Sample records for particle size compared

  1. Sound absorption by suspensions of nonspherical particles: Measurements compared with predictions using various particle sizing techniques

    NASA Astrophysics Data System (ADS)

    Richards, Simon D.; Leighton, Timothy G.; Brown, Niven R.

    2003-10-01

    Knowledge of the particle size distribution is required in order to predict ultrasonic absorption in polydisperse particulate suspensions. This paper shows that the method used to measure the particle size distribution can lead to important differences in the predicted absorption. A reverberation technique developed for measuring ultrasonic absorption by suspended particles is used to measure the absorption in suspensions of nonspherical particles. Two types of particulates are studied: (i) kaolin (china clay) particles which are platelike in form; and (ii) calcium carbonate particles which are more granular. Results are compared to theoretical predictions of visco-inertial absorption by suspensions of spherical particles. The particle size distributions, which are required for these predictions, are measured by laser diffraction, gravitational sedimentation and centrifugal sedimentation, all of which assume spherical particles. For a given sample, each sizing technique yields a different size distribution, leading to differences in the predicted absorption. The particle size distributions obtained by gravitational and centrifugal sedimentation are reinterpreted to yield a representative size distribution of oblate spheroids, and predictions for absorption by these spheroids are compared with the measurements. Good agreement between theory and measurement for the flat kaolin particles is obtained, demonstrating that these particles can be adequately represented by oblate spheroids.

  2. Metal release from stainless steel particles in vitro-influence of particle size.

    PubMed

    Midander, K; Pan, J; Wallinder, I Odnevall; Leygraf, C

    2007-01-01

    Human inhalation of airborne metallic particles is important for health risk assessment. To study interactions between metallic particles and the human body, metal release measurements of stainless steel powder particles were performed in two synthetic biological media simulating lung-like environments. Particle size and media strongly influence the metal release process. The release rate of Fe is enhanced compared with Cr and Ni. In artificial lysosomal fluid (ALF, pH 4.5), the accumulated amounts of released metal per particle loading increase drastically with decreasing particle size. The release rate of Fe per unit surface area increases with decreasing particle size. Compared with massive sheet metal, fine powder particles (<4 microm) show similar release rates of Cr and Ni, but a higher release rate of Fe. Release rates in Gamble's solution (pH 7.4), for all powders investigated, are significantly lower compared to ALF. No clear trend is seen related to particle size in Gamble's solution.

  3. The Size of Gelatin Sponge Particles: Differences with Preparation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumori, Tetsuya, E-mail: katsumo@eurus.dti.ne.jp; Kasahara, Toshiyuki

    2006-12-15

    Purpose. To assess whether the size distribution of gelatin sponge particles differed according to the method used to make them and the type of original sheet. Methods. Gelatin sponge particles of approximately 1-1.5 x 1-1.5 x 2 mm were made from either Spongel or Gelfoam sheets by cutting with a scalpel and scissors. Particles were also made of either Spongel or Gelfoam sheets by pumping with two syringes and a three-way stopcock. The size distribution of the particles in saline was compared among the groups. Results. (1) Cutting versus pumping: When Spongel was used, cutting produced lower rates of smallermore » particles {<=}500 {mu}m and larger particles >2000 {mu}m compared with pumping back and forth 30 times (1.1% vs 37.6%, p < 0.0001; 2.2% vs 14.4%, p = 0.008). When Gelfoam was used, cutting produced lower rates of smaller and larger particles compared with pumping (8.5% vs 20.4%, p = 0.1809; 0% vs 48.1%, p < 0.0001). (2) Spongel versus Gelfoam: There was no significant difference in the size distribution of the particles between Spongel and Gelfoam (p = 0.2002) when cutting was used. Conclusion. The size distribution of gelatin sponge particles differed according to the method used to make them. More uniform particle sizes can be achieved by cutting than by pumping.« less

  4. Physical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting

    PubMed Central

    Telikepalli, Srivalli; Shinogle, Heather E.; Thapa, Prem S.; Kim, Jae Hyun; Deshpande, Meghana; Jawa, Vibha; Middaugh, C. Russell; Narhi, Linda O.; Joubert, Marisa K.; Volkin, David B.

    2015-01-01

    An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size enriched into different size bins by low speed centrifugation or a combination of gravitational sedimentation and Fluorescence-Activated Cell Sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5–10 μm in size displayed elevated cytokine release profiles compared to other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared to controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by Microflow imaging, Transmission Electron Microscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in-vitro PBMC studies to rank order the immunogenic potential of various types of mAb particles is discussed. PMID:25753756

  5. Particle size and particle-particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber

    USDA-ARS?s Scientific Manuscript database

    Renewable corn flour has a significant reinforcement effect in natural rubber. The corn flour was hydrolyzed and microfluidized to reduce its particle size. Greater than 90% of the hydrolyzed corn flour had an average size of ~300 nm, a reduction of 33 times compared to unhydrolyzed corn flour. Comp...

  6. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.

    2012-03-01

    Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.

  7. Effects of varying particle size of forage on digestion and chewing behavior of dairy heifers.

    PubMed

    Jaster, E H; Murphy, M R

    1983-04-01

    Eighteen Holstein heifers were fed long and chopped coarse and fine alfalfa hay ad libitum to evaluate effects of physical form on digestion and chemical composition of feed and fecal particles and to examine the applicability of a sinusoidal model to chewing behavior. Recordings of jaw movement were divided into 1-h segments for analysis. Least square mean size of fecal particles from coarse and finely chopped diets were 290 and 297 micrometers as compared to 227 micrometers on long hay. Intakes of dry matter were greater an digestibilities lower for chopped as compared to long hay. Crude protein content of separated feed and fecal particles increased as particle size decreased. Neural and acid detergent fiber concentrations decreased in feed and feces with decreasing particle size. Lignin content of feed particles decreased as particle size decreased, whereas for fecal particles lignin as a percent of cell wall followed a "U" shaped pattern of declining then increasing as size decreased. Patterns were sinusoidal for eating and ruminating long and chopped hays and total chewing (eating and ruminating) of long hay. Our results suggest a gradual effect on chemical degradation and physical detrition of digesta particles and chewing behavior as forage particle size decreased.

  8. Comparison of particle sizes between 238PuO 2 before aqueous processing, after aqueous processing, and after ball milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulford, Roberta Nancy

    Particle sizes determined for a single lot of incoming Russian fuel and for a lot of fuel after aqueous processing are compared with particle sizes measured on fuel after ball-milling. The single samples of each type are believed to have particle size distributions typical of oxide from similar lots, as the processing of fuel lots is fairly uniform. Variation between lots is, as yet, uncharacterized. Sampling and particle size measurement methods are discussed elsewhere.

  9. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less

  10. Comparison of non-toxic methods for creating beta-carotene encapsulated in PMMA nanoparticles

    NASA Astrophysics Data System (ADS)

    Dobrzanski, Christopher D.

    Nano/microcapsules are becoming more prevalent in various industries such as drug delivery, cosmetics, etc. Current methods of particle formation often use toxic or carcinogenic/mutagenic/reprotoxic (CMR) chemicals. This study intends to improve upon existing methods of particle formation and compare their effectiveness in terms of entrapment efficiency, mean particle size, and yield utilizing only non-toxic chemicals. In this study, the solvent evaporation (SE), spontaneous emulsification, and spontaneous emulsion solvent diffusion (SESD) methods were compared in systems containing green solvents ethyl acetate, dimethyl carbonate or acetone. PMMA particles containing encapsulated beta carotene, an ultraviolet sensitive substance, were synthesized. It was desired to produce particles with minimum mean size and maximum yield and entrapment of beta carotene. The mass of the water phase, the mass of the polymer and the pumping or blending rate were varied for each synthesis method. The smallest particle sizes for SE and SESD both were obtained from the middle water phase sizes, 200 g and 100 g respectively. The particles obtained from the larger water phase in SESD were much bigger, about 5 microns in diameter, even larger than the ones obtained from SE. When varying the mass of PMMA used in each synthesis method, as expected, more PMMA led to larger particles. Increasing the blending rate in SE from 6,500 to 13,500 rpm had a minimal effect on average particle size, but the higher shear resulted in highly polydisperse particles (PDI = 0.87). By decreasing the pump rate in SESD, particles became smaller and had lower entrapment efficiency. The entrapment efficiencies of the particles were generally higher for the larger particles within a mode. Therefore, we found that minimizing the particle size while maximizing entrapment were somewhat contradictory goals. The solvent evaporation method was very consistent in terms of the values of mean particle size, yield, and entrapment efficiency. Comparing the synthesis methods, the smallest particles with the highest yield and entrapment efficiency were generated by the spontaneous emulsification method.

  11. A numerical method for shock driven multiphase flow with evaporating particles

    NASA Astrophysics Data System (ADS)

    Dahal, Jeevan; McFarland, Jacob A.

    2017-09-01

    A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.

  12. Coagulation algorithms with size binning

    NASA Technical Reports Server (NTRS)

    Statton, David M.; Gans, Jason; Williams, Eric

    1994-01-01

    The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.

  13. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-01-01

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859

  14. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    NASA Astrophysics Data System (ADS)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  15. Wheat bran particle size influence on phytochemical extractability and antioxidant properties

    USDA-ARS?s Scientific Manuscript database

    It is unknown if particle size plays a role in extracting health promoting compounds in wheat bran because the extraction of antioxidant and phenolic compounds with particle size reduction has not been well documented. In this study, unmilled whole bran (coarse treatment) was compared to whole bran ...

  16. Colloid particle sizes in the Mississippi River and some of its tributaries, from Minneapolis to below New Orleans

    USGS Publications Warehouse

    Rostad, C.E.; Rees, T.F.; Daniel, S.R.

    1998-01-01

    An on-board technique was developed that combined discharge-weighted pumping to a high-speed continuous-flow centrifuge for isolation of the particulate-sized material with ultrafiltration for isolation of colloid-sized material. In order to address whether these processes changed the particle sizes during isolation, samples of particles in suspension were collected at various steps in the isolation process to evaluate changes in particle size. Particle sizes were determined using laser light-scattering photon correlation spectroscopy and indicated no change in size during the colloid isolation process. Mississippi River colloid particle sizes from twelve sites from Minneapolis to below New Orleans were compared with sizes from four tributaries and three seasons, and from predominantly autochthonous sources upstream to more allochthonous sources downstream. ?? 1998 John Wiley Sons, Ltd.

  17. Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Bianchi, G.; Sklar, L. S.

    2016-12-01

    Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.

  18. 14C-labeled organic amendments: Characterization in different particle size fractions and humic acids in a long-term field experiment

    PubMed Central

    Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H.

    2012-01-01

    Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14C in HAs from silt-sized particles and Corg in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14C, Corg and Nt). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other. PMID:23482702

  19. 14C-labeled organic amendments: Characterization in different particle size fractions and humic acids in a long-term field experiment.

    PubMed

    Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H

    2012-05-01

    Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14 C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14 C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14 C in HAs from silt-sized particles and C org in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14 C, C org and N t ). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other.

  20. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure

    NASA Astrophysics Data System (ADS)

    Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team

    Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.

  2. Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements.

    PubMed

    Qin, Junhao; Nworie, Obinna Elijah; Lin, Chuxia

    2016-09-01

    The unified BARGE method was used to examine the effects of soil particle size on the bioaccessible amounts of potentially toxic elements in multi-contaminated soils from a closed landfill site. The results show that bioaccessible As, Al, Cd, Cr, Cu, Mn, Ni, Pb and Zn increased with decreasing soil particle size and the <0.002 mm soil fraction contained much greater amounts of the bioaccessible elements, as compared to other soil fractions (0.002-0.063 mm, 0.063-0.125 mm, and 0.125-0.250 mm). As, Al and Cr had much lower bioaccessibility, as compared to the six cationic heavy metals. In contrast with other elements, As bioaccessibility tended to be higher in the gastrointestinal phase than in the gastric phase. There was a significant soil particle size effect on bioaccessibility of As and Al in the gastrointestinal phase: As bioaccessibility decreased with decreasing particle size, and the finer soil fractions tended to have a higher Al bioaccessibility, as compared to the coarser soil fractions. The research findings prompt the need for further division of soil particle size fractions in order to more accurately assess the bioaccessible amounts of soil-borne potentially toxic elements in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  4. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  5. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  6. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE PAGES

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    2018-03-30

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  7. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  8. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium.

    PubMed

    Zakhari, Monica E A; Anderson, Patrick D; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012)1359-664010.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1%. The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  9. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    NASA Astrophysics Data System (ADS)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  10. Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX

    NASA Astrophysics Data System (ADS)

    Patade, Sachin; Prabha, T. V.; Axisa, D.; Gayatri, K.; Heymsfield, A.

    2015-10-01

    A comprehensive analysis of particle size distributions measured in situ with airborne instrumentation during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) is presented. In situ airborne observations in the developing stage of continental convective clouds during premonsoon (PRE), transition, and monsoon (MON) period at temperatures from 25 to -22°C are used in the study. The PRE clouds have narrow drop size and particle size distributions compared to monsoon clouds and showed less development of size spectra with decrease in temperature. Overall, the PRE cases had much lower values of particle number concentrations and ice water content compared to MON cases, indicating large differences in the ice initiation and growth processes between these cloud regimes. This study provided compelling evidence that in addition to dynamics, aerosol and moisture are important for modulating ice microphysical processes in PRE and MON clouds through impacts on cloud drop size distribution. Significant differences are observed in the relationship of the slope and intercept parameters of the fitted particle size distributions (PSDs) with temperature in PRE and MON clouds. The intercept values are higher in MON clouds than PRE for exponential distribution which can be attributed to higher cloud particle number concentrations and ice water content in MON clouds. The PRE clouds tend to have larger values of dispersion of gamma size distributions than MON clouds, signifying narrower spectra. The relationships between PSDs parameters are presented and compared with previous observations.

  11. Simulating Dissolution of Intravitreal Triamcinolone Acetonide Suspensions in an Anatomically Accurate Rabbit Eye Model

    PubMed Central

    Horner, Marc; Muralikrishnan, R.

    2010-01-01

    ABSTRACT Purpose A computational fluid dynamics (CFD) study examined the impact of particle size on dissolution rate and residence of intravitreal suspension depots of Triamcinolone Acetonide (TAC). Methods A model for the rabbit eye was constructed using insights from high-resolution NMR imaging studies (Sawada 2002). The current model was compared to other published simulations in its ability to predict clearance of various intravitreally injected materials. Suspension depots were constructed explicitly rendering individual particles in various configurations: 4 or 16 mg drug confined to a 100 μL spherical depot, or 4 mg exploded to fill the entire vitreous. Particle size was reduced systematically in each configuration. The convective diffusion/dissolution process was simulated using a multiphase model. Results Release rate became independent of particle diameter below a certain value. The size-independent limits occurred for particle diameters ranging from 77 to 428 μM depending upon the depot configuration. Residence time predicted for the spherical depots in the size-independent limit was comparable to that observed in vivo. Conclusions Since the size-independent limit was several-fold greater than the particle size of commercially available pharmaceutical TAC suspensions, differences in particle size amongst such products are predicted to be immaterial to their duration or performance. PMID:20467888

  12. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles.

    PubMed

    Peters, Ruud J B; van Bemmel, Greet; Herrera-Rivera, Zahira; Helsper, Hans P F G; Marvin, Hans J P; Weigel, Stefan; Tromp, Peter C; Oomen, Agnes G; Rietveld, Anton G; Bouwmeester, Hans

    2014-07-09

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.

  13. Computer measurement of particle sizes in electron microscope images

    NASA Technical Reports Server (NTRS)

    Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.

    1976-01-01

    Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.

  14. Drug particle size influence on enteric beads produced by a droplet extrusion/precipitation method.

    PubMed

    Cerdeira, A M; Gouveia, L F; Goucha, P; Almeida, A J

    2000-01-01

    The influence of drug particle size on the production of enteric beads by a polymer precipitation technique was investigated. Drug particle dimensions are known to play an important role in most microencapsulation techniques. Bead morphology was greatly influenced by drug particle size, and spherical shaped beads could only be obtained after size reduction of nimesulide crystals. This is confirmed by the angle of repose measurements, which show a significant decrease in theta values when beads are formulated with smaller drug particles. Furthermore, results show that drug encapsulation efficiency and in vitro drug release rates are also greatly dependent on both drug particle size and drug/polymer ratio in the initial suspension. Preparations containing 10.2 microm drug particles show a two-fold increase in the release rates when compared to those prepared with 40 microm particles.

  15. Comparative studies of industrial grade carbon black powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, Komal, E-mail: komalchawla.rs@gmail.com; Chauhan, Alok P. S., E-mail: chauhan.alok@gmail.com, E-mail: alok.chauhan@alumni.stonybrook.edu

    Comparative studies of two dissimilar industrial grade Carbon Black (CB) powders (N375 and N405) were conducted. The structure, surface area and particle size are the three important characteristics of CB powder that determine their processability and application as filler in preparing rubber compounds. The powders were characterized for their structure using dibutyl phthalate absorption (DBPA), particle size via laser particle size analyzer and surface area by nitrogen adsorption method. The structural characterization showed that N405 had lower DBPA in comparison to N375, confirming low structure of N405 grade CB powder. It was observed from the particle size analysis that N375more » was coarser than N405 grade CB. The total surface area values were determined by the BET method based on the cross sectional area of the nitrogen molecule. N375, a coarse grade CB powder with high structure, depicted less surface area as compared to N405.« less

  16. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  17. Wheat bran particle size influence on phytochemical extractability and antioxidant properties.

    PubMed

    Brewer, Lauren Renee; Kubola, Jittawan; Siriamornpun, Sirithon; Herald, Thomas J; Shi, Yong-Cheng

    2014-01-01

    It is unknown if particle size plays a role in extracting health promoting compounds in wheat bran because the extraction of antioxidant and phenolic compounds with particle size reduction has not been well documented. In this study, unmilled whole bran (coarse treatment) was compared to whole bran milled to medium and fine treatments from the same wheat bran. Antioxidant properties (capacity, ability, power), carotenoids and phenolic compounds (phenolic acids, flavonoids, anthocyanins) were measured and compared. The ability of whole bran fractions of differing particle size distributions to inhibit free radicals was assessed using four in vitro models, namely, diphenylpicrylhydrazyl radical-scavenging activity, ferric reducing/antioxidant power (FRAP) assay, oxygen radical absorbance capacity (ORAC), and total antioxidant capacity. Significant differences in phytochemical concentrations and antioxidant properties were observed between whole bran fractions of reduced particle size distribution for some assays. The coarse treatment exhibited significantly higher antioxidant properties compared to the fine treatment; except for the ORAC value, in which coarse was significantly lower. For soluble and bound extractions, the coarse treatment was comparatively higher in total antioxidant capacity (426.72 mg ascorbic acid eq./g) and FRAP value (53.04 μmol FeSO4/g) than bran milled to the finer treatment (314.55 ascorbic acid eq./g and 40.84 μmol FeSO4/g, respectively). Likewise, the fine treatment was higher in phenolic acid (7.36 mg FAE/g), flavonoid (206.74 μg catechin/g), anthocyanin (63.0 μg/g), and carotenoid contents (beta carotene, 14.25 μg/100 g; zeaxanthin, 35.21 μg/100 g; lutein 174.59 μg/100 g) as compared to the coarse treatment. An increase of surface area to mass increased the ORAC value by over 80%. With reduction in particle size, there was a significant increase in extracted anthocyanins, carotenoids and ORAC value. Particle size does effect the extraction of phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of Particle Size on the Attenuated Total Reflection Spectrum of Minerals.

    PubMed

    Udvardi, Beatrix; Kovács, István J; Fancsik, Tamás; Kónya, Péter; Bátori, Miklósné; Stercel, Ferenc; Falus, György; Szalai, Zoltán

    2017-06-01

    This study focuses on particle size effect on monomineralic powders recorded using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Six particle size fractions of quartz, feldspar, calcite, and dolomite were prepared (<2, 2-4, 4-8, 8-16, 16-32, and 32-63 µm). It is found that the width, intensity, and area of bands in the ATR FT-IR spectra of minerals have explicit dependence on the particle size. As particle size increases, the intensity and area of IR bands usually decrease while the width of bands increases. The band positions usually shifted to higher wavenumbers with decreasing particle size. Infrared spectra of minerals are the most intensive in the particle size fraction of 2-4 µm. However, if the particle size is very small (<2 µm), due to the wavelength and penetration depth of the IR light, intensity decreases. Therefore, the quantity of very fine-grained minerals may be underestimated compared to the coarser phases. A nonlinear regression analysis of the data indicated that the average coefficients and indices of the power trend line equation imply a very simplistic relationship between median particle diameter and absorbance at a given wavenumber. It is concluded that when powder samples with substantially different particle size are compared, as in regression analysis for modal predictions using ATR FT-IR, it is also important to report the grain size distribution or surface area of samples. The band area of water (3000-3620 cm -1 ) is similar in each mineral fraction, except for the particles below 2 µm. It indicates that the finest particles could have disproportionately more water adsorbed on their larger surface area. Thus, these higher wavenumbers of the ATR FT-IR spectra may be more sensitive to this spectral interference if the number of particles below 2 µm is considerable. It is also concluded that at least a proportion of the moisture could be very adhesive to the particles due to the band shift towards lower wavenumbers in the IR range of 3000-3620 cm -1 .

  19. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data. Laboratory data are compared with longitudinal evolution of grain size and angularity of particles deposited by debris flows along Inyo Creek, Sierra Nevada, California. Preliminary results suggest wear rates can be scaled across drum sizes and to field conditions using non-dimensional metrics of flow dynamics including Savage, Bagnold, and Froude numbers.

  20. Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches.

    PubMed

    Barnett, Gregory V; Perhacs, Julia M; Das, Tapan K; Kar, Sambit R

    2018-02-08

    Characterizing submicron protein particles (approximately 0.1-1μm) is challenging due to a limited number of suitable instruments capable of monitoring a relatively large continuum of particle size and concentration. In this work, we report for the first time the characterization of submicron protein particles using the high size resolution technique of resistive pulse sensing (RPS). Resistive pulse sensing, dynamic light scattering and size-exclusion chromatography with in-line multi-angle light scattering (SEC-MALS) are performed on protein and placebo formulations, polystyrene size standards, placebo formulations spiked with silicone oil, and protein formulations stressed via freeze-thaw cycling, thermal incubation, and acid treatment. A method is developed for monitoring submicron protein particles using RPS. The suitable particle concentration range for RPS is found to be approximately 4 × 10 7 -1 × 10 11 particles/mL using polystyrene size standards. Particle size distributions by RPS are consistent with hydrodynamic diameter distributions from batch DLS and to radius of gyration profiles from SEC-MALS. RPS particle size distributions provide an estimate of particle counts and better size resolution compared to light scattering. RPS is applicable for characterizing submicron particles in protein formulations with a high degree of size polydispersity. Data on submicron particle distributions provide insights into particles formation under different stresses encountered during biologics drug development.

  1. Combined synthesis and in situ coating of nanoparticles in the gas phase

    NASA Astrophysics Data System (ADS)

    Lähde, Anna; Raula, Janne; Kauppinen, Esko I.

    2008-12-01

    Combined gas phase synthesis and coating of sodium chloride (NaCl) and lactose nanoparticles has been developed using an aerosol flow reactor. Nano-sized core particles were produced by the droplet-to-particle method and coated in situ by the physical vapour deposition of L-leucine vapour. The saturation of L-leucine in the reactor determined the resulting particle size and size distribution. In general, particle size increased with the addition of L-leucine and notable narrowing of the core particle size distribution was observed. In addition, homogeneous nucleation of the vapour, i.e. formation of pure L-leucine particles, was observed depending on the saturation conditions of L-leucine as well as the core particle characteristics. The effects of core particle properties, i.e. size and solid-state characteristics, on the coating process were studied by comparing the results for coated NaCl and lactose particles. During deposition, L-leucine formed a uniform coating on the surface of the core particles. The coating stabilised the nanoparticles and prevented the sintering of particles during storage.

  2. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    NASA Astrophysics Data System (ADS)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  3. Phase I: energy conservation potential of Portland Cement particle size distribution control. Progress report, November 1978-January 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmuth, R.A.

    1979-03-01

    Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.

  4. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution.more » The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  5. Improving La0.6Sr0.4Co0.8Fe0.2O3-δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2015-02-01

    Here, for the first time, the average size of solid oxide fuel cell (SOFC) electrode nano-particles was reduced through the chemical desiccation of infiltrated precursor nitrate solutions. Specifically, after firing at 700 °C, CaCl2-desiccated La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) - Ce0.9Gd0.1O1.95 (GDC) cathodes contained LSCF infiltrate particles with an average size of 22 nm. This is in contrast to comparable, undesiccated LSCF-GDC cathodes which contained LSCF infiltrate particles with an average size of 48 nm. X-ray diffraction, scanning electron microscopy, and controlled atmosphere electrochemical impedance spectroscopy revealed that desiccation reduced the average infiltrate particle size without altering the infiltrate phase purity, the cathode concentration polarization resistance, or the cathode electronic resistance. Compared to undesiccated LSCF-GDC cathodes achieving polarization resistances of 0.10 Ωcm2 at 640 °C, comparable CaCl2-dessicated LSCF-GDC cathodes achieved 0.10 Ωcm2 at 575 °C. Mathematical modeling suggested that these performance improvements resulted solely from average infiltrate particle size reductions.

  6. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    PubMed

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  7. Wicking of light hydrophobic liquid phase from water by pulverized rubber: Theoretical and experimental analyses.

    PubMed

    Boglaienko, Daria; Tansel, Berrin

    2017-03-05

    Pulverized rubber (PR) can be utilized for capturing floating oils to prevent spreading and volatilization of hydrocarbons. Experiments were conducted using PR with four different particle sizes (ranging from 0.075 to 0.600mm) and South Louisiana crude oil. The oil capture performance of the PR particles was compared with that of powdered activated carbon (AC). Oil-particle interactions were analyzed using capillary theories for lateral aggregation and wicking processes, as well as sorption capacity in relation to particle size. The sorption capacity (as oil to sorbent ratio) for PR with particle size 0.115mm (4.41g/g) was comparable to that of AC with particle size 0.187mm (5.00g/g). Sorption efficiency (oil:powder ratio, g/g) of the PR increased with decreasing particle size. Sorption of oil by PR occurred rapidly (in less than 10min) which indicated strong capillary action. No additional sorption occurred after 30min. For the PR sample with larger particle size (0.600-0.400mm), lateral aggregation was clearly noticeable. The PR-oil aggregates could be easily removed from the water surface without breaking. The cost, availability and recycling potential of PR make it a feasible alternative material for oil spill response and industrial applications which require removal of floating oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evaluation of the method of collecting suspended sediment from large rivers by discharge-weighted pumping and separation by continuous- flow centrifugation

    USGS Publications Warehouse

    Moody, J.A.; Meade, R.H.

    1994-01-01

    The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (>63 ??m) but to collect a representative sample of the suspended silt and clay sized particles (<63??m). The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (<63 ??m) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles. -from Authors

  9. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  10. High-yield synthesis of vaterite microparticles in gypsum suspension system via ultrasonic probe vibration/magnetic stirring

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Pan, Zihe; Cheng, Huaigang; Chen, Zuliang; Cheng, Fangqin

    2018-06-01

    Vaterite-type calcium carbonate particles have some unique properties such as high hydrophilicity, large surface areas, and hierarchical structures consisting of primary vaterite particles in comparison with calcite or aragonite-type polymorphs. In this paper, gypsum (CaSO4·2H2O) suspension is used to synthesize micro-sized vaterite CaCO3 through magnetic stirring (MS) and ultrasonic probe vibration (UPV) methods. The effects of ammonia concentration, CO2 flow rate, solid-liquid ratio on the gypsum carbonation process, mineral phase composition, morphology and particle size distribution of CaCO3 are investigated. The results show that the carbonation process is significantly influenced by ammonia concentration, CO2 flow rate and ultrasound. Comparing with magnetic stirring, ultrasonic probe vibration take less time to reach the complete carbonate reaction. Gypsum is transformed to vaterite with the conversion rate about ∼95% when the mole ratio of NH4+/Ca2+ is 2.4 otherwise the carbonation reaction was uncompleted with gypsum residues left. Comparing with MS method, the UPV method resulted in smaller size and narrower size distribution of as-prepared microparticles and approximately 80% reduction of the particle size was achieved. It is established that increasing the solid-liquid ratio resulted in larger particle size in MS system and smaller particle size in UPV system. Increasing CO2 flow rate caused the particle size decreased in MS system and increased in UPV system.

  11. Particle size analysis of some water/oil/water multiple emulsions.

    PubMed

    Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V

    2005-04-29

    Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.

  12. Factors Affecting Pathogen Survival in Finished Dairy Compost with Different Particle Sizes Under Greenhouse Conditions.

