Sample records for particle rapidity

  1. Exploring the Early Structure of a Rapidly Decompressed Particle Bed

    NASA Astrophysics Data System (ADS)

    Zunino, Heather; Adrian, R. J.; Clarke, Amanda; Johnson, Blair; Arizona State University Collaboration

    2017-11-01

    Rapid expansion of dense, pressurized beds of fine particles subjected to rapid reduction of the external pressure is studied in a vertical shock tube. A near-sonic expansion wave impinges on the particle bed-gas interface and rapidly unloads the particle bed. A high-speed video camera captures events occurring during bed expansion. The particle bed does not expand homogeneously, but breaks down into horizontal slabs and then transforms into a cellular-type structure. There are several key parameters that affect the particle bed evolution, including particle size and initial bed height. Analyses of this bed structure evolution from experiments with varying particle sizes and initial bed heights is presented. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  2. PHOTOSENSITIVE 2,5-DISTYRYLPYRAZINE PARTICLES PRODUCED FROM RAPID EXPANSION OF SUPERCRITICAL SOLUTIONS. (R826648)

    EPA Science Inventory

    Solvent-free, photoreactive particles of 2,5-distyrylpyrazine (DSP) monomer were developed by rapid precipitation from an expanding supercritical chlorodifluoromethane solution. DSP polymer particles were produced by solid-state photopolymerization. DSP particles below a criti...

  3. J/ψ production as a function of charged-particle pseudorapidity density in p-Pb collisions at √{sNN } = 5.02TeV

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration<

    2018-01-01

    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch / dη in p-Pb collisions at √{sNN } = 5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch / dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.

  4. J/ψ production as a function of charged-particle pseudorapidity density in p–Pb collisions at s NN = 5.02 TeV

    DOE PAGES

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; ...

    2017-11-08

    Here, we report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dN ch/dη in p–Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$ = 5.02 TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dN ch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.« less

  5. J/ψ production as a function of charged-particle pseudorapidity density in p–Pb collisions at s NN = 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.

    Here, we report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dN ch/dη in p–Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$ = 5.02 TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dN ch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.« less

  6. Rapid cycling medical synchrotron and beam delivery system

    DOEpatents

    Peggs, Stephen G [Port Jefferson, NY; Brennan, J Michael [East Northport, NY; Tuozzolo, Joseph E [Sayville, NY; Zaltsman, Alexander [Commack, NY

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  7. Rapidity and species dependence of particle production at large transverse momentum for d+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Anderson, M.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Gorbunov, Y. G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guimaraes, K. S. F. F.; Guo, Y.; Gupta, N.; Gutierrez, T. D.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Horner, M. J.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V. Yu.; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mironov, C.; Mischke, A.; Mishra, D. K.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nikitin, V. A.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, V. A.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Razin, S. V.; Reinnarth, J.; Relyea, D.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schweda, K.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugarbaker, E.; Sumbera, M.; Sun, Z.; Surrow, B.; Swanger, M.; Symons, T. J. M.; Toledo, A. Szanto De; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Watson, J. W.; Webb, J. C.; Westfall, G. D.; Wetzler, A.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yurevich, V. I.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-11-01

    We determine rapidity asymmetry in the production of charged pions, protons, and antiprotons for large transverse momentum (pT) for d+Au collisions at sNN=200 GeV. The rapidity asymmetry is defined as the ratio of particle yields at backward rapidity (Au beam direction) to those at forward rapidity (d beam direction). The identified hadrons are measured in the rapidity regions |y|<0.5 and 0.5<|y|<1.0 for the pT range 2.5

  8. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying

    2008-03-01

    Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.

  9. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    NASA Astrophysics Data System (ADS)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  10. A combined model for pseudo-rapidity distributions in Cu-Cu collisions at BNL-RHIC energies

    NASA Astrophysics Data System (ADS)

    Jiang, Z. J.; Wang, J.; Huang, Y.

    2016-04-01

    The charged particles produced in nucleus-nucleus collisions come from leading particles and those frozen out from the hot and dense matter created in collisions. The leading particles are conventionally supposed having Gaussian rapidity distributions normalized to the number of participants. The hot and dense matter is assumed to expand according to the unified hydrodynamics, a hydro model which unifies the features of Landau and Hwa-Bjorken model, and freeze out into charged particles from a time-like hypersurface with a proper time of τFO. The rapidity distribution of this part of charged particles can be derived analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against the experimental data performed by BNL-RHIC-PHOBOS Collaboration in different centrality Cu-Cu collisions at sNN = 200 and 62.4GeV, respectively. The model predictions are consistent with experimental measurements.

  11. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in √{sNN} = 5.02 TeVp + Pb collisions measured by the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration

    2016-12-01

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p + Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √{sNN} = 5.02TeV. Charged particles are reconstructed over pseudorapidity | η | < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb-1. The results are presented in the form of charged-particle nuclear modification factors, where the p + Pb charged-particle multiplicities are compared between central and peripheral p + Pb collisions as well as to charged-particle cross sections measured in pp collisions. The p + Pb collision centrality is characterized by the total transverse energy measured in - 4.9 < η < - 3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p + Pb collision are carried out using the Glauber model and two Glauber-Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.

  12. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in s NN = 5.02   TeV p+Pb collisions measured by the ATLAS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √s NN =5.02TeV. Charged particles are reconstructed over pseudorapidity |η| < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb -1 . The results are presented in the form of charged-particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared between central and peripheral p+Pb collisions as well as to charged-particle crossmore » sections measured in pp collisions. The p+Pb collision centrality is characterized by the total transverse energy measured in -4.9 < η < -3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p+Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.« less

  13. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in s NN = 5.02   TeV p+Pb collisions measured by the ATLAS experiment

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-10-29

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √s NN =5.02TeV. Charged particles are reconstructed over pseudorapidity |η| < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb -1 . The results are presented in the form of charged-particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared between central and peripheral p+Pb collisions as well as to charged-particle crossmore » sections measured in pp collisions. The p+Pb collision centrality is characterized by the total transverse energy measured in -4.9 < η < -3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p+Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.« less

  14. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. Y.; Yu, J.; Cao, J. B.

    After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less

  15. Effects of ULF waves on local and global energetic particles: Particle energy and species dependences

    DOE PAGES

    Li, L. Y.; Yu, J.; Cao, J. B.; ...

    2016-11-05

    After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less

  16. Rapid CE-UV binding tests of environmentally hazardous compounds with polymer-modified magnetic nanoparticles.

    PubMed

    Iqbal, Zafar; Alsudir, Samar; Miah, Musharraf; Lai, Edward P C

    2011-08-01

    Hazardous compounds and bacteria in water have an adverse impact on human health and environmental ecology. Polydopamine (or polypyrrole)-coated magnetic nanoparticles and polymethacrylic acid-co-ethylene glycol dimethacrylate submicron particles were investigated for their fast binding kinetics with bisphenol A, proflavine, naphthalene acetic acid, and Escherichia coli. A new method was developed for the rapid determination of % binding by sequential injection of particles first and compounds (or E. coli) next into a fused-silica capillary for overlap binding during electrophoretic migration. Only nanolitre volumes of compounds and particles were sufficient to complete a rapid binding test. After heterogeneous binding, separation of the compounds from the particles was afforded by capillary electrophoresis. % binding was influenced by applied voltage but not current flow. In-capillary coating of particles affected the % binding of compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis

    NASA Technical Reports Server (NTRS)

    King, Michael R. (Inventor); Lomakin, Oleg (Inventor); Jones, Thomas B. (Inventor); Ahmed, Rajib (Inventor)

    2007-01-01

    Rapid, size-based, deposition of particles from liquid suspension is accomplished using a nonuniform electric field created by coplanar microelectrode strips patterned on an insulating substrate. The scheme uses the dielectrophoretic force both to distribute aqueous liquid containing particles and, simultaneously, to separate the particles. Size-based separation is found within nanoliter droplets formed along the structure after voltage removal. Bioparticles or macromolecules of similar size can also be separated based on subtle differences in dielectric property, by controlling the frequency of the AC current supplied to the electrodes.

  18. Relativistic charged particle ejection from optical lattice

    NASA Astrophysics Data System (ADS)

    Frolov, E. N.; Dik, A. V.; Dabagov, S. B.

    2018-03-01

    We have analyzed relativistic (~ MeV) electron ejection from potential channels of standing laser wave taking into account both rapid and averaged oscillations within the region of declining field of standing wave. We show that only a few last rapid oscillations can define transverse speed and, therefore, angle at which a particle leaves standing wave. This conclusion might drastically simplify numerical simulations of charged particles channeling and accompanying radiation in crossed lasers field. Moreover, it might provide a valuable information for estimation of charged particle beams parameters after their interaction with finite standing wave.

  19. The dual role of paramagnetic particles for integrated lysis and measurement in a rapid immunoassay for intracellular proteins.

    PubMed

    Sharif, Elham; Kiely, Janice; Wraith, Patrick; Luxton, Richard

    2013-05-01

    A novel, integrated lysis and immunoassay methodology and system for intracellular protein measurement are described. The method uses paramagnetic particles both as a lysis agent and assay label resulting in a rapid test requiring minimal operator intervention, the test being homogeneous and completed in less than 10 min. A design study highlights the critical features of the magnetic detection system used to quantify the paramagnetic particles and a novel frequency-locked loop-based magnetometer is presented. A study of paramagnetic particle enhanced lysis demonstrates that the technique is more than twice as efficient at releasing intracellular protein as ultrasonic lysis alone. Results are presented for measurements of intracellular prostate specific antigen in an LNCAP cell line. This model was selected to demonstrate the rapidity and efficiency of intracellular protein quantification. It was shown that, on average, LNCAP cells contained 0.43 fg of prostate specific antigen. This system promises an attractive solution for applications that require a rapid determination of intracellular proteins.

  20. Aerosol mobility imaging for rapid size distribution measurements

    DOEpatents

    Wang, Jian; Hering, Susanne Vera; Spielman, Steven Russel; Kuang, Chongai

    2016-07-19

    A parallel plate dimensional electrical mobility separator and laminar flow water condensation provide rapid, mobility-based particle sizing at concentrations typical of the remote atmosphere. Particles are separated spatially within the electrical mobility separator, enlarged through water condensation, and imaged onto a CCD array. The mobility separation distributes particles in accordance with their size. The condensation enlarges size-separated particles by water condensation while they are still within the gap of the mobility drift tube. Once enlarged the particles are illuminated by a laser. At a pre-selected frequency, typically 10 Hz, the position of all of the individual particles illuminated by the laser are captured by CCD camera. This instantly records the particle number concentration at each position. Because the position is directly related to the particle size (or mobility), the particle size spectra is derived from the images recorded by the CCD.

  1. Use of different rapid mixing devices for controlling the properties of magnetite nanoparticles produced by precipitation

    NASA Astrophysics Data System (ADS)

    Wei, Li; Hervé, Muhr; Edouard, Plasari

    2012-03-01

    Magnetite nanoparticles were precipitated by the classic Massart's method in a 2.5 L stirred tank reactor where the injection of reagent solutions was effectuated by different micro-mixers (T-tube and Hartridge-Roughton rapid mixing devices). The specific surface area, the average particle size and the particle size distribution were highly influenced by changing operating parameters. Laser Diffraction, BET adsorption, Energy-Dispersive X-ray Spectroscopy (EDX), Raman spectroscopy and Transmission Electron Microscopy (TEM) were used for characterizing magnetite nanoparticles. Especially, Hartridge-Roughton micromixer appears to be the most efficient mixing device for producing magnetite nanoparticles. The average particle size of magnetite nanoparticles prepared by Hartridge-Roughton rapid mixing device was less than 10 nm and the EDX and Raman spectroscopy shows that the particle purity is quite high.

  2. Size-dependent microstructures in rapidly solidified uranium-niobium powder particles

    DOE PAGES

    McKeown, Joseph T.; Hsiung, Luke L.; Park, Jong M.; ...

    2016-06-14

    The microstructures of rapidly solidified U-6wt%Nb powder particles synthesized by centrifugal atomization were characterized using scanning electron microscopy and transmission electron microscopy. Observed variations in microstructure are related to particle sizes. All of the powder particles exhibited a two-zone microstructure. The formation of this two-zone microstructure is described by a transition from solidification controlled by internal heat flow and high solidification rate during recalescence (micro-segregation-free or partitionless growth) to solidification controlled by external heat flow with slower solidification rates (dendritic growth with solute redistribution). The extent of partitionless solidification increased with decreasing particle size due to larger undercoolings in smallermore » particles prior to solidification. The metastable phases that formed are related to variations in Nb concentration across the particles. Lastly, the microstructures of the powders were heavily twinned.« less

  3. Rapidity correlations in the RHIC Beam Energy Scan Data

    NASA Astrophysics Data System (ADS)

    Jowzaee, Sedigheh; STAR Collaboration

    2017-11-01

    A pair-normalized two-particle covariance versus the rapidity of the two particles, called R2, was originally studied in ISR and FNAL data in the 1970's. This variable has recently seen renewed interest for the study of the dynamics of heavy-ion collisions in the longitudinal direction. These rapidity correlations can be decomposed into a basis set of Legendre polynomials with prefactors 〈amn 〉, which can be considered the rapidity analog of the decomposition of azimuthal anisotropies into a set of cosine functions with prefactors vn. The 〈amn 〉 values have been suggested to be sensitive to the number of particle emitting sources, baryon stopping, viscosities, and critical behavior. The rapidity correlations have been measured by the STAR collaboration as a function of the beam energy for 0-5% central Au+Au collisions with beam energies ranging from 7.7 to 200 GeV. The experimental results and comparisons to the UrQMD model are presented.

  4. Rapidly curable electrically conductive clear coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  5. [Application of supercritical solution rapid expansion technology in preparation of fine pharmacal particles].

    PubMed

    Zhang, Zhong-yi; Li, Hong-lei; Lei, Zheng-jie

    2006-12-01

    Rapid expansion of supercritical solution (RESS), a new technology, has been developed in the recent years. Fundamental principle of RESS technology used to prepare fine pharmacal particles was summarized in this paper. A brief review of factors which influenced the process of RESS and application of RESS technology were introduced.

  6. Polythiophene biosensor for rapid detection of microbial particles in water.

    PubMed

    Plante, Marie-Pier; Bérubé, Eve; Bissonnette, Luc; Bergeron, Michel G; Leclerc, Mario

    2013-06-12

    Most microbial particles have a negatively charged surface and in this work, we describe a water quality monitoring application of a cationic polythiophene derivative (AH-35) for the rapid assessment of microbial contamination of water. Using E. coli as a prototype microbial particle, we demonstrate that the AH-35 polymer can provide a qualitative assessment of water if exposed to more than 500 CFU/mL, thereby paving the way to a new family of biosensors potentially useful for monitoring drinking water distribution systems.

  7. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    PubMed

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  8. Stochastic Theory for the Clustering of Rapidly Settling, Low-Inertia Particle Pairs in Isotropic Turbulence - I

    NASA Astrophysics Data System (ADS)

    Gupta, Vijay; Rani, Sarma; Koch, Donald

    2017-11-01

    A stochastic theory is developed to predict the Radial Distribution Function (RDF) of monodisperse, rapidly settling, low-inertia particle pairs in isotropic turbulence. The theory is based on approximating the turbulent flow in a reference frame following an aerosol particle as a locally linear velocity field. In the first version of the theory (referred to as T1), the fluid velocity gradient tensor ``seen'' by the primary aerosol particle is further assumed to be Gaussian. Analytical closures are then derived for the drift and diffusive fluxes controling the RDF, in the asymptotic limits of small particle Stokes number (St =τp /τη << 1), and large dimensionless settling velocity (Sv = gτp /uη >> 1). It is seen that the RDF for rapidly settling pairs has an inverse power dependency on pair separation r with an exponent, c1, that is proportional to St2 . However, the c1 predicted by T1 for Sv >> 1 particles is higher than the c1 of even non-settling (Sv = 0) particles obtained from DNS of particle-laden isotropic turbulence. Thus, the Gaussian velocity gradient in T1 leads to the unphysical effect that gravity enhances pair clustering. To address this inconsistency, a second version (T2) was developed. Funding from the CBET Division of the National Science Foundation is gratefully acknowledged.

  9. Wrinkling Non-Spherical Particles and Its Application in Cell Attachment Promotion

    NASA Astrophysics Data System (ADS)

    Li, Minggan; Joung, Dehi; Hughes, Bethany; Waldman, Stephen D.; Kozinski, Janusz A.; Hwang, Dae Kun

    2016-07-01

    Surface wrinkled particles are ubiquitous in nature and present in different sizes and shapes, such as plant pollens and peppercorn seeds. These natural wrinkles provide the particles with advanced functions to survive and thrive in nature. In this work, by combining flow lithography and plasma treatment, we have developed a simple method that can rapidly create wrinkled non-spherical particles, mimicking the surface textures in nature. Due to the oxygen inhibition in flow lithography, the non-spherical particles synthesized in a microfluidic channel are covered by a partially cured polymer (PCP) layer. When exposed to plasma treatment, this PCP layer rapidly buckles, forming surface-wrinkled particles. We designed and fabricated various particles with desired shapes and sizes. The surfaces of these shapes were tuned to created wrinkle morphologies by controlling UV exposure time and the washing process. We further demonstrated that wrinkles on the particles significantly promoted cell attachment without any chemical modification, potentially providing a new route for cell attachment for various biomedical applications.

  10. The Rapid Distortion of Two-Way Coupled Particle-Laden Turbulence

    NASA Astrophysics Data System (ADS)

    Kasbaoui, Mohamed; Koch, Donald; Desjardins, Olivier

    2017-11-01

    The modulation of sheared turbulence by dispersed particles is addressed in the two-way coupling regime. The preferential sampling of the straining regions of the flow by inertial particles in turbulence leads to the formation of clusters. These fast sedimenting particle structures cause the anisotropic alteration of turbulence at small scales in the direction of gravity. These effects are investigated in a revisited Rapid Distortion Theory (RDT), extended for two-way coupled particle-laden flows. To make the analysis tractable, we assume that particles have small but non-zero inertia. In the classical results for single-phase flows, the RDT assumption of fast shearing compared to the turbulence time scales leads to the distortion of ``frozen'' turbulence. In particle-laden turbulence, the coupling between the two phases remains strong even under fast shearing and leads to a dynamic modulation of the turbulence spectrum. Turbulence statistics obtained from RDT are compared with Euler-Lagrange simulations of homogeneously sheared particle-laden turbulence.

  11. In-Situ Imaging of Particles during Rapid Thermite Deflagrations

    NASA Astrophysics Data System (ADS)

    Grapes, Michael; Sullivan, Kyle; Reeves, Robert; Densmore, John; Willey, Trevor; van Buuren, Tony; Fezaa, Kamel

    The dynamic behavior of rapidly deflagrating thermites is a highly complex process involving rapid decomposition, melting, and outgassing of intermediate and/or product gases. Few experimental techniques are capable of probing these phenomena in situ due to the small length and time scales associated with the reaction. Here we use a recently developed extended burn tube test, where we initiate a small pile of thermite on the closed end of a clear acrylic tube. The length of the tube is sufficient to fully contain the reaction as it proceeds and flows entrained particles down the tube. This experiment was brought to the Advanced Photon Source, and the particle formation was X-ray imaged at various positions down the tube. Several formulations, as well as formulation parameters were varied to investigate the size and morphology of the particles, as well as to look for dynamic behavior attributed to the reaction. In all cases, we see evidence of particle coalescence and condensed-phase interfacial reactions. The results improve our understanding of the procession of reactants to products in these systems. Funding provided by the LLNL LDRD program (PLS-16FS-028).

  12. Compression and Reswelling of Microgel Particles after an Osmotic Shock

    NASA Astrophysics Data System (ADS)

    Sleeboom, Jelle J. F.; Voudouris, Panayiotis; Punter, Melle T. J. J. M.; Aangenendt, Frank J.; Florea, Daniel; van der Schoot, Paul; Wyss, Hans M.

    2017-09-01

    We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a surprising, nonmonotonic response: After an initial rapid compression, the particle slowly reswells to approximately its original size. We theoretically account for this behavior, enabling us to extract important material properties from a single microfluidic experiment, including the compressive modulus, the gel permeability, and the diffusivity of the osmolyte inside the gel. We expect our approach to be relevant to applications such as controlled release, chromatography, and responsive materials.

  13. Rapid Particle Patterning in Surface Deposited Micro-Droplets of Low Ionic Content via Low-Voltage Electrochemistry and Electrokinetics

    PubMed Central

    Sidelman, Noam; Cohen, Moshik; Kolbe, Anke; Zalevsky, Zeev; Herrman, Andreas; Richter, Shachar

    2015-01-01

    Electrokinetic phenomena are a powerful tool used in various scientific and technological applications for the manipulation of aqueous solutions and the chemical entities within them. However, the use of DC-induced electrokinetics in miniaturized devices is highly limited. This is mainly due to unavoidable electrochemical reactions at the electrodes, which hinder successful manipulation. Here we present experimental evidence that on-chip DC manipulation of particles between closely positioned electrodes inside micro-droplets can be successfully achieved, and at low voltages. We show that such manipulation, which is considered practically impossible, can be used to rapidly concentrate and pattern particles in 2D shapes in inter-electrode locations. We show that this is made possible in low ion content dispersions, which enable low-voltage electrokinetics and an anomalous bubble-free water electrolysis. This phenomenon can serve as a powerful tool in both microflow devices and digital microfluidics for rapid pre-concentration and particle patterning. PMID:26293477

  14. Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.

    PubMed

    Rao, Chengchen; Gu, Fu; Zhao, Peng; Sharmin, Nusrat; Gu, Haibing; Fu, Jianzhong

    2017-09-04

    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.

  15. Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation.

    PubMed

    Dittmer, W U; de Kievit, P; Prins, M W J; Vissers, J L M; Mersch, M E C; Martens, M F W C

    2008-09-30

    A rapid method for the sensitive detection of proteins using actuated magnetic particle labels, which are measured with a giant magneto-resistive (GMR) biosensor, is described. The technique involves a 1-step sandwich immunoassay with no fluid replacement steps. The various assay binding reactions as well as the bound/free separation are entirely controlled by magnetic forces induced by electromagnets above and below the sensor chip. During the assay, particles conjugated with tracer antibodies are actuated through the sample for target capture, and rapidly brought to the sensor surface where they bind to immobilized capture antibodies. Weakly or unbound labels are removed with a magnetic force oriented away from the GMR sensor surface. For the measurement of parathyroid hormone (PTH), a detection limit in the 10 pM range is obtained with a total assay time of 15 min when 300 nm particles are used. The same sensitivity can be achieved in 5 min when 500 nm particles are used. If 500 nm particles are employed in a 15-minute assay, then 0.8 pM of PTH is detectable. The low sample volume, high analytical performance and high speed of the test coupled with the compact GMR biosensor make the system especially suitable for sensitive testing outside of laboratory environments.

  16. Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen

    2008-02-01

    Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.

  17. Microstructure simulation of rapidly solidified ASP30 high-speed steel particles by gas atomization

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Wang, Bo; Yang, Zhi-liang; Wu, Guang-xin; Zhang, Jie-yu; Zhao, Shun-li

    2016-03-01

    In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also investigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental results showed that four major types of microstructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simulated results and the available experimental data are in good agreement.

  18. Condensation Kinetics of Water on Amorphous Aerosol Particles.

    PubMed

    Rothfuss, Nicholas E; Marsh, Aleksandra; Rovelli, Grazia; Petters, Markus D; Reid, Jonathan P

    2018-06-25

    Responding to changes in the surrounding environment, aerosol particles can grow by water condensation changing rapidly in composition and changing dramatically in viscosity. The timescale for growth is important to establish for particles undergoing hydration processes in the atmosphere or during inhalation. Using an electrodynamic balance, we report direct measurements at -7.5, 0, and 20 °C of timescales for hygroscopic condensational growth on a range of model hygroscopic aerosol systems. These extend from viscous aerosol particles containing a single saccharide solute (sucrose, glucose, raffinose, or trehalose) and a starting viscosity equivalent to a glass of ∼10 12 Pa·s, to nonviscous (∼10 -2 Pa·s) tetraethylene glycol particles. The condensation timescales observed in this work indicate that water condensation occurs rapidly at all temperatures examined (<10 s) and for particles of all initial viscosities spanning 10 -2 to 10 12 Pa·s. Only a marginal delay (<1 order of magnitude) is observed for particles starting as a glass.

  19. Simulations of a binary-sized mixture of inelastic grains in rapid shear flow.

    PubMed

    Clelland, R; Hrenya, C M

    2002-03-01

    In an effort to explore the rapid flow behavior associated with a binary-sized mixture of grains and to assess the predictive ability of the existing theory for such systems, molecular-dynamic simulations have been carried out. The system under consideration is composed of inelastic, smooth, hard disks engaged in rapid shear flow. The simulations indicate that nondimensional stresses decrease with an increase in d(L)/d(S) (ratio of large particle diameter to small particle diameter) or a decrease in nu(L)/nu(S) (area fraction ratio), as is also predicted by the kinetic theory of Willits and Arnarson [Phys. Fluids 11, 3116 (1999)]. Furthermore, the level of quantitative agreement between the theoretical stress predictions and simulation data is good over the entire range of parameters investigated. Nonetheless, the molecular-dynamic simulations also show that the assumption of an equipartition of energy rapidly deteriorates as the coefficient of restitution is decreased. The magnitude of this energy difference is found to increase with the difference in particle sizes.

  20. Gas and particle motions in a rapidly decompressed flow

    NASA Astrophysics Data System (ADS)

    Johnson, Blair; Zunino, Heather; Adrian, Ronald; Clarke, Amanda

    2017-11-01

    To understand the behavior of a rapidly decompressed particle bed in response to a shock, an experimental study is performed in a cylindrical (D = 4.1 cm) glass vertical shock tube of a densely packed (ρ = 61%) particle bed. The bed is comprised of spherical glass particles, ranging from D50 = 44-297 μm between experiments. High-speed pressure sensors are incorporated to capture shock speeds and strengths. High-speed video and particle image velocimetry (PIV) measurements are collected to examine vertical and radial velocities of both the particles and gas to elucidate features of the shock wave and resultant expansion wave in the lateral center of the tube, away from boundaries. In addition to optically analyzing the front velocity of the rising particle bed, interaction between the particle and gas phases are investigated as the flow accelerates and the particle front becomes more dilute. Particle and gas interactions are also considered in exploring mechanisms through which turbulence develops in the flow. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  1. Particle film growth driven by foam bubble coalescence.

    PubMed

    Binks, Bernard P; Clint, John H; Fletcher, Paul D I; Lees, Timothy J G; Taylor, Philip

    2006-09-07

    Water films stabilised by hydrophobic particles are found to spread rapidly up the inner walls of a glass vessel containing water and hydrophobic particles when it is shaken; shaking produces unstable particle-stabilised foam bubbles whose coalescence with the air/water interface drives film growth up the inner walls of the container.

  2. Scalable Method to Produce Biodegradable Nanoparticles that Rapidly Penetrate Human Mucus

    PubMed Central

    Xu, Qingguo; Boylan, Nicholas J.; Cai, Shutian; Miao, Bolong; Patel, Himatkumar; Hanes, Justin

    2013-01-01

    Mucus typically traps and rapidly removes foreign particles from the airways, gastrointestinal tract, nasopharynx, female reproductive tract and the surface of the eye. Nanoparticles capable of rapid penetration through mucus can potentially avoid rapid clearance, and open significant opportunities for controlled drug delivery at mucosal surfaces. Here, we report an industrially scalable emulsification method to produce biodegradable mucus-penetrating particles (MPP). The emulsification of diblock copolymers of poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) using low molecular weight (MW) emulsifiers forms dense brush PEG coatings on nanoparticles that allow rapid nanoparticle penetration through fresh undiluted human mucus. In comparison, conventional high MW emulsifiers, such as polyvinyl alcohol (PVA), interrupts the PEG coating on nanoparticles, resulting in their immobilization in mucus owing to adhesive interactions with mucus mesh elements. PLGA-PEG nanoparticles with a wide range of PEG MW (1, 2, 5, and 10 kDa), prepared by the emulsification method using low MW emulsifiers, all rapidly penetrated mucus. A range of drugs, from hydrophobic small molecules to hydrohilic large biologics, can be efficiently loaded into biodegradable MPP using the method described. This readily scalable method should facilitate the production of MPP products for mucosal drug delivery, as well as potentially longer-circulating particles following intravenous administration. PMID:23751567

  3. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  4. Rapidly rotating spacetimes and collisional super-Penrose process

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2016-05-01

    We consider generic axially symmetric rotating spacetimes and examine particle collisions in the ergoregion. The results are generic and agree with those obtained in the particular case of the rotating Teo wormhole in Tsukamoto and Bambi, Phys Rev D 91:104040, 2015. It is shown that for sufficiently rapid rotation, the energy of a particle escaping to infinity can become arbitrary large (so-called super-Penrose process). Moreover, this energy is typically much larger than the center-of mass energy of colliding particles. In this sense the situation differs radically from that for collisions near black holes.

  5. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization

    NASA Astrophysics Data System (ADS)

    Golod, V. M.; Sufiiarov, V. Sh

    2017-04-01

    Gas atomization is a high-performance process for manufacturing superfine metal powders. Formation of the powder particles takes place primarily through the fragmentation of alloy melt flow with high-pressure inert gas, which leads to the formation of non-uniform sized micron-scale particles and subsequent their rapid solidification due to heat exchange with gas environment. The article presents results of computer modeling of crystallization process, simulation and experimental studies of the cellular-dendrite structure formation and microsegregation in different size particles. It presents results of adaptation of the approach for local nonequilibrium solidification to conditions of crystallization at gas atomization, detected border values of the particle size at which it is possible a manifestation of diffusionless crystallization.

  6. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    Background Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Methodology/Principal Findings Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37°C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Conclusions/Significance Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis. PMID:21311600

  7. The phagocytosis and toxicity of amorphous silica.

    PubMed

    Costantini, Lindsey M; Gilberti, Renée M; Knecht, David A

    2011-02-02

    Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37 °C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis.

  8. The Rapidity Density Distributions and Longitudinal Expansion Dynamics of Identified Pions from the STAR Beam Energy Scan

    NASA Astrophysics Data System (ADS)

    Flores, Christopher E.

    2016-12-01

    The Beam Energy Scan (BES) at the Relativistic Heavy-Ion Collider was proposed to characterize the properties of the medium produced in heavy-ion interactions over a broad range of baryon chemical potential. The aptitude of the STAR detector for mid-rapidity measurements has previously been leveraged to measure identified particle yields and spectra to extract bulk properties for the BES energies for | y | ≤ 0.1. However, to extract information on expansion dynamics and full phase space particle production, it is necessary to study identified particle rapidity density distributions. We present the first rapidity density distributions of identified pions from Au+Au collisions at √{sNN} = 7.7 , 11.5, and 19.6 GeV from the BES program as measured by the STAR detector. We use these distributions to obtain the full phase space yields of the pions to provide additional information of the system's chemistry. Further, we report the width of the rapidity density distributions compared to the width expected from Landau hydrodynamics. Finally, we interpret the results as a function of collision energy and discuss them in the context of previous energy scans done at the AGS and SPS.

  9. METHODOLOGY FOR MEASURING PM 2.5 SEPARATOR CHARACTERISTICS USING AN AEROSIZER

    EPA Science Inventory

    A method is presented that enables the measurement of the particle size separation characteristics of an inertial separator in a rapid fashion. Overall penetration is determined for discrete particle sizes using an Aerosizer (Model LD, TSI, Incorporated, Particle Instruments/Am...

  10. Dijets with 2, 1 or 0 rapidity gap: factorization breaking at the Tevatron

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    2003-11-01

    Central production cross-sections of hard dijets with 2, 1 or 0 rapidity gap at Tevatron are analyzed in terms of diffractive ("a la Good-Walker") and non-diffractive fluctuations of the incident particles. The observed large factorization breaking and the unexpected high value of the 2 to 1 gap cross-section ratio are explained in terms of scattering with and between the incident particles.

  11. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    NASA Astrophysics Data System (ADS)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  12. Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements

    NASA Astrophysics Data System (ADS)

    Xie, Yuanyuan; Ye, Xingnan; Ma, Zhen; Tao, Ye; Wang, Ruyu; Zhang, Ci; Yang, Xin; Chen, Jianmin; Chen, Hong

    2017-06-01

    We characterize a representative particulate matter (PM) episode that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The mass ratio of SNA / PM1. 0 (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods, indicating that NOx contributed more to haze formation in Shanghai than did SO2. During the representative PM episode, the calculated PM was always consistent with the measured PM1. 0, indicating that the enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating the accumulation of local emissions. Three banana-shaped particle evolutions were consistent with the rapid increase of PM1. 0 mass loading, indicating that the rapid size growth by the condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that the secondary transformation of NOx and SO2 was one of the most important contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes were primarily responsible for the haze pollution in Shanghai during wintertime.

  13. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu 6Sn 5 phase during solidification. In this study, the number and size of Cu 6Sn 5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu 6Sn 5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzedmore » as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu 6Sn 5 phases. Transitions in the Cu 6Sn 5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 10 3 to 10 4 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu 6Sn 5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary-β phase in the solidified alloys was noted. As a result, solidification pathways omitting the formation of the ternary-β phase agreed well with observed room temperature microstructures.« less

  14. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    DOE PAGES

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; ...

    2016-10-06

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu 6Sn 5 phase during solidification. In this study, the number and size of Cu 6Sn 5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu 6Sn 5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzedmore » as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu 6Sn 5 phases. Transitions in the Cu 6Sn 5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 10 3 to 10 4 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu 6Sn 5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary-β phase in the solidified alloys was noted. As a result, solidification pathways omitting the formation of the ternary-β phase agreed well with observed room temperature microstructures.« less

  15. High-throughput flow alignment of barcoded hydrogel microparticles†

    PubMed Central

    Chapin, Stephen C.; Pregibon, Daniel C.

    2010-01-01

    Suspension (particle-based) arrays offer several advantages over conventional planar arrays in the detection and quantification of biomolecules, including the use of smaller sample volumes, more favorable probe-target binding kinetics, and rapid probe-set modification. We present a microfluidic system for the rapid alignment of multifunctional hydrogel microparticles designed to bear one or several biomolecule probe regions, as well as a graphical code to identify the embedded probes. Using high-speed imaging, we have developed and optimized a flow-through system that (1) allows for a high particle throughput, (2) ensures proper particle alignment for decoding and target quantification, and (3) can be reliably operated continuously without clogging. A tapered channel flanked by side focusing streams is used to orient the flexible, tablet-shaped particles into a well-ordered flow in the center of the channel. The effects of channel geometry, particle geometry, particle composition, particle loading density, and barcode design are explored to determine the best combination for eventual use in biological assays. Particles in the optimized system move at velocities of ~50 cm s−1 and with throughputs of ~40 particles s−1. Simple physical models and CFD simulations have been used to investigate flow behavior in the device. PMID:19823726

  16. Inactivation of particle-associated coliforms by chlorine and monochloramine.

    PubMed Central

    Berman, D; Rice, E W; Hoff, J C

    1988-01-01

    Sieves and nylon screens were used to separate primary sewage effluent solids into particle fractions of less than 7- or greater than 7-micron size. The efficiency of separation was determined by using a particle counter. Indigenous coliforms associated with the particle fractions were tested for their resistance to chlorine and monochloramine. Coliforms associated with the less than 7-microns fraction were inactivated more rapidly by 0.5 mg of chlorine per liter at 5 degrees C and pH 7 than coliforms associated with the greater than 7-microns fraction. Homogenization of the greater than 7-microns fraction not only resulted in an increase in the number of less than 7-microns particles, but also increased the rate of inactivation to a rate similar to that of the less than 7-microns fraction. With 1 mg of monochloramine per liter at 5 degrees C and pH 7, particle size had no appreciable effect on the rate of inactivation. At pH 8, however, the less than 7-micron fraction was inactivated more rapidly than the greater than 7-micron fraction. The time required for 99% inactivation of the particle fractions with monochloramine at pH 7 or 8 was 20- to 50-fold greater than the time required for the same amount of inactivation with chlorine at pH 7. The results indicate that coliforms associated with sewage effluent particles are inactivated more rapidly with 0.5 mg of chlorine per liter than with 1.0 mg of monochloramine per liter. However, greater than 7-micron particles can have a protective effect against the disinfecting action of chlorine. PMID:3355136

  17. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation

    PubMed Central

    Schneider, Craig S.; Xu, Qingguo; Boylan, Nicholas J.; Chisholm, Jane; Tang, Benjamin C.; Schuster, Benjamin S.; Henning, Andreas; Ensign, Laura M.; Lee, Ethan; Adstamongkonkul, Pichet; Simons, Brian W.; Wang, Sho-Yu S.; Gong, Xiaoqun; Yu, Tao; Boyle, Michael P.; Suk, Jung Soo; Hanes, Justin

    2017-01-01

    Mucoadhesive particles (MAP) have been widely explored for pulmonary drug delivery because of their perceived benefits in improving particle residence in the lungs. However, retention of particles adhesively trapped in airway mucus may be limited by physiologic mucus clearance mechanisms. In contrast, particles that avoid mucoadhesion and have diameters smaller than mucus mesh spacings rapidly penetrate mucus layers [mucus-penetrating particles (MPP)], which we hypothesized would provide prolonged lung retention compared to MAP. We compared in vivo behaviors of variously sized, polystyrene-based MAP and MPP in the lungs following inhalation. MAP, regardless of particle size, were aggregated and poorly distributed throughout the airways, leading to rapid clearance from the lungs. Conversely, MPP as large as 300 nm exhibited uniform distribution and markedly enhanced retention compared to size-matched MAP. On the basis of these findings, we formulated biodegradable MPP (b-MPP) with an average diameter of <300 nm and examined their behavior following inhalation relative to similarly sized biodegradable MAP (b-MAP). Although b-MPP diffused rapidly through human airway mucus ex vivo, b-MAP did not. Rapid b-MPP movements in mucus ex vivo correlated to a more uniform distribution within the airways and enhanced lung retention time as compared to b-MAP. Furthermore, inhalation of b-MPP loaded with dexamethasone sodium phosphate (DP) significantly reduced inflammation in a mouse model of acute lung inflammation compared to both carrier-free DP and DP-loaded MAP. These studies provide a careful head-to-head comparison of MAP versus MPP following inhalation and challenge a long-standing dogma that favored the use of MAP for pulmonary drug delivery. PMID:28435870

  18. Overview of results from PHOBOS experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Olszewski, Andrzej; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D. J.; Holzman, B.; Hollis, R. S.; Hoyński, R.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michaowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J. L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysouch, B.

    2002-07-01

    An overview of results for interactions of Au+Au ions at centre-of-mass energies of √sNN = 56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles |η| > 1. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at √sNN = 130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy.

  19. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry.

    PubMed

    Pye, Kenneth; Blott, Simon J

    2004-08-11

    Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion.

  20. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    DTIC Science & Technology

    2016-02-24

    toroid. Before fully embarking on the problem of creating the toroid’s from particles sintered by a process known as sparked plasma sintering which...allows the particles to be rapidly sintered without compromising the nano crystalline particle size, it was deemed necessary to anticipate the

  1. A COMPARISON OF PARTICLE MASS SPECTROMETERS DURING THE 1999 ATLANTA SUPERSITES EXPERIMENT

    EPA Science Inventory

    During the Atlanta SuperSite Experiment, four particle mass spectrometers were operated together for the first time: NOAA's PALMS (Particle Analysis by Laser Mass Spectrometry), U. C. Riverside's ATOFMS (Aerosol Time-of-Flight Mass Spectrometry), U. Delaware's RSMS-II (Rapid Si...

  2. Stochastic Theory for the Clustering of Rapidly Settling, Low-Inertia Particle Pairs in Isotropic Turbulence - II

    NASA Astrophysics Data System (ADS)

    Rani, Sarma; Gupta, Vijay; Koch, Donald

    2017-11-01

    A stochastic theory is developed to predict the Radial Distribution Function (RDF) of monodisperse, rapidly settling, low-inertia particle pairs in isotropic turbulence. In the second version of the theory (T2), the dimensionless strain-rate and rotation-rate tensors ``seen'' by the primary particle are assumed to be Gaussian distributed, where the strain-rate and rotation-rate tensors are non-dimensionlized using the instantaneous dissipation rate and enstrophy, respectively. Accordingly, closure is again derived for the drift flux driving particle clustering, in the asympotic limits of Stokes number St =τp /τη << 1 , and settling paramater Sv = gτp /uη >> 1 . Only the drift flux differs for T1 and T2, while the diffusive flux remains the same. The RDFs for rapidly settling pairs again show an inverse power dependency on pair separation r with an exponent, c1, that is proportional to St2 . However, in contrast to T1, the c1 values predicted by T2 show good qualitative and resonable quantitative agreement with the c1 values obtained from DNS of settling particles in isotropic turbulence. Further, the T2-predicted c1 values are smaller than those obtained from DNS of non-settling particles in isotropic turbulence. Funding from the CBET Division of the National Science Foundation is gratefully acknowledged.

  3. Concentration of Micro and Nanoparticles in Sessile Droplets Using Asymmetric Surface Wave Irradiation

    NASA Astrophysics Data System (ADS)

    Friend, James; Yeo, Leslie; Li, Haiyan

    2007-11-01

    A rapid particle concentration method in sessile droplets and confined fluid chambers has been developed using asymmetric surface wave propagation on a substrate upon which the droplet is placed. Nanometre-order vibration induced along the substrate at frequencies from 8 to 125 MHz generate a combination of forces upon suspended particles and the fluid droplet itself via diffraction to provide localized agglomeration of nanoparticles into microstructures, followed by rapid collection of the microstructures to a single point at the centre of the droplet in about 2 to 30 seconds. This is far faster than other currently available particle concentration mechanisms due to the large convective velocities achieved using the device. The ability to control the collection via surface wave power and the effect of scale on the collection time and scheme of agglomeration are explained via a physical model, verified using fluorescent polystyrene particles from 20 nm to 45 microns in diameter. The usefulness of the method for bioparticles is illustrated through rapid concentration of yeast and mouse mesenchymal stem cells which remain viable and functional after concentration.

  4. Prophylaxis and Immunization in Mice by Use of Virus-Free Defective T Particles to Protect Against Intracerebral Infection by Vesicular Stomatitis Virus

    PubMed Central

    Doyle, Michael; Holland, John J.

    1973-01-01

    Defective interfering T particles of vesicular stomatitis virus provide remarkable protection against viral disease and death when introduced intracerebrally in large numbers along with an otherwise rapidly fatal low dose of standard infectious virus. This profound prophylactic effect of defective T particles is due to homologous autointerference since it is serotype-specific and interferon is not induced. This protective effect can be demonstrated only with preparations of T particles that have been purified completely free of infectious virions. When pure T particles are injected intracerebrally along with large doses of infectious virus, they convert an otherwise rapidly fatal disease process to a slowly progressing virus infection that generally terminates in death after many days of wasting disease and paralysis. Intracerebral injection of virus-free T particles alone is apparently innocuous to mice and stimulates immunity to massive doses of homologous infectious virus. In vitro, virus-free T particles at extremely high multiplicities depress cellular RNA and protein synthesis and kill BHK21 cells in culture, but do not exhibit such effects at moderately high multiplicities. PMID:4352972

  5. Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles.

    PubMed

    Kim, Dong Won; Kim, Kyung Tae; Min, Tae Sik; Kim, Kyung Ju; Kim, Soo Hyung

    2017-07-05

    Surface-mediated Al particles are synthesized by incorporating the stable fluoride reaction of Al-F on a pure Al surface in place of natural oxides. Al particles with fluoro-polymer directly adsorbed on the surface show a considerable capability to overcome limitations caused by the surface oxide. Here, we report that Al fluoride when spontaneously formed at the poly(vinylidene fluoride)/Al interface serves as an oxidation-protecting layer while also providing an efficient combustion path along which the internal Al rapidly reacts with external oxygen atoms. Both thermal oxidation and explosion tests of the poly(vinylidene fluoride)/Al particles show superior exothermic enthalpy energy and simultaneously rapid oxidation reactivity compared to those of Al 2 O 3 passivated Al particles. It is clearly elucidated that the enhanced energetic properties of Al particles mediated by poly(vinylidene fluoride) originate from the extraordinary pyrolytic process of Al fluoride occurring at a low temperature compared to Al 2 O 3 passivated Al. Hence, these results clarify that the surface mediation of Al particles can be significantly considered as advanced technology for many energetic applications.

