students are expected to graduate with Ph.D. degrees in 2014. Yaylali will be joining the University of Arizona theory group in Fall 2014 with a 3-year postdoctoral appointment under Keith Dienes. The group’s research covered topics subsumed under the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Many theoretical results related to the Standard Model and models of new physics were published during the reporting period. The report contains brief project descriptions in Section 1. Sections 2 and 3 lists published and submitted work, respectively. Sections 4 and 5 summarize group activity including conferences, workshops and professional presentations.

    2. Flavor Democracy in Particle Physics

      SciTech Connect

      Sultansoy, Saleh

      2007-04-23

      The flavor democracy hypothesis (or, in other words, democratic mass matrix approach) was introduced in seventies taking in mind three Standard Model (SM) families. Later, this idea was disfavored by the large value of the t-quark mass. In nineties the hypothesis was revisited assuming that extra SM families exist. According to flavor democracy the fourth SM family should exist and there are serious arguments disfavoring the fifth SM family. The fourth SM family quarks lead to essential enhancement of the Higgs boson production cross-section at hadron colliders and the Tevatron can discover the Higgs boson before the LHC, if it mass is between 140 and 200 GeV. Then, one can handle 'massless' Dirac neutrinos without see-saw mechanism. Concerning BSM physics, flavor democracy leads to several consequences: tan{beta} {approx_equal} mt/mb {approx_equal} 40 if there are three MSSM families; super-partner of the right-handed neutrino can be the LSP; relatively light E(6)-inspired isosinglet quark etc. Finally, flavor democracy may give opportunity to handle ''massless'' composite objects within preonic models.

    3. Basics of particle therapy I: physics.

      PubMed

      Park, Seo Hyun; Kang, Jin Oh

      2011-09-01

      With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

    4. Basics of particle therapy I: physics

      PubMed Central

      Park, Seo Hyun

      2011-01-01

      With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest. PMID:22984664

    5. PREFACE: Particles and Fields: Classical and Quantum

      NASA Astrophysics Data System (ADS)

      Asorey, M.; Clemente-Gallardo, J.; Marmo, G.

      2007-07-01

      This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee George Sudarshan George Sudarshan

      International Advisory Committee

      A. Ashtekhar (Pennsylvania State University, USA)
      L. J. Boya (Universidad de Zaragoza, Spain)
      I. Cirac (Max Planck Institute, Garching

    6. Synchronizing quantum and classical clocks made of quantum particles

      NASA Astrophysics Data System (ADS)

      Flores, Philip Caesar M.; Caballar, Roland Cristopher F.; Galapon, Eric A.

      2016-09-01

      We demonstrate that the quantum corrections to the classical arrival time for a quantum object in a potential free region of space, as computed in Phys. Rev. A 80, 030102(R) (2009), 10.1103/PhysRevA.80.030102, can be eliminated up to a given order of ℏ by choosing an appropriate position-dependent phase for the object's wave function. This then implies that we can make the quantum arrival time of the object as close as possible to its corresponding classical arrival time, allowing us to synchronize a classical and quantum clock, which tells time using the classical and quantum arrival time of the object, respectively. We provide an example for synchronizing such a clock by making use of a quantum object with a position-dependent phase imprinted on the object's initial wave function with the use of an impulsive potential.

    7. Hausdorff dimension of a particle path in a quantum manifold

      SciTech Connect

      Nicolini, Piero; Niedner, Benjamin

      2011-01-15

      After recalling the concept of the Hausdorff dimension, we study the fractal properties of a quantum particle path. As a novelty we consider the possibility for the space where the particle propagates to be endowed with a quantum-gravity-induced minimal length. We show that the Hausdorff dimension accounts for both the quantum mechanics uncertainty and manifold fluctuations. In addition the presence of a minimal length breaks the self-similarity property of the erratic path of the quantum particle. Finally we establish a universal property of the Hausdorff dimension as well as the spectral dimension: They both depend on the amount of resolution loss which affects both the path and the manifold when quantum gravity fluctuations occur.

    8. Vortex Physics in the Quantum Hall Bilayer

      NASA Astrophysics Data System (ADS)

      Fertig, H. A.; Murthy, Ganpathy

      2013-06-01

      There exists a strong analogy between the quantum Hall bilayer system at total filling factor ν = 1 and a thin film superfluid, in which the groundstate is described as a condensate of particle-hole pairs. The analogy draws support from experiments which display near dissipationless transport properties at low temperatures. However dissipation is always present at any accessible temperature, suggesting that in a proper description, unpaired vortex-like excitations must be present. The mechanism by which this happens remains poorly understood. A key difference between the quantum Hall bilayer and simpler thin-film superfluids is that the vortices, more properly called merons in the former context, are charged objects. We demonstrate that a model in which disorder induces merons in the groundstate, through coupling to this charge, can naturally explain many of the observed imperfect superfluid properties...

    9. The CMS Masterclass and Particle Physics Outreach

      SciTech Connect

      Cecire, Kenneth; Bardeen, Marjorie; McCauley, Thomas

      2014-01-01

      The CMS Masterclass enables high school students to analyse authentic CMS data. Students can draw conclusions on key ratios and particle masses by combining their analyses. In particular, they can use the ratio of W^+ to W^- candidates to probe the structure of the proton, they can find the mass of the Z boson, and they can identify additional particles including, tentatively, the Higgs boson. In the United States, masterclasses are part of QuarkNet, a long-term program that enables students and teachers to use cosmic ray and particle physics data for learning with an emphasis on data from CMS.

    10. The CMS Masterclass and Particle Physics Outreach

      NASA Astrophysics Data System (ADS)

      Cecire, Kenneth; Bardeen, Marjorie; McCauley, Thomas

      2014-04-01

      The CMS Masterclass enables high school students to analyse authentic CMS data. Students can draw conclusions on key ratios and particle masses by combining their analyses. In particular, they can use the ratio of W+ to W- candidates to probe the structure of the proton, they can find the mass of the Z boson, and they can identify additional particles including, tentatively, the Higgs boson. In the United States, masterclasses are part of QuarkNet, a long-term program that enables students and teachers to use cosmic ray and particle physics data for learning with an emphasis on data from CMS.

    11. Nuclear physics in particle therapy: a review.

      PubMed

      Durante, Marco; Paganetti, Harald

      2016-09-01

      Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues. PMID:27540827

    12. Nuclear physics in particle therapy: a review

      NASA Astrophysics Data System (ADS)

      Durante, Marco; Paganetti, Harald

      2016-09-01

      Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

    13. Nuclear physics in particle therapy: a review.

      PubMed

      Durante, Marco; Paganetti, Harald

      2016-09-01

      Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

    14. Particles, Waves, and the Interpretation of Quantum Mechanics

      ERIC Educational Resources Information Center

      Christoudouleas, N. D.

      1975-01-01

      Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

    15. Classical and quantum particle dynamics in univariate background fields

      NASA Astrophysics Data System (ADS)

      Heinzl, T.; Ilderton, A.; King, B.

      2016-09-01

      We investigate deviations from the plane wave model in the interaction of charged particles with strong electromagnetic fields. A general result is that integrability of the dynamics is lost when going from lightlike to timelike or spacelike field dependence. For a special scenario in the classical regime we show how the radiation spectrum in the spacelike (undulator) case becomes well-approximated by the plane wave model in the high-energy limit, despite the two systems being Lorentz inequivalent. In the quantum problem, there is no analogue of the WKB-exact Volkov solution. Nevertheless, WKB and uniform-WKB approaches give good approximations in all cases considered. Other approaches that reduce the underlying differential equations from second to first order are found to miss the correct physics for situations corresponding to barrier transmission and wide-angle scattering.

    16. Particle Physics Outreach to Secondary Education

      SciTech Connect

      Bardeen, Marjorie G.; Johansson, K.Erik; Young, M.Jean

      2011-11-21

      This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

    17. Physics of Quantum Structures in Photovoltaic Devices

      NASA Technical Reports Server (NTRS)

      Raffaelle, Ryne P.; Andersen, John D.

      2005-01-01

      There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.

    18. Teaching Quantum Physics in Upper Secondary School in France:

      ERIC Educational Resources Information Center

      Lautesse, Philippe; Vila Valls, Adrien; Ferlin, Fabrice; Héraud, Jean-Loup; Chabot, Hugues

      2015-01-01

      One of the main problems in trying to understand quantum physics is the nature of the referent of quantum theory. This point is addressed in the official French curriculum in upper secondary school. Starting in 2012, after about 20 years of absence, quantum physics has returned to the national program. On the basis of the historical construction…

    19. Physical realization of the Glauber quantum oscillator.

      PubMed

      Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio

      2015-01-01

      More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Γ0 and Γ2 quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation.

    20. Physical realization of the Glauber quantum oscillator

      PubMed Central

      Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio

      2015-01-01

      More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Γ0 and Γ2 quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation. PMID:26522653

      1. Is Particle Physics Ready for the LHC

        ScienceCinema

        Lykken, Joseph

        2016-07-12

        The advent of the Large Hadron Collider in 2007 entails daunting challenges to particle physicists. The first set of challenges will arise from trying to separate new physics from old. The second set of challenges will come in trying to interpret the new discoveries. I will describe a few of the scariest examples.

      2. Visions: The coming revolutions in particle physics

        SciTech Connect

        Chris Quigg

        2002-04-11

        Wonderful opportunities await particle physics over the next decade, with the coming of the Large Hadron Collider to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop the understanding of the problem of identity and the dimensionality of spacetime.

      3. Theoretical Studies in Elementary Particle Physics

        SciTech Connect

        Collins, John C.; Roiban, Radu S

        2013-04-01

        This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

      4. Current Experiments in Particle Physics (September 1996)

        SciTech Connect

        Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

        1996-09-01

        This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

      5. Beyond the standard model of particle physics.

        PubMed

        Virdee, T S

        2016-08-28

        The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458261

      6. Beyond the standard model of particle physics.

        PubMed

        Virdee, T S

        2016-08-28

        The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'.

      7. Medical physics aspects of particle therapy.

        PubMed

        Jäkel, Oliver

        2009-11-01

        Charged particle beams offer an improved dose conformation to the target volume when compared with photon radiotherapy, with better sparing of normal tissue structures close to the target. In addition, beams of heavier ions exhibit a strong increase of the linear energy transfer in the Bragg peak when compared with the entrance region. These physical and biological properties make ion beams more favourable for radiation therapy of cancer than photon beams. As a consequence, particle therapy with protons and heavy ions has gained increasing interest worldwide. This contribution summarises the physical and biological principles of charged particle therapy with ion beams and highlights some of the developments in the field of beam delivery, the principles of treatment planning and the determination of absorbed dose in ion beams. The clinical experience gathered so far with carbon ion therapy is briefly reviewed.

      8. Current experiments in elementary particle physics

        SciTech Connect

        Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

        1987-03-01

        This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

      9. Cyclic Polyynes as Examples of the Quantum Mechanical Particle on a Ring

        ERIC Educational Resources Information Center

        Anderson, Bruce D.

        2012-01-01

        Many quantum mechanical models are discussed as part of the undergraduate physical chemistry course to help students understand the connection between eigenvalue expressions and spectroscopy. Typical examples covered include the particle in a box, the harmonic oscillator, the rigid rotor, and the hydrogen atom. This article demonstrates that…

      10. Physics of the Blues: Music, Fourier and Wave - Particle Duality

        SciTech Connect

        Gibson, J. Murray

        2003-10-15

        Art and science are intimately connected. There is probably no art that reveals this more than music. Music can be used as a tool to teach physics and engineering to non-scientists, illustrating such diverse concepts as Fourier analysis and quantum mechanics. This colloquium is aimed in reverse, to explain some interesting aspects of music to physicists. Topics include: What determines the frequency of notes on a musical scale? What is harmony and why would Fourier care? Where did the blues come from? (We' re talking the 'physics of the blues', and not 'the blues of physics' - that's another colloquium). Is there a musical particle? The presentation will be accompanied by live keyboard demonstrations. The presenter will attempt to draw tenuous connections between the subject of his talk and his day job as Director of the Advanced Photon Source at Argonne National Laboratory.

      11. Particle scattering in loop quantum gravity.

        PubMed

        Modesto, Leonardo; Rovelli, Carlo

        2005-11-01

        We devise a technique for defining and computing -point functions in the context of a background-independent gravitational quantum field theory. We construct a tentative implementation of this technique in a perturbatively finite model defined using spin foam techniques in the context of loop quantum gravity.

      12. On the physical realizability of quantum stochastic walks

        NASA Astrophysics Data System (ADS)

        Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank

        Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.

      13. Quantum Dots: An Experiment for Physical or Materials Chemistry

        ERIC Educational Resources Information Center

        Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

        2005-01-01

        An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

      14. Summation of power series in particle physics

        NASA Astrophysics Data System (ADS)

        Fischer, Jan

        1999-04-01

        The large-order behaviour of power series used in quantum theory (perturbation series and the operator-product expansion) is discussed and relevant summation methods are reviewed. It is emphasised that, in most physically interesting situations, the mere knowledge of the expansion coefficients is not sufficient for a unique determination of the function expanded, and the necessity of some additional, extra-perturbative, input is pointed out. Several possible nonperturbative inputs are suggested. Applications to various problems of quantum chromodynamics are considered. This lecture was presented on the special Memorial Day dedicated to Professor Ryszard R˛czka at this Workshop. The last section is devoted to my personal recollections of this remarkable personality.

      15. Wave theories of non-laminar charged particle beams: from quantum to thermal regime

        NASA Astrophysics Data System (ADS)

        Fedele, Renato; Tanjia, Fatema; Jovanović, Dusan; de Nicola, Sergio; Ronsivalle, Concetta; Ronsivalle

        2014-04-01

        The standard classical description of non-laminar charged particle beams in paraxial approximation is extended to the context of two wave theories. The first theory that we discuss (Fedele R. and Shukla, P. K. 1992 Phys. Rev. A 45, 4045. Tanjia, F. et al. 2011 Proceedings of the 38th EPS Conference on Plasma Physics, Vol. 35G. Strasbourg, France: European Physical Society) is based on the Thermal Wave Model (TWM) (Fedele, R. and Miele, G. 1991 Nuovo Cim. D 13, 1527.) that interprets the paraxial thermal spreading of beam particles as the analog of quantum diffraction. The other theory is based on a recently developed model (Fedele, R. et al. 2012a Phys. Plasmas 19, 102106; Fedele, R. et al. 2012b AIP Conf. Proc. 1421, 212), hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of single beam particle (uncertainty principle and spin) and provides collective description of beam transport in the presence of quantum paraxial diffraction. Both in quantum and quantum-like regimes, the beam transport is governed by a 2D non-local Schrödinger equation, with self-interaction coming from the nonlinear charge- and current-densities. An envelope equation of the Ermakov-Pinney type, which includes collective effects, is derived for both TWM and QWM regimes. In TWM, such description recovers the well-known Sacherer's equation (Sacherer, F. J. 1971 IEEE Trans. Nucl. Sci. NS-18, 1105). Conversely, in the quantum regime and in Hartree's mean field approximation, one recovers the evolution equation for a single-particle spot size, i.e. for a single quantum ray spot in the transverse plane (Compton regime). We demonstrate that such quantum evolution equation contains the same information as the evolution equation for the beam spot size that describes the beam as a whole. This is done heuristically by defining the lowest QWM state accessible by a system of non-overlapping fermions. The latter are associated with temperature values that are

      16. Quantum limited particle sensing in optical tweezers

        SciTech Connect

        Tay, J.W.; Hsu, Magnus T. L.; Bowen, Warwick P.

        2009-12-15

        Particle sensing in optical tweezers systems provides information on the position, velocity, and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper, we show that quadrant detection is nonoptimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacies of both quadrant and spatial homodyne detection are shown. We demonstrate that 1 order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.

      17. Group action in topos quantum physics

        SciTech Connect

        Flori, C.

        2013-03-15

        Topos theory has been suggested first by Isham and Butterfield, and then by Isham and Doering, as an alternative mathematical structure within which to formulate physical theories. In particular, it has been used to reformulate standard quantum mechanics in such a way that a novel type of logic is used to represent propositions. In this paper, we extend this formulation to include the notion of a group and group transformation in such a way that we overcome the problem of twisted presheaves. In order to implement this we need to change the type of topos involved, so as to render the notion of continuity of the group action meaningful.

      18. Quantum interface to charged particles in a vacuum

        NASA Astrophysics Data System (ADS)

        Okamoto, Hiroshi

        2015-11-01

        A superconducting qubit device suitable for interacting with a flying electron has recently been proposed [Okamoto and Nagatani, Appl. Phys. Lett. 104, 062604 (2014), 10.1063/1.4865244]. Either a clockwise or counterclockwise directed loop of half magnetic flux quantum encodes a qubit, which naturally interacts with any single charged particle with arbitrary kinetic energy. Here, the device's properties, sources of errors, and possible applications are studied in detail. In particular, applications include detection of a charged particle essentially without applying a classical force to it. Furthermore, quantum states can be transferred between an array of the proposed devices and the charged particle.

      19. The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications

        ERIC Educational Resources Information Center

        Dür, Wolfgang; Heusler, Stefan

        2016-01-01

        Using the simplest possible quantum system--the qubit--the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous "TPT" article and in a…

      20. BOOK REVIEW: Quantum Physics in One Dimension

        NASA Astrophysics Data System (ADS)

        Logan, David

        2004-05-01

        To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted pecularities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic---spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assumimg little theoretical background on the part of the reader (well just a little), Giamarchi writes in a refreshingly

      1. Particle identification methods in High Energy Physics

        SciTech Connect

        Va'Vra, J.

        2000-01-27

        This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

      2. Quantum-classical correspondence for a particle in a homogeneous field

        NASA Astrophysics Data System (ADS)

        Singh, Sumita; Suman, Smriti P.; Singh, Vijay A.

        2016-11-01

        The correspondence principle provides a prescription to connect quantum physics to classical. It asserts that the physical quantities evaluated quantum mechanically approach their respective classical values for large quantum numbers. This has been shown for the pedagogically important cases of the particle in a box and a harmonic oscillator. However, a particle in a constant field has a wave function related to the Airy function and has at best been treated numerically. Employing energy eigenstates we obtain the expectation values of the position, the momentum and their moments upto fourth order, rigorously and without resorting to numerical or graphical techniques. We compare them with the corresponding classical values. We also examine the uncertainty product for the system.

      3. Designing Learning Environments to Teach Interactive Quantum Physics

        ERIC Educational Resources Information Center

        Puente, Sonia M. Gomez; Swagten, Henk J. M.

        2012-01-01

        This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…

      4. Refined Characterization of Student Perspectives on Quantum Physics

        ERIC Educational Resources Information Center

        Baily, Charles; Finkelstein, Noah D.

        2010-01-01

        The perspectives of introductory classical physics students can often negatively influence how those students later interpret quantum phenomena when taking an introductory course in modern physics. A detailed exploration of student perspectives on the interpretation of quantum physics is needed, both to characterize student understanding of…

      5. Teaching Quantum Interpretations: Revisiting the Goals and Practices of Introductory Quantum Physics Courses

        ERIC Educational Resources Information Center

        Baily, Charles; Finkelstein, Noah D.

        2015-01-01

        Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…

      6. Advanced analysis methods in particle physics

        SciTech Connect

        Bhat, Pushpalatha C.; /Fermilab

        2010-10-01

        Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

      7. Modern Particle Physics Event Generation with WHIZARD

        NASA Astrophysics Data System (ADS)

        Reuter, J.; Bach, F.; Chokoufé, B.; Kilian, W.; Ohl, T.; Sekulla, M.; Weiss, C.

        2015-05-01

        We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.

      8. Recasting particle physics by entangling physics, history and philosophy

        NASA Astrophysics Data System (ADS)

        Bertozzi, Eugenio; Levrini, Olivia

        2016-05-01

        -1The paper presents the design process we followed to recast particle physics so as to make it conceptually relevant for secondary school students. In this design process, the concept of symmetry was assumed as core-idea because of its structural and foundational role in particle physics, its crosscutting character and its epistemological and philosophical value. The first draft of the materials was tested in a pilot-study which involved 19 students of a regular class (grade 13) of an Italian school. The data analysis showed that the students were in their "regime of competence" for grasping subtle nuances of the materials and for providing important hints for revising them. In particular, students' reactions brought into light the need of clarifying the "foundational" character that symmetry attained in twentieth-century physics. The delicate step of re-thinking the materials required the researchers to articulate the complex relationship between researches on physics teaching, history and philosophy of physics. This analytic phase resulted in a version of the materials which implies the students to be guided to grasp the meaning of symmetry as normative principle in twentieth-century physics, throughout the exploration of the different meanings assumed by symmetry over time. The whole process led also to the production of an essential, on-line version, of the materials targeted to a wider audience.

      9. Quantum Humor: The Playful Side of Physics at Bohr's Institute for Theoretical Physics

        NASA Astrophysics Data System (ADS)

        Halpern, Paul

        2012-09-01

        From the 1930s to the 1950s, a period of pivotal developments in quantum, nuclear, and particle physics, physicists at Niels Bohr's Institute for Theoretical Physics in Copenhagen took time off from their research to write humorous articles, letters, and other works. Best known is the Blegdamsvej Faust, performed in April 1932 at the close of one of the Institute's annual conferences. I also focus on the Journal of Jocular Physics, a humorous tribute to Bohr published on the occasions of his 50th, 60th, and 70th birthdays in 1935, 1945, and 1955. Contributors included Léon Rosenfeld, Victor Weisskopf, George Gamow, Oskar Klein, and Hendrik Casimir. I examine their contributions along with letters and other writings to show that they offer a window into some issues in physics at the time, such as the interpretation of complementarity and the nature of the neutrino, as well as the politics of the period.

      10. Research program in particle physics. Progress report, January 1, 1993--December 1993

        SciTech Connect

        Sudarshan, E.C.G.; Dicus, D.A.; Ritchie, J.L.; Lang, K.

        1993-05-01

        This report is the progress report for DOE funded support of particle physics work at the University of Texas, Austin. Support was divided between theoretical and experimental programs, and each is reviewed separately in the report. Theoretical effort was divided between three general areas: quantum gravity and mathematical physics; phenomenology; and quantum mechanics and quantum field theory. Experimental effort was primarily directed toward AGS experiments at Brookhaven, to look for rare kaon decays. AGS experiments 791 and 871 are described, along with BNL experiment 888.

      11. Particle physics: recent successes and future prospects

        SciTech Connect

        Wojcicki, S.

        1984-12-01

        There is no doubt that as yet we do not have an ultimate theory of matter and forces in spite of the remarkable successes of the past decade. In this talk the author attempts to summarize briefly the historical background that led us to the present level of understanding, or more specifically to the standard model of particle physics. Subsequently the author describes several difficulties with this picture, continues with some possible indications of new physics, and finally ends with the discussion of the prospects for the future. 32 references.

      12. Current experiments in elementary particle physics

        SciTech Connect

        Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. ); Oyanagi, Y. ); Dodder, D.C. ); Ryabov, Yu.G.; Slabospitsky, S.R. . Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

        1989-09-01

        This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

      13. Current experiments in elementary particle physics. Revised

        SciTech Connect

        Galic, H.; Wohl, C.G.; Armstrong, B.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Olin, A.; Frosch, R.

        1992-06-01

        This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

      14. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

        SciTech Connect

        Singer, Isadore M.

        2008-03-04

        The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

      15. Semiconductor detectors in nuclear and particle physics

        SciTech Connect

        Rehak, P.; Gatti, E.

        1992-12-31

        Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported.

      16. Current experiments in elementary particle physics. Revision

        SciTech Connect

        Galic, H.; Armstrong, F.E.; von Przewoski, B.

        1994-08-01

        This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

      17. Atomic physics: A milestone in quantum computing

        NASA Astrophysics Data System (ADS)

        Bartlett, Stephen D.

        2016-08-01

        Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63

      18. Charting the Course for Elementary Particle Physics

        DOE R&D Accomplishments Database

        Richter, B.

        2007-02-16

        "It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

      19. Charting the Course for Elementary Particle Physics

        SciTech Connect

        Richter, Burton

        2007-02-20

        ''It was the best of times; it was the worst of times'' is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

      20. Persistent Currents and Quantum Critical Phenomena in Mesoscopic Physics

        NASA Astrophysics Data System (ADS)

        Zelyak, Oleksandr

        In this thesis, we study persistent currents and quantum critical phenomena in the systems of mesoscopic physics. As an introduction in Chapter 1 we familiarize the reader with the area of mesoscopic physics. We explain how mesoscopic systems are different from quantum systems of single atoms and molecules and bulk systems with an Avogadro number of elements. We also describe some important mesoscopic phenomena. One of the mathematical tools that we extensively use in our studies is Random Matrix Theorty. This theory is not a part of standard physics courses and for educational purposes we provide the basics of Random Matrix Theory in Chapter 2. In Chapter 3 we study the persistent current of noninteracting electrons in quantum billiards. We consider simply connected chaotic Robnik-Berry quantum billiard and its annular analog. The electrons move in the presence of a point-like magnetic flux at the center of the billiard. For the simply connected billiard, we find a large diamagnetic contribution to the persistent current at small flux, which is independent of the flux and is proportional to the number of electrons (or equivalently the density since we keep the area fixed). The size of this diamagnetic contribution is much larger than the previously studied mesoscopic fluctuations in the persistent current in the simply connected billiard. This behavior of persistent current can ultimately be traced to the response of the angular-momentum l = 0 levels (neglected in semiclassical expansions) on the unit disk to a point-like flux at its center. We observe the same behavior for the annular billiard when the inner radius is much smaller than the outer one. We also find that the usual fluctuating persistent current and Anderson-like localization due to boundary scattering are seen when the annulus tends to a one-dimensional ring. We explore the conditions for the observability of this phenomenon. In Chapter 4 we study quantum critical phenomena in a system of two

      1. Nuclear and particle physics in the early universe

        NASA Technical Reports Server (NTRS)

        Schramm, D. N.