    PubMed

    Diao, Junshu; Chen, Zhao; Gong, Chao; Jiang, Xiuping

    2015-09-01

    This study investigated the survival of Escherichia coli O157:H7 and Salmonella Typhimurium in finished dairy compost with different particle sizes during storage as affected by moisture content and temperature under greenhouse conditions. The mixture of E. coli O157:H7 and S. Typhimurium strains was inoculated into the finished composts with moisture contents of 20, 30, and 40%, separately. The finished compost samples were then sieved into 3 different particle sizes (>1000, 500-1000, and <500 μm) and stored under greenhouse conditions. For compost samples with moisture contents of 20 and 30%, the average Salmonella reductions in compost samples with particle sizes of >1000, 500-1000, and <500 μm were 2.15, 2.27, and 2.47 log colony-forming units (CFU) g(-1) within 5 days of storage in summer, respectively, as compared with 1.60, 2.03, and 2.26 log CFU g(-1) in late fall, respectively, and 2.61, 3.33, and 3.67 log CFU g(-1) in winter, respectively. The average E. coli O157:H7 reductions in compost samples with particle sizes of >1000, 500-1000, and <500 μm were 1.98, 2.30, and 2.54 log CFU g(-1) within 5 days of storage in summer, respectively, as compared with 1.70, 2.56, and 2.90 log CFU g(-1) in winter, respectively. Our results revealed that both Salmonella and E. coli O157:H7 in compost samples with larger particle size survived better than those with smaller particle sizes, and the initial rapid moisture loss in compost may contribute to the fast inactivation of pathogens in the finished compost. For the same season, the pathogens in the compost samples with the same particle size survived much better at the initial moisture content of 20% compared to 40%.

  13. Jamming/flowing transition of non-Brownian particles suspended in a iso-density fluid flowing in a 2D rectangular duct

    NASA Astrophysics Data System (ADS)

    Burel, Maxym; Martin, Sylvain; Bonnefoy, Olivier

    2017-06-01

    We present the results of an experimental study on the jamming/flowing transition. A suspension of neutrally buoyant large particles flows in an horizontal rectangular duct, where an artificial restriction triggers jamming. We show that the avalanche distribution size is exponential, that is memoryless. We further demonstrate that the avalanche size diverges when the restriction size approaches a critical value and that this divergence is well described by a power law. The parameters (critical opening size and divergence velocity) are compared to literature values and show a strong similarity with others systems. Another result of this paper is the study of the influence of the particle morphology. We show that, for a moderate restriction size, the dead-zone formed right upstream of the restriction is larger for angular particles but, paradoxically, that the avalanche size is larger for polyhedra compared to spheres by at least one order of magnitude.

  14. Removal of 10-nm contaminant particles from Si wafers using CO2 bullet particles.

    PubMed

    Kim, Inho; Hwang, Kwangseok; Lee, Jinwon

    2012-04-11

    Removal of nanometer-sized contaminant particles (CPs) from substrates is essential in successful fabrication of nanoscale devices. The particle beam technique that uses nanometer-sized bullet particles (BPs) moving at supersonic velocity was improved by operating it at room temperature to achieve higher velocity and size uniformity of BPs and was successfully used to remove CPs as small as 10 nm. CO2 BPs were generated by gas-phase nucleation and growth in a supersonic nozzle; appropriate size and velocity of the BPs were obtained by optimizing the nozzle contours and CO2/He mixture fraction. Cleaning efficiency greater than 95% was attained. BP velocity was the most important parameter affecting removal of CPs in the 10-nm size range. Compared to cryogenic Ar or N2 particles, CO2 BPs were more uniform in size and had higher velocity and, therefore, cleaned CPs more effectively.

  15. Contribution of the hydrostatic pressure to the shape of silver island particles

    NASA Astrophysics Data System (ADS)

    Anno, E.; Hoshino, R.

    1984-09-01

    We have investigated the shape change of silver island particles caused by the surface energy reduction. When the surface energy was reduced by the reaction with hydrogen sulfide, the flattening of the particles was observed. As is well known, the similar shape change takes place when the particle size increases. Therefore, the particle shape is considered to depend both on the surface energy and the particle size. From this consideration, we predict the contribution of the hydrostatic pressure P to the particle shape. As evidence of this contribution, we consider the existence of the critical size below which P is larger than the adhesive force FA between deposit and substrate surface. Investigating the influence of the flattening due to the surface energy reduction on the size distribution, the critical size is found and estimated to be about 80 Å in diameter. This value is comparable with that estimated from the condition P = FA.

  16. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online to inductively coupled plasma mass spectrometry (ICP-MS) for elemental speciation and identification of the inorganic additive. SdFFF had a larger separation power to distinguish different particle size populations whereas AF4 had the capability of separating the organic particles and inorganic TiO2 particles, with high resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Particle size distribution of airborne Aspergillus fumigatus spores emitted from compost using membrane filtration

    NASA Astrophysics Data System (ADS)

    Deacon, L. J.; Pankhurst, L. J.; Drew, G. H.; Hayes, E. T.; Jackson, S.; Longhurst, P. J.; Longhurst, J. W. S.; Liu, J.; Pollard, S. J. T.; Tyrrel, S. F.

    Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 10 4 CFU m -3) of culturable spores were found on filters with pore diameters in the range 1-2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated ( p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.

  18. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas.

    PubMed

    Kurth, Laura M; McCawley, Michael; Hendryx, Michael; Lusk, Stephanie

    2014-07-01

    People who live in Appalachian areas where coal mining is prominent have increased health problems compared with people in non-mining areas of Appalachia. Coal mines and related mining activities result in the production of atmospheric particulate matter (PM) that is associated with human health effects. There is a gap in research regarding particle size concentration and distribution to determine respiratory dose around coal mining and non-mining areas. Mass- and number-based size distributions were determined with an Aerodynamic Particle Size and Scanning Mobility Particle Sizer to calculate lung deposition around mining and non-mining areas of West Virginia. Particle number concentrations and deposited lung dose were significantly greater around mining areas compared with non-mining areas, demonstrating elevated risks to humans. The greater dose was correlated with elevated disease rates in the West Virginia mining areas. Number concentrations in the mining areas were comparable to a previously documented urban area where number concentration was associated with respiratory and cardiovascular disease.

  19. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    DTIC Science & Technology

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  20. Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach.

    PubMed

    Lecloux, André J; Atluri, Rambabu; Kolen'ko, Yury V; Deepak, Francis Leonard

    2017-10-12

    The first part of this study was dedicated to the modelling of the influence of particle shape, porosity and particle size distribution on the volume specific surface area (VSSA) values in order to check the applicability of this concept to the identification of nanomaterials according to the European Commission Recommendation. In this second part, experimental VSSA values are obtained for various samples from nitrogen adsorption isotherms and these values were used as a screening tool to identify and classify nanomaterials. These identification results are compared to the identification based on the 50% of particles with a size below 100 nm criterion applied to the experimental particle size distributions obtained by analysis of electron microscopy images on the same materials. It is concluded that the experimental VSSA values are able to identify nanomaterials, without false negative identification, if they have a mono-modal particle size, if the adsorption data cover the relative pressure range from 0.001 to 0.65 and if a simple, qualitative image of the particles by transmission or scanning electron microscopy is available to define their shape. The experimental conditions to obtain reliable adsorption data as well as the way to analyze the adsorption isotherms are described and discussed in some detail in order to help the reader in using the experimental VSSA criterion. To obtain the experimental VSSA values, the BET surface area can be used for non-porous particles, but for porous, nanostructured or coated nanoparticles, only the external surface of the particles, obtained by a modified t-plot approach, should be considered to determine the experimental VSSA and to avoid false positive identification of nanomaterials, only the external surface area being related to the particle size. Finally, the availability of experimental VSSA values together with particle size distributions obtained by electron microscopy gave the opportunity to check the representativeness of the two models described in the first part of this study. They were also used to calculate the VSSA values and these calculated values were compared to the experimental results. For narrow particle size distributions, both models give similar VSSA values quite comparable to the experimental ones. But when the particle size distribution broadens or is of multi-bimodal shape, as theoretically predicted, one model leads to VSSA values higher than the experimental ones while the other most often leads to VSSA values lower than the experimental ones. The experimental VSSA approach then appears as a reliable, simple screening tool to identify nano and non-nano-materials. The modelling approach cannot be used as a formal identification tool but could be useful to screen for potential effects of shape, polydispersity and size, for example to compare various possible nanoforms.

  1. Small and large particle limits of single scattering albedo for homogeneous, spherical particles

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Sorensen, C. M.

    2018-01-01

    The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.

  2. Optimum size of nanorods for heating application

    NASA Astrophysics Data System (ADS)

    Seshadri, G.; Thaokar, Rochish; Mehra, Anurag

    2014-08-01

    Magnetic nanoparticles (MNP's) have become increasingly important in heating applications such as hyperthermia treatment of cancer due to their ability to release heat when a remote external alternating magnetic field is applied. It has been shown that the heating capability of such particles varies significantly with the size of particles used. In this paper, we theoretically evaluate the heating capability of rod-shaped MNP's and identify conditions under which these particles display highest efficiency. For optimally sized monodisperse particles, the power generated by rod-shaped particles is found to be equal to that generated by spherical particles. However, for particles which are not mono dispersed, rod-shaped particles are found to be more effective in heating as a result of the greater spread in the power density distribution curve. Additionally, for rod-shaped particles, a dispersion in the radius of the particle contributes more to the reduction in loss power when compared to a dispersion in the length. We further identify the optimum size, i.e the radius and length of nanorods, given a bi-variate log-normal distribution of particle size in two dimensions.

  3. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE PAGES

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; ...

    2017-04-13

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  4. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  5. The Effect of Particle Size on the Biodistribution of Low-modulus Hydrogel PRINT Particles

    PubMed Central

    Merkel, Timothy J.; Chen, Kai; Jones, Stephen W.; Pandya, Ashish A.; Tian, Shaomin; Napier, Mary E.; Zamboni, William E.; DeSimone, Joseph M.

    2012-01-01

    There is a growing recognition that the deformability of particles used for drug delivery plays a significant role on their biodistribution and circulation profile. Understanding these effects would provide a crucial tool for the rational design of drug delivery systems. While particles resembling red blood cells (RBCs) in size, shape and deformability have extended circulation times and altered biodistribution profiles compared to rigid, but otherwise similar particles, the in vivo behavior of such highly deformable particles of varied size has not been explored. We report the fabrication of a series of discoid, monodisperse, low-modulus hydrogel particles with diameters ranging from 0.8 to 8.9 μm, spanning sizes smaller than and larger than RBCs. We injected these particles into healthy mice, and tracked their concentration in the blood and their distribution into major organs. These deformable particles all demonstrated some hold up in filtration tissues like the lungs and spleen, followed by release back into the circulation, characterized by decreases in particles in these tissues with concomitant increases in particle concentration in blood. Particles similar to red blood cells in size demonstrated longer circulation times, suggesting that this size and shape of deformable particle is uniquely suited to avoid clearance. PMID:22705460

  6. The effect of microstructure on the performance of Li-ion porous electrodes

    NASA Astrophysics Data System (ADS)

    Chung, Ding-Wen

    By combining X-ray tomography data and computer-generated porous elec- trodes, the impact of microstructure on the energy and power density of lithium-ion batteries is analyzed. Specifically, for commercial LiMn2O4 electrodes, results indi- cate that a broad particle size distribution of active material delivers up to two times higher energy density than monodisperse-sized particles for low discharge rates, and a monodisperse particle size distribution delivers the highest energy and power density for high discharge rates. The limits of traditionally used microstructural properties such as tortuosity, reactive area density, particle surface roughness, morphological anisotropy were tested against degree of particle size polydispersity, thus enabling the identification of improved porous architectures. The effects of critical battery processing parameters, such as layer compaction and carbon black, were also rationalized in the context of electrode performance. While a monodisperse particle size distribution exhibits the lowest possible tortuosity and three times higher surface area per unit volume with respect to an electrode conformed of a polydisperse particle size distribution, a comparable performance can be achieved by polydisperse particle size distributions with degrees of polydispersity less than 0.2 of particle size standard deviation. The use of non-spherical particles raises the tortuosity by as much as three hundred percent, which considerably lowers the power performance. However, favorably aligned particles can maximize power performance, particularly for high discharge rate applications.

  7. Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion.

    PubMed

    Dibble, Clare J; Shatova, Tatyana A; Jorgenson, Jennie L; Stickel, Jonathan J

    2011-01-01

    An improved understanding of how particle size distribution relates to enzymatic hydrolysis performance and rheological properties could enable enhanced biochemical conversion of lignocellulosic feedstocks. Particle size distribution can change as a result of either physical or chemical manipulation of a biomass sample. In this study, we employed image processing techniques to measure slurry particle size distribution and validated the results by showing that they are comparable to those from laser diffraction and sieving. Particle size and chemical changes of biomass slurries were manipulated independently and the resulting yield stress and enzymatic digestibility of slurries with different size distributions were measured. Interestingly, reducing particle size by mechanical means from about 1 mm to 100 μm did not reduce the yield stress of the slurries over a broad range of concentrations or increase the digestibility of the biomass over the range of size reduction studied here. This is in stark contrast to the increase in digestibility and decrease in yield stress when particle size is reduced by dilute-acid pretreatment over similar size ranges. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  8. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-06-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.

  9. DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum

    NASA Astrophysics Data System (ADS)

    Yang, Shiliang; Zhang, Liangqi; Luo, Kun; Chew, Jia Wei

    2017-12-01

    Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the considerable knowledge gained so far from binary-size mixtures and extends it to a ternary-size mixture to understand the impact of the presence of a third particle size in the three-dimensional rotating drum operating in the rolling flow regime. The discrete element method is employed. The evolution of segregation, the active-passive interface, and the dynamical response of the particle-scale characteristics of the different particle types in the two regions are investigated. The results reveal that the medium particles are spatially sandwiched in between the large and small particles in both the radial and axial directions and therefore exhibit behaviors intermediate to the other two particle types. Compared to the binary-size mixture, the presence of the medium particles leads to (i) higher purity of small particles in the innermost of the radial core, causing a decrease of the translational velocity of small particles; (ii) decrease and increase of the collision forces exerted on, respectively, the large and small particles in both regions; and (iii) increase in the relative ratio of the active-passive exchange rates of small to large particles. The results obtained in the current study therefore provide valuable insights regarding the size-segregation dynamics of granular mixtures with constituents of different sizes.

  10. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    NASA Astrophysics Data System (ADS)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  11. Performance Comparison of Field Portable Instruments to the Scanning Mobility Particle Sizer Using Monodispersed and Polydispersed Sodium Chloride Aerosols.

    PubMed

    Vo, Evanly; Horvatin, Matthew; Zhuang, Ziqing

    2018-05-21

    This study compared the performance of the following field portable aerosol instrument sets to performance of the reference Scanning Mobility Particle Sizer (SMPS): the handheld CPC-3007, the portable aerosol mobility spectrometer (PAMS), the NanoScan scanning mobility particle sizer (NanoScan SMPS) combined with an optical particle sizer (OPS). Tests were conducted with monodispersed and polydispersed aerosols. Monodispersed aerosols were controlled at the approximate concentration of 1 × 105 particles cm-3 and four monodispersed particle sizes of 30, 60, 100, and 300 nm were selected and classified for the monodispersed aerosol test, while three different steady-state concentration levels (low, medium, and high: ~8 × 103, 5 × 104, and 1 × 105 particles cm-3, respectively) were selected for the polydispersed aerosol test. For all four monodispersed aerosol sizes, particle concentrations measured with the NanoScan SMPS were within 13% of those measured with the reference SMPS. Particle concentrations measured with the PAMS were within 25% of those measured with the reference SMPS. Concentrations measured with the handheld condensation particle counter were within 30% of those measured with the reference SMPS. For the polydispersed aerosols, the particle sizes and concentrations measured with the NanoScan-OPS compared most favorably with those measured with the reference SMPS for three different concentration levels of low, medium, and high (concentration deviations ≤10% for all three concentration levels; deviations of particle size ≤4%). Although the particle-size comparability between the PAMS and the reference SMPS was quite reasonable with the deviations within 10%, the polydispersed particle concentrations measured with the PAMS were within 36% of those measured with the reference SMPS. The results of this evaluation will be useful for selecting a suitable portable device for our next workplace study phase of respiratory protection assessment. This study also provided the advantages and limitations of each individual portable instrument and therefore results from this study can be used by industrial hygienists and safety professionals, with appropriate caution, when selecting a suitable portable instrument for aerosol particle measurement in nanotechnology workplaces.

  12. Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Roldin, P.; Williams, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R. M.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.

    2010-12-01

    Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research). Under controlled laboratory conditions, the number size distribution from 20 to 200 nm determined by mobility size spectrometers of different design are within an uncertainty range of ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. Instruments with identical design agreed within ±3% in the peak number concentration when all settings were done carefully. Technical standards were developed for a minimum requirement of mobility size spectrometry for atmospheric aerosol measurements. Technical recommendations are given for atmospheric measurements including continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyser. In cooperation with EMEP (European Monitoring and Evaluation Program), a new uniform data structure was introduced for saving and disseminating the data within EMEP. This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.

  13. Shape Comparison Between 0.4–2.0 and 20–60 lm Cement Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzer, L.; Flatt, R; Erdogan, S

    Portland cement powder, ground from much larger clinker particles, has a particle size distribution from about 0.1 to 100 {micro}m. An important question is then: does particle shape depend on particle size? For the same cement, X-ray computed tomography has been used to examine the 3-D shape of particles in the 20-60 {micro}m sieve range, and focused ion beam nanotomography has been used to examine the 3-D shape of cement particles found in the 0.4-2.0 {micro}m sieve range. By comparing various kinds of computed particle shape data for each size class, the conclusion is made that, within experimental uncertainty, bothmore » size classes are prolate, but the smaller size class particles, 0.4-2.0 {micro}m, tend to be somewhat more prolate than the 20-60 {micro}m size class. The practical effect of this shape difference on the set-point was assessed using the Virtual Cement and Concrete Testing Laboratory to simulate the hydration of five cement powders. Results indicate that nonspherical aspect ratio is more important in determining the set-point than are the actual shape details.« less

  14. The Effect of Altitude Conditions on the Particle Emissions of a J85-GE-5L Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Rickey, June Elizabeth

    1995-01-01

    Particles from a J85-GE-5L turbojet engine were measured over a range of engine speeds at simulated altitude conditions ranging from near sea level to 45,000 ft and at flight Mach numbers of 0.5 and 0.8. Samples were collected from the engine by using a specially designed probe positioned several inches behind the exhaust nozzle. A differential mobility particle sizing system was used to determine particle size. Particle data measured at near sea-level conditions were compared with Navy Aircraft Environmental Support Office (AESO) particle data taken from a GE-J85-4A engine at a sea-level static condition. Particle data from the J85 engine were also compared with particle data from a J85 combustor at three different simulated altitudes.

  15. Particle dispersing system and method for testing semiconductor manufacturing equipment

    DOEpatents

    Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.

    1998-01-01

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  16. For the depolarization of linearly polarized light by smoke particles

    NASA Astrophysics Data System (ADS)

    Sun, Wenbo; Liu, Zhaoyan; Videen, Gorden; Fu, Qiang; Muinonen, Karri; Winker, David M.; Lukashin, Constantine; Jin, Zhonghai; Lin, Bing; Huang, Jianping

    2013-06-01

    The CALIPSO satellite mission consistently measures volume (including molecule and particulate) light depolarization ratio of ∼2% for smoke, compared to ∼1% for marine aerosols and ∼15% for dust. The observed ∼2% smoke depolarization ratio comes primarily from the nonspherical habits of particles in the smoke at certain particle sizes. In this study, the depolarization of linearly polarized light by small sphere aggregates and irregular Gaussian-shaped particles is studied, to reveal the physics between the depolarization of linearly polarized light and smoke aerosol shape and size. It is found that the depolarization ratio curves of Gaussian-deformed spheres are very similar to sphere aggregates in terms of scattering-angle dependence and particle size parameters when particle size parameter is smaller than 1.0π. This demonstrates that small randomly oriented nonspherical particles have some common depolarization properties as functions of scattering angle and size parameter. This may be very useful information for characterization and active remote sensing of smoke particles using polarized light. We also show that the depolarization ratio from the CALIPSO measurements could be used to derive smoke aerosol particle size. From the calculation results for light depolarization ratio by Gaussian-shaped smoke particles and the CALIPSO-measured light depolarization ratio of ∼2% for smoke, the mean particle size of South-African smoke is estimated to be about half of the 532nm wavelength of the CALIPSO lidar.

  17. Evaluating the influence of laser wavelength and detection stage geometry on optical detection efficiency in a single-particle mass spectrometer

    NASA Astrophysics Data System (ADS)

    Marsden, Nicholas; Flynn, Michael J.; Taylor, Jonathan W.; Allan, James D.; Coe, Hugh

    2016-12-01

    Single-particle mass spectrometry (SPMS) is a useful tool for the online study of aerosols with the ability to measure size-resolved chemical composition with a temporal resolution relevant to atmospheric processes. In SPMS, optical particle detection is used for the effective temporal alignment of an ablation laser pulse with the presence of a particle in the ion source, and it gives the option of aerodynamic sizing by measuring the offset of particle arrival times between two detection stages. The efficiency of the optical detection stage has a strong influence on the overall instrument performance. A custom detection laser system consisting of a high-powered fibre-coupled Nd:YAG solid-state laser with a collimated beam was implemented in the detection stage of a laser ablation aerosol particle time-of-flight (LAAP-TOF) single-particle mass spectrometer without major modifications to instrument geometry. The use of a collimated laser beam permitted the construction of a numerical model that predicts the effects of detection laser wavelength, output power, beam focussing characteristics, light collection angle, particle size, and refractive index on the effective detection radius (R) of the detection laser beam. We compare the model predictions with an ambient data set acquired during the Ice in Clouds Experiment - Dust (ICE-D) project. The new laser system resulted in an order-of-magnitude improvement in instrument sensitivity to spherical particles in the size range 500-800 nm compared to a focussed 405 nm laser diode system. The model demonstrates that the limit of detection in terms of particle size is determined by the scattering cross section (Csca) as predicted by Mie theory. In addition, if light is collected over a narrow collection angle, oscillations in the magnitude of Csca with respect to particle diameter result in a variation in R, resulting in large particle-size-dependent variation in detection efficiency across the particle transmission range. This detection bias is imposed on the aerodynamic size distributions measured by the instrument and accounts for some of the detection bias towards sea salt particles in the ambient data set.

  18. COMPARISON OF THE PARTICLE SIZE DISTRIBUTION OF HEAVY-DUTY DIESEL EXHAUST USING A DILUTION TAIL-PIPE SAMPLER AND IN-PLUME SAMPLER DURING ON-ROAD OPERATION

    EPA Science Inventory

    The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...

  19. On remote sensing of small aerosol particles with polarized light

    NASA Astrophysics Data System (ADS)

    Sun, W.

    2012-12-01

    The CALIPSO satellite mission consistently measures volume (including molecule and particulate) light depolarization ratio of ~2% for smoke, compared to ~1% for marine aerosols and ~15% for dust. The observed ~2% smoke depolarization ratio comes primarily from the nonspherical habits of particles in the smoke at certain particle sizes. The depolarization of linearly polarized light by small sphere aggregates and irregular Gaussian-shaped particles is studied, to reveal the physics between the depolarization of linearly polarized light and aerosol shape and size. It is found that randomly oriented nonspherical particles have some common depolarization properties as functions of scattering angle and size parameter. This may be very useful information for active remote sensing of small nonspherical aerosols using polarized light. We also show that the depolarization ratio from the CALIPSO measurements could be used to derive smoke aerosol particle size. The mean particle size of South-African smoke is estimated to be about half of the 532 nm wavelength of the CALIPSO lidar.

  20. Size dependence of second-harmonic generation at the surface of microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viarbitskaya, Sviatlana; Meulen, Peter van der; Hansson, Tony

    2010-05-15

    The resonance-enhanced surface second-harmonic generation (SHG) from a suspension of polystyrene microspheres was investigated as a function of particle size in a range of the order of the fundamental wavelength for two different second-harmonic-enhancing dyes--malachite green and pyridine 1. The two dyes gave the same strongly modulated pattern of the forward second-harmonic scattering efficiency. Direct comparison to the nonlinear Rayleigh-Gans-Debye (NLRGD) and nonlinear Wentzel-Kramers-Brillouin (NLWKB) model predictions showed that the NLWKB model reproduces the overall trend in the size dependence but fails with respect to the strong modulations. The standard NLRGD model was found to fail altogether in the presentmore » particle size range, which was well beyond the observed upper particle size for which the NLRGD and NLWKB models give comparable results. A generalization of the NLRGD model to allow for dispersion and to use the particle refractive indices instead of those of the surrounding medium extended its applicability range by almost an order of magnitude in particle size. There is a pronounced maximal SHG efficiency for particles with a radius that is close to the fundamental wavelength inside the particle. The optically soft particle approximation is inadequate to describe the SHG in this particle size range, as refraction and reflection of the waves at the particle surface have a decisive influence. Dispersion of the media plays a negligible role for particle sizes up to about twice the optimal one for SHG.« less

  1. Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts

    NASA Astrophysics Data System (ADS)

    Wallace, William E.; Keane, Michael J.; Murray, David K.; Chisholm, William P.; Maynard, Andrew D.; Ong, Tong-man

    2007-01-01

    Because of their small size, the specific surface areas of nanoparticulate materials (NP), described as particles having at least one dimension smaller than 100 nm, can be large compared with micrometer-sized respirable particles. This high specific surface area or nanostructural surface properties may affect NP toxicity in comparison with micrometer-sized respirable particles of the same overall composition. Respirable particles depositing on the deep lung surfaces of the respiratory bronchioles or alveoli will contact pulmonary surfactants in the surface hypophase. Diesel exhaust ultrafine particles and respirable silicate micrometer-sized insoluble particles can adsorb components of that surfactant onto the particle surfaces, conditioning the particles surfaces and affecting their in vitro expression of cytotoxicity or genotoxicity. Those effects can be particle surface composition-specific. Effects of particle surface conditioning by a primary component of phospholipid pulmonary surfactant, diacyl phosphatidyl choline, are reviewed for in vitro expression of genotoxicity by diesel exhaust particles and of cytotoxicity by respirable quartz and aluminosilicate kaolin clay particles. Those effects suggest methods and cautions for assaying and interpreting NP properties and biological activities.

  2. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p < 0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  3. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p<0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  4. Capillary trapping of particles in thin-film flows

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Gomez, Michael; Colnet, Benedicte; Sauret, Alban

    2017-11-01

    When a thin layer of suspension flows over a substrate, some particles remain trapped on the solid surface. When the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and the dynamics of the liquid films. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films and the resulting loss of transported material. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the drainage dynamics exhibits behavior that cannot be captured with a continuum model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 & CNRS-PICS-07242 & ACS-PRF 55845-ND9.

  5. Capillary trapping in thin-film flows of particles

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Gomez, Michael; Dressaire, Emilie

    Flows of suspensions have been modeled on a continuum level by using constitutive relations to capture how the viscosity varies with the particle concentration. However, in thin liquid films, where the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and could result in the contamination of the surface and the loss of transported material. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the dynamics of the drainage exhibits behavior that cannot be captured with a Newtonian model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 and CNRS-PICS-07242.

  6. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.

    PubMed

    Singh, P; Nanda, A

    2014-06-01

    A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Effect of particle size in preparative reversed-phase high-performance liquid chromatography on the isolation of epigallocatechin gallate from Korean green tea.

    PubMed

    Kim, Jung Il; Hong, Seung Bum; Row, Kyung Ho

    2002-03-08

    To isolate epigallocatechin gallate (EGCG) of catechin compounds from Korean green tea (Bosung, Chonnam), a C18 reversed-phase preparative column (250x22 mm) packed with packings of three different sizes (15, 40-63, and 150 microm) was used. The sample extracted with water was partitioned with chloroform and ethyl acetate to remove the impurities including caffeine. The mobile phases in this experiment were composed of 0.1% acetic acid in water, acetonitrile, methanol and ethyl acetate. The injection volume was fixed at 400 microl and the flow rate was increased as the particle size becomes larger. The isolation of EGCG with particle size was compared at a preparative scale and the feasibility of separation of EGCG at larger particle sizes was confirmed. The optimum mobile phase composition for separating EGCG was experimentally obtained at the particle sizes of 15 and 40-63 microm in the isocratic mode, but EGCG was not purely separated at the particle size of 150 microm.

  8. Size-dependent reactivity of magnetite nanoparticles: a field-laboratory comparison

    USGS Publications Warehouse

    Swindle, Andrew L.; Elwood Madden, Andrew S.; Cozzarelli, Isabelle M.; Benamara, Mourad

    2014-01-01

    Logistic challenges make direct comparisons between laboratory- and field-based investigations into the size-dependent reactivity of nanomaterials difficult. This investigation sought to compare the size-dependent reactivity of nanoparticles in a field setting to a laboratory analog using the specific example of magnetite dissolution. Synthetic magnetite nanoparticles of three size intervals, ∼6 nm, ∼44 nm, and ∼90 nm were emplaced in the subsurface of the USGS research site at the Norman Landfill for up to 30 days using custom-made subsurface nanoparticle holders. Laboratory analog dissolution experiments were conducted using synthetic groundwater. Reaction products were analyzed via TEM and SEM and compared to initial particle characterizations. Field results indicated that an organic coating developed on the particle surfaces largely inhibiting reactivity. Limited dissolution occurred, with the amount of dissolution decreasing as particle size decreased. Conversely, the laboratory analogs without organics revealed greater dissolution of the smaller particles. These results showed that the presence of dissolved organics led to a nearly complete reversal in the size-dependent reactivity trends displayed between the field and laboratory experiments indicating that size-dependent trends observed in laboratory investigations may not be relevant in organic-rich natural systems.

  9. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    PubMed

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  10. A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers

    NASA Astrophysics Data System (ADS)

    Japuntich, Daniel A.; Franklin, Luke M.; Pui, David Y.; Kuehn, Thomas H.; Kim, Seong Chan; Viner, Andrew S.