  6. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours,more » underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.« less

  7. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  8. Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at $$ \\sqrt{s}=7 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.

    Prompt D meson and non-prompt J/ψ yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy ofmore » $$ \\sqrt{s}=7 $$ TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D 0, D + and D *+ mesons are measured in five p T intervals from 1 GeV/c to 20 GeV/c and for |y| < 0.5 via their hadronic decays. The D-meson relative yield is found to increase with increasing charged-particle multiplicity. For events with multiplicity six times higher than the average multiplicity of inelastic collisions, a yield enhancement of a factor about 15 relative to the multiplicity-integrated yield in inelastic collisions is observed. The yield enhancement is independent of transverse momentum within the uncertainties of the measurement. The D 0-meson relative yield is also measured as a function of the relative multiplicity at forward pseudo-rapidity. The non-prompt J/ψ, i.e. the B hadron, contribution to the inclusive J/ψ production is measured in the di-electron decay channel at central rapidity. It is evaluated for p T > 1.3 GeV/c and |y| < 0.9, and extrapolated to p T > 0. The fraction of non-prompt J/ψ in the inclusive J/ψ yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. Finally, the measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations.« less

  9. Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at $$ \\sqrt{s}=7 $$ TeV

    DOE PAGES

    Adam, J.

    2015-09-22

    Prompt D meson and non-prompt J/ψ yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy ofmore » $$ \\sqrt{s}=7 $$ TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D 0, D + and D *+ mesons are measured in five p T intervals from 1 GeV/c to 20 GeV/c and for |y| < 0.5 via their hadronic decays. The D-meson relative yield is found to increase with increasing charged-particle multiplicity. For events with multiplicity six times higher than the average multiplicity of inelastic collisions, a yield enhancement of a factor about 15 relative to the multiplicity-integrated yield in inelastic collisions is observed. The yield enhancement is independent of transverse momentum within the uncertainties of the measurement. The D 0-meson relative yield is also measured as a function of the relative multiplicity at forward pseudo-rapidity. The non-prompt J/ψ, i.e. the B hadron, contribution to the inclusive J/ψ production is measured in the di-electron decay channel at central rapidity. It is evaluated for p T > 1.3 GeV/c and |y| < 0.9, and extrapolated to p T > 0. The fraction of non-prompt J/ψ in the inclusive J/ψ yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. Finally, the measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations.« less

  10. Hemorrhagic Fever with Renal Syndrome (Korean Hemorrhagic Fever)

    DTIC Science & Technology

    1990-06-29

    particles were used for a rapid serologic diagnostic test for HFRS. ’te-re were 430 cases of HFRS in Korea in 1989 and large outbreaks of scrub typhus...almost same as in 1988. A simple and rapid serologic diagnostic test for hantavirus infection was developed by high density particle agglutination...infection and HFRS b) serologic relation cif hantaviruses isolated from the different parts of the world c) development of a simple serologic diagnostic

  11. Hanbury–Brown–Twiss measurements at large rapidity separations, or can we measure the proton radius in p-A collisions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altinoluk, Tolga; Armesto, Néstor; Beuf, Guillaume

    2015-11-14

    We point out that current calculations of inclusive two-particle correlations in p-A collisions based on the Color Glass Condensate approach exhibit a contribution from Hanbury–Brown–Twiss correlations. These HBT correlations are quite distinct from the standard ones, in that they are apparent for particles widely separated in rapidity. The transverse size of the emitter which is reflected in these correlations is the gluonic size of the proton. Furthermore, this raises an interesting possibility of measuring the proton size directly by the HBT effect of particle pairs produced in p-A collisions.

  12. Recent trends in particle size analysis techniques

    NASA Technical Reports Server (NTRS)

    Kang, S. H.

    1984-01-01

    Recent advances and developments in the particle-sizing technologies are briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipment recently developed show that compact electronic circuitry and rapid data processing systems were mainly adopted in the instrument design. Some newly developed techniques characterizing the particulate system were also introduced.

  13. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    PubMed

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  14. Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity

    NASA Astrophysics Data System (ADS)

    Fowler, Scott W.; Buat-Menard, Patrick; Yokoyama, Yuji; Ballestra, Serge; Holm, Elis; Nguyen, Huu Van

    1987-09-01

    The sinking of participate organic matter from the euphotic zone is an important pathway for the vertical transport of many elements and organic compounds in the sea1-3. Many natural4-5 and artificial5-7 radionuclides in surface waters are readily adsorbed onto suspended particles and are presumably scavenged and removed to depth on time scales commensurate with both particle sinking rate and retention time of the radionuclide on the particle. Previously, abyssal benthic organisms from the northeast Pacific were found to contain short-lived fission products which entered the sea surface as fallout from nuclear testing8. The presence of these radionuclides at great depth could not be explained by Stokesian settling of small fallout particles and it was hypothesized8 that zooplankton grazing in the surface layers packaged these particle-reactive radionuclides into large, relatively dense faecal pellets which rapidly sank to depth. We report here data from a time-series sediment trap experiment and concomitant zooplankton collections which show conclusively that Chernobyl radioactivity, in particular the rare earth nuclides 141Ce and 144Ce, entering the Mediterranean as a single pulse, was rapidly removed from surface waters and transported to 200m in a few days primarily by zooplankton grazing.

  15. In-Situ Imaging of Particles during Rapid Thermite Deflagrations

    NASA Astrophysics Data System (ADS)

    Grapes, Michael; Reeves, Robert; Densmore, John; Fezzaa, Kamel; van Buuren, Tony; Willey, Trevor; Sullivan, Kyle

    2017-06-01

    The dynamic behavior of rapidly deflagrating thermites is a highly complex process involving rapid decomposition, melting, and outgassing of intermediate and/or product gases. Few experimental techniques are capable of probing these phenomena in situ due to the small length and time scales associated with the reaction. Here we use a recently developed extended burn tube test, where we initiate a small pile of thermite on the closed end of a clear acrylic tube. The length of the tube is sufficient to fully contain the reaction as it proceeds and flows entrained particles down the tube. This experiment was brought to the Advanced Photon Source, and the particle formation was X-ray imaged at various positions down the tube. Several formulations, as well as formulation parameters were varied to investigate the size and morphology of the particles, as well as to look for dynamic behavior attributed to the reaction. In all cases, we see evidence of particle coalescence and condensed-phase interfacial reactions. The results improve our understanding of the procession of reactants to products in these systems. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-691140.

  16. In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized using tea-polyphenols.

    EPA Science Inventory

    A “green” protocol was used for the rapid generation of nanoscale zerovalent iron (NZVI) particles using tea polyphenols. The NZVI particles were subsequently examined for in vitro biocompatibility using the human keratinocyte cell (HaCaT) line as a skin exposure model. The cell...

  17. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.

    PubMed

    Thakur, Ranjit; Gupta, Ram B

    2006-02-03

    Nanoparticles are of significant importance in drug delivery. Rapid expansion of supercritical solution (RESS) process can produce pure and high-quality drug particles. However, due to extremely low solubility of polar drugs in supercritical CO(2) (sc CO(2)), RESS has limited commercial applicability. To overcome this major limitation, a modified process rapid expansion of supercritical solution with solid cosolvent (RESS-SC) is proposed which uses a solid cosolvent. Here, the new process is tested for phenytoin drug using menthol solid cosolvent. Phenytoin solubility in pure sc CO(2) is only 3 micromol/mol but when menthol solid cosolvent is used the solubility is enhanced to 1,302 micromol/mol, at 196 bar and 45 degrees C. This 400-fold increase in the solubility can be attributed to the interaction between phenytoin and menthol. Particle agglomeration in expansion zone is another major issue with conventional RESS process. In proposed RESS-SC process solid cosolvent hinders the particle growth resulting in the formation of small nanoparticles. For example, the average particle size of phenytoin in conventional RESS process is 200 nm whereas, with RESS-SC process, the average particle size is 120 nm, at 96 bar and 45 degrees C. Similarly at 196 bar and 45 degrees C, 105 nm average particles were obtained by RESS and 75 nm average particles were obtained in RESS-SC process. The particles obtained were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and differential scanning calorimetery (DSC) analyses. Phenytoin nanoparticle production rate in RESS-SC is about 400-fold more in comparison to that in RESS process.

  18. Particle physics. Positrons ride the wave

    DOE PAGES

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  19. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier

    PubMed Central

    Tang, Benjamin C.; Dawson, Michelle; Lai, Samuel K.; Wang, Ying-Ying; Suk, Jung Soo; Yang, Ming; Zeitlin, Pamela; Boyle, Michael P.; Fu, Jie; Hanes, Justin

    2009-01-01

    Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate highly viscoelastic human mucus, such as non-ovulatory cervicovaginal mucus, at a significant rate. We prepared nanoparticles composed of a biodegradable diblock copolymer of poly(sebacic acid) and poly(ethylene glycol) (PSA-PEG), both of which are routinely used in humans. In fresh undiluted human cervicovaginal mucus (CVM), which has a bulk viscosity approximately 1,800-fold higher than water at low shear, PSA-PEG nanoparticles diffused at an average speed only 12-fold lower than the same particles in pure water. In contrast, similarly sized biodegradable nanoparticles composed of PSA or poly(lactic-co-glycolic acid) (PLGA) diffused at least 3,300-fold slower in CVM than in water. PSA-PEG particles also rapidly penetrated sputum expectorated from the lungs of patients with cystic fibrosis, a disease characterized by hyperviscoelastic mucus secretions. Rapid nanoparticle transport in mucus is made possible by the efficient partitioning of PEG to the particle surface during formulation. Biodegradable polymeric nanoparticles capable of overcoming human mucus barriers and providing sustained drug release open significant opportunities for improved drug and gene delivery at mucosal surfaces. PMID:19901335

  20. Gluon TMD in particle production from low to moderate x

    DOE PAGES

    Balitsky, I.; Tarasov, A.

    2016-06-28

    We study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.

  1. Effects of particle packing on the sintered microstructure

    NASA Astrophysics Data System (ADS)

    Barringer, E. A.; Bowen, H. K.

    1988-04-01

    The sintering process is shown to be critically dependent on particle-packing density and porosity uniformity. Sintering experiments were conducted on compacts consisting of monodisperse, spherical TiO2 particles. Densification kinetics and microstructure evolution for two initial packing densities, 55% and 69% of theoretical, were investigated. The lower-density compacts sintered rapidly to theoretical density, yet improved particle-packing density and uniformity significantly enhanced densification.

  2. Phagocytosis of Candida albicans Enhances Malignant Behavior of Murine Tumor Cells

    NASA Astrophysics Data System (ADS)

    Ginsburg, Isaac; Fligiel, Suzanne E. G.; Kunkel, Robin G.; Riser, Bruce L.; Varani, James

    1987-12-01

    Murine tumor cells were induced to phagocytize either Candida albicans or group A streptococcal cells. The presence of microbial particles within the tumor cell cytoplasm had no effect on in vitro tumor cell growth. However, when Candida albicans-infected tumor cells were injected into syngeneic mice, they formed tumors that grew faster, invaded the surrounding normal tissue more rapidly and metastasized more rapidly than control tumor cells. Tumor cells infected with group A streptococcal particles did not grow faster or show increased malignant behavior. These data indicate that the in vivo behavior of malignant tumor cells can be modulated by microbial particles, which are often present in the microenvironment of the growing tumor.

  3. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems

    PubMed Central

    Kuo, Chien-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system. PMID:29230411

  4. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems.

    PubMed

    Su, Chen-Ying; Kuo, Chien-Wei; Fang, Hsu-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.

  5. Multiple interactions and rapidity gap survival

    NASA Astrophysics Data System (ADS)

    Khoze, V. A.; Martin, A. D.; Ryskin, M. G.

    2018-05-01

    Observations of rare processes containing large rapidity gaps at high energy colliders may be exceptionally informative. However the cross sections of these events are small in comparison with that for the inclusive processes since there is a large probability that the gaps may be filled by secondary particles arising from additional soft interactions or from gluon radiation. Here we review the calculations of the probability that the gaps survive population by particles from these effects for a wide range of different processes.

  6. Bremsstrahlung from colour charges as a source of soft particle production in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Jezabek, M.

    2004-06-01

    It is proposed that soft particle production in hadronic collisions is dominated by multiple gluon exchanges between partons from the colliding hadrons, followed by radiation of hadronic clusters from the coloured partons distributed uniformly in rapidity. This explains naturally two dominant features of the data: (a) the linear increase of rapidity spectra in the regions of limiting fragmentation and, (b) the proportionality between the increasing width of the limiting fragmentation region and the height of the central plateau.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, K L; Steele, P T; Bogan, M J

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particlesmore » that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening.« less

  8. Effect of pectin methylesterase on carrot (Daucus carota) juice cloud stability.

    PubMed

    Schultz, Alison K; Anthon, Gordon E; Dungan, Stephanie R; Barrett, Diane M

    2014-02-05

    To determine the effect of residual enzyme activity on carrot juice cloud, 0 to 1 U/g pectin methylesterase (PME) was added to pasteurized carrot juice. Cloud stability and particle diameters were measured to quantify juice cloud stability and clarification for 56 days of storage. All levels of PME addition resulted in clarification; higher amounts had a modest effect in causing more rapid clarification, due to a faster increase in particle size. The cloud initially exhibited a trimodal distribution of particle sizes. For enzyme-containing samples, particles in the smallest-sized mode initially aggregated to merge with the second peak over 5-10 days. This larger population then continued to aggregate more slowly over longer times. This observation of a more rapid destabilization process initially, followed by slower subsequent changes in the cloud, was also manifested in measurements of sedimentation extent and in turbidity tests. Optical microscopy showed that aggregation created elongated, fractal particle structures over time.

  9. Large-Scale Noniridescent Structural Color Printing Enabled by Infiltration-Driven Nonequilibrium Colloidal Assembly.

    PubMed

    Bai, Ling; Mai, Van Cuong; Lim, Yun; Hou, Shuai; Möhwald, Helmuth; Duan, Hongwei

    2018-03-01

    Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biogeochemistry: Deep ocean iron balance

    NASA Astrophysics Data System (ADS)

    Homoky, William B.

    2017-02-01

    Dissolved iron is mysteriously pervasive in deep ocean hydrothermal plumes. An analysis of gas, metals and particles from a 4,000 km plume transect suggests that dissolved iron is maintained by rapid and reversible exchanges with sinking particles.

  11. A Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification

    PubMed Central

    Huh, Dongeun; Bahng, Joong Hwan; Ling, Yibo; Wei, Hsien-Hung; Kripfgans, Oliver D.; Fowlkes, J. Brian; Grotberg, James B.; Takayama, Shuichi

    2008-01-01

    This paper describes a simple microfluidic sorting system that can perform size-profiling and continuous mass-dependent separation of particles through combined use of gravity (1g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: i) initial hydrodynamic focusing of particles in a microchannel oriented parallel to gravity, ii) subsequent sample separation where positional difference between particles with different mass generated by sedimentation is further amplified by hydrodynamic flows whose streamlines gradually widen out due to the geometry of a widening microchannel oriented perpendicular to gravity. The microfluidic sorting device was fabricated in poly(dimethylsiloxane) (PDMS), and hydrodynamic flows in microchannels were driven by gravity without using external pumps. We conducted theoretical and experimental studies on fluid dynamic characteristics of laminar flows in widening microchannels and hydrodynamic amplification of particle separation. Direct trajectory monitoring, collection, and post-analysis of separated particles were performed using polystyrene microbeads with different sizes to demonstrate rapid (< 1 min) and high-purity (> 99.9 %) separation. Finally, we demonstrated biomedical applications of our system by isolating small-sized (diameter < 6 μm) perfluorocarbon liquid droplets from polydisperse droplet emulsions, which is crucial in preparing contrast agents for safe, reliable ultrasound medical imaging, tracers for magnetic resonance imaging, or transpulmonary droplets used in ultrasound-based occlusion therapy for cancer treatment. Our method enables straightforward, rapid real-time size-monitoring and continuous separation of particles in simple stand-alone microfabricated devices without the need for bulky and complex external power sources. We believe that this system will provide a useful tool o separate colloids and particles for various analytical and preparative applications, and may hold 3 potential for separation of cells or development of diagnostic tools requiring point-of-care sample preparation or testing. PMID:17297936

  12. Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.

    PubMed

    D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech

    2014-07-15

    Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Physics of a rapid CD4 lymphocyte count with colloidal gold.

    PubMed

    Hansen, P; Barry, D; Restell, A; Sylvia, D; Magnin, O; Dombkowski, D; Preffer, F

    2012-03-01

    The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ∼30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important. Copyright © 2011 International Society for Advancement of Cytometry.

  14. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  15. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible.

    PubMed

    Fan, Meng; Wang, Minglei; Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2017-02-01

    Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotemporal response to applied deformations. In contrast to crystalline solids, during loading, amorphous solids exhibit a smooth crossover from elastic response to plastic flow. In this study, we investigate the mechanical response of binary Lennard-Jones glasses to athermal, quasistatic pure shear as a function of the cooling rate used to prepare them. We find several key results concerning the connection between strain-induced particle rearrangements and mechanical response. We show that the energy loss per strain dU_{loss}/dγ caused by particle rearrangements for more rapidly cooled glasses is larger than that for slowly cooled glasses. We also find that the cumulative energy loss U_{loss} can be used to predict the ductility of glasses even in the putative linear regime of stress versus strain. U_{loss} increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating enhanced ductility. In addition, we characterized the degree of reversibility of particle motion during a single shear cycle. We find that irreversible particle motion occurs even in the linear regime of stress versus strain. However, slowly cooled glasses, which undergo smaller rearrangements, are more reversible during a single shear cycle than rapidly cooled glasses. Thus, we show that more ductile glasses are also less reversible.

  16. Alpha channeling in a rotating plasma.

    PubMed

    Fetterman, Abraham J; Fisch, Nathaniel J

    2008-11-14

    The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the rf waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.

  17. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, P T; McJimpsey, E L; Coffee, K R

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fullymore » analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.« less

  18. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. H.; Das, J.; Sordelet, D. J.; Eckert, J.; Hurd, A. J.

    2012-09-01

    We investigated the effect of tungsten particle sizes on the thermal stability and reactivity of uniformly dispersed W particles in molten Hf-based alloy melt at elevated temperature (1673 K). The solubility of particles less than 100 nm in radius is significantly enhanced. In case of fine W particles with 20 nm diameter, their solubility increases remarkably around 700% compared to that of coarse micrometer-scale particles. The mechanisms and kinetics of this dynamic growth of particle are discussed as well as techniques developed to obtain frozen microstructure of particle-reinforced composites by rapid solidification.

  19. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles.

    PubMed

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-10

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip ('dendritic nanotip') with a single terminal nanotip ('single nanotip') for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10(4) particles ml(-1). The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  20. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-01

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip (‘dendritic nanotip’) with a single terminal nanotip (‘single nanotip’) for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 104 particles ml-1. The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  1. Identified particles in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Wosiek, Barbara; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The yields of identified particles have been measured at RHIC for Au+Au collisions at S=200 GeV using the PHOBOS spectrometer. The ratios of antiparticle to particle yields near mid-rapidity are presented. The first measurements of the invariant yields of charged pions, kaons and protons at very low transverse momenta are also shown.

  2. Triboluminescent indicator system

    DOEpatents

    Goods, Steven H.; Dentinger, Paul M.; Whinnery, Jr., Leroy L.

    2003-06-24

    There is provided a light emitting device comprising a plurality of triboluminescent particles dispersed throughout a low density, frangible body and activated by rapidly crushing the body in order to transfer mechanical energy to some portion of the particles. The light emitted by these mechanically excited particles is collected and directed into a light conduit and transmitted to a detector/indicator means.

  3. Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

    NASA Astrophysics Data System (ADS)

    Khumaeni, A.; Sugito, H.; Setia Budi, W.; Yoyo Wardaya, A.

    2018-01-01

    A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

  4. Rapid solidification of metallic particulates

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    In order to maximize the heat transfer coefficient the most important variable in rapid solidification is the powder particle size. The finer the particle size, the higher the solidification rate. Efforts to decrease the particle size diameter offer the greatest payoff in attained quench rate. The velocity of the liquid droplet in the atmosphere is the second most important variable. Unfortunately the choices of gas atmospheres are sharply limited both because of conductivity and cost. Nitrogen and argon stand out as the preferred gases, nitrogen where reactions are unimportant and argon where reaction with nitrogen may be important. In gas atomization, helium offers up to an order of magnitude increase in solidification rate over argon and nitrogen. By contrast, atomization in vacuum drops the quench rate several orders of magnitude.

  5. Modeling the Radiation Belts During a Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Fok, M.; Toth, G.

    2009-05-01

    We utilize the Radiation Belt Environment (RBE) model to simulate the radiation belt electrons during a geomagnetic storm. Particularly, we focus on the relative contribution of whistler mode wave-particle interactions and radial diffusion associated with rapid changes in the magnetospheric magnetic field. In our study, the RBE model obtains a realistic magnetic field from the BATS-R-US magnetosphere model at a regular, but adjustable, cadence. We simulate the storm with and without wave particle interactions, and with different frequencies for updating the magnetic field. The impacts of the wave-particle interactions, and the rapid variations in the magnetospheric magnetic field, can then be studied. Simulation results are also extracted along various satellite trajectories for direct comparison where appropriate.

  6. Analysis of rapid increase in the plasma density during the ramp-up phase in a radio frequency negative ion source by large-scale particle simulation

    NASA Astrophysics Data System (ADS)

    Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.

    2014-02-01

    Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.

  7. Rapid spatial equilibration of a particle in a box.

    PubMed

    Malabarba, Artur S L; Linden, Noah; Short, Anthony J

    2015-12-01

    We study the equilibration behavior of a quantum particle in a one-dimensional box, with respect to a coarse-grained position measurement (whether it lies in a certain spatial window or not). We show that equilibration in this context indeed takes place and does so very rapidly, in a time comparable to the time for the initial wave packet to reach the edges of the box. We also show that, for this situation, the equilibration behavior is relatively insensitive to the precise choice of position measurements or initial condition.

  8. Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at √{sNN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration

    2017-09-01

    We present the charged-particle pseudorapidity density in Pb-Pb collisions at √{sNN} = 5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from -3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find 21 400 ± 1 300, while for the most peripheral (80-90%) we find 230 ± 38. This corresponds to an increase of (27 ± 4)% over the results at √{sNN} = 2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations - none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

  9. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    PubMed Central

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607

  10. Rapid Analysis of the Size Distribution of Metal-Containing Aerosol

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Crawford, Kathryn J.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg. PMID:28871214

  11. Frequency chirpings in Alfven continuum

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin

    2017-10-01

    We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.

  12. Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes.

    PubMed

    Marris, Hélène; Deboudt, Karine; Augustin, Patrick; Flament, Pascal; Blond, François; Fiani, Emmanuel; Fourmentin, Marc; Delbarre, Hervé

    2012-06-15

    Aerosol sampling was performed inside the chimneys and in the close environment of a FeMn alloys manufacturing plant. The number size distributions show a higher abundance of ultrafine aerosols (10-100 nm) inside the plume than upwind of the plant, indicating the emissions of nanoparticles by the industrial process. Individual analysis of particles collected inside the plume shows a high proportion of metal bearing particles (Mn-/Fe-) consisting essentially of internally mixed aluminosilicate and metallic compounds. These particles evolve rapidly (in a few minutes) after emission by adsorption of VOC gas and sulfuric acid emitted by the plant but also by agglomeration with pre-existing particles. At the moment, municipalities require a monitoring of industrial emissions inside the chimneys from manufacturers. However those measures are insufficient to report such rapid changes in chemical composition and thus to evaluate the real impact of industrial plumes in the close environment of plants (when those particles leave the industrial site). Consequently, environmental authorities will have to consider such fast evolutions and then to adapt future regulations on air pollution sources. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Accurate quantification of magnetic particle properties by intra-pair magnetophoresis for nanobiotechnology

    NASA Astrophysics Data System (ADS)

    van Reenen, Alexander; Gao, Yang; Bos, Arjen H.; de Jong, Arthur M.; Hulsen, Martien A.; den Toonder, Jaap M. J.; Prins, Menno W. J.

    2013-07-01

    The application of magnetic particles in biomedical research and in-vitro diagnostics requires accurate characterization of their magnetic properties, with single-particle resolution and good statistics. Here, we report intra-pair magnetophoresis as a method to accurately quantify the field-dependent magnetic moments of magnetic particles and to rapidly generate histograms of the magnetic moments with good statistics. We demonstrate our method with particles of different sizes and from different sources, with a measurement precision of a few percent. We expect that intra-pair magnetophoresis will be a powerful tool for the characterization and improvement of particles for the upcoming field of particle-based nanobiotechnology.

  14. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part II: Experimental characterization

    DOE PAGES

    Wang, Jian; Pikridas, Michael; Pinterich, Tamara; ...

    2017-06-08

    A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less

  15. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part II: Experimental characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Pikridas, Michael; Pinterich, Tamara

    A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less

  16. Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead-lead collisions at √{sNN} = 2.76 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Chen, Y.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Debbe, R.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, Hs.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2012-04-01

    The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over | η | < 2 in lead-lead collisions at a nucleon-nucleon centre-of-mass energy of √{sNN} = 2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point "tracklets" and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2 < | η | < 4.9. Measurements are presented of the per-event charged particle pseudorapidity distribution, dNch / dη, and the average charged particle multiplicity in the pseudorapidity interval | η | < 0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with lower √{sNN} results. The shape of the dNch / dη distribution is found to be independent of centrality within the systematic uncertainties of the measurement.

  17. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda

    NASA Astrophysics Data System (ADS)

    Conte, Maureen H.; Ralph, Nate; Ross, Edith H.

    Since 1978, the Oceanic Flux Program (OFP) time-series sediment traps have measured particle fluxes in the deep Sargasso Sea near Bermuda. There is currently a 20+yr flux record at 3200-m depth, a 12+yr flux at 1500-m depth, and a 9+yr record at 500-m depth. Strong seasonality is observed in mass flux at all depths, with a flux maximum in February-March and a smaller maximum in December-January. There is also significant interannual variability in the flux, especially with respect to the presence/absence of the December-January flux maximum and in the duration of the high flux period in the spring. The flux records at the three depths are surprisingly coherent, with no statistically significant temporal lag between 500 and 3200-m fluxes at our biweekly sample resolution. Bulk compositional data indicate an extremely rapid decrease in the flux of organic constituents with depth between 500 and 1500-m, and a smaller decrease with depth between 1500 and 3200-m depth. In contrast, carbonate flux is uniform or increases slightly between 500 and 1500-m, possibly reflecting deep secondary calcification by foraminifera. The lithogenic flux increases by over 50% between 500 and 3200-m depth, indicating strong deep water scavenging/repackaging of suspended lithogenic material. Concurrent with the rapid changes in flux composition, there is a marked reduction in the heterogeneity of the sinking particle pool with depth, especially within the mesopelagic zone. By 3200-m depth, the bulk composition of the sinking particle pool is strikingly uniform, both seasonally and over variations in mass flux of more than an order of magnitude. These OFP results provide strong indirect evidence for the intensity of reprocessing of the particle pool by resident zooplankton within mesopelagic and bathypelagic waters. The rapid loss of organic components, the marked reduction in the heterogeneity of the bulk composition of the flux, and the increase in terrigenous fluxes with depth are most consistent with a model of rapid particle turnover and material scavenging from the suspended pool during new particle formation. We suggest that much of the deep mass flux is generated in situ by deep-dwelling zooplankton, and that mass flux, as well as scavenging of suspended materials from the deep water column, varies in proportion to changes in grazer activity. Labile, very rapidly sinking aggregates (e.g., salp fecal material) arriving in the bathypelagic zone within days of their upper ocean production may act to stimulate zooplankton grazing rates and increase large particle production and deep mass flux days to weeks in advance of the arrival of bulk of surface-produced material. This process could reconcile mean particle sinking rate estimates with the phase coherence observed between upper and deep ocean mass fluxes.

  18. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  19. High-velocity collision of particles around a rapidly rotating black hole

    NASA Astrophysics Data System (ADS)

    Harada, T.

    2014-03-01

    We have derived a general formula for the centre-of-mass (CM) energy for the near-horizon collision of two general geodesic particles around a Kerr black hole. We have found that if the angular momentum of the particle satisfies the critical condition, the CM energy can be arbitrarily high. We have then applied the formula to the collision of a particle orbiting an innermost stable circular orbit (ISCO) and another generic particle near the horizon, and found that the CM energy is arbitrarily high if we take the maximal limit of the black hole spin. In view of the astrophysical significance of the ISCO, this implies that particles can collide around a rapidly rotating black hole with a very high CM energy without any artificial fine-tuning. We have next applied the formula to the collision of general inclined geodesic particles and shown that in the direct collision scenario, the collision with an arbitrarily high CM energy can occur near the horizon of maximally rotating black holes, not only at the equator but also on a belt centred at the equator between two latitudes. This is also true in the scenario through the collision of a last stable orbit particle. This strongly suggests that if signals due to high-energy collision are to be observed, such signals will be generated primarily on this belt.

  20. Effect of silver nano particles on flexural strength of acrylic resins.

    PubMed

    Sodagar, Ahmad; Kassaee, Mohammad Zaman; Akhavan, Azam; Javadi, Negar; Arab, Sepideh; Kharazifard, Mohammad Javad

    2012-04-01

    Poly(methyl methacrylate), PMMA, is widely used for fabrication of removable orthodontic appliances. Silver nano particles (AgNps) have been added to PMMA because of their antimicrobial properties. The aim of this study is to investigate the effect of AgNps on the flexural strength of PMMA. Acrylic liquid containing 0.05% and 0.2% AgNps was prepared for two kinds of acrylic resins: Rapid Repair &Selecta Plus. Two groups without AgNps were used as control groups. For each one, flexural strength was investigated via Three Point Bending method for the 15 acrylic blocks. Two-way ANOVA, one way ANOVA and Tukey tests were used for statistical analysis. Rapid Repair without AgNps showed the highest flexural strength. Addition of 0.05% AgNps to Rapid Repair, significantly decreased its flexural strength while, continuing the addition up to 0.2% increased it nearly up to its primary level. In contrast, addition of AgNps to Selecta Plus increased its flexural strength but addition of 0.05% nano particles was more effective than 0.2%. The effect of AgNps on flexural strength of PMMA depends on several factors including the type of acrylics and the concentrations of nano particles. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  1. Alpha particle confinement in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devoto, R.S.; Ohnishi, M.; Kerns, J.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  2. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; Stone, Howard A.

    2017-10-01

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. We also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  3. Effect of rapid thermal annealing temperature on the dispersion of Si nanocrystals in SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Saxena, Nupur; Kumar, Pragati; Gupta, Vinay

    2015-05-01

    Effect of rapid thermal annealing temperature on the dispersion of silicon nanocrystals (Si-NC's) embedded in SiO2 matrix grown by atom beam sputtering (ABS) method is reported. The dispersion of Si NCs in SiO2 is an important issue to fabricate high efficiency devices based on Si-NC's. The transmission electron microscopy studies reveal that the precipitation of excess silicon is almost uniform and the particles grow in almost uniform size upto 850 °C. The size distribution of the particles broadens and becomes bimodal as the temperature is increased to 950 °C. This suggests that by controlling the annealing temperature, the dispersion of Si-NC's can be controlled. The results are supported by selected area diffraction (SAED) studies and micro photoluminescence (PL) spectroscopy. The discussion of effect of particle size distribution on PL spectrum is presented based on tight binding approximation (TBA) method using Gaussian and log-normal distribution of particles. The study suggests that the dispersion and consequently emission energy varies as a function of particle size distribution and that can be controlled by annealing parameters.

  4. Cascading and Parallelising Curvilinear Inertial Focusing Systems for High Volume, Wide Size Distribution, Separation and Concentration of Particles

    PubMed Central

    Miller, B.; Jimenez, M.; Bridle, H.

    2016-01-01

    Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244

  5. High-resolution separation of neodymium and dysprosium ions utilizing extractant-impregnated graft-type particles.

    PubMed

    Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi

    2018-01-19

    An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Directed flow of charged particles at midrapidity relative to the spectator plane in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S A; Ahn, S U; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, F; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Czopowicz, T R; Dainese, A; Dang, R; Danu, A; Das, D; Das, I; Das, S; Das, K; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Elwood, B G; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; Ferreiro, E G; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, V; Ivanov, M; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, M M; Khan, P; Khan, K H; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, J S; Kim, B; Kim, T; Kim, D J; Kim, S; Kim, M; Kim, D W; Kim, J H; Kim, M; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kompaniets, M; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Lechman, M; Lee, G R; Lee, S C; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nasar, M; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikolic, V; Nikulin, V; Nikulin, S; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S K; Oh, S; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, J; Song, M; Soos, C; Soramel, F; Spacek, M; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Sumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Ter Minasyan, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Vande Vyvre, P; Van Hoorne, J W; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, Y; Vinogradov, A; Vinogradov, L; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wagner, J; Wang, Y; Wang, M; Wang, Y; Watanabe, D; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wielanek, D; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Winn, M; Windelband, B; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yang, P; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, Y; Zhang, X; Zhang, F; Zhang, H; Zhou, Y; Zhou, F; Zhou, D; Zhu, H; Zhu, X; Zhu, J; Zhu, J; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-12-06

    The directed flow of charged particles at midrapidity is measured in Pb-Pb collisions at √(s(NN))=2.76 TeV relative to the collision symmetry plane defined by the spectator nucleons. A negative slope of the rapidity-odd directed flow component with approximately 3 times smaller magnitude than found at the highest RHIC energy is observed. This suggests a smaller longitudinal tilt of the initial system and disfavors the strong fireball rotation predicted for the LHC energies. The rapidity-even directed flow component is measured for the first time with spectators and found to be independent of pseudorapidity with a sign change at transverse momenta p(T) between 1.2 and 1.7  GeV/c. Combined with the observation of a vanishing rapidity-even p(T) shift along the spectator deflection this is strong evidence for dipolelike initial density fluctuations in the overlap zone of the nuclei. Similar trends in the rapidity-even directed flow and the estimate from two-particle correlations at midrapidity, which is larger by about a factor of 40, indicate a weak correlation between fluctuating participant and spectator symmetry planes. These observations open new possibilities for investigation of the initial conditions in heavy-ion collisions with spectator nucleons.

  7. THE FORMATION OF INORGANIC PARTICLES DURING SUSPENSION HEATING OF SIMULATED WASTES

    EPA Science Inventory

    Measurements of metal partitioning between the fine condensation aerosol and the larger particles produced during rapid heating of aqueous and organic solutions containing metal additives with widely varying volatilities were made in a laboratory-scale furnace operated over a ran...

  8. COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION

    EPA Science Inventory

    A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...

  9. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    NASA Astrophysics Data System (ADS)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-10-01

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport. Electronic supplementary information (ESI) available: Three supplementary movies and an experimental section. See DOI: 10.1039/c3nr02254d

  10. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    PubMed

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (< 30 min) and highly reliable method to detect and quantify TiO 2 particles (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  11. Inhaled corticosteroid metered-dose inhalers: how do variations in technique for solutions versus suspensions affect drug distribution?

    PubMed

    Robinson, Christie A; Tsourounis, Candy

    2013-03-01

    To assess the literature that evaluates how variations in metered-dose inhaler (MDI) technique affect lung distribution for inhaled corticosteroids (ICSs) formulated as MDI suspensions and solutions. PubMed (up to November 2012) and Cochrane Library (up to November 2012) were searched using the terms metered-dose inhalers, HFA 134a, Asthma/*drug therapy, and inhaled corticosteroids. In addition, reference citations from publications identified were reviewed. All articles in English from the data sources that assessed MDI technique comparing total lung distribution (TLD) of MDI solutions or suspensions formulated with ICSs were included in the review. Five relevant studies were identified. Five controlled studies compared how variations in MDI technique affect TLD for ICS MDI solutions with suspensions. MDI solutions resulted in greater TLD compared with larger particle MDI suspensions. Delayed or early inspiration upon device actuation of MDI solutions resulted in less TLD than coordinated actuation, but with a 3- to 4-times greater TLD than MDI suspensions inhaled using a standard technique. A sixth study evaluated inspiratory flow rates (IFR) for small, medium, and large particles. Rapid and slow IFRs resulted in similar TLD for small particles, while far fewer particles reached the airways with medium and large particles at rapid, rather than slow, IFRs. Based on the literature evaluated, standard MDI technique should be used for ICS suspensions. ICS MDI solutions can provide a higher average TLD than larger-particle ICS suspensions using standard technique, discoordinated inspiration and medication actuation timing, or rapid and slow IFRs. ICS MDI solutions allow for a more forgiving technique, which makes them uniquely suitable options for patients with asthma who have difficultly with MDI technique.

  12. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    NASA Astrophysics Data System (ADS)

    Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi

    2015-03-01

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody-antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 μg/ml and 100 μg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 102 to 105 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for rapid screening applications; however the 30 nm magnetic particles are preferable for specific detection applications. This immunomagnetic bioseparator can be integrated with either conventional culture methods or some rapid detection methods, such as biosensors and PCR, for more sensitive detection of foodborne pathogens.

  13. A particle accelerator employing transient space charge potentials

    DOEpatents

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  14. Long-Range Rapidity Correlations in Heavy-Light Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri; Wertepny, Douglas

    2013-04-01

    We study two-particle long-range rapidity correlations arising in the early stages of heavy ion collisions in the saturation/Color Glass Condensate framework, assuming for simplicity that one colliding nucleus is much larger than the other. We calculate the two-gluon production cross section while including all-order saturation effects in the heavy nucleus with the lowest-order rescattering in the lighter nucleus. We find four types of correlations in the two-gluon production cross section: (i) geometric correlations, (ii) HBT correlations, (iii) back-to-back correlations, and (iv) near-side azimuthal correlations which are long-range in rapidity. The geometric correlations (i) are due to the fact that nucleons are correlated by simply being confined within the same nucleus and may lead to long-range rapidity correlations for the produced particles without strong azimuthal angle dependence. Somewhat surprisingly, long-range rapidity correlations (iii) and (iv) have exactly the same amplitudes along with azimuthal and rapidity shapes: one centered around δφ=π with the other one centered around δφ=0 (here δφ is the azimuthal angle between the two produced gluons). This prediction is in agreement with the recent ALICE p+Pb data.

  15. Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena

    2014-03-01

    A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b + c2. The experimental results have been compared with the results obtained from the analysis of Monte Carlo simulated (MC-RAND) events. MC-RAND events show weaker clusterization among the pions in comparison to the experimental data.

  16. A manual and an automatic TERS based virus discrimination

    NASA Astrophysics Data System (ADS)

    Olschewski, Konstanze; Kämmer, Evelyn; Stöckel, Stephan; Bocklitz, Thomas; Deckert-Gaudig, Tanja; Zell, Roland; Cialla-May, Dana; Weber, Karina; Deckert, Volker; Popp, Jürgen

    2015-02-01

    Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%.Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07033j

  17. The rapid alveolar absorption of diesel soot-adsorbed benzo[a]pyrene: bioavailability, metabolism and dosimetry of an inhaled particle-borne carcinogen.

    PubMed

    Gerde, P; Muggenburg, B A; Lundborg, M; Dahl, A R

    2001-05-01

    Exposure to diesel exhaust may contribute to lung cancer in humans. It remains unclear whether the carbonaceous core of the soot particle or its coat of adsorbed/condensed organics contributes most to cancer risk. Equally unclear are the extent and rate at which organic procarcinogens desorb from soot particles in the lungs following inhalation exposure and the extent of their metabolic activation in the lungs. To explore the basic relationship between a model polycyclic aromatic hydrocarbon (PAH) and a typical carrier particle, we investigated the rate and extent of release and metabolic fate of benzo[a]pyrene (BaP) adsorbed on the carbonaceous core of diesel soot. The native organic content of the soot had been denuded by toluene extraction. Exogenous BaP was adsorbed onto the denuded soot as a surface coating corresponding to 25% of a monomolecular layer. Dogs were exposed by inhalation to an aerosol bolus of the soot-adsorbed BAP: Following deposition in the alveolar region a fraction of BaP was rapidly desorbed from the soot and quickly absorbed into the circulation. Release rates then decreased drastically. When coatings reached approximately 16% of a monolayer the remaining BaP was not bioavailable and was retained on the particles after 5.6 months in the lung. However, the bioavailability of particles transported to the lymph nodes was markedly higher; after 5.6 months the surface coating of BaP was reduced to 10%. BaP that remained adsorbed on the soot surface after this period was approximately 30% parent compound. In contrast, the rapidly released pulse of BaP, which was quickly absorbed through the alveolar epithelium after inhalation, appeared mostly unmetabolized in the circulation, along with low concentrations of phase I and phase II BaP metabolites. However, within approximately 1 h this rapidly absorbed fraction of BaP was systemically metabolized into mostly conjugated phase II metabolites. The results indicate that absorption through the alveolar epithelium is an important route of entry to the circulation of unmetabolized PAHS:

  18. Volatile nanoparticle formation and growth within a diluting diesel car exhaust.

    PubMed

    Uhrner, Ulrich; Zallinger, Michael; von Löwis, Sibylle; Vehkamäki, Hanna; Wehner, Birgit; Stratmann, Frank; Wiedensohler, Alfred

    2011-04-01

    A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.

  19. Pressure-driven laminar flow switching for rapid exchange of solution environment around surface adhered biological particles

    PubMed Central

    Allen, Peter B.; Milne, Graham; Doepker, Byron R.; Chiu, Daniel T.