        1981-01-01

        Basic principles and implications of Big Bang cosmology are reviewed, noting the physical evidence of a previous universe temperature of 10,000 K and theoretical arguments such as grand unification decoupling indicating a primal temperature of 10 to the 15th eV. The Planck time of 10 to the -43rd sec after the Big Bang is set as the limit before which gravity was quantized and nothing is known. Gauge theories of elementary particle physics are reviewed for successful predictions of similarity in weak and electromagnetic interactions and quantum chromodynamic predictions for strong interactions. The large number of photons in the universe relative to the baryons is considered and the grand unified theories are cited as showing the existence of baryon nonconservation as an explanation. Further attention is given to quark-hadron phase transition, the decoupling for the weak interaction and relic neutrinos, and Big Bang nucleosynthesis.

      2. Current experiments in particle physics - particle data group

        SciTech Connect

        Galic, H.; Lehar, F.; Kettle, P.R.

        1996-09-01

        This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

      3. Quantum optical implementation of quantum information processing and classical simulation of many-body physics from quantum information perspective

        NASA Astrophysics Data System (ADS)

        Wang, Bin

        This thesis is composed of two parts. In the first part we summarize our study on implementation of quantum information processing (QIP) in optical cavity QED systems, while in the second part we present our numerical investigations on strongly interacting Fermi systems using a powerful numerical algorithm developed from the perspective of quantum information theory. We explore various possible applications of cavity QED in the strong coupling regime to quantum information processing tasks theoretically, including efficient preparation of Schrodinger-cat states for traveling photon pulses, robust implementation of conditional quantum gates on neutral atoms, as well as implementation of a hybrid controlled SWAP gate. We analyze the feasibility and performance of our schemes by solving corresponding physical models either numerically or analytically. We implement a novel numerical algorithm called Time Evolving Block Decimation (TEBD), which was proposed by Vidal from the perspective of quantum information science. With this algorithm, we numerically study the ground state properties of strongly interacting fermions in an anisotropic optical lattice across a wide Feshbach resonance. The interactions in this system can be described by a general Hubbard model with particle assisted tunneling. For systems with equal spin population, we find that the Luther-Emery phase, which has been known to exist only for attractive on-site interactions in the conventional Hubbard model, could also be found even in the case with repulsive on-site interactions in the general Hubbard model. Using the TEBD algorithm, we also study the effect of particle assisted tunneling in spin-polarized systems. Fermi systems with unequal spin population and attractive interaction could allow the existence of exotic superfluidity, such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. In the general Hubbard model, such exotic FFLO pairing of fermions could be suppressed by high particle assisted

      4. Discrete mathematical physics and particle modeling

        NASA Astrophysics Data System (ADS)

        Greenspan, D.

        The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.

      5. The Coming Revolutions in Particle Physics

        ScienceCinema

        Quigg, Chris

        2016-07-12

        Wonderful opportunities await particle physics over the next decade, with new instruments and experiments poised to explore the frontiers of high energy, infinitesimal distances, and exquisite rarity. We look forward to the Large Hadron Collider at CERN to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop our understanding of the problem of identity: what makes a neutrino a neutrino and a top quark a top quark. We suspect that the detection of proton decay is only a few orders of magnitude away in sensitivity. Astronomical observations should help to tell us what kinds of matter and energy make up the universe. We might even learn to read experiment for clues about the dimensionality of spacetime. If we are inventive enough, we may be able to follow this rich menu with the physics opportunities offered by a linear electron-positron collider and a (muon storage ring) neutrino factory. I expect a remarkable flowering of experimental particle physics, and of theoretical physics that engages with experiment.

      6. The Philosophy of Fields and Particles in Classical and Quantum Mechanics, Including the Problem of Renormalisation.

        NASA Astrophysics Data System (ADS)

        Huggett, Nick

        1995-01-01

        This work first explicates the philosophy of classical and quantum fields and particles. I am interested in determining how science can have a metaphysical dimension, and then with the claim that the quantum revolution has an important metaphysical component. I argue that the metaphysical implications of a theory are properties of its models, as classical mechanics determines properties of atomic diversity and temporal continuity with its representations of distinct, continuous trajectories. It is often suggested that classical statistical physics requires that many particle states be represented so that permuting properties leads to distinct states; this implies that individuals can be reidentified across possible worlds in a non-qualitative way. I show there is no evidence for this conclusion, an important result, for it is claimed that quantum particles are not individuals. This claim is based on the misconception about classical statistics, but also on a conflation of notions of identity; I show that, while transworld identity is incompatible with quantum mechanics, other classical notions may be consistently ascribed. I also give a field-particle distinction that applies usefully in both quantum and classical domains. In the former the distinction helps defeat claims of underdetermined by data, in the latter it helps provide a minimal field metaphysics. Next I tackle renormalisation: I show how divergences occur in approximate, perturbative calculations, and demonstrate how finite, empirically verified, answers are obtained. These techniques seem to show that the predictions are not logical consequences of the exact theory. I use the techniques of the renormalisation group to establish that perturbative renormalised quantum field theory does indeed approximate the consequences of field theory. Finally, I discuss the idea (Cao and Schweber, 1994) that renormalisation proves that there can be no quantum theory of everything, only a patchwork of effective

      7. Quantum corrections to the gravitational interaction of massless particles

        NASA Astrophysics Data System (ADS)

        Blackburn, Thomas J., Jr.

        Donoghue's effective field theory of quantum gravity is extended to include the interaction of massless particles. The collinear divergences which accompany massless particles are examined first in the context of QED and then in quantum gravity. A result of Weinberg is extended to show how these divergences vanish in the case of gravity. The scattering cross section for hypothetical massless scalar particles is computed first, because it is simpler, and the results are then extended to photons. Some terms in the cross section are shown to correspond to the Aichelburg-Sexl metric surrounding a massless particle and to quantum corrections to that metric. The scattering cross section is also applied to calculate quantum corrections to the bending of starlight, and though small, the result obtained is qualitatively different than in the classical case. Since effective field theory includes the low-energy degrees of freedom which generate collinear divergences, the results presented here will remain relevant in any future quantum theory of gravity.

      8. Quantum Monte Carlo methods for nuclear physics

        DOE PAGESBeta

        Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

        2015-09-09

        Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

      9. Quantum Monte Carlo methods for nuclear physics

        DOE PAGESBeta

        Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

        2014-10-19

        Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

      10. Quantum Monte Carlo methods for nuclear physics

        SciTech Connect

        Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

        2015-09-09

        Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

      11. The Gibbs paradox and the physical criteria for indistinguishability of identical particles

        NASA Astrophysics Data System (ADS)

        Unnikrishnan, C. S.

        2016-08-01

        Gibbs paradox in the context of statistical mechanics addresses the issue of additivity of entropy of mixing gases. The usual discussion attributes the paradoxical situation to classical distinguishability of identical particles and credits quantum theory for enabling indistinguishability of identical particles to solve the problem. We argue that indistinguishability of identical particles is already a feature in classical mechanics and this is clearly brought out when the problem is treated in the language of information and associated entropy. We pinpoint the physical criteria for indistinguishability that is crucial for the treatment of the Gibbs’ problem and the consistency of its solution with conventional thermodynamics. Quantum mechanics provides a quantitative criterion, not possible in the classical picture, for the degree of indistinguishability in terms of visibility of quantum interference, or overlap of the states as pointed out by von Neumann, thereby endowing the entropy expression with mathematical continuity and physical reasonableness.

      12. Tests of the particle physics-physical cosmology interface

        SciTech Connect

        Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

        1993-01-01

        Three interrelated interfaces of particle physics and physical cosmology are discussed: (1) inflation and other phase transitions; (2) Big Bang Nucleosynthesis (and also the quark-hadron transition); and (3) structure formation (including dark matter). Recent observations that affect each of these topics are discussed. Topic number 1 is shown to be consistent with the COBE observations but not proven and it may be having problems with some age-expansion data. Topic number 2 has now been well-tested and is an established pillar'' of the Big Bang. Topic number 3 is the prime arena of current physical cosmological activity. Experiments to resolve the current exciting, but still ambiguous, situation following the COBE results are discussed.

      13. Tests of the particle physics-physical cosmology interface

        SciTech Connect

        Schramm, D.N. |

        1993-01-01

        Three interrelated interfaces of particle physics and physical cosmology are discussed: (1) inflation and other phase transitions; (2) Big Bang Nucleosynthesis (and also the quark-hadron transition); and (3) structure formation (including dark matter). Recent observations that affect each of these topics are discussed. Topic number 1 is shown to be consistent with the COBE observations but not proven and it may be having problems with some age-expansion data. Topic number 2 has now been well-tested and is an established ``pillar`` of the Big Bang. Topic number 3 is the prime arena of current physical cosmological activity. Experiments to resolve the current exciting, but still ambiguous, situation following the COBE results are discussed.

      14. Cognitive Mapping of Advanced Level Physics Students' Conceptions of Quantum Physics.

        ERIC Educational Resources Information Center

        Mashhadi, Azam; Woolnough, Brian

        This paper presents findings from a study that investigated students' understanding of quantum phenomena and focused on how students incorporate the ideas of quantum physics into their overall cognitive framework. The heuristic metaphor of the map is used to construct graphic representations of students' understanding of quantum physics. The…

      15. Exploring flocking via quantum many-body physics techniques

        NASA Astrophysics Data System (ADS)

        Souslov, Anton; Loewe, Benjamin; Goldbart, Paul M.

        2015-03-01

        Flocking refers to the spontaneous breaking of spatial isotropy and time-reversal symmetries in collections of bodies such as birds, fish, locusts, bacteria, and artificial active systems. The transport of matter along biopolymers using molecular motors also involves the breaking of these symmetries, which in some cases are known to be broken explicitly. We study these classical nonequilibrium symmetry-breaking phenomena by means of models of many strongly interacting particles that hop on a periodic lattice. We employ a mapping between the classical and quantum dynamics of many-body systems, combined with tools from many-body theory. In particular, we examine the formation and properties of nematic and polar order in low-dimensional, strongly-interacting active systems using techniques familiar from fermionic systems, such as self-consistent field theory and bosonization. Thus, we find that classical active systems can exhibit analogs of quantum phenomena such as spin-orbit coupling, magnetism, and superconductivity. The models we study connect the physics of asymmetric exclusion processes to the spontaneous emergence of transport and flow, and also provide a soluble cousin of Vicsek's model system of self-propelled particles.

      16. Quantum principles and free particles. [evaluation of partitions

        NASA Technical Reports Server (NTRS)

        1976-01-01

        The quantum principles that establish the energy levels and degeneracies needed to evaluate the partition functions are explored. The uncertainty principle is associated with the dual wave-particle nature of the model used to describe quantized gas particles. The Schroedinger wave equation is presented as a generalization of Maxwell's wave equation; the former applies to all particles while the Maxwell equation applies to the special case of photon particles. The size of the quantum cell in phase space and the representation of momentum as a space derivative operator follow from the uncertainty principle. A consequence of this is that steady-state problems that are space-time dependent for the classical model become only space dependent for the quantum model and are often easier to solve. The partition function is derived for quantized free particles and, at normal conditions, the result is the same as that given by the classical phase integral. The quantum corrections that occur at very low temperatures or high densities are derived. These corrections for the Einstein-Bose gas qualitatively describe the condensation effects that occur in liquid helium, but are unimportant for most practical purposes otherwise. However, the corrections for the Fermi-Dirac gas are important because they quantitatively describe the behavior of high-density conduction electron gases in metals and explain the zero point energy and low specific heat exhibited in this case.

      17. Eulerian and Newtonian dynamics of quantum particles

        NASA Astrophysics Data System (ADS)

        Rashkovskiy, S. A.

        2013-06-01

        We derive the classical equations of hydrodynamics (the Euler and continuity equations), from which the Schrödinger equation follows as a limit case. It is shown that the statistical ensemble corresponding to a quantum system and described by the Schrödinger equation can be considered an inviscid gas that obeys the ideal gas law with a quickly oscillating sign-alternating temperature. This statistical ensemble performs the complex movements consisting of smooth average movement and fast oscillations. It is shown that the average movements of the statistical ensemble are described by the Schrödinger equation. A model of quantum motion within the limits of classical mechanics that corresponds to the hydrodynamic system considered is suggested.

      18. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

        SciTech Connect

        Sessler, A.M.

        1984-07-01

        High energy physics, perhaps more than any other branch of science, is driven by technology. It is not the development of theory, or consideration of what measurements to make, which are the driving elements in our science. Rather it is the development of new technology which is the pacing item. Thus it is the development of new techniques, new computers, and new materials which allows one to develop new detectors and new particle-handling devices. It is the latter, the accelerators, which are at the heart of the science. Without particle accelerators there would be, essentially, no high energy physics. In fact. the advances in high energy physics can be directly tied to the advances in particle accelerators. Looking terribly briefly, and restricting one's self to recent history, the Bevatron made possible the discovery of the anti-proton and many of the resonances, on the AGS was found the {mu}-neutrino, the J-particle and time reversal non-invariance, on Spear was found the {psi}-particle, and, within the last year the Z{sub 0} and W{sup {+-}} were seen on the CERN SPS p-{bar p} collider. Of course one could, and should, go on in much more detail with this survey, but I think there is no need. It is clear that as better acceleration techniques were developed more and more powerful machines were built which, as a result, allowed high energy physics to advance. What are these techniques? They are very sophisticated and ever-developing. The science is very extensive and many individuals devote their whole lives to accelerator physics. As high energy experimental physicists your professional lives will be dominated by the performance of 'the machine'; i.e. the accelerator. Primarily you will be frustrated by the fact that it doesn't perform better. Why not? In these lectures, six in all, you should receive some appreciation of accelerator physics. We cannot, nor do we attempt, to make you into accelerator physicists, but we do hope to give you some insight into the

      19. Summary of the particle physics and technology working group

        SciTech Connect

        Stephan Lammel et al.

        2002-12-10

        Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

      20. The Particle Physics Data Grid. Final Report

        SciTech Connect

        Livny, Miron

        2002-08-16

        The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services: reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities.

      1. Quantum Zeno effect for a free-moving particle

        NASA Astrophysics Data System (ADS)

        Porras, Miguel A.; Luis, Alfredo; Gonzalo, Isabel

        2014-12-01

        Although the quantum Zeno effect takes its name from Zeno's arrow paradox, the effect of frequently observing the position of a freely moving particle on its motion has not been analyzed in detail in the frame of standard quantum mechanics. We study the evolution of a moving free particle while monitoring whether it lingers in a given region of space, and explain the dependence of the lingering probability on the frequency of the measurements and the initial momentum of the particle. Stopping the particle entails the emergence of Schrödinger cat states during the observed evolution, closely connected to the high-order diffraction modes in Fabry-Pérot optical resonators.

      2. Quantum efficiency of colloidal suspensions containing quantum dot/silica hybrid particles

        NASA Astrophysics Data System (ADS)

        Jeon, Hyungjoon; Yoon, Cheolsang; Lee, Sooho; Lee, Doh C.; Shin, Kyusoon; Lee, Kangtaek

        2016-10-01

        We have investigated the fluorescence properties of colloidal suspensions conntaining quantum dot (QD)/silica hybrid particles. First, we synthesized QD/silica hybrid particles with silica-QD-silica (SQS) core-shell-shell geometry, and monitored the quantum efficiencies of their suspensions at various particle concentrations. We found that the quantum efficiency (QE) of SQS particles in deionized (DI) water was much lower than that of the QDs even at low particle concentration, mainly due to the light scattering of emitted photons at the silica/water interface, followed by reabsorption by QDs. As the concentration of SQS particles was increased, both light scattering and reabsorption by QDs became more important, which further reduced the QE. Refractive index-matched solvent, however, reduced light scattering, yielding greater QE than DI water. Next, we induced aggregation of SQS particles, and found that QE increased as particles aggregated in DI water because of reduced light scattering and reabsorption, whereas it remained almost constant in the refractive index-matched solvent. Finally, we studied aggregation of highly concentrated silica particle suspensions containing a low concentration of SQS particles, and found that QE increased with aggregation because light scattering and reabsorption were reduced.

      3. Quantum efficiency of colloidal suspensions containing quantum dot/silica hybrid particles.

        PubMed

        Jeon, Hyungjoon; Yoon, Cheolsang; Lee, Sooho; Lee, Doh C; Shin, Kyusoon; Lee, Kangtaek

        2016-10-28

        We have investigated the fluorescence properties of colloidal suspensions conntaining quantum dot (QD)/silica hybrid particles. First, we synthesized QD/silica hybrid particles with silica-QD-silica (SQS) core-shell-shell geometry, and monitored the quantum efficiencies of their suspensions at various particle concentrations. We found that the quantum efficiency (QE) of SQS particles in deionized (DI) water was much lower than that of the QDs even at low particle concentration, mainly due to the light scattering of emitted photons at the silica/water interface, followed by reabsorption by QDs. As the concentration of SQS particles was increased, both light scattering and reabsorption by QDs became more important, which further reduced the QE. Refractive index-matched solvent, however, reduced light scattering, yielding greater QE than DI water. Next, we induced aggregation of SQS particles, and found that QE increased as particles aggregated in DI water because of reduced light scattering and reabsorption, whereas it remained almost constant in the refractive index-matched solvent. Finally, we studied aggregation of highly concentrated silica particle suspensions containing a low concentration of SQS particles, and found that QE increased with aggregation because light scattering and reabsorption were reduced. PMID:27658534

      4. Quantum efficiency of colloidal suspensions containing quantum dot/silica hybrid particles.

        PubMed

        Jeon, Hyungjoon; Yoon, Cheolsang; Lee, Sooho; Lee, Doh C; Shin, Kyusoon; Lee, Kangtaek

        2016-10-28

        We have investigated the fluorescence properties of colloidal suspensions conntaining quantum dot (QD)/silica hybrid particles. First, we synthesized QD/silica hybrid particles with silica-QD-silica (SQS) core-shell-shell geometry, and monitored the quantum efficiencies of their suspensions at various particle concentrations. We found that the quantum efficiency (QE) of SQS particles in deionized (DI) water was much lower than that of the QDs even at low particle concentration, mainly due to the light scattering of emitted photons at the silica/water interface, followed by reabsorption by QDs. As the concentration of SQS particles was increased, both light scattering and reabsorption by QDs became more important, which further reduced the QE. Refractive index-matched solvent, however, reduced light scattering, yielding greater QE than DI water. Next, we induced aggregation of SQS particles, and found that QE increased as particles aggregated in DI water because of reduced light scattering and reabsorption, whereas it remained almost constant in the refractive index-matched solvent. Finally, we studied aggregation of highly concentrated silica particle suspensions containing a low concentration of SQS particles, and found that QE increased with aggregation because light scattering and reabsorption were reduced.

      5. Current Experiments in Particle Physics. 1996 Edition.

        SciTech Connect

        Galic, Hrvoje

        2003-06-27

        This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

      6. Particle Physics: A New Course for Schools and Colleges.

        ERIC Educational Resources Information Center

        Swinbank, Elizabeth

        1992-01-01

        Considers questions relating to the introduction of particle physics into post-GCSE (General Certificate of Secondary Education) courses. Describes a project that is producing teacher and student materials to support the teaching of particle physics at this level. Presents a proposed syllabus for a particle physics module. (KR)

      7. Physics through the 1990s: Elementary-particle physics

        NASA Technical Reports Server (NTRS)

        1986-01-01

        The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

      8. Particle physics in the very early universe

        NASA Technical Reports Server (NTRS)

        Schramm, D. N.

        1981-01-01

        Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.

      9. (Medium energy particle physics): Annual progress report

        SciTech Connect

        Nefkens, B.M.K.

        1985-10-01

        Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

      10. Single particle density of trapped interacting quantum gases

        SciTech Connect

        Bala, Renu; Bosse, J.; Pathak, K. N.

        2015-05-15

        An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Green’s function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.

      11. Probing Planckian physics in de Sitter space with quantum correlations

        SciTech Connect

        Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng; Sun, Cheng-Yi; Yang, Wen-Li

        2014-12-15

        We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, we construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points H{sub c} of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved. - Highlights: • Quantum correlation and quantum channel in de Sitter space are studied. • Gibbons–Hawking effect causes entanglement degradation for static observer. • Planckian physics causes extra decrement on quantum correlation. • Convergent feature of negativity relies on the choice of alpha-vacua. • Link between negativity convergence and quantum channel capacity is given.

      12. On the quantum physical theory of subjective antedating.

        PubMed

        Wolf, F A

        1989-01-01

        This paper explores the question of mental events causing neural events through the actions of the quantum physical probability field. After showing how quantum mechanical descriptions pertain to the influence that mental events have upon neural events, the question of Libet's "delay-and-antedating" observation is examined in the light of quantum mechanical description, specifically in the action of the probability field. The probability field is the product of two quantum wave functions. According to the transactional interpretation (TI) of quantum physics these wave functions can be pictured as offer and echo waves--the offer wave passing from an initial event to a future event and the echo wave passing from the future event back in time towards the initial event. I propose that two events so correlated are experienced as one and the same event; that is, any two quantum physically correlated events separated in time or space will constitute a single experience--an event in "consciousness." Using the TI then suggests a quantum physical resolution of the "delay-and-antedating" hypothesis/paradox put forward by Libet, B., Wright, E. W., Feinstein, B., & Pearl, D. K. (Brain, 1979, 102, 193). It also offers a first step towards the development of a quantum physical theory of subjective antedating based on the transactional interpretation of quantum mechanics.

      13. Quantum physics explains Newton's laws of motion

        NASA Astrophysics Data System (ADS)

        Ogborn, Jon; Taylor, Edwin F.

        2005-01-01

        Newton was obliged to give his laws of motion as fundamental axioms. But today we know that the quantum world is fundamental, and Newton’s laws can be seen as consequences of fundamental quantum laws. This article traces this transition from fundamental quantum mechanics to derived classical mechanics.

      14. Attention, Intention, and Will in Quantum Physics

        SciTech Connect

        Stapp, H.P.

        1999-05-01

        How is mind related to matter? This ancient question inphilosophy is rapidly becoming a core problem in science, perhaps themost important of all because it probes the essential nature of manhimself. The origin of the problem is a conflict between the mechanicalconception of human beings that arises from the precepts of classicalphysical theory and the very different idea that arises from ourintuition: the former reduces each of us to an automaton, while thelatter allows our thoughts to guide our actions. The dominantcontemporary approaches to the problem attempt to resolve this conflictby clinging to the classical concepts, and trying to explain away ourmisleading intuition. But a detailed argument given here shows why, in ascientific approach to this problem, it is necessary to use the morebasic principles of quantum physics, which bring the observer into thedynamics, rather than to accept classical precepts that are profoundlyincorrect precisely at the crucial point of the role of humanconsciousness in the dynamics of human brains. Adherence to the quantumprinciples yields a dynamical theory of the mind/brain/body system thatis in close accord with our intuitive idea of what we are. In particular,the need for a self-observing quantum system to pose certain questionscreates a causal opening that allowsmind/brain dynamics to have threedistinguishable but interlocked causal processes, one micro-local, onestochastic, and the third experiential. Passing to the classical limit inwhich the critical difference between zero and the finite actual value ofPlanck's constant is ignored not only eliminates the chemical processesthat are absolutely crucial to the functioning of actual brains, itsimultaneously blinds the resulting theoretical construct to the physicalfine structure wherein the effect of mind on matter lies: the use of thislimit in this context is totally unjustified from a physicsperspective.

      15. Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle

        SciTech Connect

        Maniscalco, S.; Piilo, J.; Intravaia, F.; Petruccione, F.; Messina, A.

        2004-09-01

        The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic potential, is studied focusing on its non-Markovian regime. Both an analytic approach and a stochastic wave-function approach are used to describe the exact time evolution of the system. The border between two very different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical variables governing the passage from one regime to the other are singled out. The non-Markovian short-time dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter, and the Wigner function of the system.

      16. Quantum monadology: a consistent world model for consciousness and physics.

        PubMed

        Nakagomi, Teruaki

        2003-04-01

        The NL world model presented in the previous paper is embodied by use of relativistic quantum mechanics, which reveals the significance of the reduction of quantum states and the relativity principle, and locates consciousness and the concept of flowing time consistently in physics. This model provides a consistent framework to solve apparent incompatibilities between consciousness (as our interior experience) and matter (as described by quantum mechanics and relativity theory). Does matter have an inside? What is the flowing time now? Does physics allow the indeterminism by volition? The problem of quantum measurement is also resolved in this model.

      17. Alternating-color quantum dot nanocomposites for particle tracking.

        PubMed

        Ruan, Gang; Winter, Jessica O

        2011-03-01

        Because of their extraordinary brightness and photostability, quantum dots (QDs) have tremendous potential for long-term, particle tracking in heterogeneous systems (e.g., living cells, microfluidic flow). However, one of their major limitations is blinking, an intermittent loss of fluorescence, characteristic of individual and small clusters of QDs, that interrupts particle tracking. Recently, several research groups have reported "nonblinking QDs". However, blinking is the primary method used to confirm nanoparticle aggregation status in situ, and single or small clusters of nanoparticles with continuous fluorescence emission are difficult to discern from large aggregates. Here, we describe a new class of quantum dot-based composite nanoparticles that solve these two seemingly irreconcilable problems by exhibiting near-continuous, alternating-color fluorescence, which permits aggregation status discrimination by observable color changes even during motion across the focal plane. These materials will greatly enhance particle tracking in cell biology, biophysics, and fluid mechanics.

      18. Quantum Zeno effect and quantum Zeno paradox in atomic physics

        NASA Astrophysics Data System (ADS)

        Block, Ellen; Berman, P. R.

        1991-08-01

        Itano and co-workers [Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990)] have recently reported the experimental verification of the quantum Zeno effect, which is the inhibition of a quantum transition by frequent measurements. In this article, we offer an alternative interpretation of the quantum Zeno effect. We show that an analysis of the dynamics of the full three-level system gives the same result. There is no need to assume explicitly that the wave function has collapsed, nor even to assume that an ideal measurement has been made. In addition, we differentiate between what has been referred to as the quantum Zeno effect and what has been termed the quantum Zeno paradox. The former is the inhibition of induced transitions, and the latter is the, as yet experimentally unobserved, inhibition of spontaneous decay. Our interpretation, which emphasizes the ``measurement''-induced interruption of atomic-state coherences as the cause of inhibited quantum transitions, suggests a resolution to the quantum Zeno paradox. The theoretical limit of continuous observation is discussed.