    2007-01-01

    Two different air filter test methodologies are discussed and compared for challenges in the nano-sized particle range of 10-400 nm. Included in the discussion are test procedure development, factors affecting variability and comparisons between results from the tests. One test system which gives a discrete penetration for a given particle size is the TSI 8160 Automated Filter tester (updated and commercially available now as the TSI 3160) manufactured by the TSI, Inc., Shoreview, MN. Another filter test system was developed utilizing a Scanning Mobility Particle Sizer (SMPS) to sample the particle size distributions downstream and upstream of an air filter to obtain a continuous percent filter penetration versus particle size curve. Filtration test results are shown for fiberglass filter paper of intermediate filtration efficiency. Test variables affecting the results of the TSI 8160 for NaCl and dioctyl phthalate (DOP) particles are discussed, including condensation particle counter stability and the sizing of the selected particle challenges. Filter testing using a TSI 3936 SMPS sampling upstream and downstream of a filter is also shown with a discussion of test variables and the need for proper SMPS volume purging and filter penetration correction procedure. For both tests, the penetration versus particle size curves for the filter media studied follow the theoretical Brownian capture model of decreasing penetration with decreasing particle diameter down to 10 nm with no deviation. From these findings, the authors can say with reasonable confidence that there is no evidence of particle thermal rebound in the size range.

  11. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  12. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    PubMed

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-12-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.

  14. Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites

    Treesearch

    David P. Harper; Thomas L. Eberhardt

    2010-01-01

    Micron-sized particles, prepared from loblolly pine (Pinus taeda L.) wood and bark, were evaluated for use in wood-plastic composites (WPCs). Particles were also prepared from hard (periderm) and soft (obliterated phloem) components in the bark and compared to whole wood (without bark) filler commonly used by the WPC industry. All bark fillers had...

  15. How comparable are size-resolved particle number concentrations from different instruments?

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental stationarity and in the data analysis only the middle 18 minutes of data are analyzed. Because of variations in the discretization of the different instrumental configurations, the data are analyzed both after being transformed onto a common size resolution and in terms of a fitted modal distribution. Diagnostic analysis are conducted to assess the impact of SMPS configuration on total number concentration, model geometric mean diameter and distribution dispersion. Preliminary results indicate that selection of DMA exerts the larger control over instrument response.

  16. Electrical Sensing Zone Particle Analyzer for Measuring Germination of Fungal Spores in the Presence of Other Particles1

    PubMed Central

    Santoro, T.; Stotzky, G.; Rem, L. T.

    1967-01-01

    Microscopic, respirometric, and electronic sizing methods for measuring germination of fungal spores were compared. With the electronic sizing method, early stages of germination (i.e., spore swelling) were detected long before germ tube emergence or significant changes in respiratory rates were observed. This method, which is rapid, easy, sensitive, and reproducible, also permits measuring the germination of spores when similar-size particles are present in concentrations considerably in excess of the number of spores. PMID:6069161

  17. Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan,S.; Garboczi, E.; Fowler, D.

    Microfine rock aggregates, formed naturally or in a crushing process, pass a No. 200 ASTM sieve, so have at least two orthogonal principal dimensions less than 75 {mu}m, the sieve opening size. In this paper, for the first time, we capture true 3-D shape and size data of several different types of microfine aggregates, using X-ray microcomputed tomography ({mu}CT) with a voxel size of 2 {mu}m. This information is used to generate shape analyses of various kinds. Particle size distributions are also generated from the {mu}CT data and quantitatively compared to the results of laser diffraction, which is the leadingmore » method for measuring particle size distributions of sub-millimeter size particles. By taking into account the actual particle shape, the differences between {mu}CT and laser diffraction can be qualitatively explained.« less

  18. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis.

    PubMed

    Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin

    2017-01-01

    Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Particle Shape and Composition of NU-LHT-2M

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Lowers, H.

    2012-01-01

    Particle shapes of the lunar regolith simulant NU-LHT-2M were analyzed by scanning electron microscope of polished sections. These data provide shape, size, and composition information on a particle by particle basis. 5,193 particles were measured, divided into four sized fractions: less than 200 mesh, 200-100 mesh, 100-35 mesh, and greater than 35 mesh. 99.2% of all particles were monominerallic. Minor size versus composition effects were noted in minor and trace mineralogy. The two metrics used are aspect ratio and Heywood factor, plotted as normalized frequency distributions. Shape versus composition effects were noted for glass and possibly chlorite. To aid in analysis, the measured shape distributions are compared to data for ellipses and rectangles. Several other simple geometric shapes are also investigated as to how they plot in aspect ratio versus Heywood factor space. The bulk of the data previously reported, which were acquired in a plane of projection, are between the ellipse and rectangle lines. In contrast, these data, which were acquired in a plane of section, clearly show that a significant number of particles have concave hulls in this view. Appendices cover details of measurement error, use of geometric shapes for comparative analysis, and a logic for comparing data from plane of projection and plane of section measurements.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuhkala, M., E-mail: mtuhkala@ee.oulu.fi; Maček, M.; Siponkoski, T.

    Highlights: • Elongated micrometre sized BaTiO{sub 3} particles had strong effect on permittivity. • Effect was significantly stronger compared to μm and nm sized spherical particles. • Properties could be tailored by varying the particle shapes of dielectric powders. • Could be utilized, e.g., in a production of electrical composites for RF applications. - Abstract: The effect of BaTiO{sub 3} particle shape on the properties of 0.98MgTiO{sub 3}–0.02BaTiO{sub 3} composite powders was characterized and analyzed using an indirectly coupled open-ended coaxial cavity resonator at gigahertz frequencies. Elongated micrometre sized BaTiO{sub 3} particles were found to have a significantly stronger effectmore » on permittivity when compared to composite powders having micro and nano sized spherical BaTiO{sub 3} particles. Inclusion permittivities and dielectric loss tangents of composite powders increased from that of pure MgTiO{sub 3} powder, 13.3 and 4.6 × 10{sup −3}, up to 15.7 and 1.7 × 10{sup −2} with needle shaped BaTiO{sub 3} particles, respectively. The presented results give valuable information for tailoring the properties of dielectrics which can be utilized in the vast field of electronic component manufacturing.« less

  1. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2016-03-01

    Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  2. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals.

    PubMed

    Martena, Valentina; Shegokar, Ranjita; Di Martino, Piera; Müller, Rainer H

    2014-09-01

    Nicergoline, a poorly soluble active pharmaceutical ingredient, possesses vaso-active properties which causes peripheral and central vasodilatation. In this study, nanocrystals of nicergoline were prepared in an aqueous solution of polysorbate 80 (nanosuspension) by using four different laboratory scale size reduction techniques: high pressure homogenization (HPH), bead milling (BM) and combination techniques (high pressure homogenization followed by bead milling HPH + BM, and bead milling followed by high pressure homogenization BM + HPH). Nanocrystals were investigated regarding to their mean particles size, zeta potential and particle dissolution. A short term physical stability study on nanocrystals stored at three different temperatures (4, 20 and 40 °C) was performed to evaluate the tendency to change in particle size, aggregation and zeta potential. The size reduction technique and the process parameters like milling time, number of homogenization cycles and pressure greatly affected the size of nanocrystals. Among the techniques used, the combination techniques showed superior and consistent particle size reduction compared to the other two methods, HPH + BM and BM + HPH giving nanocrystals of a mean particle size of 260 and 353 nm, respectively. The particle dissolution was increased for any nanocrystals samples, but it was particularly increased by HPH and combination techniques. Independently to the production method, nicergoline nanocrystals showed slight increase in particle size over the time, but remained below 500 nm at 20 °C and refrigeration conditions.

  3. Thermodynamics Of Common Atmospheric Particles On The Nanoscale

    NASA Astrophysics Data System (ADS)

    Onasch, T.; Han, J.; Oatis, S.; Brechtel, F.; Imre, D. G.

    2002-12-01

    A significant fraction of atmospheric particles are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence. Recent field studies have observed large nucleation events of hygroscopic particles and note discrepancies between predicted and observed particle growth rates after nucleation. These growth rates are governed, in part, by the thermodynamic properties of particles only a few nanometers in diameter. However, little thermodynamic information is currently available for nanometer?sized particles. The Kelvin relation indicates that the surface tension of a particle less than 100nm in diameter can dramatically affect the thermodynamics, and surface states may begin to influence the bulk physical properties in these small particles with high surface to volume ratios. In this context, we are investigating the thermodynamic properties, including pre-deliquescence water adsorption, deliquescence, efflorescence, and supersaturated particle compositions of nanoparticles with mobility diameters in the range of 5 to 50 nm. We have developed a temperature and humidity-controlled laboratory-based Nano Differential Mobility Analyzer (NDMA) system to characterize the hygroscopic properties of the common atmospheric salt particles as a function of size. Two different aerosol generation systems have been used to cover the full size range. The first system (less than 20nm diameter) relies on an Atomizer (TSI 3076) to produce particles which are size?selected using an initial DMA. For particle sizes smaller than 20 nm, the Electrospray Aerosol Generator (EAG, TSI 3480) has been employed as a particle source. The EAG characteristically provides narrow size distributions, comparable to the monodisperse size distribution from a DMA, but with higher number concentrations. Once generated, the monodisperse aerosol flow is then conditioned with respect to humidity at a constant temperature and subsequently analyzed using a TSI Ultrafine CPC (Model 3010) modified for Pulse-Height Analysis. The dry particle sizes are also continually monitored by an external SMPS system (TSI 3936) to rectify errors in the calculated growth factor resulting from any drift in the dry particle size. The size changes of the humidified particles are directly correlated with the relative humidity and temperature. Our results of ammonium sulfate particles from 5 - 50 nm in diameter are consistent with those predicted from the Kelvin relation. The particle size affects both deliquescence and efflorescence of the homogeneous salt particles: the deliquescence relative humidity increases and the efflorescence decreases as particles become smaller. In addition, although the smaller the particle size the more significant water adsorption, the sharp deliquescence phase transition was obvious regardless of the particle sizes. The implications with respect to these observations will be further discussed at the presentation.

  4. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  5. Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design

    PubMed Central

    Adesina, Simeon K.; Wight, Scott A.; Akala, Emmanuel O.

    2015-01-01

    Purpose Nanoparticle size is important in drug delivery. Clearance of nanoparticles by cells of the reticuloendothelial system has been reported to increase with increase in particle size. Further, nanoparticles should be small enough to avoid lung or spleen filtering effects. Endocytosis and accumulation in tumor tissue by the enhanced permeability and retention effect are also processes that are influenced by particle size. We present the results of studies designed to optimize crosslinked biodegradable stealth polymeric nanoparticles fabricated by dispersion polymerization. Methods Nanoparticles were fabricated using different amounts of macromonomer, initiators, crosslinking agent and stabilizer in a dioxane/DMSO/water solvent system. Confirmation of nanoparticle formation was by scanning electron microscopy (SEM). Particle size was measured by dynamic light scattering (DLS). D-optimal mixture statistical experimental design was used for the experimental runs, followed by model generation (Scheffe polynomial) and optimization with the aid of a computer software. Model verification was done by comparing particle size data of some suggested solutions to the predicted particle sizes. Results and Conclusion Data showed that average particle sizes follow the same trend as predicted by the model. Negative terms in the model corresponding to the crosslinking agent and stabilizer indicate the important factors for minimizing particle size. PMID:24059281

  6. Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design.

    PubMed

    Adesina, Simeon K; Wight, Scott A; Akala, Emmanuel O

    2014-11-01

    Nanoparticle size is important in drug delivery. Clearance of nanoparticles by cells of the reticuloendothelial system has been reported to increase with increase in particle size. Further, nanoparticles should be small enough to avoid lung or spleen filtering effects. Endocytosis and accumulation in tumor tissue by the enhanced permeability and retention effect are also processes that are influenced by particle size. We present the results of studies designed to optimize cross-linked biodegradable stealth polymeric nanoparticles fabricated by dispersion polymerization. Nanoparticles were fabricated using different amounts of macromonomer, initiators, crosslinking agent and stabilizer in a dioxane/DMSO/water solvent system. Confirmation of nanoparticle formation was by scanning electron microscopy (SEM). Particle size was measured by dynamic light scattering (DLS). D-optimal mixture statistical experimental design was used for the experimental runs, followed by model generation (Scheffe polynomial) and optimization with the aid of a computer software. Model verification was done by comparing particle size data of some suggested solutions to the predicted particle sizes. Data showed that average particle sizes follow the same trend as predicted by the model. Negative terms in the model corresponding to the cross-linking agent and stabilizer indicate the important factors for minimizing particle size.

  7. Comparing particle-size distributions in modern and ancient sand-bed rivers

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.

  8. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. H.; Das, J.; Sordelet, D. J.; Eckert, J.; Hurd, A. J.

    2012-09-01

    We investigated the effect of tungsten particle sizes on the thermal stability and reactivity of uniformly dispersed W particles in molten Hf-based alloy melt at elevated temperature (1673 K). The solubility of particles less than 100 nm in radius is significantly enhanced. In case of fine W particles with 20 nm diameter, their solubility increases remarkably around 700% compared to that of coarse micrometer-scale particles. The mechanisms and kinetics of this dynamic growth of particle are discussed as well as techniques developed to obtain frozen microstructure of particle-reinforced composites by rapid solidification.

  9. Effect of short-term low- and high-fat diets on low-density lipoprotein particle size in normolipidemic subjects.

    PubMed

    Guay, Valérie; Lamarche, Benoît; Charest, Amélie; Tremblay, André J; Couture, Patrick

    2012-01-01

    High-fat, low-carbohydrate diets have been shown to raise plasma cholesterol levels, an effect associated with the formation of large low-density lipoprotein (LDL) particles. However, the impact of dietary intervention on time-course changes in LDL particle size has not been investigated. To test whether a short-term dietary intervention affects LDL particle size, we conducted a randomized, double-blind, crossover study using an intensive dietary modification in 12 nonobese healthy men with normal plasma lipid profile. Participants were subjected to 2 isocaloric 3-day diets: high-fat diet (37% energy from fat and 50% from carbohydrates) and low-fat diet (25% energy from fat and 62% from carbohydrates). Plasma lipid levels and LDL particle size were assessed on fasting blood samples after 3 days of feeding on each diet. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis. Compared with the low-fat diet, plasma cholesterol, LDL cholesterol, and high-density lipoprotein cholesterol were significantly increased (4.45 vs 4.78 mmol/L, P = .04; 2.48 vs 2.90 mmol/L, P = .005; and 1.29 vs 1.41 mmol/L, P = .005, respectively) following the 3-day high-fat diet. Plasma triglycerides and fasting apolipoprotein B-48 levels were significantly decreased after the high-fat diet compared with the low-fat diet (1.48 vs 1.01 mmol/L, P = .0003 and 9.6 vs 5.5 mg/L, P = .008, respectively). The high-fat diet was also associated with a significant increase in LDL particle size (255.0 vs 255.9 Å;P = .01) and a significant decrease in the proportion of small LDL particle (<255.0 Å) (50.7% vs 44.6%, P = .01). As compared with a low-fat diet, the cholesterol-raising effect of a high-fat diet is associated with the formation of large LDL particles after only 3 days of feeding. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    USGS Publications Warehouse

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  11. Heating efficiency dependency on size and morphology of magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Parekh, Kinnari; Parmar, Harshida; Sharma, Vinay; Ramanujan, R. V.

    2018-04-01

    Different size magnetite nanoparticles ranging from superparamagnetic (9 nm) to single domain (27 nm) and multi domain (53 nm) were synthesized using chemical route. Morphology of these particles as seen from TEM images indicates shape change from spherical to cubic with the growth of particles. The saturation magnetization (σs) and Specific Loss Power (SLP) showed maximum for single domain size, 72 emu/g and 102 W/g, respectively then those of multi domain size particles. These samples show higher SLP at relatively low concentration, low frequency and low amplitude compared to samples prepared by other routes.

  12. Analyses of scattering characteristics of chosen anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Muzal, Michal

    2008-10-01

    In the work, analyses of scattering profile of chosen anthropogenic aerosols for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) were made. As an example of anthropogenic aerosol three different pyrotechnic mixtures (DM11, M2, M16) were taken. Main parameters of smoke particles were firstly analyzed and well described, taking particle shape and size into special consideration. Shape of particles was analyzed on the basis of SEM pictures, and particle size was measured. Participation of particles in each fixed fraction characterized by range of sizes was analyzed and parameters of smoke particles of characteristic sizes and function describing aerosol size distribution (ASD) were determinated. Analyses of scattering profiles were carried out on the basis of both model of scattering on spherical and nonspherical particles. In the case of spherical particles Rayleigh-Mie model was used and for nonspherical particles analyses firstly model of spheroids was used, and then Rayleigh-Mie one. For each characteristic particle one calculated value of four parameters (effective scattering cross section σSCA, effective backscattering cross section σBSCA, scattering efficiency QSCA, backscattering efficiency QBSCA) and value of backscattering coefficient β for whole particles population. Obtained results were compared with the same parameters calculated for natural aerosol (cirrus cloud).

  13. Comparison of Lidar Backscatter with Particle Distribution and GOES-7 Data in Hurricane Juliette

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; McCaul, Eugene W., Jr.; Jedlovec, Gary J.; Atkinson, Robert J.; Pueschel, Rudolf F.; Cutten, Dean R.

    1997-01-01

    Measurements of calibrated backscatter, using two continuous wave Doppler lidars operating at wavelengths 9.1 and 10.6 micrometers were obtained along with cloud particle size distributions in Hurricane Juliette on 21 September 1995 at altitude approximately 11.7 km. Agreement between backscatter from the two lidars and with the cloud particle size distribution is excellent. Features in backscatter and particle number density compare well with concurrent GOES-7 infrared images.

  14. Environmental factors controlling the seasonal variability in particle size distribution of modern Saharan dust deposited off Cape Blanc

    NASA Astrophysics Data System (ADS)

    Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.

    2016-09-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.

  15. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity.

    PubMed

    Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov

    2017-09-01

    Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of Particle Size and Operating Conditions on Pt 3Co PEMFC Cathode Catalyst Durability

    DOE PAGES

    Gummalla, Mallika; Ball, Sarah; Condit, David; ...

    2015-05-29

    The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt 3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes withmore » the smallest Pt 3Co particle size was the highest and that of the largest Pt 3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt 3Co over the 4.9 nm Pt 3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt 3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less

  17. Size distribution and sorption of polychlorinated biphenyls during haze episodes

    NASA Astrophysics Data System (ADS)

    Zhu, Qingqing; Liu, Guorui; Zheng, Minghui; Zhang, Xian; Gao, Lirong; Su, Guijin; Liang, Yong

    2018-01-01

    There is a lack of studies on the size distribution of polychlorinated biphenyls (PCBs) during haze days, and their sorption mechanisms on aerosol particles remain unclear. In this study, PCBs in particle-sized aerosols from urban atmospheres of Beijing, China were investigated during haze and normal days. The concentrations, gas/particle partitioning, size distribution, and associated human daily intake of PCBs via inhalation were compared during haze days and normal days. Compared with normal days, higher particle mass-associated PCB levels were measured during haze days. The concentrations of ∑PCBs in particulate fractions were 11.9-134 pg/m3 and 6.37-14.9 pg/m3 during haze days and normal days, respectively. PCBs increased with decreasing particle size (>10 μm, 10-2.5 μm, 2.5-1.0 μm, and ≤1.0 μm). During haze days, PCBs were overwhelmingly associated with a fine particle fraction of ≤1.0 μm (64.6%), while during normal days the contribution was 33.7%. Tetra-CBs were the largest contributors (51.8%-66.7%) both in the gas and particle fractions during normal days. The profiles in the gas fraction were conspicuously different than those in the PM fractions during haze days, with di-CBs predominating in the gas fraction and higher homologues (tetra-CBs, penta-CBs, and hexa-CBs) concurrently accounting for most of the PM fractions. The mean-normalized size distributions of particulate mass and PCBs exhibited unimodal patterns, and a similar trend was observed for PCBs during both days. They all tended to be in the PM fraction of 1.0-2.5 μm. Adsorption might be the predominating mechanism for the gas-particle partitioning of PCBs during haze days, whereas absorption might be dominative during normal days.

  18. Modeling particle nucleation and growth over northern California during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Lupascu, A.; Easter, R.; Zaveri, R.; Shrivastava, M.; Pekour, M.; Tomlinson, J.; Yang, Q.; Matsui, H.; Hodzic, A.; Zhang, Q.; Fast, J. D.

    2015-11-01

    Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4, while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapor parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates are predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary-layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10-40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. We found that newly formed particles could explain up to 20-30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ~ 36 %.

  19. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation

    PubMed Central

    Schneider, Craig S.; Xu, Qingguo; Boylan, Nicholas J.; Chisholm, Jane; Tang, Benjamin C.; Schuster, Benjamin S.; Henning, Andreas; Ensign, Laura M.; Lee, Ethan; Adstamongkonkul, Pichet; Simons, Brian W.; Wang, Sho-Yu S.; Gong, Xiaoqun; Yu, Tao; Boyle, Michael P.; Suk, Jung Soo; Hanes, Justin

    2017-01-01

    Mucoadhesive particles (MAP) have been widely explored for pulmonary drug delivery because of their perceived benefits in improving particle residence in the lungs. However, retention of particles adhesively trapped in airway mucus may be limited by physiologic mucus clearance mechanisms. In contrast, particles that avoid mucoadhesion and have diameters smaller than mucus mesh spacings rapidly penetrate mucus layers [mucus-penetrating particles (MPP)], which we hypothesized would provide prolonged lung retention compared to MAP. We compared in vivo behaviors of variously sized, polystyrene-based MAP and MPP in the lungs following inhalation. MAP, regardless of particle size, were aggregated and poorly distributed throughout the airways, leading to rapid clearance from the lungs. Conversely, MPP as large as 300 nm exhibited uniform distribution and markedly enhanced retention compared to size-matched MAP. On the basis of these findings, we formulated biodegradable MPP (b-MPP) with an average diameter of <300 nm and examined their behavior following inhalation relative to similarly sized biodegradable MAP (b-MAP). Although b-MPP diffused rapidly through human airway mucus ex vivo, b-MAP did not. Rapid b-MPP movements in mucus ex vivo correlated to a more uniform distribution within the airways and enhanced lung retention time as compared to b-MAP. Furthermore, inhalation of b-MPP loaded with dexamethasone sodium phosphate (DP) significantly reduced inflammation in a mouse model of acute lung inflammation compared to both carrier-free DP and DP-loaded MAP. These studies provide a careful head-to-head comparison of MAP versus MPP following inhalation and challenge a long-standing dogma that favored the use of MAP for pulmonary drug delivery. PMID:28435870

  20. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.

    PubMed

    Grote, Simon; Kleinebudde, Peter

    2018-05-29

    The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.

  1. Modeling particle nucleation and growth over northern California during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Lupascu, A.; Easter, R.; Zaveri, R.; Shrivastava, M.; Pekour, M.; Tomlinson, J.; Yang, Q.; Matsui, H.; Hodzic, A.; Zhang, Q.; Fast, J. D.

    2015-07-01

    Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4 while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapors parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates were predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10-40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. Differences among the three simulations for the 40-100 nm particle diameter range are mostly associated with the timing of the peak total tendencies that shift the morning increase and afternoon decrease in particle number concentration by up to two hours. We found that newly formed particles could explain up to 20-30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ∼ 36 %.

  2. Computing fluid-particle interaction forces for nano-suspension droplet spreading: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Weizhou; Shi, Baiou; Webb, Edmund

    2017-11-01

    Recently, there are many experimental and theoretical studies to understand and control the dynamic spreading of nano-suspension droplets on solid surfaces. However, fundamental understanding of driving forces dictating the kinetics of nano-suspension wetting and spreading, especially capillary forces that manifest during the process, is lacking. Here, we present results from atomic scale simulations that were used to compute forces between suspended particles and advancing liquid fronts. The role of nano-particle size, particle loading, and interaction strength on forces computed from simulations will be discussed. Results demonstrate that increasing the particle size dramatically changes observed wetting behavior from depinning to pinning. From simulations on varying particle size, a relationship between computed forces and particle size is advanced and compared to existing expressions in the literature. High particle loading significantly slowed spreading kinetics, by introducing tortuous transport paths for liquid delivery to the advancing contact line. Lastly, we show how weakening the interaction between the particle and the underlying substrate can change a system from exhibiting pinning behavior to de-pinning.

  3. Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Zhouyang; Runge, Troy

    This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less

  4. Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals

    DOE PAGES

    Xiang, Zhouyang; Runge, Troy

    2015-07-21

    This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less

  5. Continuous Flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) Method of Measuring Size-Resolved Sea-Salt Particle Fluxes

    NASA Astrophysics Data System (ADS)

    Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.

    2017-12-01

    The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for sea-salt and ammoniums sulfate particle fluxes. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the sea-salt particle fluxes measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The sea-salt particle detection limit of the Hy-Res REA flux system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and sea-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the sea-salt particle fluxes. In principle, the instrument can be applied to measure fluxes of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).

  6. Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Cai, J.; Benson, D. J.; Nesterenko, V. F.

    2007-12-01

    Recent investigations of the dynamic compressive strength of cold isostatically pressed composites of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) powders show significant differences depending on the size of metallic particles. The addition of W increases the density and changes the overall strength of the sample depending on the size of W particles. To investigate relatively large deformations, multi-material Eulerian and arbitrary Lagrangian-Eulerian methods, which have the ability to efficiently handle the formation of free surfaces, were used. The calculations indicate that the increased sample strength with fine metallic particles is due to the dynamic formation of force chains. This phenomenon occurs for samples with a higher porosity of the PTFE matrix compared to samples with larger particle size of W and a higher density PTFE matrix.

  7. Beneficial effects of polyethylene packages containing micrometer-sized silver particles on the quality and shelf life of dried barberry (Berberis vulgaris).

    PubMed

    Motlagh, N Valipoor; Mosavian, M T Hamed; Mortazavi, S A; Tamizi, A

    2012-01-01

    In this research, the effects of low-density polyethylene (LDPE) packages containing micrometer-sized silver particles (LDPE-Ag) on microbial and sensory factors of dried barberry were investigated in comparison with the pure LDPE packages. LDPE-Ag packages with 1% and 2% concentrations of silver particles statistically caused a decrease in the microbial growth of barberry, especially in the case of mold and total bacteria count, compared with the pure LDPE packages. The taste, aroma, appearance, and total acceptance were evaluated by trained panelists using the 9-point hedonic scale. This test showed improvement of all these factors in the samples related to packages containing 1% and 2% concentrations of silver particles in comparison with other samples. Low-density polyethylene package containing micrometer-sized silver particles had beneficial effects on the sensory and microbial quality of barberry when compared with normal packing material. © 2011 Institute of Food Technologists®

  8. Decorrelation correction for nanoparticle tracking analysis of dilute polydisperse suspensions in bulk flow

    NASA Astrophysics Data System (ADS)

    Hartman, John; Kirby, Brian

    2017-03-01

    Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.

  9. Probe measurements and numerical model predictions of evolving size distributions in premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Filippo, A.; Sgro, L.A.; Lanzuolo, G.

    2009-09-15

    Particle size distributions (PSDs), measured with a dilution probe and a Differential Mobility Analyzer (DMA), and numerical predictions of these PSDs, based on a model that includes only coagulation or alternatively inception and coagulation, are compared to investigate particle growth processes and possible sampling artifacts in the post-flame region of a C/O = 0.65 premixed laminar ethylene-air flame. Inputs to the numerical model are the PSD measured early in the flame (the initial condition for the aerosol population) and the temperature profile measured along the flame's axial centerline. The measured PSDs are initially unimodal, with a modal mobility diameter ofmore » 2.2 nm, and become bimodal later in the post-flame region. The smaller mode is best predicted with a size-dependent coagulation model, which allows some fraction of the smallest particles to escape collisions without resulting in coalescence or coagulation through the size-dependent coagulation efficiency ({gamma}{sub SD}). Instead, when {gamma} = 1 and the coagulation rate is equal to the collision rate for all particles regardless of their size, the coagulation model significantly under predicts the number concentration of both modes and over predicts the size of the largest particles in the distribution compared to the measured size distributions at various heights above the burner. The coagulation ({gamma}{sub SD}) model alone is unable to reproduce well the larger particle mode (mode II). Combining persistent nucleation with size-dependent coagulation brings the predicted PSDs to within experimental error of the measurements, which seems to suggest that surface growth processes are relatively insignificant in these flames. Shifting measured PSDs a few mm closer to the burner surface, generally adopted to correct for probe perturbations, does not produce a better matching between the experimental and the numerical results. (author)« less

  10. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial

    NASA Astrophysics Data System (ADS)

    Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.

    2016-05-01

    Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.

  11. Stability and instability for low refractive-index-contrast particle trapping in a dual-beam optical trap.

    PubMed

    Huff, Alison; Melton, Charles N; Hirst, Linda S; Sharping, Jay E

    2015-10-01

    A dual-beam optical trap is used to trap and manipulate dielectric particles. When the refractive index of these particles is comparable to that of the surrounding medium, equilibrium trapping locations within the system shift from stable to unstable depending on fiber separation and particle size. This is due to to the relationship between gradient and scattering forces. We experimentally and computationally study the transitions between stable and unstable trapping of poly(methyl methacrylate) beads for a range of parameters relevant to experimental setups involving giant unilamellar vesicles. We present stability maps for various fiber separations and particle sizes, and find that careful attention to particle size and configuration is necessary to obtain reproducible quantitative results for soft matter stretching experiments.