    2010-01-01

    This paper describes a technique for rapidly exchanging the solution environment near a surface by displacing laminar flow fluid streams using sudden changes in applied pressure. The method employs off-chip solenoid valves to induce pressure changes, which is important in keeping the microfluidic design simple and the operation of the system robust. The performance of this technique is characterized using simulation and validated with experiments. This technique adds to the microfluidic tool box that is currently available for manipulating the solution environment around biological particles and molecules. PMID:20221560

  20. Elliptic Flow of Identified Hadrons in Au+Au Collisions at (sNN)=200 GeV

    NASA Astrophysics Data System (ADS)

    Adler, S. S.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Alexander, J.; Amirikas, R.; Aphecetche, L.; Aronson, S. H.; Averbeck, R.; Awes, T. C.; Azmoun, R.; Babintsev, V.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Bazilevsky, A.; Belikov, S.; Berdnikov, Y.; Bhagavatula, S.; Boissevain, J. G.; Borel, H.; Borenstein, S.; Brooks, M. L.; Brown, D. S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Camard, X.; Chai, J.-S.; Chand, P.; Chang, W. C.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J.; Choudhury, R. K.; Chujo, T.; Cianciolo, V.; Cobigo, Y.; Cole, B. A.; Constantin, P.; D'Enterria, D. G.; David, G.; Delagrange, H.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Drapier, O.; Drees, A.; Du Rietz, R.; Durum, A.; Dutta, D.; Efremenko, Y. V.; El Chenawi, K.; Enokizono, A.; En'yo, H.; Esumi, S.; Ewell, L.; Fields, D. E.; Fleuret, F.; Fokin, S. L.; Fox, B. D.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fung, S.-Y.; Garpman, S.; Ghosh, T. K.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Guryn, W.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hamagaki, H.; Hansen, A. G.; Hartouni, E. P.; Harvey, M.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Heuser, J. M.; Hibino, M.; Hill, J. C.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Ichihara, T.; Ikonnikov, V. V.; Imai, K.; Isenhower, L. D.; Ishihara, M.; Issah, M.; Isupov, A.; Jacak, B. V.; Jang, W. Y.; Jeong, Y.; Jia, J.; Jinnouchi, O.; Johnson, B. M.; Johnson, S. C.; Joo, K. S.; Jouan, D.; Kametani, S.; Kamihara, N.; Kang, J. H.; Kapoor, S. S.; Katou, K.; Kelly, S.; Khachaturov, B.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, D. W.; Kim, E.; Kim, G.-B.; Kim, H. J.; Kistenev, E.; Kiyomichi, A.; Kiyoyama, K.; Klein-Boesing, C.; Kobayashi, H.; Kochenda, L.; Kochetkov, V.; Koehler, D.; Kohama, T.; Kopytine, M.; Kotchetkov, D.; Kozlov, A.; Kroon, P. J.; Kuberg, C. H.; Kurita, K.; Kuroki, Y.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Ladygin, V.; Lajoie, J. G.; Lebedev, A.; Leckey, S.; Lee, D. M.; Lee, S.; Leitch, M. J.; Li, X. H.; Lim, H.; Litvinenko, A.; Liu, M. X.; Liu, Y.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Manko, V. I.; Mao, Y.; Martinez, G.; Marx, M. D.; Masui, H.; Matathias, F.; Matsumoto, T.; McGaughey, P. L.; Melnikov, E.; Messer, F.; Miake, Y.; Milan, J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mischke, R. E.; Mishra, G. C.; Mitchell, J. T.; Mohanty, A. K.; Morrison, D. P.; Moss, J. M.; Mühlbacher, F.; Mukhopadhyay, D.; Muniruzzaman, M.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Nakamura, T.; Nandi, B. K.; Nara, M.; Newby, J.; Nilsson, P.; Nyanin, A. S.; Nystrand, J.; O'Brien, E.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Okada, K.; Ono, M.; Onuchin, V.; Oskarsson, A.; Otterlund, I.; Oyama, K.; Ozawa, K.; Pal, D.; Palounek, A. P.; Pantuev, V. S.; Papavassiliou, V.; Park, J.; Parmar, A.; Pate, S. F.; Peitzmann, T.; Peng, J.-C.; Peresedov, V.; Pinkenburg, C.; Pisani, R. P.; Plasil, F.; Purschke, M. L.; Purwar, A.; Rak, J.; Ravinovich, I.; Read, K. F.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosnet, P.; Ryu, S. S.; Sadler, M. E.; Saito, N.; Sakaguchi, T.; Sakai, M.; Sakai, S.; Samsonov, V.; Sanfratello, L.; Santo, R.; Sato, H. D.; Sato, S.; Sawada, S.; Schutz, Y.; Semenov, V.; Seto, R.; Shaw, M. R.; Shea, T. K.; Shibata, T.-A.; Shigaki, K.; Shiina, T.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, C. P.; Singh, V.; Sivertz, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sullivan, J. P.; Takagui, E. M.; Taketani, A.; Tamai, M.; Tanaka, K. H.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarján, P.; Tepe, J. D.; Thomas, T. L.; Tojo, J.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuruoka, H.; Tuli, S. K.; Tydesjö, H.; Tyurin, N.; van Hecke, H. W.; Velkovska, J.; Velkovsky, M.; Villatte, L.; Vinogradov, A. A.; Volkov, M. A.; Vznuzdaev, E.; Wang, X. R.; Watanabe, Y.; White, S. N.; Wohn, F. K.; Woody, C. L.; Xie, W.; Yang, Y.; Yanovich, A.; Yokkaichi, S.; Young, G. R.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhou, S.; Zolin, L.

    2003-10-01

    The anisotropy parameter (v2), the second harmonic of the azimuthal particle distribution, has been measured with the PHENIX detector in Au+Au collisions at (sNN)=200 GeV for identified and inclusive charged particle production at central rapidities (|η|<0.35) with respect to the reaction plane defined at high rapidities (|η|=3 4 ). We observe that the v2 of mesons falls below that of (anti)baryons for pT>2 GeV/c, in marked contrast to the predictions of a hydrodynamical model. A quark-coalescence model is also investigated.

  1. Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events

    NASA Astrophysics Data System (ADS)

    Manigrasso, M.; Stabile, L.; Avino, P.; Buonanno, G.

    2013-03-01

    Aerosol generation events due to combustion processes are characterized by high particle emissions in the nucleation mode range. Such particles are characterized by very short atmospheric lifetimes, leading to rapid decay in time and space from the emission point. Therefore, the deposited fraction of inhaled particles (dose) also changes. In fact, close to the emission source, high short-term peak exposures occur. The related exposure estimates should therefore rely on measurements of aerosol number-size distributions able to track rapid aerosol dynamics. In order to study the influence of the time resolution on such estimates, simultaneous measurements were carried out via Scanning Mobility Particle Sizer (SMPS) and Fast Mobility Particle Sizer (FMPS) spectrometers during particle generation events in both indoor (cooking activities) and outdoor (airstrip and urban street canyons) microenvironments. Aerosol size distributions in the range 16-520 nm were measured by SMPS and FMPS at frequencies of 0.007 s-1 and 1 s-1, respectively. Based on the two datasets, respiratory dosimetry estimates were made on the basis of the deposition model of the International Commission on Radiological Protection. During cooking activities, SMPS measurements give an approximate representation of aerosol temporal evolution. Consequently, the related instant doses can be approximated to a fair degree. In the two outdoor microenvironments considered, aerosol size distributions change rapidly: the FMPS is able to follow such evolution, whereas the SMPS is not. The high short-term peak concentrations, and the consequent respiratory doses, evidenced by FMPS data are hardly described by SMPS, which is unable to track the fast aerosol changes. The health relevance of such short peak exposures has not been thoroughly investigated in scientific literature, therefore, in the present paper highly time-resolved and size-resolved dosimetry estimates were provided in order to deepen this aspect.

  2. MECHANISMS OF INORGANIC PARTICLE FORMATION DURING SUSPENSION HEATING OF SIMULATED AQEOUS WASTES

    EPA Science Inventory

    The paper gives results of measurements of metal partitioning between the fine condensation aerosol and the larger particles produced during rapid heating of polydisperse droplet streams of aqueous solutions containing nitrates of Cd, Pb, and Ni in a laboratory scale furnace. rim...

  3. PROFILE OF TOXIC RESPONSE TO SEDIMENTS USING WHOLE-ANIMAL AND IN VITRO SUBMITOCHONDRIAL PARTICLE (SMP) ASSAYS

    EPA Science Inventory

    A rapid bioassy for monitoring acute toxicity of wastewater, ground water, and soil and sediment extracts using submitochondrial particles (SMP) has been developed. The assay utilizes the mitochondrial electron transfer enzyme complex present in all eukaryotic cells. Prior develo...

  4. Sonocrystallization-application of radiation forces from acoustic standing waves for configurable assembly

    NASA Astrophysics Data System (ADS)

    Shields, Charles

    Acoustic radiation forces offer a promising approach to rapidly arrange particles across a broad range of scales, yet it remains largely unexplored compared to classical methods like centrifugation, electrophoresis, and magnetophoresis. Acoustic forces offer numerous advantages, including scalability, programmability, and the ability to manipulate particles of variable composition (i.e., without narrowly defined electromagnetic or other properties). While some groups have shown the ability to concentrate particles with ultrasonic radiation, the capabilities and limitations for precise particle assembly and morphological control remain poorly understood. Here, I will discuss our recent efforts to explore the flexibility and limitations of acoustophoresis to rapidly arrange microparticles into organized and programmable structures. In order to execute these studies, we employ a simple ``sonocrystallization chamber'' that creates multidimensional bulk acoustic standing waves to propel particles toward the pressure nodes or antinodes, depending on their contrast factor. We can thus create thousands of size-limited assemblies within minutes. We pair these experiments with simulations and theory to model the migration kinetics and assembly patterns of different particles types. I will further discuss how we have extended these results to understand the lower particle size limit for assembly in systems such as gold nanoparticles with diameters <200 nm. Finally, I will show how we incorporated a simple light-based crosslinking approach for stabilizing the assembly in the small particle limit (i.e., beyond the acoustic focusing limit), which might enable use in a variety of plasmonic and photonic applications.

  5. Filtration device for rapid separation of biological particles from complex matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sangil; Naraghi-Arani, Pejman; Liou, Megan

    2018-01-09

    Methods and systems for filtering of biological particles are disclosed. Filtering membranes separate adjacent chambers. Through osmotic or electrokinetic processes, flow of particles is carried out through the filtering membranes. Cells, viruses and cell waste can be filtered depending on the size of the pores of the membrane. A polymer brush can be applied to a surface of the membrane to enhance filtering and prevent fouling.

  6. Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.

  7. A combined Settling Tube-Photometer for rapid measurement of effective sediment particle size

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas

    2017-04-01

    Sediment and its movement in water is commonly described based on the size distribution of the mineral particles forming the sediment. While this approach works for coarse sand, pebbles and gravel, smaller particles often form aggregates, creating material of larger diameters than the mineral grain size distribution indicates, but lower densities than often assumed 2.65 g cm-3 of quartz. The measurement of the actual size and density of such aggregated sediment is difficult. For the assessment of sediment movement an effective particle size for the use in mathematical can be derived based on the settling velocity of sediment. Settling velocity of commonly measured in settling tubes which fractionate the sample in settling velocity classes by sampling material at the base in selected time intervals. This process takes up to several hours, requires a laboratory setting and carries the risk of either destruction of aggregates during transport or coagulation while sitting in rather still water. Measuring the velocity of settling particles in situ, or at least a rapidly after collection, could avoids these problems. In this study, a settling tube equipped with four photometers used to measure the darkening of a settling particle cloud is presented and the potential to improve the measurement of settling velocities are discussed.

  8. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles

    PubMed Central

    Mert, Olcay; Lai, Samuel K.; Ensign, Laura; Yang, Ming; Wang, Ying-Ying; Wood, Joseph; Hanes, Justin

    2011-01-01

    Mucosal surfaces are protected by a highly viscoelastic and adhesive mucus layer that traps most foreign particles, including conventional drug and gene carriers. Trapped particles are eliminated on the order of seconds to hours by mucus clearance mechanisms, precluding sustained and targeted drug and nucleic acid delivery to mucosal tissues. We have previously shown that polymeric coatings that minimize adhesive interactions with mucus constituents lead to particles that rapidly penetrate human mucus secretions. Nevertheless, a particular challenge in formulating drug-loaded mucus penetrating particles (MPP) is that many commonly used surfactants are either mucoadhesive, or do not facilitate efficient drug encapsulation. We tested a novel surfactant molecule for particle formulation composed of Vitamin E conjugated to 5 kDa polyethylene glycol (VP5k). We show that VP5k-coated poly(lactide-co-glycolide) (PLGA) nanoparticles rapidly penetrate human cervicovaginal mucus, whereas PLGA nanoparticles coated with polyvinyl alcohol or Vitamin E conjugated to 1 kDa PEG were trapped. Importantly, VP5k facilitated high loading of paclitaxel, a frontline chemo drug, into PLGA MPP, with controlled release for at least 4 days and negligible burst release. Our results offer a promising new method for engineering biodegradable, drug-loaded MPP for sustained and targeted delivery of therapeutics at mucosal surfaces. PMID:21911015

  9. Two-particle correlation function and dihadron correlation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vechernin, V. V., E-mail: v.vechernin@spbu.ru; Ivanov, K. O.; Neverov, D. I.

    It is shown that, in the case of asymmetric nuclear interactions, the application of the traditional dihadron correlation approach to determining a two-particle correlation function C may lead to a form distorted in relation to the canonical pair correlation function {sub C}{sup 2}. This result was obtained both by means of exact analytic calculations of correlation functions within a simple string model for proton–nucleus and deuteron–nucleus collisions and by means of Monte Carlo simulations based on employing the HIJING event generator. It is also shown that the method based on studying multiplicity correlations in two narrow observation windows separated inmore » rapidity makes it possible to determine correctly the canonical pair correlation function C{sub 2} for all cases, including the case where the rapidity distribution of product particles is not uniform.« less

  10. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    NASA Astrophysics Data System (ADS)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  11. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    PubMed

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  12. Preparation and Characterization of Micronized Artemisinin via a Rapid Expansion of Supercritical Solutions (RESS) Method

    PubMed Central

    Yu, Huimin; Zhao, Xiuhua; Zu, Yuangang; Zhang, Xinjuan; Zu, Baishi; Zhang, Xiaonan

    2012-01-01

    The particle sizes of pharmaceutical substances are important for their bioavailability. Bioavailability can be improved by reducing the particle size of the drug. In this study, artemisinin was micronized by the rapid expansion of supercritical solutions (RESS). The particle size of the unprocessed white needle-like artemisinin particles was 30 to 1200 μm. The optimum micronization conditions are determined as follows: extraction temperature of 62 °C, extraction pressure of 25 MPa, precipitation temperature 45 °C and nozzle diameter of 1000 μm. Under the optimum conditions, micronized artemisinin with a (mean particle size) MPS of 550 nm is obtained. By analysis of variance (ANOVA), extraction temperature and pressure have significant effects on the MPS of the micronized artemisinin. The particle size of micronized artemisinin decreased with increasing extraction temperature and pressure. Moreover, the SEM, LC-MS, FTIR, DSC and XRD allowed the comparison between the crystalline initial state and the micronization particles obtained after the RESS process. The results showed that RESS process has not induced degradation of artemisinin and that processed artemisinin particles have lower crystallinity and melting point. The bulk density of artemisinin was determined before and after RESS process and the obtained results showed that it passes from an initial density of 0.554 to 0.128 g·cm−3 after the processing. The decrease in bulk density of the micronized powder can increase the liquidity of drug particles when they are applied for medicinal preparations. These results suggest micronized powder of artemisinin can be of great potential in drug delivery systems. PMID:22606030

  13. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Dahoumane, Si Amar; Djediat, Chakib; Yéprémian, Claude; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2012-06-01

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au3+ incorporation, intracellular reduction, and Au0 nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos- aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  14. Assessment of Airborne Particles. Fundamentals, Applications, and Implications to Inhalation Toxicity.

    ERIC Educational Resources Information Center

    Mercer, Thomas T., Ed.; And Others

    Concern over chemical and radioactive particulate matter in industry and over rapidly increasing air pollution has stimulated research both on the properties of airborne particles and methods for assessing them and on their biological effects following inhalation. The Third Rochester International Conference on Environmental Toxicity was,…

  15. Rapid Solidification Processing of Composites

    DTIC Science & Technology

    1989-10-01

    with unwetted particles. When the particles are wetted, one expects the propagating slip bands to initiate cracking along themselves and across the...Ast, Cornell University, Unpublished Data, 1988. 31. J.F. Williford and J.P. Pilger , U.S. Patent 3,776,297 (1973). 32. G. Nussbaum and D.G. Ast, J

  16. 2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking

    ScienceCinema

    Farquar, George

    2018-01-16

    A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.

  17. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less

  18. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    DOE PAGES

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; ...

    2017-11-16

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less

  19. 2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farquar, George

    A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilationmore » and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.« less

  20. The Momentum Kick Model Description of the Near-Side Ridge and Jet Quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Cheuk-Yin

    2008-12-01

    In the momentum kick model, a near-side jet parton occurs near the surface, kicks medium partons, loses energy, and fragments into the trigger particle and fragmentation products. The kicked medium partons subsequently materialize as the observed ridge particles which cary direct information on the magnitude of the momentum kick and the initial parton momentum distribution at the moment of jet-parton collision. The initial parton momentum distribution, extracted from the STAR ridge data for central Au-Au collisions at \\sqrt{s_NN} = 200 GeV, has a thermal-like transverse momentum distribution, but a non-Gaussian, relatively flat rapidity distribution at mid-rapidity with sharp kinematic boundariesmore » at large rapidities. The degree of jet quenching and the centrality dependence of the ridge yield can also be described by the momentum kick model.« less

  1. Size-resolved measurements of mixing state and cloud-nucleating ability of aerosols in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Li, Shizheng; Zheng, Jun; Khalizov, Alexei; Wang, Xing; Wang, Zhen; Zhou, Yaoyao

    2017-09-01

    An integrated aerosol analytical system was deployed in Nanjing, a megacity in the Yangtze River Delta, to measure size-resolved aerosol mixing states, effective densities, cloud condensation nucleus (CCN) activities, and chemical composition in August 2013. It was found that aerosols were predominantly internally mixed. The average effective densities were 1.38 ± 0.09, 1.48 ± 0.08, and 1.53 ± 0.07 g cm-3 for 50, 80, and 120 nm particles, respectively. Although black carbon (BC) represented only 0.3%, 1.6%, and 3.3% of the particle mass, on average, it was present in 7%, 38%, and 47% of the total particle number concentration at 50, 80, and 120 nm, respectively, indicating that BC particles may contribute significantly to the total atmospheric aerosol population. Externally mixed BC was only occasionally observed with an effective density of 0.67-0.97 g cm-3. Aerosols sampled generally exhibited a relatively high CCN activity and hygroscopicity (κ = 0.35 ± 0.13). Both newly formed particles and freshly emitted BC particles were observed to age rapidly from photochemical processes, with a significant enhancement in the particle CCN activity and an increase in the effective density. Aerosols influenced by four different air masses presented similar CCN activation, indicating that CCN activation would be primarily dependent on the particle size rather than the particle origin (and hence original composition). Our results suggest that under highly active photochemical conditions as encountered in this study, particles from both local sources and regional transport can be rapidly converted into efficient CCN by photochemical aging, thereby making important contributions to the atmospheric CCN budget and exerting profound implications on aerosol indirect climate forcing.

  2. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  3. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  4. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  5. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  6. Magneto-capillary dynamics of amphiphilic Janus particles at curved liquid interfaces.

    PubMed

    Fei, Wenjie; Driscoll, Michelle M; Chaikin, Paul M; Bishop, Kyle J M

    2018-05-11

    A homogeneous magnetic field can exert no net force on a colloidal particle. However, by coupling the particle's orientation to its position on a curved interface, even static homogeneous fields can be used to drive rapid particle motions. Here, we demonstrate this effect using magnetic Janus particles with amphiphilic surface chemistry adsorbed at the spherical interface of a water drop in decane. Application of a static homogeneous field drives particle motion to the drop equator where the particle's magnetic moment can align parallel to the field. As explained quantitatively by a simple model, the effective magnetic force on the particle scales linearly with the curvature of the interface. For particles adsorbed on small droplets such as those found in emulsions, these magneto-capillary forces can far exceed those due to magnetic field gradients in both magnitude and range. This mechanism may be useful in creating highly responsive emulsions and foams stabilized by magnetic particles.

  7. Cylindrical Vector Beams for Rapid Polarization-Dependent Measurements in Atomic Systems

    DTIC Science & Technology

    2011-12-05

    www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-25035. 16. S. Tripathi and K. C. Toussaint, Jr., “Rapid Mueller matrix polarimetry based on parallelized...optical trapping [11], atom guiding [12], laser machining [13], charged particle acceleration [14,15], and polarimetry [16]. Yet despite numerous

  8. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  9. Proton, Deuteron and Helion Spectra from Central Au+Au collisions at the AG

    NASA Astrophysics Data System (ADS)

    Baumgart, Stephen

    2002-10-01

    The AGS E895 experiment ran Au+Au collisions at bombarding energies of 2, 4, 6 and 8 AGeV. For central collisions, particle spectra have been measured for pions, kaons, protons, deuterons, and helions. From these spectra, the dN/dy distributions have been determined across a rapidity range from approximately -1.5 to 1.5 at maximum beam energy. Integration of the rapidity densities gives the total yields of each particle species. The final charge of the system can be calculated from the total yields to show that all of the initial charge is accounted for. The conclusions from the analyses of the condensate particle spectra will be presented. Fits to the spectra determine the freeze-out temperatures, radial flow velocities, and chemical potentials. The rapidity density distributions are used to estimate the longitudinal flow. The proton phase space density can be estimated by combining the proton spectra with the gaussian freeze-out radii intrepreted from a coalescence model employing the yields of protons, deuterons, tritons, and helions. Comparisons of the above results will be made to the experimental evidence from SIS, the AGS, the SPS, and RHIC.

  10. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.

    PubMed

    Perrut, M; Jung, J; Leboeuf, F

    2005-01-06

    In this first of two articles, we discuss some issues surrounding the dissolution rate enhancement of poorly-soluble active ingredients micronized into nano-particles using several supercritical fluid particle design processes including rapid expansion of supercritical solutions (RESS), supercritical anti-solvent (SAS) and particles from gas-saturated solutions/suspensions (PGSS). Experimental results confirm that dissolution rates do not only depend on the surface area and particle size of the processed powder, but are greatly affected by other physico-chemical characteristics such as crystal morphology and wettability that may reduce the benefit of micronization.

  11. Use of superparamagnetic beads for the isolation of a peptide with specificity to cymbidium mosaic virus.

    PubMed

    Ooi, Diana Jia Miin; Dzulkurnain, Adriya; Othman, Rofina Yasmin; Lim, Saw Hoon; Harikrishna, Jennifer Ann

    2006-09-01

    A modified method for the rapid isolation of specific ligands to whole virus particles is described. Biopanning against cymbidium mosaic virus was carried out with a commercial 12-mer random peptide display library. A solution phase panning method was devised using streptavidin-coated superparamagnetic beads. The solution based panning method was more efficient than conventional immobilized target panning when using whole viral particles of cymbidium mosaic virus as a target. Enzyme-linked immunosorbent assay of cymbidium mosaic virus-binding peptides isolated from the library identified seven peptides with affinity for cymbidium mosaic virus and one peptide which was specific to cymbidium mosaic virus and had no significant binding to odontoglossum ringspot virus. This method should have broad application for the screening of whole viral particles towards the rapid development of diagnostic reagents without the requirement for cloning and expression of single antigens.

  12. Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs.

    PubMed

    Furukawa, Yoko; Reed, Allen H; Zhang, Guoping

    2014-01-03

    Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi River, and Atchafalaya River, to a lesser degree) may be prone to rapid flocculation and settling in the immediate vicinity of the river mouths when mixed with biopolymer-rich coastal waters. It is also expected that humic acid-rich riverine particles (e.g., Pearl River) may resist immediate flocculation and be transported further away from the river mouth.

  13. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.

    PubMed

    Fiore, Andrew M; Swan, James W

    2018-01-28

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle equations of motion leads to a stochastic differential algebraic equation (SDAE) of index 1, which is integrated forward in time using a mid-point integration scheme that implicitly produces stochastic displacements consistent with the fluctuation-dissipation theorem for the constrained system. Calculations for hard sphere dispersions are illustrated and used to explore the performance of the algorithm. An open source, high-performance implementation on graphics processing units capable of dynamic simulations of millions of particles and integrated with the software package HOOMD-blue is used for benchmarking and made freely available in the supplementary material.

  14. Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs

    PubMed Central

    2014-01-01

    Background Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). Results Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. Conclusions Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi River, and Atchafalaya River, to a lesser degree) may be prone to rapid flocculation and settling in the immediate vicinity of the river mouths when mixed with biopolymer-rich coastal waters. It is also expected that humic acid-rich riverine particles (e.g., Pearl River) may resist immediate flocculation and be transported further away from the river mouth. PMID:24386944

  15. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  16. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE PAGES

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    2018-03-30

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  17. Design and validation of an advanced entrained flow reactor system for studies of rapid solid biomass fuel particle conversion and ash formation reactions

    NASA Astrophysics Data System (ADS)

    Wagner, David R.; Holmgren, Per; Skoglund, Nils; Broström, Markus

    2018-06-01

    The design and validation of a newly commissioned entrained flow reactor is described in the present paper. The reactor was designed for advanced studies of fuel conversion and ash formation in powder flames, and the capabilities of the reactor were experimentally validated using two different solid biomass fuels. The drop tube geometry was equipped with a flat flame burner to heat and support the powder flame, optical access ports, a particle image velocimetry (PIV) system for in situ conversion monitoring, and probes for extraction of gases and particulate matter. A detailed description of the system is provided based on simulations and measurements, establishing the detailed temperature distribution and gas flow profiles. Mass balance closures of approximately 98% were achieved by combining gas analysis and particle extraction. Biomass fuel particles were successfully tracked using shadow imaging PIV, and the resulting data were used to determine the size, shape, velocity, and residence time of converting particles. Successful extractive sampling of coarse and fine particles during combustion while retaining their morphology was demonstrated, and it opens up for detailed time resolved studies of rapid ash transformation reactions; in the validation experiments, clear and systematic fractionation trends for K, Cl, S, and Si were observed for the two fuels tested. The combination of in situ access, accurate residence time estimations, and precise particle sampling for subsequent chemical analysis allows for a wide range of future studies, with implications and possibilities discussed in the paper.

  18. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  19. Airborne particulate discriminator

    DOEpatents

    Creek, Kathryn Louise [San Diego, CA; Castro, Alonso [Santa Fe, NM; Gray, Perry Clayton [Los Alamos, NM

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  20. Smoothed Particle Hydrodynamic Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-10-05

    This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.

  1. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    PubMed

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  2. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    PubMed

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  3. A humidity-controlled fast integrated mobility spectrometer (HFIMS) for rapid measurements of particle hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Pinterich, Tamara; Spielman, Steven R.; Wang, Yang; Hering, Susanne V.; Wang, Jian

    2017-12-01

    We present a humidity-controlled fast integrated mobility spectrometer (HFIMS) for rapid particle hygroscopicity measurements. The HFIMS consists of a differential mobility analyzer (DMA), a relative humidity (RH) control unit and a water-based FIMS (WFIMS) coupled in series. The WFIMS (Pinterich et al., 2017) combines the fast integrated mobility spectrometer (Kulkarni and Wang, 2006a, b) with laminar flow water condensation methodologies (Hering and Stolzenburg, 2005; Spielman et al., 2017). Inside the WFIMS, particles of different electrical mobilities are spatially separated in an electric field, condensationally enlarged and imaged to provide 1 Hz measurements of size distribution spanning a factor of ˜ 3 in particle diameter, which is sufficient to cover the entire range of growth factor (GF) for atmospheric aerosol particles at 90 % RH. By replacing the second DMA of a traditional hygroscopicity tandem DMA (HTDMA) system with the WFIMS, the HFIMS greatly increases the speed of particle growth factor measurement. The performance of the HFIMS was evaluated using NaCl particles with well-known hygroscopic growth behavior and further through measurements of ambient aerosols. Results show that the HFIMS can reproduce, within 2 %, the literature values for hygroscopic growth of NaCl particles. NaCl deliquescence was observed between 76 and 77 % RH in agreement with the theoretical value of 76.5 % (Ming and Russell, 2001), and efflorescence relative humidity (43 %) was found to lie within the RH range of 41 to 56 % reported in the literature. Ambient data indicate that the HFIMS can measure the hygroscopic growth of five standard dry particle sizes ranging from 35 to 165 nm within less than 3 min, which makes it about 1 order of magnitude faster than traditional HTDMA systems.

  4. A Humidity-controlled Fast Integrated Mobility Spectrometer (HFIMS) for rapid measurements of particle hygroscopic growth

    DOE PAGES

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...

    2017-06-26

    We present a Humidity-controlled Fast Integrated Mobility Spectrometer (HFIMS) for rapid particle hygroscopicity measurements. The HFIMS consists of a differential mobility analyzer (DMA), a relative humidity (RH) control unit and a water-based FIMS (WFIMS) coupled in series. The WFIMS (Pinterich et al., 2017) combines the Fast Integrated Mobility Spectrometer (Kulkarni and Wang, 2006a, b) with laminar flow water condensation methodologies (Hering and Stolzenburg, 2005; Spielman et al., 2017). Inside the WFIMS, particles of different electrical mobilities are spatially separated in an electric field, condensationally enlarged and imaged to provide 1-Hz measurements of size distribution spanning a factor of ~ 3more » in particle diameter, sufficient to cover the entire range of growth factor for atmospheric aerosol particles at 90 % RH. By replacing the second DMA of a traditional hygroscopicity tandem DMA (HTDMA) system with the WFIMS, the HFIMS greatly increases the speed of particle growth factor measurement. The performance of the HFIMS was evaluated using NaCl particles with well-known hygroscopic growth behavior, and further through measurements of ambient aerosols. Results show that HFIMS can reproduce, within 2 % the literature values for hygroscopic growth of NaCl particles. NaCl deliquescence was observed between 76 % and 77 % RH in agreement with the theoretical value of 76.5 % (Ming and Russell, 2001), and efflorescence relative humidity (43 %) was found to lie within the RH range of 41 % to 56 % reported in the literature. Ambient data indicate that HFIMS can measure the hygroscopic growth of five standard dry particle sizes ranging from 35 to 165 nm within less than three minutes, which makes it about an order of magnitude faster than traditional HTDMA systems.« less

  5. A Humidity-controlled Fast Integrated Mobility Spectrometer (HFIMS) for rapid measurements of particle hygroscopic growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne

    We present a Humidity-controlled Fast Integrated Mobility Spectrometer (HFIMS) for rapid particle hygroscopicity measurements. The HFIMS consists of a differential mobility analyzer (DMA), a relative humidity (RH) control unit and a water-based FIMS (WFIMS) coupled in series. The WFIMS (Pinterich et al., 2017) combines the Fast Integrated Mobility Spectrometer (Kulkarni and Wang, 2006a, b) with laminar flow water condensation methodologies (Hering and Stolzenburg, 2005; Spielman et al., 2017). Inside the WFIMS, particles of different electrical mobilities are spatially separated in an electric field, condensationally enlarged and imaged to provide 1-Hz measurements of size distribution spanning a factor of ~ 3more » in particle diameter, sufficient to cover the entire range of growth factor for atmospheric aerosol particles at 90 % RH. By replacing the second DMA of a traditional hygroscopicity tandem DMA (HTDMA) system with the WFIMS, the HFIMS greatly increases the speed of particle growth factor measurement. The performance of the HFIMS was evaluated using NaCl particles with well-known hygroscopic growth behavior, and further through measurements of ambient aerosols. Results show that HFIMS can reproduce, within 2 % the literature values for hygroscopic growth of NaCl particles. NaCl deliquescence was observed between 76 % and 77 % RH in agreement with the theoretical value of 76.5 % (Ming and Russell, 2001), and efflorescence relative humidity (43 %) was found to lie within the RH range of 41 % to 56 % reported in the literature. Ambient data indicate that HFIMS can measure the hygroscopic growth of five standard dry particle sizes ranging from 35 to 165 nm within less than three minutes, which makes it about an order of magnitude faster than traditional HTDMA systems.« less

  6. Centrality dependence of particle production in p - Pb collisions at s NN = 5.02 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2015-06-08

    Here, we report measurements of the primary charged-particle pseudorapidity density and transverse momentum distributions in p–Pb collisions at √s NN = 5.02TeV and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined by using different event-activity estimators, i.e., charged-particle multiplicities measured in three different pseudorapidity regions as well as the energy measured at beam rapidity (zero degree). The procedures to determine the centrality, quantified by the number of participants (N part) or the number of nucleon-nucleon binary collisions (N coll) are described. We show that, in contrast to Pb-Pb collisions, in p–Pbmore » collisions large multiplicity fluctuations together with the small range of participants available generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy-centrality classes, the N part dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapidity of the number of participating nucleons is observed. Furthermore, at high-p T the p–Pb spectra are found to be consistent with the pp spectra scaled by N coll for all centrality classes. Our results represent valuable input for the study of the event-activity dependence of hard probes in p–Pb collisions and, hence, help to establish baselines for the interpretation of the Pb-Pb data.« less

  7. Gridless particle technique for the Vlasov-Poisson system in problems with high degree of symmetry

    NASA Astrophysics Data System (ADS)

    Boella, E.; Coppa, G.; D'Angola, A.; Peiretti Paradisi, B.

    2018-03-01

    In the paper, gridless particle techniques are presented in order to solve problems involving electrostatic, collisionless plasmas. The method makes use of computational particles having the shape of spherical shells or of rings, and can be used to study cases in which the plasma has spherical or axial symmetry, respectively. As a computational grid is absent, the technique is particularly suitable when the plasma occupies a rapidly changing space region.

  8. Method and apparatus for fringe-scanning chromosome analysis

    DOEpatents

    Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.

    1983-08-31

    Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.

  9. Design of Aerosol Coating Reactors: Precursor Injection

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471

  10. Optical and chemical properties of wildland biomass burning particles measured downwind during the BBOP study

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Wormhoudt, Jody; Sedlacek, Arthur; Chand, Duli; Freedman, Andrew

    2017-04-01

    Rapid physical, chemical and optical changes in biomass burning particles were measured downwind (< 3 hours temporally) from wildland fires. The Biomass Burning Observation Project (BBOP), sponsored by the U.S. Department of Energy (DOE), involved the measurement of emissions from wildland fires in the Pacific Northwest and agricultural burns in the Central Southeastern United States observed from the DOE Gulfstream-1 airborne platform over a four month period in 2013. Optical instrumentation included a CAPS PMex particle extinction monitor operating at 630 nm (Aerodyne Research), a photothermal interferometer (Brookhaven National Laboratory) measuring particle absorption at 632 nm and a 3 wavelength nephelometer (TSI). Information about the chemical evolution of the plumes was obtained primarily using a SP-AMS (Aerodyne Research) and a Single Particle Soot Photometer (SP2, Droplet Measurements). The chemical composition of the particulate emissions were characterized in the context of the fire location, combustion conditions, and optical property measurements, including extinction and single scattering albedos. The chemical composition of organic aerosol was found to be rapidly changing as a function of downwind location, with oxygen to carbon ratios increasing as a results of atmospheric aging processes (e.g., dilution, photochemistry). The single scattering albedo, (SSA) of plume aerosols increases downwind as the ratio of total particle extinction to carbon monoxide concentration (a marker for the plume dilution) increases, a finding that is related to changes in organic aerosol chemistry.

  11. Identified particle distributions in pp and Au+Au collisions atsqrt sNN=200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Adler, C.; Aggarwal, M.M.

    2003-10-06

    Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antiprotons are reported for {radical}sNN = 200 GeV pp and Au+Au collisions at RHIC. The transverse mass distributions are rapidity independent within |y| < 0.5, consistent with a boost-invariant system in this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was observed in the kaon and antiproton production rates relative to the pion production rate from medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data revealmore » strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.« less

  12. A discrete element method-based approach to predict the breakage of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Sun, Xin; Xu, Wei

    Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been informed by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments. However, the predictive capabilities for new coals and processes are limited. This work presents a Discrete Element Method based computational framework to predict particle size distribution resulting from the breakage of coal particles characterized by the coal’s physical properties. The effect ofmore » certain operating parameters on the breakage behavior of coal particles also is examined.« less

  13. Continuous-Flow Detector for Rapid Pathogen Identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit frommore » the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).« less

  14. CHARGED PARTICLE MULTIPLICITIES IN ULTRA-RELATIVISTIC AU+AU AND CU+CU COLLISIONS

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Vannieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyngaardt, S.; Wyslouch, B.

    The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5° to 179.5° corresponding to |η| <5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.

  15. Rapid and Efficient Collection of Platinum from Karstedt's Catalyst Solution via Ligands-Exchange-Induced Assembly.

    PubMed

    Yang, Gonghua; Wei, Yanlong; Huang, Zhenzhu; Hu, Jiwen; Liu, Guojun; Ou, Ming; Lin, Shudong; Tu, Yuanyuan

    2018-02-21

    Reported herein is a novel strategy for the rapid and efficient collection of platinum from Karstedt's catalyst solution. By taking advantage of a ligand-exchange reaction between alkynols and the 1,3-divinyltetramethyldisiloxane ligand (M Vi M Vi ) that coordinated with platinum (Pt(0)), the Karstedt's catalyst particles with a size of approximately 2.5 ± 0.7 nm could be reconstructed and assembled into larger particles with a size of 150 ± 35 nm due to the hydrogen bonding between the hydroxyl groups of the alkynol. In addition, because the silicone-soluble M Vi M Vi ligand of the Karstedt's catalyst was replaced by water-soluble alkynol ligands, the resultant large particles were readily dispersed in water, resulting in rapid, efficient, and complete collection of platinum from the Karstedt's catalyst solutions with platinum concentrations in the range from ∼20 000 to 0.05 ppm. Our current strategy not only was used for the rapid and efficient collection of platinum from the Karstedt's catalyst solutions, but it also enabled the precise evaluation of the platinum content in the Karstedt's catalysts, even if this platinum content was extremely low (i.e., 0.05 ppm). Moreover, these platinum specimens that were efficiently collected from the Karstedt's catalyst solutions could be directly used for the evaluation of platinum without the need for pretreatment processes, such as calcination and digestion with hydrofluoric acid, that were traditionally used prior to testing via inductively coupled plasma mass spectrometry in conventional methods.

  16. RAPID IDENTIFICATION OF MICROORGANISMS BY CONTINUOUS PARTICLE ELECTROPHORESIS.

    DTIC Science & Technology

    MICROORGANISMS, IDENTIFICATION), (*ELECTROPHORESIS, MICROORGANISMS), MOBILITY, PH FACTOR, OPTICAL SCANNING, ESCHERICHIA COLI, SHIGELLA FLEXNERI, BACILLUS CEREUS, SERRATIA MARCESCENS , BACILLUS SUBTILIS

  17. How half-coated janus particles enter cells.

    PubMed

    Gao, Yuan; Yu, Yan

    2013-12-26

    Janus particles possess functional asymmetry and directionality within a single entity and thus are predicted to enable many promising biomedical applications that are not offered by homogeneous particles. However, it remains elusive what role the Janus principle plays in Janus particle-cell interactions, particularly in cellular uptake. We studied how asymmetric distribution of ligands on half-coated Janus microparticles dictates the membrane dynamics during receptor-mediated particle uptake, and found key differences from those characteristic of homogeneous particles. Live-cell fluorescence imaging combined with single-particle level quantification of particle-cell membrane interactions shows that the asymmetric distribution of ligands leads to a three-step endocytic process: membrane cup formation on the ligand-coated hemisphere, stalling at the Janus interface, and rapid membrane protrusion on the ligand-absent hemisphere to complete the particle engulfment. The direct correlation between the spatial presentation of ligands on Janus particles and the temporal changes of membrane dynamics revealed in this work elucidates the potential of using the Janus principle to fine-tune particle-cell interactions.

  18. Flash Nanoprecipitation: Particle Structure and Stability

    PubMed Central

    Pustulka, Kevin M.; Wohl, Adam R.; Lee, Han Seung; Michel, Andrew R.; Han, Jing; Hoye, Thomas R.; McCormick, Alon V.; Panyam, Jayanth; Macosko, Christopher W.

    2013-01-01

    Flash nanoprecipitation (FNP) is a process that, through rapid mixing, stabilizes an insoluble low molecular weight compound in a nano-sized, polymer-stabilized delivery vehicle. The polymeric components are typically amphiphilic diblock copolymers (BCPs). In order to fully exploit the potential of FNP, factors affecting particle structure, size, and stability must be understood. Here we show that polymer type, hydrophobicity and crystallinity of the small molecule, and small molecule loading levels all affect particle size and stability. Of the four block copolymers (BCP) that we have studied here, poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) was most suitable for potential drug delivery applications due to its ability to give rise to stable nanoparticles, its biocompatibility, and its degradability. We found little difference in particle size when using PLGA block sizes over the range of 5 to 15kDa. The choice of hydrophobic small molecule was important, as molecules with a calculated water-octanol partition coefficient (clogP) below 6 gave rise to particles that were unstable and underwent rapid Ostwald ripening. Studies probing the internal structure of nanoparticles were also performed. Analysis of differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and 1H-NMR experiments support a three-layer core-shell-corona nanoparticle structure. PMID:24053447

  19. Time-resolved SAXS study of the effect of a double hydrophilic block-copolymer on the formation of CaCO3 from a supersaturated salt solution.

    PubMed

    Bolze, J; Pontoni, D; Ballauff, M; Narayanan, T; Cölfen, H

    2004-09-01

    The effect of a double hydrophilic block-copolymer additive (made of polyaspartic acid and polyethyleneglycol, pAsp(10)-b-PEG(110)) on the initial formation of calcium carbonate from a supersaturated salt solution has been studied in situ by means of time-resolved synchrotron small-angle X-ray scattering (SAXS). A stopped-flow cell was used for rapidly mixing the 20 mM aqueous reactant solutions of calcium chloride and sodium carbonate. In reference measurements without polymer additive the very rapid formation of primary, overall spherical CaCO(3) particles with a radius of ca. 19 nm and a size polydispersity of ca. 26% was observed within the first 10 ms after mixing. A subsequent, very rapid aggregation of these primary particles was evidenced by a distinct upturn of the SAXS intensity at smallest angles. During the aggregation process the size of the primary particles remained unchanged. From an analysis of the absolute scattering intensity the mass density of these particles was determined to 1.9 g/cm(3). From this rather low density it is concluded that those precursor particles are amorphous, which has been confirmed by simultaneous wide-angle X-ray diffraction measurements. Upon adding 200 pm of the block-copolymer no influence on the size, the size polydispersity and morphology of the primary particles, nor on the kinetics of their formation and growth, was found. On the other hand, the subsequent aggregation and precipitation process is considerably slowed down by the additive and smaller aggregates result. The crystalline morphology of the sediment was studied in situ by WAXS ca. 50 min after mixing the reactants. Several diffraction rings could be detected, which indicate that a transformation of the metastable, amorphous precursor particles to randomly oriented vaterite nanocrystallites has taken place. In addition, a few isolated Bragg spots of high intensity were detected, which are attributed to individual, oriented calcite microcrystals that nucleated at the wall of the capillary.

  20. A discrete element method-based approach to predict the breakage of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Sun, Xin; Xu, Wei

    Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less

  1. A discrete element method-based approach to predict the breakage of coal

    DOE PAGES

    Gupta, Varun; Sun, Xin; Xu, Wei; ...

    2017-08-05

    Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less

  2. The experimental investigation of the ignition petrol mechanism at high temperature metal single particles

    NASA Astrophysics Data System (ADS)

    Zakharevich, Arkadiy V.; Osotova, Diana S.

    2015-01-01

    The flammable substance by single "hot" metallic particle ignition mechanism are experimentally investigated. On the basis experimental data it is established that the gasoline ignition occurs only with interaction of the mixture of its vapors with air and "hot" particle with the vapors concentrations, which correspond to the evaporating the gasoline conditions at room temperatures. The probability of gasoline vapors mixture with air igniting rapidly is reduced in proportion to their withdrawal from the evaporation surface. Ignition occurs neither in the vapor phase nor on the gasoline surface, even if particle is immersed in it in full or in partly, if the particle temperature is lower than the critical.

  3. A Comparison of the OSHA Modified NIOSH Physical and Chemical Analytical Method (P and CAM) 304 and the Dust Trak Photometric Aerosol Sampler for 0-Chlorobenzylidine Malonitrile

    DTIC Science & Technology

    2013-04-02

    photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method to determine correlation between the two...study compared the non-specific, rapid photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method...mask confidence training (27) . This study will compare a direct reading, non-specific photometric particle count instrument (DustTrak TSI Model

  4. Electrical Sensing Zone Particle Analyzer for Measuring Germination of Fungal Spores in the Presence of Other Particles1

    PubMed Central

    Santoro, T.; Stotzky, G.; Rem, L. T.