      19. One-dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibers

        NASA Astrophysics Data System (ADS)

        Si, Tie-Yan

        2015-12-01

        A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus. Project supported by the Fundamental Research Foundation for the Central Universities of China.

      20. Energy related applications of elementary particle physics

        SciTech Connect

        Rafelski, J.

        1991-08-31

        The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise.

      1. Quantum tomography of arbitrary spin states of particles: root approach

        NASA Astrophysics Data System (ADS)

        Bogdanov, Yu. I.

        2006-05-01

        A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multiparametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.

      2. Spacetime alternatives in the quantum mechanics of a relativistic particle

        SciTech Connect

        Whelan, J.T. Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH )

        1994-11-15

        Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities.

      3. Matter and Interactions: A Particle Physics Perspective

        ERIC Educational Resources Information Center

        Organtini, Giovanni

        2011-01-01

        In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

      4. Particle physics---Experimental. Annual progress report

        SciTech Connect

        Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

        1991-08-21

        We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

      5. The Second Law and Quantum Physics

        NASA Astrophysics Data System (ADS)

        Bennett, Charles H.

        2008-08-01

        In this talk, I discuss the mystery of the second law and its relation to quantum information. There are many explanations of the second law, mostly satisfactory and not mutually exclusive. Here, I advocate quantum mechanics and quantum information as something that, through entanglement, helps resolve the paradox or the puzzle of the origin of the second law. I will discuss the interpretation called quantum Darwinism and how it helps explain why our world seems so classical, and what it has to say about the permanence or transience of information. And I will discuss a simple model illustrating why systems away from thermal equilibrium tend to be more complicated.

      6. Time and a physical Hamiltonian for quantum gravity.

        PubMed

        Husain, Viqar; Pawłowski, Tomasz

        2012-04-01

        We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach.

      7. Simulating Zeno physics by a quantum quench with superconducting circuits

        NASA Astrophysics Data System (ADS)

        Tong, Qing-Jun; An, Jun-Hong; Kwek, L. C.; Luo, Hong-Gang; Oh, C. H.

        2014-06-01

        Studying out-of-equilibrium physics in quantum systems under quantum quench is of vast experimental and theoretical interest. Using periodic quantum quenches, we present an experimentally accessible scheme to simulate the quantum Zeno and anti-Zeno effects in an open quantum system of a single superconducting qubit interacting with an array of transmission line resonators. The scheme is based on the following two observations: First, compared with conventional systems, the short-time nonexponential decay in our superconducting circuit system is readily observed; and second, a quench-off process mimics an ideal projective measurement when its time duration is sufficiently long. Our results show the active role of quantum quench in quantum simulation and control.

      8. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

        NASA Astrophysics Data System (ADS)

        Plotnitsky, Arkady

        2014-12-01

        This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.

      9. Particle Physics in a Season of Change

        SciTech Connect

        Quigg, Chris

        2012-02-01

        A digest of the authors opening remarks at the 2011 Hadron Collider Physics Symposium. I have chosen my title to reflect the transitions we are living through, in particle physics overall and in hadron collider physics in particular. Data-taking has ended at the Tevatron, with {approx} 12 fb{sup -1} of {bar p}p interactions delivered to CDF and D0 at {radical}s = 1.96 TeV. The Large Hadron Collider has registered a spectacular first full-year run, with ATLAS and CMS seeing > 5 fb{sup -1}, LHCb recording {approx} 1 fb{sup -1}, and ALICE logging nearly 5 pb{sup -1} of pp data at {radical}s = 7 TeV, plus a healthy dose of Pb-Pb collisions. The transition to a new energy regime and new realms of instantaneous luminosity exceeding 3.5 x 10{sup 33} cm{sup -2} s{sup -1} has brought the advantage of enhanced physics reach and the challenge of pile-up reaching {approx} 15 interactions per beam crossing. I am happy to record that what the experiments have (not) found so far has roused some of my theoretical colleagues from years of complacency and stimulated them to think anew about what the TeV scale might hold. We theorists have had plenty of time to explore many proposals for electroweak symmetry breaking and for new physics that might lie beyond established knowledge. With so many different theoretical inventions in circulation, it is in the nature of things that most will be wrong. Keep in mind that we learn from what experiment tells us is not there, even if it is uncommon to throw a party for ruling something out. Some non-observations may be especially telling: the persistent absence of flavor-changing neutral currents, for example, seems to me more and more an important clue that we have not yet deciphered. It is natural that the search for the avatar of electroweak symmetry breaking preoccupies participants and spectators alike. But it is essential to conceive the physics opportunities before us in their full richness. I would advocate a three-fold approach

      10. Teaching and Understanding of Quantum Interpretations in Modern Physics Courses

        ERIC Educational Resources Information Center

        Baily, Charles; Finkelstein, Noah D.

        2010-01-01

        Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…

      11. Quantum physics: Photons paired with phonons

        NASA Astrophysics Data System (ADS)

        Blencowe, Miles

        2016-02-01

        The force exerted by light on an object has been used to pair photons with quantum units of mechanical vibration. This paves the way for mechanical oscillators to act as interfaces between photons and other quantum systems. See Letter p.313

      12. Single particle in quantum gravity and Braunstein-Ghosh-Severini entropy of a spin network

        SciTech Connect

        Rovelli, Carlo; Vidotto, Francesca

        2010-02-15

        Passerini and Severini have recently shown that the Braunstein-Ghosh-Severini (BGS) entropy S{sub {Gamma}}=-Tr[{rho}{sub {Gamma}}log{rho}{sub {Gamma}}] of a certain density matrix {rho}{sub {Gamma}} naturally associated to a graph {Gamma}, is maximized, among all graphs with a fixed number of links and nodes, by regular graphs. We ask if this result can play a role in quantum gravity, and be related to the apparent regularity of the physical geometry of space. We show that in loop quantum gravity the matrix {rho}{sub {Gamma}} is precisely the Hamiltonian operator (suitably normalized) of a nonrelativistic quantum particle interacting with the quantum gravitational field, if we restrict elementary area and volume eigenvalues to a fixed value. This operator provides a spectral characterization of the physical geometry, and can be interpreted as a state describing the spectral information about the geometry available when geometry is measured by its physical interaction with matter. It is then tempting to interpret its BGS entropy S{sub {Gamma}} as a genuine physical entropy: we discuss the appeal and the difficulties of this interpretation.

      13. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

        NASA Astrophysics Data System (ADS)

        Kneller, Gerald R.

        2016-07-01

        The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝tα, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constant can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.

      14. Asymptotic neutron scattering laws for anomalously diffusing quantum particles.

        PubMed

        Kneller, Gerald R

        2016-07-28

        The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t(α), with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constant can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers. PMID:27475344

      15. Quantum-Carnot engine for particle confined to cubic potential

        NASA Astrophysics Data System (ADS)

        Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.

        2015-09-01

        Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.

      16. Quantum-Carnot engine for particle confined to cubic potential

        SciTech Connect

        Sutantyo, Trengginas Eka P. Belfaqih, Idrus H. Prayitno, T. B.

        2015-09-30

        Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.

      17. Particle astronomy and particle physics from the moon - The particle observatory

        NASA Technical Reports Server (NTRS)

        Wilson, Thomas L.

        1990-01-01

        Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.

      18. Friction and particle-hole pairs. [in dissipative quantum phenomena

        NASA Technical Reports Server (NTRS)

        Guinea, F.

        1984-01-01

        The effect induced by dissipation on quantum phenomena has recently been considered, taking into account as a starting point a phenomenological Hamiltonian in which the environment is simulated by an appropriately chosen set of harmonic oscillators. It is found that this approach should be adequate to describe the low-energy behavior of a wide class of environments. The present investigation is concerned with an analysis of the case in which the environment is a gas (or liquid) of fermions, and the relevant low-energy excitations are particle-hole pairs. A study is conducted regarding the extent to which the quantum results obtained for harmonic oscillators are also valid in the considered situation. Linear-response theory is used to derive an effective action which describes the motion of an external particle coupled to a normal Fermi fluid.

      19. Role of quantum statistics in multi-particle decay dynamics

        SciTech Connect

        Marchewka, Avi; Granot, Er’el

        2015-04-15

        The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.

      20. Inverse Problems in Classical and Quantum Physics

        NASA Astrophysics Data System (ADS)

        Almasy, Andrea A.

        2009-12-01

        The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. In this thesis, also two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A promising result is that one can qualitatively reconstruct the conductivity inside the cross-section of a human chest. Even though the human volunteer is neither two-dimensional nor circular, such reconstructions can be useful in medical applications: monitoring for lung problems such as accumulating fluid or a collapsed lung and noninvasive monitoring of heart function and blood flow.

      1. Research accomplishments and future goals in particle physics

        SciTech Connect

        Whitaker, J.S.

        1990-01-05

        This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper.

      2. The Physical Principles of Particle Detectors.

        ERIC Educational Resources Information Center

        Jones, Goronwy Tudor

        1991-01-01

        Describes the use of a particle detector, an instrument that records the passage of particles through it, to determine the mass of a particle by measuring the particles momentum, speed, and kinetic energy. An appendix discusses the limits on the impact parameter. (MDH)

      3. J. J. Sakurai Prize for Theoretical Particle Physics Lecture: Particle physics after the first LHC results

        NASA Astrophysics Data System (ADS)

        Altarelli, Guido

        2012-03-01

        The LHC results released so far have very much restricted the possible range for the Standard Model Higgs boson mass. Moreover some indications for a signal at a mass around 125 GeV have been found. At the same time, no clear evidence for new physics has emerged from the LHC data. We discuss the impact of these results on our understanding of particle physics. The presently allowed window for the Higgs mass and the negative results for exotic particles are compatible with both the Standard model and its Supersymmetric extensions but imply considerable restrictions and need a substantial amount of fine tuning in all cases. We discuss the options that remain open and the perspectives for the near future.

      4. Particle physics: CP violation in hyperon decays

        SciTech Connect

        Longo, Michael J.

        2000-10-31

        The primary research activities under this grant were in E871 (HyperCP) at Fermilab, a search for CP violation in hyperon decays which completed data taking in January, 2000. HyperCP is an experiment designed to perform a sensitive search for direct CP violation in the decays of cascade ({Xi}) and {Lambda} hyperons by looking for an asymmetry between particle and antiparticle decay parameters. The experiment is expected to achieve a sensitivity {approx}10{sup -4} in the decay parameters. Standard model predictions for this CP-violating asymmetry range from 0.3 to 5 x 10{sup -4}. A difference between the decay parameters for particle and antiparticle is direct evidence that CP symmetry is violated. A non-zero asymmetry would be the first evidence for CP violation outside of the K{sup o} system. Recent results from KTeV indicate a direct CP violation in K{sup o} decays, which suggests that CP violation will appear in other decays. In addition, we will look at a number of rare hyperon decays involving muons. These probe important new physics topics such as Majorana neutrinos and lepton number violating processes. The latter are of great current interest because new evidence for neutrino oscillations indicate lepton flavor violation does occur. Our data will lead to an improvement in the limits on branching ratios for these processes typically by three to four orders-of-magnitude. The muon detector construction and data resulting from it have been the responsibility of the Michigan group. We are now leading the analysis of the rare muon-related decay modes, and were responsible for the muon system and beam monitor upgrades for the 1999 run.

      5. Variance of the Quantum Dwell Time for a Nonrelativistic Particle

        NASA Technical Reports Server (NTRS)

        Hahne, Gerhard

        2012-01-01

        Munoz, Seidel, and Muga [Phys. Rev. A 79, 012108 (2009)], following an earlier proposal by Pollak and Miller [Phys. Rev. Lett. 53, 115 (1984)] in the context of a theory of a collinear chemical reaction, showed that suitable moments of a two-flux correlation function could be manipulated to yield expressions for the mean quantum dwell time and mean square quantum dwell time for a structureless particle scattering from a time-independent potential energy field between two parallel lines in a two-dimensional spacetime. The present work proposes a generalization to a charged, nonrelativistic particle scattering from a transient, spatially confined electromagnetic vector potential in four-dimensional spacetime. The geometry of the spacetime domain is that of the slab between a pair of parallel planes, in particular those defined by constant values of the third (z) spatial coordinate. The mean Nth power, N = 1, 2, 3, . . ., of the quantum dwell time in the slab is given by an expression involving an N-flux-correlation function. All these means are shown to be nonnegative. The N = 1 formula reduces to an S-matrix result published previously [G. E. Hahne, J. Phys. A 36, 7149 (2003)]; an explicit formula for N = 2, and of the variance of the dwell time in terms of the S-matrix, is worked out. A formula representing an incommensurability principle between variances of the output-minus-input flux of a pair of dynamical variables (such as the particle s time flux and others) is derived.

      6. Families of Particles with Different Masses in PT-Symmetric Quantum Field Theory

        SciTech Connect

        Bender, Carl M.; Klevansky, S. P.

        2010-07-16

        An elementary field-theoretic mechanism is proposed that allows one Lagrangian to describe a family of particles having different masses but otherwise similar physical properties. The mechanism relies on the observation that the Dyson-Schwinger equations derived from a Lagrangian can have many different but equally valid solutions. Nonunique solutions to the Dyson-Schwinger equations arise when the functional integral for the Green's functions of the quantum field theory converges in different pairs of Stokes' wedges in complex-field space, and the solutions are physically viable if the pairs of Stokes' wedges are PT symmetric.

      7. Families of particles with different masses in PT-symmetric quantum field theory.

        PubMed

        Bender, Carl M; Klevansky, S P

        2010-07-16

        An elementary field-theoretic mechanism is proposed that allows one Lagrangian to describe a family of particles having different masses but otherwise similar physical properties. The mechanism relies on the observation that the Dyson-Schwinger equations derived from a Lagrangian can have many different but equally valid solutions. Nonunique solutions to the Dyson-Schwinger equations arise when the functional integral for the Green's functions of the quantum field theory converges in different pairs of Stokes' wedges in complex-field space, and the solutions are physically viable if the pairs of Stokes' wedges are PT symmetric.

      8. Atomic physics and quantum optics using superconducting circuits.

        PubMed

        You, J Q; Nori, Franco

        2011-06-29

        Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

      9. Quantum physics: Destruction of discrete charge

        NASA Astrophysics Data System (ADS)

        Nazarov, Yuli V.

        2016-08-01

        Electric charge is quantized in units of the electron's charge. An experiment explores the suppression of charge quantization caused by quantum fluctuations and supports a long-standing theory that explains this behaviour. See Letter p.58

      10. Transnational Quantum: Quantum Physics in India through the Lens of Satyendranath Bose

        NASA Astrophysics Data System (ADS)

        Banerjee, Somaditya

        2016-08-01

        This paper traces the social and cultural dimensions of quantum physics in colonial India where Satyendranath Bose worked. By focusing on Bose's approach towards the quantum and his collaboration with Albert Einstein, I argue that his physics displayed both the localities of doing science in early twentieth century India as well as a cosmopolitan dimension. He transformed the fundamental new concept of the light quantum developed by Einstein in 1905 within the social and political context of colonial India. This cross-pollination of the local with the global is termed here as the locally rooted cosmopolitan nature of Bose's science. The production of new knowledge through quantum statistics by Bose show the co-constructed nature of physics and the transnational nature of the quantum.

      11. Teaching Quantum Physics in Upper Secondary School in France:

        NASA Astrophysics Data System (ADS)

        Lautesse, Philippe; Vila Valls, Adrien; Ferlin, Fabrice; Héraud, Jean-Loup; Chabot, Hugues

        2015-10-01

        One of the main problems in trying to understand quantum physics is the nature of the referent of quantum theory. This point is addressed in the official French curriculum in upper secondary school. Starting in 2012, after about 20 years of absence, quantum physics has returned to the national program. On the basis of the historical construction of quantum physics, we identify two epistemological positions with respect to this problem: The first one (close to the so-called Copenhagen school) is termed the conservative position and the second one (associated with the work of Bunge and Lévy-Leblond) the innovative position. We then analyze French textbooks used by teachers, in order to reveal the implicit positions adopted. We conclude with the idea that highlighting these epistemological choices can help teachers reflect upon the historical and epistemological roots of quantum physics. Such an analysis can contribute to developing and implementing appropriate teaching sequences for quantum physics. We explore the application of these epistemological positions to Young's paradigmatic experiment using the double slits.

      12. Teaching Elementary Particle Physics, Part II

        ERIC Educational Resources Information Center

        Hobson, Art

        2011-01-01

        In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…

      13. Quantum physics with non-Hermitian operators Quantum physics with non-Hermitian operators

        NASA Astrophysics Data System (ADS)

        Bender, Carl; Fring, Andreas; Günther, Uwe; Jones, Hugh

        2012-11-01

        The main motivation behind the call for this special issue was to gather recent results, developments and open problems in quantum physics with non-Hermitian operators. There have been previous special issues in this journal [1, 2] and elsewhere on this subject. The intention of this issue is to reflect the current state of this rapidly-developing field. It has therefore been open to all contributions containing new results on non-Hermitian theories that are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. In the last decade these types of systems have proved to be viable self-consistent physical theories with well defined unitary time-evolution and real spectra. As the large number of responses demonstrates, this is a rapidly evolving field of research. A consensus has been reached regarding most of the fundamental problems, and the general ideas and techniques are now readily being employed in many areas of physics. Nonetheless, this issue still contains some treatments of a more general nature regarding the spectral analysis of these models, in particular, the physics of the exceptional points, the breaking of the PT-symmetry, an interpretation of negative energies and the consistent implementation of the WKB analysis. This issue also contains a treatment of a scattering theory associated with these types of systems, weak measurements, coherent states, decoherence, unbounded metric operators and the inclusion of domain issues to obtain well defined self-adjoint theories. Contributions in the form of applications of the general ideas include: studies of classical shock-waves and tunnelling, supersymmetric models, spin chain models, models with ring structure, random matrix models, the Pauli equation, the nonlinear Schrödinger equation, quasi-exactly solvable models, integrable models such as the Calogero model, Bose-Einstein condensates, thermodynamics, nonlinear oligomers, quantum catastrophes, the Landau-Zener problem and pseudo

      14. Simulations of two-particle interactions with 2D quantum walks in time

        SciTech Connect

        Schreiber, A.; Laiho, K.; Silberhorn, C.; Rohde, P. P.; Štefaňak, M.; Potoček, V.; Hamilton, C.; Jex, I.

        2014-12-04

        We present the experimental implementation of a quantum walk on a two-dimensional lattice and show how to employ the optical system to simulate the quantum propagation of two interacting particles. Our quantum walk in time transfers the spatial spread of a quantum walk into the time domain, which guarantees a high stability and scalability of the setup. We present with our device quantum walks over 12 steps on a 2D lattice. By changing the properties of the driving quantum coin, we investigate different kinds of two-particle interactions and reveal their impact on the occurring quantum propagation.

      15. Multiple particle production processes in the light'' of quantum optics

        SciTech Connect

        Friedlander, E.M.

        1990-09-01

        Ever since the observation that high-energy nuclear active'' cosmic-ray particles create bunches of penetrating particles upon hitting targets, a controversy has raged about whether these secondaries are created in a single act'' or whether many hadrons are just the result of an intra-nuclear cascade, yielding one meson in every step. I cannot escape the impression that: the latter kind of model appeals naturally as a consequence of an innate bio-morphism in our way of thinking and that in one guise or another it has tenaciously survived to this day, also for hadron-hadron collisions, via multi-peripheral models to the modern parton shower approach. Indeed, from the very beginning of theoretical consideration of multiparticle production, the possibility of many particles arising from a single hot'' system has been explored, with many fruitful results, not the least of which are the s{sup 1/4} dependence of the mean produced particle multiplicity and the thermal'' shape of the P{sub T} spectra. An important consequence of the thermodynamical-hydrodynamical models is that particle emission is treated in analogy to black-body radiation, implying for the secondaries a set of specific Quantum-Statistical properties, very similar to those observed in quantum optics. From here on I shall try to review a number of implications and applications of this QS analogy in the study of multiplicity distributions of the produced secondaries. I will touch only in passing another very important topic of this class, the Bose-Einstein two-particle correlations.

      16. CCDM model from quantum particle creation: constraints on dark matter mass

        SciTech Connect

        Jesus, J.F.; Pereira, S.H. E-mail: shpereira@gmail.com

        2014-07-01

        In this work the results from the quantum process of matter creation have been used in order to constrain the mass of the dark matter particles in an accelerated Cold Dark Matter model (Creation Cold Dark Matter, CCDM). In order to take into account a back reaction effect due to the particle creation phenomenon, it has been assumed a small deviation ε for the scale factor in the matter dominated era of the form t{sup 2/3+ε}. Based on recent H(z) data, the best fit values for the mass of dark matter created particles and the ε parameter have been found as m = 1.6× 10{sup 3} GeV, restricted to a 68.3% c.l. interval of 1.5 < m < 6.3× 10{sup 7}) GeV and ε = -0.250{sup +0.15}{sub -0.096} at 68.3% c.l. For these best fit values the model correctly recovers a transition from decelerated to accelerated expansion and admits a positive creation rate near the present era. Contrary to recent works in CCDM models where the creation rate was phenomenologically derived, here we have used a quantum mechanical result for the creation rate of real massive scalar particles, given a self consistent justification for the physical process. This method also indicates a possible solution to the so called ''dark degeneracy'', where one can not distinguish if it is the quantum vacuum contribution or quantum particle creation which accelerates the Universe expansion.

      17. Twenty-Five Centuries of Quantum Physics: From Pythagoras to Us, and from Subjectivism to Realism

        NASA Astrophysics Data System (ADS)

        Bunge, Mario

        Three main theses are proposed. The first is that the idea of a quantum or minimal unit is not peculiar to quantum theory, since it already occurs in the classical theories of elasticity and electrolysis. Second, the peculiarities of the objects described by quantum theory are the following: their basic laws are probabilistic; some of their properties, such as position and energy, are blunt rather than sharp; two particles that were once together continue to be associated even after becoming spatially separated; and the vacuum has physical properties, so that it is a kind of matter. Third, the orthodox or Copenhagen interpretation of the theory is false, and may conveniently be replaced with a realist (though not classicist) interpretation. Heisenberg's inequality, Schrödinger's cat and Zeno's quantum paradox are discussed in the light of the two rival interpretations. It is also shown that the experiments that falsified Bell's inequality do not refute realism but the classicism inherent in hidden variables theories.

      18. Macroscopic entanglement in many-particle quantum states

        NASA Astrophysics Data System (ADS)

        Tichy, Malte C.; Park, Chae-Yeun; Kang, Minsu; Jeong, Hyunseok; Mølmer, Klaus

        2016-04-01

        We elucidate the relationship between Schrödinger-cat-like macroscopicity and geometric entanglement and argue that these quantities are not interchangeable. While both properties are lost due to decoherence, we show that macroscopicity is rare in uniform and in so-called random physical ensembles of pure quantum states, despite possibly large geometric entanglement. In contrast, permutation-symmetric pure states feature rather low geometric entanglement and strong and robust macroscopicity.

      19. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

        SciTech Connect

        Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

        1998-12-14

        Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

      20. Quantum dot-containing polymer particles with thermosensitive fluorescence

        NASA Astrophysics Data System (ADS)

        Generalova, Alla N.; Oleinikov, Vladimir A.; Sukhanova, Alyona; Artemyev, Mikhail V.; Zubov, Vitaly P.; Nabiev, Igor

        2012-10-01

        In the past decades, increasing attention has been paid to the preparation of "smart" functionalized polymer particles reversibly responding to slight environmental changes, such as variations in temperature, pH, and ionic strength. The composite polymer particles consisting of a solid poly(acrolein-co-styrene) core and a poly(N-vinylcaprolactam) (PVCL) polymer shell doped with CdSe/ZnS semiconductor quantum dots (QDs) were prepared. The thermosensitive response of the composite particles was observed as a decrease in their hydrodynamic diameter upon heating above the lower critical solution temperature of the thermosensitive PVCL polymer used as a shell. Embedding QDs in the PVCL shell makes it possible to obtain particles whose fluorescence is sensitive to temperature changes. The temperature-dependent fluorescence of particles was determined by reversible variation of the distances between QDs in the PVCL shell as a result of temperature-driven conformational changes in this polymer. In addition, these particles can be used as carriers of biomolecule (e.g., bovine serum albumin, BSA) characterized by reversibly temperature-dependent fluorescence, which can serve as the basis for optical detection methods in bioassays, such as the measurement of local temperature in nanovolumes, biosensing, etc.

      1. Pre-Service Physics Teachers' Comprehension of Quantum Mechanical Concepts

        ERIC Educational Resources Information Center

        Didis, Nilufer; Eryilmaz, Ali; Erkoc, Sakir

        2010-01-01

        When quantum theory caused a paradigm shift in physics, it introduced difficulties in both learning and teaching of physics. Because of its abstract, counter-intuitive and mathematical structure, students have difficulty in learning this theory, and instructors have difficulty in teaching the concepts of the theory. This case study investigates…

      2. Making the Transition from Classical to Quantum Physics

        ERIC Educational Resources Information Center

        Dutt, Amit

        2011-01-01

        This paper reports on the nature of the conceptual understandings developed by Year 12 Victorian Certificate of Education (VCE) physics students as they made the transition from the essentially deterministic notions of classical physics, to interpretations characteristic of quantum theory. The research findings revealed the fact that the…

      3. Approximating the physical inner product of loop quantum cosmology

        NASA Astrophysics Data System (ADS)

        Bahr, Benjamin; Thiemann, Thomas

        2007-04-01

        In this paper, we investigate the possibility of approximating the physical inner product of constrained quantum theories. In particular, we calculate the physical inner product of a simple cosmological model in two ways: firstly, we compute it analytically via a trick; secondly, we use the complexifier coherent states to approximate the physical inner product defined by the master constraint of the system. We find that the approximation is able to recover the analytic solution of the problem, which consolidates hopes that coherent states will help to approximate solutions of more complicated theories, like loop quantum gravity.

      4. One hundred years of quantum physics.

        PubMed

        Kleppner, D; Jackiw, R

        2000-08-11

        This year marks the 100th anniversary of Max Planck's creation of the quantum concept, an idea so revolutionary that it took nearly 30 years for scientists to develop it into the theory that has transformed the way scientists view reality. In this month's essay, Daniel Kleppner and Roman Jackiw recount how quantum theory, which they rate as "the most precisely tested and most successful theory in the history of science," came to be, how it changed the world, and how it might continue to evolve to make the dream of ultimate understanding of the universe come true.