  12. Stability and instability for low refractive-index-contrast particle trapping in a dual-beam optical trap

    PubMed Central

    Huff, Alison; Melton, Charles N.; Hirst, Linda S.; Sharping, Jay E.

    2015-01-01

    A dual-beam optical trap is used to trap and manipulate dielectric particles. When the refractive index of these particles is comparable to that of the surrounding medium, equilibrium trapping locations within the system shift from stable to unstable depending on fiber separation and particle size. This is due to to the relationship between gradient and scattering forces. We experimentally and computationally study the transitions between stable and unstable trapping of poly(methyl methacrylate) beads for a range of parameters relevant to experimental setups involving giant unilamellar vesicles. We present stability maps for various fiber separations and particle sizes, and find that careful attention to particle size and configuration is necessary to obtain reproducible quantitative results for soft matter stretching experiments. PMID:26504632

  13. Solid rocket motor plume particle size measurements using multiple optical techniques in a probe

    NASA Astrophysics Data System (ADS)

    Manser, John R.

    1995-03-01

    An experimental investigation to measure particle size distributions in the plume of sub-scale solid rocket motors was conducted. A phase-Doppler particle analyzer (pDPA) in conjunction with three-wavelength extinction measurements were used in a specially designed particle collection probe in an attempt to determine the entire plume particle size distribution. In addition, a laser ensemble particle sizer was used for comparative data. The PDPA and Malvem distributions agreed in the observed modes near 1 and 4.5 micron diameter (d). Scanning electron microscope (SEM) pictures of collected particles were in good agreement with the measured Malvem Sauter mean diameter (d(sub 32)) of 2.59 micron. Data analysis indicates that less than 3% of the total mass of the particles was contained in particles with diameter d dess than 0.5 micron. Therefore, the PDPA, which can typically measure particles down to a minimum diameter of 0.5 micron with a dynamic range (d(sub max):d(sub min)) of 50:1, can be used by itself to determine the particle size distribution. Multiple wavelength measurements were found to be very sensitive to inaccuracies in the measured transmittances.

  14. Oscillatory rheology and creep behavior of barley β-D-glucan concentrate dough: effect of particle size, temperature, and water content.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Al-Attar, Hasan

    2015-01-01

    Small amplitude oscillatory rheology and creep behavior of β-glucan concentrate (BGC) dough were studied as function of particle size (74, 105, 149, 297, and 595 μm), BGC particle-to-water ratio (1:4, 1:5, and 1:6), and temperature (25, 40, 55, 70, and 85 °C). The color intensity and protein content increased with decreasing particle size by creating more surface areas. The water holding capacity (WHC) and sediment volume fraction increased with increasing particle size from 74 to 595 μm, which directly influences the mechanical rigidity and viscoelasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G' > viscous modulus, G″). A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters, which varied significantly with particle size and the process temperature. Creep tests exhibited more pronounced effect on dough behavior compared to oscillatory measurement. The protein denaturation temperature was insignificantly increased with particle fractions from 107 to 110 °C. All those information could be helpful to identify the particle size range and WHC of BGC that could be useful to produce a β-d-glucan enriched designed food. © 2014 Institute of Food Technologists®

  15. Emission of nanoparticles during combustion of waste biomass in fireplace

    NASA Astrophysics Data System (ADS)

    Drastichová, Vendula; Krpec, Kamil; Horák, Jiří; Hopan, František; Kubesa, Petr; Martiník, Lubomír; Koloničný, Jan; Ochodek, Tadeáš; Holubčík, Michal

    2014-08-01

    Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number, (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs, As, Cd, Zn, Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount, and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.

  16. Particle deposition in human respiratory system: deposition of concentrated hygroscopic aerosols.

    PubMed

    Varghese, Suresh K; Gangamma, S

    2009-06-01

    In the nearly saturated human respiratory tract, the presence of water-soluble substances in the inhaled aerosols can cause change in the size distribution of the particles. This consequently alters the lung deposition profiles of the inhaled airborne particles. Similarly, the presence of high concentration of hygroscopic aerosols also affects the water vapor and temperature profiles in the respiratory tract. A model is presented to analyze these effects in human respiratory system. The model solves simultaneously the heat and mass transfer equations to determine the size evolution of respirable particles and gas-phase properties within human respiratory tract. First, the model predictions for nonhygroscopic aerosols are compared with experimental results. The model results are compared with experimental results of sodium chloride particles. The model reproduces the major features of the experimental data. The water vapor profile is significantly modified only when a high concentration of particles is present. The model is used to study the effect of equilibrium assumptions on particle deposition. Simulations show that an infinite dilution solution assumption to calculate the saturation equilibrium over droplet could induce errors in estimating particle growth. This error is significant in the case of particles of size greater than 1 mum and at number concentrations higher than 10(5)/cm(3).

  17. Lunar Dust Characterization Activity at GRC

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.

    2008-01-01

    The fidelity of lunar simulants as compared to actual regolith is evaluated using Figures of Merit (FOM) which are based on four criteria: Particle Size, Particle Shape, Composition, and Density of the bulk material. In practice, equipment testing will require other information about both the physical properties (mainly of the dust fraction) and composition as a function of particle size. At Glenn Research Center (GRC) we are involved in evaluating a number of simulant properties of consequence to testing of lunar equipment in a relevant environment, in order to meet Technology Readiness Level (TRL) 6 criteria. Bulk regolith has been characterized for many decades, but surprisingly little work has been done on the dust fraction (particles less than 20 micrometers in diameter). GRC is currently addressing the information shortfall by characterizing the following physical properties: Particle Size Distribution, Adhesion, Abrasivity, Surface Energy, Magnetic Susceptibility, Tribocharging and Surface Chemistry/Reactivity. Since some of these properties are also dependent on the size of the particles we have undertaken the construction of a six stage axial cyclone particle separator to fractionate dust into discrete particle size distributions for subsequent evaluation of these properties. An introduction to this work and progress to date will be presented.

  18. Measurements of ultrafine particles from a gas-turbine burning biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouis, C.; Beretta, F.; Minutolo, P.

    2010-04-15

    Measurements of ultrafine particles have been performed at the exhaust of a low emission microturbine for power generation. This device has been fuelled with liquid fuels, including a commercial diesel oil, a mixture of the diesel oil with a biodiesel and kerosene, and tested under different loads. Primarily attention has been focused on the measurements of the size distribution functions of the particles emitted from the system by using particle differential mobility analysis. A bimodal size distribution function of the particle emitted has been found in all the examined conditions. Burning diesel oil, the first mode of the size distributionmore » function of the combustion-formed particles is centered at around 2-3 nm, whereas the second mode is centered at about 20-30 nm. The increase of the turbine load and the addition of 50% of biodiesel has not caused changes in the shape of size distribution of the particles. A slightly decrease of the amount of particle formed has been found. By using kerosene the amount of emitted particles increases of more than one order of magnitude. Also the shape of the size distribution function changes with the first mode shifted towards larger particles of the order of 8-10 nm but with a lower emission of larger 20-30 nm particles. Overall, in this conditions, the mass concentration of particles is increased respect to the diesel oil operation. Particle sizes measured with the diesel oil have been compared with the results on a diesel engine operated in the same power conditions and with the same fuel. Measurements have showed that the mean sizes of the formed particles do not change in the two combustion systems. However, diesel engine emits a number concentration of particles more than two orders of magnitude higher in the same conditions of power and with the same fuel. By running the engine in more premixed-like conditions, the size distribution function of the particles approaches that measured by burning kerosene in the microturbine indicating that the distribution function of the sizes of the emitted particles can be strongly affected by combustion conditions. (author)« less

  19. Effect of Biophysical Properties of Phosphatidylserine Particle on Immune Tolerance Induction Toward Factor VIII in a Hemophilia A Mouse Model.

    PubMed

    Ramakrishnan, Radha; Balu-Iyer, Sathy V

    2016-10-01

    A major complication in the replacement therapy of Factor VIII (FVIII) for Hemophilia A is the development of unwanted immune responses. Previous studies from our laboratory have shown that pretreatment of FVIII in the presence of phosphatidylserine (PS) resulted in hyporesponsiveness to subsequent administration of FVIII alone, due to the ability of PS to convert an immunogen to a tolerogen. We investigated the importance of biophysical properties of PS liposomes on its ability to convert an immunogen to a tolerogen. PS particles were prepared differing in size, protein-lipid topology, lamellarity, and % association to FVIII keeping the composition of the particle same. PS particles were prepared in 2 different sizes with differing biophysical properties: smaller particles in the nanometer range (200 nm) and larger size particles in the micron range (2 μm). Hemophilia A animals treated with both the nanometer and micron size PS particles showed a significant reduction in anti-FVIII antibody titers when compared to animals receiving free FVIII alone. Upon rechallenge with free FVIII animals that received FVIII along with the nanometer size particle continued to show reduced antibody responses. Animals receiving the micron size particle showed a slight increase in titers although they remained significantly lower than the free FVIII treated group. Upon culture with bone marrow derived dendritic cells, the nanometer size particle showed a reduction in CD40 expression and an increase in transforming growth factor-β cytokine production, which was not observed with the micron size particle. These results show that biophysical properties of PS play an important role in tolerance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes

    NASA Astrophysics Data System (ADS)

    Presley, Marsha A.; Craddock, Robert A.

    2006-09-01

    A line-heat source apparatus was used to measure thermal conductivities of natural fluvial and eolian particulate sediments under low pressures of a carbon dioxide atmosphere. These measurements were compared to a previous compilation of the dependence of thermal conductivity on particle size to determine a thermal conductivity-derived particle size for each sample. Actual particle-size distributions were determined via physical separation through brass sieves. Comparison of the two analyses indicates that the thermal conductivity reflects the larger particles within the samples. In each sample at least 85-95% of the particles by weight are smaller than or equal to the thermal conductivity-derived particle size. At atmospheric pressures less than about 2-3 torr, samples that contain a large amount of small particles (<=125 μm or 4 Φ) exhibit lower thermal conductivities relative to those for the larger particles within the sample. Nonetheless, 90% of the sample by weight still consists of particles that are smaller than or equal to this lower thermal conductivity-derived particle size. These results allow further refinement in the interpretation of geomorphologic processes acting on the Martian surface. High-energy fluvial environments should produce poorer-sorted and coarser-grained deposits than lower energy eolian environments. Hence these results will provide additional information that may help identify coarser-grained fluvial deposits and may help differentiate whether channel dunes are original fluvial sediments that are at most reworked by wind or whether they represent a later overprint of sediment with a separate origin.

  1. Size limits for rounding of volcanic ash particles heated by lightning

    PubMed Central

    Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-01-01

    Abstract Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high‐temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1‐D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension‐driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first‐order estimate of lightning conditions in volcanic plumes. PMID:28781929

  2. Size limits for rounding of volcanic ash particles heated by lightning.

    PubMed

    Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  3. Size limits for rounding of volcanic ash particles heated by lightning

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  4. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    PubMed

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  5. Novel Electro-Analytical Tools for Phase-Transformation Electrode Materials

    DTIC Science & Technology

    2009-08-13

    words) We measured and compared phase transformation accommodation energy (AE) for Li4Ti5O12 and LiFePO4 with different particle size by using...larger than next cycles due to inducing of defects; Because of smaller volume difference, AE of Li4Ti5O12 was lower than that of LiFePO4 ; AE of... LiFePO4 with small particle size was lower than that of LiFePO4 with large particle size. By plugging the AE measured by GITT into mixed control

  6. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods

    NASA Astrophysics Data System (ADS)

    Böhme, Steffi; Stärk, Hans-Joachim; Meißner, Tobias; Springer, Armin; Reemtsma, Thorsten; Kühnel, Dana; Busch, Wibke

    2014-09-01

    In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size ( x BET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 ( x BET = 111 nm) and Alu3 ( x BET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2-8 µg Al2O3/cm2 cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.

  7. Gas/particle partitioning, particle-size distribution of atmospheric polybrominated diphenyl ethers in southeast Shanghai rural area and size-resolved predicting model.

    PubMed

    Su, Peng-Hao; Tomy, Gregg T; Hou, Chun-Yan; Yin, Fang; Feng, Dao-Lun; Ding, Yong-Sheng; Li, Yi-Fan

    2018-04-01

    A size-segregated gas/particle partitioning coefficient K Pi was proposed and evaluated in the predicting models on the basis of atmospheric polybrominated diphenyl ether (PBDE) field data comparing with the bulk coefficient K P . Results revealed that the characteristics of atmospheric PBDEs in southeast Shanghai rural area were generally consistent with previous investigations, suggesting that this investigation was representative to the present pollution status of atmospheric PBDEs. K Pi was generally greater than bulk K P , indicating an overestimate of TSP (the mass concentration of total suspended particles) in the expression of bulk K P . In predicting models, K Pi led to a significant shift in regression lines as compared to K P , thus it should be more cautious to investigate sorption mechanisms using the regression lines. The differences between the performances of K Pi and K P were helpful to explain some phenomenon in predicting investigations, such as P L 0 and K OA models overestimate the particle fractions of PBDEs and the models work better at high temperature than at low temperature. Our findings are important because they enabled an insight into the influence of particle size on predicting models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Advances in sublimation studies for particles of explosives

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Nguyen, Viet; Fischer, Thomas; Abrishami, Tara; Papantonakis, Michael; Kendziora, Chris; Mott, David R.; McGill, R. Andrew

    2015-05-01

    When handling explosives, or related surfaces, the hands routinely become contaminated with particles of explosives and related materials. Subsequent contact with a solid surface results in particle crushing and deposition. These particles provide an evidentiary trail which is useful for security applications. As such, the opto-physico-chemical characteristics of these particles are critical to trace explosives detection applications in DOD or DHS arenas. As the persistence of these particles is vital to their forensic exploitation, it is important to understand which factors influence their persistence. The longevity or stability of explosives particles on a substrate is a function of several environmental parameters or particle properties including: Vapor pressure, particle geometry, airflow, particle field size, substrate topography, humidity, reactivity, adlayers, admixtures, particle areal density, and temperature. In this work we deposited particles of 2,4-dinitrotoluene on standard microscopy glass slides by particle sieving and studied their sublimation as a function of airflow velocity, areal particle density and particle field size. Analysis of 2D microscopic images was used to compute and track particle size and geometrical characteristics. The humidity, temperature and substrate type were kept constant for each experiment. A custom airflow cell, using standard microscopy glass slide, allowed in-situ photomicroscopy. Areal particle densities and airflow velocities were selected to provide relevant loadings and flow velocities for a range of potential applications. For a chemical of interest, we define the radial sublimation velocity (RSV) for the equivalent sphere of a particle as the parameter to characterize the sublimation rate. The RSV is a useful parameter because it is independent of particle size. The sublimation rate for an ensemble of particles was found to significantly depend on airflow velocity, the areal density of the particles, and the particle field size. To compare sublimation studies these parameters must be known.

  9. Fracture behavior of silica nanoparticle filled epoxy resin

    NASA Astrophysics Data System (ADS)

    Dittanet, Peerapan

    This dissertation involves the addition of silica nanoparticles to a lightly crosslinked, model epoxy resin and investigates the effect of nanosilica content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress, and fracture toughness. This study aims to understand the influence of silica nanoparticle size, bimodal particle size distribution and silica content on the toughening behavior. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The approach identifies toughening mechanisms and develops a toughening model from unimodal-particle size systems first, then extends these concepts to various mixtures micron- and nanometer-size particles in a similar model epoxy. The experimental results revealed that the addition of nanosilica did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of nanosilica particle size. As expected, the addition of nanosilica had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing nanosilica content, which can be attributed to the much lower CTE of the nanosilica fillers. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of nanosilica and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of nanosilica, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of nanosilica particles, matrix void growth, and matrix shear banding, which are credited for the increases in toughness for nanosilica-filled epoxy systems. Epoxy containing mixtures of two different size distributions of silica particles (42 micrometer and 23 nm-170nm particles) was explored for possible multiplicative toughening effect and to further understand the particle-epoxy interactions and toughening mechanisms of bimodal particle size distribution systems. The fracture toughness was improved by approximately 30% compared to that of the epoxy containing only one particle size of silica particles. The toughness improvement from the interaction of particle debonding from large particles and plastic void growth from small particles was clearly observed. The improvement in toughness occurred when the volume fraction ratio of the large and small particles was more than 50:50 ratios. The increased toughness was found to be additive not multiplicative effect.

  10. Self-associated submicron IgG1 particles for pulmonary delivery: effects of non-ionic surfactants on size, shape, stability, and aerosol performance.

    PubMed

    Srinivasan, Asha R; Shoyele, Sunday A

    2013-03-01

    The ability to produce submicron particles of monoclonal antibodies of different sizes and shapes would enhance their application to pulmonary delivery. Although non-ionic surfactants are widely used as stabilizers in protein formulations, we hypothesized that non-ionic surfactants will affect the shape and size of submicron IgG particles manufactured through precipitation. Submicron particles of IgG1 were produced by a precipitation process which explores the fact that proteins have minimum solubility but maximum precipitation at the isoelectric point. Non-ionic surfactants were used for size and shape control, and as stabilizing agents. Aerosol performance of the antibody nanoparticles was assessed using Andersen Cascade Impactor. Spinhaler® and Handihaler® were used as model DPI devices. SEM micrographs revealed that the shape of the submicron particles was altered by varying the type of surfactant added to the precipitating medium. Particle size as measured by dynamic light scattering was also varied based on the type and concentration of the surfactant. The surfactants were able to stabilize the IgG during the precipitation process. Polyhedral, sponge-like, and spherical nanoparticles demonstrated improved aerosolization properties compared to irregularly shaped (>20 μm) unprocessed particles. Stable antibody submicron particles of different shapes and sizes were prepared. Careful control of the shape of such particles is critical to ensuring optimized lung delivery by dry powder inhalation.

  11. Airborne ultrafine particles in a naturally ventilated metro station: Dominant sources and mixing state determined by particle size distribution and volatility measurements.

    PubMed

    Mendes, Luís; Gini, Maria I; Biskos, George; Colbeck, Ian; Eleftheriadis, Konstantinos

    2018-08-01

    Ultrafine particle number concentrations and size distributions were measured on the platform of a metro station in Athens, Greece, and compared with those recorded at an urban background station. The volatility of the sampled particles was measured in parallel, providing further insights on the mixing state and composition of the sampled particles. Particle concentration exhibited a mean value of 1.2 × 10 4 # cm -3 and showed a weak correlation with train passage frequency, but exhibited a strong correlation with urban background particle concentrations. The size distribution appears to be strongly influenced by outdoor conditions, such as the morning traffic rush hour and new particle formation events observed at noon. The aerosol in the metro was externally mixed throughout the day, with particle populations being identified (1) as fully refractory particles being more dominant during the morning traffic rush hours, (2) as core-shell structure particles having a non-volatile core coated with volatile material, and (3) fully volatile particles. The evolution of particle volatility and size throughout the day provide additional support that most nanoparticles in the metro station originate from outdoor urban air. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Simultaneous Comparison of Two Roller Compaction Techniques and Two Particle Size Analysis Methods.

    PubMed

    Saarinen, Tuomas; Antikainen, Osmo; Yliruusi, Jouko

    2017-11-01

    A new dry granulation technique, gas-assisted roller compaction (GARC), was compared with conventional roller compaction (CRC) by manufacturing 34 granulation batches. The process variables studied were roll pressure, roll speed, and sieve size of the conical mill. The main quality attributes measured were granule size and flow characteristics. Within granulations also the real applicability of two particle size analysis techniques, sieve analysis (SA) and fast imaging technique (Flashsizer, FS), was tested. All granules obtained were acceptable. In general, the particle size of GARC granules was slightly larger than that of CRC granules. In addition, the GARC granules had better flowability. For example, the tablet weight variation of GARC granules was close to 2%, indicating good flowing and packing characteristics. The comparison of the two particle size analysis techniques showed that SA was more accurate in determining wide and bimodal size distributions while FS showed narrower and mono-modal distributions. However, both techniques gave good estimates for mean granule sizes. Overall, SA was a time-consuming but accurate technique that provided reliable information for the entire granule size distribution. By contrast, FS oversimplified the shape of the size distribution, but nevertheless yielded acceptable estimates for mean particle size. In general, FS was two to three orders of magnitude faster than SA.

  13. Morphologically controlled synthesis of ferric oxide nano/micro particles and their catalytic application in dry and wet media: a new approach.

    PubMed

    Janjua, Muhammad Ramzan Saeed Ashraf; Jamil, Saba; Jahan, Nazish; Khan, Shanza Rauf; Mirza, Saima

    2017-05-31

    Morphologically controlled synthesis of ferric oxide nano/micro particles has been carried out by using solvothermal route. Structural characterization displays that the predominant morphologies are porous hollow spheres, microspheres, micro rectangular platelets, octahedral and irregular shaped particles. It is also observed that solvent has significant effect on morphology such as shape and size of the particles. All the morphologies obtained by using different solvents are nearly uniform with narrow size distribution range. The values of full width at half maxima (FWHM) of all the products were calculated to compare their size distribution. The FWHM value varies with size of the particles for example small size particles show polydispersity whereas large size particles have shown monodispersity. The size of particles increases with decrease in polarity of the solvent whereas their shape changes from spherical to rectangular/irregular with decrease in polarity of the solvent. The catalytic activities of all the products were investigated for both dry and wet processes such as thermal decomposition of ammonium per chlorate (AP) and reduction of 4-nitrophenol in aqueous media. The results indicate that each product has a tendency to act as a catalyst. The porous hollow spheres decrease the thermal decomposition temperature of AP by 140 °C and octahedral Fe 3 O 4 particles decrease the decomposition temperature by 30 °C. The value of apparent rate constant (k app ) of reduction of 4-NP has also been calculated.

  14. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from mechanical abrasion of automotive brake pads. The peak of the mass-based particle size distribution of brake abrasion dust was found in a diameter of 2-3 μm. From the morphological viewpoints, shape of brake abrasion dust particle was typically edge- shaped, and high concentrated Sb and sulfur were simultaneously detected in a brake abrasion dust particle because Sb2S3 is used as a solid lubricant for automotive brake pad. Indeed, at the roadside site, total concentration of airborne Sb was twice as much as that observed at residential site. Moreover, the most concentrated Sb was found in a diameter of 2.1-3.6 μm for the roadside APM. Furthermore, in the collected particles with this size range, we found a number of particles of which morphological profiles were similar to those of the brake abrasion dust. Consequently, an automotive brake abrasion dust is expected as the predominant source of airborne Sb in the roadside atmosphere.

  15. DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering.

    PubMed

    Haddad, Yazan; Dostalova, Simona; Kudr, Jiri; Zitka, Ondrej; Heger, Zbynek; Adam, Vojtech

    2017-11-09

    Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.

  16. Parameterization of Photon Tunneling with Application to Ice Cloud Optical Properties at Terrestrial Wavelengths

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2006-12-01

    Sometimes deep physical insights can be gained through the comparison of two theories of light scattering. Comparing van de Hulst's anomalous diffraction approximation (ADA) with Mie theory yielded insights on the behavior of the photon tunneling process that resulted in the modified anomalous diffraction approximation (MADA). (Tunneling is the process by which radiation just beyond a particle's physical cross-section may undergo large angle diffraction or absorption, contributing up to 40% of the absorption when wavelength and particle size are comparable.) Although this provided a means of parameterizing the tunneling process in terms of the real index of refraction and size parameter, it did not predict the efficiency of the tunneling process, where an efficiency of 100% is predicted for spheres by Mie theory. This tunneling efficiency, Tf, depends on particle shape and ranges from 0 to 1.0, with 1.0 corresponding to spheres. Similarly, by comparing absorption efficiencies predicted by the Finite Difference Time Domain Method (FDTD) with efficiencies predicted by MADA, Tf was determined for nine different ice particle shapes, including aggregates. This comparison confirmed that Tf is a strong function of ice crystal shape, including the aspect ratio when applicable. Tf was lowest (< 0.36) for aggregates and plates, and largest (> 0.9) for quasi- spherical shapes. A parameterization of Tf was developed in terms of (1) ice particle shape and (2) mean particle size regarding the large mode (D > 70 mm) of the ice particle size distribution. For the small mode, Tf is only a function of ice particle shape. When this Tf parameterization is used in MADA, absorption and extinction efficiency differences between MADA and FDTD are within 14% over the terrestrial wavelength range 3-100 mm for all size distributions and most crystal shapes likely to be found in cirrus clouds. Using hyperspectral radiances, it is demonstrated that Tf can be retrieved from ice clouds. Since Tf is a function of ice particle shape, this may provide a means of retrieving qualitative information on ice particle shape.

  17. Particle size distribution in effluent of trickling filters and in humus tanks.

    PubMed

    Schubert, W; Günthert, F W

    2001-11-01

    Particles and aggregates from trickling filters must be eliminated from wastewater. Usually this happens through sedimentation in humus tanks. Investigations to characterize these solids by way of particle size measurements, image analysis and particle charge measurements (zeta potential) are made within the scope of Research Center for Science and Technology "Fundamentals of Aerobic biological wastewater treatment" (SFB 411). The particle size measuring results given within this report were obtained at the Ingolstadt wastewater treatment plant, Germany, which served as an example. They have been confirmed by similar results from other facilities. Particles flushed out from trickling filters will be partially destroyed on their way to the humus tank. A large amount of small particles is to be found there. On average 90% of the particles are smaller than 30 microm. Particle size plays a decisive role in the sedimentation behaviour of solids. Small particles need sedimentation times that cannot be provided in settling tanks. As a result they cause turbidity in the final effluent. Therefore quality of sewage discharge suffers, and there are hardly advantages of the fixed film reactor treatment compared to the activated sludge process regarding sedimentation behaviour.

  18. Effects of Porous Polystyrene Resin Parameters on Candida antarctica Lipase B Adsorption, Distribution, and Polyester Synthesis Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,B.; Miller, M.; Gross, R.

    2007-01-01

    Polystyrene resins with varied particle sizes (35 to 350-600 {mu}m) and pore diameters (300-1000 {angstrom}) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time {<=}4 min) for particle sizes 120 {mu}m (pore size = 300 {angstrom}). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ({approx}8%). From the IR images, the fractions of total surface area available to the enzyme aremore » 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 {mu}m (pore size 300 {angstrom}), and 35 {mu}m (pore size 1000 {angstrom}), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was {approx}60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At {approx}8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 {angstrom}, the turnover frequency (TOF) of {var_epsilon}-caprolactone ({var_epsilon}-CL) to polyester increased from 12.4 to 28.2 s{sup -1}. However, the {var_epsilon}-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.« less

  19. Is the main goal of mastication achieved after orthodontic treatment? A prospective longitudinal study

    PubMed Central

    Gameiro, Gustavo Hauber; Magalhães, Isabela Brandão; Szymanski, Mariana Marcon; Andrade, Annicele Silva

    2017-01-01

    ABSTRACT Objective: To investigate the masticatory and swallowing performances in patients with malocclusions before and after orthodontic treatment, comparing them to an age- and gender-matched control group with normal occlusion. Methods: Twenty-three patients with malocclusions requiring orthodontic treatment were included in this prospective study. One month after appliance removal, seventeen patients completed a follow-up examination and the data were compared with those of a control group with thirty subjects with normal occlusion. Masticatory performance was determined by the median particle size for the Optocal Plus® test food after 15 chewing strokes, and three variables related to swallowing were assessed: a) time and b) number of strokes needed to prepare the test-food for swallowing, and c) median particle size of the crushed particles at the moment of swallowing. Results: At the baseline examination, the malocclusion group had a significantly lower masticatory performance and did not reach the particle size reduction at the moment of swallowing, when compared with the control group. After treatment, the masticatory performance significantly improved in the malocclusion group and the particle size reduction at swallowing reached the same level as in the control group. Conclusions: The present results showed that the correction of malocclusions with fixed appliances can objectively provide positive effects in both mastication and deglutition processes, reinforcing that besides aesthetic reasons, there are also functional indications for orthodontic treatment. PMID:28746490

  20. Performance of N95 FFRs Against Combustion and NaCl Aerosols in Dry and Moderately Humid Air: Manikin-based Study.

    PubMed

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Zhuang, Ziqing; Rengasamy, Samy; Grinshpun, Sergey A

    2016-07-01

    The first objective of this study was to evaluate the penetration of particles generated from combustion of plastic through National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) using a manikin-based protocol and compare the data to the penetration of NaCl particles. The second objective was to investigate the effect of relative humidity (RH) on the filtration performance of N95 FFRs. Two NIOSH-certified N95 FFRs (A and B) were fully sealed on a manikin headform and challenged with particles generated by combustion of plastic and NaCl particles. The tests were performed using two cyclic flows [with mean inspiratory flow (MIF) rates = 30 and 85 l min(-1), representing human breathing under low and moderate workload conditions] and two RH levels (≈20 and ≈80%, representing dry and moderately humid air). The total and size-specific particle concentrations inside (C in) and outside (C out) of the respirators were measured with a condensation particle counter and an aerosol size spectrometer. The penetration values (C in/C out) were calculated after each test. The challenge aerosol, RH, MIF rate, and respirator type had significant (P < 0.05) effects on the performance of the manikin-sealed FFR. Its efficiency significantly decreased when the FFR was tested with plastic combustion particles compared to NaCl aerosols. For example, at RH ≈80% and MIF = 85 l min(-1), as much as 7.03 and 8.61% of combustion particles penetrated N95 respirators A and B, respectively. The plastic combustion particles and gaseous compounds generated by combustion likely degraded the electric charges on fibers, which increased the particle penetration. Increasing breathing flow rate or humidity increased the penetration (reduced the respirator efficiency) for all tested aerosols. The effect of particle size on the penetration varied depending on the challenge aerosol and respirator type. It was observed that the peak of the size distribution of combustion particles almost coincided with their most penetrating particle size, which was not the case for NaCl particles. This finding was utilized for the data interpretation. N95 FFRs have lower filter efficiency when challenged with contaminant particles generated by combustion, particularly when used under high humidity conditions compared to NaCl particles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  1. Particle size analysis of amalgam powder and handpiece generated specimens.