    1967-01-01

    Microscopic, respirometric, and electronic sizing methods for measuring germination of fungal spores were compared. With the electronic sizing method, early stages of germination (i.e., spore swelling) were detected long before germ tube emergence or significant changes in respiratory rates were observed. This method, which is rapid, easy, sensitive, and reproducible, also permits measuring the germination of spores when similar-size particles are present in concentrations considerably in excess of the number of spores. PMID:6069161

  5. Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Binh T; Lehmann, Johannes C; Kinyangi, James

    Black carbon (BC) is a quantitatively important C pool in the global carbon cycle due to its relative recalcitrance against decay compared with other C pools. However, how rapidly BC is oxidized and in what way the molecular structure changes during decomposition over decadal time scales, is largely unknown. In the present study, the long-term dynamics in quality and quantity of BC were investigated in cultivated soil using X-ray Photoelectron Spectroscopy (XPS), Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) techniques. BC particles, obtained from soil samples at 8 conversion ages stretching over 100 years and from a forest soilmore » sample from Kenya, were manually picked under a light microscope for characterization and quantification. BC contents rapidly decreased from 12.7 to 3.8 mg C g⁻¹ soil during the first 30 years since conversion, after which they slowly decreased to a steady state at 3.51 mg C g ⁻¹soil. BC-derived C losses over 100 years were estimated at 6000 kg C ha⁻¹ to a depth of 0.1 m. The initial rapid changes in BC stocks resulted in a mean residence time of only around 8.3 years, which was likely a function of both decomposition as well as transport processes. The molecular properties of BC changed more rapidly on surfaces than in the interior of BC particles and more rapidly during the first 30 years than during the following 70 years. The Oc/C ratios (Oc is O bound to C) and carbonyl groups (C=O) increased over time by 133 and 192 %, respectively, indicating oxidation was an important degradation process controlling BC quality. Al, Si, polysaccharides, and to a lesser extent Fe were rapidly adsorbed on BC particle surfaces within the first few years after BC deposition to soil. The protection by physical and chemical stabilization was apparently sufficient to not only minimize decomposition below detection between 30 and 100 years after deposition, but also physical export by erosion and vertical transport below 0.1 m.« less

  7. Reactions and Transport: Diffusion, Inertia, and Subdiffusion

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Fedotov, Sergei; Horsthemke, Werner

    Particles, such as molecules, atoms, or ions, and individuals, such as cells or animals, move in space driven by various forces or cues. In particular, particles or individuals can move randomly, undergo velocity jump processes or spatial jump processes [333]. The steps of the random walk can be independent or correlated, unbiased or biased. The probability density function (PDF) for the jump length can decay rapidly or exhibit a heavy tail. Similarly, the PDF for the waiting time between successive jumps can decay rapidly or exhibit a heavy tail. We will discuss these various possibilities in detail in Chap. 3. Below we provide an introduction to three transport processes: standard diffusion, transport with inertia, and anomalous diffusion.

  8. Measurement of heavy-flavour production, correlations and jets with ALICE

    NASA Astrophysics Data System (ADS)

    Sakai, Shingo

    2018-02-01

    In this article, recent ALICE measurements of the RAA and v2 of electrons at mid-rapidity (|y|<0.6) and muons at forward rapidity (2.5

  9. Near-extinction and final burnout in coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, R.H.; Davis, K.A.

    The late stages of char combustion have a special technological significance, as carbon conversions of 99% or greater are typically required for the economic operation of pulverized coal fired boilers. In the present article, two independent optical techniques are used to investigate near-extinction and final burnout phenomenas. Captive particle image sequences, combined with in situ optical measurements on entrained particles, provide dramatic illustration of the asymptotic nature of the char burnout process. Single particle combustion to complete burnout is seen to comprise two distinct stages: (1) a rapid high-temperature combustion stage, consuming about 70% of the char carbon and endingmore » with near-extinction of the heterogeneous reactions due to a loss of global particle reactivity, and (2) a final burnout stage occurring slowly at lower temperatures. For particles containing mineral matter, the second stage can be further subdivided into: (2a) late char combustion, which begins after the near-extinction event, and converts carbon-rich particles to mixed particle types at a lower temperature and a slower rate; and (2b) decarburization of ash -- the removal of residual carbon inclusions from inorganic (ash) frameworks in the very late stages of combustion. This latter process can be extremely slow, requiring over an order of magnitude more time than the primary rapid combustion stage. For particles with very little ash, the loss of global reactivity leading to early near-extinction is clearly related to changes in the carbonaceous char matrix, which evolves over the course of combustion. Current global kinetic models used for the prediction of char combustion rates and carbon burnout in boilers do not predict the asymptotic nature of char combustion. More realistic models accounting for the evolution of char structure are needed to make accurate predictions in the range of industrial interest.« less

  10. Acoustic Microfluidics for Bioanalytical Application

    NASA Astrophysics Data System (ADS)

    Lopez, Gabriel

    2013-03-01

    This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.

  11. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-06-01

    The critical conditions for the reaction of high melting-point metallic particles (Ti, Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical titanium particles (with diameters of 35, 90, or 215 μm; AP&C, Inc.) or nonspherical zirconium particles (250 -- 500 μm or 500 -- 600 μm, Atlantic Equipment Eng., NJ) saturated with sensitized liquid nitromethane. For the titanium particles, a threshold particle diameter exists, above which self-sustained particle reaction is not observed, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles, the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction initiation is a competition between particle heating and expansion cooling of the products. For zirconium particles, no critical conditions exist; particle ignition was observed for all particle and charge diameters tested. In this case, interaction of the high pressure detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜ 10's μs), which is much less than the time required for thermal equilibration of the particles.

  12. Gunshot residue particle velocity and deceleration.

    PubMed

    De Forest, Peter R; Martir, Kirby; Pizzola, Peter A

    2004-11-01

    The velocity of over 800 gunshot residue particles from eight different sources was determined using high speed stroboscopic photography (spark gap light source). These particles were found to have an average velocity of 500 to 600 ft per second. Many particles acquired considerably higher velocities. Thus, the particles have sufficient energy to embed themselves within certain nearby targets like skin or fabric. The relatively high velocity that the particles acquire explain the formation of stippling on skin in close proximity to a muzzle discharge. These findings also indicate little influence of air currents on particle behavior near the muzzle. The deceleration of less than 100 particles during a 100-microsecond interval was also calculated. The particles experienced rapid rates of deceleration which would explain why few particles are found in test firings beyond 3 ft from the muzzle of a discharged firearm. Because of their relatively high velocity, normal wind velocity would not be expected to significantly influence their motion near the muzzle.

  13. Formation of polymeric and organic nanoparticles by RESS and RESOLV

    NASA Astrophysics Data System (ADS)

    Sane, Amporn

    The goal of this work was to obtain an improved fundamental understanding of the formation of organic and polymeric particles by the rapid expansion of supercritical solutions into either air (RESS) or liquid solvents (RESOLV). Rapid expansion of a fluorinated tetraphenylporphyrin, 5,10,15,20-tetrakis(3,5-bis(trifluoromethyl)phenyl)porphyrin (TBTPP), from supercritical solutions of carbon dioxide was investigated. Surprisingly, true nanoparticles (38 +/- 9 nm) were produced by RESS, independent of porphyrin concentration, degree of saturation, and pre-expansion pressure. Particle size increased in a well-behaved manner with pre-expansion temperature (Tpre). RESOLV of TBTPP-CO2 solutions was investigated both for minimizing particle growth in the free jet and for preventing particle agglomeration. Rapid expansion into an aqueous solution of 0.025 wt % Pluronic F68 produced stable nanoparticle (28 +/- 9 nm) suspensions, independent of the processing conditions selected. The fact that nanoparticles were produced by RESS of TBTPP, vs. the microparticles reported with other organics, can be explained in terms of Friedlander's collision-coalescence theory and the solid-state diffusion coefficient D, which is low for this system because of the high melting point (Tm = 388°C) of TBTPP. The effect of D (which is ∝ exp(-Tm/Tpre)) on RESS was further investigated by using a polymer as the solute, as T m can be varied via the molecular weight without changes in chemical properties. RESS experiments on poly(L-lactide) (PLLA) with two different melting points (Tm = 121°C and Mw = 1340; T m = 162°C and Mw = 6050) in CO2-THF mixtures were performed. Typical PLLA products consisted of both nanoparticles (30--100 nm) and larger (submicron- and micron-sized) particles. The presence of individual nanoparticles suggests that the initially formed precipitates are nano-sized, and that larger particles are obtained because of coalescence effects in the free jet. As with TBTPP, results for PLLA can be explained in terms of D. For example, at a given Tpre, the size of the larger particles decreased from 10 to 1 mum as the Tm of the PLLA polymer increased from 121 to 162°C. Furthermore, for a given Tm, particle fusion in the agglomerates decreased with decreasing Tpre.

  14. Hydrometeor-enhanced tephra sedimentation: Constraints from the 18 May 1980 eruption of Mount St. Helens

    USGS Publications Warehouse

    Durant, A.J.; Rose, William I.; Sarna-Wojcicki, A. M.; Carey, Steven; Volentik, A.C.M.

    2009-01-01

    Uncertainty remains on the origin of distal mass deposition maxima observed in many recent tephra fall deposits. In this study the link between ash aggregation and the formation of distal mass deposition maxima is investigated through reanalysis of tephra fallout from the Mount St. Helens 18 May 1980 (MSH80) eruption. In addition, we collate all the data needed to model distal ash sedimentation from the MSH80 eruption cloud. Four particle size subpopulations were present in distal fallout with modes at 2.2 ??, 4.2 ??, 5.9 ??, and 8.3 ??. Settling rates of the coarsest subpopulation closely matched predicted single-particle terminal fall velocities. Sedimentation of particles <100 ??m was greatly enhanced, predominantly through aggregation of a particle subpopulation with modal diameter 5.9 ?? 0.2 ?? (19 ?? 3 ??m). Mammatus on the MSH80 cloud provided a mechanism to transport very fine ash particles, with predicted atmospheric lifetimes of days to weeks, from the upper troposphere to the surface in a matter of hours. In this mechanism, ash particles initiate ice hydrometeor formation high in the troposphere. Subsequently, the volcanic cloud rapidly subsides as mammatus develop from increased particle loading and cloud base sublimation. Rapid fallout occurs as the cloud passes through the melting level in a process analogous to snowflake aggregation. Aggregates sediment en masse and form the distal mass deposition maxima observed in many recent volcanic ash fall deposits. This work provides a data resource that will facilitate tephra sedimentation modeling and allow model intercomparisons. Copyright 2009 by the American Geophysical Union.

  15. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Paek, Hee-Jeong; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Jeong, Jayoung; Choi, Soo-Jin

    2014-01-01

    Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict potential toxicological effects of silica nanoparticles on target organs. PMID:25565843

  16. Equilibrium of particle nitrite with gas phase HONO: Tropospheric measurements in the high Arctic during polar sunrise

    NASA Astrophysics Data System (ADS)

    Li, Shao-Meng

    1994-12-01

    Gas phase HONO(g) and nitrite in particles of <5-μm size were measured in the troposphere during the Polar Sunrise Experiment at Alert, Northwest Territories, Canada, during January 19 to April 20, 1992, using denuder-filter pack sampling and IC-UV detection. The measurements indicated that HONO(g) existed at concentrations of up to 70 ppt before polar sunrise but gradually decreased to 5-10 ppt after sunrise. The calculated OH formation rate from HONO(g) photolysis was greater than from the photolysis of both O3 and CH2O by more than one order of magnitude during the sunlit period and led to moderately high levels of OH, e.g., 3×105 molecules cm-3 OH at noontime on April 5. Particle nitrite measurements showed a gradual increase in concentrations with increasing solar insolation, but the concentrations were generally less than 10 ppt. The pH and the sulfate molar concentrations of the particles and the water vapor mixing ratio indicate that the particles were highly acidic being approximately 70% (W/W) H2SO4 solution. In such highly concentrated H2SO4 solution, most particle nitrite should exist as hydrated nitrosonium ion H2ONO+. Taking this into consideration, the particle nitrite was in an approximate equilibrium with the measured HONO(g). This equilibrium, with HONO(g) rapidly photolyzed, was a good indication that the particles were effective sources of HONO(g) and implied rapid production of particle N(+III) during this period. Two possible pathways leading to the formation of particle N(+III) species are suggested, i.e., reduction of HNO3(aq) by SO2(g) and reduction of NO3-; (aq) by Br- (aq). However, N2O5 reaction with NaBr cannot be ruled out as the alternative HONO(g) formation mechanism which bypasses the equilibrium.

  17. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-12-01

    The critical conditions for the reaction of particles of the transition metals titanium (Ti) and zirconium (Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical Ti particles or irregularly shaped Zr particles saturated with sensitized liquid nitromethane. For the Ti particles, a threshold particle diameter exists of 65±25 μm, above which self-sustained particle reaction is not observed for charge diameters up to 49 mm, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles (40 μm), the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction is a competition between particle heating and expansion cooling of the products. For 375 and 550 μm Zr particles, particle ignition was observed for 19 and 41 mm dia charges. In this case, interaction of the detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜5 μs), which is much less than the time required for thermal equilibration of the particles.

  18. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles

    NASA Astrophysics Data System (ADS)

    Penoyre, Zephyr; Haiman, Zoltán

    2018-01-01

    In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.

  19. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  20. Fracture mechanisms of glass particles under dynamic compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.

    2017-08-01

    In this study, dynamic fracture mechanisms of single and contacting spherical glass particles were observed using high speed synchrotron X-ray phase contrast imaging. A modified Kolsky bar setup was used to apply controlled dynamic compressive loading on the soda-lime glass particles. Four different configurations of particle arrangements with one, two, three, and five particles were studied. In single particle experiments, cracking initiated near the contact area between the particle and the platen, subsequently fragmenting the particle in many small sub-particles. In multi-particle experiments, a crack was observed to initiate from the point just outside the contact area between two particles.more » The initiated crack propagated at an angle to the horizontal loading direction, resulting in separation of a fragment. However, this fragment separation did not affect the ability of the particle to withstand further contact loading. On further compression, large number of cracks initiated in the particle with the highest number of particle-particle contacts near one of the particle-particle contacts. The initiated cracks roughly followed the lines joining the contact points. Subsequently, the initiated cracks along with the newly developed sub-cracks bifurcated rapidly as they propagated through the particle and fractured the particle explosively into many small fragments, leaving the other particles nearly intact.« less

  1. Application of RVA and Time-Lapse Photography to Explore Effects of Extent of Chlorination, Milling Extraction Rate, and Particle-Size Reduction of Flour on Cake-Baking Functionality

    USDA-ARS?s Scientific Manuscript database

    Three factors (extent of chlorination, milling extraction rate and particle-size reduction) in the cake-bakeing functionality of Croplan 594W flour were explored by Rapid Visco-Analyzer (RVA) and time-lapse photography. The extent of chlorination and milling extraction rate showed dramatic effects,...

  2. Magnetic pumping of the solar wind

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Lichko, Emily; Daughton, William

    2015-11-01

    The transport of matter and radiation in the solar wind and terrestrial magnetosphere is a complicated problem involving competing processes of charged particles interacting with electric and magnetic fields. Given the rapid expansion of the solar wind, it would be expected that superthermal electrons originating in the corona would cool rapidly as a function of distance to the Sun. However, this is not observed, and various models have been proposed as candidates for heating the solar wind. In the compressional pumping mechanism explored by Fisk and Gloeckler particles are accelerated by random compressions by the interplanetary wave turbulence. This theory explores diffusion due to spatial non-uniformities and provides a mechanism for redistributing particle. For investigation of a related but different heating mechanism, magnetic pumping, in our work we include diffusion of anisotropic features that develops in velocity space. The mechanism allows energy to be transferred to the particles directly from the turbulence. Guided by kinetic simulations a theory is derived for magnetic pumping. At the heart of this work is a generalization of the Parker Equation to capture the role of the pressure anisotropy during the pumping process. Supported by NASA grant NNX15AJ73G.

  3. Magnetic particles for in vitro molecular diagnosis: From sample preparation to integration into microsystems.

    PubMed

    Tangchaikeeree, Tienrat; Polpanich, Duangporn; Elaissari, Abdelhamid; Jangpatarapongsa, Kulachart

    2017-10-01

    Colloidal magnetic particles (MPs) have been developed in association with molecular diagnosis for several decades. MPs have the great advantage of easy manipulation using a magnet. In nucleic acid detection, these particles can act as a capture support for rapid and simple biomolecule separation. The surfaces of MPs can be modified by coating with various polymer materials to provide functionalization for different applications. The use of MPs enhances the sensitivity and specificity of detection due to the specific activity on the surface of the particles. Practical applications of MPs demonstrate greater efficiency than conventional methods. Beyond traditional detection, MPs have been successfully adopted as a smart carrier in microfluidic and lab-on-a-chip biosensors. The versatility of MPs has enabled their integration into small single detection units. MPs-based biosensors can facilitate rapid and highly sensitive detection of very small amounts of a sample. In this review, the application of MPs to the detection of nucleic acids, from sample preparation to analytical readout systems, is described. State-of-the-art integrated microsystems containing microfluidic and lab-on-a-chip biosensors for the nucleic acid detection are also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Absorption of a particle by a rotating black hole: The potential barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, Leon

    For a test particle approaching a rapidly rotating black hole we find a range of values of the particle’s energy and angular momentum, on the order of 1% or more of the corresponding values of the hole, such that three conditions are satisfied. The particle can reach the horizon. After absorption the new hole still has a horizon. The area of the new hole is less than the area of the original one, in apparent violation of a theorem of Hawking. As a result, we offer support for the claim that the test particle approximation is the cause of themore » violation.« less

  5. Absorption of a particle by a rotating black hole: The potential barrier

    DOE PAGES

    Heller, Leon

    2016-09-02

    For a test particle approaching a rapidly rotating black hole we find a range of values of the particle’s energy and angular momentum, on the order of 1% or more of the corresponding values of the hole, such that three conditions are satisfied. The particle can reach the horizon. After absorption the new hole still has a horizon. The area of the new hole is less than the area of the original one, in apparent violation of a theorem of Hawking. As a result, we offer support for the claim that the test particle approximation is the cause of themore » violation.« less

  6. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    DOE PAGES

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; ...

    2016-09-07

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less

  7. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    NASA Astrophysics Data System (ADS)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  8. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals.

    PubMed

    Emami, Shahram; Siahi-Shadbad, Mohammadreza; Barzegar-Jalali, Mohammad; Adibkia, Khosro

    2018-06-01

    This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.

  9. Environmentally benign formation of polymeric microspheres by rapid expansion of supercritical carbon dioxide solution with a nonsolvent.

    PubMed

    Matsuyama, K; Mishima, K; Umemoto, H; Yamaguchi, S

    2001-10-15

    A novel method is reported for forming polymer microparticles, which reduce atmospheric emissions of environmentally harmful volatile organic compounds such as toluene and xylene used as paint solvent in paint industry. The polymer microparticles have formed through rapid expansion from supercritical solution with a nonsolvent (RESS-N). Solubilization of poly(styrene)-b-(poly(methyl methacrylate)-co-poly (glycidyl methacrylate)) copolymer(PS-b-(PMMA-co-PGMA), MW = 5000, PS/PMMA/PGMA = 2/5/3), poly(ethylene glycol) (PEG, M. W = 4000), bisphenol A type epoxy resin (EP, MW = 3000), poly(methyl methacrylate) (PMMA; MW = 15000, 75000, 120000), and poly(oxyalkylene) alkylphenyl ether (MW = 4000) in carbon dioxide (CO2) was achieved with the use of small alcohols as cosolvents. The solubility of the PS-b-(PMMA-co-PGMA) is extremely low in either CO2 or ethanol but becomes 20 wt % in a mixture of the two. Because ethanol is a nonsolvent for the polymer, it can be used as a cosolvent in rapid expansion from supercritical solution to produce 1-3 microm particles that do not agglomerate. Obtained polymer particles by RESS-N were applied as powder coatings. The resulting coatings have a smooth and coherent film. The particle size distribution of microspheres was controlled by changing the polymer concentration, preexpansion pressure, temperature, and injection distance. The feed compositions were more effective than the other factors in controlling the particle size. The polymeric microparticles formed by RESS-N method can be utilized to make the thin coating film without anytoxic organic solvents and/or surfactants.

  10. KINETIC STUDY OF RADIATION-REACTION-LIMITED PARTICLE ACCELERATION DURING THE RELAXATION OF UNSTABLE FORCE-FREE EQUILIBRIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan

    2016-09-10

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.« less

  11. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints

    NASA Astrophysics Data System (ADS)

    Fiore, Andrew M.; Swan, James W.

    2018-01-01

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle equations of motion leads to a stochastic differential algebraic equation (SDAE) of index 1, which is integrated forward in time using a mid-point integration scheme that implicitly produces stochastic displacements consistent with the fluctuation-dissipation theorem for the constrained system. Calculations for hard sphere dispersions are illustrated and used to explore the performance of the algorithm. An open source, high-performance implementation on graphics processing units capable of dynamic simulations of millions of particles and integrated with the software package HOOMD-blue is used for benchmarking and made freely available in the supplementary material (ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-012805)

  12. Recovery of Degraded-Beyond-Recognition 19th Century Daguerreotypes with Rapid High Dynamic Range Elemental X-ray Fluorescence Imaging of Mercury L Emission.

    PubMed

    Kozachuk, Madalena S; Sham, Tsun-Kong; Martin, Ronald R; Nelson, Andrew J; Coulthard, Ian; McElhone, John P

    2018-06-22

    A daguerreotype image, the first commercialized photographic process, is composed of silver-mercury, and often silver-mercury-gold amalgam particles on the surface of a silver-coated copper plate. Specular and diffuse reflectance of light from these image particles produces the range of gray tones that typify these 19 th century images. By mapping the mercury distribution with rapid-scanning, synchrotron-based micro-X-ray fluorescence (μ-XRF) imaging, full portraits, which to the naked eye are obscured entirely by extensive corrosion, can be retrieved in a non-invasive, non-contact, and non-destructive manner. This work furthers the chemical understanding regarding the production of these images and suggests that mercury is retained in the image particles despite surface degradation. Most importantly, μ-XRF imaging provides curators with an image recovery method for degraded daguerreotypes, even if the artifact's condition is beyond traditional conservation treatments.

  13. Particle distributions in collisionless magnetic reconnection: An implicit Particle-In-Cell (PIC) description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, D.W.; Francis, G.E.; Max, C.E.

    1990-06-29

    Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons awaymore » from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.« less

  14. Rapid Bead-Based Antimicrobial Susceptibility Testing by Optical Diffusometry

    PubMed Central

    Chung, Chih-Yao; Wang, Jhih-Cheng; Chuang, Han-Sheng

    2016-01-01

    This study combined optical diffusometry and bead-based immunoassays to develop a novel technique for quantifying the growth of specific microorganisms and achieving rapid AST. Diffusivity rises when live bacteria attach to particles, resulting in additional energy from motile microorganisms. However, when UV-sterilized (dead) bacteria attach to particles, diffusivity declines. The experimental data are consistent with the theoretical model predicted according to the equivalent volume diameter. Using this diffusometric platform, the susceptibility of Pseudomonas aeruginosa to the antibiotic gentamicin was tested. The result suggests that the proliferation of bacteria is effectively controlled by gentamicin. This study demonstrated a sensitive (one bacterium on single particles) and time-saving (within 2 h) platform with a small sample volume (~0.5 μL) and a low initial bacteria count (50 CFU per droplet ~ 105 CFU/mL) for quantifying the growth of microorganisms depending on Brownian motion. The technique can be applied further to other bacterial strains and increase the success of treatments against infectious diseases in the near future. PMID:26863001

  15. Hydrodynamic description for the pseudorapidity distributions of the charged particles produced in nucleus+nucleus collisions at high energy

    NASA Astrophysics Data System (ADS)

    Zhang, Haili; Jiang, Zhijin; Li, Qingguang; Jiang, Guanxiang

    2014-02-01

    By using the revised Landau hydrodynamic model and taking into account the effect of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high-energy heavy-ion collisions. The leading particles are assumed to have the rapidity distributions with Gaussian forms with the normalization constant being equal to the number of participants, which can be figured out in theory. The results from the revised Landau hydrodynamic model, together with the contributions from leading particles, were found to be consistent with the experimental data obtained by the PHOBOS Collaboration on RHIC (Relativistic Heavy Ion Collider) at BNL (Brookhaven National Laboratory) in different centrality Cu+Cu and Au+Au collisions at high energies.

  16. Optoelectrofluidic field separation based on light-intensity gradients

    PubMed Central

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-01-01

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461

  17. Optoelectrofluidic field separation based on light-intensity gradients.

    PubMed

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-07-14

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.

  18. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    DOE PAGES

    Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.

    2015-12-10

    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and themore » degree of particle dilution can be controlled by the rf parameters. As a result, the method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.« less

  19. Recent progress of particle migration in viscoelastic fluids.

    PubMed

    Yuan, Dan; Zhao, Qianbin; Yan, Sheng; Tang, Shi-Yang; Alici, Gursel; Zhang, Jun; Li, Weihua

    2018-02-13

    Recently, research on particle migration in non-Newtonian viscoelastic fluids has gained considerable attention. In a viscoelastic fluid, three dimensional (3D) particle focusing can be easily realized in simple channels without the need for any external force fields or complex microchannel structures compared with that in a Newtonian fluid. Due to its promising properties for particle precise focusing and manipulation, this field has been developed rapidly, and research on the field has been shifted from fundamentals to applications. This review will elaborate the recent progress of particle migration in viscoelastic fluids, especially on the aspect of applications. The hydrodynamic forces on the micro/nano particles in viscoelastic fluids are discussed. Next, we elaborate the basic particle migration in viscoelasticity-dominant fluids and elasto-inertial fluids in straight channels. After that, a comprehensive review on the applications of viscoelasticity-induced particle migration (particle separation, cell deformability measurement and alignment, particle solution exchange, rheometry-on-a-chip and others) is presented; finally, we thrash out some perspectives on the future directions of particle migration in viscoelastic fluids.

  20. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  1. Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone - A case study

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Shelley, E. G.; Boardsen, S. A.; Gurnett, D. A.; Ledley, B. G.; Sugiura, M.; Moore, T. E.

    1988-01-01

    Evidence of transverse ion energization at altitudes of several earth radii in the auroral zone was reexamined using several hundred hours of high-sensitivity and high-resolution plasma data obtained by the Dynamics Explorer 1 satellite. The data on particle environment encountered at midaltitudes in the auroral zone disclosed rapid variations in the values of total density, thermal structure, and composition of the plasma in the interval measured; the modes of low-frequency plasma waves also varied rapidly. It was not possible to unambiguously identify in these data particle and wave signature of local transverse ion energization; however, many intervals were found where local transverse ion heating was consistent with the observations.

  2. Light changes the atmospheric reactivity of soot

    PubMed Central

    Monge, Maria Eugenia; D’Anna, Barbara; Mazri, Linda; Giroir-Fendler, Anne; Ammann, Markus; Donaldson, D. J.; George, Christian

    2010-01-01

    Soot particles produced by incomplete combustion processes are one of the major components of urban air pollution. Chemistry at their surfaces lead to the heterogeneous conversion of several key trace gases; for example NO2 interacts with soot and is converted into HONO, which rapidly photodissociates to form OH in the troposphere. In the dark, soot surfaces are rapidly deactivated under atmospheric conditions, leading to the current understanding that soot chemistry affects tropospheric chemical composition only in a minor way. We demonstrate here that the conversion of NO2 to HONO on soot particles is drastically enhanced in the presence of artificial solar radiation, and leads to persistent reactivity over long periods. Soot photochemistry may therefore be a key player in urban air pollution. PMID:20080580

  3. Strangeness production in deep inelastic muon nucleon scattering at 280 GeV

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckhardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmifz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.

    1987-09-01

    The production of strange particles has been studied in a 280 GeV muon nucleon scattering experiment with acceptance and particle identification over a large kinematical range. The data show that at large values of x Bj the interactions take place mostly on a u valence quark in agreement with the basic quarkparton model predictions. This feature results in a strong forward-backward asymmetry in the distribution of strangeness along the rapidity axis. The data are compatible with a strange to non-strange quark suppression factor of ≈0.3 and with a strong suppression of strange diquarks. The distributions of K + K - pairs show that the two kaons are preferentially produced at neighbouring values of rapidity.

  4. Hail formation triggers rapid ash aggregation in volcanic plumes

    USGS Publications Warehouse

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.

  5. Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization

    NASA Astrophysics Data System (ADS)

    Behúlová, M.; Grgač, P.; Čička, R.

    2017-11-01

    Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.

  6. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores.

    PubMed

    Cecchini, Michael P; Wiener, Aeneas; Turek, Vladimir A; Chon, Hyangh; Lee, Sangyeop; Ivanov, Aleksandar P; McComb, David W; Choo, Jaebum; Albrecht, Tim; Maier, Stefan A; Edel, Joshua B

    2013-10-09

    Nanopore sensors embedded within thin dielectric membranes have been gaining significant interest due to their single molecule sensitivity and compatibility of detecting a large range of analytes, from DNA and proteins, to small molecules and particles. Building on this concept we utilize a metallic Au solid-state membrane to translocate and rapidly detect single Au nanoparticles (NPs) functionalized with 589 dye molecules using surface-enhanced resonance Raman spectroscopy (SERRS). We show that, due to the plasmonic coupling between the Au metallic nanopore surface and the NP, signal intensities are enhanced when probing analyte molecules bound to the NP surface. Although not single molecule, this nanopore sensing scheme benefits from the ability of SERRS to provide rich vibrational information on the analyte, improving on current nanopore-based electrical and optical detection techniques. We show that the full vibrational spectrum of the analyte can be detected with ultrahigh spectral sensitivity and a rapid temporal resolution of 880 μs.

  7. Rapidity, azimuthal, and multiplicity dependence of mean transverse momentum and transverse momentum correlations in {pi}{sup +}p and K{sup +}p collisions in {radical}(s)=22 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atayan, M.R.; Gulkanyan, H.; Bai Yuting

    Rapidity, azimuthal and multiplicity dependence of mean transverse momentum and transverse momentum correlations of charged particles is studied in {pi}{sup +}p and K{sup +}p collisions at 250 GeV/c incident beam momentum. For the first time, it is found that the rapidity dependence of the two-particle transverse momentum correlation is different from that of the mean transverse momentum, but both have similar multiplicity dependence. In particular, the transverse momentum correlations are boost invariant. This is similar to the recently found boost invariance of the charge balance function. A strong azimuthal dependence of the transverse momentum correlations originates from the constraint ofmore » energy-momentum conservation. The results are compared with those from the PYTHIA Monte Carlo generator. The similarities to and differences with the results from current heavy ion experiments are discussed.« less

  8. Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling.

    PubMed

    Ng, Tuck Wah; Neild, Adrian; Heeraman, Pascal

    2008-03-15

    Feasible sorters need to function rapidly and permit the input and delivery of particles continuously. Here, we describe a scheme that incorporates (i) restricted spatial input location and (ii) orthogonal sort and movement direction features. Sorting is achieved using an asymmetric potential that is cycled on and off, whereas movement is accomplished using photophoresis. Simulations with 0.2 and 0.5 microm diameter spherical particles indicate that sorting can commence quickly from a continuous stream. Procedures to optimize the sorting scheme are also described.

  9. Optical trapping and manipulation of neutral particles using lasers

    PubMed Central

    Ashkin, Arthur

    1997-01-01

    The techniques of optical trapping and manipulation of neutral particles by lasers provide unique means to control the dynamics of small particles. These new experimental methods have played a revolutionary role in areas of the physical and biological sciences. This paper reviews the early developments in the field leading to the demonstration of cooling and trapping of neutral atoms in atomic physics and to the first use of optical tweezers traps in biology. Some further major achievements of these rapidly developing methods also are considered. PMID:9144154

  10. Summary: achievements, critical issues, and thoughts on the future.

    PubMed

    Held, Kathryn D

    2012-11-01

    The number of individuals exposed to particle radiations in cancer treatment worldwide is increasing rapidly, and space agencies are developing plans for long duration, deep space missions in which humans could be exposed to significant levels of radiation from charged particles. Hence, the NCRP 47 th Annual Meeting on "Scientific and Policy Challenges of Particle Radiations in Medical Therapy and Space Missions" was a timely opportunity to showcase the current scientific knowledge regarding charged particles, enhance cross-fertilization between the oncology and space scientific communities, and identify common needs and challenges to both communities as well as ways to address those challenges. This issue of Health Physics contains papers from talks presented at that meeting and highlights provocative questions and the ample opportunities for synergism between space and particle-therapy research to further understanding of the biological impacts of particle radiations.

  11. A Green Synthesis of Carbon Nanoparticle from Honey for Real-Time Photoacoustic Imaging.

    PubMed

    Wu, Lina; Cai, Xin; Nelson, Kate; Xing, Wenxin; Xia, Jun; Zhang, Ruiying; Stacy, Allen J; Luderer, Micah; Lanza, Gregory M; Wang, Lihong V; Shen, Baozhong; Pan, Dipanjan

    2013-01-01

    Imaging sentinel lymph nodes (SLN) could provide us with critical information about the progression of a cancerous disease. Real-time high-resolution intraoperative photoacoustic imaging (PAI) in conjunction with a near infrared (NIR) probe may offer the opportunities for the immediate imaging for direct identification and resection of SLN or collecting tissue samples. In this work a commercially amenable synthetic methodology is revealed for developing luminescent carbon nanoparticles with rapid clearance properties. A one-pot "green" technique is pursued, which involved rapid surface passivation of carbon nanoparticles with organic macromolecules (e.g. polysorbate, polyethyleneglycol) in a solvent free condition. Interestingly, the naked carbon nanoparticles are derived for the first time, from commercial food grade honey. Surface coated particles are markedly smaller (~7 nm) than the previously explored particles (gold, SWNT, copper) for SLN imaging. Results indicate an exceptionally rapid signal enhancement (~2 min) of the SLN. Owing to their strong optical absorption in the near infrared region, tiny size and rapid lymphatic transport, this platform offers great potential for faster resection of SLN and may lower complications caused by axillary investigation for mismarking with dyes or low-resolution imaging techniques.

  12. Rapid, ultrasensitive detection of microorganisms based on interferometry and lab-on-a-chip nanotechnology

    NASA Astrophysics Data System (ADS)

    Ymeti, Aurel; Nederkoorn, Paul H. J.; Dudia, Alma; Subramaniam, Vinod; Kanger, Johannes S.

    2009-05-01

    Future viral outbreaks are a major threat to societal and economic development throughout the world. A rapid, sensitive, and easy-to-use test for viral infections is essential to prevent and to control such viral pandemics. Furthermore, a compact, portable device is potentially very useful in remote or developing regions without easy access to sophisticated laboratory facilities. We have developed a rapid, ultrasensitive sensor that could be used in a handheld device to detect various viruses and measure their concentration. The essential innovation in this technique is the combination of an integrated optical interferometric sensor with antibody-antigen recognition approaches to yield a very sensitive, very rapid test for virus detection. The sensor is able to spot the herpes virus at concentrations of just 850 particles per milliliter under physiological conditions. The sensitivity of the sensor approaches detection of a single virus particle, yielding a sensor of unprecedented sensitivity with wide applications for viral diagnostics. The sensor's detection principle can be extended to any biological target such as bacteria, cells and proteins and for which there are specific antibodies. The nature of the sensor enables multiplexed detection of several analytes at the same time.

  13. Simulation of Chirping Avalanche in Neighborhood of TAE gap

    NASA Astrophysics Data System (ADS)

    Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin

    2016-10-01

    A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).

  14. Role of net baryon density on rapidity width of identified particles from the lowest energies available at the CERN Super Proton Synchrotron to those at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Hussain, Nur; Bhattacharjee, Buddhadeb

    2017-08-01

    Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.

  15. Magnetic assembly route to colloidal responsive photonic nanostructures.

    PubMed

    He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong

    2012-09-18

    Responsive photonic structures can respond to external stimuli by transmitting optical signals. Because of their important technological applications such as color signage and displays, biological and chemical sensors, security devices, ink and paints, military camouflage, and various optoelectronic devices, researchers have focused on developing these functional materials. Conventionally, self-assembled colloidal crystals containing periodically arranged dielectric materials have served as the predominant starting frameworks. Stimulus-responsive materials are incorporated into the periodic structures either as the initial building blocks or as the surrounding matrix so that the photonic properties can be tuned. Although researchers have proposed various versions of responsive photonic structures, the low efficiency of fabrication through self-assembly, narrow tunability, slow responses to the external stimuli, incomplete reversibility, and the challenge of integrating them into existing photonic devices have limited their practical application. In this Account, we describe how magnetic fields can guide the assembly of superparamagnetic colloidal building blocks into periodically arranged particle arrays and how the photonic properties of the resulting structures can be reversibly tuned by manipulating the external magnetic fields. The application of the external magnetic field instantly induces a strong magnetic dipole-dipole interparticle attraction within the dispersion of superparamagnetic particles, which creates one-dimensional chains that each contains a string of particles. The balance between the magnetic attraction and the interparticle repulsions, such as the electrostatic force, defines the interparticle separation. By employing uniform superparamagnetic particles of appropriate sizes and surface charges, we can create one-dimensional periodicity, which leads to strong optical diffraction. Acting remotely over a large distance, magnetic forces drove the rapid formation of colloidal photonic arrays with a wide range of interparticle spacing. They also allowed instant tuning of the photonic properties because they manipulated the interparticle force balance, which changed the orientation of the colloidal assemblies or their periodicity. This magnetically responsive photonic system provides a new platform for chromatic applications: these colloidal particles assemble instantly into ordered arrays with widely, rapidly, and reversibly tunable structural colors, which can be easily and rapidly fixed in a curable polymer matrix. Based on these unique features, we demonstrated many applications of this system, such as structural color printing, the fabrication of anticounterfeiting devices, switchable signage, and field-responsive color displays. We also extended this idea to rapidly organize uniform nonmagnetic building blocks into photonic structures. Using a stable ferrofluid of highly charged magnetic nanoparticles, we created virtual magnetic moments inside the nonmagnetic particles. This "magnetic hole" strategy greatly broadens the scope of the magnetic assembly approach to the fabrication of tunable photonic structures from various dielectric materials.

  16. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Background Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. Methods We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. Results N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca2+, although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein–particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. Conclusion We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size. PMID:25848250

  17. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices.

    PubMed

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m(2)/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca(2+), although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein-particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size.

  18. A Triple Functional Approach To Simultaneously Determine the Type, Concentration, and Size of Titanium Dioxide Particles.

    PubMed

    Zhao, Bin; Yang, Tianxi; Zhang, Zhiyun; Hickey, Michael E; He, Lili

    2018-03-06

    The large-scale manufacturing and use of titanium dioxide (TiO 2 ) particles in food and consumer products significantly increase the likelihood of human exposure and release into the environment. We present a simple and innovative approach to rapidly identify the type (anatase or rutile), as well as to estimate, the size and concentration of TiO 2 particles using Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS). The identification and discrimination of rutile and anatase were based on their intrinsic Raman signatures. The concentration of the TiO 2 particles was determined based on Raman peak intensity. Particle sizes were estimated based on the ratio between the Raman intensity of TiO 2 and the SERS intensity of myricetin bound to the nanoparticles (NPs), which was proven to be independent of TiO 2 nanoparticle concentrations. The ratio that was calculated from the 100 nm particles was used as a cutoff value when estimating the presence of nanosized particles within a mixture. We also demonstrated the practical use of this approach when determining the type, concentration, and size of E171: a mixture that contains TiO 2 particles of various sizes which are commonly used in many food products as food additives. The presence of TiO 2 anatase NPs in E171 was confirmed using the developed approach and was validated by transmission electron micrographs. TiO 2 presence in pond water was also demonstrated to be an analytical capability of this method. Our approach shows great promise for the rapid screening of nanosized rutile and anatase TiO 2 particles in complex matrixes. This approach will strongly improve the measurement of TiO 2 quality during production, as well as the survey capacity and risk assessment of TiO 2 NPs in food, consumer goods, and environmental samples.

  19. Collision of an innermost stable circular orbit particle around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Kimura, Masashi

    2011-01-01

    We derive a general formula for the center-of-mass (CM) energy for the near-horizon collision of two particles of the same rest mass on the equatorial plane around a Kerr black hole. We then apply this formula to a particle which plunges from the innermost stable circular orbit (ISCO) and collides with another particle near the horizon. It is found that the maximum value of the CM energy Ecm is given by Ecm/(2m0)≃1.40/1-a*24 for a nearly maximally rotating black hole, where m0 is the rest mass of each particle and a* is the nondimensional Kerr parameter. This coincides with the known upper bound for a particle which begins at rest at infinity within a factor of 2. Moreover, we also consider the collision of a particle orbiting the ISCO with another particle on the ISCO and find that the maximum CM energy is then given by Ecm/(2m0)≃1.77/1-a*26. In view of the astrophysical significance of the ISCO, this result implies that particles can collide around a rotating black hole with an arbitrarily high CM energy without any artificial fine-tuning in an astrophysical context if we can take the maximal limit of the black hole spin or a*→1. On the other hand, even if we take Thorne’s bound on the spin parameter into account, highly or moderately relativistic collisions are expected to occur quite naturally, for Ecm/(2m0) takes 6.95 (maximum) and 3.86 (generic) near the horizon and 4.11 (maximum) and 2.43 (generic) on the ISCO for a*=0.998. This implies that high-velocity collisions of compact objects are naturally expected around a rapidly rotating supermassive black hole. Implications to accretion flows onto a rapidly rotating black hole are also discussed.

  20. Urban cyclist exposure to fine particle pollution in a rapidly growing city

    NASA Astrophysics Data System (ADS)

    Luce, B. W.; Barrett, T. E.; Ponette-González, A.

    2017-12-01

    Urban cyclists are exposed to elevated atmospheric concentrations of fine particulate matter (particles <2.5 µm or PM2.5). Major urban sources of PM2.5 include the incomplete combustion of fossil fuels from vehicle exhaust, which is emitted directly into cyclists' "breathing zone." In cities, human exposure to PM2.5 is a concern because its small size allows it to be inhaled deeper into the lungs than most particles. The aim of this research is to determine "hotspots" (locations with high PM2.5 concentrations) within the Dallas-Fort Worth Metroplex, Texas, where urban cyclists are most exposed to fine particle pollution. Recent research indicates that common exposure hotspots include traffic signals, junctions, bus stations, parking lots, and inclined streets. To identify these and other hotspots, a bicycle equipped with a low-cost, portable, battery-powered particle counter (Dylos 1700) coupled with a Trimble Geo 5T handheld Global Positioning System (GPS; ≤1 m ± resolution) will be used to map and measure particle mass concentrations along predetermined routes. Measurements will be conducted during a consecutive four-month period (Sep-Dec) during morning and evening rush hours when PM2.5 levels are generally highest, as well as during non-rush hour times to determine background concentrations. PM2.5 concentrations will be calculated from particle counts using an equation developed by Steinle et al. (2015). In addition, traffic counts will be conducted along the routes coinciding with the mobile monitoring times. We will present results on identified "hotspots" of high fine particle concentrations and PM2.5 exposure in the City of Denton, where particle pollution puts urban commuters most at risk, as well as average traffic counts from monitoring times. These data can be used to determine pollution mitigation strategies in rapidly growing urban areas.

  1. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.

    PubMed

    Tinjum, James M; Benson, Craig H; Edil, Tuncer B

    2008-02-25

    Batch leaching studies on chromite ore processing residue (COPR) were performed using acids to investigate leaching of hexavalent chromium, Cr(VI), with respect to particle size, reaction time, and type of acid (HNO(3) and H(2)SO(4)). Aqueous Cr(VI) is maximized at approximately 0.04 mol Cr(VI) per kg of dry COPR at pH 7.6-8.1. Cr(VI) mobilized more slowly for larger particles, and the pH increased with time and increased more rapidly for smaller particles, suggesting that rate limitations occur in the solid phase. With H(2)SO(4), the pH stabilized at a higher value (8.8 for H(2)SO(4) vs. 8.0 for HNO(3)) and more rapidly (16 h vs. 30 h), and the differences in pH for different particle sizes were smaller. The acid neutralization capacity (ANC) of COPR is very large (8 mol HNO(3) per kg of dry COPR for a stable eluate pH of 7.5). Changes to the elemental and mineralogical composition and distribution in COPR particles after mixing with acid indicate that Cr(VI)-bearing solids dissolved. However, concentrations of Cr(VI) >2800 mg kg(-1) (>50% of the pre-treatment concentration) were still found after mixing with acid, regardless of the particle size, reaction time, or type of acid used. The residual Cr(VI) appears to be partially associated with poorly-ordered Fe and Al oxyhydroxides that precipitated in the interstitial areas of COPR particles. Remediation strategies that use HNO(3) or H(2)SO(4) to neutralize COPR or to maximize Cr(VI) in solution are likely to require extensive amounts of acid, may not mobilize all of the Cr(VI), and may require extended contact time, even under well-mixed conditions.

  2. Particle momentum effects from the detonation of heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.

    2007-06-01

    Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.