      5. Annihilation physics of exotic galactic dark matter particles

        NASA Technical Reports Server (NTRS)

        Stecker, F. W.

        1990-01-01

        Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

      6. Designing learning environments to teach interactive Quantum Physics

        NASA Astrophysics Data System (ADS)

        Gómez Puente, Sonia M.; Swagten, Henk J. M.

        2012-10-01

        This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small groups. Individual formative feedback was introduced as a rapid assessment tool to provide an overview on progress and identify gaps by means of questioning students at three levels: conceptual; prior knowledge; homework exercises. The setup of Quantum Physics has been developed as a result of several loops of adjustments and improvements from a traditional-like type of teaching to an interactive classroom. Results of this particular instructional arrangement indicate significant gains in students' achievements in comparison with the traditional structure of this course, after recent optimisation steps such as the implementation of an individual feedback system.

      7. J.J. Sakurai Prize for Theoretical Particle Physics: 40 Years of Lattice QCD

        NASA Astrophysics Data System (ADS)

        Lepage, Peter

        2016-03-01

        Lattice QCD was invented in 1973-74 by Ken Wilson, who passed away in 2013. This talk will describe the evolution of lattice QCD through the past 40 years with particular emphasis on its first years, and on the past decade, when lattice QCD simulations finally came of age. Thanks to theoretical breakthroughs in the late 1990s and early 2000s, lattice QCD simulations now produce the most accurate theoretical calculations in the history of strong-interaction physics. They play an essential role in high-precision experimental studies of physics within and beyond the Standard Model of Particle Physics. The talk will include a non-technical review of the conceptual ideas behind this revolutionary development in (highly) nonlinear quantum physics, together with a survey of its current impact on theoretical and experimental particle physics, and prospects for the future. Work supported by the National Science Foundation.

      8. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection.

        PubMed

        Sun, Jun; Fang, Wei; Wu, Xiaojun; Palade, Vasile; Xu, Wenbo

        2012-01-01

        Quantum-behaved particle swarm optimization (QPSO), motivated by concepts from quantum mechanics and particle swarm optimization (PSO), is a probabilistic optimization algorithm belonging to the bare-bones PSO family. Although it has been shown to perform well in finding the optimal solutions for many optimization problems, there has so far been little analysis on how it works in detail. This paper presents a comprehensive analysis of the QPSO algorithm. In the theoretical analysis, we analyze the behavior of a single particle in QPSO in terms of probability measure. Since the particle's behavior is influenced by the contraction-expansion (CE) coefficient, which is the most important parameter of the algorithm, the goal of the theoretical analysis is to find out the upper bound of the CE coefficient, within which the value of the CE coefficient selected can guarantee the convergence or boundedness of the particle's position. In the experimental analysis, the theoretical results are first validated by stochastic simulations for the particle's behavior. Then, based on the derived upper bound of the CE coefficient, we perform empirical studies on a suite of well-known benchmark functions to show how to control and select the value of the CE coefficient, in order to obtain generally good algorithmic performance in real world applications. Finally, a further performance comparison between QPSO and other variants of PSO on the benchmarks is made to show the efficiency of the QPSO algorithm with the proposed parameter control and selection methods.

      9. Quantum well structures in thin metal films: simple model physics in reality?

        NASA Astrophysics Data System (ADS)

        Milun, M.; Pervan, P.; Woodruff, D. P.

        2002-02-01

        The quantum wells formed by ultra-thin metallic films on appropriate metallic substrates provide a real example of the simple undergraduate physics problem in quantum mechanics of the `particle in a box'. Photoemission provides a direct probe of the energy of the resulting quantized bound states. In this review the relationship of this simple model system to the real metallic quantum well (QW) is explored, including the way that the exact nature of the boundaries can be taken into account in a relative simple way through the `phase accumulation model'. More detailed aspects of the photoemission probe of QW states are also discussed, notably of the physical processes governing the photon energy dependence of the cross sections, of the influence of temperature, and the processes governing the observed peak widths. These aspects are illustrated with the results of experiments and theoretical studies, especially for the model systems Ag on Fe(100), Ag on V(100) and Cu on fcc Co(100).

      10. Physical model for the generation of ideal resources in multipartite quantum networking

        SciTech Connect

        Ciccarello, F.; Zarcone, M.; Paternostro, M.; Bose, S.; Browne, D. E.; Palma, G. M.

        2010-09-15

        We propose a physical model for generating multipartite entangled states of spin-s particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies in the management of stationary and well-separated spins. Among the generable states, there is a class of N-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W, and Greenberger-Horne-Zeilinger states.

      11. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions.

        PubMed

        Dzierlenga, M W; Varga, M J; Schwartz, S D

        2016-01-01

        The mechanisms of enzymatic reactions are studied via a host of computational techniques. While previous methods have been used successfully, many fail to incorporate the full dynamical properties of enzymatic systems. This can lead to misleading results in cases where enzyme motion plays a significant role in the reaction coordinate, which is especially relevant in particle transfer reactions where nuclear tunneling may occur. In this chapter, we outline previous methods, as well as discuss newly developed dynamical methods to interrogate mechanisms of enzymatic particle transfer reactions. These new methods allow for the calculation of free energy barriers and kinetic isotope effects (KIEs) with the incorporation of quantum effects through centroid molecular dynamics (CMD) and the full complement of enzyme dynamics through transition path sampling (TPS). Recent work, summarized in this chapter, applied the method for calculation of free energy barriers to reaction in lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase (YADH). We found that tunneling plays an insignificant role in YADH but plays a more significant role in LDH, though not dominant over classical transfer. Additionally, we summarize the application of a TPS algorithm for the calculation of reaction rates in tandem with CMD to calculate the primary H/D KIE of YADH from first principles. We found that the computationally obtained KIE is within the margin of error of experimentally determined KIEs and corresponds to the KIE of particle transfer in the enzyme. These methods provide new ways to investigate enzyme mechanism with the inclusion of protein and quantum dynamics.

      12. Quantum constraint dynamics for two spinless particles under vector interaction

        NASA Astrophysics Data System (ADS)

        Crater, Horace W.; van Alstine, Peter

        1984-12-01

        Using Dirac's constraint mechanics we derive two-body Klein-Gordon equations for two spinless particles under mutual vector interaction. We construct generalized mass-shell constraints which incorporate the gauge structure of this interaction for the constituent particles. The resultant direct-interaction formalism does more than just dress static potentials with relativistic two-body kinematics. It includes dynamical recoil effects in the potential characteristic of those that appear in field theories. We demonstrate this classically by showing its canonical equivalence in the slow-motion, weak-potential domain (the semirelativistic approximation) to the Darwin Hamiltonian. We also show this quantum mechanically by demonstrating its equivalence (for weak potentials) to Todorov's homogeneous quasipotential equation (which in turn leads to the standard Breit results for perturbative QED). Not only is our one-body Schrödinger-type equation local and covariant, but also it leads to forms of interaction that make nonperturbative quantum-mechanical sense at short distances. Thus this constraint approach is ideally suited for use in phenomenological applications where a perturbative treatment may be inadequate (with no need for extra smoothing parameters or finite particle size).

      13. The Bondons: The Quantum Particles of the Chemical Bond

        PubMed Central

        Putz, Mihai V.

        2010-01-01

        By employing the combined Bohmian quantum formalism with the U(1) and SU(2) gauge transformations of the non-relativistic wave-function and the relativistic spinor, within the Schrödinger and Dirac quantum pictures of electron motions, the existence of the chemical field is revealed along the associate bondon particle B̶ characterized by its mass (mB̶), velocity (vB̶), charge (eB̶), and life-time (tB̶). This is quantized either in ground or excited states of the chemical bond in terms of reduced Planck constant ħ, the bond energy Ebond and length Xbond, respectively. The mass-velocity-charge-time quaternion properties of bondons’ particles were used in discussing various paradigmatic types of chemical bond towards assessing their covalent, multiple bonding, metallic and ionic features. The bondonic picture was completed by discussing the relativistic charge and life-time (the actual zitterbewegung) problem, i.e., showing that the bondon equals the benchmark electronic charge through moving with almost light velocity. It carries negligible, although non-zero, mass in special bonding conditions and towards observable femtosecond life-time as the bonding length increases in the nanosystems and bonding energy decreases according with the bonding length-energy relationship Ebond[kcal/mol]×Xbond[A0]=182019, providing this way the predictive framework in which the B̶ particle may be observed. Finally, its role in establishing the virtual states in Raman scattering was also established. PMID:21151435

      14. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions.

        PubMed

        Dzierlenga, M W; Varga, M J; Schwartz, S D

        2016-01-01

        The mechanisms of enzymatic reactions are studied via a host of computational techniques. While previous methods have been used successfully, many fail to incorporate the full dynamical properties of enzymatic systems. This can lead to misleading results in cases where enzyme motion plays a significant role in the reaction coordinate, which is especially relevant in particle transfer reactions where nuclear tunneling may occur. In this chapter, we outline previous methods, as well as discuss newly developed dynamical methods to interrogate mechanisms of enzymatic particle transfer reactions. These new methods allow for the calculation of free energy barriers and kinetic isotope effects (KIEs) with the incorporation of quantum effects through centroid molecular dynamics (CMD) and the full complement of enzyme dynamics through transition path sampling (TPS). Recent work, summarized in this chapter, applied the method for calculation of free energy barriers to reaction in lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase (YADH). We found that tunneling plays an insignificant role in YADH but plays a more significant role in LDH, though not dominant over classical transfer. Additionally, we summarize the application of a TPS algorithm for the calculation of reaction rates in tandem with CMD to calculate the primary H/D KIE of YADH from first principles. We found that the computationally obtained KIE is within the margin of error of experimentally determined KIEs and corresponds to the KIE of particle transfer in the enzyme. These methods provide new ways to investigate enzyme mechanism with the inclusion of protein and quantum dynamics. PMID:27497161

      15. The Oxford Questions on the foundations of quantum physics.

        PubMed

        Briggs, G A D; Butterfield, J N; Zeilinger, A

        2013-09-01

        The twentieth century saw two fundamental revolutions in physics-relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.

      16. The Oxford Questions on the foundations of quantum physics.

        PubMed

        Briggs, G A D; Butterfield, J N; Zeilinger, A

        2013-09-01

        The twentieth century saw two fundamental revolutions in physics-relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment. PMID:24062626

      17. Weak cosmic censorship, superradiance, and quantum particle creation

        NASA Astrophysics Data System (ADS)

        Semiz, Ibrahim; Düztaş, Koray

        2015-11-01

        Starting in 2007, a string of papers argue about if the weak cosmic censorship conjecture (WCCC) can be violated by classically forbidden interactions between particles and slightly subextremal black holes, occurring via the quantum nature of the particles; and where backreaction and/or superradiance are pointed out as effects working in the direction of preserving the WCCC. We correct/modify a backreaction argument, point out that transmission/reflection coefficients for relativistic wave equations are not the respective probabilities, and conclude that superradiance does not prevent single particles from being captured by the black hole; even if this capture would lead to WCCC violation. Then we consider the spontaneous emission (which we call the Zel'dovich-Unruh "ZU" effect) of particles by the black hole, and point out that it completely invalidates the mentioned single- or few-particle thought experiments. We find that at least for scalars, the ZU effect can be understood without second quantization; and reevaluate our previous work on scalar fields interacting with black holes in view of this new understanding, finding that it becomes inconclusive.

      18. Particle Physics Masterclass as a Context for Learning about NOS

        NASA Astrophysics Data System (ADS)

        Wadness, Michael

        2011-04-01

        This research addresses the question: Do secondary school science students attending the U.S. Particle Physics Masterclass change their view of the nature of science (NOS)? The U.S. Particle Physics Masterclass is a national physics outreach program run by QuarkNet, in which high school physics students gather at a local research institution for one day to learn about particle physics and the scientific enterprise. Student activities include introductory lectures in particle physics, laboratory tours, analysis of actual data from CERN, and the discussion of their findings in a conference-like atmosphere. Although there are a number of outreach programs involving scientists in K-12 education, very few of them have been formally evaluated to determine if they provide adequate learning of NOS. Therefore, the significance of this study is that it investigates the claim that science outreach programs may be designed to address science literacy, specifically as a context for explicit NOS instruction.

      19. Two decades of Mexican particle physics at Fermilab

        SciTech Connect

        Roy Rubinstein

        2002-12-03

        This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At the time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s.

      20. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

        PubMed

        Seife, C

        2000-07-14

        Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

      1. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

        PubMed

        Seife, C

        2000-07-14

        Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics. PMID:17750395

      2. Classical and quantum physics of hydrogen clusters.

        PubMed

        Mezzacapo, Fabio; Boninsegni, Massimo

        2009-04-22

        We present results of a comprehensive theoretical investigation of the low temperature (T) properties of clusters of para-hydrogen (p-H(2)), both pristine as well as doped with isotopic impurities (i.e., ortho-deuterium, o-D(2)). We study clusters comprising up to N = 40 molecules, by means of quantum simulations based on the continuous-space Worm algorithm. Pristine p-H(2) clusters are liquid-like and superfluid in the [Formula: see text] limit. The superfluid signal is uniform throughout these clusters; it is underlain by long cycles of permutation of molecules. Clusters with more than 22 molecules display solid-like, essentially classical behavior at temperatures down to T∼1 K; some of them are seen to turn liquid-like at sufficiently low T (quantum melting).

      3. Synthesis of quantum chromodynamics and nuclear physics

        SciTech Connect

        Brodsky, S.J.; Lepage, G.P.

        1980-08-01

        The asymptotic freedom behavior of quantum chromodynamics allows the rigorous calculation of hadronic and nuclear amplitudes at short distances by perturbative methods. The implications of QCD for large-momentum-transfer nuclear form factors and scattering processes, as well as for the structure of nuclear wave functions and nuclear interactions at short distances, are discussed. The necessity for color-polarized internal nuclear states is also discussed. 6 figures.

      4. Nuclear spin physics in quantum dots: An optical investigation

        NASA Astrophysics Data System (ADS)

        Urbaszek, Bernhard; Marie, Xavier; Amand, Thierry; Krebs, Olivier; Voisin, Paul; Maletinsky, Patrick; Högele, Alexander; Imamoglu, Atac

        2013-01-01

        The mesoscopic spin system formed by the 104-106 nuclear spins in a semiconductor quantum dot offers a unique setting for the study of many-body spin physics in the condensed matter. The dynamics of this system and its coupling to electron spins is fundamentally different from its bulk counterpart or the case of individual atoms due to increased fluctuations that result from reduced dimensions. In recent years, the interest in studying quantum-dot nuclear spin systems and their coupling to confined electron spins has been further fueled by its importance for possible quantum information processing applications. The fascinating nonlinear (quantum) dynamics of the coupled electron-nuclear spin system is universal in quantum dot optics and transport. In this article, experimental work performed over the last decade in studying this mesoscopic, coupled electron-nuclear spin system is reviewed. Here a special focus is on how optical addressing of electron spins can be exploited to manipulate and read out the quantum-dot nuclei. Particularly exciting recent developments in applying optical techniques to efficiently establish nonzero mean nuclear spin polarizations and using them to reduce intrinsic nuclear spin fluctuations are discussed. Both results critically influence the preservation of electron-spin coherence in quantum dots. This overall recently gained understanding of the quantum-dot nuclear spin system could enable exciting new research avenues such as experimental observations of spontaneous spin ordering or nonclassical behavior of the nuclear spin bath.

      5. Particle physics meets cosmology - The search for decaying neutrinos

        NASA Technical Reports Server (NTRS)

        Henry, R. C.

        1982-01-01

        The fundamental physical implications of the possible detection of massive neutrinos are discussed, with an emphasis on the Grand Unified Theories (GUTs) of matter. The Newtonian and general-relativistic pictures of the fundamental forces are compared, and the reduction of electromagnetic and weak forces to one force in the GUTs is explained. The cosmological consequences of the curved-spacetime gravitation concept are considered. Quarks, leptons, and neutrinos are characterized in a general treatment of elementary quantum mechanics. The universe is described in terms of quantized fields, the noninteractive 'particle' fields and the force fields, and cosmology becomes the study of the interaction of gravitation with the other fields, of the 'freezing out' of successive fields with the expansion and cooling of the universe. While the visible universe is the result of the clustering of the quark and electron fields, the distribution of the large number of quanta in neutrino field, like the mass of the neutrino, are unknown. Cosmological models which attribute anomalies in the observed motions of galaxies and stars to clusters or shells of massive neutrinos are shown to be consistent with a small but nonzero neutrino mass and a universe near the open/closed transition point, but direct detection of the presence of massive neutrinos by the UV emission of their decay is required to verify these hypotheses.

      6. Teaching Elementary Particle Physics, Part II

        NASA Astrophysics Data System (ADS)

        Hobson, Art

        2011-03-01

        In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because they respond to neither the EM force nor the strong force. For example, the mean free path (average penetration distance before it interacts) of a typical beta-decay neutrino moving through solid lead is about 1.5 light years! Enrico Fermi argued that neutrinos indicated a new force was at work. During the 1930s, he quickly adapted ideas from the developing new theory of QED to this new force, dubbed the weak force. Fermi's theory was able to predict the half-lives of beta-emitting nuclei and the range of energies of the emitted beta particles.

      7. Particle physics. Positrons ride the wave

        DOE PAGESBeta

        Piot, Philippe

        2015-08-26

        Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

      8. Relativistic models in nuclear and particle physics

        SciTech Connect

        Coester, F.

        1988-01-01

        A comparative overview is presented of different approaches to the construction of phenomenological dynamical models that respect basic principles of quantum theory and relativity. Wave functions defined as matrix elements of products of field operators on one hand and wave functions that are defined as representatives of state vectors in model Hilbert spaces are related differently to observables and dynamical models for these wave functions have each distinct advantages and disadvantages 34 refs.

      9. The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications

        NASA Astrophysics Data System (ADS)

        Dür, Wolfgang; Heusler, Stefan

        2016-03-01

        Using the simplest possible quantum system—the qubit—the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous TPT article and in a separate paper posted online, we introduced catchy visualizations of the qubit based on the Bloch sphere or just the unit circle (see also Refs. 3-8 for other approaches highlighting the importance of the qubit). These visualizations open the way to understand basic ideas of quantum physics even without knowledge of the underlying mathematical formalism. In addition, simple mathematics can be introduced to describe the qubit as an abstract object and basic unit of quantum information. This generalizes the digital bit as a basic unit of classical information. The proposed visualizations can be used even at the high school level, while the mathematical explanations are of importance when teaching quantum physics at the undergraduate university level. This approach provides a unified framework to introduce common features of all quantum systems, such as the stochastic behavior and state change of a superposition state under measurement.

      10. Particle Physics Meets Cosmology -- The Search for Decaying Neutrinos.

        ERIC Educational Resources Information Center

        Henry, Richard C.

        1982-01-01

        Detection of neutrino decay may have profound consequences for both particle physics and cosmology, providing a deep connection between physics of the very large and physics of the very small. Describes this link and discusses the nature and status of the search for decaying neutrinos. (Author/JN)

      11. Quantum Mechanics for Beginning Physics Students

        ERIC Educational Resources Information Center

        Schneider, Mark B.

        2010-01-01

        The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For…

      12. Decision theory and information propagation in quantum physics

        NASA Astrophysics Data System (ADS)

        Forrester, Alan

        In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule p k =| ψ k | 2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129-3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415-438] to deriving the Born rule for quantum probabilities on the grounds that it courts circularity. Deutsch and Wallace assume that the many worlds theory is true and that decoherence gives rise to a preferred basis. However, decoherence arguments use the reduced density matrix, which relies upon the partial trace and hence upon the Born rule for its validity. Using the Heisenberg picture and quantum Darwinism-the notion that classical information is quantum information that can proliferate in the environment pioneered in Ollivier et al. [(2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 and (2005). Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A, 72, 042113]-I show that measurement interactions between two systems only create correlations between a specific set of commuting observables of system 1 and a specific set of commuting observables of system 2. This argument picks out a unique basis in which information flows in the correlations between those sets of commuting observables. I then derive the Born rule for both pure and mixed states and answer some other criticisms of the decision theoretic approach to quantum probability.

      13. Local energy and power in many-particle quantum systems driven by an external electrical field

        NASA Astrophysics Data System (ADS)

        Albareda, Guillermo; Traversa, Fabio Lorenzo; Oriols, Xavier

        2016-05-01

        We derive expressions for the expectation values of the local energy and the local power for a many-particle system of (scalar) charged particles interacting with an external electrical field. In analogy with the definition of the (local) current probability density, we construct a local energy operator such that the time-rate of change of its expectation value provides information on the spatial distribution of power. Results are presented as functions of an arbitrarily small volume Ω , and physical insights are discussed by means of the quantum hydrodynamical representation of the wavefunction, which is proven to allow for a clear-cut separation into contributions with and without classical correspondence. Quantum features of the local power are mainly manifested through the presence of non-local sources/sinks of power and through the action of forces with no classical counterpart. Many-particle classical-like effects arise in the form of current-force correlations and through the inflow/outflow of energy across the boundaries of the volume Ω . Interestingly, all these intriguing features are only reflected in the expression of the local power when the volume Ω is finite. Otherwise, for closed systems with Ω \\to ∞ , we recover a classical-like single-particle expression.

      14. On Heisenberg Uncertainty Relationship, Its Extension, and the Quantum Issue of Wave-Particle Duality

        PubMed Central

        Putz, Mihai V.

        2010-01-01

        Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR) is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor 1-n2, in terms of magnitude n∈[0,1]. of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function. PMID:21152325

      15. On Heisenberg Uncertainty Relationship, its extension, and the quantum issue of wave-particle duality.

        PubMed

        Putz, Mihai V

        2010-01-01

        Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR) is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor 1-n2, in terms of magnitude n∈[0,1]. of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function.

      16. Quantum Processes and Dynamic Networks in Physical and Biological Systems.

        NASA Astrophysics Data System (ADS)

        Dudziak, Martin Joseph

        Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain

      17. MEASUREMENTS OF BLACK CARBON PARTICLES CHEMICAL, PHYSICAL, AND OPTICAL PROPERTIES

        SciTech Connect

        Onasch, T.B.; Sedlacek, A.; Cross, E. S.; Davidovits, P.; Worsnop, D. R.; Ahern, A.; Lack, D. A.; Cappa, C. D.; Trimborn, A.; Freedman, A.; Olfert, J. S.; Jayne, J. T.; Massoli, P.; Williams, L. R.; Mazzoleni, C.; Schwarz, J. P.; Thornhill, D. A.; Slowik, J. G.; Kok, G. L.; Brem, B. T.; Subramanian, R.; Spackman, J. R.; Freitag, S.; and Dubey, M. K.

        2009-12-14

        Accurate measurements of the chemical, physical, and optical properties of aerosol particles containing black carbon are necessary to improve current estimates of the radiative forcing in the atmosphere. A collaborative research effort between Aerodyne Research, Inc. and Boston College has focused on conducting field and laboratory experiments on carbonaceous particles and the development and characterization of new particulate instrumentation. This presentation will focus on the chemical, physical, and optical properties of black carbon particles measured in the laboratory in order to understand the effects of atmospheric processing on black carbon particles. Results from a three-week study during July 2008 of mass- and optical-based black carbon measurements will be presented. The project utilized the Boston College laboratory flame apparatus and aerosol conditioning and characterization equipment. A pre-mixed flat flame burner operating at controlled fuel-to-air ratios produced stable and reproducible concentrations of soot particles with known sizes, morphologies, and chemical compositions. In addition, other black carbon particle types, including fullerene soot, glassy carbon spheres, oxidized flame soot, Regal black, and Aquadag, were also atomized, size selected, and sampled. The study covered an experimental matrix that systematically selected particle mobility size (30 to 300 nm) and black carbon particle mass, particle number concentration, particle shape (dynamic shape factor and fractal dimension), and particle chemistry and density (changed via coatings). Particles were coated with a measured thickness (few nm to {approx}150 nm) of sulfuric acid or bis (2-ethylhexyl) sebacate and passed through a thermal denuder to remove the coatings. Highlights of the study to be presented include: (1) Characterization of the chemical and physical properties of various types of black carbon particles, (2) Mass specific absorption measurements as a function of fuel

      18. Mapping of Topological Quantum Circuits to Physical Hardware

        NASA Astrophysics Data System (ADS)

        Paler, Alexandru; Devitt, Simon J.; Nemoto, Kae; Polian, Ilia

        2014-04-01

        Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit.

      19. The Oxford Questions on the foundations of quantum physics

        PubMed Central

        Briggs, G. A. D.; Butterfield, J. N.; Zeilinger, A.

        2013-01-01

        The twentieth century saw two fundamental revolutions in physics—relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment. PMID:24062626

      20. Mapping of topological quantum circuits to physical hardware.

        PubMed

        Paler, Alexandru; Devitt, Simon J; Nemoto, Kae; Polian, Ilia

        2014-01-01

        Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit. PMID:24722360

      1. Research program in particle physics. Progress report, January 1, 1992--December 1992

        SciTech Connect

        Sudarshan, E.C.G.; Dicus, D.A.; Ritchie, J.L.; Lang, K.

        1992-07-01

        This report discusses the following topics: Quantum Gravity and Mathematical Physics; Phenomenology; Quantum Mechanics and Quantum Field Theory; Status of BNL Expt. 791; BNL Expt. 791; BNL Expt. 888; and SSC Activities.

      2. Effective theories and thresholds in particle physics

        SciTech Connect

        Gaillard, M.K.

        1991-06-07

        The role of effective theories in probing a more fundamental underlying theory and in indicating new physics thresholds is discussed, with examples from the standard model and more speculative applications to superstring theory. 38 refs.

      3. Subbarrier Fusion Reactions and Many-Particle Quantum Tunneling

        NASA Astrophysics Data System (ADS)

        Hagino, K.; Takigawa, N.