    PubMed

    Drummond, J L; Hathorn, R M; Cailas, M D; Karuhn, R

    2001-07-01

    The increasing interest in the elimination of amalgam particles from the dental waste (DW) stream, requires efficient devices to remove these particles. The major objective of this project was to perform a comparative evaluation of five basic methods of particle size analysis in terms of the instrument's ability to quantify the size distribution of the various components within the DW stream. The analytical techniques chosen were image analysis via scanning electron microscopy, standard wire mesh sieves, X-ray sedigraphy, laser diffraction, and electrozone analysis. The DW particle stream components were represented by amalgam powders and handpiece/diamond bur generated specimens of enamel; dentin, whole tooth, and condensed amalgam. Each analytical method quantified the examined DW particle stream components. However, X-ray sedigraphy, electrozone, and laser diffraction particle analyses provided similar results for determining particle distributions of DW samples. These three methods were able to more clearly quantify the properties of the examined powder and condensed amalgam samples. Furthermore, these methods indicated that a significant fraction of the DW stream contains particles less than 20 microm. The findings of this study indicated that the electrozone method is likely to be the most effective technique for quantifying the particle size distribution in the DW particle stream. This method required a relative small volume of sample, was not affected by density, shape factors or optical properties, and measured a sufficient number of particles to provide a reliable representation of the particle size distribution curve.

  2. Nanoparticles and metrology: a comparison of methods for the determination of particle size distributions

    NASA Astrophysics Data System (ADS)

    Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Roy, Maitreyee; Herrmann, Jan

    2011-10-01

    Nanoparticles and products incorporating nanoparticles are a growing branch of nanotechnology industry. They have found a broad market, including the cosmetic, health care and energy sectors. Accurate and representative determination of particle size distributions in such products is critical at all stages of the product lifecycle, extending from quality control at point of manufacture to environmental fate at the point of disposal. Determination of particle size distributions is non-trivial, and is complicated by the fact that different techniques measure different quantities, leading to differences in the measured size distributions. In this study we use both mono- and multi-modal dispersions of nanoparticle reference materials to compare and contrast traditional and novel methods for particle size distribution determination. The methods investigated include ensemble techniques such as dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS), as well as single particle techniques such as transmission electron microscopy (TEM) and microchannel resonator (ultra high-resolution mass sensor).

  3. Sediment concentrations, loads, and particle-size distributions in the Red River of the North and selected tributaries near Fargo, North Dakota, during the 2011 spring high-flow event

    USGS Publications Warehouse

    Galloway, Joel M.; Blanchard, Robert A.; Ellison, Christopher A.

    2011-01-01

    Most of the bedload samples had particle sizes in the 0.5 to 1 millimeter and 0.25 to 0.5 millimeter ranges from the Maple River, Wild Rice River, Rush River, Buffalo River, and Red River sites. The Rush and Lower Branch Rush Rivers also had a greater portion of larger particle sizes in the 1 to 2 millimeter range. The Sheyenne River sites had a greater portion of smaller particle sizes in the bedload in the 0.125 to 0.5 millimeter range compared to the other sites. The bed material in samples collected during the 2011 spring high-flow event demonstrated a wider distribution of particle sizes than were observed in the bedload; the coarsest material was found at the Red River near Christine and the Lower Branch Rush River and the finest material at the Sheyenne River sites.

  4. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    NASA Astrophysics Data System (ADS)

    Uudeküll, Peep; Kozlova, Jekaterina; Mändar, Hugo; Link, Joosep; Sihtmäe, Mariliis; Käosaar, Sandra; Blinova, Irina; Kasemets, Kaja; Kahru, Anne; Stern, Raivo; Tätte, Tanel; Kukli, Kaupo; Tamm, Aile

    2017-05-01

    Spherical nickel particles with size in the range of 100-400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  5. Charge-based separation of particles and cells with similar sizes via the wall-induced electrical lift.

    PubMed

    Thomas, Cory; Lu, Xinyu; Todd, Andrew; Raval, Yash; Tzeng, Tzuen-Rong; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2017-01-01

    The separation of particles and cells in a uniform mixture has been extensively studied as a necessity in many chemical and biomedical engineering and research fields. This work demonstrates a continuous charge-based separation of fluorescent and plain spherical polystyrene particles with comparable sizes in a ψ-shaped microchannel via the wall-induced electrical lift. The effects of both the direct current electric field in the main-branch and the electric field ratio in between the inlet branches for sheath fluid and particle mixture are investigated on this electrokinetic particle separation. A Lagrangian tracking method based theoretical model is also developed to understand the particle transport in the microchannel and simulate the parametric effects on particle separation. Moreover, the demonstrated charge-based separation is applied to a mixture of yeast cells and polystyrene particles with similar sizes. Good separation efficiency and purity are achieved for both the cells and the particles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Laser-induced incandescence of titania nanoparticles synthesized in a flame

    NASA Astrophysics Data System (ADS)

    Cignoli, F.; Bellomunno, C.; Maffi, S.; Zizak, G.

    2009-09-01

    Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected . The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.

  7. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  8. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE PAGES

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...

    2017-10-03

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  9. Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass.

    PubMed

    Boss, Emmanuel; Slade, Wayne; Hill, Paul

    2009-05-25

    Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m(2)/gr despite large variability in size distribution and composition across varied aquatic environments.

  10. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    NASA Astrophysics Data System (ADS)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  11. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.

    The platinum 'particle size effect' on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2-10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range -2-10more » nm (0.8-1.8 mA/cm2Pt at 0.9 V vs. RHE) and plateaued over -10 nm to 2.7 mA/cm2Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.« less

  12. Assessment of air sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry farms.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Goyal, Sagar; Olson, Bernard A; Alba, Anna; Davies, Peter R; Torremorell, Montserrat

    2017-05-01

    Swine and poultry viruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and highly pathogenic avian influenza virus (HPAIV), are economically important pathogens that can spread via aerosols. The reliability of methods for quantifying particle-associated viruses as well as the size distribution of aerosolized particles bearing these viruses under field conditions are not well documented. We compared the performance of 2 size-differentiating air samplers in disease outbreaks that occurred in swine and poultry facilities. Both air samplers allowed quantification of particles by size, and measured concentrations of PRRSV, PEDV, and HPAIV stratified by particle size both within and outside swine and poultry facilities. All 3 viruses were detectable in association with aerosolized particles. Proportions of positive sampling events were 69% for PEDV, 61% for HPAIV, and 8% for PRRSV. The highest virus concentrations were found with PEDV, followed by HPAIV and PRRSV. Both air collectors performed equally for the detection of total virus concentration. For all 3 viruses, higher numbers of RNA copies were associated with larger particles; however, a bimodal distribution of particles was observed in the case of PEDV and HPAIV.

  13. Oil sorption by lignocellulosic fibers

    Treesearch

    Beom-Goo Lee; James S. Han; Roger M. Rowell

    1999-01-01

    The oil sorption capacities of cotton fiber, kenaf bast fiber, kenaf core fiber, and moss fiber were compared after refining, extraction, and reduction in particle sizes. The tests were conducted on diesel oil in a pure form. Cotton fiber showed the highest capacity, followed by kenaf core and bast fibers. Wetting, extraction, and reduction in particle size all...

  14. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii.

    PubMed

    Aghcheh, Razieh Karimi; Bonakdarpour, Babak; Ashtiani, Farzin Zokaee

    2016-11-01

    In the present study, the effect of the type of sugar cane bagasse (non-depithed or depithed) and its particle size on the production of xylose and its subsequent fermentation to xylitol by Debaryomyces hansenii CBS767 was investigated using a full factorial experimental design. It was found that the particle size range and whether bagasse was depithed or not had a significant effect on the concentration and yield of xylose in the resulting hemicellulose hydrolysate. Depithed bagasse resulted in higher xylose concentrations compared to non-depithed bagasse. The corresponding detoxified hemicellulose hydrolysates were used as fermentation media for the production of xylitol. The hemicellulose hydrolysate prepared from depithed bagasse also yielded meaningfully higher xylitol fermentation rates compared to non-depithed bagasse. However, in the case of non-depithed bagasse, the hemicellulose hydrolysate prepared from larger particle size range resulted in higher xylitol fermentation rates, whereas the effect in the case of non-depithed bagasse was not pronounced. Therefore, depithing of bagasse is an advantageous pretreatment when it is to be employed in bioconversion processes.

  15. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants

    PubMed Central

    Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2015-01-01

    Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5°C or 25°C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40°C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion. PMID:26090563

  16. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.

    PubMed

    Karlsen, Jonas T; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  17. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a , but it assumes the particle to be small in comparison to the acoustic wavelength λ . This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  18. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul

    2016-09-01

    This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.

  19. Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai.

    PubMed

    Guo, Mengjie; Lyu, Yan; Xu, Tingting; Yao, Bo; Song, Weihua; Li, Mei; Yang, Xin; Cheng, Tiantao; Li, Xiang

    2018-03-01

    This study presents the particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids (PFAAs) during the haze period. Size-segregated haze aerosols were collected from an urban location in Shanghai using an eight-stage air sampler. The samples were analyzed for eight PFAAs using ultra-high-performance liquid chromatography tandem triple quadrupole mass spectrometry. The quantification results showed that the concentrations of particle-bound Σ 8PFAAs ranged from 0.26 to 1.90 ng m -3 (mean: 1.44 ng m -3 ). All of the measured PFAAs particle size distributions had a bimodal mode that peaked respectively in accumulation size range (0.4 < Dp < 2.1 μm) and coarse size ranges (Dp > 2.1 μm), but the width of each distribution somewhat varied by compound. The emission source, molecular weight, and volatility of the PFAAs were important factors influencing the size distribution of particle-bound PFAAs. Of these compounds, PFUnDA presented a strong accumulation in the fine size range (average 75% associated with particles <2.1 μm), followed by PFOA (69%) and PFDA (64%). The human risk assessment of PFOS via inhalation was addressed and followed the same pattern as the size distribution, with a 2-fold higher risk for the fine particle fraction compared to the coarse particle fraction at urban sites. Approximately 30.3-82.0% of PFAA deposition (∑PFAA: 72.5%) in the alveolar region was associated with particles <2.1 μm, although the contribution of fine particles to the total PFAAs concentration in urban air was only 28-57% (∑8PFAAs: 48%). These results suggested that fine particles are significant contributors to the deposition of PFAAs in the alveolar region of the lung. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Characterizing the size distribution of particles in urban stormwater by use of fixed-point sample-collection methods

    USGS Publications Warehouse

    Selbig, William R.; Bannerman, Roger T.

    2011-01-01

    The U.S Geological Survey, in cooperation with the Wisconsin Department of Natural Resources (WDNR) and in collaboration with the Root River Municipal Stormwater Permit Group monitored eight urban source areas representing six types of source areas in or near Madison, Wis. in an effort to improve characterization of particle-size distributions in urban stormwater by use of fixed-point sample collection methods. The types of source areas were parking lot, feeder street, collector street, arterial street, rooftop, and mixed use. This information can then be used by environmental managers and engineers when selecting the most appropriate control devices for the removal of solids from urban stormwater. Mixed-use and parking-lot study areas had the lowest median particle sizes (42 and 54 (u or mu)m, respectively), followed by the collector street study area (70 (u or mu)m). Both arterial street and institutional roof study areas had similar median particle sizes of approximately 95 (u or mu)m. Finally, the feeder street study area showed the largest median particle size of nearly 200 (u or mu)m. Median particle sizes measured as part of this study were somewhat comparable to those reported in previous studies from similar source areas. The majority of particle mass in four out of six source areas was silt and clay particles that are less than 32 (u or mu)m in size. Distributions of particles ranging from 500 (u or mu)m were highly variable both within and between source areas. Results of this study suggest substantial variability in data can inhibit the development of a single particle-size distribution that is representative of stormwater runoff generated from a single source area or land use. Continued development of improved sample collection methods, such as the depth-integrated sample arm, may reduce variability in particle-size distributions by mitigating the effect of sediment bias inherent with a fixed-point sampler.

  1. Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation.

    PubMed

    Nicoud, Lucrèce; Lattuada, Marco; Lazzari, Stefano; Morbidelli, Massimo

    2015-10-07

    Gaining fundamental knowledge about diffusion in crowded environments is of great relevance in a variety of research fields, including reaction engineering, biology, pharmacy and colloid science. In this work, we determine the effective viscosity experienced by a spherical tracer particle immersed in a concentrated colloidal dispersion by means of Brownian dynamics simulations. We characterize how the effective viscosity increases from the solvent viscosity for small tracer particles to the macroscopic viscosity of the dispersion when large tracer particles are employed. Our results show that the crossover between these two regimes occurs at a tracer particle size comparable to the host particle size. In addition, it is found that data points obtained in various host dispersions collapse on one master curve when the normalized effective viscosity is plotted as a function of the ratio between the tracer particle size and the mean host particle size. In particular, this master curve was obtained by varying the volume fraction, the average size and the polydispersity of the host particle distribution. Finally, we extend these results to determine the size dependent effective viscosity experienced by a fractal cluster in a concentrated colloidal system undergoing aggregation. We include this scaling of the effective viscosity in classical aggregation kernels, and we quantify its impact on the kinetics of aggregate growth as well as on the shape of the aggregate distribution by means of population balance equation calculations.

  2. FDTD approach to optical forces of tightly focused vector beams on metal particles.

    PubMed

    Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian

    2009-05-11

    We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

  3. Particle agglomerated 3-d nanostructures for photon absorption

    NASA Astrophysics Data System (ADS)

    Sivayoganathan, Mugunthan

    The main objective of this thesis is to investigate the photon absorption properties of particle agglomerated 3-D structures that are synthesized through femtosecond laser ablation of solids. The size and morphology of these particle agglomerated 3-D structures, which can be tailored through adjusting laser parameters, determine the photon absorption property. A systematic theoretical and experimental study was performed to identify the effect of lasers on the size of the formed particles. The literature survey showed that the amount of supersaturation influences the growth rate as well as the nucleation rate of vapour condensed nanoparticles. Based on this theory, a mechanism was formed to explain the control of laser parameters over the size of formed particles. Further, a theoretical explanation was proposed from the experimental results for the transition of particle size distribution modals. These proposed mechanisms and explanations show the variation in particle size in the particle agglomerated 3-D nanostructures with laser parameters. The effect of laser parameters on the formed ring size was studied. Based on the previous studies, a mechanism was proposed for the formation of ring nanoclusters. The laser pulse intensity dependent ponderomotive force was the key force to define the formation of ring nanoclusters. Then the effect of laser parameters on ring size was studied. Structures fabricated on several materials such as graphite, aluminosilicate ceramic, zinc ingot, gold, and titanium were analyzed to show the influence of material properties, laser parameters, and the environmental conditions on the size of ring formed. The studies performed on the structures showed a minimum absorption of 0.75 A.U. in the bandwidth from UV to IR. The absorption spectrum is much wider compared to existing nanomaterials, such as silicon nanostructures and titanium dioxide nanostructures. To the best of the author's knowledge, it is a very competitive absorption rate when compared with the previous nanostructures used in photovoltaic conversion. Several features of nanostructures contribute to the enhancement of this light absorption. The special feature of the structure is that ease to fabricate and modify the properties by varying the laser parameters could make it competitive among other nanostructures available for solar cells.

  4. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Preparation of Porous Stainless Steel Hollow-Fibers through Multi-Modal Particle Size Sintering towards Pore Engineering

    PubMed Central

    Allioux, Francois-Marie; Etxeberria Benavides, Miren

    2017-01-01

    The sintering of metal powders is an efficient and versatile technique to fabricate porous metal elements such as filters, diffusers, and membranes. Neck formation between particles is, however, critical to tune the porosity and optimize mass transfer in order to minimize the densification process. In this work, macro-porous stainless steel (SS) hollow-fibers (HFs) were fabricated by the extrusion and sintering of a dope comprised, for the first time, of a bimodal mixture of SS powders. The SS particles of different sizes and shapes were mixed to increase the neck formation between the particles and control the densification process of the structure during sintering. The sintered HFs from particles of two different sizes were shown to be more mechanically stable at lower sintering temperature due to the increased neck area of the small particles sintered to the large ones. In addition, the sintered HFs made from particles of 10 and 44 μm showed a smaller average pore size (<1 μm) as compared to the micron-size pores of sintered HFs made from particles of 10 μm only and those of 10 and 20 μm. The novel HFs could be used in a range of applications, from filtration modules to electrochemical membrane reactors. PMID:28777352

  6. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canadian Space Agency (CSA), and Environment and Climate Change Canada (ECCC). In addition, the Alert GAW Observatory is supported by ECCC.

  7. Production, characterisation, and in vitro nebulisation performance of budesonide-loaded PLA nanoparticles.

    PubMed

    Amini, Mohammad Ali; Faramarzi, Mohammad Ali; Gilani, Kambiz; Moazeni, Esmaeil; Esmaeilzadeh-Gharehdaghi, Elina; Amani, Amir

    2014-01-01

    The aim of this study is to prepare a nanosuspension of budesonide for respiratory delivery using nebuliser by optimising its particle size and characterising its in vitro deposition behaviour. PLA (poly lactic acid)-budesonide nanosuspension (BNS) was prepared using high-pressure emulsification/solvent evaporation method. To optimise particle size, different parameters such as PLA concentration, sonication time, and amplitude were investigated. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscope (SEM) analyses were performed to characterise the prepared PLA-budesonide nanoparticles. The in vitro aerodynamic characteristics of the PLA-BNS using a jet nebuliser were estimated and compared with that of commercially available suspension formulation of budesonide. Budesonide-loaded PLA nanoparticles with fine particle size (an average size of 224-360 nm), narrow size distribution, and spherical and smooth surface were prepared. The optimum condition for preparation of fine particle size for aerosolisation was found to be at PLA concentration of 1.2 mg/ml and amplitude of 70 for 75 s sonication time. The in vitro aerosolisation performance of PLA-BNS compared to that of commercial budesonide indicated that it has significantly (p < 0.05) smaller mass median aerodynamic diameter (MMAD) value with an enhancement in fine particle fraction (FPF) value. Improving the in vitro deposition of budesonide, PLA-BNS could be considered as a promising alternative suspension formulation for deep lung delivery of the drug using nebuliser.

  8. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    NASA Astrophysics Data System (ADS)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-10-01

    Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  9. Modified Lipoprotein-Derived Lipid Particles Accumulate in Human Stenotic Aortic Valves

    PubMed Central

    Lehti, Satu; Käkelä, Reijo; Hörkkö, Sohvi; Kummu, Outi; Helske-Suihko, Satu; Kupari, Markku; Werkkala, Kalervo; Kovanen, Petri T.; Öörni, Katariina

    2013-01-01

    In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis. PMID:23762432

  10. Extensive Diminution of Particle Size and Amorphization of a Crystalline Drug Attained by Eminent Technology of Solid Dispersion: A Comparative Study.

    PubMed

    Singh, Gurjeet; Sharma, Shailesh; Gupta, Ghanshyam Das

    2017-07-01

    The present study emphasized on the use of solid dispersion technology to triumph over the drawbacks associated with the highly effective antihypertensive drug telmisartan using different polymers (poloxamer 188 and locust bean gum) and methods (modified solvent evaporation and lyophilization). It is based on the comparison between selected polymers and methods for enhancing solubility through particle size reduction. The results showed different profiles for particle size, solubility, and dissolution of formulated amorphous systems depicting the great influence of polymer/method used. The resulting amorphous solid dispersions were characterized using x-ray diffraction (XRD), differential scanning calorimetry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle size analysis. The optimized solid dispersion (TEL 19) prepared with modified locust bean gum using lyophilization technique showed reduced particle size of 184.5 ± 3.7 nm and utmost solubility of 702 ± 5.47 μg/mL in water, which is quite high as compared to the pure drug (≤1 μg/mL). This study showed that the appropriate selection of carrier may lead to the development of solid dispersion formulation with desired solubility and dissolution profiles. The optimized dispersion was later formulated into fast-dissolving tablets, and further optimization was done to obtain the tablets with desired properties.

  11. Evaluation of char combustion models: measurement and analysis of variability in char particle size and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, Daniel J; Monazam, Esmail R; Casleton, Kent H

    Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle- to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion.more » Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.« less

  12. Synthesis and characterization of grinding aid fly ash blended mortar effect on bond strength of masonry prisms

    NASA Astrophysics Data System (ADS)

    Krishnaraj, L.; Ravichandran, P. T.; Sagadevan, Suresh

    2018-04-01

    The aim of the present work is to study the effect of particle size reduction by applying top-down nanotechnology such as ball mill grinding process with the addition of amine-based grinding aids. The particle size reduction in synthesis process and its characterization were investigated for fly ash particles. The Rosin-Rammler-Bennet (RRB) distribution model using mathematical formulations were studied for fly ash ground particles. The hardened properties of grinding aid fly ash composite mortar were studied using compressive strength test. The optimum grinding time was 120 min identified through the particle size distribution analysis. The mean particle size decreased from 92.09 μm to 10.5 μm in which there is 89% reduction in particle size due to the grinding of fly ash particle with grinding aids. The compressive strength results show that substitutions of Ordinary Portland Cement (OPC) mortar by Amine-based Grinding aid Fly Ash (AGFA) 15% gives 12, 23% and at 30% gives 6, 8% of higher strength compare to the substitutions of raw fly ash. The addition of grinding aids in grinding process gives more advantages to reduce the particle size without changing chemical composition. The AGFA sample shows better performance in compressive strength and bond strength behavior of masonry prism. It may suggest that amine based grinding aids play a vital role and feasible to use in fly ash grinding process.

  13. Comparison of Ice Cloud Particle Sizes Retrieved from Satellite Data Derived from In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al.), there is no comparable study for cirrus ice crystals. This study is an effort to supply such a data set.

  14. Impacts of Venturi Turbulent Mixing on the Size Distributions of Sodium Chloride and Dioctyl-Phthalate Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M-D.

    2000-08-23

    Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it. The results ofmore » the NaCl aerosol experiments show no discernible difference in the geometric mean diameter and geometric standard deviation of particles passing through the ejector. Similar results were found for the DOP particles. The ratio of the total number concentrations before and after the ejector indicates that a dilution ratio of approximately 20 applies equally for DOP and NaCl particles. This indicates the dilution capability of the ejector is not affected by the particle composition. The statistical analysis results of the first and second moments of a distribution indicate that the ejector may not change the major parameters (e.g., the geometric mean diameter and geometric standard deviation) characterizing the size distributions of NaCl and DOP particles. However, when the skewness was examined, it indicates that the ejector modifies the particle size distribution significantly. The ejector could change the skewness of the distribution in an unpredictable and inconsistent manner. Furthermore, when the variability of particle counts in individual size ranges as a result of the ejector is examined, one finds that the variability is greater for DOP particles in the size range of 40-150 nm than for NaCl particles in the size range of 30 to 350 nm. The numbers or particle counts in this size region are high enough that the Poisson counting errors are small (<10%) compared with the tail regions. This result shows that the ejector device could have a higher bin-to-bin counting uncertainty for ''soft'' particles such as DOP than for a solid dry particle like NaCl. The results suggest that it may be difficult to precisely characterize the size distribution of particles ejected from the mini-dilution system if the particle is not solid.« less

  15. Radiometric Short-Term Fourier Transform analysis of photonic Doppler velocimetry recordings and detectivity limit

    NASA Astrophysics Data System (ADS)

    Prudhomme, G.; Berthe, L.; Bénier, J.; Bozier, O.; Mercier, P.

    2017-01-01

    Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: for example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach "PDV Radiometric analysis" resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derive an estimation of the spectrogram noise leading to a detectivity limit, which may be compared to the fraction of the incoming power which has been back-scattered by the particle and then collected by the probe. This fraction increases with their size. At last, some results from laser-shock accelerated particles using two different PDV systems are compared: it shows the improvement of detectivity with respect to the Effective Number of Bits (ENOB) of the digitizer.

  16. Light Emission Intensities of Luminescent Y2O3:Eu and Gd2O3:Eu Particles of Various Sizes

    PubMed Central

    Adam, Jens; Metzger, Wilhelm; Koch, Marcus; Rogin, Peter; Coenen, Toon; Atchison, Jennifer S.; König, Peter

    2017-01-01

    There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature. PMID:28336860

  17. Exploring the variability of aerosol particle composition in the Arctic: a study from the springtime ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2015-10-01

    Single-particle compositional analysis of filter samples collected on-board the FAAM BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size distributions and size-segregated particle compositions. These data were compared to corresponding data from wing-mounted optical particle counters and reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYSPLIT analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  18. Comparison of Ice Cloud Particle Sizes Retrieved From Satellite Data Derived From In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al. 1994), there is no comparable study for cirrus ice crystals. In this paper a near-global survey of cirrus ice crystal sizes is conducted using ISCCP satellite data analysis. The retrieval scheme uses phase functions based upon hexagonal crystals calculated by a ray tracing technique. The results show that global mean values of D(e) are about 60 micro-m. This study also investigates the possible reasons for the significant difference between satellite retrieved effective radii (approx. 60 micro-m) and aircraft measured particle sizes (approx. 200 micro-m) during the FIRE I IFO experiment. They are (1) vertical inhomogeneity of cirrus particle sizes; (2) lower limit of the instrument used in aircraft measurements; (3) different definitions of effective particle sizes; and (4) possible inappropriate phase functions used in satellite retrieval.

  19. Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro.

    PubMed

    Leclerc, L; Rima, W; Boudard, D; Pourchez, J; Forest, V; Bin, V; Mowat, P; Perriat, P; Tillement, O; Grosseau, P; Bernache-Assollant, D; Cottier, M

    2012-08-01

    Micrometric and nanometric particles are increasingly used in different fields and may exhibit variable toxicity levels depending on their physicochemical characteristics. The aim of this study was to determine the impact of the size parameter on cellular uptake and biological activity, working with well-characterized fluorescent particles. We focused our attention on macrophages, the main target cells of the respiratory system responsible for the phagocytosis of the particles. FITC fluorescent silica particles of variable submicronic sizes (850, 500, 250 and 150 nm) but with similar surface coating (COOH) were tailored and physico-chemically characterized. These particles were then incubated with the RAW 264.7 macrophage cell line. After microscopic observations (SEM, TEM, confocal), a quantitative evaluation of the uptake was carried out. Fluorescence detected after a quenching with trypan blue allows us to distinguish and quantify entirely engulfed fluorescent particles from those just adhering to the cell membrane. Finally, these data were compared to the in vitro toxicity assessed in terms of cell damage, inflammation and oxidative stress (evaluated by LDH release, TNF-α and ROS production respectively). Particles were well characterized (fluorescence, size distribution, zeta potential, agglomeration and surface groups) and easily visualized after cellular uptake using confocal and electron microscopy. The number of internalized particles was precisely evaluated. Size was found to be an important parameter regarding particles uptake and in vitro toxicity but this latter strongly depends on the particles doses employed.

  20. Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro.

    PubMed

    Germain, M A; Hatton, A; Williams, S; Matthews, J B; Stone, M H; Fisher, J; Ingham, E

    2003-02-01

    Concern over polyethylene wear particle induced aseptic loosening of metal-on-polyethylene hip prostheses has led to renewed interest in alternative materials such as metal-on-metal and alumina ceramic-on-alumina ceramic for total hip replacement. This study compared the effects of clinically relevant cobalt-chromium and alumina ceramic wear particles on the viability of U937 histiocytes and L929 fibroblasts in vitro. Clinically relevant cobalt-chromium wear particles were generated using a flat pin-on-plate tribometer. The mean size of the clinically relevant metal particles was 29.5+/-6.3 nm (range 5-200 nm). Clinically relevant alumina ceramic particles were generated in the Leeds MkII anatomical hip simulator from a Mittelmieier prosthesis using micro-separation motion. This produced particles with a bimodal size distribution. The majority (98%) of the clinically relevant alumina ceramic wear debris was 5-20 nm in size. The cytotoxicity of the clinically relevant wear particles was compared to commercially available cobalt-chromium (9.87 microm+/-5.67) and alumina ceramic (0.503+/-0.19 microm) particles. The effects of the particles on the cells over a 5 day period at different particle volume (microm(3)) to cell number ratios were tested and viability determined using ATP-Lite(TM). Clinically relevant cobalt-chromium particles 50 and 5 microm(3) per cell reduced the viability of U937 cells by 97% and 42% and reduced the viability of L929 cells by 95% and 73%, respectively. At 50 microm(3) per cell, the clinically relevant ceramic particles reduced U937 cell viability by 18%. None of the other concentrations of the clinically relevant particles were toxic. The commercial cobalt-chromium and alumina particles did not affect the viability of either the U937 histiocytes or the L929 fibroblasts.Thus at equivalent particle volumes the clinically relevant cobalt-chromium particles were more toxic then the alumina ceramic particles. This study has emphasised the fact that the nature, size and volume of particles are important in assessing biological effects of wear debris on cells in vitro.

  1. Size effect on L10 ordering and magnetic properties of chemically synthesized FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Jia, Zhiyong; Kang, Shishou; Shi, Shifan; Nikles, David E.; Harrell, J. W.