  3. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1991-01-01

    Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  4. PHOBOS, the Early Years

    NASA Astrophysics Data System (ADS)

    Stephans, George S. F.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2002-06-01

    The PHOBOS detector, one of the two small experiments at RHIC, focuses on measurements of charged particle multiplicity over almost the full phase space and identified particles near mid-rapidity. Results will be presented from the early RHIC gold--gold runs at nucleon--nucleon center of mass energies of 56 and 130 GeV as well as the recently concluded run at the full RHIC energy of 200 GeV.

  5. Method of making particles from an aqueous sol

    DOEpatents

    Rankin, G.W.; Hooker, J.R.

    1973-07-24

    A process for preparing gel particles from an aqueous sol by forming the sol into droplets in a liquid system wherein the liquid phase contains a liquid organic solvent and a barrier agent. The barrier agent prevents dehydration from occurring too rapidly and permits surface tension effects to form sol droplets into the desired spheroidal shape. A preferred barrier agent is mineral oil. (Official Gazette)

  6. a Study of Dynamic Powder Consolidation Based on a Particle-Level Mathematical Model.

    NASA Astrophysics Data System (ADS)

    Williamson, Richard L.

    A mathematical model is developed to investigate the effects of large amplitude shock waves on powder materials during dynamic consolidation. The model is constructed at the particle level, focusing on a region containing a few powder particles and the surrounding interstices. The general equations of continuum mechanics are solved over this region, using initial and boundary conditions appropriate for the consolidation process. Closure of the equation system is obtained using an analytical equation of state; relations are included to account for solid to liquid phase changes. An elastic, perfectly-plastic constitutive law, specifically modified to describe material behavior at high-strain-rates, is applied to the solid materials. To reduce complexity, the model is restricted to two dimensions, therefore individual particles are approximated as infinitely long cylinders rather than spheres. The equation system is solved using standard finite-difference numerical techniques. It is demonstrated that for typical consolidation conditions, energy diffusion mechanisms are insignificant during the rapid densification phase of consolidation. Using type 304 stainless steel powder material, the particle-level model is used to investigate the mechanisms responsible for particle surface heating and metallurgical bonding during consolidation. It is demonstrated that energy deposition near particle surfaces results both from rapid particle deformation during interstitial filling and large localized impacts occurring at the final instant of interstitial closure; particle interior regions remain at sufficiently low temperatures to avoid microstructural modification. Nonuniform metallurgical bonding is predicted around the particle periphery, ranging from complete fusion to mechanical abutment. Simulation results are used to investigate the detailed wave propagation phenomena at the particle level, providing an improved understanding of this complex behavior. A variety of parametric studies are conducted including investigations of the effects of stress wave amplitude and rise time, the role of interstitial gases during consolidation, and various geometric aspects including the importance of initial void fraction. The model is applied to a metal matrix composite system to investigate the consolidation of mixtures of differing materials; results of a two-dimensional experiment are included. Available experimental data are compared with simulation results. In general, very good agreement between simulation results and data is obtained.

  7. [Microbiology--laboratory examinations for bacterias].

    PubMed

    Hen, Renjun; Imafuku, Yuji; Yoshida, Hiroshi

    2002-11-01

    As it has been required to identify pathogenic microbes in shorter times, simple and rapid methods have been developed and used. Here, we summarized the present situation of rapid diagnostic testing in clinical microbiology in Japan, and also presented our results on PBP2' detection. The rapid test kits available in Japan for E. coli, Helicobacter pylori, Salmonella, Streptococcus and Staphylococcus aureus were described. Rapid examination methods are based mainly on immunologic reactions, which included slide agglutination using latex particle, immunochromatography and ELISA. Times required for the identification are 10 to 15 minutes. Moreover, rapid test kits employing PCR are also marketed. Further, we evaluated MRSA-LA "Seiken" which is a rapid detection kit for PBP2' produced by MRSA. The test was shown to be highly sensitive and specific. For the rapid identification of pathogenic microbes, simple and rapid test kits described here will be used more in clinical diagnosis.

  8. Rapidity and kT dependence of HBT correlations in Au+Au collisions at 200 GeV with PHOBOS

    NASA Astrophysics Data System (ADS)

    Holzman, Burt; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2004-08-01

    Two-particle correlations of identical charged pion pairs from Au+Au collisions at \\sqrt{s_{\\rm NN}} = 200 GeV were measured by the PHOBOS experiment at RHIC. Data for the most central (0 15%) events were analysed with Bertsch Pratt (BP) and Yano Koonin Podgoretskii (YKP) parametrizations using pairs with rapidities of 0.4 < y < 1.3 and transverse momenta 0.1 < kT < 1.4 GeV/c. The Bertsch Pratt radii decrease as a function of pair transverse momentum. The pair rapidity Ypgrpgr roughly scales with the source rapidity YYKP, indicating strong dynamical correlations.

  9. Rapidity and kT dependence of HBT correlations in Au+Au collisions at 200 GeV with PHOBOS

    NASA Astrophysics Data System (ADS)

    Holzman, Burt; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-08-01

    Two-particle correlations of identical charged pion pairs from Au+Au collisions at \\sqrt{s_NN} = 200 GeV were measured by the PHOBOS experiment at RHIC. Data for the most central (0-15%) events were analysed with Bertsch-Pratt (BP) and Yano-Koonin-Podgoretskii (YKP) parametrizations using pairs with rapidities of 0.4 < y < 1.3 and transverse momenta 0.1 < kT < 1.4 GeV/c. The Bertsch-Pratt radii decrease as a function of pair transverse momentum. The pair rapidity Yππ roughly scales with the source rapidity YYKP, indicating strong dynamical correlations.

  10. Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes.

    PubMed

    Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi

    2017-07-01

    In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

  11. Laser vaporization of trace explosives for enhanced non-contact detection

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Papantonakis, Michael; Kendziora, Christopher A.; Bubb, Daniel M.; Corgan, Jeffrey; McGill, R. Andrew

    2010-04-01

    Trace explosives contamination is found primarily in the form of solid particulates on surfaces, due to the low vapor pressure of most explosives materials. Today, the standard sampling procedure involves physical removal of particulate matter from surfaces of interest. A variety of collection methods have been used including air-jetting or swabbing surfaces of interest. The sampled particles are typically heated to generate vapor for analysis in hand held, bench top, or portal detection systems. These sampling methods are time-consuming (and hence costly), require a skilled technician for optimal performance, and are inherently non-selective, allowing non-explosives particles to be co-sampled and analyzed. This can adversely affect the sensitivity and selectivity of detectors, especially those with a limited dynamic range. We present a new approach to sampling solid particles on a solid surface that is targeted, non-contact, and which selectively enhances trace explosive signatures thus improving the selectivity and sensitivity of existing detectors. Our method involves the illumination of a surface of interest with infrared laser light with a wavelength that matches a distinctive vibrational mode of an explosive. The resonant coupling of laser energy results in rapid heating of explosive particles and rapid release of a vapor plume. Neighboring particles unrelated to explosives are generally not directly heated as their vibrational modes are not resonant with the laser. As a result, the generated vapor plume includes a higher concentration of explosives than if the particles were heated with a non-selective light source (e.g. heat lamp). We present results with both benchtop infrared lasers as well as miniature quantum cascade lasers.

  12. Nitrate reduction in water by aluminum alloys particles.

    PubMed

    Bao, Zunsheng; Hu, Qing; Qi, Weikang; Tang, Yang; Wang, Wei; Wan, Pingyu; Chao, Jingbo; Yang, Xiao Jin

    2017-07-01

    Nano zero-valent iron (NZVI) particles have been extensively investigated for nitrate reduction in water. However, the reduction by NZVI requires acidic pH conditions and the final product is exclusively ammonium, leading to secondary contamination. In addition, nanomaterials have potential threats to environment and the transport and storage of nanomaterials are of safety concerns. Aluminum, the most abundant metal element in the earth's crust, is able to reduce nitrate, but the passivation of aluminum limits its application. Here we report Al alloys (85% Al) with Fe, Cu or Si for aqueous nitrate reduction. The Al alloys particles of 0.85-0.08 mm were inactivate under ambient conditions and a simple treatment with warm water (45 °C) quickly activated the alloy particles for rapid reduction of nitrate. The Al-Fe alloy particles at a dosage of 5 g/L rapidly reduced 50 mg-N/L nitrate at a reaction rate constant (k) of 3.2 ± 0.1 (mg-N/L) 1.5 /min between pH 5-6 and at 4.0 ± 0.1 (mg-N/L) 1.5 /min between pH 9-11. Dopping Cu in the Al-Fe alloy enhanced the rates of reduction whereas dopping Si reduced the reactivity of the Al-Fe alloy. The Al alloys converted nitrate to 20% nitrogen and 80% ammonium. Al in the alloy particles provided electrons for the reduction and the intermetallic compounds in the alloys were likely to catalyze nitrate reduction to nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion

    PubMed Central

    Horsthemke, Markus; Bachg, Anne C.; Groll, Katharina; Moyzio, Sven; Müther, Barbara; Hemkemeyer, Sandra A.; Wedlich-Söldner, Roland; Sixt, Michael; Tacke, Sebastian; Bähler, Martin; Hanley, Peter J.

    2017-01-01

    Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading. PMID:28289096

  14. Characterization, Exposure Measurement and Control for Nanoscale Particles in Workplaces and on the Road

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Pui, David Y. H.

    2011-07-01

    The amount of engineered nanoparticles is increasing at a rapid rate and more concerns are being raised about the occupational health and safety of nanoparticles in the workplace, and implications of nanotechnology on the environment and living systems. At the same time, diesel engine emissions are one of the serious air pollution sources in urban area. Ultrafine particles on the road can result in harmful effects on the health of drivers and passengers. Research on characterization, exposure measurement and control is needed to address the environmental, health and safety issues of nanoscale particles. We present results of our studies on airborne particles in workplaces and on the road.

  15. Mean-field approaches to the totally asymmetric exclusion process with quenched disorder and large particles

    NASA Astrophysics Data System (ADS)

    Shaw, Leah B.; Sethna, James P.; Lee, Kelvin H.

    2004-08-01

    The process of protein synthesis in biological systems resembles a one-dimensional driven lattice gas in which the particles (ribosomes) have spatial extent, covering more than one lattice site. Realistic, nonuniform gene sequences lead to quenched disorder in the particle hopping rates. We study the totally asymmetric exclusion process with large particles and quenched disorder via several mean-field approaches and compare the mean-field results with Monte Carlo simulations. Mean-field equations obtained from the literature are found to be reasonably effective in describing this system. A numerical technique is developed for computing the particle current rapidly. The mean-field approach is extended to include two-point correlations between adjacent sites. The two-point results are found to match Monte Carlo simulations more closely.

  16. The PHOBOS detector at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Connor, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.; Phobos Collaboration

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  17. On the flocculation and settling characteristics of low- and high-concentration sediment suspensions: effects of particle concentration and salinity conditions.

    PubMed

    Zhu, Zhongfan; Xiong, Xiangzhong; Liang, Chaohuang; Zhao, Ming

    2018-05-01

    It remains unclear how the primary particle concentration and salinity conditions influence the flocculation and settling characteristics of water-sediment suspensions. In this study, two sets of experiments were performed to examine the flocculation and settling properties of low- and high-concentration sediment suspensions. In low-concentration suspensions, the sediment concentration undergoes a rapid initial decrease followed by a slow decrease until it approaches zero with increasing flocculation time. Increases in salinity or the valence of cations from the saline solution added to the suspension lead to a more rapidly decreasing sediment concentration with flocculation time. The valence of cations from the saline solution has a larger influence on the flocculation-settling behaviours of the suspension than the salinity. In high-concentration sediment suspensions, the height of the clear water-turbid water interface in the water-sediment suspension experiences an initial, rapidly decreasing phase followed by a slowly decreasing phase with increasing flocculation time. Increasing the primary particle concentration, salinity or valence of cations from the saline solution added to the suspension causes the height reduction of the clear water-turbid water interface to become gentler. Finally, the valence of cations from the saline solution has a greater influence on the settling characteristics of the high-concentration water-sediment suspension than the salinity.

  18. Rapidities of produced particles in 200-GeV/ c. pi. sup + /p/K sup + interactions on Au, Ag, and Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brick, D.H.; Widgoff, M.; Beilliere, P.

    1990-02-01

    We have used the Fermilab 30-in. bubble chamber--hybrid spectrometer to study the rapidities of produced particles'' in the interactions of 200-GeV/{ital c} protons and {pi}{sup +} and {ital K}{sup +} mesons with nuclei of gold, silver, and magnesium. The average rapidity decreases linearly with the number of projectile collisions {nu}{sub {ital p}} (up to {nu}{sub {ital p}}=5) with no {ital A} dependence and little beam dependence. The ratio {ital R} of normalized rapidity distributions for hadron-nucleus to hadron-proton interactions shows a plateau in the central region, and becomes much larger in the target region. However, the increase is significantly lessmore » than has been reported in previous experiments. As a function of {nu}{sub {ital p}}, the ratio {ital R} rises linearly in the target region, more gently in the central region, and decreases slowly in the projectile region, in all cases with no {ital A} dependence. Some discrepancies with a previous experiment are observed in the central region. Long-range rapidity correlations are observed in hadron-nucleus events, but not in hadron-proton events. For the former, it is shown that the correlations exist only for those events with multiple projectile collisions, as expected in the multichain dual parton model.« less

  19. Enhanced diffusometric immunosensing with grafted gold nanoparticles for detection of diabetic retinopathy biomarker tumor necrosis factor-α.

    PubMed

    Chuang, Han-Sheng; Chen, Yu-Ju; Cheng, Hui-Pin

    2018-03-15

    Diffusometry is sensitive to geometric changes of particles. Target antigens can be detected through diffusivity changes resulting from their immunoreactions by functionalizing particle surface with a specific antibody. Considering that Brownian motion is a self-driven phenomenon, diffusometric immunosensing features several characteristics, such as no-washing steps, rapid detection, high flexibility, and high sensitivity. Until recently, this technique has been applied to many biomedical fields, such as monitoring of microorganism motility and diagnosis of diseases with biomarkers. Despite the abovementioned advantages, diffusivity changes in conventional diffusometry can be compromised at low-abundance antigens because proteins are much smaller than capture particles. To overcome such restriction, we present an improved diffusometric immunosensing technique by grafting additional gold nanoparticles (AuNPs) to capture particles to enhance size changes. A diabetic retinopathy (DR) biomarker, tumor necrosis factor-α was selected to evaluate the proposed immunosensing technique. Spherical AuNPs showed better enhancement than rod-like AuNPs during measurement. Limit of detection was improved by at least 100-fold down to 10pg/mL. A dichotomous method was also developed to enable rapid detection and avoid tedious calibration. The relationship of concentrations between the two solutions used can be explicitly determined by comparing diffusivity of an unknown concentration of target molecules with that of a reference solution. Minimum discernible concentration reached as low as twofold higher or lower than basal concentration. Tear samples were collected from four volunteers, including three healthy subjects and one proliferative DR patient to prove the concept in diagnosis of the disease. All data showed good agreement with preset conditions. The technique eventually provides an insight into rapid diagnoses of diseases in the early stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  1. Crumpled graphene nanoreactors

    NASA Astrophysics Data System (ADS)

    Wang, Zhongying; Lv, Xiaoshu; Chen, Yantao; Liu, Dan; Xu, Xinhua; Palmore, G. Tayhas R.; Hurt, Robert H.

    2015-05-01

    Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or ``nanosacks'' may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation.Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or ``nanosacks'' may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c5nr00963d

  2. Microwave Heating of Metal Power Clusters

    NASA Astrophysics Data System (ADS)

    Rybakov, K. I.; Semenov, V. E.; Volkovskaya, I. I.

    2018-01-01

    The results of simulating the rapid microwave heating of spherical clusters of metal particles to the melting point are reported. In the simulation, the cluster is subjected to a plane electromagnetic wave. The cluster size is comparable to the wavelength; the perturbations of the field inside the cluster are accounted for within an effective medium approximation. It is shown that the time of heating in vacuum to the melting point does not exceed 1 s when the electric field strength in the incident wave is about 2 kV/cm at a frequency of 24 GHz or 5 kV/cm at a frequency of 2.45 GHz. The obtained results demonstrate feasibility of using rapid microwave heating for the spheroidization of metal particles with an objective to produce high-quality powders for additive manufacturing technologies.

  3. Centrality dependence of charged antiparticle to particle ratios near midrapidity in d+Au collisions at √(sNN )=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2004-07-01

    The ratios of the yields of charged antiparticles to particles have been obtained for pions, kaons, and protons near midrapidity for d+Au collisions at √(sNN )=200 GeV as a function of centrality. The reported values represent the ratio of the yields averaged over the rapidity range of 0.1< yπ <1.3 and 0< yK,p <0.8 , where positive rapidity is in the deuteron direction, and for transverse momenta 0.1< pπ,K T <1 GeV/c and 0.3< ppT <1 GeV/c . Within the uncertainties, a lack of centrality dependence is observed in all three ratios. The data are compared to results from other systems and model calculations.

  4. Perturbation by UV Light for Rapid Classification of Biological Particles by Fluorescence

    DTIC Science & Technology

    2007-01-01

    thuringiensis (israeliensis) 47,51 Bacillus cereus (T) 37 Clostridium perfringens 59 Gram Negative (GN) Bacteria Species (all vegetative) Escherichia coli (B...non-biological particles in aerosols.1 2𔃽 Almost all strains of species belonging to the bacterial genera Bacillus and Clostridium produce...endospores, the situation should be similar for all spores of Bacillus or Clostridium species. As a matter of fact, the results from other endospores

  5. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise ofmore » an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.« less

  6. STUDIES OF TWO KINDS OF VIRUS PARTICLES WHICH COMPRISE INFLUENZA A2 VIRUS STRAINS

    PubMed Central

    Choppin, Purnell W.; Tamm, Igor

    1960-01-01

    Two kinds of virus particles have been found in varying proportions in influenza A2 strains isolated during the 1957 pandemic. Pure populations of the different particles were obtained, and these substrains were genetically stable on serial passage in the chick embryo. The two virus particles differ markedly in several biological properties though they are antigenically similar. One kind of particle, designated "+," is relatively sensitive to specific antibody, is highly sensitive to inhibition by serum inhibitors and urinary mucoprotein, fails to elute or elutes very slowly from human erythrocytes, and is capable of agglutinating erythrocytes treated extensively with V. cholerae filtrate. The other particle, designated "-," is relatively insensitive to antibodies and urinary mucoprotein, completely insensitive to serum inhibitors, elutes rapidly from erythrocytes, and can agglutinate erythrocytes treated extensively with V. cholerae filtrate. Both "+" and "-" particles destroy virus receptors on urinary mucoprotein. The relative proportions of these two particles determine the characteristics of parent strains in reactions with specific antibody, mucoprotein inhibitors, and erythrocytes. The "+" and "-" particles with several easily identifiable markers are well suited for genetic studies. PMID:19867182

  7. Particle tracking in drug and gene delivery research: State-of-the-art applications and methods.

    PubMed

    Schuster, Benjamin S; Ensign, Laura M; Allan, Daniel B; Suk, Jung Soo; Hanes, Justin

    2015-08-30

    Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Methods and computer executable instructions for rapidly calculating simulated particle transport through geometrically modeled treatment volumes having uniform volume elements for use in radiotherapy

    DOEpatents

    Frandsen, Michael W.; Wessol, Daniel E.; Wheeler, Floyd J.

    2001-01-16

    Methods and computer executable instructions are disclosed for ultimately developing a dosimetry plan for a treatment volume targeted for irradiation during cancer therapy. The dosimetry plan is available in "real-time" which especially enhances clinical use for in vivo applications. The real-time is achieved because of the novel geometric model constructed for the planned treatment volume which, in turn, allows for rapid calculations to be performed for simulated movements of particles along particle tracks there through. The particles are exemplary representations of neutrons emanating from a neutron source during BNCT. In a preferred embodiment, a medical image having a plurality of pixels of information representative of a treatment volume is obtained. The pixels are: (i) converted into a plurality of substantially uniform volume elements having substantially the same shape and volume of the pixels; and (ii) arranged into a geometric model of the treatment volume. An anatomical material associated with each uniform volume element is defined and stored. Thereafter, a movement of a particle along a particle track is defined through the geometric model along a primary direction of movement that begins in a starting element of the uniform volume elements and traverses to a next element of the uniform volume elements. The particle movement along the particle track is effectuated in integer based increments along the primary direction of movement until a position of intersection occurs that represents a condition where the anatomical material of the next element is substantially different from the anatomical material of the starting element. This position of intersection is then useful for indicating whether a neutron has been captured, scattered or exited from the geometric model. From this intersection, a distribution of radiation doses can be computed for use in the cancer therapy. The foregoing represents an advance in computational times by multiple factors of time magnitudes.

  9. Enrichment of magnetic particles using temperature and magnetic field gradients induced by benchtop fabricated micro-electromagnets.

    PubMed

    Hosseini, A; Philpott, D N; Soleymani, L

    2017-11-21

    The active transport of analytes inside biosensing systems is important for reducing the response time and enhancing the limit-of-detection of these systems. Due to the ease of functionalization with bio-recognition agents and manipulation with magnetic fields, magnetic particles are widely used for active and directed transport of biological analytes. On-chip active electromagnets are ideally suited for manipulating magnetic particles in an automated and miniaturized fashion inside biosensing systems. Unfortunately, the magnetic force exerted by these devices decays rapidly as we move away from the device edges, and increasing the generated force to the levels necessary for particle manipulation requires a parallel increase in the applied current and the resultant Joule heating. In this paper, we designed a study to understand the combined role of thermal and magnetic forces on the movement of magnetic particles in order to extend the interaction distance of on-chip magnetic devices beyond the device edges. For this purpose, we used a rapid prototyping method to create an active/passive on-chip electromagnet with a micro/nano-structured active layer and a patterned ferromagnetic passive layer. We demonstrated that the measured terminal velocities of particles positioned near the electromagnet edge (∼5.5 μm) closely reflect the values obtained by multi-physics modelling. Interestingly, we observed a two orders of magnitude deviation between the experimental and modelling results for the terminal velocities of particles far from the electromagnet edge (∼55.5 μm). Heat modelling of the system using experimentally-measured thermal gradients indicates that this discrepancy is related to the enhanced fluid movement caused by thermal forces. This study enables the rational design of thermo-magnetic systems for thermally driving and magnetically capturing particles that are positioned at distances tens to hundreds of microns away from the edges of on-chip magnetic devices.

  10. Method of making permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.

  11. The role of charged particles in the positive corona-generated photon count in a rod to plane air gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.

    The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.

  12. Method of making permanent magnets

    DOEpatents

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.

  13. Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles.

    PubMed

    Xu, Jie; Pu, Yuan; Yang, Xiao Jin; Wan, Pingyu; Wang, Rong; Song, Peng; Fisher, Adrian

    2017-09-05

    Water contamination with chlorinated hydrocarbons such as chloroform (CHCl 3 ), carbon tetrachloride (CCl 4 ) and trichloroethylene (TCE) is one of the major public health concerns. In this study, we explored the use of aluminum-iron alloys particles in millimeter scale for rapid removal of CHCl 3 , CCl 4 and TCE from water. Three types of Al-Fe alloy particles containing 10, 20 and 58 wt% of Fe (termed as Al-Fe10, Al-Fe20 and Al-Fe58) were prepared and characterized by electrochemical polarization, X-ray diffraction and energy dispersive spectrometer. For concentrations of 30-180 μg/L CHCl 3 , CCl 4 and TCE, a removal efficiency of 45-64% was achieved in a hydraulic contact time of less than 3 min through a column packed with 0.8-2 mm diameter of Al-Fe alloy particles. The concentration of Al and Fe ions released into water was less than 0.15 and 0.05 mg/L, respectively. Alloying Al with Fe enhances reactivity towards chlorinated hydrocarbons' degradation and the enhancement is likely the consequence of galvanic effects between different phases (Al, Fe and intermetallic Al-Fe compounds such as Al 13 Fe 4 , Fe 3 Al and FeAl 2 ) and catalytic role of these intermetallic Al-Fe compounds. The results demonstrate that the use of Al-Fe alloy particles offers a viable and green option for chlorinated hydrocarbons' removal in water treatment.

  14. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles.

    PubMed

    Pradhan, Sulena; Hedberg, Jonas; Blomberg, Eva; Wold, Susanna; Odnevall Wallinder, Inger

    2016-01-01

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30-80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3-15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.

  15. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    NASA Astrophysics Data System (ADS)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia

    2016-12-01

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  16. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.S.; Bellan, J.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects frommore » thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.« less

  17. Rocket measurements of energetic particles in the midlatitude precipitation zone

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  18. Lipoprotein Uptake by Neuronal Growth Cones in Vitro

    NASA Astrophysics Data System (ADS)

    Ignatius, Michael J.; Shooter, Eric M.; Pitas, Robert E.; Mahley, Robert W.

    1987-05-01

    Macrophages that rapidly enter injured peripheral nerve synthesize and secrete large quantities of apolipoprotein E. This protein may be involved in the redistribution of lipid, including cholesterol released during degeneration, to the regenerating axons. To test this postulate, apolipoprotein E-associated lipid particles released from segments of injured rat sciatic nerve and apolipoprotein E-containing lipoproteins from plasma were used to determine whether sprouting neurites, specifically their growth cones, possessed lipoprotein receptors. Pheochromocytoma (PC12) cells, which can be stimulated to produce neurites in vitro, were used as a model system. Apolipoprotein E-containing lipid particles and lipoproteins, which had been labeled with fluorescent dye, were internalized by the neurites and their growth cones; the unmetabolized dye appeared to be localized to the lysosomes. The rapid rate of accumulation in the growth cones precludes the possibility of orthograde transport of the fluorescent particles from the PC12 cell bodies. Thus, receptor-mediated lipoprotein uptake is performed by the apolipoprotein B,E(LDL) (low density lipoprotein) receptors, and in the regenerating peripheral nerve apolipoprotein E may deliver lipids to the neurites and their growth cones for membrane biosynthesis.

  19. Intra-jet shocks in two counter-streaming, weakly collisional plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.

    2012-07-15

    Counterstreaming laser-generated plasma jets can serve as a test-bed for the studies of a variety of astrophysical phenomena, including collisionless shock waves. In the latter problem, the jet's parameters have to be chosen in such a way as to make the collisions between the particles of one jet with the particles of the other jet very rare. This can be achieved by making the jet velocities high and the Coulomb cross-sections correspondingly low. On the other hand, the intra-jet collisions for high-Mach-number jets can still be very frequent, as they are determined by the much lower thermal velocities of themore » particles of each jet. This paper describes some peculiar properties of intra-jet hydrodynamics in such a setting: the steepening of smooth perturbations and shock formation affected by the presence of the 'stiff' opposite flow; the role of a rapid electron heating in shock formation; ion heating by the intrajet shock. The latter effect can cause rapid ion heating which is consistent with recent counterstreaming jet experiments by Ross et al.[Phys. Plasmas 19, 056501 (2012)].« less

  20. Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Schöfbeck, R.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M., Jr.; Carrera Jarrin, E.; Assran, Y.; Elkafrawy, T.; Ellithi Kamel, A.; Mahrous, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Dobrzynski, L.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Boletti, A.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Fanzago, F.; Gonella, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Yang, Y. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Markin, O.; Popova, E.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration

    2017-05-01

    Measurements of strange hadron (KS0, Λ + Λ ‾, and Ξ- +Ξ‾+) transverse momentum spectra in pp, pPb, and PbPb collisions are presented over a wide range of rapidity and event charged-particle multiplicity. The data were collected with the CMS detector at the CERN LHC in pp collisions at √{ s} = 7TeV, pPb collisions at √{sNN} = 5.02TeV, and PbPb collisions at √{sNN} = 2.76TeV. The average transverse kinetic energy is found to increase with multiplicity, at a faster rate for heavier strange particle species in all systems. At similar multiplicities, the difference in average transverse kinetic energy between different particle species is observed to be larger for pp and pPb events than for PbPb events. In pPb collisions, the average transverse kinetic energy is found to be slightly larger in the Pb-going direction than in the p-going direction for events with large multiplicity. The spectra are compared to models motivated by hydrodynamics.

  1. Electrokinetic transport phenomena: Mobility measurement and electrokinetic instability

    NASA Astrophysics Data System (ADS)

    Oddy, Michael Huson

    Miniaturization and integration of traditional bioassay procedures into microfabricated on-chip assay systems, commonly referred to as "Micro Total Analysis" (muTAS) systems, may have a significant impact on the fields of genomics, proteomics, and clinical analysis. These bioanalytical microsystems leverage electroosmosis and electrophoresis for sample transport, mixing, manipulation, and separation. This dissertation addresses the following three topics relevant to such systems: a new diagnostic for measuring the electrophoretic mobility of sub-micron, fluorescently-labeled particles and the electroosmotic mobility of a microchannel; a novel method and device for rapidly stirring micro- and nanoliter volume solutions for microfluidic bioanalytical applications; and a multiple-species electrokinetic instability model. Accurate measurement of the electrophoretic particle mobility and the electroosmotic mobility of microchannel surfaces is crucial to understanding the stability of colloidal suspensions, obtaining particle tracking-based velocimetry measurements of electroosmotic flow fields, and the quantification of electrokinetic bioanalytical device performance. A method for determining these mobilities from alternating and direct current electrokinetic particle tracking measurements is presented. The ability to rapidly mix fluids at low Reynolds numbers is important to the functionality of many bioanalytical, microfluidic devices. We present an electrokinetic process for rapidly stirring microflow streams by initiating an electrokinetic flow instability. The design, fabrication and performance analysis of two micromixing devices capable of rapidly stirring two low Reynolds number fluid streams are presented. Electroosmotic and electrophoretic transport in the presence of conductivity mismatches between reagent streams and the background electrolytes, can lead to an unstable flow field generating significant sample dispersion. In the multiple-species electrokinetic instability model, we consider a high aspect ratio microchannel geometry, a conductivity gradient orthogonal to the applied electric field, and a four-species chemistry model. A linear stability analysis of the depth-averaged governing equations shows unstable eigenmodes for conductivity ratios as close to unity as 1.01. Experiments and full nonlinear simulations of the governing equations were conducted for a conductivity ratio of 1.05. Images of the disturbance dye field from the nonlinear simulations show good qualitative and quantitative agreement with experiment. Species electromigration is shown to a have significant influence on the development of the conductivity field and instability dynamics in multi-ion configurations.

  2. Ion mobility analysis of lipoproteins

    DOEpatents

    Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA

    2007-08-21

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  3. Aerosol preparation of intact lipoproteins

    DOEpatents

    Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA

    2012-01-17

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  4. Lyophilic matrix method for dissolution and release studies of nanoscale particles.

    PubMed

    Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Hæggström, Edward; Yliruusi, Jouko

    2017-10-25

    We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The respiratory tract and the environment.

    PubMed Central

    Brain, J D

    1977-01-01

    The primary determinants of pulmonary disease are environmental. The same thinness and delicacy of the air-blood barrier which allows rapid exchange of oxygen and carbon dioxide also reduce its effectiveness as a barrier to inhaled allergens, carcinogens, toxic particles, and noxious gases, and micro-organisms. Adults breath 10,000 to 20,000 liters of air daily. This volume of air contains potentially hazardous contaminating particles and gases. Future research should explore the diverse physiological mechanisms which prevent the accumulation and deleterious action of inhaled particles and gases. Since most pulmonary diseases are either initiated by or at least aggravated by the inhalagion of particles and gases, the role of environmental factors in the development of respiratory disease is an area worthy of continued support. PMID:598343

  6. Dissipation of ionospheric irregularities by wave-particle and collisional interactions

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Pongratz, M. B.; Gray, S. P.; Thomsen, M. F.

    1982-01-01

    The nonlinear dissipation of plasma irregularities aligned parallel to an ambient magnetic field is studied numerically using a model which employs both wave-particle and collisional diffusion. A wave-particle diffusion coefficient derived from a local theory of the universal drift instability is used. This coefficient is effective in regions of nonzero plasma gradients and produces triangular-shaped irregularities with spectra which vary as f to the -4th, where f is the spatial frequency. Collisional diffusion acts rapidly on the vertices of the irregularities to reduce their amplitude. The simultaneous action of the two dissipative processes is more efficient than collisions acting alone. In this model, wave-particle diffusion mimics the forward cascade process of wave-wave coupling.

  7. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    DOEpatents

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  8. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Relativistic astrophysical plasma environments routinely produce intense high-energy emission, which is often observed to be nonthermal and rapidly flaring. The recently discovered gamma-ray (> 100 MeV) flares in Crab Pulsar Wind Nebula (PWN) provide a quintessential illustration of this, but other notable examples include relativistic active galactic nuclei (AGN) jets, including blazars, and Gamma-ray Bursts (GRBs). Understanding the processes responsible for the very efficient and rapid relativistic particle acceleration and subsequent emission that occurs in these sources poses a strong challenge to modern high-energy astrophysics, especially in light of the necessity to overcome radiation reaction during the acceleration process. Magnetic reconnection and collisionless shocks have been invoked as possible mechanisms. However, the inferred extreme particle acceleration requires the presence of coherent electric-field structures. How such large-scale accelerating structures (such as reconnecting current sheets) can spontaneously arise in turbulent astrophysical environments still remains a mystery. The proposed project will conduct a first-principles computational and theoretical study of kinetic turbulence in relativistic collisionless plasmas with a special focus on nonthermal particle acceleration and radiation emission. The main computational tool employed in this study will be the relativistic radiative particle-in-cell (PIC) code Zeltron, developed by the team members at the Univ. of Colorado. This code has a unique capability to self-consistently include the synchrotron and inverse-Compton radiation reaction force on the relativistic particles, while simultaneously computing the resulting observable radiative signatures. This proposal envisions performing massively parallel, large-scale three-dimensional simulations of driven and decaying kinetic turbulence in physical regimes relevant to real astrophysical systems (such as the Crab PWN), including the radiation reaction effects. In addition to measuring the general fluid-level statistical properties of kinetic turbulence (e.g., the turbulent spectrum in the inertial and sub-inertial range), as well as the overall energy dissipation and particle acceleration, the proposed study will also investigate their intermittency and time variability, resulting in direction- and time-resolved emitted photon spectra and direction- and energy-resolved light curves, which can then be compared with observations. To gain deeper physical insight into the intermittent particle acceleration processes in turbulent astrophysical environments, the project will also identify and analyze statistically the current sheets, shocks, and other relevant localized particle-acceleration structures found in the simulations. In particular, it will assess whether relativistic kinetic turbulence in PWN can self-consistently generate such structures that are long and strong enough to accelerate large numbers of particles to the PeV energies required to explain the Crab gamma-ray flares, and where and under what conditions such acceleration can occur. The results of this research will also advance our understanding the origin of ultra-rapid TeV flares in blazar jets and will have important implications for GRB prompt emission, as well as AGN radio-lobes and radiatively-inefficient accretion flows, such as the flow onto the supermassive black hole at our Galactic Center.

  9. Evidence of forward-backward multiplicity correlation at SPS energy

    NASA Astrophysics Data System (ADS)

    Bhoumik, Gopa; Bhattacharyya, Swarnapratim; Deb, Argha; Ghosh, Dipak

    In this paper, a detailed study of two-particle rapidity correlation has been presented by measuring the dynamical fluctuation variable σc2 in forward and backward pseudo-rapidity window of shower particles produced in the relativistic heavy ion collision, 16O-AgBr interactions at 60AGeV and 32S-AgBr interactions at 200AGeV. Variations of σc2 with rapidity gap between forward and backward zones and with the width of each zone have been studied. For both cases, σc2 increase with increasing either width of the zone or gap between the zones. Our findings show the presence of strong long-range correlation. Comparison of experimental results with MC-RAND events confirms the present correlation to be dynamical in nature. We have also compared our results with FRITIOF and UrQMD events. Such events also show the presence of correlation, but found to fail to reproduce the experimental results both quantitatively and qualitatively. Strength of correlation is dependent on the centrality of collision for experimental events, it decreases with centrality.

  10. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  11. Formation mechanisms of metal colloids

    NASA Astrophysics Data System (ADS)

    Halaciuga, Ionel

    Highly dispersed uniform metallic particles are widely used in various areas of technology and medicine and are likely to be incorporated into many other applications in the future. It is commonly accepted that size, shape and composition of the particles represent critical factors in most applications. Thus, understanding the mechanisms of formation of metal particles and the ways to control the physical (e.g. shape, size) and chemical (e.g. composition) properties is of great importance. In the current research, the formation of uniform silver spheres is investigated experimentally. The parameters that influence the formation of silver particles when concentrated iso-ascorbic acid and silver-polyamine complex solutions are rapidly mixed were studied in the absence of dispersants. We found that by varying the nature of the amine, temperature, concentration of reactants, silver/amine molar ratio, and the nature of the silver salt, the size of the resulting silver particles can be varied in a wide range (0.08--1.5 microm). The silver particles were formed by aggregation of nanosize subunits as substantiated by both electron microscopy and X-ray diffraction techniques and by the vivid rapid color changes during the chemical precipitation process. From the practical standpoint, the goal of this research was to prepare well dispersed spherical silver particles having a relatively smooth surface and a diameter of about 1 microm to satisfy the demands of the current electronic materials market. A two stage particle growth model previously developed to explain the narrow size distribution occurring in synthesis of gold spheres was applied to the present experimental system, and the parameters that control the size distribution characteristics were identified. The kinetic parameter required to match the final particle size was found to be in agreement with the one used previously in modeling formation of gold spheres, suggesting that similar kinetics governs the aggregation process. Furthermore, the two-stage particle growth model was used to account for the effects of solvent viscosity and temperature on the particle properties, particularly their size. As an application of the above mentioned study, the aggregation process that led to the formation of large silver spheres was used to deposit in a controlled manner layers of silver and other metals (Ni, Au) onto various metallic and non-metallic substrates. In the final section of this thesis methods to form nanosized primary particle strictly through diffusional growth are described. The highly crystalline metallic particles of various sizes and composition prepared provide performance characteristics that are complementary to the polycrystalline metallic particles described in the preceding sections.

  12. Measurement and Image Processing Techniques for Particle Image Velocimetry Using Solid-Phase Carbon Dioxide

    DTIC Science & Technology

    2014-03-27

    between the nozzle /shroud tube interface, where the liquid is allowed to rapidly expand from the smaller diameter of the nozzle into the larger diameter...the CO2(l) freezes and agglomerates in the shroud tube, producing particles that are larger than if the liquid were expanded through a single nozzle ...Traditional seeding materials used for gas flows . . . . . . . . . . . . . . . . . 17 2.6 Example correlation peak for one IR in PIV

  13. The properties and behavior of α-pinene secondary organic aerosol particles exposed to ammonia under dry conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, David M.; Imre, Dan; T. Martin, Scot

    Chemical transformations and aging of secondary organic aerosol (SOA) particles can alter their physical and chemical properties, including particle morphology. Ammonia, one of the common atmospheric reactive constituents, can react with SOA particles, changing their properties and behavior. At low relative humidity NH3 uptake by α-pinene SOA particles appears to be limited to the particle surface, which suggests that the reacted particles might not be homogeneous and have complex morphology. Here, we present a study aimed at detailed characterization of the effect of ammonia on the composition, density, morphology, shape, and evaporation kinetics of α-pinene SOA particles. We find thatmore » a small amount of NH3 diffuses and reacts throughout the particles bulk, while most of the ammoniated products result from the reaction of NH3 with carboxylic acids on the particle surface, leading to a slight increase in particle size. We show that the reaction products form a solid semi-volatile coating that is a few nanometers thick. This solid coating prevents coagulating particles from coalescing for over two days. However, when the gas phase is diluted this semi-volatile coating evaporates in minutes, which is ensued by rapid coalescence. The ammoniated products in the particle bulk affect particles evaporation kinetics, more so for the smaller particles that contain higher fraction of ammoniated products.« less

  14. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    NASA Astrophysics Data System (ADS)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  15. Airborne observations of newly formed boundary layer aerosol particles under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Altstädter, Barbara; Platis, Andreas; Jähn, Michael; Baars, Holger; Lückerath, Janine; Held, Andreas; Lampert, Astrid; Bange, Jens; Hermann, Markus; Wehner, Birgit

    2018-06-01

    This study describes the appearance of ultrafine boundary layer aerosol particles under classical non-favourable conditions at the research site of TROPOS (Leibniz Institute for Tropospheric Research). Airborne measurements of meteorological and aerosol properties of the atmospheric boundary layer (ABL) were repeatedly performed with the unmanned aerial system ALADINA (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) during three seasons between October 2013 and July 2015. More than 100 measurement flights were conducted on 23 different days with a total flight duration of 53 h. In 26 % of the cases, maxima of ultrafine particles were observed close to the inversion layer at altitudes between 400 and 600 m and the particles were rapidly mixed vertically and mainly transported downwards during short time intervals of cloud gaps. This study focuses on two measurement days affected by low-level stratocumulus clouds, but different wind directions (NE, SW) and minimal concentrations (< 4.6 µg m-3) of SO2, as a common indicator for precursor gases at ground. Taken from vertical profiles, the onset of clouds led to a non-linearity of humidity that resulted in an increased turbulence at the local-scale and caused fast nucleation e.g., but in relation to rapid dilution of surrounding air, seen in sporadic clusters of ground data, so that ultrafine particles disappeared in the verticality. The typical banana shape of new particle formation (NPF) and growth was not seen at ground and thus these days might not have been classified as NPF event days by pure surface studies.

  16. Laboratory studies of aqueous-phase oxidation of polyols in submicron particles

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2013-12-01

    Aqueous-phase oxidation has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. However most aqueous oxidation studies are performed in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation is carried out within submicron particles, allowing for gas-particle partitioning of reactants, intermediates, and products. Using Fenton chemistry as a source of hydroxyl radicals, and a high-resolution aerosol mass spectrometer (AMS) for online characterization of particle composition, we find that aqueous oxidation can be quite rapid. The formation of high concentrations of oxalic acid is observed in the particle phase with some loss of carbon to the gas phase, indicating the formation of volatile products. We see a rapid degradation of condensed-phase oxidation products upon exposure to ultraviolet lights (centered at 350 nm) suggesting that these products may exist as iron(III)-oxalate complexes. Similar results are also seen when oxidation is carried out in bulk solution (with AMS analysis of the atomized solution); however in some cases the mass loss is less than is observed for submicron particles, likely due to differences in partitioning of early-generation products. Such products can partition out of the aqueous phase at the low liquid water contents in the chamber but remain in solution for further aqueous processing in bulk oxidation experiments. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different than those in bulk oxidation, pointing to the need to carry out aqueous oxidation studies under atmospherically relevant partitioning conditions (with liquid water contents mimicking those of cloud droplets or wet aerosol).

  17. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    DOE PAGES

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; ...

    2016-10-06

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu 6Sn 5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 Kmore » (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu 6Sn 5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu 6Sn 5 observed, while in the melt spun alloy, Cu 6Sn 5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu 6Sn 5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. As a result, the reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu 6Sn 5 was maintained for both alloys.« less

  18. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    PubMed

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  20. Mechanical sieve for screening mineral samples

    NASA Technical Reports Server (NTRS)

    Otto, W. P.

    1970-01-01

    Mechanical sieve consists of three horizontal screens mounted in a vertical stack. A combination of rotation and tapping produces an even flow across the screens, dislodges trapped particles, an ensures rapid segregation of the sample.

  1. Advanced defect classification by smart sampling, based on sub-wavelength anisotropic scatterometry

    NASA Astrophysics Data System (ADS)

    van der Walle, Peter; Kramer, Esther; Ebeling, Rob; Spruit, Helma; Alkemade, Paul; Pereira, Silvania; van der Donck, Jacques; Maas, Diederik

    2018-03-01

    We report on advanced defect classification using TNO's RapidNano particle scanner. RapidNano was originally designed for defect detection on blank substrates. In detection-mode, the RapidNano signal from nine azimuth angles is added for sensitivity. In review-mode signals from individual angles are analyzed to derive additional defect properties. We define the Fourier coefficient parameter space that is useful to study the statistical variation in defect types on a sample. By selecting defects from each defect type for further review by SEM, information on all defects can be obtained efficiently.