        2012-12-01

        Low-energy heavy-ion fusion reactions are governed by quantum tunneling through the Coulomb barrier formed by the strong cancellation of the repulsive Coulomb force with the attractive nuclear interaction between the colliding nuclei. Extensive experimental as well as theoretical studies have revealed that fusion reactions are strongly influenced by couplings of the relative motion of the colliding nuclei to several nuclear intrinsic motions. Heavy-ion subbarrier fusion reactions thus provide a good opportunity to address the general problem of quantum tunneling in the presence of couplings, which has been a popular subject in recent decades in many branches of physics and chemistry. Here, we review theoretical aspects of heavy-ion subbarrier fusion reactions from the viewpoint of quantum tunneling in systems with many degrees of freedom. Particular emphases are put on the coupled-channels approach to fusion reactions and the barrier distribution representation for multichannel penetrability. We also discuss an application of the barrier distribution method to elucidate the mechanism of the dissociative adsorption of H_2 molecules in surface science.

      4. Elementary particle physics and high energy phenomena

        SciTech Connect

        Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

        1992-06-01

        This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

      5. American particle and nuclear physics planning

        SciTech Connect

        Montgomery, Hugh E.

        2014-10-01

        In the United States the planning process relevant to future deep inelastic scattering involves both the high energy physics and nuclear physics funding and the two communities. In Canada there is no such split between the communities. Within the past two years there have been several planning initiatives and there may be more to come. We review the current status of both the planning and the plans.

      6. Quantum hydrodynamics approach to the formation of waves in polarized two-dimensional systems of charged and neutral particles

        SciTech Connect

        Andreev, P. A.; Kuzmenkov, L. S.; Trukhanova, M. I.

        2011-12-15

        In this paper, we explicate a method of quantum hydrodynamics (QHD) for the study of the quantum evolution of a system of polarized particles. Although we focused primarily on the two-dimensional (2D) physical systems, the method is valid for three-dimensional (3D) and one-dimensional (1D) systems too. The presented method is based upon the Schroedinger equation. Fundamental QHD equations for charged and neutral particles were derived from the many-particle microscopic Schroedinger equation. The fact that particles possess the electric dipole moment (EDM) was taken into account. The explicated QHD approach was used to study dispersion characteristics of various physical systems. We analyzed dispersion of waves in a two-dimensional ion and hole gas placed into an external electric field, which is orthogonal to the gas plane. Elementary excitations in a system of neutral polarized particles were studied for 1D, 2D, and 3D cases. The polarization dynamics in systems of both neutral and charged particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. We also analyzed wave dispersion in 2D exciton systems, in 2D electron-ion plasma, and in 2D electron-hole plasma. Generation of waves in 3D-system neutral particles with EDM by means of the beam of electrons and neutral polarized particles is investigated.

      7. Celebrating 40 years of research in Journal of Physics G: Nuclear and Particle Physics

        NASA Astrophysics Data System (ADS)

        Adcock, Colin D.; Martin, Alan D.; Schwenk, Achim

        2015-09-01

        2015 marks the 40th anniversary of Journal of Physics G: Nuclear and Particle Physics. This editorial provides a brief history of the journal, and introduces a unique collection of invited articles from leading authors to celebrate the occasion.

      8. The role of supersymmetry phenomenology in particle physics

        SciTech Connect

        Wells, James D.

        2000-12-14

        Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute.

      9. State-of-the-Art Particle Physics Detector

        NASA Video Gallery

        The Alpha Magnetic Spectrometer is a state-of-the-art particle physics detector being operated by an international team composed of 60 institutes from 16 countries and organized under United States...

      10. Elementary particle physics and the superconducting super collider.

        PubMed

        Quigg, C; Schwitters, R F

        1986-03-28

        The present status and future prospects of elementary particle physics are reviewed, and some of the scientific questions that motivate the construction of a major new accelerator complex in the United States are summarized.

      11. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

        ERIC Educational Resources Information Center

        Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

        2016-01-01

        A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

      12. Quantum Physics and Mental Health Counseling: The Time Is...!

        ERIC Educational Resources Information Center

        Gerstein, Lawrence H.; Bennett, Matt

        1999-01-01

        Introduces a new framework of mental health counseling based on quantum physics. The framework stresses systemic thinking and intervention, interdependence, and the importance of adopting a novel perspective about time, space, reality, and change. This framework has the potential of modifying mental health counseling practice and training. Offers…

      13. Physics of compaction of fine cohesive particles.

        PubMed

        Castellanos, A; Valverde, J M; Quintanilla, M A S

        2005-02-25

        Fluidized fractal clusters of fine particles display critical-like dynamics at the jamming transition, characterized by a power law relating consolidation stress with volume fraction increment [sigma--(c) proportional, variant(Deltaphi)(beta)]. At a critical stress clusters are disrupted and there is a crossover to a logarithmic law (Deltaphi = nu logsigma--(c)) resembling the phenomenology of soils. We measure lambda identical with- partial differentialDelta(1/phi)/ partial log(sigma--(c) proportional, variant Bo(0.2)(g), where Bo(g) is the ratio of interparticle attractive force (in the fluidlike regime) to particle weight. This law suggests that compaction is ruled by the internal packing structure of the jammed clusters at nearly zero consolidation.

      14. The engineering needed for particle physics.

        PubMed

        Myers, Steve

        2012-08-28

        Today's particle accelerators and detectors are among the most complicated and expensive scientific instruments ever built, and they exploit almost every aspect of today's cutting-edge engineering technologies. In many cases, accelerator needs have been the driving force behind these new technologies, necessity being the mother of invention. This paper gives an overview of some engineering requirements for the construction and operation of present-day accelerators and detectors.

      15. Future particle-physics projects in the United States

        SciTech Connect

        Denisov, D. S.

        2015-07-15

        Basic proposals of experiments aimed at precision measurements of Standard Model parameters and at searches for new particles, including dark-matter particles, are described along with future experimental projects considered by American Physical Society at the meeting in the summer of 2013 and intended for implementation within the next ten to twenty years.

      16. Teaching Particle Physics in the Open University's Science Foundation Course.

        ERIC Educational Resources Information Center

        Farmelo, Graham

        1992-01-01

        Discusses four topics presented in the science foundation course of the Open University that exemplify current developments in particle physics, in particular, and that describe important issues about the nature of science, in general. Topics include the omega minus particle, the diversity of quarks, the heavy lepton, and the discovery of the W…

      17. Quarks, Leptons, and Bosons: A Particle Physics Primer.

        ERIC Educational Resources Information Center

        Wagoner, Robert; Goldsmith, Donald

        1983-01-01

        Presented is a non-technical introduction to particle physics. The material is adapted from chapter 3 of "Cosmic Horizons," (by Robert Wagoner and Don Goldsmith), a lay-person's introduction to cosmology. Among the topics considered are elementary particles, forces and motion, and higher level structures. (JN)

      18. Future particle-physics projects in the United States

        SciTech Connect

        Denisov, D. S.

        2015-08-25

        Basic proposals of experiments aimed at precision measurements of Standard Model parameters and at searches for new particles, including dark-matter particles, are described along with future experimental projects considered by American Physical Society at the meeting in the summer of 2013 and intended for implementation within the next ten to twenty years.

      19. Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment

        ERIC Educational Resources Information Center

        Rice, Charles V.; Giffin, Guinevere A.

        2008-01-01

        Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

      20. Elementary Particle Physics at Baylor (Final Report)

        SciTech Connect

        Dittmann, J.R.

        2012-08-25

        This report summarizes the activities of the Baylor University Experimental High Energy Physics (HEP) group on the Collider Detector at Fermilab (CDF) experiment from August 15, 2005 to May 31, 2012. Led by the Principal Investigator (Dr. Jay R. Dittmann), the Baylor HEP group has actively pursued a variety of cutting-edge measurements from proton-antiproton collisions at the energy frontier.

      1. Spin-valley physics in realistic silicon quantum dots

        NASA Astrophysics Data System (ADS)

        Ruskov, Rusko; Tahan, Charles

        2014-03-01

        Silicon quantum dots are leading approach for solid-state quantum bits. However, one must contend with new physics due to the multi-valley nature of silicon. At a Si heterostructure interface the valley degeneracy is lifted and the different valley subspaces of the confined electron spin configurations do not interact. When, however, the valley states are brought at resonance in the presence of a non-ideal interface, spin-valley mixing can occur via spin-orbit coupling. Within the same theoretical framework, we can successfully describe the spin relaxation processes in non-ideal quantum dots [e.g., relaxation ``hot spots'' in C. H. Yang, A. Rossi, R. Ruskov, N. S. Lai, F. A. Mohiyaddin, S. Lee, C. Tahan, G. Klimeck, A. Morello, and A. S. Dzurak, Nature Comm. 4, 2069, (2013)] and a new electron spin resonance (ESR) anticrossing splitting in a double quantum dot transport experiment [X. Hao, R. Ruskov, M. Xiao, C. Tahan, and H. W. Jiang, work in preparation]. Understanding the spin-valley physics of inelastic tunneling is critical to a proper understanding of the transport through double quantum dots, with or without an ESR drive field.

      2. Research in theoretical and elementary particle physics

        SciTech Connect

        Mitselmakher, G.

        1996-12-01

        In 1995 the University of Florida started a major expansion of the High Energy Experimental Physics group (HEE) with the goal of adding four new faculty level positions to the group in two years. This proposal covers the second year of operation of the new group and gives a projection of the planned research program for the next five years, when the group expects their activities to be broader and well defined. The expansion of the HEE group started in the Fall of 1995 when Guenakh Mitselmakher was hired from Fermilab as a Full Professor. A search was then performed for two junior faculty positions. The first being a Research Scientist/Scholar position which is supported for 9 months by the University on a faculty line at the same level as Assistant Professor but without the teaching duties. The second position is that of an Assistant Professor. The search has been successfully completed and Jacobo Konigsberg from Harvard University has accepted the position of Research Scientist and Andrey Korytov from MIT has accepted the position of Assistant Professor. They will join the group in August 1996. The physics program for the new group is focused on hadron collider physics. G. Mitselmakher has been leading the CMS endcap muon project since 1994. A Korytov is the coordinator of the endcap muon chamber effort for CMS and a member of the CDF collaboration and J. Konigsberg is a member of CDF where he has participated in various physics analyses and has been coordinator of the gas calorimetry group. The group at the U. of Florida has recently been accepted as an official collaborating institution on CDF. They have been assigned the responsibility of determining the collider beam luminosity at CDF and they will also be an active participant in the design and operation of the muon detectors for the intermediate rapidity region. In addition they expect to continue their strong participation in the present and future physics analysis of the CDF data.

      3. Quark Confinement Physics in Quantum Chromodynamics

        NASA Astrophysics Data System (ADS)

        Koma, Y.; Suganuma, H.; Amemiya, K.; Fukushima, M.; Toki, H.

        2000-01-01

        We study abelian dominance and monopole condensation for the quark confinement physics using the lattice QCD simulations in the MA gauge. These phenomena are closely related to the dual superconductor picture of the QCD vacuum, and enable us to construct the dual Ginzburg-Landau (DGL) theory as an useful effective theory of nonperturbative QCD. We then apply the DGL theory to the studies of the low-lying hadron structure and the scalar glueball properties.

      4. Universality in uncertainty relations for a quantum particle

        NASA Astrophysics Data System (ADS)

        Kechrimparis, Spiros; Weigert, Stefan

        2016-09-01

        A general theory of preparational uncertainty relations for a quantum particle in one spatial dimension is developed. We derive conditions which determine whether a given smooth function of the particle’s variances and its covariance is bounded from below. Whenever a global minimum exists, an uncertainty relation has been obtained. The squeezed number states of a harmonic oscillator are found to be universal: no other pure or mixed states will saturate any such relation. Geometrically, we identify a convex uncertainty region in the space of second moments which is bounded by the inequality derived by Robertson and Schrödinger. Our approach provides a unified perspective on existing uncertainty relations for a single continuous variable, and it leads to new inequalities for second moments which can be checked experimentally.

      5. Path-integral approach to 't Hooft's derivation of quantum physics from classical physics

        SciTech Connect

        Blasone, Massimo; Jizba, Petr; Kleinert, Hagen

        2005-05-15

        We present a path-integral formulation of 't Hooft's derivation of quantum physics from classical physics. The crucial ingredient of this formulation is Gozzi et al.'s supersymmetric path integral of classical mechanics. We quantize explicitly two simple classical systems: the planar mathematical pendulum and the Roessler dynamical system.

      6. Understanding Probabilistic Interpretations of Physical Systems: A Prerequisite to Learning Quantum Physics.

        ERIC Educational Resources Information Center

        Bao, Lei; Redish, Edward F.

        2002-01-01

        Explains the critical role of probability in making sense of quantum physics and addresses the difficulties science and engineering undergraduates experience in helping students build a model of how to think about probability in physical systems. (Contains 17 references.) (Author/YDS)

      7. Thermal pure quantum states of many-particle systems

        NASA Astrophysics Data System (ADS)

        Hyuga, Masahiko; Sugiura, Sho; Sakai, Kazumitsu; Shimizu, Akira

        2014-09-01

        We generalize the thermal pure quantum (TPQ) formulation of statistical mechanics, in such a way that it is applicable to systems whose Hilbert space is infinite dimensional. Assuming particle systems, we construct the grand-canonical TPQ (gTPQ) state, which is the counterpart of the grand-canonical Gibbs state of the ensemble formulation. A single realization of the gTPQ state gives all quantities of statistical-mechanical interest, with exponentially small probability of error. This formulation not only sheds new light on quantum statistical mechanics but also is useful for practical computations. As an illustration, we apply it to the Hubbard model, on a one-dimensional (1D) chain and on a two-dimensional (2D) triangular lattice. For the 1D chain, our results agree well with the exact solutions over wide ranges of temperature, chemical potential, and the on-site interaction. For the 2D triangular lattice, for which exact results are unknown, we obtain reliable results over a wide range of temperature. We also find that finite-size effects are much smaller in the gTPQ state than in the canonical TPQ state. This also shows that in the ensemble formulation the grand-canonical Gibbs state of a finite-size system simulates an infinite system much better than the canonical Gibbs state.

      8. String Theory, the Crisis in Particle Physics and the Ascent of Metaphoric Arguments

        NASA Astrophysics Data System (ADS)

        Schroer, Bert

        This essay presents a critical evaluation of the concepts of string theory and its impact on particle physics. The point of departure is a historical review of four decades of string theory within the broader context of six decades of failed attempts at an autonomous S matrix approach to particle theory. The central message, contained in Secs. 5 and 6, is that string theory is not what its name suggests, namely a theory of objects in space-time whose localization is string-instead of pointlike. Contrary to popular opinion, the oscillators corresponding to the Fourier models of a quantum-mechanical string do not become embedded in space-time and neither does the "range space" of a chiral conformal QFT acquire the interpretation of stringlike-localized quantum matter. Rather, string theory represents a solution to a problem which enjoyed some popularity in the 1960s: find a principle which, similar to the SO(4,2) group in the case of the hydrogen spectrum, determines an infinite component wave function with a (realistic) mass/spin spectrum. Instead of the group theory used in the old failed attempts, it creates this mass/spin spectrum by combining an internal oscillator quantum mechanics with a pointlike-localized quantum-field-theoretic object, i.e. the mass/spin tower "sits" over one point and does not arise from a wiggling string in space-time. The widespread acceptance of a theory whose interpretation has been based on metaphoric reasoning had a corroding influence on particle theory, a point which will be illustrated in the last section with some remarks of a more sociological nature. These remarks also lend additional support to observations on connections between the discourse in particle physics and the present Zeitgeist of the post-Cold War period that are made in the introduction.

      9. Physical theories, eternal inflation, and the quantum universe

        NASA Astrophysics Data System (ADS)

        Nomura, Yasunori

        2011-11-01

        Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity. In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the entire multiverse is described purely from the viewpoint of a single "observer," who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is "gauge invariant," i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity. Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of "initial conditions" for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal "mega-multiverse," in which an infinite sequence of multiverse productions occurs. The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness

      10. Large numbers hypothesis. IV - The cosmological constant and quantum physics

        NASA Technical Reports Server (NTRS)

        Adams, P. J.

        1983-01-01

        In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.

      11. Modified gravity in cosmology and fundamental particle physics

        NASA Astrophysics Data System (ADS)

        Dai, De-Chang

        2008-08-01

        The Standard Model of particle physics and General Relativity are very successful in describing present experimental results. Both of them, however, are assumed to be low-energy approximations of a more complete theory. There are several candidate theories that are proposed to be part of a new conceptual structure beyond the Standard Model. To solve the Hierarchy problem, the energy threshold of the new theories is expected to be the TeV scale. One paradigm, low energy quantum gravity, combines the Standard Model with General Relativity and assumes the existence of extra dimensions. This paradigm predicts that TeV black holes can be produced in the Large Hadron Collider (LHC). In this dissertation we describe a black-hole simulator, BlackMax, for coming accelerators. The generator is based on the Monte Carlo technique and predicts the signatures of black-hole production at the LHC. The remainder of the dissertation is an example of the violation of Birkhoff's law. Birkhoff's law is analogous to a famous result of Newtonian theory, that the gravitational acceleration due to a spherical shell vanishes inside the shell. Since the universe is homogeneous and isotropic on large scales, local gravitational phenomena can be treated as local events only; and one can always ignore the influence from the distant mass distribution. This law is violated in modified gravity theories. It is shown that a spherical shell can affect the geometry in the extra dimensions. The change of geometry in the extra dimensions also changes the geometry inside the shell. The gravitational acceleration inside a spherical shell does not vanish.

      12. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

        PubMed

        Vasseur, Romain; Moore, Joel E

        2014-04-11

        The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

      13. Quantum Information in Non-physics Departments at Liberal Arts Colleges

        NASA Astrophysics Data System (ADS)

        Westmoreland, Michael

        2012-02-01

        Quantum information and quantum computing have changed our thinking about the basic concepts of quantum physics. These fields have also introduced exciting new applications of quantum mechanics such as quantum cryptography and non-interactive measurement. It is standard to teach such topics only to advanced physics majors who have completed coursework in quantum mechanics. Recent encounters with teaching quantum cryptography to non-majors and a bout of textbook-writing suggest strategies for teaching this interesting material to those without the standard quantum mechanics background. This talk will share some of those strategies.

      14. Particle Physics with the Pierre Auger Observatory

        NASA Astrophysics Data System (ADS)

        Pierog, T.

        2014-06-01

        The Pierre Auger Observatory is the world largest extensive air shower detector. Based on two detection techniques, namely fluorescence telescopes for the observation of the longitudinal development and water Cherenkov detectors for particles at ground, this experiment can be used not only as a cosmic ray observatory, but also to study the basic properties of hadronic interactions leading the development of air showers initiated by these primary cosmic rays. We will show that by using careful data selection it is possible to extract the proton-air inelastic cross-section at energies much higher than that accessible at man-made accelerators. Taking advantage of both detection techniques we will demonstrate that it is also possible to test hadronic interaction models using correlations between different air shower observables, like shower maximum and muons at ground, to reduce the uncertainty due to the unknown beam of cosmic rays.

      15. Santa Cruz Institute for Particle Physics (SCIPP)

        SciTech Connect

        Burchat, P.; Dorfan, D.; Litke, A.; Heusch, C.; Sadrozinski, H.; Schalk, T.; Seiden, A.

        1992-01-01

        Work for the coming year is a logical continuation of the efforts of the past year. Some special highlights of this past year which are discusses in more detail in this report are: (1) The move onto beamline and start of ZEUS data taking. (2) The completion of the SDC technical proposal including a detailed long-term plan for construction. (3) Continuing publication of very detailed physics results from ALEPH concerning [tau] and b physics, and a precision measurement of electroweak and QCD parameters. (4) Completion of very successful data taking for E-791 at Fermilab, with nearly twice as many events recorded as initially proposed. (5) First measurement of beam polarization at the SLC. These efforts have led to about 15 physics publications this past year centered mainly on topics related to QCD, couplings of flavors to the Z[degrees], and heavy flavor decays. Taken as a whole, the results in jets from LEP, the ratio of hadronic to leptonic decays of the [tau] the leptonic branching fraction of the J/[psi], and the charmonium mass spectrum provide a very consistent set of values of [alpha][sub s] at a variety of scales. In particular, they show the running of [alpha][sub s] by a factor of about three from m[sub r] to m[sub z]. Results from LEP also provide evidence of the triple gluon vertex. Similarly, the measurement of the b[bar b] fraction of Z[degrees] decays, from the MARK II as well as LEP, provide increasingly better measurements of the Z[degree] coupling to b quarks. Combined with earlier precision measurements of the Z[degrees] mass, width, and leptonic branching fractions, the Z[degrees] decays continue to provide a very precise verification of the Standard Model.

      16. Santa Cruz Institute for Particle Physics (SCIPP)

        SciTech Connect

        Burchat, P.; Dorfan, D.; Litke, A.; Heusch, C.; Sadrozinski, H.; Schalk, T.; Seiden, A.

        1992-11-01

        Work for the coming year is a logical continuation of the efforts of the past year. Some special highlights of this past year which are discusses in more detail in this report are: (1) The move onto beamline and start of ZEUS data taking. (2) The completion of the SDC technical proposal including a detailed long-term plan for construction. (3) Continuing publication of very detailed physics results from ALEPH concerning {tau} and b physics, and a precision measurement of electroweak and QCD parameters. (4) Completion of very successful data taking for E-791 at Fermilab, with nearly twice as many events recorded as initially proposed. (5) First measurement of beam polarization at the SLC. These efforts have led to about 15 physics publications this past year centered mainly on topics related to QCD, couplings of flavors to the Z{degrees}, and heavy flavor decays. Taken as a whole, the results in jets from LEP, the ratio of hadronic to leptonic decays of the {tau} the leptonic branching fraction of the J/{psi}, and the charmonium mass spectrum provide a very consistent set of values of {alpha}{sub s} at a variety of scales. In particular, they show the running of {alpha}{sub s} by a factor of about three from m{sub r} to m{sub z}. Results from LEP also provide evidence of the triple gluon vertex. Similarly, the measurement of the b{bar b} fraction of Z{degrees} decays, from the MARK II as well as LEP, provide increasingly better measurements of the Z{degree} coupling to b quarks. Combined with earlier precision measurements of the Z{degrees} mass, width, and leptonic branching fractions, the Z{degrees} decays continue to provide a very precise verification of the Standard Model.

      17. Macroscopic quantum resonators (MAQRO). Testing quantum and gravitational physics with massive mechanical resonators

        NASA Astrophysics Data System (ADS)

        Kaltenbaek, Rainer; Hechenblaikner, Gerald; Kiesel, Nikolai; Romero-Isart, Oriol; Schwab, Keith C.; Johann, Ulrich; Aspelmeyer, Markus

        2012-10-01

        Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 108 atoms. Under these conditions, deviations due to various suggested alternative models to quantum theory would become visible. These models have been suggested to harmonize the paradoxical quantum phenomena both with the classical macroscopic world and with our notion of Minkowski space-time. The second scientific objective of MAQRO, which is addressed by the experiment CASE, is to demonstrate the performance of a novel type of inertial sensor based on optically trapped microspheres. CASE is a technology demonstrator that shows how the modular design of DECIDE allows to easily incorporate it with other missions that have compatible requirements in terms of spacecraft and orbit. CASE can, at the same time, serve as a test bench for the weak equivalence principle, i.e., the universality of free fall with test-masses differing in their mass by 7 orders of magnitude.

      18. Beyond quantum probability: another formalism shared by quantum physics and psychology.

        PubMed

        Dzhafarov, Ehtibar N; Kujala, Janne V

        2013-06-01

        There is another meeting place for quantum physics and psychology, both within and outside of cognitive modeling. In physics it is known as the issue of classical (probabilistic) determinism, and in psychology it is known as the issue of selective influences. The formalisms independently developed in the two areas for dealing with these issues turn out to be identical, opening ways for mutually beneficial interactions.

      19. A particle-field Hamiltonian in relativistic quantum electrodynamics

        NASA Astrophysics Data System (ADS)

        Arai, Asao

        2000-07-01

        We mathematically analyze a Hamiltonian Hτ(V,g) of a Dirac particle—a relativistic charged particle with spin 1/2—minimally coupled to the quantized radiation field, acting in the Hilbert space F≔[⊕4L2(R3)]⊗Frad, where Frad is the Fock space of the quantized radiation field in the Coulomb gauge, V is an external potential in which the Dirac particle moves, g is a photon-momentum cutoff function in the interaction between the Dirac particle and the quantized radiation field, and τ∈R is a deformation parameter connecting the Hamiltonian with the "dipole approximation" (τ=0) and the original Hamiltonian (τ=1). We first discuss the self-adjointness problem of Hτ(V,g). Then we consider Hτ≔Hτ(0,g), the Hamiltonian without the external potential. It is shown that, under a general condition on g, the closure of Hτ is unitarily equivalent to a direct integral ∫R3⊕Hτ(p)¯dp with a fiber Hamiltonian Hτ(p) acting in the four direct sum ⊕4Frad of Frad, physically the polaron Hamiltonian of the Dirac particle with total momentum p∈R3.

      20. Elementary particle physics at the University of Florida. Annual progress report

        SciTech Connect

        Not Available

        1991-12-01

        This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

      1. Cosmic rays and the birth of particle physics

        NASA Astrophysics Data System (ADS)

        Friedlander, Michael

        2013-02-01

        Twenty years after the discovery of cosmic rays, the methods of research and resulting discoveries were dramatically changed by the introduction of experimental methods that made visible the passage of individual particles. Between 1932 and 1955, tracks of cosmic rays were found in cloud chambers and special photographic emulsions. From measurements of the ionization produced along these tracks, the mass, charge and energy of a single relativistic particle could be determined. The dynamics of decays and collisions could be analyzed. Positrons and then electron-positron pairs were discovered, followed by muons and pions and then the inhabitants of the 'particle zoo'. Fundamental concepts were challenged. From the mid- 1950s, larger accelerators began to produce many of the 'new' particles, displacing cosmic rays from their prime role in particle studies. But without the initial discoveries in cosmic rays, there might well not be the modern industrial-scale particle physics research.

      2. Finite-particle-number approach to physics

        SciTech Connect

        Noyes, H.P.

        1982-10-01

        Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10/sup 38/); 3+1 Minkowski space with a discrete metric and the algebraic bound ..delta.. is an element of ..delta.. tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations.