    2005-05-01

    There is growing evidence that FePt nanoparticles become increasingly difficult to chemically order as the size approaches a few nanometers. We have studied the chemical ordering of FePt and FePtAu nanoparticle arrays as a function of particle size. Monodisperse Fe49Pt51 and Fe48Pt44Au8 nanoparticles with a size about 6nm were synthesized by the simultaneous decomposition of iron pentacarbonyl and reduction of platinum acetylacetonate and gold (III) acetate in a mixture of phenyl ether and hexadecylamine (HDA), with 1-adamantanecarboxylic acid and HDA as stabilizers. The nanoparticles were dispersed in toluene, films of the particles were cast onto silicon wafers from the dispersion, and the films were annealed in a tube furnace with flowing Ar +5%H2. The magnetic anisotropy and switching volumes were determined from time- and temperature-dependent coercivity measurements. By comparing with 3-nm FePt and FePtAu nanoparticles of comparable composition, the phase transformation is easier for the larger particles. Under the same annealing conditions, the larger particles have higher anisotropy and order parameter. Additive Au is very effective in enhancing the chemical ordering in both small and large particles, with x-ray diffraction superlattice peaks appearing after annealing at 350°C. Dynamic remnant coercivity measurements and magnetic switching volumes suggest particle aggregation at the higher annealing temperatures in both small and large particles.

  2. A New Optical Aerosol Spectrometer

    NASA Technical Reports Server (NTRS)

    Fonda, Mark; Malcolmson, Andrew; Bonin, Mike; Stratton, David; Rogers, C. Fred; Chang, Sherwood (Technical Monitor)

    1998-01-01

    An optical particle spectrometer capable of measuring aerosol particle size distributions from 0.02 to 100 micrometers has been developed. This instrument combines several optical methods in one, in-situ configuration; it can provide continuous data collection to encompass the wide dynamic size ranges and concentrations found in studies of modeled planetary atmospheres as well as terrestrial air quality research. Currently, the system is incorporated into an eight liter capacity spherical pressure vessel that is appropriate both for flowthrough and for in-situ particle generation. The optical sizing methods include polarization ratio, The scattering, and forward scattering detectors, with illumination from a fiber-coupled, Argon-ion laser. As particle sizes increase above 0.1 micrometer, a customized electronics and software system automatically shifts from polarization to diffraction-based measurements as the angular scattering detectors attain acceptable signal-to-noise ratios. The number concentration detection limits are estimated to be in the part-per-trillion (ppT by volume) range, or roughly 1000 submicron particles per cubic centimeter. Results from static experiments using HFC134A (approved light scattering gas standard), flow-through experiments using sodium chloride (NaCl) and carbon particles, and dynamic 'Tholin' (photochemical produced particles from ultraviolet (UV)-irradiated acetylene and nitrogen) experiments have been obtained. The optical spectrometer data obtained with particles have compared well with particle sizes determined by electron microscopy. The 'Tholin' tests provided real-time size and concentration data as the particles grew from about 30 nanometers to about 0.8 micrometers, with concentrations ranging from ppT to ppB, by volume. Tests are still underway, to better define sizing accuracy and concentration limits, these results will be reported.

  3. Comparison of the in vitro and in vivo toxic effects of three sizes of zinc oxide (ZnO) particles using flounder gill (FG) cells and zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Han, Li; Zhai, Yanan; Liu, Yang; Hao, Linhua; Guo, Huarong

    2017-02-01

    Nano-sized zinc oxide (nZnO) particles are one kind of the most commonly used metal oxide nanoparticles (NPs). This study compared the cytotoxic and embryotoxic effects of three increasing sized ZnO particles (ϕ 30 nm, 80-150 nm and 2 μm) in the flounder gill (FG) cells and zebrafish embryos, and analyzed the contribution of size, agglomeration and released Zn2+ to the toxic effects. All the tested ZnO particles were found to be highly toxic to both FG cells and zebrafish embryos. They induced growth inhibition, LDH release, morphological changes and apoptosis in FG cells in a concentration-, size- and time-dependent manner. Moreover, the release of LDH from the exposed FG cells into the medium occurred before the observable morphological changes happened. The ultrasonication treatment and addition of serum favored the dispersion of ZnO particles and alleviated the agglomeration, thus significantly increased the corresponding cytotoxicity. The released Zn2+ ions from ZnO particles into the extracellular medium only partially contributed to the cytotoxicity. All the three sizes of ZnO particles tested induced developmental malformations, decrease of hatching rates and lethality in zebrafish embryos, but size- and concentration- dependent toxic effects were not so obvious as in FG cells possibly due to the easy aggregation of ZnO particles in freshwater. In conclusion, both FG cells and zebrafish embryos are sensitive bioassay systems for safety assessment of ZnO particles and the environmental release of ZnO particles should be closely monitored as far as the safety of aquatic organisms is concerned.

  4. Particle-size-dependent cytokine responses and cell damage induced by silica particles and macrophages-derived mediators in endothelial cell.

    PubMed

    Rong, Yi; Zhou, Ting; Cheng, Wenjuan; Guo, Jiali; Cui, Xiuqing; Liu, Yuewei; Chen, Weihong

    2013-11-01

    Epidemiological evidence reports silica dust exposure has been associated with increased risk of cardiovascular diseases, but the mechanisms are largely unknown. In this study, endothelial cells were exposed to increasing concentrations of two sizes silica particles and the soluble mediators released by macrophages treated with the same particles for 24 h. Expression and release of cytokines (IL-1β, TNF-α and IL-6) were measured by using ELISA. Cytotoxicity was measured by MTT assay and LDH release. We show that both ways induced increases in cell toxicity and cytokines in a dose-dependent manner. For smaller particles, the soluble mediators are more capable of increasing cytokines compared with the effect of particles directly. For larger particles, evaluating results of these two ways are similar. Either way, smaller particles make the increasing action of cell toxicity and cytokines more remarkable. Our results indicate both silica particle and macrophage-derived mediators can induce endothelial cell injury and inflammation and demonstrate the potential importance of the particle sizes in this effect. Copyright © 2013. Published by Elsevier B.V.

  5. Particle size and interfacial effects on heat transfer characteristics of water and {alpha}-SiC nanofluids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeeva, E.; Smith, D. S.; Yu, W.

    2010-01-01

    The effect of average particle sizes on basic macroscopic properties and heat transfer performance of {alpha}-SiC/water nanofluids was investigated. The average particle sizes, calculated from the specific surface area of nanoparticles, were varied from 16 to 90 nm. Nanofluids with larger particles of the same material and volume concentration provide higher thermal conductivity and lower viscosity increases than those with smaller particles because of the smaller solid/liquid interfacial area of larger particles. It was also demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity. Heat transfer coefficients weremore » measured and compared to the performance of base fluids as well as to nanofluids reported in the literature. Criteria for evaluation of the heat transfer performance of nanofluids are discussed and optimum directions in nanofluid development are suggested.« less

  6. Use of solid residue from thermal power plant (fly ash) for enhancing sewage sludge anaerobic digestion: Influence of fly ash particle size.

    PubMed

    Montalvo, S; Cahn, I; Borja, R; Huiliñir, C; Guerrero, L

    2017-11-01

    The influence of fly ash particle size on methane production and anaerobic biodegradability was evaluated. Assays with different fly ash particle sizes (0.8-2.36mm) at a concentration of 50mg/L were ran under mesophilic conditions. In anaerobic processes operating with fly ash, greater removal of both volatile total and suspended solids, chemical oxygen demand (total and soluble) was achieved, with an increase of methane production between 28% and 96% compared to the control reactors. The highest increase occurred at ash particles sizes of 1.0-1.4mm. The metal concentrations in the digestates obtained after anaerobic digestion of sewage sludge are far below those considered as limiting for the use of sludge in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of brewing technique and particle size of the ground coffee on sensory profiling of brewed Dampit robusta coffee

    NASA Astrophysics Data System (ADS)

    Fibrianto, K.; Febryana, Y. R.; Wulandari, E. S.

    2018-03-01

    This study aimed to assess the effect of different brewing techniques with the use of appropriate particle size standard of Apresiocoffee cafe (Category 1) compared to the difference brewing techniques with the use of the same particle size (coarse) (Category 2) of the sensory attributes Dampit robusta coffee. Rate-All-That-Apply (RATA) method was applied in this study, and the data was analysed by ANOVA General Linier Model (GLM) on Minitab-16. The influence of brewing techniques (tubruk, French-press, drips, syphon) and type of particle size ground coffee (fine, medium, coarse) were sensorially observed. The result showed that only two attributes, including bitter taste, and astringent/rough-mouth-feel were affected by brewing techniques (p-value <0.05) as observed for brewed coarse coffee powder.

  8. Comparison of filtration mechanisms of food and industrial grade TiO2 nanoparticles.

    PubMed

    Chen, Chen; Marcus, Ian M; Waller, Travis; Walker, Sharon L

    2018-05-21

    The removal of food and industrial grade titanium dioxide (TiO 2 ) particles through drinking water filtration was assessed via direct visualization of an in situ 2-D micromodel. The goal of this research was to determine whether variances in surface composition, aggregate size, and ionic strength result in different transport and deposition processes in porous media. Food and industrial grade TiO 2 particles were characterized by measuring their hydrodynamic diameter, zeta potential, and zero point of charge before introduction into the 2-D micromodel. The removal efficiency as a function of position on the collector surface was calculated from direct visualization measurements. Notably, food grade TiO 2 had a lower removal efficiency when compared with industrial grade. The difference in removal efficiency between the two particle types could be attributed to the higher stability (as indicated by the larger zeta potential values) of the food grade particles, which lead to a reduced aggregate size when compared to the industrial grade particles. This removal efficiency trend was most pronounced in the rear stagnation point, due to the high contribution of hydrodynamic forces at that point. It could be inferred from the results presented herein that particle removal strategies should be based on particle aggregate size and surface charge. Graphical abstract ᅟ.

  9. Exposure to ultrafine particles in hospitality venues with partial smoking bans.

    PubMed

    Neuberger, Manfred; Moshammer, Hanns; Schietz, Armin

    2013-01-01

    Fine particles in hospitality venues with insufficient smoking bans indicate health risks from passive smoking. In a random sample of Viennese inns (restaurants, cafes, bars, pubs and discotheques) effects of partial smoking bans on indoor air quality were examined by measurement of count, size and chargeable surface of ultrafine particles (UFPs) sized 10-300 nm, simultaneously with mass of particles sized 300-2500 nm (PM2.5). Air samples were taken in 134 rooms unannounced during busy hours and analyzed by a diffusion size classifier and an optical particle counter. Highest number concentrations of particles were found in smoking venues and smoking rooms (median 66,011 pt/cm(3)). Even non-smoking rooms adjacent to smoking rooms were highly contaminated (median 25,973 pt/cm(3)), compared with non-smoking venues (median 7408 pt/cm(3)). The particle number concentration was significantly correlated with the fine particle mass (P<0.001). We conclude that the existing tobacco law in Austria is ineffective to protect customers in non-smoking rooms of hospitality premises. Health protection of non-smoking guests and employees from risky UFP concentration is insufficient, even in rooms labeled "non-smoking". Partial smoking bans with separation of smoking rooms failed.

  10. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.

    2008-11-01

    The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.

  11. Factors controlling particle number concentration and size at metro stations

    NASA Astrophysics Data System (ADS)

    Reche, C.; Moreno, T.; Martins, V.; Minguillón, M. C.; Jones, T.; de Miguel, E.; Capdevila, M.; Centelles, S.; Querol, X.

    2017-05-01

    An extensive air quality campaign was performed at differently designed station platforms in the Barcelona metro system, aiming to investigate the factors governing airborne particle number (N) concentrations and their size distributions. The study of the daily trends of N concentrations by different size ranges shows that concentrations of N0.3-10 are closely related with the schedule of the metro service. Conversely, the hourly variation of N0.007-10 (mainly composed of ultrafine particles) could be partly governed by the entrance of particles from outdoor emissions through mechanical ventilation. Measurements under different ventilation settings at three metro platforms reveal that the effect on air quality linked to changes in the tunnel ventilation depends on the station design. Night-time maintenance works in tunnels are frequent activities in the metro system; and after intense prolonged works, these can result in higher N concentrations at platforms during the following metro operating hours (by up to 30%), this being especially evident for N1-10. Due to the complex mixture of factors controlling N, together with the differences in trends recorded for particles within different size ranges, developing an air quality strategy at metro systems is a great challenge. When compared to street-level urban particles concentrations, the priority in metro air quality should be dealing with particles coarser than 0.3 μm. In fact, the results suggest that at narrow platforms served by single-track tunnels the current forced tunnel ventilation during operating hours is less efficient in reducing coarse particles compared to fine.

  12. Determining suspended sediment particle size information from acoustical and optical backscatter measurements

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Sherwood, Christopher R.; Agrawal, Yogesh C.

    1994-08-01

    During the winter of 1990-1991 an Acoustic BackScatter System (ABSS), five Optical Backscatterance Sensors (OBSs) and a Laser In Situ Settling Tube (LISST) were deployed in 90 m of water off the California coast for 3 months as part of the Sediment Transport Events on Shelves and Slopes (STRESS) experiment. By looking at sediment transport events with both optical (OBS) and acoustic (ABSS) sensors, one obtains information about the size of the particles transported as well as their concentration. Specifically, we employ two different methods of estimating "average particle size". First, we use vertical scattering intensity profile slopes (acoustical and optical) to infer average particle size using a Rouse profile model of the boundary layer and a Stokes law fall velocity assumption. Secondly, we use a combination of optics and acoustics to form a multifrequency (two frequency) inverse for the average particle size. These results are compared to independent observations from the LISST instrument, which measures the particle size spectrum in situ using laser diffraction techniques. Rouse profile based inversions for particle size are found to be in good agreement with the LISST results except during periods of transport event initiation, when the Rouse profile is not expected to be valid. The two frequency inverse, which is boundary layer model independent, worked reasonably during all periods, with average particle sizes correlating well with the LISST estimates. In order to further corroborate the particle size inverses from the acoustical and optical instruments, we also examined size spectra obtained from in situ sediment grab samples and water column samples (suspended sediments), as well as laboratory tank experiments using STRESS sediments. Again, good agreement is noted. The laboratory tank experiment also allowed us to study the acoustical and optical scattering law characteristics of the STRESS sediments. It is seen that, for optics, using the cross sectional area of an equivalent sphere is a very good first approximation whereas for acoustics, which is most sensitive in the region ka ˜ 1, the particle volume itself is best sensed. In concluding, we briefly interpret the history of some STRESS transport events in light of the size distribution and other information available. For one of the events "anomalous" suspended particle size distributions are noted, i.e. larger particles are seen suspended before finer ones. Speculative hypotheses for why this signature is observed are presented.

  13. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  14. Dynamical Modeling of Comet Dust: The STARDUST and ROSETTA Mission Targets

    NASA Astrophysics Data System (ADS)

    Kelley, M. S.; Reach, W. T.

    2003-12-01

    Comets 81P/Wild 2 and 67P/Churyumov-Gerasimenko are the respective targets for the NASA STARDUST and ESA ROSETTA missions. As such, the dust environment of each comet is of particular importance, simultaneously being a key to mission success (e.g. dust collection) and a possible spacecraft hazard (impacts with large particles). We present dynamical modeling of the comae and dust trails of comets 81P/Wild 2 and 67P/Churyumov-Gerasimenko and compare these models to ground-based observations. At the heart of our code is the 15th order integrator described by Everhart (1985, IAU Colloq. 83, 185-202). We integrate the radiation and gravitational forces acting on a dust particle due to the Sun and planets to determine a released particle's position relative to the parent comet at the time of an observation (either by telescope or spacecraft). Comparing zero ejection velocity syndyne curves to observations we obtain a first order estimate of the dust trail particle sizes, which typically range near the millimeter sizes or larger. If we input best guesses for ejection velocities, sizes, and emission histories into a Monte-Carlo integration we can simulate a coma and provide a particle size distribution estimate for various spacecraft impact parameters on large scales.

  15. Middle East Health and Air Quality Utilizing NASA EOS in the Saharan and Arabian Deserts to Examine Dust Particle Size and Mineralogy of Aerosols

    NASA Technical Reports Server (NTRS)

    Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew

    2012-01-01

    Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.

  16. Water-based condensation particle counters comparison near a major freeway with significant heavy-duty diesel traffic

    NASA Astrophysics Data System (ADS)

    Lee, Eon S.; Polidori, Andrea; Koch, Michael; Fine, Philip M.; Mehadi, Ahmed; Hammond, Donald; Wright, Jeffery N.; Miguel, Antonio. H.; Ayala, Alberto; Zhu, Yifang

    2013-04-01

    This study compares the instrumental performance of three TSI water-based condensation particle counter (WCPC) models measuring particle number concentrations in close proximity (15 m) to a major freeway that has a significant level of heavy-duty diesel traffic. The study focuses on examining instrument biases and performance differences by different WCPC models under realistic field operational conditions. Three TSI models (3781, 3783, and 3785) were operated for one month in triplicate (nine units in total) in parallel with two sets of Scanning Mobility Particle Sizer (SMPS) spectrometers for the concurrent measurement of particle size distributions. Inter-model bias under different wind directions were first evaluated using 1-min raw data. Although all three WCPC models agreed well in upwind conditions (lower particle number concentrations, in the range of 103-104 particles cm-3), the three models' responses were significantly different under downwind conditions (higher particle number concentrations, above 104 particles cm-3). In an effort to increase inter-model linear correlations, we evaluated the results of using longer averaging time intervals. An averaging time of at least 15 min was found to achieve R2 values of 0.96 or higher when comparing all three models. Similar results were observed for intra-model comparisons for each of the three models. This strong linear relationship helped identify instrument bias related to particle number concentrations and particle size distributions. The TSI 3783 produced the highest particle counts, followed by TSI 3785, which reported 11% lower during downwind conditions than TSI 3783. TSI 3781 recorded particle number concentrations that were 24% lower than those observed by TSI 3783 during downwind condition. We found that TSI 3781 underestimated particles with a count median diameter less than 45 nm. Although the particle size dependency of instrument performance was found the most significant in TSI 3781, both models 3783 and 3785 showed somewhat size dependency. In addition, within each tested WCPC model, one unit was found to count significantly different and be more sensitive to particle size than the other two. Finally, exponential regression analysis was used to numerically quantify instrumental inter-model bias. Correction equations are proposed to adjust the TSI 3781 and 3785 data to the most recent model TSI 3783.

  17. A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds

    NASA Astrophysics Data System (ADS)

    de Martín, Lilian; van Ommen, J. Ruud

    2013-11-01

    The estimation of nanoparticle agglomerates' size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1-0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.

  18. [Analysis of particle size characteristics of road sediments in Beijing Olympic Park].

    PubMed

    Li, Hai-yan; Shi, An-bang; Qu, Yang-sheng; Yue, Jing-lin

    2014-09-01

    Particle size analysis of road sediment collected in October and November in Beijing Olympic Park indicates that most of the sediments are 76-830 μm; the grain size of the sediments in the area of large population flow is mainly coarse but the grain size in the area of large traffic volume is fine relatively while most of the sediments are <300 p.m. Moreover, sediments of size range <300 μm can be easily accumulated on the road with moderate traffic density. The results demonstrate that the effect of pedestrian flow on the composition of the particles is unobvious and the main influences are the traffic density, extensive construction. With the length of dry period increasing, the content of sediments of size range >300 μm decreases and the content of sediments of size range < 150 μm increases, however, the change of the content of sediments of size range 150-300 μm is not obvious. The results indicate that the effectiveness of the road sediment removal depends on the length of dry period, and the accumulation of different size particles varies differently under the different dry days. Compared with the stone road, surface particles can accumulate on the asphalt road more easily as the accumulation of particles is affected by the road material significantly. Therefore, to reduce the urban surface water pollution, it is necessary to improve the design of park road such as using the stone road, which can decrease the roughness of the road.

  19. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel.

    PubMed

    Miettinen, Mirella; Torvela, Tiina; Leskinen, Jari T T

    2016-10-01

    Exposure to stainless steel (SS) welding aerosol that contain toxic heavy metals, chromium (Cr), manganese (Mn), and nickel (Ni), has been associated with numerous adverse health effects. The gas tungsten arc welding (GTAW) is commonly applied to SS and produces high number concentration of substantially smaller particles compared with the other welding techniques, although the mass emission rate is low. Here, a field study in a workshop with the GTAW as principal welding technique was conducted to determine the physicochemical properties of the airborne particles and to improve the understanding of the hazard the SS welding aerosols pose to welders. Particle number concentration and number size distribution were measured near the breathing zone (50cm from the arc) and in the middle of the workshop with condensation particle counters and electrical mobility particle sizers, respectively. Particle morphology and chemical composition were studied using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the middle of the workshop, the number size distribution was unimodal with the geometric mean diameter (GMD) of 46nm. Near the breathing zone the number size distribution was multimodal, and the GMDs of the modes were in the range of 10-30nm. Two different agglomerate types existed near the breathing zone. The first type consisted of iron oxide primary particles with size up to 40nm and variable amounts of Cr, Mn, and Ni replacing iron in the structure. The second type consisted of very small primary particles and contained increased proportion of Ni compared to the proportion of (Cr + Mn) than the first agglomerate type. The alterations in the distribution of Ni between different welding aerosol particles have not been reported previously. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Equations for hydraulic conductivity estimation from particle size distribution: A dimensional analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Peng; François, Bertrand; Lambert, Pierre

    2017-09-01

    Estimating hydraulic conductivity from particle size distribution (PSD) is an important issue for various engineering problems. Classical models such as Hazen model, Beyer model, and Kozeny-Carman model usually regard the grain diameter at 10% passing (d10) as an effective grain size and the effects of particle size uniformity (in Beyer model) or porosity (in Kozeny-Carman model) are sometimes embedded. This technical note applies the dimensional analysis (Buckingham's ∏ theorem) to analyze the relationship between hydraulic conductivity and particle size distribution (PSD). The porosity is regarded as a dependent variable on the grain size distribution in unconsolidated conditions. It indicates that the coefficient of grain size uniformity and a dimensionless group representing the gravity effect, which is proportional to the mean grain volume, are the main two determinative parameters for estimating hydraulic conductivity. Regression analysis is then carried out on a database comprising 431 samples collected from different depositional environments and new equations are developed for hydraulic conductivity estimation. The new equation, validated in specimens beyond the database, shows an improved prediction comparing to using the classic models.

  1. Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays

    PubMed Central

    2014-01-01

    We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(N-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects. PMID:25137554

  2. The effect of particle size on the dehydration/rehydration behaviour of lactose.

    PubMed

    Crisp, J L; Dann, S E; Edgar, M; Blatchford, C G

    2010-05-31

    Ethanolic suspensions of spray dried and micronized alpha lactose monohydrate (L(alpha)xH(2)O) with average particle size between 3 and 200 microm, have been prepared and their dehydration behaviour was investigated by (13)C CP-MASNMR spectroscopy. Sub-micron lactose suspension prepared by a novel high pressure homogenisation method has been compared with the standard ethanolic suspensions of (L(alpha).H(2)O prepared by reflux or static room temperature methods. In all cases, suspensions were shown to contain the stable anhydrous form of lactose ((L(alpha)(S)). Several approaches were employed to remove ethanol from these suspensions and the resulting dry lactose powders were then analysed by FT-IR, PXRD and SEM to evaluate the effect of drying procedure on type and distribution of lactose polymorphs and particle size. For samples with mean particle size greater than 1 microm, the stable anhydrous polymorphic form of lactose was retained on removal of the ethanol, although differences in the morphology and particle size of the crystals were apparent depending on method of suspension formation. Sub-micron (L(alpha)(S), while stable in dry conditions, has been shown to be less stable to atmospheric water vapour than (L(alpha)(S) with particle size between 3 and 200 microm. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Effect of particle size distribution on permeability in the randomly packed porous media

    NASA Astrophysics Data System (ADS)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  4. Characterization of third-body media particles and their effect on in vitro composite wear

    PubMed Central

    Lawson, Nathaniel C.; Cakir, Deniz; Beck, Preston; Litaker, Mark S.; Burgess, John O.

    2012-01-01

    Objectives The purpose of this study was to compare four medium particles currently used for in vitro composite wear testing (glass and PMMA beads and millet and poppy seeds). Methods Particles were prepared as described in previous wear studies. Hardness of medium particles was measured with a nano-indentor, particle size was measured with a particle size analyzer, and the particle form was determined with light microscopy and image analysis software. Composite wear was measured using each type of medium and water in the Alabama wear testing device. Four dental composites were compared: a hybrid (Z100), flowable microhybrid (Estelite Flow Quick), micromatrix (Esthet-X), and nano-filled (Filtek Supreme Plus). The test ran for 100,000 cycles at 1.2Hz with 70N force by a steel antagonist. Volumetric wear was measured by non-contact profilometry. A two-way analysis of variance (ANOVA) and Tukey's test was used to compare both materials and media. Results Hardness values (GPa) of the particles are (glass, millet, PMMA, poppy respectively): 1.310(0.150), 0.279(.170), 0.279(0.095), and 0.226(0.146). Average particle sizes (μm) are (glass, millet, PMMA, poppy respectively): 88.35(8.24), 8.07(4.05), 28.95(8.74), and 14.08(7.20). Glass and PMMA beads were considerably more round than the seeds. During composite wear testing, glass was the only medium that produced more wear than the use of water alone. The rank ordering of the materials varied with each medium, however, the glass and PMMA bead medium allowed better discrimination between materials. Significance PMMA beads are a practical and relevant choice for composite wear testing because they demonstrate similar physical properties as seeds but reduce the variability of wear measurements. PMID:22578990

  5. Risk of pneumonia in obstructive lung disease: A real-life study comparing extra-fine and fine-particle inhaled corticosteroids.

    PubMed

    Sonnappa, Samatha; Martin, Richard; Israel, Elliot; Postma, Dirkje; van Aalderen, Wim; Burden, Annie; Usmani, Omar S; Price, David B

    2017-01-01

    Regular use of inhaled corticosteroids (ICS) in patients with obstructive lung diseases has been associated with a higher risk of pneumonia, particularly in COPD. The risk of pneumonia has not been previously evaluated in relation to ICS particle size and dose used. Historical cohort, UK database study of 23,013 patients with obstructive lung disease aged 12-80 years prescribed extra-fine or fine-particle ICS. The endpoints assessed during the outcome year were diagnosis of pneumonia, acute exacerbations and acute respiratory events in relation to ICS dose. To determine the association between ICS particle size, dose and risk of pneumonia in unmatched and matched treatment groups, logistic and conditional logistic regression models were used. 14788 patients were stepped-up to fine-particle ICS and 8225 to extra-fine ICS. On unmatched analysis, patients stepping-up to extra-fine ICS were significantly less likely to be coded for pneumonia (adjusted odds ratio [aOR] 0.60; 95% CI 0.37, 0.97]); experience acute exacerbations (adjusted risk ratio [aRR] 0.91; 95%CI 0.85, 0.97); and acute respiratory events (aRR 0.90; 95%CI 0.86, 0.94) compared with patients stepping-up to fine-particle ICS. Patients prescribed daily ICS doses in excess of 700 mcg (fluticasone propionate equivalent) had a significantly higher risk of pneumonia (OR [95%CI] 2.38 [1.17, 4.83]) compared with patients prescribed lower doses, irrespective of particle size. These findings suggest that patients with obstructive lung disease on extra-fine particle ICS have a lower risk of pneumonia than those on fine-particle ICS, with those receiving higher ICS doses being at a greater risk.

  6. Micrometer-scale particle sizing by laser diffraction: critical impact of the imaginary component of refractive index.

    PubMed

    Beekman, Alice; Shan, Daxian; Ali, Alana; Dai, Weiguo; Ward-Smith, Stephen; Goldenberg, Merrill

    2005-04-01

    This study evaluated the effect of the imaginary component of the refractive index on laser diffraction particle size data for pharmaceutical samples. Excipient particles 1-5 microm in diameter (irregular morphology) were measured by laser diffraction. Optical parameters were obtained and verified based on comparison of calculated vs. actual particle volume fraction. Inappropriate imaginary components of the refractive index can lead to inaccurate results, including false peaks in the size distribution. For laser diffraction measurements, obtaining appropriate or "effective" imaginary components of the refractive index was not always straightforward. When the recommended criteria such as the concentration match and the fit of the scattering data gave similar results for very different calculated size distributions, a supplemental technique, microscopy with image analysis, was used to decide between the alternatives. Use of effective optical parameters produced a good match between laser diffraction data and microscopy/image analysis data. The imaginary component of the refractive index can have a major impact on particle size results calculated from laser diffraction data. When performed properly, laser diffraction and microscopy with image analysis can yield comparable results.

  7. Synthesis, characterization, and evaluation of a superficially porous particle with unique, elongated pore channels normal to the surface.