  2. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium.

    PubMed

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-10-18

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  3. Interactive numerical flow visualization using stream surfaces

    NASA Technical Reports Server (NTRS)

    Hultquist, J. P. M.

    1990-01-01

    Particle traces and ribbons are often used to depict the structure of three-dimensional flowfields, but images produced using these models can be ambiguous. Stream surfaces offer a more visually intuitive method for the depiction of flowfields, but interactive response is needed to allow the user to place surfaces which reveal the essential features of a given flowfield. FLORA, a software package which supports the interactive calculation and display of stream surfaces on silicon graphics workstations, is described. Alternative methods for the integration of particle traces are examined, and calculation through computational space is found to provide rapid results with accuracy adequate for most purposes. Rapid calculation of traces is teamed with progressive refinement of appoximated surfaces. An initial approximation provides immediate user feedback, and subsequent improvement of the surface ensures that the final image is an accurate representation of the flowfield.

  4. Strangeness measurements with the PHOBOS experiment

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyslouch, B.

    2006-12-01

    Recent results on identified particle production from the PHOBOS experiment at the relativistic heavy-ion collider (RHIC) are summarized. Transverse momentum spectra of pions, kaons, protons and antiprotons from Au+Au collisions at \\sqrt{s_{NN}} = 62.4\\,GeV are presented close to mid-rapidity. Baryons have been found to have substantially harder transverse momentum spectra than mesons. The p/π+ ratio reaches unity at high pT, which fits into a smooth trend together with measurements at lower and higher collision energies. At very low transverse momenta no significant excess of particle yield was found, compared to extrapolations from higher pT. The net proton yield at mid-rapidity appears to be proportional to the number of participant nucleons in Au+Au collisions. The PHOBOS acceptance and mass resolution for the phi meson at low pT were studied in detail.

  5. Charged particle production in p+Pb collisions measured by the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Shulga, Evgeny; ATLAS Collaboration

    2017-01-01

    Per-event charged particle spectra and nuclear modification factors are measured with the ATLAS detector at the LHC in p+Pb interactions at √sNN = 5.02 TeV. Results are presented as a function of transverse momentum, rapidity, and in different intervals of collision centrality, which is characterised in p+Pb collisions by the total transverse energy measured over the pseudorapidity interval -3.2 < η < -4.9 in the direction of the lead beam. Three different calculations of the number of nucleons participating in p+Pb collisions have been performed, assuming the Glauber model and its Glauber-Gribov Colour Fluctuation extensions. The results using different models are compared with each other, as well as with other measurements made under the same conditions and also with centrality definition based on different rapidity intervals.

  6. In-air microfluidics: Drop and jet coalescence enables rapid multi-phase 3D printing

    NASA Astrophysics Data System (ADS)

    Visser, Claas Willem; Kamperman, Tom; Lohse, Detlef; Karperien, Marcel; University of Twente Collaboration

    2016-11-01

    For the first time, we connect and integrate the fields of microfluidics and additive manufacturing, by presenting a unifying technology that we call In-air microfluidics (IAMF). We impact two liquid jets or a jet and a droplet train while flying in-air, and control their coalescence and solidification. This approach enables producing monodisperse emulsions, particles, and fibers with controlled shape and size (10 to 300 µm) and production rates 100x higher than droplet microfluidics. A single device is sufficient to process a variety of materials, and to produce different particle or fiber shapes, in marked contrast to current microfluidic devices or printers. In-air microfluidics also enables rapid deposition onto substrates, for example to form 3D printed (bio)materials which are partly-liquid but still shape-stable.

  7. Femtoscopy with identified charged pions in proton-lead collisions at s NN = 5.02 TeV with ATLAS

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-28

    Bose-Einsmore » tein correlations between identified charged pions are measured for p+Pb collisions at s NN =5.02 TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28nb-1. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (kT) and rapidity (yππ) of the pair. Pairs are selected with a rapidity -2 < yππ < 1 and with an average transverse momentum 0.1 < kT < 0.8GeV. The effect of jet fragmentation on the two-particle correlation function is studied, and a method using opposite-charge pair data to constrain its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair kT. A correlation of the radii with the local charged-particle density is demonstrated. The scaling of the extracted radii with the mean number of participating nucleons is also used to compare a selection of initial-geometry models. The cross term Rol is measured as a function of rapidity, and a nonzero value is observed with 5.1σ combined significance for -1 < yππ < 1 in the most central events.« less

  8. Femtoscopy with identified charged pions in proton-lead collisions at s NN = 5.02 TeV with ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    Bose-Einsmore » tein correlations between identified charged pions are measured for p+Pb collisions at s NN =5.02 TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28nb-1. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (kT) and rapidity (yππ) of the pair. Pairs are selected with a rapidity -2 < yππ < 1 and with an average transverse momentum 0.1 < kT < 0.8GeV. The effect of jet fragmentation on the two-particle correlation function is studied, and a method using opposite-charge pair data to constrain its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair kT. A correlation of the radii with the local charged-particle density is demonstrated. The scaling of the extracted radii with the mean number of participating nucleons is also used to compare a selection of initial-geometry models. The cross term Rol is measured as a function of rapidity, and a nonzero value is observed with 5.1σ combined significance for -1 < yππ < 1 in the most central events.« less

  9. Femtoscopy with identified charged pions in proton-lead collisions at √{sNN}=5.02 TeV with ATLAS

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconadaâ Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarezâ Gonzalez, B.; Álvarezâ Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaralâ Coutinho, Y.; Amelung, C.; Amidei, D.; Amorâ Dosâ Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperioâ Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barrancoâ Navarro, L.; Barreiro, F.; Barreiroâ Guimarãesâ Daâ Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benharâ Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaasâ Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaiaâ Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbaoâ Deâ Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossioâ Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breadenâ Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckmanâ Deâ Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabreraâ Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calventeâ Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camachoâ Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminalâ Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Canoâ Bret, M.; Cantero, J.; Cao, T.; Capeansâ Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castilloâ Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerdaâ Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavezâ Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaouiâ Elâ Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Condeâ Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispinâ Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadarâ Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; Daâ Cunhaâ Sargedasâ Deâ Sousa, M. J.; Daâ Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Danoâ Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; Deâ Asmundis, R.; Deâ Benedetti, A.; Deâ Castro, S.; Deâ Cecco, S.; Deâ Groot, N.; Deâ Jong, P.; Deâ Laâ Torre, H.; Deâ Lorenzi, F.; Deâ Maria, A.; Deâ Pedis, D.; Deâ Salvo, A.; Deâ Sanctis, U.; Deâ Santo, A.; Deâ Vivieâ Deâ Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Delâ Gaudio, M.; Delâ Peso, J.; Delâ Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Dellaâ Pietra, M.; Dellaâ Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Diâ Ciaccio, A.; Diâ Ciaccio, L.; Diâ Clemente, W. K.; Diâ Donato, C.; Diâ Girolamo, A.; Diâ Girolamo, B.; Diâ Micco, B.; Diâ Nardo, R.; Diâ Simone, A.; Diâ Sipio, R.; Diâ Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díezâ Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Doâ Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duranâ Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Elâ Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucciâ Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandezâ Martinez, P.; Fernandezâ Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreiraâ Deâ Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferrettoâ Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Floresâ Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullanaâ Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garayâ Walls, F. M.; García, C.; Garcíaâ Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gasconâ Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalvesâ Pintoâ Firminoâ Daâ Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonzálezâ Deâ Laâ Hoz, S.; Gonzalezâ Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrezâ Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriquesâ Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernándezâ Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbeâ Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenezâ Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Justeâ Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Laâ Rosa, A.; Laâ Rosaâ Navarro, J. L.; Laâ Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagniâ Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Leâ Dortz, O.; Leâ Guirriec, E.; Leâ Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmannâ Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Li, B.; Li, Changqiao; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorenteâ Merino, J.; Lloyd, S. L.; Loâ Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopezâ Mateos, D.; Lopezâ Paredes, B.; Lopezâ Paz, I.; Lopezâ Solis, A.; Lorenz, J.; Lorenzoâ Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machadoâ Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaesâ Deâ Andradeâ Filho, L.; Manjarresâ Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martinâ Ditâ Latour, B.; Martinez, M.; Martinezâ Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Melladoâ Garcia, B. R.; Melo, M.; Meloni, F.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyerâ Zuâ Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejoâ Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Morenoâ Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munozâ Sanchez, F. J.; Murilloâ Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjoâ Garcia, R. F.; Narayan, R.; Narriasâ Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyenâ Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiroâ Seabra, L. F.; Olivaresâ Pino, S. A.; Oliveiraâ Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Oteroâ Yâ Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pachecoâ Pages, A.; Pachecoâ Rodriguez, L.; Padillaâ Aranda, C.; Paganâ Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduroâ Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredesâ Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedrazaâ Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perezâ Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozoâ Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguezâ Perez, A.; Rodriguezâ Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romanoâ Saez, S. M.; Romeroâ Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safaiâ Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazarâ Loyola, J. E.; Salek, D.; Salesâ Deâ Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchezâ Martinez, V.; Sanchezâ Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyoâ Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoalehâ Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solansâ Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapiaâ Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavaresâ Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temple, D.; Tenâ Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticseâ Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torróâ Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdesâ Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallsâ Ferrer, J. A.; Vanâ Denâ Wollenberg, W.; Vanâ Derâ Deijl, P. C.; Vanâ Derâ Graaf, H.; Vanâ Eldik, N.; Vanâ Gemmeren, P.; Vanâ Nieuwkoop, J.; Vanâ Vulpen, I.; Vanâ Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquezâ Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickeyâ Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplanaâ Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; Vonâ Derâ Schmitt, H.; Vonâ Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjesâ Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yauâ Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zurâ Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-12-01

    Bose-Einstein correlations between identified charged pions are measured for p +Pb collisions at √{sNN}=5.02 TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28 nb-1 . Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (kT) and rapidity (yππ ★) of the pair. Pairs are selected with a rapidity -2

  10. A new apparatus for real-time assessment of the particle size distribution of disintegrating tablets.

    PubMed

    Quodbach, Julian; Kleinebudde, Peter

    2014-11-01

    The aim of this study is the introduction of a novel apparatus that is capable of continuously measuring the particle size reduction of disintegrating tablets and analysis of the obtained results. The apparatus is constructed such that no particles pass directly through the pumping system. Thereby, the overall energy input into the particle suspension is reduced, and continuous measurement is possible without rapid destruction of the generated particles. The detected particle sizes at the beginning and at the end of the measurement differ greatly, depending on the applied disintegrant. The median particle sizes at the end of the measurement vary between 621.5 and 178.0 μm for different disintegrants. It is demonstrated that the particle size reduction follows an exponential function and that the fit parameters can be used to describe the disintegration behavior. A strong correlation between the median particle size of crospovidone disintegrants and generated particle size of the tablets is observed. This could be due to a more homogeneous distribution of the disintegrant particles in the tablets. Similar trends are observed for sodium starch glycolate and croscarmellose sodium. The new apparatus provides an innovative method to describe disintegrant effectiveness and efficiency. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Effect of Variable Solvents on Particle Size of Geranium Oil-Loaded Solid Lipid Nanoparticle (Ge-SLN) For Mosquito Repellent Applications

    NASA Astrophysics Data System (ADS)

    Asnawi, Syalwati; Aziz, Azila A.; Aziz, Ramlan A.

    2009-06-01

    A new delivery system for insect repellent is proposed by the incorporation of geranium oil into solid lipid nanoparticle (SLN). A variety of solvents which act as co-surfactants, were introduced to increase the particle size of GE-SLN. Ethanol, which has a high boiling point and a long chain alcohol produced larger particle than dichloromethane. The structure of SLN was not stable when methanol and acetone were used as co-solvents. Concentration of solvents can also influence the size of SLN. In vitro release experiments showed that SLN was able to reduce the rapid evaporation of geranium oil.

  12. High-temperature synthesis of silica particles by the chloride method in the regime of counter flow jet quenching

    NASA Astrophysics Data System (ADS)

    Kartaev, E. V.; Emel'kin, V. A.; Aul'chenko, S. M.

    2017-10-01

    The experimental and numerical investigations of synthesis of silica (SiO2) nanoparticles from premixed gaseous silicon tetrachloride (SiCl4) and oxygen of dry air in the high-temperature nitrogen flow of plasma-chemical reactor have been carried out. The regime of counter flow jet quenching of high-temperature heterogeneous flow has been utilized. The latter provided a rapid cooling of silica particles under nonequilibrium conditions with substantial temperature gradients. Synthesized silica particles were amorphous, with surface-average size being about 28 nm. The results of numerical calculations are found to agree qualitatively with experimental data.

  13. Instrument Would Detect and Collect Biological Aerosols

    NASA Technical Reports Server (NTRS)

    Savoy, Steve; Mayo, Mike

    2006-01-01

    A proposed compact, portable instrument would sample micron-sized airborne particles, would discriminate between biological ones (e.g., bacteria) and nonbiological ones (e.g., dust particles), and would collect the detected biological particles for further analysis. The instrument is intended to satisfy a growing need for means of rapid, inexpensive collection of bioaerosols in a variety of indoor and outdoor settings. Purposes that could be served by such collection include detecting airborne pathogens inside buildings and their ventilation systems, measuring concentrations of airborne biological contaminants around municipal waste-processing facilities, monitoring airborne effluents from suspected biowarfare facilities, and warning of the presence of airborne biowarfare agents

  14. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  15. Gene delivery to skin using biolistics.

    PubMed

    Heiser, William C

    2006-06-01

    INTRODUCTION Biolistics ("biological ballistics") or particle bombardment provides a rapid and simple physical procedure for delivering genes into cells (Klein et al. 1987; Yang et al. 1990). The technique has many advantages-plasmids may be used for delivery, DNA theoretically can be delivered to any cell type, and genes may be delivered to cells in vitro, ex vivo, or in vivo. DNA-coated gold particles are distributed evenly along the length of the tubing, which is subsequently cut into short sections of cartridges to be used in a gene gun. The Helios Gene Gun uses a pulse of helium to launch the DNA-coated particles, spreading them onto the target cells.

  16. Assessing the dietary bioavailability of metals associated with natural particles: Extending the use of the reverse labeling approach to zinc

    USGS Publications Warehouse

    Croteau, Marie-Noele; Cain, Daniel J.; Fuller, Christopher C.

    2017-01-01

    We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66Zn assimilation into the snail’s soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.

  17. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    NASA Astrophysics Data System (ADS)

    Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.

    2010-03-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  18. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  19. Effects of solar radiation on the orbits of small particles

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  20. Assessing the Dietary Bioavailability of Metals Associated with Natural Particles: Extending the Use of the Reverse Labeling Approach to Zinc.

    PubMed

    Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C

    2017-03-07

    We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67 Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66 Zn assimilation into the snail's soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.

  1. Microscopic distribution patterns of microspheres deposited by inhalation in lungs of rats, guinea pigs, and dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snipes, M.B.; Guilmette, R.A.; Nikula, K.J.

    1995-12-01

    Acute inhalation exposures of mammalian species to small amounts of poorly soluble particles result in deposition of the particles in the head airways, tracheobronchial region, and pulmonary region of the respiratory tract. Most of the particles that deposit in the head airways and tracheobronchial region are believed to clear rapidly, but some as yet undefined fraction of the particles is retained in the airway epithelium or subepithelial interstitium for extended times. This long-term retention has important implications for the new respiratory tract dosimetry model of the International Commission on Radiological Protection because particles retained within the region can result inmore » long-term exposure of airway epithelial cells. Preliminary results from this study demonstrate that a substantial fraction of the PSL microspheres inhaled by these rats, guinea pigs, and dogs was incorporated into the epithelium and interstitium of the tracheobronchial region.« less

  2. Biofunctionalization of silica-coated magnetic particles mediated by a peptide

    NASA Astrophysics Data System (ADS)

    Care, Andrew; Chi, Fei; Bergquist, Peter L.; Sunna, Anwar

    2014-08-01

    A linker peptide sequence with affinity to silica-containing materials was fused to Streptococcus protein G', an antibody-binding protein. This recombinant fusion protein, linker-protein G (LPG) was produced in E. coli and exhibited strong affinity to silica-coated magnetic particles and was able to bind to them at different pHs, indicating a true pH-independent binding. LPG was used as an anchorage point for the oriented immobilization of antibodies onto the surface of the particles. These particle-bound "LPG-Antibody complexes" mediated the binding and recovery of different cell types (e.g., human stem cells, Legionella, Cryptosporidium and Giardia), enabling their rapid and simple visualization and identification. This strategy was used also for the efficient capture of Cryptosporidium oocysts from water samples. These results demonstrate that LPG can mediate the direct biofunctionalization of silica-coated magnetic particles without the need for complex surface chemical modification.

  3. Hadronic expansion dynamics in central Pb+Pb collisions at 158 GeV per nucleon

    DOE PAGES

    Appelshäuser, H.

    1998-03-24

    Two-particle correlation functions of negative hadrons over wide phase space, and transverse mass spectra of negative hadrons and deuterons near mid-rapidity have been measured in central Pb+Pb collisions at 158 GeV per nucleon by the NA49 experiment at the CERN SPS. A novel Coulomb correction procedure for the negative two-particle correlations is employed making use of the measured oppositely charged particle correlation. Within an expanding source scenario these results are used to extract the dynamic characteristics of the hadronic source, resolving the ambiguities between the temperature and transverse expansion velocity of the source, that are unavoidable when single and twomore » particle spectra are analysed separately. Lastly, the source shape, the total duration of the source expansion, the duration of particle emission, the freeze-out temperature and the longitudinal and transverse expansion velocities are deduced.« less

  4. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  5. Compact solid source of hydrogen gas

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  6. Charged particle beam scanning using deformed high gradient insulator

    DOEpatents

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  7. The role of particle collisions in pneumatic transport

    NASA Technical Reports Server (NTRS)

    Mastorakos, E.; Louge, M.; Jenkins, J. T.

    1989-01-01

    A model of dilute gas-solid flow in vertical risers is developed in which the particle phase is treated as a granular material, the balance equations for rapid granular flow are modified to incorporate the drag force from the gas, and boundary conditions, based on collisional exchanges of momentum and energy at the wall, are employed. In this model, it is assumed that the particle fluctuations are determined by inter-particle collisions only and that the turbulence of the gas is unaffected by the presence of the particles. The model is developed in the context of, but not limited to, steady, fully developed flow. A numerical solution of the resulting governing equations provides concentration profiles generally observed in dilute pneumatic flow, velocity profiles in good agreement with the measurements of Tsuji, et al. (1984), and an explanation for the enhancement of turbulence that they observed.

  8. Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging.

    PubMed

    Santarpia, Joshua L; Pan, Yong-Le; Hill, Steven C; Baker, Neal; Cottrell, Brian; McKee, Laura; Ratnesar-Shumate, Shanna; Pinnick, Ronald G

    2012-12-31

    A laboratory system for exposing aerosol particles to ozone and rapidly measuring the subsequent changes in their single-particle fluorescence is reported. The system consists of a rotating drum chamber and a single-particle fluorescence spectrometer (SPFS) utilizing excitation at 263 nm. Measurements made with this system show preliminary results on the ultra-violet laser-induced-fluorescence (UV-LIF) spectra of single aerosolized particles of Yersinia rohdei, and of MS2 (bacteriophage) exposed to ozone. When bioparticles are exposed in the chamber the fluorescence emission peak around 330 nm: i) decreases in intensity relative to that of the 400-550 nm band; and ii) shifts slightly toward shorter-wavelengths (consistent with further drying of the particles). In these experiments, changes were observed at exposures below the US Environmental Protection Agency (EPA) limits for ozone.

  9. Numerical Study on the Particle Trajectory Tracking in a Micro-UV Bio-Fluorescence Sensor.

    PubMed

    Byeon, Sun-Seok; Cho, Moon-Young; Lee, Jong-Chul; Kim, Youn-Jea

    2015-03-01

    A micro-UV bio-fluorescence sensor was developed to detect primary biological aerosols including bacteria, bacterial spores, fungal spores, pollens, viruses, algae, etc. In order to effectively detect the bio-particles in a micro-UV bio-fluorescence sensor, numerical calculations were performed to adjust for appropriate flow conditions of the sensor by regulating the sample aerosols and sheath flow. In particular, a CFD-based model of hydrodynamic processes was developed by computing the trajectory of particles using commercially available ANSYS CFX-14 software and the Lagrangian tracking model. The established model was evaluated with regard to the variation of sheath flow rate and particle size. Results showed that the sheath flow was changed rapidly at the end of nozzle tip, but the sample particles moved near the center of aerosol jet for aerodynamic focusing with little deviation from the axis.

  10. Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors

    DOEpatents

    Goretta, Kenneth C.; Lanagan, Michael T.; Miller, Dean J.; Sengupta, Suvankar; Parker, John C.; Hu, Jieguang; Balachandran, Uthamalingam; Siegel, Richard W.; Shi, Donglu

    1999-01-01

    A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology.

  11. Identified hadron spectra from PHOBOS

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wysłouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{sNN} = 200 GeV have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  12. Identified hadron spectra from PHOBOS

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyslouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{s_{{\\rm NN}}} = 200\\,{\\rm GeV} have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  13. Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting

    DOE PAGES

    Jung, Seung-Yong; Notton, Timothy; Fong, Erika; ...

    2015-01-07

    Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min -1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.

  14. Effective grain pinning revealed by nanoscale electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y. Q.; Tang, W.; Dennis, K. W.

    2011-03-21

    The grain pinning behavior of TiC particles in a rapidly solidified MRE-Fe-B (MRE = Nd + Y + Dy) nanocrystalline hard magnet was studied using electron tomography (ET). The 3D reconstruction overcomes the inherent 2D nature of conventional transmission electronmicroscopy (TEM) to reveal how this grain boundary phase controls the nanoscale structure in the rapidly solidified alloy. The 3D reconstruction was performed on the optimally annealed alloy (750 C/15 min) with hard magnetic properties of M{sub r} = 8.1 kGs, H{sub c} = 6.2 kOe, (BH){sub max} = 11.2 MGOe measured at 300 k. The sampled volume, 425 x 425more » x 92.5 nm{sup 3}, contains more than 20 grains of the RE2-14-1 phase and more than 70 TiC nanoparticles. The TiC grains shapes depend on their sizes and locations along the grain boundary. Most of the TiC particles are oval or short rod like shapes and range from 5 nm to 10 nm. TiC particles less than 10 nm formed between adjacent 2-14-1 grains, while the largest ones formed at triple junctions. There are -1.7 x 10{sup 8} TiC particles within a 1 mm{sup 3} volume in the alloy. This accounts for the strong grain boundary pinning effect, which limits grain growth during annealing.« less

  15. Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection.

    PubMed

    Gagnon, Zachary; Chang, Hsueh-Chia

    2005-10-01

    Tailor-designed alternating current electroosmotic (AC-EO) stagnation flows are used to convect bioparticles globally from a bulk solution to localized dielectrophoretic (DEP) traps that are aligned at the flow stagnation points. The multiscale trap, with a typical trapping time of seconds for a dilute 70 microL volume of 10(3) particles per cc sample, is several orders of magnitude faster than conventional DEP traps and earlier AC-EO traps with parallel, castellated, or finger electrodes. A novel serpentine wire capable of sustaining a high voltage, up to 2500 V(RMS), without causing excessive heat dissipation or Faradaic reaction in strong electrolytes is fabricated to produce the strong AC-EO flow with two separated stagnation lines, one aligned with the field minimum and one with the field maximum. The continuous wire design allows a large applied voltage without inducing Faradaic electrode reactions. Particles are trapped within seconds at one of the traps depending on whether they suffer negative or positive DEP. The particles can also be rapidly released from their respective traps by varying the frequency of the applied AC field below particle-distinct cross-over frequencies. Zwitterion addition to the buffer allows further geometric and frequency alignments of the AC-EO and DEP motions. The same device hence allows fast trapping, detection, sorting, and characterization on a sample with realistic conductivity, volume, and bacteria count.

  16. Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection.

    PubMed

    Daaboul, George G; Lopez, Carlos A; Chinnala, Jyothsna; Goldberg, Bennett B; Connor, John H; Ünlü, M Selim

    2014-06-24

    Rapid, sensitive, and direct label-free capture and characterization of nanoparticles from complex media such as blood or serum will broadly impact medicine and the life sciences. We demonstrate identification of virus particles in complex samples for replication-competent wild-type vesicular stomatitis virus (VSV), defective VSV, and Ebola- and Marburg-pseudotyped VSV with high sensitivity and specificity. Size discrimination of the imaged nanoparticles (virions) allows differentiation between modified viruses having different genome lengths and facilitates a reduction in the counting of nonspecifically bound particles to achieve a limit-of-detection (LOD) of 5 × 10(3) pfu/mL for the Ebola and Marburg VSV pseudotypes. We demonstrate the simultaneous detection of multiple viruses in a single sample (composed of serum or whole blood) for screening applications and uncompromised detection capabilities in samples contaminated with high levels of bacteria. By employing affinity-based capture, size discrimination, and a "digital" detection scheme to count single virus particles, we show that a robust and sensitive virus/nanoparticle sensing assay can be established for targets in complex samples. The nanoparticle microscopy system is termed the Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) and is capable of high-throughput and rapid sizing of large numbers of biological nanoparticles on an antibody microarray for research and diagnostic applications.

  17. 234Th: 238U disequilibrium as an indicator of sediment resuspension in Thermaikos Gulf, northwestern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Muir, G. K. P.; Pates, J. M.; Karageorgis, A. P.; Kaberi, H.

    2005-12-01

    234Th: 238U disequilibria have been used extensively as tracers of particle dynamics in marine environments. 234Th ( t1/2=24.1 days) can be used as "proxy" for particle reactive pollutants, due to their similar rapid rate of scavenging onto particles and subsequent removal from the water column, to the sediments. Radioactive disequilibrium can be exploited to determine the rates and time-scales of processes occurring over days to months; in this instance the residence times of dissolved and particulate species with the benthic nepheloid layer (BNL). Three sampling cruises were undertaken in Thermaikos Gulf (NW Aegean Sea) during contrasting periods, to examine the impact of natural and anthropogenic activity on sediment resuspension. September and October 2001 represented background and trawling periods, respectively; January 2002 represented a mixed period, of trawling and storms. Dissolved 234Th is scavenged actively at the BNL, in the presence of suspended particulate material (SPM), with a mean residence time of 16 days. There is a weak inverse correlation between dissolved 234Th residence time and SPM concentration in the BNL, with the shortest residence times occurring during October 2001. No relationship was observed between particulate 234Th activities and SPM concentrations, indicating that particles are rapidly removed from the system, either by sinking or advection. The mean particulate 234Th residence time is 5 days.

  18. Experimental measurement of the orbital paths of particles sedimenting within a rotating viscous fluid as influenced by gravity

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1992-01-01

    Measurements were taken of the path of a simulated typical tissue segment or 'particle' within a rotating fluid as a function of gravitational strength, fluid rotation rate, particle sedimentation rate, and particle initial position. Parameters were examined within the useful range for tissue culture in the NASA rotating wall culture vessels. The particle moves along a nearly circular path through the fluid (as observed from the rotating reference frame of the fluid) at the same speed as its linear terminal sedimentation speed for the external gravitational field. This gravitationally induced motion causes an increasing deviation of the particle from its original position within the fluid for a decreased rotational rate, for a more rapidly sedimenting particle, and for an increased gravitational strength. Under low gravity conditions (less than 0.1 G), the particle's motion through the fluid and its deviation from its original position become negligible. Under unit gravity conditions, large distortions (greater than 0.25 inch) occur even for particles of slow sedimentation rate (less than 1.0 cm/sec). The particle's motion is nearly independent of the particle's initial position. Comparison with mathematically predicted particle paths show that a significant error in the mathematically predicted path occurs for large particle deviations. This results from a geometric approximation and numerically accumulating error in the mathematical technique.

  19. Filtration of submicrometer particles by pelagic tunicates

    PubMed Central

    Sutherland, Kelly R.; Madin, Laurence P.; Stocker, Roman

    2010-01-01

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d ∼0.1 μm) at low velocity (U = 1.6 ± 0.6 cm·s−1, mean ± SD) and is thus a low Reynolds-number (Re ∼10−3) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-μm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 μm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-μm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 μm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean. PMID:20696887

  20. Filtration of submicrometer particles by pelagic tunicates.

    PubMed

    Sutherland, Kelly R; Madin, Laurence P; Stocker, Roman

    2010-08-24

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-microm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 microm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-microm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 microm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean.

  1. Defining the sizes of airborne particles that mediate influenza transmission in ferrets.

    PubMed

    Zhou, Jie; Wei, Jianjian; Choy, Ka-Tim; Sia, Sin Fun; Rowlands, Dewi K; Yu, Dan; Wu, Chung-Yi; Lindsley, William G; Cowling, Benjamin J; McDevitt, James; Peiris, Malik; Li, Yuguo; Yen, Hui-Ling

    2018-03-06

    Epidemics and pandemics of influenza are characterized by rapid global spread mediated by non-mutually exclusive transmission modes. The relative significance between contact, droplet, and airborne transmission is yet to be defined, a knowledge gap for implementing evidence-based infection control measures. We devised a transmission chamber that separates virus-laden particles by size and determined the particle sizes mediating transmission of influenza among ferrets through the air. Ferret-to-ferret transmission was mediated by airborne particles larger than 1.5 µm, consistent with the quantity and size of virus-laden particles released by the donors. Onward transmission by donors was most efficient before fever onset and may continue for 5 days after inoculation. Multiple virus gene segments enhanced the transmissibility of a swine influenza virus among ferrets by increasing the release of virus-laden particles into the air. We provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency. Copyright © 2018 the Author(s). Published by PNAS.

  2. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    NASA Astrophysics Data System (ADS)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  3. Tensor hypercontracted ppRPA: Reducing the cost of the particle-particle random phase approximation from O(r {sup 6}) to O(r {sup 4})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenvi, Neil; Yang, Yang; Yang, Weitao

    In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r{sup 6}), the THC-ppRPA algorithm scales asymptotically as only O(r{sup 4}), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditionalmore » ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.« less

  4. Tensor hypercontracted ppRPA: Reducing the cost of the particle-particle random phase approximation from O(r 6) to O(r 4)

    NASA Astrophysics Data System (ADS)

    Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-07-01

    In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r6), the THC-ppRPA algorithm scales asymptotically as only O(r4), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditional ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.

  5. Mutagenicity of particulate emissions from the M16 rifle: variation with particle size.

    PubMed

    Palmer, W G; Andrews, A W; Mellini, D; Terra, J A; Hoffmann, F J; Hoke, S H

    1994-08-01

    Emissions generated by firing the M16 rifle with the propellant WC844 in a combustion chamber designed to simulate conditions of actual use were tested for mutagenic activity in the Salmonella/Ames assay. Dimethyl sulfoxide extracts of emissions collected from either the breech or muzzle end of the rifle were mutagenic in three strains of Salmonella (TA1537, TA1538, and TA98) both in the presence and absence of metabolic activation systems (S9). The extracts were negative in strains TA100 and TA102. Aerosols generated by firing the M16 rifle were fractionated according to aerodynamic diameter. Submicrometer particles were far more mutagenic than particles with aerodynamic diameters between 1 and 15 microns. The mutagens associated with the smaller particles were more active in the presence of S9, while extracts of larger particles were as active, or more active, in the absence of S9. Heavier particles, which settled rapidly out of the airstream, were not mutagenic.

  6. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simulations of small solid accretion on to planetesimals in the presence of gas

    NASA Astrophysics Data System (ADS)

    Hughes, A. G.; Boley, A. C.

    2017-12-01

    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  8. The sensitivity of particle pH to NH3: Can high NH3 cause London Fog conditions?

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Nenes, A.

    2017-12-01

    High ammonia emissions from agriculture or other sources have been suggested to elevate ambient particle pH levels to near neutral acidity (pH=7), a condition that promotes rapid SO2 oxidation by NO2 to form aerosol sulfate concentration consistent with "London fog" levels. This mechanism has been used to explain pollution haze events in China. Predicted pH for locations in the US and Europe show fine particles are highly acidic with pH typically less than 2. The results are consistent with measured ammonia and nitric acid gas-particle partitioning, validating predicted pH levels. Using these data sets from representative sites around the world we conduct a thermodynamic analysis of aerosol pH and its sensitivity to ammonia levels. We find that particle pH, regardless of ammonia levels, is always acidic even for the unusually high ammonia levels found in highly polluted Asian cities, Beijing (pH=4.5) and Xi'an (pH=5), locations where sulfate production from NOx is proposed. These results indicate that sulfur dioxide oxidation through a NO2-mediated pathway is not likely in China, nor any other region of the world (e.g., US, Mediterranean) since the fine aerosol is consistently acidic. The mildly acidic conditions would, however, permit rapid oxidation of sulfur dioxide through transition metal chemistry. The limited alkalinity from the carbonate buffer in dust and seasalt can provide the only likely set of conditions where NO2-mediated oxidation of SO2 outcompetes with other well-established pathways.

  9. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  10. The Ultrafine Mineralogy of a Molten Interplanetary Dust Particle as an Example of the Quench Regime of Atmospheric Entry Heating

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    Melting and degassing of interplanetary dust particle L2005B22 at approx. 1200 C was due to flash heating during atmospheric entry. Preservation of the porous particle texture supports rapid quenching from the peak heating temperature whereby olivine and pyroxene nanocrystals (3 nm-26 nm) show partial devitrification of the quenched melt at T approx. = 450 C - 740 C. The implied ultrahigh cooling rates are calculated at approx. 105 C/h-106 C/h, which is consistent with quench rates inferred from the temperature-time profiles based on atmospheric entry heating models. A vesicular rim on a nonstoichiometric relic forsterite grain in this particle represents either evaporative magnesium loss during flash heating or thermally annealed ion implantation texture.

  11. Determining the risk of cardiovascular disease using ion mobility of lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2010-05-11

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  12. Zinc Nucleation and Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Michael, B. Patrick; Nuth, J. A., III; Lilleleht, L. U.; Vondrak, Richard R. (Technical Monitor)

    2000-01-01

    We report our experiences with zinc nucleation in a microgravity environment aboard NASA's Reduced Gravity Research Facility. Zinc vapor is produced by a heater in a vacuum chamber containing argon gas. Nucleation is induced by cooling and its onset is easily detected visually by the appearance of a cloud of solid, at least partially crystalline zinc particles. Size distribution of these particles is monitored in situ by photon correlation spectroscopy. Samples of particles are also extracted for later analysis by SEM. The initially rapid increase in particle size is followed by a slower period of growth. We apply Scaled Nucleation Theory to our data and find that the derived critical temperature of zinc, the critical cluster size at nucleation, and the surface tension values are all in reasonably good agreement with their accepted literature values.

  13. Computational Prediction of Cryogenic Micro-nano Solid Nitrogen Particle Production Using Laval Nozzle for Physical Photo Resist Removal-cleaning Technology

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Abe, Haruto; Ochiai, Naoya

    The fundamental characteristics of the cryogenic single-component micro-nano solid nitrogen (SN2) particle production using super adiabatic Laval nozzle and its application to the physical photo resist removal-cleaning technology are investigated by a new type of integrated measurement coupled computational technique. As a result of present computation, it is found that high-speed ultra-fine SN2 particles are continuously generated due to the freezing of liquid nitrogen (LN2) droplets induced by rapid adiabatic expansion of transonic subcooled two-phase nitrogen flow passing through the Laval nozzle. Furthermore, the effect of SN2 particle diameter, injection velocity, and attack angle to the wafer substrate on resist removal-cleaning performance is investigated in detail by integrated measurement coupled computational technique.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahl, R. J.; Trott, W. M.; Snedigar, S.

    A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{mu}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{mu}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visiblemore » induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaneda, Jaime N.; Pahl, Robert J.; Snedigar, Shane

    A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{micro}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{micro}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visiblemore » induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.« less

  16. Synthesis of ordered L10-type FeNi nanoparticles

    DOEpatents

    Pinkerton, Frederick E.

    2015-09-22

    Particles of iron and nickel are added to a flowing plasma stream which does not chemically alter the iron or nickel. The iron and nickel are heated and vaporized in the stream, and then a cryogenic fluid is added to the stream to rapidly cause the formation of nanometer size particles of iron and nickel. The particles are separated from the stream. The particles are preferably formed as single crystals in which the iron and nickel atoms are organized in a tetragonal L1.sub.0 crystal structure which displays magnetic anisotropy. A minor portion of an additive, such as titanium, vanadium, aluminum, boron, carbon, phosphorous, or sulfur, may be added to the plasma stream with the iron and nickel to enhance formation of the desired crystal structure.

  17. Progress towards a rapidly rotating ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; van de Graaff, Michael; Cornell, Eric; Jin, Deborah

    2015-05-01

    We are designing an experiment with the goal of creating a rapidly rotating ultracold Fermi gas, which is promising system in which to study quantum Hall physics. We propose to use selective evaporation of a gas that has been initialized with a modest rotation rate to increase the angular momentum per particle in order to reach rapid rotation. We have performed simulations of this evaporation process for a model optical trap potential. Achieving rapid rotation will require a very smooth, very harmonic, and dynamically variable optical trap. We plan to use a setup consisting of two acousto-optical modulators to ``paint'' an optical dipole trapping potential that can be made smooth, radially symmetric, and harmonic. This project is supported by NSF, NIST, NASA.

  18. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine. Electronic supplementary information (ESI) available: Further information on the characterization of nanoparticles and additional live-cell imaging studies. See DOI: 10.1039/c5nr08419a

  19. Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays.

    PubMed

    Generalova, Alla N; Sizova, Svetlana V; Zdobnova, Tatiana A; Zarifullina, Margarita M; Artemyev, Michail V; Baranov, Alexander V; Oleinikov, Vladimir A; Zubov, Vitaly P; Deyev, Sergey M

    2011-02-01

    This study aimed to design a panel of uniform particulate biochemical reagents and to test them in specific bioassays. These reagents are polymer particles of different sizes doped with semiconductor nanocrystals and conjugated with either full-size antibodies or recombinant mini-antibodies (4D5 scFv fragment) designed by genetic engineering approaches. A panel of highly fluorescent polymer particles (150-800 nm) were formed by embedding CdSe/ZnS nanocrystals (quantum dots) into preformed polyacrolein and poly(acrolein-co-styrene) particles. Morphology, content and fluorescence characteristics of the prepared materials were studied by laser correlation spectroscopy, spectrophotometry, optical and fluorescent microscopy and fluorimetry. The obtained fluorescent particles sensitized by anti-Yersinia pestis antibodies were used for rapid agglutination glass test suitable for screening analysis of Y. pestis antigen and for microtiter particle agglutination, which, owing to its speed and simplicity, is very beneficial for diagnostic detection of Y. pestis antigen. Recombinant 4D5 scFv antibodies designed and conjugated with polymer particles containing quantum dots provide multipoint highly specific binding with cancer marker HER2/neu on the surface of SKOV-3 cell.

  20. Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance.

    PubMed

    Lee, Hsu-Yi; Voldman, Joel

    2007-03-01

    We present an investigation into optimizing micromixer design for enhancing dielectrophoretic (DEP) microconcentrator performance. DEP-based microconcentrators use the dielectrophoretic force to collect particles on electrodes. Because the DEP force generated by electrodes decays rapidly away from the electrodes, DEP-based microconcentrators are only effective at capturing particles from a limited cross section of the input liquid stream. Adding a mixer can circulate the input liquid, increasing the probability that particles will drift near the electrodes for capture. Because mixers for DEP-based microconcentrators aim to circulate particles, rather than mix two species, design specifications for such mixers may be significantly different from that for conventional mixers. Here we investigated the performance of patterned-groove micromixers on particle trapping efficiency in DEP-based microconcentrators numerically and experimentally. We used modeling software to simulate the particle motion due to various forces on the particle (DEP, hydrodynamic, etc.), allowing us to predict trapping efficiency. We also conducted trapping experiments and measured the capture efficiency of different micromixer configurations, including the slanted groove, staggered herringbone, and herringbone mixers. Finally, we used these analyses to illustrate the design principles of mixers for DEP-based concentrators.

  1. Tuning transitions in rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav; Kunnen, Rudie; Clercx, Herman

    2015-11-01

    Turbulent rotating Rayleigh-Bénard convection, depending on the system parameters, exhibits multiple flow states and transitions between them. The present experimental study aims to control the transitions between the flow regimes, and hence the system heat transfer characteristics, by introducing particles in the flow. We inject near-neutrally buoyant silver coated hollow ceramic spheres (~100 micron diameter) and measure the system response, i.e. the Nusselt number, at different particle concentrations and rotation rates. Both for rotating and non-rotating cases, most of the particles settle on the top and bottom plates in a few hours following injection. This rapid settling may be a result of ``trapping'' of particles in the laminar boundary layers at the horizontal walls. These particle layers on the heat-transfer surfaces reduce their effective conductivity, and consequently, lower the heat transfer rate. We calculate the effective system parameters by estimating, and accounting for, the temperature drop across the particle layers. Preliminary analysis suggests that the thermal resistance of the particle layers may affect the flow structure and delay the transition to the ``geostrophic'' regime. Financial support from Foundation for Fundamental Research on Matter.

  2. Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation

    NASA Astrophysics Data System (ADS)

    Crivoi, A.; Zhong, X.; Duan, Fei

    2015-09-01

    The coffee-ring effect for particle deposition near the three-phase line after drying a pinned sessile colloidal droplet has been suppressed or attenuated in many recent studies. However, there have been few attempts to simulate the mitigation of the effect in the presence of strong particle-particle attraction forces. We develop a three-dimensional stochastic model to investigate the drying process of a pinned colloidal sessile droplet by considering the sticking between particles, which was observed in the experiments. The Monte Carlo simulation results show that by solely promoting the particle-particle attraction in the model, the final deposit shape is transformed from the coffee ring to the uniform film deposition. This phenomenon is modeled using the colloidal aggregation technique and explained by the "Tetris principle," meaning that unevenly shaped or branched particle clusters rapidly build up a sparse structure spanning throughout the entire domain in the drying process. The influence of the controlled parameters is analyzed as well. The simulation is reflected by the drying patterns of the nanofluid droplets through the surfactant control in the experiments.

  3. Time variations of magnetospheric intensities of outer zone protons, alpha particles and ions (Z greater than or equal to 2). Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Randall, B. A.

    1973-01-01

    A comprehensive study of the temporal behavior of trapped protons, alpha particles and ions (Z 2) in outer zone of the earth's magnetosphere has been made. These observations were made by the Injun V satellite during the first 21 months of operation, August 1968 to May 1970. Rapid increases in the observed number of particles followed by slower exponential decay characterize the data. Comparisons are made with the temporal behavior of interplanetary particles of the same energy observed by Explorer 35. Increases in the trapped fluxes generally correspond to enhanced interplanetary activity. The energy spectra of protons and alpha particles at L = 3 have similar shapes when compared on an energy per charge basis while the respective polar cap spectra have similar shape on an energy per nucleon basis. Apparent inward trans-L motion of energetic protons is observed. These particles are diffused inward by a process involving fluctuating electric fields. The loss of trapped low altitude protons, alpha particles and ions (Z 2) is controlled by coulombic energy loss in the atmosphere.

  4. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  5. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  6. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    PubMed

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  7. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; ...

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  8. Marine Emissions and Atmospheric Processing Influence Aerosol Mixing States in the Bering Strait and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Kirpes, R.; Rodriguez, B.; Kim, S.; Park, K.; China, S.; Laskin, A.; Pratt, K.

    2017-12-01

    The Arctic region is rapidly changing due to sea ice loss and increasing oil/gas development and shipping activity. These changes influence aerosol sources and composition, resulting in complex aerosol-cloud-climate feedbacks. Atmospheric particles were collected aboard the R/V Araon in July-August 2016 in the Alaskan Arctic along the Bering Strait and Chukchi Sea. Offline analysis of individual particles by microscopic and spectroscopic techniques provided information on particle size, morphology, and chemical composition. Sea spray aerosol (SSA) and organic aerosol (OA) particles were the most commonly observed particle types, and sulfate was internally mixed with both SSA and OA. Evidence of multiphase sea spray aerosol reactions was observed, with varying degrees of chlorine depletion observed along the cruise. Notably, atmospherically processed SSA, completely depleted in chlorine, and internally mixed organic and sulfate particles, were observed in samples influenced by the central Arctic Ocean. Changes in particle composition due to fog processing were also investigated. Due to the changing aerosol sources and atmospheric processes in the Arctic region, it is crucial to understand aerosol composition in order to predict climate impacts.