      3. Renormalization from Classical to Quantum Physics

        NASA Astrophysics Data System (ADS)

        Kar, Arnab

        The concept of renormalization was first introduced by Dirac to investigate the infinite self energy of an electron classically. This radical theory was probably the first time when an infinity occurring in a physical system was systematically investigated. This thesis presents a new perspective of renormalization by introducing methods from metric geometry to control divergences. We start by extending Dirac's work and analyzing how the radiation reaction due to the precision of the electron's magnetic moment affects its motion. This is followed by modeling scalar field theory on lattices of various kinds. Scale invariance, which plays a major role in the very few renormalizable theories in nature, is inbuilt in our formalism. We also use Wilson's ideas of effective theory and finite element methods to study continuum systems. Renormalization group transformations form the central theme in this picture. By incorporating finite element methods, an idea borrowed from mechanical engineering, we study scalar fields on triangular lattices in a hierarchal manner. In our case, the cotangent formula turns out to be a fixed point of the renormalization group transformations. We end our thesis by introducing a new metric for space-time which emerges from the scalar field itself. The standard techniques used in the theory of renormalization so far attempt to redefine coupling constants of the theory to remove divergences at short distance scales. In our formalism, we deduce the distance scale itself. In our notion of distance, built from correlation functions of the fields, the divergences disappear.

      4. Density expansion for particle-particle correlations in time-dependent physical clusters

        PubMed

        Pugnaloni; Vericat

        2000-06-01

        We present a theory for the particle-particle correlations in physical clusters for which bonding between particles is determined by a connectivity distance and a permanency time. A generalized Mayer density expansion for the cluster pair correlation function is found, as well as an Ornstein-Zernike like relation. We can rely on this formalism to study clustering in realistic models by applying techniques of liquid state theory.

      5. The Pendulum as a Vehicle for Transitioning from Classical to Quantum Physics: History, Quantum Concepts, and Educational Challenges

        ERIC Educational Resources Information Center

        Barnes, Marianne B.; Garner, James; Reid, David

        2004-01-01

        In this article we use the pendulum as the vehicle for discussing the transition from classical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the unanticipated consequences of quantum phenomena at the…

      6. Quantum algorithm for obtaining the eigenstates of a physical system

        NASA Astrophysics Data System (ADS)

        Wang, Hefeng

        2016-05-01

        We propose a quantum algorithm for solving the following problem: given the Hamiltonian of a physical system and one of its eigenvalues, how do we obtain the corresponding eigenstate? The algorithm is based on the resonance phenomenon. For a probe qubit coupled to a quantum system, the system exhibits resonance dynamics when the frequency of the probe qubit matches a transition frequency in the system. Therefore the system can be guided to evolve to the eigenstate with a known eigenvalue by inducing the resonance between the probe qubit and a designed transition in the system. This algorithm can also be used to obtain the energy spectrum of a physical system and can achieve even quadratic speedup over the phase estimation algorithm.

      7. Correlation between infectivity and physical virus particles in human cytomegalovirus.

        PubMed

        Benyesh-Melnick, M; Probstmeyer, F; McCombs, R; Brunschwig, J P; Vonka, V

        1966-11-01

        Benyesh-Melnick, Matilda (Baylor University College of Medicine, Houston, Tex.), Fern Probstmeyer, Robert McCombs, Jean P. Brunschwig, and Vladimir Vonka. Correlation between infectivity and physical virus particles in human cyto-megalovirus. J. Bacteriol. 92:1555-1561. 1966.-Infectivity titers [measured as plaque-forming units (PFU)] and particle counts by the sedimentation pseudo-replication technique were determined for crude, unpurified, intracellular preparations of two different strains of human cytomegalovirus. Unlike the high particle-infectivity ratio of 10(6) to 10(8) previously reported for these viruses, the number of total particles per PFU ranged from 160 to 490 with strain AD-169 and from 176 to 1,050 for strain C-87. Interpretation of particle-PFU ratios of intracellular cytomegalovirus in terms of particle morphology is not conclusive at this time. The number of enveloped forms found varied between 0 and 34% of the total particles counted. However, the true proportion is probably greater, because envelopes were found to be destroyed by the enzyme treatment used in preparing the specimens for examination in the electron microscope. The number of full particles found ranged between 4 and 31% of the total particles counted. The particle per PFU ratio of extracellular virus was found to be three- to fivefold lower than that of intracellular virus.

      8. Particle physics for primary schools—enthusing future physicists

        NASA Astrophysics Data System (ADS)

        Pavlidou, M.; Lazzeroni, C.

        2016-09-01

        In recent years, the realisation that children make decisions and choices about subjects they like in primary school, became widely understood. For this reason academic establishments focus some of their public engagement activities towards the younger ages. Taking advantage of Professor Lazzeroni’s long-standing experience in particle physics research, during the last academic year we designed and trialled a particle physics workshop for primary schools. The workshop allows young children (ages 8–11) to learn the world of fundamental particles, use creative design to make particle models. The workshop has already been trialled in many primary schools, receiving very positive evaluation. The initial resources were reviewed and improved, based on the feedback received from school teachers and communicators.

      9. Beyond Standard Model Physics: At the Frontiers of Cosmology and Particle Physics

        NASA Astrophysics Data System (ADS)

        Lopez-Suarez, Alejandro O.

        I begin to write this thesis at a time of great excitement in the field of cosmology and particle physics. The aim of this thesis is to study and search for beyond the standard model (BSM) physics in the cosmological and high energy particle fields. There are two main questions, which this thesis aims to address: 1) what can we learn about the inflationary epoch utilizing the pioneer gravitational wave detector Adv. LIGO?, and 2) what are the dark matter particle properties and interactions with the standard model particles?. This thesis will focus on advances in answering both questions.

      10. Using optical clock to probe quantum many-body physics

        NASA Astrophysics Data System (ADS)

        Ye, Jun

        2016-05-01

        The progress of optical lattice clock has benefited greatly from the understanding of atomic interactions. At the same time, the precision of clock spectroscopy has been applied to explore many-body spin interactions including SU(N) symmetry. Our recent work on this combined front of quantum metrology and many-body physics includes the probe of spin-orbital physics in the lattice clock and the investigation of a Fermi degenerate gas of 105 87Sr atoms in a three-dimensional magic-wavelength optical lattice.

      11. Overview of high energy physics with polarized particles

        SciTech Connect

        Soffer, J. . Centre de Physique Theorique Brookhaven National Lab., Upton, NY )

        1990-08-01

        The purpose of this talk is to review spin effects in various areas of particle physics at high energy and by selecting the most interesting topics, to show the relevance of dealing with polarized particles. We will see that it provides crucial tests for the Standard Model and can give us clear signatures to uncover new interactions. We will also discuss some striking experimental facts recently observed in hadronic collisions and their implications for current theoretical ideas. 43 refs., 10 figs.

      12. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

        SciTech Connect

        Redondo, Antonio

        2010-01-01

        The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

      13. Quantum probability and cognitive modeling: some cautions and a promising direction in modeling physics learning.

        PubMed

        Franceschetti, Donald R; Gire, Elizabeth

        2013-06-01

        Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.

      14. Quantum work statistics of charged Dirac particles in time-dependent fields.

        PubMed

        Deffner, Sebastian; Saxena, Avadh

        2015-09-01

        The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.

      15. Quantum work statistics of charged Dirac particles in time-dependent fields

        SciTech Connect

        Deffner, Sebastian; Saxena, Avadh

        2015-09-28

        The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.

      16. Stochastic vacuum of quantum chromodynamics as an environment for color particles

        NASA Astrophysics Data System (ADS)

        Kuvshinov, V.; Bagashov, E.

        2016-05-01

        The behavior of quarks is described within approaches used in quantum mechanics and related disciplines (quantum optics and quantum theory of information). The stochastic vacuum of quantum chromodynamics is treated as an environment (closed pool) for color particles (quarks). Their interaction results in a loss of information on the quark color state and consequently in the impossibility of observing it (the confinement of quarks). The processes are described using quantities of the quantum theory of information, such as von Neumann entropy, fidelity, and purity.

      17. Research accomplishments and future goals in particle physics

        SciTech Connect

        Not Available

        1990-11-30

        This document presents our proposal to continue the activities of Boston University researchers in high energy physics research. We have a broad program of participation in both non-accelerator and accelerator-based efforts. High energy research at Boston University has a special focus on the physics program of the Superconducting Supercollider. We are active in research and development for detector subsystems, in the design of experiments, and in study of the phenomenology of the very high energy interactions to be observed at the SSC. The particular areas discussed in this paper are: colliding beams physics; accelerator design physics; MACRO project; proton decay project; theoretical particle physics; muon G-2 project; fast liquid scintillators; SSCINTCAL project; TRD project; massively parallel processing for the SSC; and physics analysis and vertex detector upgrade at L3.

      18. On the fundamental role of dynamics in quantum physics

        NASA Astrophysics Data System (ADS)

        Hofmann, Holger F.

        2016-05-01

        Quantum theory expresses the observable relations between physical properties in terms of probabilities that depend on the specific context described by the "state" of a system. However, the laws of physics that emerge at the macroscopic level are fully deterministic. Here, it is shown that the relation between quantum statistics and deterministic dynamics can be explained in terms of ergodic averages over complex valued probabilities, where the fundamental causality of motion is expressed by an action that appears as the phase of the complex probability multiplied with the fundamental constant ħ. Importantly, classical physics emerges as an approximation of this more fundamental theory of motion, indicating that the assumption of a classical reality described by differential geometry is merely an artefact of an extrapolation from the observation of macroscopic dynamics to a fictitious level of precision that does not exist within our actual experience of the world around us. It is therefore possible to completely replace the classical concepts of trajectories with the more fundamental concept of action phase probabilities as a universally valid description of the deterministic causality of motion that is observed in the physical world.

      19. Magnetic particle motions within living cells. Physical theory and techniques.

        PubMed Central

        Valberg, P A; Butler, J P

        1987-01-01

        Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated. PMID:3676435

      20. Space-Based Research in Fundamental Physics and Quantum Technologies

        NASA Astrophysics Data System (ADS)

        Turyshev, Slava G.; Israelsson, Ulf E.; Shao, Michael; Yu, Nan; Kusenko, Alexander; Wright, Edward L.; Everitt, C. W. Francis; Kasevich, Mark; Lipa, John A.; Mester, John C.; Reasenberg, Robert D.; Walsworth, Ronald L.; Ashby, Neil; Gould, Harvey; Paik, Ho Jung

        Space offers unique experimental conditions and a wide range of opportunities to explore the foundations of modern physics with an accuracy far beyond that of ground-based experiments. Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for investigations in precision cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency "Fundamental Physics Task Force" to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including "laboratory research in fundamental physics" as an element in the agency's ongoing space research efforts.

      1. Implications of cosmological observables for particle physics: an overview

        NASA Astrophysics Data System (ADS)

        Wong, Yvonne Y. Y.

        2016-05-01

        I review how precision data from observations of the cosmic microwave background anisotropies and the large-scale structure distribution can be used to probe particle physics. Some examples are the absolute neutrino mass scale, dark radiation, light sterile neutrinos, QCD axions, WIMP annihilation, and dark sector interactions.

      2. My 50 years of research in particle physics.

        PubMed

        Sugawara, Hirotaka

        2010-01-01

        Some of my work of the last 50 years in the field of theoretical particle physics is described with particular emphasis on the motivation, the process of investigation, relationship to the work of others, and its impact. My judgment is unavoidably subjective, although I do present the comments of other researchers as much as possible.

      3. The heavy particle hazard, what physical data are needed?

        NASA Technical Reports Server (NTRS)

        Curtis, S. B.; Wilkinson, M. C.

        1972-01-01

        The physical data required to evaluate the radiation hazard from heavy galactic cosmic rays to astronauts on extended missions are discussed. The spectral characteristics, nuclear interaction parameters, and track structure of particles are emphasized. The data on the lower energy portion of the differential spectrum of the iron group and nuclear fragmentation in tissue and aluminum are tested, and results are shown.

      4. My 50 years of research in particle physics

        PubMed Central

        Sugawara, Hirotaka

        2010-01-01

        Some of my work of the last 50 years in the field of theoretical particle physics is described with particular emphasis on the motivation, the process of investigation, relationship to the work of others, and its impact. My judgment is unavoidably subjective, although I do present the comments of other researchers as much as possible. PMID:20431257

      5. Research in elementary particle physics. [Ohio State Univ. , Columbus

        SciTech Connect

        Not Available

        1992-01-01

        Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

      6. Deep inelastic scaling in nuclear and particle physics

        SciTech Connect

        West, G.B.

        1988-01-01

        These lectures are intended to be a pedagogical introduction to some of the ideas and concepts concerning scaling phenomena which arise in nuclear and particle physics. Topics discussed are: classical scaling and dimensional analysis; non-relativistic treatment; dynamics and scaling; y-scaling; and relativistic treatment (QCD). 22 refs., 16 figs. (LSP)

      7. Nobel physics prize to Charpak for inventing particle detectors

        SciTech Connect

        Schwarzschild, B.

        1993-01-01

        This article describes the work of Georges Charpak of France leading to his receipt of the 1992 Nobel Prize in Physics. The Nobel Prize was awarded to Charpak [open quotes]for his invention and development of particle detectors, in particular the multiwire proportional chamber.[close quotes] Historical aspects of Charpak's life and research are given.

      8. Parameter estimation of fractional-order chaotic systems by using quantum parallel particle swarm optimization algorithm.

        PubMed

        Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

        2015-01-01

        Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

      9. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

        NASA Technical Reports Server (NTRS)

        Matthaeus, W.

        1992-01-01

        In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

      10. Introduction to the Spin Physics of Relativistic Particles

        NASA Astrophysics Data System (ADS)

        Ternov, I. M.

        1997-08-01

        Problems of Spin's theory of relativistic Particles, the Dynamics of Spin during its motion in an external electromagnetic field, the problem of the Spin's and Anomalous Magnetic Moment of the electron (AMM) measurement, as well as some polarization and spin effects in electroweak fermionic interactions, moving in an external electromagnetic field has been examined. Problems of Engineering Physics of the Spin were also put into discussion: Polarized beams creation and Polarization Guidance. A review of achievements of the High Energy Physics in the area of application of relativistic beams with oriented spin has been given. The book is designed for Postgraduate Students of Universities Physics Departments.

      11. Current experiments in elementary particle physics. Revision 1-85

        SciTech Connect

        Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

        1985-01-01

        This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

      12. Dipolar Physics in an Erbium Quantum Gas Microscope

        NASA Astrophysics Data System (ADS)

        Hebert, Anne; Krahn, Aaron; Phelps, Gregory; Dickerson, Susannah; Greiner, Markus; Erbium Lab Team

        2016-05-01

        Erbium offers exciting possibilities for extending the single-site imaging work of current quantum gas microscopes. With a magnetic dipole moment of 7μB, the dipole-dipole interaction of erbium is 50 times that of alkali atoms. The long-range and anisotropic nature of the dipole interaction adds richness to the short-range interactions that dominate the physics of the ground-state alkali atoms commonly used in ultracold experiments today. Erbium has several abundant isotopes, giving the added flexibility of studying both bosonic and fermionic systems. We present proposed avenues of research for the dipolar microscope being developed, including studies of magnetism, the Einstein-de Haas effect, and quantum phase transitions with fractional filling factors.

      13. Physical realization of quantum teleportation for a nonmaximal entangled state

        SciTech Connect

        Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori

        2010-08-15

        Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equal to half the number of photons into the beam splitter, our model has high fidelity.

      14. PREFACE: The 9th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

        NASA Astrophysics Data System (ADS)

        Horwitz, L. P.

        2015-05-01

        The most recent meeting took place at the University of Connecticut, Storrs, on June 9-13, 2014. This meeting forms the basis for the Proceedings that are recorded in this issue of the Journal of Physics: Conference Series. Along with the work of some of the founding members of the Association, we were fortunate to have lecturers from application areas that provided strong challenges for further developments in quantum field theory, cosmological problems, and in the dynamics of systems subject to accelerations and the effects of general relativity. Topics treated in this issue include studies of the dark matter problem, rotation curves, and, in particular, for the (relatively accessible) Milky Way galaxy, compact stellar objects, a composite particle model, and the properties of a conformally invariant theory with spontaneous symmetry breaking. The Stueckelberg theory is further investigated for its properties in producing bremsstrahlung and pair production and apparent superluminal effects, and, as mentioned above, the implications of low energy nuclear reactions for such off-shell theories. Other "proper time" theories are investigated as well, and a study of the clock synchronization problem is presented. A mathematical study of to quantum groupo associated with the Toda lattice and its implications for quantum field theory, as well as a phenomenological discussion of supernova mechanics as well as a semiclassical discussion of electron spin and the question of the compatibility of special relativity and the quantum theory. A careful analysis of the covariant Aharonov-Bohm effect is given as well. The quantization of massless fields and the relation to the Maxwell theory is also discussed. We wish to thank the participants who contributed very much through their lectures, personal discussions, and these papers, to the advancement of the subject and our understanding.

      15. How to upload a physical quantum state into correlation space

        SciTech Connect

        Morimae, Tomoyuki

        2011-04-15

        In the framework of the computational tensor network [Phys. Rev. Lett. 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett. 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai et al. [Phys. Rev. Lett. 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.

      16. A Bidirectional Quantum Secure Direct Communication Protocol Based on Five-Particle Cluster State

        NASA Astrophysics Data System (ADS)

        Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li

        2013-09-01

        To transmit a message safely, five-particle cluster state particles are used to construct a bidirectional quantum secure direct communication protocol. Five-particle cluster state particles are used for both detecting eavesdroppers and transmitting secret messages. All of the five-particle cluster states' photons for detection are mixed to the sending sequence to detect eavesdroppers. The detection rate approaches 88% per qubit. The five-particle cluster states needed are only one fifth of the photons in the sending sequence. In this protocol, there is no photon carrying secret information transmitting in quantum channel, and the classical XOR operation which serves as a one-time-pad is used to ensure the security of the protocol. Compared with three photons of each five-particle cluster state as detection photons, the five photons in this study will decrease the five-particle cluster states needed for detection greatly.

      17. Integrating particle physical geometry into composting degradation kinetics.

        PubMed

        Wang, Yongjiang; Ai, Ping

        2016-01-01

        The study was carried out to integrate physical geometry of compost particle with degradation kinetics to model biological reactions, which revealing additional dynamic approaches. A sphere and its circumscribing cube were used to represent compost particles. An inner sphere, representing anaerobic zone, was introduced to describe variations of substrate volume without sufficient oxygen supply. Degradation of soluble substrates and hydrolysis of insoluble substrates were associated with the particle geometry. Transportation of soluble substrates produced from hydrolysis was expressed using Fick's law. Through the integration of degradation kinetics with geometry models, degradation models could describe varying volume of composting materials involving aerobic or anaerobic digestion and transportation of soluble substrates in a unit compost particle.

      18. Particle radiosurgery: a new frontier of physics in medicine.

        PubMed

        Bert, Christoph; Durante, Marco

        2014-07-01

        Radiosurgery was introduced over half a century ago for treatment of intracranial lesions. In more recent years, stereotactic radiotherapy has rapidly advanced and is now commonly used for treatments of both cranial and extracranial lesions with high doses delivered in a few, down to a single fraction. The results of a workshop on Particle radiosurgery: A new frontier of physics in medicine held at Obergurgl, Austria during August 25-29 2013 are summarized in this issue with an overview presented in this paper. The focus was laid on particle radiosurgery but the content also includes current practice in x-ray radiosurgery and the overarching research in radiobiology and motion management for extracranial lesions. The results and discussions showed that especially research in radiobiology of high-dose charged-particles and motion management are necessary for the success of particle radiosurgery.

      19. Particle Physics in High School: A Diagnose Study

        PubMed Central

        Solbes, Jordi

        2016-01-01

        The science learning process improves when the contents are connected to students’ lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students’ answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum. PMID:27253377

      20. An Introduction to the Standard Model of Particle Physics

        NASA Astrophysics Data System (ADS)

        Cottingham, W. Noel; Greenwood, Derek A.

        1999-01-01

        This graduate textbook provides a concise, accessible introduction to the Standard Model of particle physics. Theoretical concepts are developed clearly and carefully throughout the book--from the electromagnetic and weak interactions of leptons and quarks to the strong interactions of quarks. Chapters developing the theory are interspersed with chapters describing some of the wealth of experimental data supporting the model. The book assumes only the standard mathematics taught in an undergraduate physics course; more sophisticated mathematical ideas are developed in the text and in appendices. For graduate students in particle physics and physicists working in other fields who are interested in the current understanding of the ultimate constituents of matter, this textbook provides a lucid and up-to-date introduction.

      1. Particle Physics in High School: A Diagnose Study.

        PubMed

        Tuzón, Paula; Solbes, Jordi

        2016-01-01

        The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum.

      2. PREFACE: International Conference on Particle Physics and Astrophysics (ICPPA-2015)

        NASA Astrophysics Data System (ADS)

        2016-02-01

        The International Conference on Particle Physics and Astrophysics (ICPPA-2015) was held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Fundamental Research and Particle Physics of National Research Nuclear University ''MEPhI''. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. We bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. The conference covers a wide range of topics such as accelerator physics, (astro) particle physics, cosmic rays, cosmology and methods of experimental physics - detectors and instruments. These directions are unified by development of the Standard Model (SM) which is evidently not complete. There are deviations from the Standard Model - neutrino oscillations, the dark matter existence. Together with strong interactions, they are main subjects of the Conference. New results from LHC collider as well as its future upgrade are discussed with the Higgs as the main point for discussion. Substantial development of experimental tools for astrophysical observations and new results from cosmic ray experiments is one of the main subjects of the conference. Various aspects of strong interaction are discussed. Among them: Charmonium and Bottomonium states, Flavor physics at Super B factories, Exotic Nuclei in Astrophysics. Another subject for discussion is the neutrino physics, promising and unique way to get new knowledge. In this content, several talks on BOREXINO experiment where new results in neutrino oscillations are presented. Special session is devoted to PAMELA experiment - 9 years in orbit and to the future GAMMA-400 gamma-ray telescope with following main scientific goals: indirect dark matter origin study by the gamma-ray astronomy methods, discrete astrophysical sources observations, diffuse background γ-emission analysis

      3. Numerical simulation of quantum systems using the Particle-In-Cell method

        NASA Astrophysics Data System (ADS)

        Dirkmann, Sven; Youssef, Ziad; Hemke, Torben; Mussenbrock, Thomas

        2014-10-01

        The Particle-In-Cell (PIC) method is a very powerful method for studying the dynamics of plasmas. It has been primarily developed for tracking the charged particle trajectories subject to selfconsistent and external electromagnetic fields. Exploiting the power of modern computers, one is able to track the classical paths of tens of millions of particles at the same time. In the late 1980th, it was Dawson (and later Dauger) who had the idea to apply the PIC method to the classical part in the semiclassical approach to quantum systems via path integral methods. One could estimate that if a thousands of classical paths are sufficient to describe the dynamics of one quantum particle, then millions classical paths could describe the dynamics of a quantum particle system. A PIC code in the frame of a semiclassical approach would therefore enable the investigation of a number of quantum phenomena, e.g., optical properties, electrical properties, and, ultimately, chemical reactions. In this contribution we explain the use of the PIC code yapic (developed by the authors) in the frame of the path integral method and discuss the numerical results for simple quantum phenomena, i.e., the quantum harmonic oscillator and quantum tunneling. This work is supported by the German Research Foundation in the frame of FOR 2093.

      4. Sein oder Nichtsein als Grundfrage der Quantenphysik / To he or not to be as basic question in quantum physics

        NASA Astrophysics Data System (ADS)

        Bopp, Fritz

        1984-02-01

        The question is often asked how to interprete quantum physics. That question does not arise in classical physics, since Newton's axioms are immediately connected with basic ideas and experiences. The same is possible in quantum physics, if we remember how elementary particle physicists describe their experiments. As Helmholtz has pointed out. the basic assumption of classical physics is that of geneidentity. That means: Bodies remain the same during their motion. Obviously, that is no longer true in quantum physics. Particles can be created and annihilated. Therefore creation and annihilation must be considered as basic processes. Motion only occurs, if a particle is annihilated in a certain point, if an equal one is created in an infinitesimally neighbouring point, and if this process is continuously going on during a certain time. Motions of that kind are compatible with the existence of some manifest creation and annihilation processes. If we accept this idea, quantum physics can be derived from first principles. As in classical physics, we know therefore what happens from the very beginning. Thus questions of interpretation become dispensable. A particular mathematical method is used to exhaust continua. The theory is formulated in a finite lattice, whose point density and extension equally go to infinity. All calculations are therefore performed in a finite dimensional Hilbert space. The results are however related to an infinite dimensional one. Earlier calculations may, therefore, be essentially correct, though they must be rejected in theories which are based on manifestly infinite dimensional Hilbert spaces. Here limiting processes do not occur in the state space. They are only admissible for numerical results.

      5. Huygens' principle, the free Schrödinger particle and the quantum anti-centrifugal force

        NASA Astrophysics Data System (ADS)

        Cirone, M. A.; Dahl, J. P.; Fedorov, M.; Greenberger, D.; Schleich, W. P.

        2002-01-01

        Huygens' principle following from the d'Alembert wave equation is not valid in two-dimensional space. A Schrödinger particle of vanishing angular momentum moving freely in two dimensions experiences an attractive force - the quantum anti-centrifugal force - towards its centre. We connect these two phenomena by comparing and contrasting the radial propagators of the d'Alembert wave equation and of a free non-relativistic quantum mechanical particle in two and three dimensions.

      6. Searching for new physics at the frontiers with lattice quantum chromodynamics.

        PubMed

        Van de Water, Ruth S

        2012-07-01

        Numerical lattice-quantum chromodynamics (QCD) simulations, when combined with experimental measurements, allow the determination of fundamental parameters of the particle-physics Standard Model and enable searches for physics beyond-the-Standard Model. We present the current status of lattice-QCD weak matrix element calculations needed to obtain the elements and phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and to test the Standard Model in the quark-flavor sector. We then discuss evidence that may hint at the presence of new physics beyond the Standard Model CKM framework. Finally, we discuss two opportunities where we expect lattice QCD to play a pivotal role in searching for, and possibly discovery of, new physics at upcoming high-intensity experiments: rare decays and the muon anomalous magnetic moment. The next several years may witness the discovery of new elementary particles at the Large Hadron Collider (LHC). The interplay between lattice QCD, high-energy experiments at the LHC, and high-intensity experiments will be needed to determine the underlying structure of whatever physics beyond-the-Standard Model is realized in nature.