    PubMed

    Wei, Ta-Chen; Mack, Anne; Chen, Wu; Liu, Jia; Dittmann, Monika; Wang, Xiaoli; Barber, William E

    2016-04-01

    In recent years, superficially porous particles (SPPs) have drawn great interest because of their special particle characteristics and improvement in separation efficiency. Superficially porous particles are currently manufactured by adding silica nanoparticles onto solid cores using either a multistep multilayer process or one-step coacervation process. The pore size is mainly controlled by the size of the silica nanoparticles and the tortuous pore channel geometry is determined by how those nanoparticles randomly aggregate. Such tortuous pore structure is also similar to that of all totally porous particles used in HPLC today. In this article, we report on the development of a next generation superficially porous particle with a unique pore structure that includes a thinner shell thickness and ordered pore channels oriented normal to the particle surface. The method of making the new superficially porous particles is a process called pseudomorphic transformation (PMT), which is a form of micelle templating. Porosity is no longer controlled by randomly aggregated nanoparticles but rather by micelles that have an ordered liquid crystal structure. The new particle possesses many advantages such as a narrower particle size distribution, thinner porous layer with high surface area and, most importantly, highly ordered, non-tortuous pore channels oriented normal to the particle surface. This PMT process has been applied to make 1.8-5.1μm SPPs with pore size controlled around 75Å and surface area around 100m(2)/g. All particles with different sizes show the same unique pore structure with tunable pore size and shell thickness. The impact of the novel pore structure on the performance of these particles is characterized by measuring van Deemter curves and constructing kinetic plots. Reduced plate heights as low as 1.0 have been achieved on conventional LC instruments. This indicates higher efficiency of such particles compared to conventional totally porous and superficially porous particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.

    PubMed

    Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall

    2012-06-15

    Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. DLVO THEORY APPLIED TO TIO2 PIGMENTS AND OTHER MATERIALS IN LATEX PAINTS. (R828081E01)

    EPA Science Inventory

    Understanding how a paint formulation translates into comparative numbers of particles, how the spacing between particles compares to their size and what controls their stabilization mechanisms improves efficient formulation design. The application of Derjaguin, Landau, Verwey...

  10. Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes.

    PubMed

    Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi

    2017-07-01

    In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

  11. Application of a novel new multispectral nanoparticle tracking technique

    NASA Astrophysics Data System (ADS)

    McElfresh, Cameron; Harrington, Tyler; Vecchio, Kenneth S.

    2018-06-01

    Fast, reliable, and accurate particle size analysis techniques must meet the demands of evolving industrial and academic research in areas of functionalized nanoparticle synthesis, advanced materials development, and other nanoscale enabled technologies. In this study a new multispectral particle tracking analysis (m-PTA) technique enabled by the ViewSizer™ 3000 (MANTA Instruments, USA) was evaluated using solutions of monomodal and multimodal gold and polystyrene latex nanoparticles, as well as a spark eroded polydisperse 316L stainless steel nanopowder, and large (non-Brownian) borosilicate particles. It was found that m-PTA performed comparably to the DLS in evaluation of monomodal particle size distributions. When measuring bimodal, trimodal and polydisperse solutions, the m-PTA technique overwhelmingly outperformed traditional dynamic light scattering (DLS) in both peak detection and relative particle concentration analysis. It was also observed that the m-PTA technique is less susceptible to large particle overexpression errors. The ViewSizer™ 3000 was also found to be successful in accurately evaluating sizes and concentrations of monomodal and bimodal sinking borosilicate particles.

  12. Rheological properties of magnetorheological polishing fluid featuring plate-like iron particles

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Choi, Seung-Bok

    2014-10-01

    In this work, magnetorheological polishing fluid (MRP) rheological properties are experimentally investigated for bi-disperse suspension of plate-like iron particles and non-magnetic abrasive particles dispersed in carrier fluid to see the influence of small-sized non-magnetic particle on the large-size Mr fluid. As a first step, structural and morphology of iron plate-like particles are described in details. The rheological properties are then characterized using magnetorheometer. Particle size and volume fraction of both particles play an important role during the breaking and reforming the structure under application of magnetic field which influence on the rheological properties of MRP fluid. Three different constitutive models, such as the Bingham, Herschel-Bulkley and Casson equations are considered to evaluate their predictive capability of apparent viscosity of proposed MRP fluid. The yield stress increases with increasing magnetic field strength. The results obtained from three models show that the flow index exhibits shear thinning behavior of fluid. A comparative work between the model results and experimental results is also undertaken.

  13. Effects of roughage inclusion and particle size on digestion and ruminal fermentation characteristics of beef steers.

    PubMed

    Weiss, C P; Gentry, W W; Meredith, C M; Meyer, B E; Cole, N A; Tedeschi, L O; McCollum, F T; Jennings, J S

    2017-04-01

    Roughage is fed in finishing diets to promote ruminal health and decrease digestive upset, but the inclusion rate is limited because of the cost per unit of energy and feed management issues. Rumination behavior of cattle may be a means to standardize roughage in beef cattle finishing diets, and increasing the particle size of roughage could modulate the ruminal environment and aid in maintaining ruminal pH. Therefore, this experiment was conducted to determine the effects of corn stalk (CS) inclusion rate and particle size in finishing diets on digestibility, rumination, and ruminal fermentation characteristics of beef steers. Four ruminally cannulated steers were used in a 4 × 4 Latin square experiment. Treatments were arranged as a 2 × 2 factorial with treatments consisting of 5% inclusion of a short-grind roughage (5SG), 10% inclusion of a short-grind roughage (10SG), 5% inclusion of a long-grind roughage (5LG), and 10% inclusion of a long-grind roughage (10LG). Differences in particle size were obtained by grinding corn stalks once (LG) or twice (SG) using a commercial tub grinder equipped with a 7.6-cm screen and quantified using the Penn State Particle Separator (PSPS) to estimate physically effective NDF (peNDF). Each period included 14 d for adaptation and 4 d for diet, fecal, and ruminal fluid collections. Animals were outfitted with rumination monitoring collars to continuously measure rumination activity. The 10LG treatment had a greater ( < 0.01) percentage of large particles (retained on the top 3 sieves of the PSPS) compared to the other treatments. This resulted in a greater ( < 0.01) percentage of estimated peNDF for the 10LG diet compared to the others. Feeding diets containing 5% roughage tended to increase ( ≤ 0.09) DM, NDF, and starch total tract digestibility compared to diets containing 10% roughage. Cattle consuming LG treatments had greater ( < 0.01) rumination time and greater ( < 0.01) ruminal pH than cattle consuming diets containing SG roughage. Cattle receiving the 5% inclusion rate of roughage tended to have greater ( = 0.09) time (h/d) under a ruminal pH of 5.6 and a larger ( = 0.03) area under the threshold compared to cattle receiving the 10% roughage treatments. Overall, feeding a lower inclusion of roughage with a larger particle size may stimulate rumination and aid in ruminal buffering similar to that of a higher inclusion of roughage with a smaller particle size, without negatively impacting digestibility and fermentation.

  14. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes

    PubMed Central

    Delavari, Armin; Baltus, Ruth

    2017-01-01

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197

  15. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.

    PubMed

    Mosig, Johanna; Kleinebudde, Peter

    2015-03-01

    The influence of lubrication and particle size on the reduced compactability after dry granulation was investigated. Powder cellulose, lactose, magnesium carbonate, and two types of microcrystalline cellulose were roll compacted, granulated, and sieved into particle fractions. Particle fractions were compressed into tablets using internal and external lubrication. Internal lubrication resulted in an overlubrication of the granule material compared with the powder material. This resulted in extraordinary high reduction of compactability after dry granulation for lubricant-sensitive materials. The granule size can cause differences in strength, whereby the degree of this effect was material dependent. The loss in strength with increasing compaction force was comparable for different particles sizes of one material, suggesting a change in material properties independently of the size. Granule hardening could be one reason as for higher compaction forces the integrity of the granule structure survived the compression step. The results demonstrated that granule lubrication mainly influence the degree of the reduced compactability after dry granulation and must be considered for the evaluation of mechanism for this phenomenon. Hardening of the material as well as size enlargement will cause the loss in strength after recompression, but the influence of both depends strongly on the material. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Percent area coverage through image analysis

    NASA Astrophysics Data System (ADS)

    Wong, Chung M.; Hong, Sung M.; Liu, De-Ling

    2016-09-01

    The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.

  17. Chromate content versus particle size for aircraft paints.

    PubMed

    LaPuma, Peter T; Rhodes, Brian S

    2002-12-01

    Many industries rely on the corrosion inhibiting properties of chromate-containing primer paints to protect metal from oxidation. However, chromate contains hexavalent chromium (Cr(6+)), a known human carcinogen. The concentration of Cr(6+) as a function of paint particle size has important implications to worker health and environmental release from paint facilities. This research examines Cr(6+) content as a function of particle size for three types of aircraft primer paints: solvent-based epoxy-polyamide, water-based epoxy-polyamide, and solvent-based polyurethane. Cascade impactors were used to collect and separate paint particles based on their aerodynamic diameter, from 0.7 to 34.1 microm. The mass of the dry paint collected at each stage was determined and an atomic absorption spectrometer was used to analyze for Cr(6+) content. For all three paints, particles less than 7.0 microm contained disproportionately less Cr(6+) per mass of dry paint than larger particles, and the Cr(6+)concentration decreased substantially as particle size decreased. The smallest particles, 0.7 to 1.0 microm, contained approximately 10% of the Cr(6+) content, per mass of dry paint, compared to particles larger than 7.0 microm. The paint gun settings of air to paint ratio was found to have no influence on the Cr(6+) bias.

  18. Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH.

    PubMed

    McFadden, M; Loconsole, J; Schockling, A J; Nerenberg, R; Pavissich, J P

    2017-12-01

    Peracetic acid (PAA) is an alternative disinfectant that may be effective for combined sewer overflow (CSO) disinfection, but little is known about the effect of particle size on PAA disinfection efficiency. In this work, PAA and hypochlorite were compared as disinfectants, with a focus on the effect of wastewater particles. Inactivation experiments were conducted on suspended cultures of Escherichia coli and wastewater suspended solids. Tested size fractions included particle diameters <10μm, <100μm, and raw wastewater. Chlorine disinfection efficiency decreased with increasing solids size. However, solids size had little effect on PAA disinfection. The PAA disinfection efficiency decreased at pH values above 7.5. Live/dead staining revealed that PAA disinfection leaves most cells in a viable but non-culturable condition. Fourier transform infrared spectroscopy (FTIR) analyses suggests that PAA and hypochlorite may inactivate E. coli bacteria by similar mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of Particle Size on Thermal Conductivity of Nanofluid

    NASA Astrophysics Data System (ADS)

    Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.

    2008-07-01

    Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.

  20. Discovery of the linear region of Near Infrared Diffuse Reflectance spectra using the Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng

    2018-05-01

    Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  1. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim

    2007-07-01

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  2. Production of Concentrated Pickering Emulsions with Narrow Size Distributions Using Stirred Cell Membrane Emulsification.

    PubMed

    Manga, Mohamed S; York, David W

    2017-09-12

    Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.

  3. Fragmentation and flow of grazed coastal Bermudagrass through the digestive tract of cattle.

    PubMed

    Pond, K R; Ellis, W C; Lascano, C E; Akin, D E

    1987-08-01

    Samples of forage fragments were obtained from the upper (RUS) and lower (RLS) strata of the reticulorumen and feces (F) of four Brahman X Jersey steers grazing Coastal bermudagrass (CB) of two maturities with dry matter digestibilities (DMD) of 54.8 and 64.3%. Forage fragments were separated by particle size and evaluated histochemically for tissue type and fragmentation pattern. Fragmentation pattern was similar to that previously observed due to ingestive mastication. There was longitudinal separation of vascular bundles (VB) and severing at VB ends. Microscopically, similar size fragments from RUS were indistinguishable from those of RLS. The major difference between RUS and RLS was the distribution of different size particles. Larger particles were associated with the RUS in cattle consuming immature and mature CB. More large particles were associated with mature compared with the immature CB in the RUS and RLS. The distribution of different size particles in the F was similar for both maturities, suggesting that similar particle size reduction was required regardless of maturity. Smaller particles in the rumen and F appeared to contain more lignin (determined histochemically) and were composed of indigestible fragments of cuticle and lignified vascular tissue. Cattle grazing mature CB had higher ruminal fills (2.40 vs 2.02 kg dry matter/100 kg body weight), reduced rates of passage and lower voluntary intake (2.50 vs 3.14 kg DM/100 kg body weight). Lower intake of mature CB may have resulted from a reduced rate of particle size reduction. Similarities in fragmentation patterns due to ingestive and ruminative mastication were interpreted to indicate that mastication was responsible for most of the particle size reduction of CB and that mastication facilitated digestion of potentially digestible tissues.

  4. Ablation and Chemical Alteration of Cosmic Dust Particles during Entry into the Earth’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Carrillo-Sánchez, J. D.; Fernandes, D.

    2016-12-01

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μm) and high entry velocities (>16 km s‑1) experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s‑1 and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO2, and FeO are not significant for an entry velocity of 11 km s‑1 and sizes <300 μm, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s‑1 the changes in MgO, SiO2, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μm. Beyond 400 μm particle sizes at 16 km s‑1, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.

  5. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    NASA Astrophysics Data System (ADS)

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  6. Investigation of Micro- and Nanosized Particle Erosion in a 90° Pipe Bend Using a Two-Phase Discrete Phase Model

    PubMed Central

    Safaei, M. R.; Mahian, O.; Garoosi, F.; Hooman, K.; Karimipour, A.; Kazi, S. N.; Gharehkhani, S.

    2014-01-01

    This paper addresses erosion prediction in 3-D, 90° elbow for two-phase (solid and liquid) turbulent flow with low volume fraction of copper. For a range of particle sizes from 10 nm to 100 microns and particle volume fractions from 0.00 to 0.04, the simulations were performed for the velocity range of 5–20 m/s. The 3-D governing differential equations were discretized using finite volume method. The influences of size and concentration of micro- and nanoparticles, shear forces, and turbulence on erosion behavior of fluid flow were studied. The model predictions are compared with the earlier studies and a good agreement is found. The results indicate that the erosion rate is directly dependent on particles' size and volume fraction as well as flow velocity. It has been observed that the maximum pressure has direct relationship with the particle volume fraction and velocity but has a reverse relationship with the particle diameter. It also has been noted that there is a threshold velocity as well as a threshold particle size, beyond which significant erosion effects kick in. The average friction factor is independent of the particle size and volume fraction at a given fluid velocity but increases with the increase of inlet velocities. PMID:25379542

  7. Particle Scattering in the Resonance Regime: Full-Wave Solution for Axisymmetric Particles with Large Aspect Ratios

    NASA Technical Reports Server (NTRS)

    Zuffada, Cinzia; Crisp, David

    1997-01-01

    Reliable descriptions of the optical properties of clouds and aerosols are essential for studies of radiative transfer in planetary atmospheres. The scattering algorithms provide accurate estimates of these properties for spherical particles with a wide range of sizes and refractive indices, but these methods are not valid for non-spherical particles (e.g., ice crystals, mineral dust, and smoke). Even though a host of methods exist for deriving the optical properties of nonspherical particles that are very small or very large compared with the wavelength, only a few methods are valid in the resonance regime, where the particle dimensions are comparable with the wavelength. Most such methods are not ideal for particles with sharp edges or large axial ratios. We explore the utility of an integral equation approach for deriving the single-scattering optical properties of axisymmetric particles with large axial ratios. The accuracy of this technique is shown for spheres of increasing size parameters and an ensemble of randomly oriented prolate spheroids of size parameter equal to 10.079368. In this last case our results are compared with published results obtained with the T-matrix approach. Next we derive cross sections, single-scattering albedos, and phase functions for cylinders, disks, and spheroids of ice with dimensions extending from the Rayleigh to the geometric optics regime. Compared with those for a standard surface integral equation method, the storage requirement and the computer time needed by this method are reduced, thus making it attractive for generating databases to be used in multiple-scattering calculations. Our results show that water ice disks and cylinders are more strongly absorbing than equivalent volume spheres at most infrared wavelengths. The geometry of these particles also affects the angular dependence of the scattering. Disks and columns with maximum linear dimensions larger than the wavelength scatter much more radiation in the forward and backward directions and much less radiation at intermediate phase angles than equivalent volume spheres.

  8. Are periprosthetic tissue reactions observed after revision of total disc replacement comparable to the reactions observed after total hip or knee revision surgery?

    PubMed Central

    Punt, Ilona M.; Austen, Shennah; Cleutjens, Jack P.M.; Kurtz, Steven M.; ten Broeke, René H.M.; van Rhijn, Lodewijk W.; Willems, Paul C.; van Ooij, André

    2011-01-01

    Study design Comparative study. Objective To compare periprosthetic tissue reactions observed after total disc replacement (TDR), total hip arthroplasty (THA) and total knee arthroplasty (TKA) revision surgery. Summary of background data Prosthetic wear debris leading to particle disease, followed by osteolysis, is often observed after THA and TKA. Although the presence of polyethylene (PE) particles and periprosthetic inflammation after TDR has been proven recently, osteolysis is rarely observed. The clinical relevance of PE wear debris in the spine remains poorly understood. Methods Number, size and shape of PE particles, as well as quantity and type of inflammatory cells in periprosthetic tissue retrieved during Charité TDR (n=22), THA (n=10) and TKA (n=4) revision surgery were compared. Tissue samples were stained with hematoxylin/eosin and examined by using light microscopy with bright field and polarized light. Results After THA, large numbers of PE particles <6 µm were observed, which were mainly phagocytosed by macrophages. The TKA group had a broad size range with many larger PE particles and more giant cells. In TDR, the size range was similar to that observed in TKA. However, the smallest particles were the most prevalent with 75% of the particles being <6 µm, as seen in revision THA. In TDR, both macrophages and giant cells were present with a higher number of macrophages. Conclusions Both small and large PE particles are present after TDR revision surgery compatible with both THA and TKA wear patterns. The similarities between periprosthetic tissue reactions in the different groups may give more insight in the clinical relevance of PE particles and inflammatory cells in the lumbar spine. The current findings may help to improve TDR design as applied from technologies previously developed in THA and TKA with the goal of a longer survival of TDR. PMID:21336235

  9. Grain size of loess and paleosol samples: what are we measuring?

    NASA Astrophysics Data System (ADS)

    Varga, György; Kovács, János; Szalai, Zoltán; Újvári, Gábor

    2017-04-01

    Particle size falling into a particularly narrow range is among the most important properties of windblown mineral dust deposits. Therefore, various aspects of aeolian sedimentation and post-depositional alterations can be reconstructed only from precise grain size data. Present study is aimed at (1) reviewing grain size data obtained from different measurements, (2) discussing the major reasons for disagreements between data obtained by frequently applied particle sizing techniques, and (3) assesses the importance of particle shape in particle sizing. Grain size data of terrestrial aeolian dust deposits (loess and paleosoil) were determined by laser scattering instruments (Fritsch Analysette 22 Microtec Plus, Horiba Partica La-950 v2 and Malvern Mastersizer 3000 with a Hydro Lv unit), while particles size and shape distributions were acquired by Malvern Morphologi G3-ID. Laser scattering results reveal that the optical parameter settings of the measurements have significant effects on the grain size distributions, especially for the fine-grained fractions (<5 µm). Significant differences between the Mie and Fraunhofer approaches were found for the finest grain size fractions, while only slight discrepancies were observed for the medium to coarse silt fractions. It should be noted that the different instruments provided different grain size distributions even with the exactly same optical settings. Image analysis-based grain size data indicated underestimation of clay and fine silt fractions compared to laser measurements. The measured circle-equivalent diameter of image analysis is calculated from the acquired two-dimensional image of the particle. It is assumed that the instantaneous pulse of compressed air disperse the sedimentary particles onto the glass slide with a consistent orientation with their largest area facing to the camera. However, this is only one outcome of infinite possible projections of a three-dimensional object and it cannot be regarded as a representative one. The third (height) dimension of the particles remains unknown, so the volume-based weightings are fairly dubious in the case of platy particles. Support of the National Research, Development and Innovation Office (Hungary) under contract NKFI 120620 is gratefully acknowledged. It was additionally supported (for G. Varga) by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences.

  10. Quantifying Grain-Size Variability of Metal Pollutants in Road-Deposited Sediments Using the Coefficient of Variation

    PubMed Central

    Wang, Xiaoxue; Li, Xuyong

    2017-01-01

    Particle grain size is an important indicator for the variability in physical characteristics and pollutants composition of road-deposited sediments (RDS). Quantitative assessment of the grain-size variability in RDS amount, metal concentration, metal load and GSFLoad is essential to elimination of the uncertainty it causes in estimation of RDS emission load and formulation of control strategies. In this study, grain-size variability was explored and quantified using the coefficient of variation (Cv) of the particle size compositions, metal concentrations, metal loads, and GSFLoad values in RDS. Several trends in grain-size variability of RDS were identified: (i) the medium class (105–450 µm) variability in terms of particle size composition, metal loads, and GSFLoad values in RDS was smaller than the fine (<105 µm) and coarse (450–2000 µm) class; (ii) The grain-size variability in terms of metal concentrations increased as the particle size increased, while the metal concentrations decreased; (iii) When compared to the Lorenz coefficient (Lc), the Cv was similarly effective at describing the grain-size variability, whereas it is simpler to calculate because it did not require the data to be pre-processed. The results of this study will facilitate identification of the uncertainty in modelling RDS caused by grain-size class variability. PMID:28788078

  11. Adequacy of laser diffraction for soil particle size analysis

    PubMed Central

    Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash

    2017-01-01

    Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle size analysis, and the empirical results of this study, suggest that deployment of laser diffraction as a standard test procedure can provide reliable results, provided consistent sample preparation is used. PMID:28472043

  12. Synthesis and Tribological Performance of Different Particle-Sized Nickel-Ion-Exchanged α-Zirconium Phosphates

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaosheng; Xu, Hong; Dong, Jinxiang

    2018-03-01

    Nickel-ion-exchanged α-zirconium phosphate (Ni-α-ZrP) was synthesized by a mild hydrothermal synthesis method. Different raw material ratios (NaF/H3PO4/Ni(CH3COO)2·4H2O) influence the particle size of the Ni-α-ZrP samples. The grain size could be controlled and distributed from 20 to 600 nm. Ni-α-ZrP was evaluated as an additive in lithium grease in a four-ball test. A 3.0 wt.% addition of Ni-α-ZrP to lithium grease yielded maximum non-seizure load values of 1235 N, and the wear scar diameter on the lower balls is 0.42 mm at 294 N. Compared with smaller particles, the addition of Ni-α-ZrP with a larger particle size to grease yields a better load-carrying capacity.

  13. Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian

    2018-03-01

    The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal-air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.

  14. Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Louis, Cédric; Liu, Yao; Martinet, Simon; D'Anna, Barbara; Valiente, Alvaro Martinez; Boreave, Antoinette; R'Mili, Badr; Tassel, Patrick; Perret, Pascal; André, Michel

    2017-11-01

    Dilution and temperature used during sampling of vehicle exhaust can modify particle number concentration and size distribution. Two experiments were performed on a chassis dynamometer to assess exhaust dilution and temperature on particle number and particle size distribution for Euro 5 and Euro 6 vehicles. In the first experiment, the effects of dilution (ratio from 8 to 4 000) and temperature (ranging from 50 °C to 150 °C) on particle quantification were investigated directly from tailpipe for a diesel and a gasoline Euro 5 vehicles. In the second experiment, particle emissions from Euro 6 diesel and gasoline vehicles directly sampled from the tailpipe were compared to the constant volume sampling (CVS) measurements under similar sampling conditions. Low primary dilutions (3-5) induced an increase in particle number concentration by a factor of 2 compared to high primary dilutions (12-20). Low dilution temperatures (50 °C) induced 1.4-3 times higher particle number concentration than high dilution temperatures (150 °C). For the Euro 6 gasoline vehicle with direct injection, constant volume sampling (CVS) particle number concentrations were higher than after the tailpipe by a factor of 6, 80 and 22 for Artemis urban, road and motorway, respectively. For the same vehicle, particle size distribution measured after the tailpipe was centred on 10 nm, and particles were smaller than the ones measured after CVS that was centred between 50 nm and 70 nm. The high particle concentration (≈106 #/cm3) and the growth of diameter, measured in the CVS, highlighted aerosol transformations, such as nucleation, condensation and coagulation occurring in the sampling system and this might have biased the particle measurements.

  15. Size distribution of ions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Krivácsy, Z.; Molnár, Á.

    The aim of this paper is to present data about the concentration and size distribution of ions in atmospheric aerosol under slightly polluted urban conditions in Hungary. Concentration of inorganic cations (ammonium, sodium, potassium, calcium, magnesium), inorganic anions (sulfate, nitrate, chloride, carbonate) and organic acids (oxalic, malonic, succinic, formic and acetic acid) for 8 particle size range between 0.0625 and 16 μm were determined. As was the case for ammonium, sulfate and nitrate, the organic acids were mostly found in the fine particle size range. Potassium and chloride were rather uniformly distributed between fine and coarse particles. Sodium, calcium, magnesium and carbonate were practically observed in the coarse mode. The results obtained for the summer and the winter half-year were also compared. The mass concentrations were recalculated in equivalents, and the ion balance was found to be reasonable in most cases. Measurement of the pH of the aerosol extracts indicates that the aerosol is acidic in the fine mode, but alkaline in the coarse particle size range.

  16. Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Thomas, Brian G.

    2012-03-01

    The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.

  17. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    DOE PAGES

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; ...

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by themore » particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.« less

  18. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-09-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  19. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  20. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process.

    PubMed

    Sui, Xiaoyu; Wei, Wei; Yang, Lei; Zu, Yuangang; Zhao, Chunjian; Zhang, Lin; Yang, Fengjian; Zhang, Zhonghua

    2012-02-28

    In this study, glycyrrhizic acid (GA) microparticles were successfully prepared using a supercritical anti-solvent (SAS) process. Carbon dioxide and ethanol were used as the anti-solvent and solvent, respectively. The influences of several process parameters on the mean particle size (MPS), particle size distribution (PSD) and total yield were investigated. Processed particle sizes gradually decreased as temperature and solution flow rate increased. In addition, processed particle sizes increased from 119 to 205 nm as GA concentration increased. However, CO(2) flow rate did not significantly affect particle size. The optimized process conditions were applied, those included temperature (65 °C), pressure (250 bar), CO(2) and drug solution flow rate (15 and 8 mL min(-1)), drug concentration in ethanol (20 mg mL(-1)). Microparticles with a span of PSD ranging from 95 and 174 nm, MPS of 128 nm were obtained, and total yield was 63.5%. The X-ray diffraction patterns of glycyrrhizic acid microparticles show apparent amorphous nature. Fourier transform infrared (FT-IR) spectroscopy results show that no chemical structural changes occurred. The in vitro dissolution tests showed that the GA microparticles exhibited great enhancement of dissolution performance when compared to GA original drug. Furthermore, the in vivo studies revealed that the microparticles provided improved pharmacokinetic parameter after oral administration to rats as compared with original drug. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effects of wheat source and particle size in meal and pelleted diets on finishing pig growth performance, carcass characteristics, and nutrient digestibility.

    PubMed

    De Jong, J A; DeRouchey, J M; Tokach, M D; Dritz, S S; Goodband, R D; Paulk, C B; Woodworth, J C; Jones, C K; Stark, C R

    2016-08-01

    Two experiments were conducted to test the effects of wheat source and particle size in meal and pelleted diets on finishing pig performance, carcass characteristics, and diet digestibility. In Exp. 1, pigs (PIC 327 × 1050; = 288; initially 43.8 kg BW) were balanced by initial BW and randomly allotted to 1 of 3 treatments with 8 pigs per pen (4 barrows and 4 gilts) and 12 pens per treatment. The 3 dietary treatments were hard red winter wheat ground with a hammer mill to 728, 579, or 326 μm, respectively. From d 0 to 40, decreasing wheat particle size decreased (linear, < 0.033) ADFI but improved (quadratic, < 0.014) G:F. From d 40 to 83, decreasing wheat particle size increased (quadratic, < 0.018) ADG and improved (linear, < 0.002) G:F. Overall from d 0 to 83, reducing wheat particle size improved (linear, < 0.002) G:F. In Exp. 2, pigs (PIC 327 × 1050; = 576; initially 43.4 ± 0.02 kg BW) were used to determine the effects of wheat source and particle size of pelleted diets on finishing pig growth performance and carcass characteristics. Pigs were randomly allotted to pens, and pens of pigs were balanced by initial BW and randomly allotted to 1 of 6 dietary treatments with 12 replications per treatment and 8 pigs/pen. The experimental diets used the same wheat-soybean meal formulation, with the 6 treatments using hard red winter or soft white winter wheat that were processed to 245, 465, and 693 μm and 258, 402, and 710 μm, respectively. All diets were pelleted. Overall, feeding hard red winter wheat increased ( < 0.05) ADG and ADFI when compared with soft white winter wheat. There was a tendency ( < 0.10) for a quadratic particle size × wheat source interaction for ADG, ADFI, and both DM and GE digestibility, as they were decreased for pigs fed 465-μm hard red winter wheat and were greatest for pigs fed 402-μm soft white winter wheat. There were no main or interactive effects of particle size or wheat source on carcass characteristics. In summary, fine grinding hard red winter wheat fed in meal form improved G:F and nutrient digestibility, whereas reducing particle size of wheat from approximately 700 to 250 μm in pelleted diets did not influence growth or carcass traits. Finally, feeding hard red winter wheat improved ADG and ADFI compared with feeding soft white winter wheat.

  2. Is there a lower size limit for mineral dust ice nuclei in the immersion mode?

    NASA Astrophysics Data System (ADS)

    Welti, André; Lohmann, Ulrike; Kanji, Zamin A.