  9. An expert system for chemical speciation of individual particles using low-Z particle electron probe X-ray microanalysis data.

    PubMed

    Ro, Chul-Un; Kim, HyeKyeong; Van Grieken, René

    2004-03-01

    An electron probe X-ray microanalysis (EPMA) technique, using an energy-dispersive X-ray detector with an ultrathin window, designated a low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements, such as C, N, and O, as well as chemical elements that can be analyzed by conventional energy-dispersive EPMA, in individual particles. Since a data set is usually composed of data for several thousands of particles in order to make environmentally meaningful observations of real atmospheric aerosol samples, the development of a method that fully extracts chemical information contained in the low-Z particle EPMA data is important. An expert system that can rapidly and reliably perform chemical speciation from the low-Z particle EPMA data is presented. This expert system tries to mimic the logic used by experts and is implemented by applying macroprogramming available in MS Excel software. Its feasibility is confirmed by applying the expert system to data for various types of standard particles and a real atmospheric aerosol sample. By applying the expert system, the time necessary for chemical speciation becomes shortened very much and detailed information on particle data can be saved and extracted later if more information is needed for further analysis.

  10. The significance of relative density for particle damage in loaded and sheared gravels

    NASA Astrophysics Data System (ADS)

    Fityus, Stephen; Imre, Emőke

    2017-06-01

    For granular assemblages of strong particles, an increase in the relative density usually leads to a significant increase in shear strength, which is evident as a peak strength, accompanied by significant dilation as the peak strength is attained. This paper describes an experimental study of shearing in assemblages of weak particles, where particle breakage offsets dilation for all but the lowest of confining stresses. In such materials, prone to particle breakage, the shear strengths of loose and dense assemblages rapidly converge to similar values as confining stress increases, and any benefit of greater relative density is lost. This is attributed to the densification effect associated with the loading under a high stress prior to shearing, which is characterised by widespread particle breakage and the formation of smaller particles to occupy space between coarser ones. Interestingly, under both low and high stresses, there was a tendency for greater particle breakage in the loose samples, as a result of both shearing and compression. This result suggests that, despite the denser assemblage having its particles more rigidly constrained and less able to rearrange to avoid direct loading, the influence of greater load-spreading capacity afforded by an increased number of particle contacts in a denser sample, is more dominant in controlling breakage.

  11. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals.

    PubMed

    Engelhardt, Lucas; Röhm, Martina; Mavoungou, Chrystelle; Schindowski, Katharina; Schafmeister, Annette; Simon, Ulrich

    2016-06-01

    Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 μm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.

  12. Effect of operation parameters on the slagging near swirl coal burner throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changfu You; Yong Zhou

    2006-10-15

    Fluid flow, heat transfer, coal combustion, and slagging processes had been numerically simulated near a swirl burner throat. The effect of the ratio distribution of each burner air, their swirling numbers, and the coal character on the slagging process had been analyzed. The computation results indicate that the maximal sticking-particle numbers occur at the uppermost waterwall, while the sticking-particle number at neither waterwall near the swirl burner outlet is very small. The swirling number has a significant effect on the number of the sticking particle. The sticking-particle number increases rapidly with the increment of the outer secondary air and themore » primary air-swirling numbers, respectively, because it can strengthen the flow entrainment ability to carry more particles to the waterwall. The inner secondary air has a complicated influence on the slagging process. When the inner secondary air-swirling number is about middle intensive degree (about 0.9), the sticking-particle number reaches maximum. If the inner secondary air-swirling number continues increasing, then the coal particles will combust completely and reduce the particle concentration, thus decrease the sticking-particle number. The ratio of each air has a slight influence on the sticking-particle number relative to the swirling number. The coal particles with small mean diameter combust completely, which can reduce the sticking-particle number. 13 refs., 16 figs., 1 tab.« less

  13. Rapidity evolution of Wilson lines at the next-to-leading order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitsky, Ian; Chirilli, Giovanni

    2013-12-01

    At high energies particles move very fast so the proper degrees of freedom for the fast gluons moving along the straight lines are Wilson-line operators - infinite gauge factors ordered along the line. In the framework of operator expansion in Wilson lines the energy dependence of the amplitudes is determined by the rapidity evolution of Wilson lines. We present the next-to-leading order hierarchy of the evolution equations for Wilson-line operators.

  14. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe.

    PubMed

    Bisiaux, Marion M; Edwards, Ross; Heyvaert, Alan C; Thomas, James M; Fitzgerald, Brian; Susfalk, Richard B; Schladow, S Geoffrey; Thaw, Melissa

    2011-03-15

    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, and the carbon cycle. Eventually these particles enter aquatic environments, where they may affect the fate of other pollutants. While ubiquitous, the particles are still poorly characterized in freshwater systems. Here we present the results of a study determining rBC in waters of the Lake Tahoe watershed in the western United States from 2007 to 2009. The study period spanned a large fire within the Tahoe basin, seasonal snowmelt, and a number of storm events, which resulted in pulses of urban runoff into the lake with rBC concentrations up to 4 orders of magnitude higher than midlake concentrations. The results show that rBC pulses from both the fire and urban runoff were rapidly attenuated suggesting unexpected aggregation or degradation of the particles. We find that those processes prevent rBC concentrations from building up in the clear and oligotrophic Lake Tahoe. This rapid removal of rBC soon after entry into the lake has implications for the transport of rBC in the global aquatic environment and the flux of rBC from continents to the global ocean.

  15. Rapid Polyol-Assisted Microwave Synthesis of Nanocrystalline LiFePO4/C Cathode for Lithium-Ion Batteries.

    PubMed

    Paul, Baboo Joseph; Gim, Jihyeon; Baek, Sora; Kang, Jungwon; Song, Jinju; Kim, Sungjin; Kim, Jaekook

    2015-08-01

    Nanocrystalline LiFePO4/C has been synthesized under a very short period of time (90 sec) using a polyol-assisted microwave heating synthesis technique. The X-ray diffraction (XRD) data indicates that the rapidly synthesized materials correspond to phase pure olivine. Post-annealing of the as-prepared sample at 600 °C in argon atmosphere yields highly crystalline LiFePO4/C. The morphology of the samples studied using scanning electron microscopy (SEM) reveals the presence of secondary particles formed from aggregation of primary particles in the range of 30-50 nm. Transmission electron microscopy (TEM) images reveal a thin carbon layer coating on the surface of the primary particle. The charge/discharge studies indicate that the as-prepared and annealed LiFePO4/C samples delivered initial discharge capacities of 126 and 160 mA h g-1, respectively, with good capacity retentions at 0.05 mA cm-2 current densities. The post-annealing process indeed improves the crystallinity of the LiFePO4 nanocrystals, which enhances the electrode performance of LiFePO4/C.

  16. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem.

    PubMed

    Wild, Christian; Huettel, Markus; Klueter, Anke; Kremb, Stephan G; Rasheed, Mohammed Y M; Jørgensen, Bo B

    2004-03-04

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs, but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus. Here we show that released coral mucus efficiently traps organic matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders of magnitude within 2 h. Tidal currents concentrate these mucus aggregates into the lagoon, where they rapidly settle. Coral mucus provides light energy harvested by the zooxanthellae and trapped particles to the heterotrophic reef community, thereby establishing a recycling loop that supports benthic life, while reducing loss of energy and nutrients from the reef ecosystem.

  17. Quantum gas in the fast forward scheme of adiabatically expanding cavities: Force and equation of state

    NASA Astrophysics Data System (ADS)

    Babajanova, Gulmira; Matrasulov, Jasur; Nakamura, Katsuhiro

    2018-04-01

    With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale, we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity with the time-dependent size L =L (t ) . In the fast-forward variants of equation of states, i.e., Bernoulli's formula and Poisson's adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity (L ˙) and acceleration (L ̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself. The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics. The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard form of the equilibrium equation of states.

  18. Deformation and electrical properties of magnetic and vertically conductive composites with a chain-of-spheres structure

    NASA Astrophysics Data System (ADS)

    Choi, Chulmin; Hong, Soonkook; Chen, Li-Han; Liu, Chin-Hung; Choi, Duyoung; Kuru, Cihan; Jin, Sungho

    2014-05-01

    Vertically anisotropically conductive composites with aligned chain-of-spheres of 20-75 mm Ni particles in an elastomer matrix have been prepared by curing the mixture at 100°C-150°C under an applied magnetic field of ˜300-1000 Oe. The particles are coated with a ˜120 nm thick Au layer for enhanced electrical conductivity. The resultant vertically aligned but laterally isolated columns of conductive particles extend through the whole composite thickness and the end of the Ni columns protrude from the surface, contributing to enhanced electrical contact on the composite surface. The stress-strain curve on compressive deformation exhibits a nonlinear behavior with a rapidly increasing Young's modulus with stress (or pressure). The electrical contact resistance Rc decreases rapidly when the applied pressure is small and then more gradually after the applied pressure reaches 500 psi (˜3.4 MPa), corresponding to a 30% deformation. The directionally conductive elastomer composite material with metal pads and conductive electrodes on the substrate surface can be used as a convenient tactile shear sensor for applications involving artificial limbs, robotic devices, and other visual communication devices such as touch sensitive screens.

  19. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    PubMed Central

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  20. Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC

    DOE PAGES

    Khachatryan, Vardan

    2017-02-20

    Measurements of strange hadron (K S 0, Λ+Λ¯, and Ξ–+Ξ¯+) transverse momentum spectra in pp, pPb, and Pb collisions are presented over a wide range of rapidity and event charged-particle multiplicity. The data were collected with the CMS detector at the CERN LHC in pppp collisions at √ sNN =7TeV, pPb collisions at View the MathML sourcesNN=5.02TeV, and Pb collisions at √ sNN = 2.76TeV. The average transverse kinetic energy is found to increase with multiplicity, at a faster rate for heavier strange particle species in all systems. At similar multiplicities, the difference in average transverse kinetic energy between differentmore » particle species is observed to be larger for pp and pPb events than for Pb events. In pPb collisions, the average transverse kinetic energy is found to be slightly larger in the Pb-going direction than in the p-going direction for events with large multiplicity. Lastly, the spectra are compared to models motivated by hydrodynamics.« less

  1. Rapid and simple method for purification of nucleic acids.

    PubMed

    Boom, R; Sol, C J; Salimans, M M; Jansen, C L; Wertheim-van Dillen, P M; van der Noordaa, J

    1990-03-01

    We have developed a simple, rapid, and reliable protocol for the small-scale purification of DNA and RNA from, e.g., human serum and urine. The method is based on the lysing and nuclease-inactivating properties of the chaotropic agent guanidinium thiocyanate together with the nucleic acid-binding properties of silica particles or diatoms in the presence of this agent. By using size-fractionated silica particles, nucleic acids (covalently closed circular, relaxed circular, and linear double-stranded DNA; single-stranded DNA; and rRNA) could be purified from 12 different specimens in less than 1 h and were recovered in the initial reaction vessel. Purified DNA (although significantly sheared) was a good substrate for restriction endonucleases and DNA ligase and was recovered with high yields (usually over 50%) from the picogram to the microgram level. Copurified rRNA was recovered almost undegraded. Substituting size-fractionated silica particles for diatoms (the fossilized cell walls of unicellular algae) allowed for the purification of microgram amounts of genomic DNA, plasmid DNA, and rRNA from cell-rich sources, as exemplified for pathogenic gram-negative bacteria. In this paper, we show representative experiments illustrating some characteristics of the procedure which may have wide application in clinical microbiology.

  2. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict themore » precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.« less

  3. The Production of Hadrons in Muon Scattering on Deuterium and Xenon Nuclei at 480-GeV (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldner-Rembold, Stefan

    1992-01-01

    For the present thesis the hadronic final states of 6309 muon-deuterium events and 2064 muon-xenon events in the kinematical range Q 2>1 (GeV/c) 2, x>0.002, 0.1< y<0.85, 8< W<30 GeV, and θ>3.5 mrad were studied. The multiplicity distributions of the muon-deuterium events and the muon-xenon events were described by means of the negative binomial distribution in intervals of the c.m. energy W. The two parameters anti n (mean multiplicity) and 1/k show for the muon-deuterium events a linear dependence on ln W2. The mean multiplicity anti n on xenon (anti n=10.43±0.19) is distinctly higher than on deuterium (anti n=7.76±0.07). Themore » rapidity distributions of the positively charged and the negatively charged hadrons from muon-deuterium events are very well described by the Monte-Carlo program LUND. In the two-particle rapidity correlation both short-range and long-range correlations can be detected. The two-particle rapidity correlation in the xenon data are different from the deuterium data in the backward range. This difference indicates that the intranuclear cascade takes place in a limited range of small rapidities - relatively independently on the residual fragmentation process.« less

  4. In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egan, Garth C.; Sullivan, Kyle T.; LaGrange, Thomas

    2014-02-28

    The word “nanoparticle” nominally elicits a vision of an isolated sphere; however, the vast bulk of nanoparticulate material exists in an aggregated state. This can have significant implications for applications such as combustion, catalysis, and optical excitation, where particles are exposed to high temperature and rapid heating conditions. In such environments, particles become susceptible to morphological changes which can reduce surface area, often to the detriment of functionality. Here, we report on thermally-induced coalescence which can occur in aluminum nanoparticle aggregates subjected to rapid heating (10{sup 6}–10{sup 11} K/s). Using dynamic transmission electron microscopy, we observed morphological changes in nanoparticle aggregatesmore » occurring in as little as a few nanoseconds after the onset of heating. The time-resolved probes reveal that the morphological changes initiate within 15 ns and are completed in less than 50 ns. The morphological changes were found to have a threshold temperature of about 1300 ± 50 K, as determined by millisecond-scale experiments with a calibrated heating stage. The temperature distribution of aggregates during laser heating was modeled with various simulation approaches. The results indicate that, under rapid heating conditions, coalescence occurs at an intermediate temperature between the melting points of aluminum and the aluminum oxide shell, and proceeds rapidly once this threshold temperature is reached.« less

  5. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines several laboratory procedures and demonstrations including electric fields using sawdust, experiments with capacitors, particle spacing in a vapor and a liquid, metrology, momentum, Moire patterns and interference fringes, equipping for practical electronics, and using programmable calculators for rapid plotting of graphs. (DS)

  6. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    PubMed Central

    Iwasaki, Tomohiro; Nakatsuka, Ryo; Murase, Kenya; Takata, Hiroshige; Nakamura, Hideya; Watano, Satoru

    2013-01-01

    This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments. PMID:23629669

  7. Rapid Self-healing Nanocomposite Hydrogel with Tunable Dynamic Mechanics

    NASA Astrophysics Data System (ADS)

    Li, Qiaochu; Mishra, Sumeet; Chapman, Brian; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels

    The macroscopic healing rate and efficiency in self-repairing hydrogel materials are largely determined by the dissociation dynamics of their polymer network, which is hardly achieved in a controllable manner. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its rapid self-healing property without the need for external stimuli.

  8. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-01-01

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water. PMID:23202034

  9. Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Zhuo, R. F.; Feng, H. T.; Yan, D.; Chen, J. T.; Feng, J. J.; Liu, J. Z.; Yan, P. X.

    2008-06-01

    In this paper we report the synthesis of doped ZnS one-dimensional (1D) nanostructures by well-established technique of chemical vapor deposition using Zn and S powder as precursors. The ZnS 1D nanostructures were grown on the surface of Au particle-filled anodic aluminum oxide templates, catalyst-free graphite sheets and silicon substrates. ZnS 1D nanostructures with Mn, Cu and Fe as dopants were prepared via a rapid process of 15-20 min. The morphologies of ZnS nanostructures synthesized on different substrates and at different growth temperatures have distinct dissimilarities. The size of ZnS nanowires originated from the Au catalysts could be varied by altering the size of membrane nanopores as well as the embedded Au particles. Room-temperature photoluminescence measurements reveal strong blue, green and yellow-orange light emissions from the doped ZnS 1D nanostructures.

  10. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology.

    PubMed

    Sundaram, S K; Sacksteder, Colette A; Weber, Thomas J; Riley, Brian J; Addleman, R Shane; Harrer, Bruce J; Peterman, John W

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.

  11. Primordial black holes from fifth forces

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Rubio, Javier; Wetterich, Christof

    2018-04-01

    Primordial black holes can be produced by a long-range attractive fifth force stronger than gravity, mediated by a light scalar field interacting with nonrelativistic "heavy" particles. As soon as the energy fraction of heavy particles reaches a threshold, the fluctuations rapidly become nonlinear. The overdensities collapse into black holes or similar screened objects, without the need for any particular feature in the spectrum of primordial density fluctuations generated during inflation. We discuss whether such primordial black holes can constitute the total dark matter component in the Universe.

  12. Operation Greenhouse, Scientific Director’s Report, Annex 4.1, Cloud Studies, Parts I, II, and III, Nuclear Explosions, 1951.

    DTIC Science & Technology

    1951-01-01

    qualitatively account for this growth. The first was the Bergeron- Findeisen theory, which has as its basis the concept of a mixed cloud. A mixed cloud is...water particle resulting is of raindrop size. The second theory is an extension of the Bergeron- Findeisen theory to include the known fact that...However, by acceptance of the concept of rapid ice-particle growth by the Bergeron- Findeisen theory, a reasonable method for the formation of

  13. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    PubMed

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. © 2016 Cold Spring Harbor Laboratory Press.

  14. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  15. Rapid Frequency Chirps of TAE mode due to Finite Orbit Energetic Particles

    NASA Astrophysics Data System (ADS)

    Berk, Herb; Wang, Ge

    2013-10-01

    The tip model for the TAE mode in the large aspect ratio limit, conceived by Rosenbluth et al. in the frequency domain, together with an interaction term in the frequency domain based on a map model, has been extended into the time domain. We present the formal basis for the model, starting with the Lagrangian for the particle wave interaction. We shall discuss the formal nonlinear time domain problem and the procedure that needs to obtain solutions in the adiabatic limit.

  16. Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors

    DOEpatents

    Goretta, K.C.; Lanagan, M.T.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Hu, J.; Balachandran, U.; Siegel, R.W.; Shi, D.

    1999-07-27

    A method of preparing a high temperature superconductor is disclosed. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology. 4 figs.

  17. Flow cytometric quantitation of phagocytosis in heparinized complete blood with latex particles and Candida albicans.

    PubMed

    Egido, J M; Viñuelas, J

    1997-01-01

    We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripheral blood (HCPB), using commercially available phycoerythrin-conjugated latex particles of 1 micron diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984) standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripheral blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.

  18. Measuring mid-rapidity multiplicity in PHOBOS

    NASA Astrophysics Data System (ADS)

    Iordanova, Aneta; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyslouch, B.; PHOBOS Collaboration

    2005-01-01

    Several techniques have been developed by PHOBOS for measuring the multiplicity of charged particles produced in Au + Au collisions. We will discuss one of these techniques (the 'Tracklet' method) which utilizes two-hit tracks which intersect at the reconstructed collision vertex position. The physics that comes from these measurements can give valuable insight into the underlying mechanisms of particle production over a center of mass energy range of surdSNN = 19.6 GeV to the maximum RHIC energy of surdSNN = 200 GeV.

  19. Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Martin, Franklin D.; Prince, T.; Lin, R.; Bruner, M.; Culhane, L.; Ramaty, R.; Doschek, G.; Emslie, G.; Lingenfelter, R.

    1986-01-01

    The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons.

  20. Encapsulation of concentrated hemoglobin solution in phospholipid vesicles retards the reaction with NO, but not CO, by intracellular diffusion barrier.

    PubMed

    Sakai, Hiromi; Sato, Atsushi; Masuda, Kaoru; Takeoka, Shinji; Tsuchida, Eishun

    2008-01-18

    One physiological significance of the red blood cell (RBC) structure is that NO binding of Hb is retarded by encapsulation with the cell membrane. To clarify the mechanism, we analyzed Hb-vesicles (HbVs) with different intracellular Hb concentrations, [Hb](in), and different particle sizes using stopped-flow spectrophotometry. The apparent NO binding rate constant, k(on)('(NO)), of HbV at [Hb](in) = 1 g/dl was 2.6 x 10(7) m(-1) s(-1), which was almost equal to k(on)((NO)) of molecular Hb, indicating that the lipid membrane presents no obstacle for NO binding. With increasing [Hb](in) to 35 g/dl, k(on)('(NO)) decreased to 0.9 x 10(7) m(-1) s(-1), which was further decreased to 0.5 x 10(7) m(-1) s(-1) with enlarging particle diameter from 265 to 452 nm. For CO binding, which is intrinsically much slower than NO binding, k(on)('(CO)) did not change greatly with [Hb](in) and the particle diameter. Results obtained using diffusion simulations coupled with elementary binding reactions concur with these tendencies and clarify that NO is trapped rapidly by Hb from the interior surface region to the core of HbV at a high [Hb](in), retarding NO diffusion toward the core of HbV. In contrast, slow CO binding allows time for further CO-diffusion to the core. Simulations extrapolated to larger particles (8 mum) showing retardation even for CO binding. The obtained k(on)('(NO)) and k(on)('(NO)) yield values similar to those reported for RBCs. In summary, the intracellular, not extracellular, diffusion barrier is predominant due to the rapid NO binding that induces a rapid sink of NO from the interior surface to the core, retarding further NO diffusion and binding.

  1. Reduction Behavior of Assmang and Comilog ore in the SiMn Process

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghwa Peace; Holtan, Joakim; Tangstad, Merete

    The reduction behavior of raw materials from Assmang and Comilog based charges were experimentally investigated with CO gas up to 1600 °C. Quartz, HC FeMn slag or limestone were added to Assmang or Comilog according to the SiMn production charge, and mass loss results were obtained by using a TGA furnace. The results showed that particle size, type of manganese ore and mixture have close relationship to the reduction behavior of raw materials during MnO and SiO2 reduction. The influence of particle size to mass loss was apparent when Assmang or Comilog was mixed with only coke (FeMn) while it became insignificant when quartz and HC FeMn slag (SiMn) were added. This implied that quartz and HC FeMn slag had favored the incipient slag formation regardless of particle size. This explained the similar mass loss tendencies of SiMn charge samples between 1200-1500 °C, contrary to FeMn charge samples where different particle sizes showed significant difference in mass loss. Also, while FeMn charge samples showed progressive mass loss, SiMn charge samples showed diminutive mass loss until 1500 °C. However, rapid mass losses were observed with SiMn charge samples in this study above 1500 °C, and they have occurred at different temperatures. This implied rapid reduction of MnO and SiO2 and the type of ore and addition of HC FeMn slag have significant influence determining these temperatures. The temperatures observed for the rapid mass loss were approximately 1503 °C (Quartz and HC FeMn slag addition in Assmang), 1543 °C (Quartz addition in Assmang) and 1580-1587 °C (Quartz and limestone addition in Comilog), respectively. These temperatures also showed indications of possible SiMn production at process temperatures lower than 1550 °C.

  2. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    PubMed

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  3. Preparation of amino acid nanoparticles at varying saturation conditions in an aerosol flow reactor

    NASA Astrophysics Data System (ADS)

    Raula, Janne; Lehtimäki, Matti; Karppinen, Maarit; Antopolsky, Maxim; Jiang, Hua; Rahikkala, Antti; Kauppinen, Esko I.

    2012-07-01

    Nanoparticle formation of five amino acids, glycine, l-proline, l-valine, l-phenylalanine, and l-leucine was studied. The aim was to explore factors determining nanoparticle formation and crystallinity. The amino acid nanoparticles have been prepared at different saturation conditions in the aerosol reactor. In a condensed state, the particles were formed by droplet drying. The raise in temperature induced the sublimation of amino acids from the aerosol particles. The amino acid vapor was condensed by physical vapor deposition in a rapid cooling process. The diffusion coefficients and nucleation rates of amino acids have been calculated to understand particle formation. Upon the vapor deposition, amino acids formed crystalline nanoparticles except in the case l-phenylalanine according to X-ray diffraction. The crystal polymorph of glycine in the nanoparticles depended on the applied reactor temperature. The preference of crystallographic orientation varied in both the particle formations from condensed and vapor phase. l-Valine, l-phenylalanine, and l-leucine formed leafy-looking particles. These results could be utilized in the fabrication of nano-sized asperities on drug particle surfaces to reduce forces between particles and accordingly increase particle dispersion in dry powder inhalers.

  4. Design and Analysis of an Isokinetic Sampling Probe for Submicron Particle Measurements at High Altitude

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.

    2012-01-01

    An isokinetic dilution probe has been designed with the aid of computational fluid dynamics to sample sub-micron particles emitted from aviation combustion sources. The intended operational range includes standard day atmospheric conditions up to 40,000-ft. With dry nitrogen as the diluent, the probe is intended to minimize losses from particle microphysics and transport while rapidly quenching chemical kinetics. Initial results indicate that the Mach number ratio of the aerosol sample and dilution streams in the mixing region is an important factor for successful operation. Flow rate through the probe tip was found to be highly sensitive to the static pressure at the probe exit. Particle losses through the system were estimated to be on the order of 50% with minimal change in the overall particle size distribution apparent. Following design refinement, experimental testing and validation will be conducted in the Particle Aerosol Laboratory, a research facility located at the NASA Glenn Research Center to study the evolution of aviation emissions at lower stratospheric conditions. Particle size distributions and number densities from various combustion sources will be used to better understand particle-phase microphysics, plume chemistry, evolution to cirrus, and environmental impacts of aviation.

  5. [Application of near infrared spectroscopy combined with particle swarm optimization based least square support vactor machine to rapid quantitative analysis of Corni Fructus].

    PubMed

    Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan

    2015-12-01

    A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.

  6. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    DOE PAGES

    Iancu, E.; Mueller, A. H.; Triantafyllopoulos, D. N.

    2016-12-13

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computingmore » this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.« less

  7. Transverse momentum spectra of hadrons in p + p collisions at CERN SPS energies from the UrQMD transport model

    NASA Astrophysics Data System (ADS)

    Ozvenchuk, V.; Rybicki, A.

    2018-05-01

    The UrQMD transport model, version 3.4, is used to study the new experimental data on transverse momentum spectra of π±, K±, p and p bar produced in inelastic p + p interactions at SPS energies, recently published by the NA61/SHINE Collaboration. The comparison of model predictions to these new measurements is presented as a function of collision energy for central and forward particle rapidity intervals. In addition, the inverse slope parameters characterizing the transverse momentum distributions are extracted from the predicted spectra and compared to the corresponding values obtained from NA61/SHINE distributions, as a function of particle rapidity and collision energy. A complex pattern of deviations between the experimental data and the UrQMD model emerges. For charged pions, the fair agreement visible at top SPS energies deteriorates with the decreasing energy. For charged K mesons, UrQMD significantly underpredicts positive kaon production at lower beam momenta. It also underpredicts the central rapidity proton yield at top collision energy and overpredicts antiproton production at all considered energies. We conclude that the new experimental data analyzed in this paper still constitute a challenge for the present version of the model.

  8. Direct observation on the Brownian coagulation of PSL particles through optical microscope in the regime near critical coagulation concentration (CCC).

    PubMed

    Fukasawa, Tomonori; Adachi, Yasuhisa

    2010-04-15

    Microscopic monitoring of floc structure, floc size distribution and the rate of coagulation was carried out for Brownian coagulation of PSL particles. Experiments were designed for the condition of salt concentration that is slightly below critical coagulation concentration (CCC). The density of the solvent was controlled by using deuterium oxide (D(2)O) to avoid sedimentation. Results are summarized as follows: (i) Near CCC, floc restructuring from the beginning stage of coagulation was evidenced, i.e., the ratio of linear triplet is found to be remarkably reduced as compared with the result obtained for the case of rapid coagulation which was implemented under sufficiently high salt concentration. (ii) The increase of fractal dimension from 1.8 in the case of rapid coagulation to 2.2 was confirmed by the analysis of mass balance using size distribution of flocs. This increment resulted in the decrease of effective excluded volume of flocs. (iii) The rate of coagulation was constant until later stage. This result contrasts to the result of rapid coagulation [T. Fukasawa, Y. Adachi, J. Colloid Interface Sci. 304 (2006) 115]. 2010 Elsevier Inc. All rights reserved.

  9. Femtoscopy with identified charged pions in proton-lead collisions at s NN = 5.02 TeV with ATLAS

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-28

    Here, Bose-Einstein correlations between identified charged pions are measured for p+Pb collisions at √ sNN = 5.02TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28nb –1. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (k T) and rapidity (y* ππ) of the pair. Pairs are selected with a rapidity –2 < y* ππ < 1 and with an average transversemore » momentum 0.1 < k T < 0.8GeV. The effect of jet fragmentation on the two-particle correlation function is studied, and a method using opposite-charge pair data to constrain its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair k T. A correlation of the radii with the local charged-particle density is demonstrated. The scaling of the extracted radii with the mean number of participating nucleons is also used to compare a selection of initial-geometry models. The cross term Rol is measured as a function of rapidity, and a nonzero value is observed with 5.1σ combined significance for –1 < y* ππ < 1 in the most central events.« less

  10. Design and Simulation of a MEMS Structure for Electrophoretic and Dielectrophoretic Separation of Particles by Contactless Electrodes

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2007-01-01

    Rapid identification of pathogenic bacterial species is an important factor in combating public health problems such as E. coli contamination. Food and waterborne pathogens account for sickness in 76 million people annually (CDC). Diarrheagenic E. coli is a major source of gastrointestinal illness. Severe sepsis and Septicemia within the hospital environment are also major problems. 75 1,000 cases annually with a 30-50% mortality rate (Crit Care Med, July '01, Vol. 29, 1303-10). Patient risks run the continuum from fever to organ failure and death. Misdiagnosis or inappropriate treatment increases mortality. There exists a need for rapid screening of samples for identification of pathogenic species (Certain E. coli strains are essential for health). Critical to the identification process is the ability to isolate analytes of interest rapidly. This poster discusses novel devices for the separation of particles on the basis of the dielectric properties, mass and surface charge characteristics is presented. Existing designs involve contact between electrode surfaces and analyte medium resulting in contamination of the electrode bearing elements Two different device designs using different bulk micromachining MEMS processes (PolyMUMPS and a PyrexBIGold electrode design) are presented. These designs cover a range of particle sizes from small molecules through eucaryotic cells. The application of separation of bacteria is discussed in detail. Simulation data for electrostatic and microfluidic characteristics are provided. Detailed design characteristics and physical features of the as fabricated PolyMUMPS design are provided. Analysis of the simulation data relative to the expected performance of the devices will be provided and subsequent conclusions discussed.

  11. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)

    1996-01-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.

  12. A novel approach to a fine particle coating using porous spherical silica as core particles.

    PubMed

    Ishida, Makoto; Uchiyama, Jumpei; Isaji, Keiko; Suzuki, Yuta; Ikematsu, Yasuyuki; Aoki, Shigeru

    2014-08-01

    Abstract The applicability of porous spherical silica (PSS) was evaluated as core particles for pharmaceutical products by comparing it with commercial core particles such as mannitol (NP-108), sucrose and microcrystalline cellulose spheres. We investigated the physical properties of core particles, such as particle size distribution, flow properties, crushing strength, plastic limit, drying rate, hygroscopic property and aggregation degree. It was found that PSS was a core particle of small particle size, low friability, high water adsorption capacity, rapid drying rate and lower occurrence of particle aggregation, although wettability is a factor to be carefully considered. The aggregation and taste-masking ability using PSS and NP-108 as core particles were evaluated at a fluidized-bed coating process. The functional coating under the excess spray rate shows different aggregation trends and dissolution profiles between PSS and NP-108; thereby, exhibiting the formation of uniform coating under the excess spray rate in the case of PSS. This expands the range of the acceptable spray feed rates to coat fine particles, and indicates the possibility of decreasing the coating time. The results obtained in this study suggested that the core particle, which has a property like that of PSS, was useful in overcoming such disadvantages as large particle size, which feels gritty in oral cavity; particle aggregation; and the long coating time of the particle coating process. These results will enable the practical fine particle coating method by increasing the range of optimum coating conditions and decreasing the coating time in fluidized bed technology.

  13. Research on particle swarm optimization algorithm based on optimal movement probability

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  14. Chemical potential dependence of particle ratios within a unified thermal approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashir, I., E-mail: inamhep@gmail.com; Nanda, H.; Uddin, S.

    2016-06-15

    A unified statistical thermal freeze-out model (USTFM) is used to study the chemical potential dependence of identified particle ratios at mid-rapidity in heavy-ion collisions. We successfully reproduce the experimental data ranging from SPS energies to LHC energies, suggesting the statistical nature of the particle production in these collisions and hence the validity of our approach. The behavior of the freeze-out temperature is studied with respect to chemical potential. The freeze-out temperature is found to be universal at the RHIC and LHC and is close to the QCD predicted phase transition temperature, suggesting that the chemical freeze-out occurs soon after themore » hadronization takes place.« less

  15. The features of self-assembling organic bilayers important to the formation of anisotropic inorganic materials in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    2005-01-01

    Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).

  16. Suppression of the chain nuclear fusion reaction based on the p+{sup 11}B reaction because of the deceleration of alpha particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmatov, M. L., E-mail: M.Shmatov@mail.ioffe.ru

    2016-09-15

    It is shown that a rapid deceleration of alpha particles in matter of electron temperature up to 100 keV leads a strong suppression of the chain nuclear fusion reaction on the basis of the p+{sup 11}B reaction with the reproduction of fast protons in the α+{sup 11}B and n+{sup 10}B reactions. The statement that the chain nuclear fusion reaction based on the p+{sup 11}B reaction with an acceleration of {sup 11}B nuclei because of elastic alpha-particle scattering manifests itself in experiments at the PALS (Prague Asterix Laser System) facility is analyzed.

  17. Pseudorapidity and Centrality Dependence of the Collective Flow of Charged Particles in Au+Au Collisions at (sNN)=130 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-11-01

    This paper describes the measurement of collective flow for charged particles in Au+Au collisions at (sNN)=130 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The measured azimuthal hit anisotropy is presented over a wide range of pseudorapidity (-5.0<η<5.3) for the first time at this energy. The result, averaged over momenta and particle species, is observed to reach 7% for peripheral collisions at midrapidity, falling off with centrality and increasing |η|. These results call into question the common assumption of longitudinal boost invariance over a large region of rapidity in RHIC collisions.

  18. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  19. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE PAGES

    Raskin, Cody; Owen, J. Michael

    2016-03-24

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  20. Synthesis of mesoscale, crumpled, reduced graphene oxide roses by water-in-oil emulsion approach

    NASA Astrophysics Data System (ADS)

    Sharma, Shruti; Pham, Viet H.; Boscoboinik, Jorge A.; Camino, Fernando; Dickerson, James H.; Tannenbaum, Rina

    2018-05-01

    Mesoscale crumpled graphene oxide roses (GO roses) were synthesized by using colloidal graphene oxide (GO) variants as precursors for a hybrid emulsification-rapid evaporation approach. This process produced rose-like, spherical, reduced mesostructures of colloidal GO sheets, with corrugated surfaces and particle sizes tunable in the range of ∼800 nm to 15 μm. Excellent reproducibility for particle size distribution is shown for each selected speed of homogenizer rotor among different sample batches. The morphology and chemical structure of these produced GO roses was investigated using electron microscopy and spectroscopy techniques. The proposed synthesis route provides control over particle size, morphology and chemical properties of the synthesized GO roses.

  1. Size-dependent lymphatic uptake of nanoscale-tailored particles as tumor mass increases.

    PubMed

    Kjellman, Pontus; Fredriksson, Sarah; Kjellman, Christian; Strand, Sven-Erik; Zandt, René In 't

    2015-11-01

    To investigate the size-dependent lymphatic uptake of nanoparticles in mice with rapidly growing syngeneic tumors. Mice were inoculated subcutaneously with EL4 lymphoma cells and on day 5 or day 6 of tumor growth, injected peritumorally with either 29 nm or 58 nm of ultra-small superparamagnetic iron oxide nanoparticles. Twenty-four hours later the animals were imaged using MRI. The larger of the two particles can only be detected in the lymph node when injected in animals with 6-day-old tumors while the 29 nm ultra-small superparamagnetic iron oxide nanoparticle is observed on both time points. Tumor mass greatly impacts the size of particles that are transported to the lymph nodes.

  2. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    PubMed

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. RAPID OPTIMAL SPH PARTICLE DISTRIBUTIONS IN SPHERICAL GEOMETRIES FOR CREATING ASTROPHYSICAL INITIAL CONDITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    2016-04-01

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantlemore » boundaries.« less

  4. Real-time explosive particle detection using a cyclone particle concentrator.

    PubMed

    Hashimoto, Yuichiro; Nagano, Hisashi; Takada, Yasuaki; Kashima, Hideo; Sugaya, Masakazu; Terada, Koichi; Sakairi, Minoru

    2014-06-30

    There is a need for more rapid methods for the detection of explosive particles. We have developed a novel real-time analysis technique for explosive particles that uses a cyclone particle concentrator. This technique can analyze sample surfaces for the presence of particles from explosives such as TNT and RDX within 3 s, which is much faster than is possible by conventional methods. Particles are detached from the sample surface with air jet pulses, and then introduced into a cyclone particle concentrator with a high pumping speed of about 80 L/min. A vaporizer placed at the bottom of the cyclone particle concentrator immediately converts the particles into a vapor. The vapor is then ionized in the atmospheric pressure chemical ionization (APCI) source of a linear ion trap mass spectrometer. An online connection between the vaporizer and a mass spectrometer enables high-speed detection within a few seconds, compared with the conventional off-line heating method that takes more than 10 s to raise the temperature of a sample filter unit. Since the configuration enriched the number density of explosive particles by about 80 times compared with that without the concentrator, a sub-ng amount of TNT particles on a surface was detectable. The detection limit of our technique is comparable with that of an explosives trace detector using ion mobility spectrometry. The technique will be beneficial for trace detection in security applications, because it detects explosive particles on the surface more speedily than conventional methods. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2011-09-01

    The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (-1.61 W m-2 in year 2000) is simulated to be greatly reduced in the future, to -0.23 W m-2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  6. Dynamic facilitation explains 'democratic' particle motion of metabasin transitions

    NASA Astrophysics Data System (ADS)

    Hedges, Lester O.; Garrahan, Juan P.

    2008-08-01

    Transitions between metabasins in supercooled liquids seem to occur through rapid collective particle rearrangements. These events have been called 'democratic' as they appear homogeneous over a significant number of particles. This could suggest that 'democratic' rearrangements are fundamentally distinct to those leading to dynamic heterogeneity. Here we show, however, that this apparent homogeneous particle motion can be explained solely in terms of dynamic facilitation, and is therefore intriniscally heterogeneous. We do so by studying metabasin transitions in facilitated spin models and constrained lattice gases. We find that metabasin transitions occur through a sequence of locally facilitated events taking place over a relatively short time frame. When observed on small enough spatial windows these events appear sudden and homogeneous. Our results indicate that metabasin transitions, while apparently homogeneous and 'democratic', are yet another manifestation of dynamical heterogeneity in glass formers.

  7. Rapid determination of particle velocity from space-time images using the Radon transform

    PubMed Central

    Drew, Patrick J.; Blinder, Pablo; Cauwenberghs, Gert; Shih, Andy Y.; Kleinfeld, David

    2016-01-01

    Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods made use of shearing or rotation of the images and a Singular Value Decomposition (SVD) to automatically estimate the average velocity in a temporal window of data. Here we present an alternative method that makes use of the Radon transform to calculate the velocity of streaming particles. We show that this method is over an order of magnitude faster than the SVD-based algorithm and is more robust to noise. PMID:19459038

  8. Method of assessing a lipid-related health risk based on ion mobility analysis of lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2010-12-14

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  9. Significance of the Fragmentation Region in Ultrarelativistic Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-08-01

    We present measurements of the pseudorapidity distribution of primary charged particles produced in Au+Au collisions at three energies, (sNN)=19.6, 130, and 200GeV, for a range of collision centrali­ties. The distribution narrows for more central collisions and excess particles are produced at high pseudorapidity in peripheral collisions. For a given centrality, however, the distributions are found to scale with energy according to the “limiting fragmentation” hypothesis. The universal fragmentation region described by this scaling grows in pseudorapidity with increasing collision energy, extending well away from the beam rapidity and covering more than half of the pseudorapidity range over which particles are produced. This approach to a universal limiting curve appears to be a dominant feature of the pseudorapidity distribution and therefore of the total particle production in these collisions.

  10. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.

    PubMed

    Kühn, S; Phillips, B S; Lunt, E J; Hawkins, A R; Schmidt, H

    2010-01-21

    The development of on-chip methods to manipulate particles is receiving rapidly increasing attention. All-optical traps offer numerous advantages, but are plagued by large required power levels on the order of hundreds of milliwatts and the inability to act exclusively on individual particles. Here, we demonstrate a fully integrated electro-optical trap for single particles with optical excitation power levels that are five orders of magnitude lower than in conventional optical force traps. The trap is based on spatio-temporal light modulation that is implemented using networks of antiresonant reflecting optical waveguides. We demonstrate the combination of on-chip trapping and fluorescence detection of single microorganisms by studying the photobleaching dynamics of stained DNA in E. coli bacteria. The favorable size scaling facilitates the trapping of single nanoparticles on integrated optofluidic chips.

  11. Rapid plasma quenching for the production of ultrafine metal and ceramic powders

    NASA Astrophysics Data System (ADS)

    Donaldson, Alan; Cordes, Ronald A.

    2005-04-01

    The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.

  12. Particle sizing of pharmaceutical aerosols via direct imaging of particle settling velocities.

    PubMed

    Fishler, Rami; Verhoeven, Frank; de Kruijf, Wilbur; Sznitman, Josué

    2018-02-15

    We present a novel method for characterizing in near real-time the aerodynamic particle size distributions from pharmaceutical inhalers. The proposed method is based on direct imaging of airborne particles followed by a particle-by-particle measurement of settling velocities using image analysis and particle tracking algorithms. Due to the simplicity of the principle of operation, this method has the potential of circumventing potential biases of current real-time particle analyzers (e.g. Time of Flight analysis), while offering a cost effective solution. The simple device can also be constructed in laboratory settings from off-the-shelf materials for research purposes. To demonstrate the feasibility and robustness of the measurement technique, we have conducted benchmark experiments whereby aerodynamic particle size distributions are obtained from several commercially-available dry powder inhalers (DPIs). Our measurements yield size distributions (i.e. MMAD and GSD) that are closely in line with those obtained from Time of Flight analysis and cascade impactors suggesting that our imaging-based method may embody an attractive methodology for rapid inhaler testing and characterization. In a final step, we discuss some of the ongoing limitations of the current prototype and conceivable routes for improving the technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evolution of Size and Chemical Composition of Copper Concentrate Particles Oxidized Under Simulated Flash Smelting Conditions

    NASA Astrophysics Data System (ADS)

    Pérez-Tello, Manuel; Parra-Sánchez, Víctor R.; Sánchez-Corrales, Víctor M.; Gómez-Álvarez, Agustín; Brown-Bojórquez, Francisco; Parra-Figueroa, Roberto A.; Balladares-Varela, Eduardo R.; Araneda-Hernández, Eugenia A.

    2018-04-01

    An experimental study was conducted to elucidate the evolution of size and chemical composition of La Caridad copper concentrate particles during oxidation under simulated flash smelting conditions. Input variables tested included particle size and oxygen concentration in the process gas. The response variables included the size distributions, chemical composition, and morphology of the reacted particles at seven locations along a laboratory reactor. Particles with initial size < 45 µm contained mostly chalcopyrite, they increased their mean size and decreased the amount of dust in the population during oxidation. This was explained by a reaction path involving rapid melting followed by collision and coalescence of reacting droplets during flight. Particles with sizes > 45 µm contained varying amounts of chalcopyrite and pyrite, and tended to either maintain or decrease their mean size upon oxidation. When size reduction was observed, dust was produced because of fragmentation, and the particles showed no evidence of collisions during flight. The main oxidation products detected in the particles consisted of matte, cuprospinel, and magnetite. A plot of the mean size divided by the mean size in the feed against the fraction of sulfur eliminated generalized the experimental data so far reported in the literature, and helped identify the reaction path followed by the particles.