      7. Topics in the standard model of particle physics extension and fourth-order gravity

        NASA Astrophysics Data System (ADS)

        Ochoa, Joseph R.

        In this thesis I present two possible signatures of quantum gravitational phenomenology. The first part of this thesis relates to a Lorentz symmetry violating extension of the standard model of particle physics. Here I show that a Chern-Simons type extension of the quantum electrodynamic (QED) sector of the standard model (SM) leads to the generation of circular polarization for photons. The polarization of scattered photons are analyzed using quantum field theoretic techniques and through the application of a generalized Boltzmann transport equation. In addition to the previously studied optical activity or birefringence effects induced by the particular interaction studied here, the Lorentz invariance violating interaction in question also leads to the generation of circular polarization. The possibility for observation of the effects in the cosmic microwave background (CMB) is discussed, although the circular polarization effects are shown to be at a level which is always sub-dominate to the birefringence effects. The second part of this thesis relates to a fourth-order modification to the general theory of relativity (GR) which has appeared as quantum corrections in the effective spectral action of noncommutative geometry (NCG). A term which is proportional to the square of the Weyl curvature is added to the Einstein-Hilbert action of GR and the the gravitational wave solutions of this modified theory are derived. The implications for the possibility of constraining the parameters of NCG through the analysis of data on the rate of orbit decay of binary pulsars is discussed.

      8. A guide to experimental particle physics literature, 1991-1996

        SciTech Connect

        Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B.

        1996-10-01

        We present an indexed guide to experimental particle physics literature for the years 1991 - 1996. Approximately 4200 papers are indexed by (1) Beam/Target/Momentum (2) Reaction/Momentum/Data-Descriptor (including the final state) (3) Particle/Decay (4) Accelerator/Experiment/Detector. All indices are cross-referenced to the paper`s title and references in the ID/Reference/Title index. The information presented in this guide is also publicly available on a regularly-updated DATAGUIDE database from the World Wide Web.

      9. Problems of Quantum Theory may be Solved by an Emulation Theory of Quantum Physics

        NASA Astrophysics Data System (ADS)

        Woesler, Richard

        2005-02-01

        The emulation interpretation of quantum theory is described which may solve problems of the Copenhagen interpretation finally. According to Kolmogorov complexity theory it is conceivable that a bit string exists encoding our world which can be computed by an appropriate generalized Turing machine. In this case the computation would emulate the world, therefore this can be called an emulation theory of quantum physics, and the emulation interpretation of quantum theory. The probability of a string is dominated by the probabilities of its shortest programs which is known as the `coding theorem'. This leads to the suggestion that there may be a relatively short shortest program by which our world may be run. This suggestion appears to be in accordance with our world. The world exhibits a number of symmetries. It is plausible that the shortest algorithm for our special world is shorter than those for worlds where symmetries are broken more often than in our world, because each further deviation from a symmetry has to be encoded within the algorithm which would enlarge its length. Therefore, laws of physics may be identical rather globally in spacetime. Further, in the Copenhagen interpretation of quantum theory it is defined, how to compute probabilities for, e.g., measurement results when conducting measurements on variables of quantum systems. In a completely satisfactory theory of everything this would not be sufficient, but such a theory should give a reason why the values of the probabilities seem, as far as it is known, to be identical also in all different regions of the observed world. The emulation interpretation suggests that all deviations from this symmetry of the probabilities would enlarge the shortest program of the world, and, therefore, we would probably not live in a world with such deviations. A second question arises from the attempt to combine the theory of black holes, thermodynamics and quantum theory. Bekenstein derives a holography principle

      10. Tomonaga–Luttinger physics in electronic quantum circuits

        PubMed Central

        Jezouin, S.; Albert, M.; Parmentier, F. D.; Anthore, A.; Gennser, U.; Cavanna, A.; Safi, I.; Pierre, F.

        2013-01-01

        In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga–Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga–Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga–Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga–Luttinger liquid with an impurity. PMID:23653214

      11. Tomonaga-Luttinger physics in electronic quantum circuits.

        PubMed

        Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F

        2013-01-01

        In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.

      12. Quantum entanglement of identical particles by standard information-theoretic notions.

        PubMed

        Lo Franco, Rosario; Compagno, Giuseppe

        2016-02-09

        Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates.

      13. Quantum entanglement of identical particles by standard information-theoretic notions

        NASA Astrophysics Data System (ADS)

        Lo Franco, Rosario; Compagno, Giuseppe

        2016-02-01

        Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates.

      14. Quantum entanglement of identical particles by standard information-theoretic notions

        PubMed Central

        Lo Franco, Rosario; Compagno, Giuseppe

        2016-01-01

        Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates. PMID:26857475

      15. A Novel Quantum Blind Signature Scheme with Four-particle GHZ States

        NASA Astrophysics Data System (ADS)

        Fan, Ling; Zhang, Ke-Jia; Qin, Su-Juan; Guo, Fen-Zhuo

        2016-02-01

        In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature's validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by using four-particle entangled Greenberger-Horne-Zeilinger (GHZ) states. By using the special relationship of four-particle GHZ states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.

      16. A Novel Quantum Blind Signature Scheme with Four-Particle Cluster States

        NASA Astrophysics Data System (ADS)

        Fan, Ling

        2016-03-01

        In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature's validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by measuring four-particle cluster states and coding. By using the special relationship of four-particle cluster states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.

      17. Two-particle quantum interference in tunnel-coupled optical tweezers.

        PubMed

        Kaufman, A M; Lester, B J; Reynolds, C M; Wall, M L; Foss-Feig, M; Hazzard, K R A; Rey, A M; Regal, C A

        2014-07-18

        The quantum statistics of atoms is typically observed in the behavior of an ensemble via macroscopic observables. However, quantum statistics modifies the behavior of even two particles. Here, we demonstrate near-complete control over all the internal and external degrees of freedom of two laser-cooled (87)Rb atoms trapped in two optical tweezers. This controllability allows us to observe signatures of indistinguishability via two-particle interference. Our work establishes laser-cooled atoms in optical tweezers as a promising route to bottom-up engineering of scalable, low-entropy quantum systems.

      18. A Novel Particle Detector: Quantum Dot Doped Liquid Scintillator

        NASA Astrophysics Data System (ADS)

        Winslow, Lindley; Conrad, Janet; Jerry, Ruel

        2010-02-01

        Quantum dots are semiconducting nanocrystals. When excited by light shorter then their characteristic wavelength, they re-emit in a narrow band around this wavelength. The size of the quantum is proportional to the characteristic wavelength so they can be tuned for many applications. CdS quantum dots are made in wavelengths from 360nm to 460nm, a perfect range for the sensitivity of photo-multiplier tubes. The synthesis of quantum dots automatically leaves them in toluene, a good organic scintillator and Cd is a particularly interesting material as it has one of the highest thermal neutron cross sections and has several neutrinoless double beta decay and double electron capture isotopes. The performance of quantum dot loaded scintillator compared to standard scintillators is measured and some unique properties presented. )

      19. Pharmaceutical micro-particles give amorphous sucrose higher physical stability.

        PubMed

        Hellrup, Joel; Mahlin, Denny

        2011-05-16

        The aim of this study was to explore how pharmaceutical micro-sized filler particles affect the amorphous stability of sucrose in sucrose/filler particle composites produced by freeze-drying. Focus was put on the filler particles' properties crystallinity, hygroscopicity, hydrophobicity, and surface area, and their influence on physical stability of the amorphous phase. The micro-sized filler particles were examined with Blaine permeametry, gas adsorption, pycnometry, gravimetric vapour sorption, X-ray diffraction, and light microscopy before composites of sucrose and micro-sized filler particles were prepared by freeze-drying. The stability of the composites was examined with X-ray diffraction, differential scanning calorimetry (DSC), and microcalorimetry. All composites were amorphous and showed higher stability compared to pure amorphous sucrose, which was evident from a delay in heat and moisture-induced crystallization. However, calcium carbonate and oxazepam micro-sized filler particles lost their ability to stabilize the amorphous sucrose when exposed to humidity. The dry glass transition temperature (T(g)) was higher for the composites, indicating the stabilization was mediated by a reduced molecular mobility of the amorphous phase. PMID:21356288

      20. A Medical Application of Nuclear Physics: Particle Radiotherapy with Protons

        NASA Astrophysics Data System (ADS)

        Farr, Jonathan B.

        2006-10-01

        Since the discovery of radiation, applications have been made to medicine. The advent of higher energy particle accelerators in the second half of the twentieth century enabled modern tele-therapy using relatively high energy x-rays and particles. Today mega-voltage (MV) x-rays are the most common modality of delivering high doses of potentially life saving radiation to a wide variety of disease, mostly malignant cancers. However, the maximum radiation dose that can be delivered is always limited by the effects to critical surrounding biologic structures. In many cases, due to their physical properties, ``heavy'' particle radiotherapy with protons and light ions may provide an advantage in this respect over MV x-rays allowing either a higher dose of radiation to be delivered to the volume or, for the same dose, reducing the concomitant damage to critical structures. This motivation, together with recent advances in particle therapy systems that are making the technology more readily available, is serving to grow the field of particle therapy. In particular, treatment with fast protons is becoming more widespread with over 20 facilities operating worldwide and more under construction. This presentation will provide an introduction to heavy particle therapy and additional details specifically on proton therapy.

      1. Quantum Correlations of Two Relativistic Spin-{1}/{2} Particles Under Noisy Channels

        NASA Astrophysics Data System (ADS)

        Mahdian, M.; Mojaveri, B.; Dehghani, A.; Makaremi, T.

        2016-02-01

        We study the quantum correlation dynamics of bipartite spin-{1}/{2} density matrices for two particles under Wigner rotations induced by Lorentz transformations which is transmitted through noisy channels. We compare quantum entanglement, geometric discord(GD), and quantum discord (QD) for bipartite relativistic spin-{1}/{2} states under noisy channels. We find out QD and GD tend to death asymptotically but a sudden change in the decay rate of the entanglement occurs under noisy channels. Also, bipartite relativistic spin density matrices are considered as a quantum channel for teleportation one-qubit state under the influence of depolarizing noise and compare fidelity for various velocities of observers.

      2. Third quantization: modeling the universe as a 'particle' in a quantum field theory of the minisuperspace

        NASA Astrophysics Data System (ADS)

        Robles Pérez, S. J.

        2013-02-01

        The third quantization formalism of quantum cosmology adds simplicity and conceptual insight into the quantum description of the multiverse. Within such a formalism, the existence of squeezed and entangled states raises the question of whether the complementary principle of quantum mechanics has to be extended to the quantum description of the whole space-time manifold. If so, the particle description entails the consideration of a multiverse scenario and the wave description induces us to consider as well correlations and interactions among the universes of the multiverse.

      3. Two-party quantum key agreement based on four-particle GHZ states

        NASA Astrophysics Data System (ADS)

        He, Ye-Feng; Ma, Wen-Ping

        2016-04-01

        Based on four-particle GHZ states, the double CNOT operation and the delayed measurement technique, a two-party quantum key agreement (QKA) protocols is proposed. The double CNOT operation makes each four-particle GHZ state collapse into two independent quantum states without any entanglement. Furthermore, one party can directly know the two quantum states and the other party can be aware of the two quantum states by using the corresponding measurement. According to the initial states of the two quantum states, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. Then the protocol achieves the fair establishment of a shared key. The security analysis shows that the new protocol can resist against participant attacks, the Trojan horse attacks and other outsider attacks. Furthermore, the new protocol also has no information leakage problem and has high qubit efficiency.

      4. GridPP: the UK grid for particle physics.

        PubMed

        Britton, D; Cass, A J; Clarke, P E L; Coles, J; Colling, D J; Doyle, A T; Geddes, N I; Gordon, J C; Jones, R W L; Kelsey, D P; Lloyd, S L; Middleton, R P; Patrick, G N; Sansum, R A; Pearce, S E

        2009-06-28

        The start-up of the Large Hadron Collider (LHC) at CERN, Geneva, presents a huge challenge in processing and analysing the vast amounts of scientific data that will be produced. The architecture of the worldwide grid that will handle 15 PB of particle physics data annually from this machine is based on a hierarchical tiered structure. We describe the development of the UK component (GridPP) of this grid from a prototype system to a full exploitation grid for real data analysis. This includes the physical infrastructure, the deployment of middleware, operational experience and the initial exploitation by the major LHC experiments. PMID:19451101

      5. GridPP: the UK grid for particle physics.

        PubMed

        Britton, D; Cass, A J; Clarke, P E L; Coles, J; Colling, D J; Doyle, A T; Geddes, N I; Gordon, J C; Jones, R W L; Kelsey, D P; Lloyd, S L; Middleton, R P; Patrick, G N; Sansum, R A; Pearce, S E

        2009-06-28

        The start-up of the Large Hadron Collider (LHC) at CERN, Geneva, presents a huge challenge in processing and analysing the vast amounts of scientific data that will be produced. The architecture of the worldwide grid that will handle 15 PB of particle physics data annually from this machine is based on a hierarchical tiered structure. We describe the development of the UK component (GridPP) of this grid from a prototype system to a full exploitation grid for real data analysis. This includes the physical infrastructure, the deployment of middleware, operational experience and the initial exploitation by the major LHC experiments.

      6. Two-party quantum key agreement protocol with four-particle entangled states

        NASA Astrophysics Data System (ADS)

        He, Yefeng; Ma, Wenping

        2016-09-01

        Based on four-particle entangled states and the delayed measurement technique, a two-party quantum key agreement protocol is proposed in this paper. In the protocol, two participants can deduce the measurement results of each other’s initial quantum states in terms of the measurement correlation property of four-particle entangled states. According to the corresponding initial quantum states deduced by themselves, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. This guarantees the fair establishment of a shared key. Since each particle in quantum channel is transmitted only once, the protocol is congenitally free from the Trojan horse attacks. The security analysis shows that the protocol not only can resist against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.

      7. Quantum fields and poisson processes: Interaction of a cut-off boson field with a quantum particle

        NASA Astrophysics Data System (ADS)

        Bertrand, Jacqueline; Gaveau, Bernard; Rideau, Guy

        1985-01-01

        The solution of the Schrödinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful.

      8. Physical sputtering of metallic systems by charged-particle impact

        SciTech Connect

        Lam, N.Q.

        1989-12-01

        The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

      9. UCLA Particle Physics Research Group annual progress report

        SciTech Connect

        Nefkens, B.M.K.

        1983-11-01

        The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end.

      10. Fundamental Constants as Monitors of Particle Physics and Dark Energy

        NASA Astrophysics Data System (ADS)

        Thompson, Rodger

        2016-03-01

        This contribution considers the constraints on particle physics and dark energy parameter space imposed by the astronomical observational constraints on the variation of the proton to electron mass ratio μ and the fine structure constant α. These constraints impose limits on the temporal variation of these parameters on a time scale greater than half the age of the universe, a time scale inaccessible by laboratory facilities such as the Large Hadron Collider. The limits on the variance of μ and α constrain combinations of the QCD Scale, the Higgs VEV and the Yukawa coupling on the particle physics side and a combination of the temporal variation of rolling scalar field and its coupling to the constants on the dark energy side.

      11. MAJOR DETECOTRS IN ELEMENTARY PARTICLE PHYSICS - May 1985 Suppl.

        SciTech Connect

        Gidal, G.; Armstrong, B.; Rittenberg, A.

        1985-05-01

        This report is the second edition of a loose-leaf compendium of the properties and performance characteristics of the major detectors of elementary particle physics. This introduces the second edition of the LBL-91 Supplement 'Major Detectors in Elementary Particle Physics.' For some detectors the update merely documents minor modifications or provides additional references. Others have undergone major rebuilding or have been augmented with new subsystems. The new LEP, SLC, TRISTAN, BEPC, and FNAL detectors have had their designs fixed and are now under construction. Some detectors have completed their programs since the last edition and so are omitted. The use of colored loose-leaf paper should allow users to maintain a historical record of each detector. We again thank those physicists working with each detector who took the time to summarize its properties and supply us with the appropriate drawings.

      12. A Masterclass in Particle Physics for High School Students

        NASA Astrophysics Data System (ADS)

        Cecire, Kenneth; Entwistle, T.

        2006-12-01

        The European Particle Physics Outreach Group (EPPOG) developed the Masterclass in 2004 to bring particle physics to high school classrooms in Europe. They put real data on a website (http://wyp.teilchenphysik.org/mc.htm) from the Large Electron-Positron (LEP) collider at CERN. Students analyze this data and draw conclusions at their schools. They then compare their results with those found at other schools in Masterclass live video conferences hosted by CERN over the internet. In March 2004, six students at Ward Melville High School on Long Island were sponsored by QuarkNet and Brookhaven National Laboratory to become the first U.S. team to participate in the EPPOG Masterclass. The Ward Melville group was positive about the experience and their results tracked well with those of their colleagues in the video conference from high schools in Greece, Slovakia, and Poland.

      13. Particle physics catalysis of thermal big bang nucleosynthesis.

        PubMed

        Pospelov, Maxim

        2007-06-01

        We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date.

      14. Particle physics catalysis of thermal big bang nucleosynthesis.

        PubMed

        Pospelov, Maxim

        2007-06-01

        We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date. PMID:17677895

      15. Current experiments in elementary-particle physics - March 1983

        SciTech Connect

        Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

        1983-03-01

        Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)

      16. Quantum tunneling of massive spin-1 particles from non-stationary metrics

        NASA Astrophysics Data System (ADS)

        Sakalli, I.; Övgün, A.

        2016-01-01

        We focus on the HR of massive vector (spin-1) particles tunneling from Schwarzschild BH expressed in the Kruskal-Szekeres and dynamic Lemaitre coordinates. Using the Proca equation together with the Hamilton-Jacobi and the WKB methods, we show that the tunneling rate, and its consequence Hawking temperature are well recovered by the quantum tunneling of the massive vector particles.

      17. The 5th Generation model of Particle Physics

        NASA Astrophysics Data System (ADS)

        Lach, Theodore

        2009-05-01

        The Standard model of Particle Physics is able to account for all known HEP phenomenon, yet it is not able to predict the masses of the quarks or leptons nor can it explain why they have their respective values. The Checker Board Model (CBM) predicts that there are 5 generation of quarks and leptons and shows a pattern to those masses, namely each three quarks or leptons (within adjacent generations or within a generation) are related to each other by a geometric mean relationship. A 2D structure of the nucleus can be imaged as 2D plate spinning on its axis, it would for all practical circumstances appear to be a 3D object. The masses of the hypothesized ``up'' and ``dn'' quarks determined by the CBM are 237.31 MeV and 42.392 MeV respectively. These new quarks in addition to a lepton of 7.4 MeV make up one of the missing generations. The details of this new particle physics model can be found at the web site: checkerboard.dnsalias.net. The only areas were this theory conflicts with existing dogma is in the value of the mass of the Top quark. The particle found at Fermi Lab must be some sort of composite particle containing Top quarks.

      18. Emergent Devil's Staircase without Particle-Hole Symmetry in Rydberg Quantum Gases with Competing Attractive and Repulsive Interactions.

        PubMed

        Lan, Zhihao; Minář, Jiří; Levi, Emanuele; Li, Weibin; Lesanovsky, Igor

        2015-11-13

        The devil's staircase is a fractal structure that characterizes the ground state of one-dimensional classical lattice gases with long-range repulsive convex interactions. Its plateaus mark regions of stability for specific filling fractions which are controlled by a chemical potential. Typically, such a staircase has an explicit particle-hole symmetry; i.e., the staircase at more than half filling can be trivially extracted from the one at less than half filling by exchanging the roles of holes and particles. Here, we introduce a quantum spin chain with competing short-range attractive and long-range repulsive interactions, i.e., a nonconvex potential. In the classical limit the ground state features generalized Wigner crystals that--depending on the filling fraction--are composed of either dimer particles or dimer holes, which results in an emergent complete devil's staircase without explicit particle-hole symmetry of the underlying microscopic model. In our system the particle-hole symmetry is lifted due to the fact that the staircase is controlled through a two-body interaction rather than a one-body chemical potential. The introduction of quantum fluctuations through a transverse field melts the staircase and ultimately makes the system enter a paramagnetic phase. For intermediate transverse field strengths, however, we identify a region where the density-density correlations suggest the emergence of quasi-long-range order. We discuss how this physics can be explored with Rydberg-dressed atoms held in a lattice. PMID:26613435

      19. Emergent Devil's Staircase without Particle-Hole Symmetry in Rydberg Quantum Gases with Competing Attractive and Repulsive Interactions.

        PubMed

        Lan, Zhihao; Minář, Jiří; Levi, Emanuele; Li, Weibin; Lesanovsky, Igor

        2015-11-13

        The devil's staircase is a fractal structure that characterizes the ground state of one-dimensional classical lattice gases with long-range repulsive convex interactions. Its plateaus mark regions of stability for specific filling fractions which are controlled by a chemical potential. Typically, such a staircase has an explicit particle-hole symmetry; i.e., the staircase at more than half filling can be trivially extracted from the one at less than half filling by exchanging the roles of holes and particles. Here, we introduce a quantum spin chain with competing short-range attractive and long-range repulsive interactions, i.e., a nonconvex potential. In the classical limit the ground state features generalized Wigner crystals that--depending on the filling fraction--are composed of either dimer particles or dimer holes, which results in an emergent complete devil's staircase without explicit particle-hole symmetry of the underlying microscopic model. In our system the particle-hole symmetry is lifted due to the fact that the staircase is controlled through a two-body interaction rather than a one-body chemical potential. The introduction of quantum fluctuations through a transverse field melts the staircase and ultimately makes the system enter a paramagnetic phase. For intermediate transverse field strengths, however, we identify a region where the density-density correlations suggest the emergence of quasi-long-range order. We discuss how this physics can be explored with Rydberg-dressed atoms held in a lattice.

      20. Theoretical and Experimental Studies of Elementary Particle Physics

        SciTech Connect

        Evans, Harold G; Kostelecky, V Alan; Musser, James A

        2013-07-29

        The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

      1. Observation of quantum particles on a large space-time scale

        NASA Astrophysics Data System (ADS)

        Landau, L. J.

        1994-10-01

        A quantum particle observed on a sufficiently large space-time scale can be described by means of classical particle trajectories. The joint distribution for large-scale multiple-time position and momentum measurements on a nonrelativistic quantum particle moving freely in R v is given by straight-line trajectories with probabilities determined by the initial momentum-space wavefunction. For large-scale toroidal and rectangular regions the trajectories are geodesics. In a uniform gravitational field the trajectories are parabolas. A quantum counting process on free particles is also considered and shown to converge in the large-space-time limit to a classical counting process for particles with straight-line trajectories. If the quantum particle interacts weakly with its environment, the classical particle trajectories may undergo random jumps. In the random potential model considered here, the quantum particle evolves according to a reversible unitary one-parameter group describing elastic scattering off static randomly distributed impurities (a quantum Lorentz gas). In the large-space-time weak-coupling limit a classical stochastic process is obtained with probability one and describes a classical particle moving with constant speed in straight lines between random jumps in direction. The process depends only on the ensemble value of the covariance of the random field and not on the sample field. The probability density in phase space associated with the classical stochastic process satisfies the linear Boltzmann equation for the classical Lorentz gas, which, in the limit h→0, goes over to the linear Landau equation. Our study of the quantum Lorentz gas is based on a perturbative expansion and, as in other studies of this system, the series can be controlled only for small values of the rescaled time and for Gaussian random fields. The discussion of classical particle trajectories for nonrelativistic particles on a macroscopic spacetime scale applies also to

      2. Research in particle physics. Progress report, June 1, 1992--January 31, 1993

        SciTech Connect

        Not Available

        1992-09-01

        Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron{endash}positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ``electrostatic muon kicker``; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

      3. The XXth International Workshop High Energy Physics and Quantum Field Theory

        NASA Astrophysics Data System (ADS)

        The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year Workshop is organized jointly by the SINP MSU and the Southern Federal University (SFedU) and will take place in the holiday hotel "Luchezarniy" (Effulgent) situated on the Black Sea shore in a picturesque natural park in the suburb of the largest Russian resort city Sochi - the host city of the XXII Olympic Winter Games to be held in 2014. The main topics to be covered are: Experimental results from the LHC. Tevatron summary: the status of the Standard Model and the boundaries on BSM physics. Future physics at Linear Colliders and super B-factories. Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders: SUSY extensions of the Standard Model; particle interactions in space-time with extra dimensions; strings, quantum groups and new ideas from modern algebra and geometry. Higher order corrections and resummations for collider phenomenology. Automatic calculations of Feynman diagrams and Monte Carlo simulations. LHC/LC and astroparticle/cosmology connections. Modern nuclear physics and relativistic nucleous-nucleous collisions.

      4. EDITORIAL: Focus on Dark Matter and Particle Physics

        NASA Astrophysics Data System (ADS)

        Aprile, Elena; Profumo, Stefano

        2009-10-01

        The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

      5. The behavioral changes that can be realized when leaders are exposed to the theories and metaphors found in quantum physics

        NASA Astrophysics Data System (ADS)

        Godfrey, David Wayne

        Many are beginning to see the promise that the quantum world has offered those who manage and lead organizations (Wheatley, 1992; Zohar, 1997). The Newtonian world is one in which all "things" are reduced to their smallest parts, separated, divided, and analyzed with predictability, with complete control being the ultimate goal. The quantum world is one of infinite possibilities, infinite fields of influence, and infinite relationships. The hallmark characteristics found in a manager who has been schooled in the quantum sciences are flexibility, responsiveness, synchronicity, serendipity, creativity, innovation, participation, and motivation. In a quantum organization there is the constant awareness of the whole system, but there is also diversity (wave or particle), which allows for self-organization that is based on the environment and its requirements. In the quantum world many paths lead from A to Z, and depending on the path chosen, numerous realities wait to unfold. It was the goal of this research to explore the changing of leader behaviors through exposure to the models and theories found in quantum physics. From a quantum perspective this behavior change is possible; the only question is the readiness, willingness, and ability of the leaders to allow their behaviors to be surfaced and challenged. These are indeed the greatest challenges for all people as they proceed through life and work---readiness for change, willingness to change, and ability to surface key areas where change is needed.

      6. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

        NASA Astrophysics Data System (ADS)

        Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

        2015-07-01

        In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

      7. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

        PubMed

        Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

        2015-07-01

        In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

      8. Life at the interface of particle physics and string theory

        NASA Astrophysics Data System (ADS)

        Schellekens, A. N.

        2013-10-01

        If the results of the first LHC run are not betraying us, many decades of particle physics are culminating in a complete and consistent theory for all nongravitational physics: the standard model. But despite this monumental achievement there is a clear sense of disappointment: many questions remain unanswered. Remarkably, most unanswered questions could just be environmental, and disturbingly to some the existence of life may depend on that environment. Meanwhile there has been increasing evidence that the seemingly ideal candidate for answering these questions, string theory, gives an answer few people initially expected: a large “landscape” of possibilities that can be realized in a multiverse and populated by eternal inflation. At the interface of “bottom-up” and “top-down” physics, a discussion of anthropic arguments becomes unavoidable. Developments in this area are reviewed, focusing especially on the last decade.

      9. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

        SciTech Connect

        Geesaman, D.F.

        1993-11-01

        This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

      10. Emergence of stringlike physics from Lorentz invariance in loop quantum gravity

        NASA Astrophysics Data System (ADS)

        Gambini, Rodolfo; Pullin, Jorge

        2014-11-01

        We consider a quantum field theory on a spherically symmetric quantum spacetime described by loop quantum gravity. The spin network description of spacetime in such a theory leads to equations for the quantum field that are discrete. We show that to avoid significant violations of Lorentz invariance, one needs to consider specific nonlocal interactions in the quantum field theory similar to those that appear in string theory. This is the first sign that loop quantum gravity places restrictions on the type of matter considered, and points to a connection with string theory physics.

      11. Computational method for the long time propagation of quantum channeled particles in crystals and carbon nanotubes

        NASA Astrophysics Data System (ADS)

        Ćosić, M.; Petrović, S.; Nešković, N.

        2014-07-01

        This work reports on the computational method for the long time propagation of the quantum channeled particles in infinite and finite harmonic interaction wells and in a realistic carbon nanotube interaction potential well. This method is based on the Chebyshev global propagation method for solving of the corresponding time dependent Schrödinger equation. For comparison, the computational method based on the Crank-Nicolson propagation method is also presented. In the case of quantum particle motion in infinite harmonic potential well, when the analytical solution of the corresponding time-dependent Schrödinger equation exists, we show that the obtained propagation method is efficient, very accurate and numerically stable. It is superior with respect to the method based on the Crank-Nicolson propagation method. A detailed study of the long time quantum particle motion in the finite harmonic interaction potential well shows that the obtained computational method based on the Chebyshev global propagation method can be successfully applied for following of the channeled quantum particle in crystals and carbon nanotubes. This is demonstrated in the case of quantum particle motion in a realistic carbon nanotube interaction potential well.

      12. Particle Physics and Cosmology: First Tropical Workshop; High Energy Physics: Second Latin American Symposium. Proceedings

        SciTech Connect

        Nieves, J.F.

        1998-10-01

        These proceedings represent papers presented at the First Tropical Workshop on Particle Physics and Cosmology and the Second Latin American Symposium on High Energy Physics held in Puerto Rico in April 1998. Topics covered included neutrino physics, dark matter, and cosmology; flavor physics and CP violation, supersymmetry, w physics and standard model tests, and QCD and tau physics. The Workshop was sponsored in part by the U.S. Department of Energy and the Arecibo Observatory. The combined conference brought together leading experimentalists from the D0 and CDF groups at Fermilab as well as the various LEP collaborations. There are 49 papers included in these proceedings, out of these 25 have been abstracted for the Energy,Science and Technology database.(AIP)

      13. How to upload a physical quantum state into correlation space

        NASA Astrophysics Data System (ADS)

        Morimae, Tomoyuki

        2011-04-01

        In the framework of the computational tensor network [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.220503 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.050503 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.050503 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.

      14. Quantum Hall physics with cold atoms in cylindrical optical lattices

        NASA Astrophysics Data System (ADS)

        Łåcki, Mateusz; Pichler, Hannes; Sterdyniak, Antoine; Lyras, Andreas; Lembessis, Vassilis E.; Al-Dossary, Omar; Budich, Jan Carl; Zoller, Peter

        2016-01-01

        We propose and study various realizations of a Hofstadter-Hubbard model on a cylinder geometry with fermionic cold atoms in optical lattices. The cylindrical optical lattice is created by copropagating Laguerre-Gauss beams, i.e., light beams carrying orbital angular momentum. By strong focusing of the light beams we create a real-space optical lattice in the form of rings, which are offset in energy. A second set of Laguerre-Gauss beams then induces a Raman-hopping between these rings, imprinting phases corresponding to a synthetic magnetic field (artificial gauge field). In addition, by rotating the lattice potential, we achieve a slowly varying flux through the hole of the cylinder, which allows us to probe the Hall response of the system as a realization of Laughlin's thought experiment. We study how in the presence of interactions fractional quantum Hall physics could be observed in this setup.

      15. Local State and Sector Theory in Local Quantum Physics

        NASA Astrophysics Data System (ADS)

        Ojima, Izumi; Okamura, Kazuya; Saigo, Hayato

        2016-06-01

        We define a new concept of local states in the framework of algebraic quantum field theory (AQFT). Local states are a natural generalization of states and give a clear vision of localization in the context of QFT. In terms of them, we can find a condition from which follows automatically the famous DHR selection criterion in DHR-DR theory. As a result, we can understand the condition as consequences of physically natural state preparations in vacuum backgrounds. Furthermore, a theory of orthogonal decomposition of completely positive (CP) maps is developed. It unifies a theory of orthogonal decomposition of states and order structure theory of CP maps. Using it, localized version of sectors is formulated, which gives sector theory for local states with respect to general reference representations.

      16. Hydrodynamics of the Physical Vacuum: I. Scalar Quantum Sector

        NASA Astrophysics Data System (ADS)

        Sbitnev, Valeriy I.

        2016-05-01

        Physical vacuum is a special superfluid medium. Its motion is described by the Navier-Stokes equation having two slightly modified terms that relate to internal forces. They are the pressure gradient and the dissipation force because of viscosity. The modifications are as follows: (a) the pressure gradient contains an added term describing the pressure multiplied by the entropy gradient; (b) time-averaged viscosity is zero, but its variance is not zero. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schrödinger equation describing behavior of a particle into the vacuum, which looks like a superfluid medium populated by enormous amount of virtual particle-antiparticle pairs.

      17. The relation between the quantum discord and quantum teleportation: The physical interpretation of the transition point between different quantum discord decay regimes

        NASA Astrophysics Data System (ADS)

        Roszak, K.; Cywiński, Ł.

        2015-10-01

        We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation, the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single-qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.

      18. Major detectors in elementary-particle physics. [Portfolio

        SciTech Connect

        Gidal, G.; Armstrong, B.; Rittenberg, A.

        1983-03-01

        With the 1983 issue of LBL-91 we introduce a supplement - a folio of descriptions of the world's major elementary particle physics detectors. Modern high energy physics usually involves the use of massive, costly, carefully engineered, large solid angle detectors. These detectors require a long lead time for construction, are often integrated with an accelerator, accumulate data over many years, and are in reality a combination of numerous subsystems. As was the case with bubble chambers, many experiments are performed with the same data, or with data taken after relatively minor changes or additions to the detector configuration. These experiments are often reported in journals whose space limitations make repeated full descriptions of the detector impossible. The detailed properties and performance of the detector are usually described in a fragmented series of papers in more specialized, technologically oriented journals. New additions are often not well documented. Several detectors often make similar measurements and physicists want to make quick comparisons of their respective capabilities. Designers of new large detectors and even of smaller experiments need to know what already exists and what performance has been achieved. To aid the physics community, the Particle Data Group has produced this brief folio of the world's major large detectors. This first edition has some notable omissions: in particular, the bubble chambers and any associated spectrometers, and the still somewhat tentative LEP, SLC, and TRISTAN detectors.

      19. Physics of leptoquarks in precision experiments and at particle colliders

        NASA Astrophysics Data System (ADS)

        Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

        2016-06-01

        We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

      20. Liquid xenon detectors for particle physics and astrophysics

        SciTech Connect

        Aprile, E.; Doke, T.

        2010-07-15

        This article reviews the progress made over the last 20 years in the development and applications of liquid xenon detectors in particle physics, astrophysics, and medical imaging experiments. A summary of the fundamental properties of liquid xenon as radiation detection medium, in light of the most current theoretical and experimental information is first provided. After an introduction of the different type of liquid xenon detectors, a review of past, current, and future experiments using liquid xenon to search for rare processes and to image radiation in space and in medicine is given. Each application is introduced with a survey of the underlying scientific motivation and experimental requirements before reviewing the basic characteristics and expected performance of each experiment. Within this decade it appears likely that large volume liquid xenon detectors operated in different modes will contribute to answering some of the most fundamental questions in particle physics, astrophysics, and cosmology, fulfilling the most demanding detection challenges. From detectors based solely on liquid xenon (LXe) scintillation, such as in the MEG experiment for the search of the rare ''{mu}{yields}e{gamma}'' decay, currently the largest liquid xenon detector in operation, and in the XMASS experiment for dark matter detection, to the class of time projection chambers which exploit both scintillation and ionization of LXe, such as in the XENON dark matter search experiment and in the Enriched Xenon Observatory for neutrinoless double beta decay, unrivaled performance and important contributions to physics in the next few years are anticipated.

      1. Electron-hole quantum physics in ZnO

        NASA Astrophysics Data System (ADS)

        Versteegh, M. A. M.

        2011-09-01

        This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on bulk ZnO and on ZnO nanowires. Chapter 2 presents a new technique for an ultrafast all-optical shutter, based on two-photon absorption in a ZnO crystal. This shutter can be used for luminescence experiments requiring extremely high time-resolution. Chapter 3 describes a time-resolved study on the electron-hole many-body effects in highly excited ZnO at room temperature, in particular band-filling, band-gap renormalization, and the disappearance of the exciton resonance due to screening. In Chapter 4, the quantum many-body theory developed and experimentally verified in Chapter 3, is used to explain laser action in ZnO nanowires, and compared with experimental results. In contrast to current opinion, the results indicate that excitons are not involved in the laser action. The measured emission wavelength, the laser threshold, and the spectral distance between the laser modes are shown to be excellently explained by our quantum many-body theory. Multiple scattering of light in a forest of nanowires can be employed to enhance light absorption in solar cells. Optimization of this technique requires better understanding of light diffusion in such a nanowire forest. In Chapter 5 we demonstrate a method, based on two-photon absorption, to directly measure the residence time of light in a nanowire forest, and we show that scanning electron microscope (SEM) images can be used to predict the photon mean free path. In Chapter 6 we present a new ultrafast all-optical transistor, consisting of a forest of ZnO nanowires. After excitation, laser action in this forest causes rapid recombination of the majority of the electrons and holes, limiting the amplification to 1.2 picoseconds only

      2. Elementary particle physics at the University of Florida. Annual report

        SciTech Connect

        Field, R.D.; Ramond, P.M.; Sikivie, P.

        1995-12-01

        This is the annual progress report of the University of Florida`s elementary particle physics group. The theoretical high energy physics group`s research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment`s high-resolution spectrometer`s assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University`s three-year proposal to the United States Department of Energy to upgrade the University`s high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group.

      3. A Particle Model Explaining Mass and Relativity in a Physical Way

        NASA Astrophysics Data System (ADS)

        Giese, Albrecht

        Physicists' understanding of relativity and the way it is handled is up to present days dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics alone to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity and the quantum mechanical concept of Louis de Broglie, which explains the origin of mass without the use of the Higgs mechanism. It is based on the finiteness of the speed of light and provides classical results for particle properties which are currently only accessible through quantum mechanics.

      4. Marietta Blau: Pioneer of Photographic Nuclear Emulsions and Particle Physics

        NASA Astrophysics Data System (ADS)

        Sime, Ruth Lewin

        2013-03-01

        During the 1920s and 1930s, Viennese physicist Marietta Blau (1894-1970) pioneered the use of photographic methods for imaging high-energy nuclear particles and events. In 1937 she and Hertha Wambacher discovered "disintegration stars" - the tracks of massive nuclear disintegrations - in emulsions exposed to cosmic radiation. This discovery launched the field of particle physics, but Blau's contributions were underrecognized and she herself was nearly forgotten. I trace Blau's career at the Institut für Radiumforschung in Vienna and the causes of this "forgetting," including her forced emigration from Austria in 1938, the behavior of her colleagues in Vienna during and after the National Socialist period, and the flawed Nobel decision process that excluded her from a Nobel Prize.

      5. PARTICLE PHYSICS: The Final Tally Leaves LEP a Probable Loser.

        PubMed

        Morton, O

        2000-11-17

        Physicists at CERN, the European particle physics laboratory near Geneva, are making a last-ditch appeal to postpone demolition of the lab's Large Electron-Positron (LEP) collider. Scheduled to be scrapped in September to make room for a new device, the Large Hadron Collider, LEP was granted a 1-month stay of execution so physicists could continue experiments hinting at evidence for the Higgs boson--a theoretical particle that physicists have coveted for decades. On 8 November, CERN's director-general turned down a further extension, but the executive committee of the lab's staff association blasted the decision, saying that the case against LEP had not been made clearly enough. PMID:17787224

      6. Three-particle hyper-entanglement: teleportation and quantum key distribution

        NASA Astrophysics Data System (ADS)

        Perumangatt, Chithrabhanu; Abdul Rahim, Aadhi; Salla, Gangi Reddy; Prabhakar, Shashi; Samanta, Goutam Kumar; Paul, Goutam; Singh, Ravindra Pratap

        2015-10-01

        We present a scheme to generate three-particle hyper-entanglement utilizing polarization and orbital angular momentum (OAM) of photons. We show that the generated state can be used to teleport a two-qubit state described by the polarization and the OAM. The proposed quantum system has also been used to describe a new efficient quantum key distribution (QKD) protocol. We give a sketch of the experimental arrangement to realize the proposed teleportation and the QKD.

      7. QPSO-MD: A Quantum Behaved Particle Swarm Optimization for Consensus Pattern Identification

        NASA Astrophysics Data System (ADS)

        Meshoul, Souham; Al-Owaisheq, Tasneem

        Particle Swarm Optimization (PSO) has been successfully applied to a wide range of fields. The recent introduction of quantum mechanics principles into PSO has given rise to a Quantum behaviour PSO (QPSO) algorithm. This paper investigates its application into motif discovery, a challenging task in bioinformatics and molecular biology. Given a set of input DNA sequences, the proposed framework acts as a search process where a population of particles is depicted by a quantum behavior. Each particle represents a set of regulatory patterns from which a consensus pattern or motif model is derived. The corresponding fitness function is related to the total number of pairwise matches between nucleotides in the input sequences. Experiment results on synthetic and real data are very promising and prove the effectiveness of the proposed framework.

      8. Flight of a heavy particle nonlinearly coupled to a quantum bath

        NASA Astrophysics Data System (ADS)

        Maghrebi, Mohammad F.; Krüger, Matthias; Kardar, Mehran

        2016-01-01

        Fluctuation and dissipation are byproducts of coupling to the "environment." The Caldeira-Leggett model, a successful paradigm of quantum Brownian motion, views the environment as a collection of harmonic oscillators linearly coupled to the system. However, symmetry considerations may forbid a linear coupling, e.g., for a neutral particle in quantum electrodynamics. We argue that the absence of linear couplings can lead to a fundamentally different behavior. Specifically, we consider a heavy particle quadratically coupled to quantum fluctuations of the bath. In one dimension the particle undergoes anomalous diffusion, unfolding as a power-law distribution in space, reminiscent of Lévy flights. We suggest condensed matter analogs where similar effects may arise.

      9. Efficiency of quantum energy teleportation within spin-1/2 particle pairs

        NASA Astrophysics Data System (ADS)

        Frey, Michael R.

        2016-03-01

        A protocol for quantum energy teleportation (QET) is known for a so-called minimal spin-1/2 particle pair model. We extend this protocol to explicitly admit quantum weak measurements at its first stage. The extended protocol is applied beyond the minimal model to spin-1/2 particle pairs whose Hamiltonians are of a general class characterized by orthogonal pairs of entangled eigenstates. The energy transfer efficiency of the extended QET protocol is derived for this setting, and we show that weaker measurement yields greater efficiency. In the minimal particle pair model, for example, the efficiency can be doubled by this means. We also show that the QET protocol's transfer efficiency never exceeds 100 %, supporting the understanding that quantum energy teleportation is, indeed, an energy transfer protocol, rather than a protocol for remotely catalyzing local extraction of system energy already present.

      10. A Summer Research Experience in Particle Physics Using Skype

        NASA Astrophysics Data System (ADS)

        Johnston, Curran; Alexander, Steven; Mahmood, A. K.

        2012-10-01

        This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

      11. A guide to data in elementary particle physics

        SciTech Connect

        Yost, G.P.; Rittenberg, A.; Armstrong, B.; Ferguson, M. Jr.; Levine, B.S.; Simpson, K.H.; Trippe, T.G.; Visser, M.J.; Wagman, G.S.; Wohl, C.G.

        1986-09-01

        We present an indexed guide to experimental high energy physics literature for the years 1977 through 1985. While no actual data are included, approximately 9000 papers are indexed by Beam/Target/Momentum, Reaction/Momentum (including the final state), Particle, and Accelerator/Detector. All indices are cross-referenced via an ID to the paper's title and references in the ID/Reference/Title Index. Black marks (bleeder tabs) at the side of the page enable each section to be located quickly, using the Table of Contents on the back cover. The information presented in this guide is also publicly available on a regularly updated SLAC-SPIRES database called DATAGUIDE.

      12. Creation of particles in a cyclic universe driven by loop quantum cosmology

        NASA Astrophysics Data System (ADS)

        Tavakoli, Yaser; Fabris, Júlio C.

        2015-05-01

        We consider an isotropic and homogeneous universe in loop quantum cosmology (LQC). We assume that the matter content of the universe is dominated by dust matter in early time and a phantom matter at late time which constitutes the dark energy component. The quantum gravity modifications to the Friedmann equation in this model indicate that the classical big bang singularity and the future big rip singularity are resolved and are replaced by quantum bounce. It turns out that the big bounce and recollapse in the herein model contribute to a cyclic scenario for the universe. We then study the quantum theory of a massive, nonminimally coupled scalar field undergoing cosmological evolution from primordial bounce towards the late time bounce. In particular, we solve the Klein-Gordon equation for the scalar field in the primordial and late time regions, in order to investigate particle production phenomena at late time. By computing the energy density of created particles at late time, we show that this density is negligible in comparison to the quantum background density at Planck era. This indicates that the effects of quantum particle production do not influence the future bounce.

      13. Applications of gaseous particle detectors in physics and medicine

        NASA Astrophysics Data System (ADS)

        Sauli, Fabio

        1995-08-01

        The multi-wire proportional chamber, introduced in 1967 by Georges Charpak (recipient of the 1992 Nobel prize for physics) allows to achieve high-rate, fully electronics detection and localization of ionizing radiation. The myriad of devices inspired by this initial work generated a revolution in the conception of detectors for elementary particle physics experiments; examples are the time projection chamber, the drift chamber, the micro-strip gas chamber. After a brief introduction on the basic operating principles of the device, I will describe several examples of application of advanced gas detectors in medicine and biology and analyze the operating characteristics that make the new devices attractive when confronted with classic detectors.

      14. Model of cosmology and particle physics at an intermediate scale

        SciTech Connect

        Bastero-Gil, M.; Di Clemente, V.; King, S. F.

        2005-05-15

        We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M{sub *}{approx}10{sup 13} GeV by four independent pieces of physics: electroweak symmetry breaking; the {mu} parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the {mu} term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance.

      15. PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

        NASA Astrophysics Data System (ADS)

        Fring, Andreas; Jones, Hugh; Znojil, Miloslav

        2008-06-01

        Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the

      16. Semiclassical modeling of quantum-mechanical multiparticle systems using parallel particle-in-cell methods

        NASA Astrophysics Data System (ADS)

        Dauger, Dean Edward

        2001-08-01

        We are successful in building a code that models many particle dynamic quantum systems by combining a semiclassical approximation of Feynman path integrals with parallel computing techniques (particle-in-cell) and numerical methods developed for simulating plasmas, establishing this approach as a viable technique for multiparticle time-dependent quantum mechanics. Run on high-performance parallel computers, this code applies semiclassical methods to simulate the time evolution of wavefunctions of many particles. We describe the analytical derivation and computational implementation of these techniques in detail. We present a study to thoroughly demonstrate the code's fidelity to quantum mechanics, resulting in innovative visualization and analysis techniques. We introduce and exhibit a method to address fermion particle statistics. We present studies of two quantum-mechanical problems: a two-electron, one- dimensional atom, resulting in high-quality extractions of one- and two-electron eigenstates, and electrostatic quasi-modes due to quantum effects in a hot electron plasma, relevant for predictions about stellar evolution. We supply discussions of alternative derivations, alternative implementations of the derivations, and an exploration of their consequences. Source code is shown throughout this dissertation. Finally, we present an extensive discussion of applications and extrapolations of this work, with suggestions for future direction.

      17. ``Who Thinks Abstractly?'': Quantum Theory and the Architecture of Physical Concepts

        NASA Astrophysics Data System (ADS)

        Plotnitsky, Arkady

        2011-03-01

        Beginning with its introduction by W. Heisenberg, quantum mechanics was often seen as an overly abstract theory, mathematically and physically, vis-à-vis classical physics or relativity. This perception was amplified by the fact that, while the quantum-mechanical formalism provided effective predictive algorithms for the probabilistic predictions concerning quantum experiments, it appeared unable to describe, even by way idealization, quantum processes themselves in space and time, in the way classical mechanics or relativity did. The aim of the present paper is to reconsider the nature of mathematical and physical abstraction in modern physics by offering an analysis of the concept of "physical fact" and of the concept of "physical concept," in part by following G. W. F. Hegel's and G. Deleuze's arguments concerning the nature of conceptual thinking. In classical physics, relativity, and quantum physics alike, I argue, physical concepts are defined by the following main features—1) their multi-component multiplicity; 2) their essential relations to problems; 3) and the interactions between physical, mathematical, and philosophical components within each concept. It is the particular character of these interactions in quantum mechanics, as defined by its essentially predictive (rather than descriptive) nature, that distinguishes it from classical physics and relativity.

      18. 'Who Thinks Abstractly?': Quantum Theory and the Architecture of Physical Concepts

        SciTech Connect

        Plotnitsky, Arkady

        2011-03-28

        Beginning with its introduction by W. Heisenberg, quantum mechanics was often seen as an overly abstract theory, mathematically and physically, vis-a-vis classical physics or relativity. This perception was amplified by the fact that, while the quantum-mechanical formalism provided effective predictive algorithms for the probabilistic predictions concerning quantum experiments, it appeared unable to describe, even by way idealization, quantum processes themselves in space and time, in the way classical mechanics or relativity did. The aim of the present paper is to reconsider the nature of mathematical and physical abstraction in modern physics by offering an analysis of the concept of ''physical fact'' and of the concept of 'physical concept', in part by following G. W. F. Hegel's and G. Deleuze's arguments concerning the nature of conceptual thinking. In classical physics, relativity, and quantum physics alike, I argue, physical concepts are defined by the following main features - 1) their multi-component multiplicity; 2) their essential relations to problems; 3) and the interactions between physical, mathematical, and philosophical components within each concept. It is the particular character of these interactions in quantum mechanics, as defined by its essentially predictive (rather than descriptive) nature, that distinguishes it from classical physics and relativity.

      19. PREFACE: IARD 2010: The 7th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

        NASA Astrophysics Data System (ADS)

        Horwitz, Lawrence; Hu, Bei-Lok; Lee, Da-Shin; Gill, Tepper; Land, Martin

        2011-12-01

        properties of spacetime structure. The scope of this series of conferences is, however, much wider. There have been recent develpments in the understanding of the quantum properties of spacetime, the application of quantum field theory and statistical quantum field theory to problems in relativistic dynamics, as well as new techniques in general relativity; some of these topics have been discussed in the IARD 2010 conference, and which will be reported in these Proceedings. It was for this purpose, to bring together researchers from a wide variety of fields, such as particle physics, astrophysics, cosmology, heavy ion collisions, plasma research, and mathematical physics, with a common interest in relativistic dynamics, that this Association was founded. The International Association for Relativistic Dynamics was organized at its first meeting as an informal session of seminars among researchers with common interest in February 1998 in Houston, Texas, with John R Fanchi as president. The second meeting took place, in 2000, at Bar Ilan University in Ramat Gan, Israel, the third, in 2002, at Howard University in Washington, DC, and the fourth, on 12-19 June 2004, in Saas Fee, Switzerland. In 2006, the meeting took place at the University of Connecticut campus in Storrs, Connecticut, and the sixth meeting, in Thessaloniki, Greece. The seventh meeting, took place at the National Dong Hwa University in Hulien, Taiwan from 30 May to 1 June 2010. This meeting forms the basis for the Proceedings that are recorded in this volume of Journal of Physics: Conference Series. Along with the work of some of the founding members of the Association, we were fortunate to have lecturers from application areas that provided strong challenges for further developments in quantum field theory, statistical quantum field theory and its potential applications to relativistic quantum information theory, cosmological problems, and in the dynamics of systems described in the framework of general

      20. Landau-Level Mixing and Particle-Hole Symmetry Breaking for Spin Transitions in the Fractional Quantum Hall Effect.

        PubMed

        Zhang, Yuhe; Wójs, A; Jain, J K

        2016-09-01

        The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman energies and the experimentally measured values. In particular, we find, as also do experiments, that the critical Zeeman energies for fractional quantum Hall states at filling factors ν=2-n/(2n±1) are significantly higher than those for ν=n/(2n±1), a quantitative signature of the lifting of particle-hole symmetry due to Landau-level mixing. PMID:27661711