  14. Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

    2015-09-01

    We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.

  15. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.

    PubMed

    Schmid, Doris; Micić, Vesna; Laumann, Susanne; Hofmann, Thilo

    2015-10-01

    The high specific surface area and high reactivity of nanoscale zero-valent iron (nZVI) particles have led to much research on their application to environmental remediation. The reactivity of nZVI is affected by both the water chemistry and the properties of the particular type of nZVI particle used. We have investigated the reactivity of three types of commercially available Nanofer particles (from Nanoiron, s.r.o., Czech Republic) that are currently either used in, or proposed for use in full scale environmental remediation projects. The performance of one of these, the air-stable and thus easy-to-handle Nanofer Star particle, has not previously been reported. Experiments were carried out first in batch shaking reactors in order to derive maximum reactivity rates and provide a rapid estimate of the Nanofer particle's reactivity. The experiments were performed under near-natural environmental conditions with respect to the pH value of water and solute concentrations, and results were compared with those obtained using synthetic water. Thereafter, the polyelectrolyte-coated Nanofer 25S particles (having the highest potential for transport within porous media) were chosen for the experiments in column reactors, in order to elucidate nanoparticle reactivity under a more field-site realistic setting. Iopromide was rapidly dehalogenated by the investigated nZVI particles, following pseudo-first-order reaction kinetics that was independent of the experimental conditions. The specific surface area normalized reaction rate constant (kSA) value in the batch reactors ranged between 0.12 and 0.53Lm(-2)h(-1); it was highest for the uncoated Nanofer 25 particles, followed by the polyacrylic acid-coated Nanofer 25S and air-stable Nanofer Star particles. In the batch reactors all particles were less reactive in natural water than in synthetic water. The kSA values derived from the column reactor experiments were about 1000 times lower than those from the batch reactors, ranging between 2.6×10(-4) and 5.7×10(-4)Lm(-2)h(-1). Our results revealed that the easy-to-handle and air-stable Nanofer Star particles are the least reactive of all the Nanofer products tested. The reaction kinetics predicted by column experiments were more realistic than those predicted by batch experiments and these should therefore be used when designing a full-scale field application of nanomaterials for environmental remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Method for the production of ultrafine particles by electrohydrodynamic micromixing

    DOEpatents

    DePaoli, David W.; Hu, Zhong Cheng; Tsouris, Constantinos

    2001-01-01

    The present invention relates to a method for the rapid production of homogeneous, ultrafine inorganic material via liquid-phase reactions. The method of the present invention employs electrohydrodynamic flows in the vicinity of an electrified injector tube placed inside another tube to induce efficient turbulent mixing of two fluids containing reactive species. The rapid micromixing allows liquid-phase reactions to be conducted uniformly at high rates. This approach allows continuous production of non-agglomerated, monopispersed, submicron-sized, sphere-like powders.

  17. Hadron rapidity spectra within a hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-03-01

    A multistage hybrid model is constructed what joins the initial non-equilibrium stage of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system treated within ideal hydrodynamics (the second stage). Particles can still rescatter after hydrodynamical expansion that is the third interaction stage. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra.

  18. A simple and rapid latex fixation test for measuring immunoglobulins produced in cell cultures.

    PubMed

    Kasahara, T; Harada, H; Enomoto, H; Itoh, Y; Kawai, T; Shioiri-Nakano, K

    1981-01-01

    A rapid and simple latex fixation test (LFT), which quantifies immunoglobulin (Ig) released into culture supernatants is described. Latex particles are coated with rabbit anti-human IgG, IgA or IgM antibodies. With this LFT technique the concentration of Ig is determined within a few minutes. The LFT is as sensitive and quantitative as double-antibody radioimmunoassay and is capable of detecting 35, 68 and 225 ng/ml of IgG, IgA and IgM, respectively.

  19. Organic matter diagenesis within the water column and surface sediments of the northern Sargasso Sea revealed by lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Conte, M. H.; Pedrosa Pàmies, R.; Weber, J.

    2017-12-01

    The intensity of particle cycling processes within the mesopelagic and bathypelagic ocean controls the length scale of organic material (OM) remineralization and diagenetic transformations of OM composition through the water column and into the sediments. To elucidate the OM cycling in the oligotrophic North Atlantic gyre, we analyzed lipid biomarkers in the suspended particles (30-4400 m depth, 100 mab), the particle flux (500 m, 1500 m and 3200 m depth), and in the underlying surficial sediments (0-0.5 cm, 4500-4600 m depth) collected at the Oceanic Flux Program (OFP) time series site located 75km SE of Bermuda. Changes in lipid biomarker concentration and composition with depth highlight the rapid remineralization of OM within the upper mesopelagic layer and continuing diagenetic transformations of OM throughout the water column and within surficial sediments. Despite observed similarities in biomarker composition in suspended and sinking particles, results show there are also consistent differences in relative contributions of phytoplankton-, bacterial- and zooplankton-derived sources that are maintained throughout the water column. For example, sinking particles are more depleted in labile biomarkers (e.g. polyunsaturated fatty acids (PUFA)) and more enriched in bacteria-derived biomarkers (e.g. hopanoids and odd/branched fatty acids) and indicators of fecal-derived OM (e.g. saturated fatty acids, FA 18:1w9 and cholesterol) than in the suspended pool. Strong seasonality in deep (3200 m) fluxes of phytoplankton-derived biomarkers reflect the seasonal input of bloom-derived material to underlying sediments. The rapid diagenetic alteration of this bloom-derived input is evidenced by depletion of PUFAs and enrichment of microbial biomarkers (e.g. odd/branched fatty acids) in surficial sediments over a two month period.

  20. Nucleation in Synoptically Forced Cirrostratus

    NASA Technical Reports Server (NTRS)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  1. Particulate removal processes and hydraulics of porous gravel media filters

    NASA Astrophysics Data System (ADS)

    Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.

    2013-12-01

    Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal clogging processes of gravel filters and are a considerable improvement on the inflow/outflow data most often available to monitor removal efficiency and clogging. Sub-section of the MRI derived geometry showing gravel (grey), pore space (blue), deposited particles (red) for 1) prior to clogging and 2) after clogging. The pore network skeleton (green) provided a reference point for comparing pore diameter change with clogging.

  2. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Formalism for calculation of polymer-solvent-mediated potential

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2006-07-01

    A simple theoretical approach is proposed for calculation of a solvent-mediated potential (SMP) between two colloid particles immersed in a polymer solvent bath in which the polymer is modeled as a chain with intramolecular degrees of freedom. The present recipe is only concerned with the estimation of the density profile of a polymer site around a single solute colloid particle instead of two solute colloid particles separated by a varying distance as done in existing calculational methods for polymer-SMP. Therefore the present recipe is far simpler for numerical implementation than the existing methods. The resultant predictions for the polymer-SMP and polymer solvent-mediated mean force (polymer-SMMF) are in very good agreement with available simulation data. With the present recipe, change tendencies of the contact value and second virial coefficiency of the SMP as a function of size ratio between the colloid particle and polymer site, the number of sites per chain, and the polymer concentration are investigated in detail. The metastable critical polymer concentration as a function of size ratio and the number of sites per chain is also reported for the first time. To yield the numerical solution of the present recipe at less than 1min on a personal computer, a rapid and accurate algorithm for the numerical solution of the classical density functional theory is proposed to supply rapid and accurate estimation of the density profile of the polymer site as an input into the present formalism.

  4. Particle irradiation induces FGF2 expression in normal human lens cells

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Bjornstad K, A.; Chang, E.; McNamara, M.; Barcellos-Hoff, M. H.; Lin, S. P.; Aragon, G.; Polansky, J. R.; Lui, G. M.; Blakely, E. A.

    2000-01-01

    Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.

  5. Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon1.fr

    2014-05-01

    Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoS{sub x} (x≈4) of 10–30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoS{sub x} under nitrogen or hydrogen flow atmore » 400 °C allows obtaining mesoporous MoS{sub 2} materials with very high pore volume and specific surface area, up to 0.45 cm{sup 3}/g and 190 m{sup 2}/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts. - Graphical abstract: Solution reaction in propylene carbonate allows preparing weakly agglomerated molybdenum sulfide with particle size 20 nm and advantageous catalytic properties. - Highlights: • Solution reaction in propylene carbonate yields MoS{sub x} particles near 20 nm size. • Addition of starch as capping agent reduces particles size and hinder agglomeration. • EXAFS at Mo K edge shows rapid oxygen to sulfur exchange in the solution. • Thermal treatment leads to MoS{sub 2} with very high porosity and surface area.« less

  6. Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring.

    PubMed

    Benning, Jennifer L; Liu, Zhe; Tiwari, Andrea; Little, John C; Marr, Linsey C

    2013-03-19

    Phthalates are widely used as plasticizers, and improved ability to predict emissions of phthalates is of interest because of concern about their health effects. An experimental chamber was used to measure emissions of di-2-ethylhexyl-phthalate (DEHP) from vinyl flooring, with ammonium sulfate particles introduced to examine their influence on the emission rate and to measure the partitioning of DEHP onto airborne particles. When particles were introduced to the chamber at concentrations of 100 to 245 μg/m(3), the total (gas + particle) DEHP concentrations increased by a factor of 3 to 8; under these conditions, emissions were significantly enhanced compared to the condition without particles. The measured DEHP partition coefficient to ammonium sulfate particles with a median diameter of 45 ± 5 nm was 0.032 ± 0.003 m(3)/μg (95% confidence interval). The DEHP-particle sorption equilibration time was demonstrated to be less than 1 min. Both the partition coefficient and equilibration time agree well with predictions from the literature. This study represents the first known measurements of the particle-gas partition coefficient for DEHP. Furthermore, the results demonstrate that the emission rate of DEHP is substantially enhanced in the presence of particles. The particles rapidly sorb DEHP from the gas phase, allowing more to be emitted from the source, and also appear to enhance the convective mass-transfer coefficient itself. Airborne particles can influence SVOC fate and transport in the indoor environment, and these mechanisms must be considered in evaluating exposure and human health.

  7. An improved method for differentiating cell-bound from internalized particles by imaging flow cytometry.

    PubMed

    Smirnov, Asya; Solga, Michael D; Lannigan, Joanne; Criss, Alison K

    2015-08-01

    Recognition, binding, internalization, and elimination of pathogens and cell debris are important functions of professional as well as non-professional phagocytes. However, high-throughput methods for quantifying cell-associated particles and discriminating bound from internalized particles have been lacking. Here we describe a protocol for using imaging flow cytometry to quantify the attached and phagocytosed particles that are associated with a population of cells. Cells were exposed to fluorescent particles, fixed, and exposed to an antibody of a different fluorophore that recognizes the particles. The antibody is added without cell permeabilization, such that the antibody only binds extracellular particles. Cells with and without associated particles were identified by imaging flow cytometry. For each cell with associated particles, a spot count algorithm was employed to quantify the number of extracellular (double fluorescent) and intracellular (single fluorescent) particles per cell, from which the percent particle internalization was determined. The spot count algorithm was empirically validated by examining the fluorescence and phase contrast images acquired by the flow cytometer. We used this protocol to measure binding and internalization of the bacterium Neisseria gonorrhoeae by primary human neutrophils, using different bacterial variants and under different cellular conditions. The results acquired using imaging flow cytometry agreed with findings that were previously obtained using conventional immunofluorescence microscopy. This protocol provides a rapid, powerful method for measuring the association and internalization of any particle by any cell type. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Direct night-time ejection of particle-phase reduced biogenic sulfur compounds from the ocean to the atmosphere.

    PubMed

    Gaston, Cassandra J; Furutani, Hiroshi; Guazzotti, Sergio A; Coffee, Keith R; Jung, Jinyoung; Uematsu, Mitsuo; Prather, Kimberly A

    2015-04-21

    The influence of oceanic biological activity on sea spray aerosol composition, clouds, and climate remains poorly understood. The emission of organic material and gaseous dimethyl sulfide (DMS) from the ocean represents well-documented biogenic processes that influence particle chemistry in marine environments. However, the direct emission of particle-phase biogenic sulfur from the ocean remains largely unexplored. Here we present measurements of ocean-derived particles containing reduced sulfur, detected as elemental sulfur ions (e.g., (32)S(+), (64)S2(+)), in seven different marine environments using real-time, single particle mass spectrometry; these particles have not been detected outside of the marine environment. These reduced sulfur compounds were associated with primary marine particle types and wind speeds typically between 5 and 10 m/s suggesting that these particles themselves are a primary emission. In studies with measurements of seawater properties, chlorophyll-a and atmospheric DMS concentrations were typically elevated in these same locations suggesting a biogenic source for these sulfur-containing particles. Interestingly, these sulfur-containing particles only appeared at night, likely due to rapid photochemical destruction during the daytime, and comprised up to ∼67% of the aerosol number fraction, particularly in the supermicrometer size range. These sulfur-containing particles were detected along the California coast, across the Pacific Ocean, and in the southern Indian Ocean suggesting that these particles represent a globally significant biogenic contribution to the marine aerosol burden.

  9. Speedy fabrication of diameter-controlled Ag nanowires using glycerolunder microwave irradiation conditions

    EPA Science Inventory

    Diameter-controlled Ag nanowires were rapidly fabricated (1 min) using inexpensive, abundant, and environmentally-friendly glycerol as both reductant and solvent under non-stirred microwave irradiation conditions; no Ag particles were formed using conventional heating methods. Th...

  10. Histomorphometric Study of New Bone Formation Comparing Defect Healing with Three Bone Grafting Materials: The Effect of Osteoporosis on Graft Consolidation.

    PubMed

    Zhang, Qiao; Jing, Dai; Zhang, Yufeng; Miron, Richard J

    Bone grafting materials are frequently utilized in oral surgery and periodontology to fill bone defects and augment lost or missing bone. The purpose of this study was to compare new bone formation in bone defects created in both normal and osteoporotic animals loaded with three types of bone grafts from different origins. Forty-eight female Wistar rats were equally divided into control normal and ovariectomized animals. Bilateral 2.5-mm femur defects were created and filled with an equal weight of (1) natural bone mineral (NBM, BioOss) of bovine origin, (2) demineralized freeze-dried bone allograft (DFDBA, LifeNet), or (3) biphasic calcium phosphate (BCP, Vivoss). Following 3 and 6 weeks of healing, hematoxylin and eosin and TRAP staining was performed to determine new bone formation, material degradation, and osteoclast activity. All bone substitutes demonstrated osteoconductive potential at 3 and 6 weeks with higher osteoclast numbers observed in all ovariectomized animals. NBM displayed continual new bone formation with little to no sign of particle degradation, even in osteoporotic animals. DFDBA particles showed similar levels of new bone formation but rapid particle degradation rates with lower levels of mineralized tissue. BCP bone grafts demonstrated significantly higher new bone formation when compared with both NBM and DFDBA particles; however, the material was associated with higher osteoclast activity and particle degradation. Interestingly, in osteoporotic animals, BCP displayed synergistically and markedly more rapid rates of particle degradation. Recent modifications to synthetically fabricated materials were shown to be equally or more osteopromotive than NBM and DFDBA. However, the current BCP utilized demonstrated much faster resorption properties in osteoporotic animals associated with a decrease in total bone volume when compared with the slowly/nonresorbing NBM. The results from this study point to the clinical relevance of minimizing fast-resorbing bone grafting materials in osteoporotic phenotypes due to the higher osteoclastic activity and greater material resorption.

  11. Biotransformation of magnetic nanoparticles as a function of coating in a rat model

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Gutiérrez, L.; Cáceres-Vélez, P. R.; Santos, D.; Chaves, S. B.; Fascineli, M. L.; Garcia, M. P.; Azevedo, R. B.; Morales, M. P.

    2015-10-01

    Long-term in vivo studies in murine models have shown that DMSA-coated nanoparticles accumulate in spleen, liver and lung tissues during extended periods of time (at least up to 3 months) without any significant signs of toxicity detected. During that time, nanoparticles undergo a process of biotransformation either by reducing the size or the particle aggregation or both. Using a rat model, we have evaluated the transformations of magnetic nanoparticles injected at low doses. Particles with two different coatings, dimercaptosuccinic acid (NP-DMSA) and polyethylene glycol (NP-PEG-(NH2)2) have been administered to animals, to evaluate the role of coating in the degradation of the particles. We have found that low doses of magnetic nanoparticles are quickly metabolized by the animals. In fact, using a nanoparticle dose four times lower than in previous experiments, NP-DMSA were not observed 24 h after the administration either in the liver or in the lungs. Interestingly, an increased amount of ferritin, the iron storage protein, was observed in liver tissues from rats that were treated with the low dose of NP-DMSA in comparison with the control ones, suggesting a rapid metabolization of the particles into ferritin iron. On the other side we have found that, NP-PEG-(NH2)2 are still detectable in several organs 24 h after their administration at low doses. Probably, due to the longer circulation times of the NP-PEG-(NH2)2, there is a delay in the arrival of the particles to the tissue and this is the reason why we are able to see the particles 24 h post-administration. PEG coating could also be protecting the nanoparticles from rapid degradation of the reticuloendothelial system. Knowledge on the biodistribution, circulation time and degradation processes is required to gain a better understanding of the safety evaluation of this kind of nanomaterial for biomedical applications.

  12. Inductively heated shape memory polymer for the magnetic actuation of medical devices.

    PubMed

    Buckley, Patrick R; McKinley, Gareth H; Wilson, Thomas S; Small, Ward; Benett, William J; Bearinger, Jane P; McElfresh, Michael W; Maitland, Duncan J

    2006-10-01

    Presently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with nickel zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  13. Doping evolution of spin and charge excitations in the Hubbard model

    DOE PAGES

    Kung, Y. F.; Nowadnick, E. A.; Jia, C. J.; ...

    2015-11-05

    We shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, examining the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achievedmore » in the cuprates). Ultimately, these fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.« less

  14. Inertial Particle Migration in the Presence of a Permeate Flow

    NASA Astrophysics Data System (ADS)

    Garcia, Mike; Singelton, Amanda; Pennathur, Sumita

    2016-11-01

    Tangential Flow Filtration (TFF) is a rapid and efficient method for the filtration and separation of suspensions of particles such as viruses, bacteria or cellular material. Enhancing the efficacy of TFF not only requires a detailed understanding of particle transport mechanisms, but also the interactions between these mechanisms and a porous wall. In this work, we numerically and experimentally explore the mechanisms of inertial particle migration in the presence of a permeate flow through the porous walls of a microchannel. Numerically, we develop a force balance model to understand the competition between permeate and inertial forces and the resultant consequences on the particle equilibrium location. Experimentally, we fabricated MEMS TFF devices to study the migration of 5, 10 and 15 µm fluorescent polystyrene beads in straight channels with perpendicular permeate flow rates up to 90% of the inlet flow rate. We find that the permeate flow directly influences the inertial focusing position of the particles, both as a function of downstream channel position and ratio of inlet to outlet flow rate. Comparing experiments to our model, we can identify inertial, viscous and a co-dominant regimes.

  15. Blue nano titania made in diffusion flames.

    PubMed

    Teleki, Alexandra; Pratsinis, Sotiris E

    2009-05-21

    Blue titanium suboxide nanoparticles (including Magneli phases) were formed directly without any post-processing or addition of dopants by combustion of titanium-tetra-isopropoxide (TTIP) vapor at atmospheric pressure. Particle size, phase composition, rutile and anatase crystal sizes as well as the blue coloration were controlled by rapid quenching of the flame with a critical flow nozzle placed at various heights above the burner. The particles showed a broad absorption in the near-infrared region and retained their blue color upon storage in ambient atmosphere. A high concentration of paramagnetic Ti3+ centres was found in the substoichiometric particles by electron paramagnetic resonance (EPR) spectroscopy. Furthermore particles with controlled band gap energy from 3.2 to 3.6 eV were made by controlling the burner-nozzle-distance from 10 to 1 cm, respectively. The color robustness and extent of suboxidation could be further enhanced by co-oxidation of TTIP with hexamethyldisiloxane in the flame resulting in SiO2-coated titanium suboxide particles. The process is cost-effective and green while the particles produced can replace traditional blue colored, cobalt-containing pigments.

  16. Process and apparatus for producing ultrafine explosive particles

    DOEpatents

    McGowan, Michael J.

    1992-10-20

    A method and an improved eductor apparatus for producing ultrafine explosive particles is disclosed. The explosive particles, which when incorporated into a binder system, have the ability to propagate in thin sheets, and have very low impact sensitivity and very high propagation sensitivity. A stream of a solution of the explosive dissolved in a solvent is thoroughly mixed with a stream of an inert nonsolvent by obtaining nonlaminar flow of the streams by applying pressure against the flow of the nonsolvent stream, to thereby diverge the stream as it contacts the explosive solution, and violently agitating the combined stream to rapidly precipitate the explosive particles from the solution in the form of generally spheroidal, ultrafine particles. The two streams are injected coaxially through continuous, concentric orifices of a nozzle into a mixing chamber. Preferably, the nonsolvent stream is injected centrally of the explosive solution stream. The explosive solution stream is injected downstream of and surrounds the nonsolvent solution stream for a substantial distance prior to being ejected into the mixing chamber.

  17. Graphene Caging Silicon Particles for High-Performance Lithium-Ion Batteries.

    PubMed

    Nie, Ping; Le, Zaiyuan; Chen, Gen; Liu, Dan; Liu, Xiaoyan; Wu, Hao Bin; Xu, Pengcheng; Li, Xinru; Liu, Fang; Chang, Limin; Zhang, Xiaogang; Lu, Yunfeng

    2018-06-01

    Silicon holds great promise as an anode material for lithium-ion batteries with higher energy density; its implication, however, is limited by rapid capacity fading. A catalytic growth of graphene cages on composite particles of magnesium oxide and silicon, which are made by magnesiothermic reduction reaction of silica particles, is reported herein. Catalyzed by the magnesium oxide, graphene cages can be conformally grown onto the composite particles, leading to the formation of hollow graphene-encapsulated Si particles. Such materials exhibit excellent lithium storage properties in terms of high specific capacity, remarkable rate capability (890 mAh g -1 at 5 A g -1 ), and good cycling retention over 200 cycles with consistently high coulombic efficiency at a current density of 1 A g -1 . A full battery test using LiCoO 2 as the cathode demonstrates a high energy density of 329 Wh kg -1 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lunar surface cosmic ray experiment S-152, Apollo 16

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.; Carter, M.; Comostock, G. M.; Renshaw, A.; Woods, R. T.

    1973-01-01

    This investigation was directed at determining the energy spectra and abundances of low energy heavy cosmic rays (0.03 E or = 150 MeV/nucleon). The cosmic rays were detected using plastic and glass particle track detectors. Particles emitted during the 17 April 1972 solar flare dominated the spectra for energies below about 70 MeV/nucleon. Two conclusions emerge from the low energy data: (1) The differential energy spectra for solar particles vary rapidly for energies as low as 0.05 MeV/nucleon for iron-group nuclei. (2) The abundance ratio of heavy elements changes with energy at low energies; heavy elements are enhanced relative to higher elements increasingly as the energy decreases. Galactic particle fluxes recorded within the spacecraft are in agreement with those predicted taking into account solar modulation and spacecraft shielding. The composition of the nuclei at energies above 70 MeV/nucleon imply that these particles originate outside the solar system and hence are galactic cosmic rays.

  19. Tuning the Activity of Oxygen in LiNi0.8Co0.15Al0.05O2 Battery Electrodes.

    PubMed

    Karki, Khim; Huang, Yiqing; Hwang, Sooyeon; Gamalski, Andrew D; Whittingham, M Stanley; Zhou, Guangwen; Stach, Eric A

    2016-10-06

    Layered transition metal oxides such as LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) are highly desirable battery electrodes. However, these materials suffer from thermal runaway caused by deleterious oxygen loss and surface phase transitions when in highly overcharged and overheated conditions, prompting serious safety concerns. Using in situ environmental transmission electron microscopy techniques, we demonstrate that surface oxygen loss and structural changes in the highly overcharged NCA particles are suppressed by exposing them to an oxygen-rich environment. The onset temperature for the loss of oxygen from the electrode particle is delayed to 350 °C at oxygen gas overpressure of 400 mTorr. Similar heating of the particles in a reducing hydrogen gas demonstrated a quick onset of oxygen loss at 150 °C and rapid surface degradation of the particles. The results reported here illustrate the fundamental mechanism governing the failure processes of electrode particles and highlight possible strategies to circumvent such issues.

  20. Design of Nanomaterial Synthesis by Aerosol Processes

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  1. Characterization of high explosive particles using cluster secondary ion mass spectrometry.

    PubMed

    Gillen, Greg; Mahoney, Christine; Wight, Scott; Lareau, Richard

    2006-01-01

    The use of secondary ion mass spectrometry (SIMS) for the detection and spatially resolved analysis of individual high explosive particles is described. A C(8) (-) carbon cluster primary ion beam was used in a commercial SIMS instrument to analyze samples of high explosives dispersed as particles on silicon substrates. In comparison with monatomic primary ion bombardment, the carbon cluster primary ion beam was found to greatly enhance characteristic secondary ion signals from the explosive compounds while causing minimal beam-induced degradation. The resistance of these compounds to degradation under ion bombardment allows explosive particles to be analyzed under high primary ion dose bombardment (dynamic SIMS) conditions, facilitating the rapid acquisition of spatially resolved molecular information. The use of cluster SIMS combined with computer control of the sample stage position allows for the automated identification and counting of explosive particle distributions on silicon surfaces. This will be useful for characterizing the efficiency of transfer of particulates in trace explosive detection portal collectors and/or swipes utilized for ion mobility spectrometry applications.

  2. Pseudorapidity Distribution of Charged Particles in d+Au Collisions at √(sNN)=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2004-08-01

    The measured pseudorapidity distribution of primary charged particles in minimum-bias d+Au collisions at √(sNN)=200 GeV is presented for the first time. This distribution falls off less rapidly in the gold direction as compared to the deuteron direction. The average value of the charged particle pseudorapidity density at midrapidity is ∣η∣≤0.6=9.4±0.7(syst) and the integrated primary charged particle multiplicity in the measured region is 82±6(syst). Estimates of the total charged particle production, based on extrapolations outside the measured pseudorapidity region, are also presented. The pseudorapidity distribution, normalized to the number of participants in d+Au collisions, is compared to those of Au+Au and p+p¯ systems at the same energy. The d+Au distribution is also compared to the predictions of the parton saturation model, as well as microscopic models.

  3. The structure of particle-laden jets and nonevaporating sprays

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Zhang, Q. F.; Faeth, G. M.

    1983-01-01

    Mean and fluctuating gas velocities, liquid mass fluxes and drop sizes were in nonevaporating sprays. These results, as well as existing measurements in solid particle-laden jets, were used to evaluate models of these processes. The following models were considered: (1) a locally homogeneous flow (LHF) model, where slip between the phases was neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of particle dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for particle motion. The LHF and DSF models did not provide very satisfactory predictions over the present data base. In contrast, the SSF model performed reasonably well - including conditions in nonevaporating sprays where enhanced dispersion of particles by turbulence caused the spray to spread more rapidly than single-phase jets for comparable conditions. While these results are encouraging, uncertainties in initial conditions limit the reliability of the evaluation. Current work is seeking to eliminate this deficiency.

  4. Design of nanomaterial synthesis by aerosol processes.

    PubMed

    Buesser, Beat; Pratsinis, Sotiris E

    2012-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO(2), pigmentary TiO(2), ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering.

  5. Particle acceleration and transport at a 2D CME-driven shock using the HAFv3 and PATH Code

    NASA Astrophysics Data System (ADS)

    Li, G.; Ao, X.; Fry, C. D.; Verkhoglyadova, O. P.; Zank, G. P.

    2012-12-01

    We study particle acceleration at a 2D CME-driven shock and the subsequent transport in the inner heliosphere (up to 2 AU) by coupling the kinematic Hakamada-Akasofu-Fry version 3 (HAFv3) solar wind model (Hakamada and Akasofu, 1982, Fry et al. 2003) with the Particle Acceleration and Transport in the Heliosphere (PATH) model (Zank et al., 2000, Li et al., 2003, 2005, Verkhoglyadova et al. 2009). The HAFv3 provides the evolution of a two-dimensional shock geometry and other plasma parameters, which are fed into the PATH model to investigate the effect of a varying shock geometry on particle acceleration and transport. The transport module of the PATH model is parallelized and utilizes the state-of-the-art GPU computation technique to achieve a rapid physics-based numerical description of the interplanetary energetic particles. Together with a fast execution of the HAFv3 model, the coupled code gives us a possibility to nowcast/forecast the interplanetary radiation environment.

  6. Iron oxide nanoparticle-based magnetic resonance method to monitor release kinetics from polymeric particles with high resolution.

    PubMed

    Chan, Minnie; Schopf, Eric; Sankaranarayanan, Jagadis; Almutairi, Adah

    2012-09-18

    A new method to precisely monitor rapid release kinetics from polymeric particles using super paramagnetic iron oxide nanoparticles, specifically by measuring spin-spin relaxation time (T(2)), is reported. Previously, we have published the formulation of logic gate particles from an acid-sensitive poly-β-aminoester ketal-2 polymer. Here, a series of poly-β-aminoester ketal-2 polymers with varying hydrophobicities were synthesized and used to formulate particles. We attempted to measure fluorescence of released Nile red to determine whether the structural adjustments could finely tune the release kinetics in the range of minutes to hours; however, this standard technique did not differentiate each release rate of our series. Thus, a new method based on encapsulation of iron oxide nanoparticles was developed, which enabled us to resolve the release kinetics of our particles. Moreover, the kinetics matched the relative hydrophobicity order determined by octanol-water partition coefficients. To the best of our knowledge, this method provides the highest resolution of release kinetics to date.

  7. Strange hadron (neutral kaon(short), lambda baryon and Xi baryon) production in deuteron+gold collisions at center of mass energy = 200 GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Jiang, Hai

    The study of identified particles from deuteron(d)+gold(Au) collisions provide a crucial reference to investigate nuclear effects observed in Au+Au collisions where a thermalized partonic state - Quark Gluon Plasma (QGP) - is thought to have been created. The measurements of transverse mass (mT) and momentum (pT) spectra at mid-rapidity (| y| < 1) for the identified strange hadrons: K0S , Λ + Λ and xi- + xi+ from d+Au collisions are presented. The measured pT covers 0.4 < p T < 6.0 GeV/c for K0S and Λ + Λ and 0.6 < pT < 5.0 GeV/c for xi- + xi+. These particles were reconstructed from the topological characteristics of their weak decays in the STAR Time Projection Chamber (TPC). The mT spectra of these particles are well described by a double exponential function which can be understood by two component models: soft (thermal) hadron production at low mT and hard hadron production at high mT. The integrated yields (dN/dy) and mean pT (< pT >) of these particles are calculated from the fit functions for different centralities. The dN/dy normalized to the number of participants (Npart) increase with Npart. The Λ(Λ ) dN/dy values at the mid-rapidity and forward rapidity regions agree with the EPOS model calculations. The measured Λ/ K0S ratios show the greatest baryon enhancement at pT ˜ 2 GeV/c in d+Au collisions. The strangeness enhancement going from d+Au to Au+Au collisions grows with the number of strange quark in a hadron. The magnitude of the enhancement is in the same order as the SPS measurement. The nuclear modification factors RCP normalized to binary collisions indicate that the Cronin effect in d+Au collisions has a distinct particle type dependence. The RCP ratios show a distinct baryon versus meson dependence: the RCP for xi- + xi+ follows that for Λ + Λ while the R CP for the φ is close to that for the K0S . The mechanism based on initial hadron or parton multiple scattering is not sufficient to explain this particle type dependence. Hadronization processes through multi-parton dynamics such as coalescence and recombination models are likely to be important for explaining baryon enhancement and the Cronin effect in high-energy d+Au collisions.

  8. Control of silk microsphere formation using polyethylene glycol (PEG).

    PubMed

    Wu, Jianbing; Zheng, Zhaozhu; Li, Gang; Kaplan, David L; Wang, Xiaoqin

    2016-07-15

    A one step, rapid method to prepare silk microspheres was developed, with particle size controlled by the addition of polyethylene glycol (PEG). PEG molecular weight (4.0K-20.0KDa) and concentration (20-50wt%), as well as silk concentration (5-20wt%), were key factors that determined particle sizes varying in a range of 1-100μm. Addition of methanol to the PEG-silk combinations increased the content of crystalline β-sheet in the silk microspheres. To track the distribution and degradation of silk microspheres in vivo, 3-mercaptopropionic acid (MPA)-coated CdTe quantum dots (QDs) were physically entrapped in the silk microspheres. QDs tightly bound to the β-sheet domains of silk via hydrophobic interactions, with over 96% of the loaded QDs remaining in the silk microspheres after exhaustive extraction. The fluorescence of QDs-incorporated silk microspheres less stable in cell culture medium than in phosphate buffer solution (PBS) and water. After subcutaneous injection in mice, microspheres prepared from 20% silk (approx. 30μm diameter particles) still fluoresced at 24h, while those prepared from 8% silk (approx. 4μm diameter particles) and free QDs were not detectable, reflecting the QDs quenching and particle size effect on microsphere clearance in vivo. The larger microspheres were more resistant to cell internalization and degradation. Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. The work is of significance to the biomaterial and controlled release society because it provides a new option for fabricating silk microspheres in one simple step of mixing silk and polyethylene glycol (PEG), with the size and properties of microspheres controllable by PEG molecular weight as well as PEG and silk concentrations. Although fabrication of silk microspheres have been reported previously using spray-drying, liposome-templating, polyvinyl alcohol (PVA) emulsification, etc., applications were hindered due to harsh conditions (temperature, solvents, etc.) and complicated procedures used as well as low yield and less controllable particle size (usually <10μm). Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    PubMed

    Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Beddows, David C S; Esser-Gietl, Johanna K; Healy, Robert M; Harrison, Roy M

    2015-03-17

    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.

  10. Shape classification of wear particles by image boundary analysis using machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Chin, K. S.; Hua, Meng; Dong, Guangneng; Wang, Chunhui

    2016-05-01

    The shape features of wear particles generated from wear track usually contain plenty of information about the wear states of a machinery operational condition. Techniques to quickly identify types of wear particles quickly to respond to the machine operation and prolong the machine's life appear to be lacking and are yet to be established. To bridge rapid off-line feature recognition with on-line wear mode identification, this paper presents a new radial concave deviation (RCD) method that mainly involves the use of the particle boundary signal to analyze wear particle features. Signal output from the RCDs subsequently facilitates the determination of several other feature parameters, typically relevant to the shape and size of the wear particle. Debris feature and type are identified through the use of various classification methods, such as linear discriminant analysis, quadratic discriminant analysis, naïve Bayesian method, and classification and regression tree method (CART). The average errors of the training and test via ten-fold cross validation suggest CART is a highly suitable approach for classifying and analyzing particle features. Furthermore, the results of the wear debris analysis enable the maintenance team to diagnose faults appropriately.

  11. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?

    PubMed

    Hansen, Thomas W; Delariva, Andrew T; Challa, Sivakumar R; Datye, Abhaya K

    2013-08-20

    Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface. In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures. In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.

  12. Rapidity and centrality dependence of particle production for identified hadrons in Cu + Cu collisions at s NN = 200 GeV

    DOE PAGES

    Arsene, I. C.

    2016-07-20

    Tmore » he BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons, and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at s NN = 200 GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. he temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled p + p collisions. his suppression, which increases as the collisions become more central, is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities, initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. In conclusion, the ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.« less

  13. FNAS modify matric and transparent experiments

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.

    1992-01-01

    Monotectic alloy materials are created by rapid melt/rapid solidification processing on the NASA KC-135. Separation of the uniform liquid into two liquids may occur by either of two processes; spinodal decomposition or nucleation followed by growth. In the first case, the liquid is unstable to composition waves, which form and grow, giving liquids of two different compositions. In the latter process discrete particles of the second liquid phase form via thermal fluctuations and then grow by diffusion. The two processes are very different, with the determining process being dictated by temperature, composition, and thermodynamic characteristics of the alloy. The first two quantities are process variables, while the third is determined by electronic interactions between the atoms in the alloy. In either case the initial alloy decomposition is followed by coarsening, resulting in growth of the particle size at nearly constant volume fraction. In particular, reduced gravity experiments on monotectic solutions have shown a number of interesting results in the KC-135. Monotectic solutions exhibit a miscibility gap in the liquid state, and consequently, gravity driven forces can dominate the solidification parameters at 1 g. In reduced gravity however, the distribution of the phases is different, resulting in new and interesting microstructures. The Rapid Melt/Rapid Quench Furnace allows one to melt a sample and resolidify it in one parabola of the KC-135's flight path, thus eliminating any accumulative influence of multiple parabolas to affect the microstructure of the material.

  14. Neutral-strange-particle production in 200-GeV/ c p /. pi. sup + / K sup + interactions on Au, Ag, and Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brick, D.H.; Widgoff, M.; Beilliere, P.

    1992-02-01

    We have used the Fermilab 30-in. bubble-chamber--hybrid spectrometer to study neutral-strange-particle production in the interactions of 200-GeV/{ital c} protons and {pi}{sup +} and {ital K}{sup +} mesons with nuclei of gold, silver, and magnesium. Average multiplicities and inclusive cross sections for {ital K}{sup 0} and {Lambda} are measured, and a power law is found to give a good description of their {ital A} dependence. The exponent characterizing the {ital A} dependence is consistent with being the same for {ital K}{sup 0} and {Lambda} production, and also the same for proton and {pi}{sup +} beams. Average {ital K}{sup 0} and {Lambda}more » multiplicities, as well as their ratio, have been measured as functions of the numbers of projectile collisions {nu}{sub {ital p}} and secondary collisions {nu}{sub {ital s}} in the nucleus, and indicate that rescattering contributes significantly to enhancement of {Lambda} production but not to {ital K}{sup 0} production. The properties of events with multiple {ital K}{sup 0}'s or {Lambda}'s also corroborate this conclusion. {ital K}{sup 0} rapidities are in the central region and decrease gently with increasing {nu}{sub {ital p}}, while {Lambda} rapidities are in the target-fragmentation region and are independent of {nu}{sub {ital p}}. {ital K}{sup 0} and {Lambda} multiplicities increase with the rapidity loss of the projectile, but their rapidities do not.« less

  15. Generation of volcanic ash: a textural study of ash produced in various laboratory experiments

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.

    2010-05-01

    In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a few ash particles (< 0.05 g). The morphology and surface textures of the experimentally generated ash particles were imaged through scanning electron microscopy, and the observations will be discussed in terms of fragmentation processes.

  16. Utilization of Titanium Particle Impact Location to Validate a 3D Multicomponent Model for Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; King, P. C.; Busch, C.; Masood, S. H.; Jahedi, M.; Nagarajah, R.; Gulizia, S.

    2017-12-01

    Cold spray is a solid-state rapid deposition technology in which metal powder is accelerated to supersonic speeds within a de Laval nozzle and then impacts onto the surface of a substrate. It is possible for cold spray to build thick structures, thus providing an opportunity for melt-less additive manufacturing. Image analysis of particle impact location and focused ion beam dissection of individual particles were utilized to validate a 3D multicomponent model of cold spray. Impact locations obtained using the 3D model were found to be in close agreement with the empirical data. Moreover, the 3D model revealed the particles' velocity and temperature just before impact—parameters which are paramount for developing a full understanding of the deposition process. Further, it was found that the temperature and velocity variations in large-size particles before impact were far less than for the small-size particles. Therefore, an optimal particle temperature and velocity were identified, which gave the highest deformation after impact. The trajectory of the particles from the injection point to the moment of deposition in relation to propellant gas is visualized. This detailed information is expected to assist with the optimization of the deposition process, contributing to improved mechanical properties for additively manufactured cold spray titanium parts.

  17. Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT).

    PubMed

    McDonald, S A; Holzner, C; Lauridsen, E M; Reischig, P; Merkle, A P; Withers, P J

    2017-07-12

    Pressureless sintering of loose or compacted granular bodies at elevated temperature occurs by a combination of particle rearrangement, rotation, local deformation and diffusion, and grain growth. Understanding of how each of these processes contributes to the densification of a powder body is still immature. Here we report a fundamental study coupling the crystallographic imaging capability of laboratory diffraction contrast tomography (LabDCT) with conventional computed tomography (CT) in a time-lapse study. We are able to follow and differentiate these processes non-destructively and in three-dimensions during the sintering of a simple copper powder sample at 1050 °C. LabDCT quantifies particle rotation (to <0.05° accuracy) and grain growth while absorption CT simultaneously records the diffusion and deformation-related morphological changes of the sintering particles. We find that the rate of particle rotation is lowest for the more highly coordinated particles and decreases during sintering. Consequently, rotations are greater for surface breaking particles than for more highly coordinated interior ones. Both rolling (cooperative) and sliding particle rotations are observed. By tracking individual grains the grain growth/shrinkage kinetics during sintering are quantified grain by grain for the first time. Rapid, abnormal grain growth is observed for one grain while others either grow or are consumed more gradually.

  18. Morphology and mixing of black carbon particles collected in central California during the CARES field study

    DOE PAGES

    Moffet, Ryan C.; O'Brien, Rachel E.; Alpert, Peter A.; ...

    2016-11-23

    Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state) and morphology of individual particles containing black carbon (BC) and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California Central Valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using scanning transmission X-ray microscopy (STXM) at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of particles, highlighting the importance ofmore » highly aged particles at urban sites during periods of high photochemical activity. Based on the observation of thick coatings and more convex BC inclusion morphology, either the aging was rapid or the contribution of fresh BC emissions at the urban site was relatively small compared to background concentrations. Most particles were observed to have the BC inclusion close to the center of the host. However, host particles containing inorganic rich inclusions had the BC inclusion closer to the edge of the particle. Furthermore, these measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes.« less

  19. Determining Number Concentrations and Diameters of Polystyrene Particles by Measuring the Effective Refractive Index of Colloids Using Surface Plasmon Resonance.

    PubMed

    Tuoriniemi, Jani; Moreira, Beatriz; Safina, Gulnara

    2016-10-04

    The capabilities of surface plasmon resonance (SPR) for characterization of colloidal particles were evaluated for 100, 300, and 460 nm nominal diameter polystyrene (PS) latexes. First the accuracy of measuring the effective refractive index (n eff ) of turbid colloids using SPR was quantified. It was concluded that for submicrometer sized PS particles the accuracy is limited by the reproducibility between replicate injections of samples. An SPR method was developed for obtaining the particle mean diameter (d part ) and the particle number concentration (c p ) by fitting the measured n eff of polystyrene (PS) colloids diluted in series with theoretical values calculated using the coherent scattering theory (CST). The d part and c p determined using SPR agreed with reference values obtained from size distributions measured by scanning electron microscopy (SEM), and the mass concentrations stated by the manufacturer. The 100 nm particles adsorbed on the sensing surface, which hampered the analysis. Once the adsorption problem has been overcome, the developed SPR method has potential to become a versatile tool for characterization of colloidal particles. In particular, SPR could form the basis of rapid and accurate methods for measuring the c p of submicrometer particles in dispersion.

  20. Morphology and mixing of black carbon particles collected in central California during the CARES field study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffet, Ryan C.; O'Brien, Rachel E.; Alpert, Peter A.

    Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state) and morphology of individual particles containing black carbon (BC) and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California Central Valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using scanning transmission X-ray microscopy (STXM) at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of particles, highlighting the importance ofmore » highly aged particles at urban sites during periods of high photochemical activity. Based on the observation of thick coatings and more convex BC inclusion morphology, either the aging was rapid or the contribution of fresh BC emissions at the urban site was relatively small compared to background concentrations. Most particles were observed to have the BC inclusion close to the center of the host. However, host particles containing inorganic rich inclusions had the BC inclusion closer to the edge of the particle. Furthermore, these measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes.« less

Top