    2014-05-01

    There is observational evidence that atmospheric aerosol particles which are able to trigger ice nucleation are larger than approximately 100nm (e.g. Fletcher, 1959). On the other hand observations of IN active macromolecules which have been proposed to be responsible for the enhanced ice formation in the washing water of pollen indicate no such size limit (Augustin et al., 2013). We present measurements on the size dependent ability of feldspars and clay minerals to serve as ice nuclei. The size dependent frozen fraction of droplets containing monodisperse, single immersed particles is investigated with the IMCA/ZINC experimental setup (Lüönd et. al., 2010). To meet the requirement of a narrow particle size distribution, special care is taken to generate monodisperse particles in the lower size range, by using a two stage size selection setup including a differential mobility analyser and a centrifugal particle mass analyser. From the analysis of the temperature at which 50% of the particles initiate ice nucleation, we find a logarithmic dependence of the median ice nucleation temperature on the particle surface area, with no discontinuous decrease in the ice nucleation ability of 100nm particles. The medium ice nucleation temperature of clay minerals however reaches homogeneous nucleation temperatures in this size range. The logarithmic dependence of the median ice nucleation temperature on particle surface area is addressed by comparing the experimental findings to predictions using the classical nucleation theory and the active site approach. Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, 2013. Fletcher, N.H.: On Ice-Crystal Production by Aerosol Particles, J. Meteo., 16, 173-180, 1959. Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U.: Experimental study on the ice nucleation ability of size selected kaolinite particles in the immersion mode, J. Geophys. Res., 115, D14201, 2010.

  3. Effects of dietary physical or nutritional factors on morphology of rumen papillae and transcriptome changes in lactating dairy cows based on three different forage-based diets.

    PubMed

    Wang, Bing; Wang, Diming; Wu, Xuehui; Cai, Jie; Liu, Mei; Huang, Xinbei; Wu, Jiusheng; Liu, Jianxin; Guan, Leluo

    2017-05-06

    Rumen epithelial tissue plays an important role in nutrient absorption and rumen health. However, whether forage quality and particle size impact the rumen epithelial morphology is unclear. The current study was conducted to elucidate the effects of forage quality and forage particle size on rumen epithelial morphology and to identify potential underlying molecular mechanisms by analyzing the transcriptome of the rumen epithelium (RE). To achieve these objectives, 18 mid-lactation dairy cows were allocated to three groups (6 cows per group), and were fed with one of three different forage-based diets, alfalfa hay (AH), corn stover (CS), and rice straw (RS) for 14 weeks, respectively. Ruminal volatile fatty acids (VFAs) and epithelial thickness were determined, and RNA-sequencing was conducted to identify the transcriptomic changes of rumen epithelial under different forage-based diets. The RS diet exhibited greater particle size but low quality, the AH diet was high nutritional value but small particle size, and CS diet was low quality and small particle size. The ruminal total VFA concentration was greater in AH compared with those in CS or RS. The width of the rumen papillae was greater in RS-fed cows than in cows fed AH or CS. In total, 31, 40, and 28 differentially expressed (DE, fold change > 2, FDR < 0.05) genes were identified via pair-wise comparisons including AH vs. CS, AH vs. RS, and RS vs. CS, respectively. Functional classification analysis of DE genes revealed dynamic changes in ion binding (such as DSG1) between AH and CS, proliferation and apoptotic processes (such as BAG3, HLA-DQA1, and UGT2B17) and complement activation (such as C7) between AH or RS and CS. The expression of HLA-DQA1 was down-regulated in RS compared with AH and CS, and the expression of UGT2B17 was down-regulated in RS compared with CS, with positive (R = 0.94) and negative (R = -0.96) correlation with the width of rumen epithelial papillae (P < 0.05), respectively. Our results suggest that both nutrients (VFAs) and particle sizes can alter expression of genes involved in cell proliferation/apoptosis process and complement complex. Our results suggest that particle size may be more important in regulating rumen epithelial morphology when animals are fed with low-quality forage diets and the identified DE genes may affect the RE nutrient absorption or morphology of RE. Our findings provide insights into the effects of the dietary particle size in the future management of dairy cow feeding, that when cows were fed with low-quality forage (such as rice straw), smaller particle size may be beneficial for nutrients absorption and milk production.

  4. Enhanced THz extinction in arrays of resonant semiconductor particles.

    PubMed

    Schaafsma, Martijn C; Georgiou, Giorgos; Rivas, Jaime Gómez

    2015-09-21

    We demonstrate experimentally the enhanced THz extinction by periodic arrays of resonant semiconductor particles. This phenomenon is explained in terms of the radiative coupling of localized resonances with diffractive orders in the plane of the array (Rayleigh anomalies). The experimental results are described by numerical calculations using a coupled dipole model and by Finite-Difference in Time-Domain simulations. An optimum particle size for enhancing the extinction efficiency of the array is found. This optimum is determined by the frequency detuning between the localized resonances in the individual particles and the Rayleigh anomaly. The extinction calculations and measurements are also compared to near-field simulations illustrating the optimum particle size for the enhancement of the near-field.

  5. A scattering database of marine particles and its application in optical analysis

    NASA Astrophysics Data System (ADS)

    Xu, G.; Yang, P.; Kattawar, G.; Zhang, X.

    2016-12-01

    In modeling the scattering properties of marine particles (e.g. phytoplankton), the laboratory studies imply a need to properly account for the influence of particle morphology, in addition to size and composition. In this study, a marine particle scattering database is constructed using a collection of distorted hexahedral shapes. Specifically, the scattering properties of each size bin and refractive index are obtained by the ensemble average associated with distorted hexahedra with randomly tilted facets and selected aspect ratios (from elongated to flattened). The randomness degree in shape-generation process defines the geometric irregularity of the particles in the group. The geometric irregularity and particle aspect ratios constitute a set of "shape factors" to be accounted for (e.g. in best-fit analysis). To cover most of the marine particle size range, we combine the Invariant Imbedding T-matrix (II-TM) method and the Physical-Geometric Optics Hybrid (PGOH) method in the calculations. The simulated optical properties are shown and compared with those obtained from Lorenz-Mie Theory. Using the scattering database, we present a preliminary optical analysis of laboratory-measured optical properties of marine particles.

  6. From particle condensation to polymer aggregation

    NASA Astrophysics Data System (ADS)

    Janke, Wolfhard; Zierenberg, Johannes

    2018-01-01

    We draw an analogy between droplet formation in dilute particle and polymer systems. Our arguments are based on finite-size scaling results from studies of a two-dimensional lattice gas to three-dimensional bead-spring polymers. To set the results in perspective, we compare with in part rigorous theoretical scaling laws for canonical condensation in a supersaturated gas at fixed temperature, and derive corresponding scaling predictions for an undercooled gas at fixed density. The latter allows one to efficiently employ parallel multicanonical simulations and to reach previously not accessible scaling regimes. While the asymptotic scaling can not be observed for the comparably small polymer system sizes, they demonstrate an intermediate scaling regime also observable for particle condensation. Altogether, our extensive results from computer simulations provide clear evidence for the close analogy between particle condensation and polymer aggregation in dilute systems.

  7. Evaluation of a coupled dispersion and aerosol process model against measurements near a major road

    NASA Astrophysics Data System (ADS)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Ketzel, M.; Kukkonen, J.

    2007-02-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible at this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic vapour of 1012 molecules cm-3 was shown to be in a disagreement with the measured particle size evolution, while the modelling runs with the concentration of condensable organic vapour of 109-1010 molecules cm-3 resulted in particle sizes that were closest to the measured values.

  8. X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A.

    2015-12-15

    X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearingmore » helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.« less

  9. The effects of CuO particle size on microstructure evolution of AgCuO compo-sites in plastic deformation process: finite element simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Li, Zhiguo; Cao, Hanxing; Zhou, Xiaolong; Zhou, Zhaobo; Cao, Jianchun

    2018-04-01

    The effects of CuO with different particle sizes on the microstructure evolution of AgCuO composite material during plastic deformation process were investigated by finite element (FE) analysis and experiment. The results are as follows: with the decrease of CuO particle size, the degree of radial compression and axial elongation of CuO particle cluster increase gradually, as well as the dispersion of CuO also increase. Meanwhile, the shape of CuO particles is constantly transformed from polygonal to fibrous, which makes the number of linear fibrous CuO increase continuously while bent fibrous CuO reduce gradually. By comparing the simulation and experiment results we find that there are four different typical microstructure regions, which caused by the interaction between monoclinic and cubic CuO during the extrusion process.

  10. Electrophoresis demonstration on Apollo 16

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1972-01-01

    Free fluid electrophoresis, a process used to separate particulate species according to surface charge, size, or shape was suggested as a promising technique to utilize the near zero gravity condition of space. Fluid electrophoresis on earth is disturbed by gravity-induced thermal convection and sedimentation. An apparatus was developed to demonstrate the principle and possible problems of electrophoresis on Apollo 14 and the separation boundary between red and blue dye was photographed in space. The basic operating elements of the Apollo 14 unit were used for a second flight demonstration on Apollo 16. Polystyrene latex particles of two different sizes were used to simulate the electrophoresis of large biological particles. The particle bands in space were extremely stable compared to ground operation because convection in the fluid was negligible. Electrophoresis of the polystyrene latex particle groups according to size was accomplished although electro-osmosis in the flight apparatus prevented the clear separation of two particle bands.

  11. Physical and environmental factors affecting the persistence of explosives particles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Papantonakis, Michael R.; Nguyen, Viet K.; Furstenberg, Robert; White, Caitlyn; Shuey, Melissa; Kendziora, Christopher A.; McGill, R. Andrew

    2017-05-01

    Knowledge of the persistence of trace explosives materials is critical to aid the security community in designing detection methods and equipment. The physical and environmental factors affecting the lifetimes of particles include temperature, airflow, interparticle distance, adlayers, humidity, particle field size and vapor pressure. We are working towards a complete particle persistence model that captures the relative importance of these effects to allow the user, with known environmental conditions, to predict particle lifetimes for explosives or other chemicals. In this work, particles of explosives are sieved onto smooth glass substrates using particle sizes and loadings relevant to those deposited by fingerprint deposition. The coupon is introduced into a custom flow cell and monitored under controlled airflow, humidity and temperature. Photomicroscopy images of the sample taken at fixed time intervals are analyzed to monitor particle sublimation and characterized as a size-independent radial sublimation velocity for each particle in the ensemble. In this paper we build on previous work by comparing the relationship between sublimation of different materials and their vapor pressures. We also describe the influence of a sebum adlayer on particle sublimation, allowing us to better model `real world' samples.

  12. The impact of various scaffold components on vascularized bone constructs.

    PubMed

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila

    2017-06-01

    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct. Collagen matrix and a smaller particle size provided more favorable results in terms of vascularization and tissue formation than diluted fibrin and larger Nanobone particles. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Influence of surfactants on depsipeptide submicron particle formation.

    PubMed

    Brunacci, Nadia; Wischke, Christian; Naolou, Toufik; Neffe, Axel T; Lendlein, Andreas

    2017-07-01

    Surfactants are required for the formation and stabilization of hydrophobic polymeric particles in aqueous environment. In order to form submicron particles of varying sizes from oligo[3-(S)-sec-butylmorpholine-2,5-dione]diols ((OBMD)-diol), different surfactants were investigated. As new surfactants, four-armed star-shaped oligo(ethylene glycol)s of molecular weights of 5-20kDa functionalized with desamino-tyrosine (sOEG-DAT) resulted in smaller particles with lower PDI than with desaminotyrosyl tyrosine (sOEG-DATT) in an emulsion/solvent evaporation method. In a second set of experiments, sOEG-DAT of M n =10kDa was compared with the commonly employed emulsifiers polyvinylalcohol (PVA), polyoxyethylene (20) sorbitan monolaurate (Tween 20), and D-α-tocopherol polyethylene glycol succinate (VIT E-TPGS) for OBMD particle preparation. sOEG-DAT allowed to systematically change sizes in a range of 300 up to 900nm with narrow polydispersity, while in the other cases, a lower size range (250-400nm, PVA; ∼300nm, Tween 20) or no effective particle formation was observed. The ability of tailoring particle size in a broad range makes sOEG-DAT of particular interest for the formation of oligodepsipeptide particles, which can further be investigated as drug carriers for controlled delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    NASA Astrophysics Data System (ADS)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic vapour of 1012 molecules cm-3 was shown to be in a disagreement with the measured particle size evolution, while the modelling runs with the concentration of condensable organic vapour of 109-1010 molecules cm-3 resulted in particle sizes that were closest to the measured values.

  15. The effects of neutralized particles on the sampling efficiency of polyurethane foam used to estimate the extrathoracic deposition fraction.

    PubMed

    Tomyn, Ronald L; Sleeth, Darrah K; Thiese, Matthew S; Larson, Rodney R

    2016-01-01

    In addition to chemical composition, the site of deposition of inhaled particles is important for determining the potential health effects from an exposure. As a result, the International Organization for Standardization adopted a particle deposition sampling convention. This includes extrathoracic particle deposition sampling conventions for the anterior nasal passages (ET1) and the posterior nasal and oral passages (ET2). This study assessed how well a polyurethane foam insert placed in an Institute of Occupational Medicine (IOM) sampler can match an extrathoracic deposition sampling convention, while accounting for possible static buildup in the test particles. In this way, the study aimed to assess whether neutralized particles affected the performance of this sampler for estimating extrathoracic particle deposition. A total of three different particle sizes (4.9, 9.5, and 12.8 µm) were used. For each trial, one particle size was introduced into a low-speed wind tunnel with a wind speed set a 0.2 m/s (∼40 ft/min). This wind speed was chosen to closely match the conditions of most indoor working environments. Each particle size was tested twice either neutralized, using a high voltage neutralizer, or left in its normal (non neutralized) state as standard particles. IOM samplers were fitted with a polyurethane foam insert and placed on a rotating mannequin inside the wind tunnel. Foam sampling efficiencies were calculated for all trials to compare against the normalized ET1 sampling deposition convention. The foam sampling efficiencies matched well to the ET1 deposition convention for the larger particle sizes, but had a general trend of underestimating for all three particle sizes. The results of a Wilcoxon Rank Sum Test also showed that only at 4.9 µm was there a statistically significant difference (p-value = 0.03) between the foam sampling efficiency using the standard particles and the neutralized particles. This is interpreted to mean that static buildup may be occurring and neutralizing the particles that are 4.9 µm diameter in size did affect the performance of the foam sampler when estimating extrathoracic particle deposition.

  16. Monitor for detecting and assessing exposure to airborne nanoparticles

    NASA Astrophysics Data System (ADS)

    Marra, Johan; Voetz, Matthias; Kiesling, Heinz-Jürgen

    2010-01-01

    An important safety aspect of the workplace environment concerns the severity of its air pollution with nanoparticles (NP; <100 nm) and ultrafine particles (UFP; <300 nm). Depending on their size and chemical nature, exposure to these particles through inhalation can be hazardous because of their intrinsic ability to deposit in the deep lung regions and the possibility to subsequently pass into the blood stream. Recommended safety measures in the nanomaterials industry are pragmatic, aiming at exposure minimization in general, and advocating continuous control by monitoring both the workplace air pollution level and the personal exposure to airborne NPs. This article describes the design and operation of the Aerasense NP monitor that enables intelligence gathering in particular with respect to airborne particles in the 10-300 nm size range. The NP monitor provides real time information about their number concentration, average size, and surface areas per unit volume of inhaled air that deposit in the various compartments of the respiratory tract. The monitor's functionality relies on electrical charging of airborne particles and subsequent measurements of the total particle charge concentration under various conditions. Information obtained with the NP monitor in a typical workplace environment has been compared with simultaneously recorded data from a Scanning Mobility Particle Sizer (SMPS) capable of measuring the particle size distribution in the 11-1086 nm size range. When the toxicological properties of the engineered and/or released particles in the workplace are known, personal exposure monitoring allows a risk assessment to be made for a worker during each workday, when the workplace-produced particles can be distinguished from other (ambient) particles.

  17. Evaluating Unsupervised Methods to Size and Classify Suspended Particles Using Digital Holography

    NASA Astrophysics Data System (ADS)

    Davies, E. J.; Buscombe, D.; Graham, G.; Nimmo-Smith, A.

    2013-12-01

    The use of digital holography to image suspended particles in-situ using submersible systems is on the ascendancy. Such systems allow visualization of the in-focus particles without the depth-of-field issues associated with conventional imaging. The size and concentration of all particles, and each individual particle, can be rapidly and automatically assessed. The automated methods by which to extract these quantities can be readily evaluated using manual measurements. These methods are not possible using instruments based on optical and acoustic (back- or forward-) scattering, so-called 'sediment surrogate' methods, which are sensitive to the bulk quantities of all suspended particles in a sample volume, and rely on mathematically inverting a measured signal to derive the property of interest. Depending on the intended application, the number of holograms required to elucidate a process could range from tens to millions. Therefore manual particle extraction is not feasible for most data-sets. This has created a pressing need among the growing community of holography users, for accurate, automated processing which is comparable in output to more well-established in-situ sizing techniques such as laser diffraction. Here we discuss the computational considerations required to focus and segment individual particles from raw digital holograms, and then size and classify these particles by type; all using unsupervised (automated) image processing. To do so, we draw upon imagery from both controlled laboratory conditions to near-shore coastal environments, using different holographic system designs, and constituting a significant variety in particle types, sizes and shapes. We evaluate the success of these techniques, and suggest directions for future developments.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudraswami, N. G.; Prasad, M. Shyam; Dey, S.

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μ m) and high entry velocities (>16 km s{sup −1})more » experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s{sup −1} and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO{sub 2}, and FeO are not significant for an entry velocity of 11 km s{sup −1} and sizes <300 μ m, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s{sup −1} the changes in MgO, SiO{sub 2}, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μ m. Beyond 400 μ m particle sizes at 16 km s{sup −1}, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.« less

  19. Synthesis, characterization, and hydrogen uptake studies of magnesium nanoparticles by solution reduction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rather, Sami ullah, E-mail: rathersami@gmail.com

    2014-12-15

    Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough,more » all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO.« less

  20. Development and comparison of intramuscularly long-acting paliperidone palmitate nanosuspensions with different particle size.

    PubMed

    Leng, Donglei; Chen, Hongming; Li, Guangjing; Guo, Mengran; Zhu, Zhaolu; Xu, Lu; Wang, Yongjun

    2014-09-10

    The main purpose of this study was to develop and compare the pharmacokinetic behavior of two paliperidone palmitate (PP) nanosuspensions with different particle size after intramuscular (i.m.) administration. PP nanosuspensions were prepared by wet media milling method and the mean particle size of nanosuspension was controlled as 1,041 ± 6 nm (A) and 505 ± 9 nm (B), respectively. The morphology of nanosuspensions was observed by scanning electron microscope (SEM). Differential scanning calorimeter (DSC) and powder X-ray diffraction (PXRD) confirmed the crystallinity of PP in nanosuspensions. The physical and chemical stabilities of nanosuspensions A and B were investigated by particle analyzer and HPLC after storage for 2 months at 25°C, 4°C and mechanical shaking condition. No obvious change in particle size and chemical degradation of drug were observed. Following single-dose i.m. administration to beagle dogs, the release of paliperidone lasted for nearly 1 month. The Tmax of nanosuspensions A and B was 6 (d) and 10 (d). The AUC0-t and Cmax of nanosuspensions A was 2.0-fold and 1.8-fold higher than nanosuspensions B (p<0.05). The results demonstrated that PP nanosuspensions formulation had long-acting effect. Nanosuspension A with a larger particle size performed better than nanosuspension B. As a result, it is important to design appropriate particle size of nanosuspensions for i.m. administration in order to produce larger therapeutic effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, H.-W.; Srama, R.; Grün, E.

    2014-08-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. For the first time, the dust impacts signals measured by dipole and monopole electric antennas are compared, from which the effective impact area of the spacecraft is estimated to be 4 m2. In the monopole mode, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna), which can be used to statistically infer the charge state of the spacecraft. It is shown that the differential number density of the dust particles near Saturn can be characterized as a power law dn/dr ∝ rμ, where μ ~ - 4 and r is the particle size. No peak is observed in the size distribution, contrary to the narrow size distribution found by previous studies. The RPWS cumulative dust density is compared with the Cosmic Dust Analyzer High Rate Detector measurement. The differences between the two instruments are within the range of uncertainty estimated for RPWS measurement. The RPWS onboard dust recorder and counter data are used to map the dust density and spacecraft charging state within Saturn's magnetosphere.

  2. On Stability of Plane and Cylindrical Poiseuille Flows of Nanofluids

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Bord, E. G.

    2017-11-01

    Stability of plane and cylindrical Poiseuille flows of nanofluids to comparatively small perturbations is studied. Ethylene glycol-based nanofluids with silicon dioxide particles are considered. The volume fraction of nanoparticles is varied from 0 to 10%, and the particle size is varied from 10 to 210 nm. Neutral stability curves are constructed, and the most unstable modes of disturbances are found. It is demonstrated that nanofluids are less stable than base fluids; the presence of particles leads to additional destabilization of the flow. The greater the volume fraction of nanoparticles and the smaller the particle size, the greater the degree of this additional destabilization. In this case, the critical Reynolds number significantly decreases, and the spectrum of unstable disturbances becomes different; in particular, even for the volume fraction of particles equal to 5%, the wave length of the most unstable disturbances of the nanofluid with particles approximately 20 nm in size decreases almost by a factor of 4.

  3. History of the dust released by comets

    NASA Technical Reports Server (NTRS)

    Jambor, B. J.

    1976-01-01

    The Finson-Brobstein theory is used to examine production and history of dust released from periodic comets and to compare dust size distribution in relation to the Zodiacal cloud. Results eliminate all of the bright new comets from contributors to the Zodiacal cloud. Among the periodic comets, all particles of size much smaller than 10 micrometer are also lost. Only the large particles remain as possible contributors.

  4. Study on the Particle Size Distribution Nano-Particles of Mining Minerals on Whiteness of Triaxial Body

    NASA Astrophysics Data System (ADS)

    Mathur, Ravi; Soni, Aditi

    White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.

  5. Impact of sediment particle size on biotransformation of 17β-estradiol and 17β-trenbolone.

    PubMed

    Zhang, Yun; Sangster, Jodi L; Gauza, Lukasz; Bartelt-Hunt, Shannon L

    2016-12-01

    Soil/sediment particle size has been reported to influence the sorption and bioavailability of steroid hormones in the environment. However, the impact of particle size on biotransformation has not been well elucidated. The present study investigated the dissipation of 17β-estradiol and 17β-trenbolone and the formation and degradation of the subsequent transformation products in different size fractions of a sandy and a silt loam sediment. The results showed that the decay of 17β-estradiol and 17β-trenbolone associated with fine particles followed a biphasic pattern with more rapid decay in the initial phase followed by a second phase with slower decay of the residues compared to their decay rates in the sand fraction. Estrone and trendione were detected as a primary biotransformation product for 17β-estradiol and 17β-trenbolone, respectively. The parent-to-product conversion ratios and the degradation rates of estrone and trendione varied among different size fractions, but no consistent correlation was observed between decay rates and sediment particle size. Estrone and trendione decayed in the whole sediments at rates not statistically different from those associated with the fine fractions. These results indicate that fine particles may play an important role in influencing the persistence of and the potential risk posed by steroid hormones in the aquatic systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents.

    PubMed

    Kucheryavy, Pavel; He, Jibao; John, Vijay T; Maharjan, Pawan; Spinu, Leonard; Goloverda, Galina Z; Kolesnichenko, Vladimir L

    2013-01-15

    Magnetite nanoparticles in the size range of 3.2-7.5 nm were synthesized in high yields under variable reaction conditions using high-temperature hydrolysis of the precursor iron(II) and iron(III) alkoxides in diethylene glycol solution. The average sizes of the particles were adjusted by changing the reaction temperature and time and by using a sequential growth technique. To obtain γ-iron(III) oxide particles in the same range of sizes, magnetite particles were oxidized with dry oxygen in diethylene glycol at room temperature. The products were characterized by DLS, TEM, X-ray powder diffractometry, TGA, chemical analysis, and magnetic measurements. NMR r(1) and r(2) relaxivity measurements in water and diethylene glycol (for OH and CH(2) protons) have shown a decrease in the r(2)/r(1) ratio with the particle size reduction, which correlates with the results of magnetic measurements on magnetite nanoparticles. Saturation magnetization of the oxidized particles was found to be 20% lower than that for Fe(3)O(4) with the same particle size, but their r(1) relaxivities are similar. Because the oxidation of magnetite is spontaneous under ambient conditions, it was important to learn that the oxidation product has no disadvantages as compared to its precursor and therefore may be a better prospective imaging agent because of its chemical stability.

  7. Small and medium sized HDL particles are protectively associated with coronary calcification in a cross-sectional population-based sample.

    PubMed

    Ditah, Chobufo; Otvos, James; Nassar, Hisham; Shaham, Dorith; Sinnreich, Ronit; Kark, Jeremy D

    2016-08-01

    Failure of trials to observe benefits by elevating plasma high-density lipoprotein cholesterol (HDL-C) has raised serious doubts about HDL-C's atheroprotective properties. We aimed to identify protective HDL biomarkers by examining the association of nuclear magnetic resonance (NMR) measures of total HDL-particle (HDL-P), large HDL-particle, and small and medium-sized HDL-particle (MS-HDL-P) concentrations and average HDL-particle size with coronary artery calcification (CAC), which reflects the burden of coronary atherosclerosis, and compare with that of HDL-C. Using a cross-sectional design, 504 Jerusalem residents (274 Arabs and 230 Jews), recruited by population-based probability sampling, had HDL measured by NMR spectroscopy. CAC was determined by multidetector helical CT-scanning using Agatston scoring. Independent associations between the NMR measures and CAC (comparing scores ≥100 vs. <100) were assessed with multivariable binary logistic models. Comparing tertile 3 vs. tertile 1, we observed protective associations of HDL-P (multivariable-adjusted OR 0.42, 95% CI 0.22-0.79, plinear trend = 0.002) and MS-HDL-P (OR 0.36, 95% CI 0.19-0.69), plinear trend = 0.006 with CAC, which persisted after further adjustment for HDL-C. HDL-C was not significantly associated with CAC (multivariable-adjusted OR 0.59, 95% CI 0.27-1.29 for tertiles 3 vs. 1, plinear trend = 0.49). Large HDL-P and average particle size (which are highly correlated; r = 0.83) were not associated with CAC: large HDL-P (OR 0.77, 95% CI 0.33-1.83, plinear trend = 0.29) and average HDL-P size (OR 0.72, 95% CI 0.35-1.48, plinear trend = 0.58). MS-HDL-P represents a protective subpopulation of HDL particles. HDL-P and MS-HDL-P were more strongly associated with CAC than HDL-C. Based on the accumulating evidence, incorporation of MS-HDL-P or HDL-P into the routine prediction of CHD risk should be evaluated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    NASA Astrophysics Data System (ADS)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-05-01

    Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.

  9. Vitreous floaters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kershaw, K.; Nguyen, Derek; Yee, Kenneth; Nguyen, Justin A.; Harrington, Michael G.; Sebag, Jerry

    2017-02-01

    BACKGROUND: Vitreous opacities and posterior vitreous detachment (PVD) disturb vision by degrading contrast sensitivity (AJO 172:7-12, 2016). Increased light scattering is the presumed mechanism. To test this hypothesis, dynamic light scattering (DLS) was performed on excised vitreous of patients with clinically significant floaters, and compared to macular pucker controls. METHODS: Undiluted, unfixed vitreous was procured during 25-gauge vitrectomy in 14 subjects (age = 59 +/- 6.6 years) with clinically significant vitreous floaters, and 6 controls (age = 66.5 +/- 8.7 years; P = 0.10) with macular pucker. Total protein concentration was determined by fluorescent Quant-iTTM protein assay kit (Invitrogen/Molecular Probes, Eugene, OR) with bovine serum albumin (0500 ng/ml) as a standard. Fluorescence (excitation at 470 nm and emission at 570 nm) was measured using a Gemini XPS Dual-Scanning Microplate Spectrofluorometer and data analyzed using SoftMax Pro software (Molecular Devices, Sunnyvale, CA). DLS (NS300, Malvern Instruments, Westborough, MA) measurements were performed in each specimen after 10-fold dilution in phosphate buffered saline to optimize concentration in each specimen and determine the mean number of particles, the particle size distributions, and the average particle sizes. RESULTS: Total protein concentration in vitreous specimens trended higher in macular pucker controls (1037 +/- 1038 μg/mL) than eyes with vitreous floaters (353.7 +/- 141.1 μg/mL P = 0.08). When normalized to total protein concentration, the number of particles in vitreous from floater eyes was more than 2-fold greater than controls (P < 0.04). Particle size distributions were similarly two-fold greater in vitreous from floater subjects as compared to controls (P < 0.05). The average particle size in vitreous from floater eyes was 315.8 +/- 194.6 nm, compared to 147.7 +/- 129.3 nm in macular pucker controls (P = 0.039). CONCLUSIONS: Vitreous from eyes with clinically significant floaters contains more particles of larger sizes as compared to controls, likely accounting for the degradation of contrast sensitivity previously found in these patients (Retina 34:1062-8, 2014; IOVS 56:1611-7, 2015; AJO 172:7-12, 2016). DLS could elucidate the underlying molecular abnormalities in patients afflicted with bothersome vitreous floaters and help develop clinical tools to better measure vitreous floaters as well as test the efficacy of various therapies.

  10. Digital Image Analysis Algorithm For Determination of Particle Size Distributions In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Armas, O.; Ballesteros, R.; Gomez, A.

    One of the most serious problems associated to Diesel engines is pollutant emissions, standing out nitrogen oxides and particulate matter. However, although current emis- sions standards in Europe and America with regard to light vehicles and heavy duty engines refer the particulate limit in mass units, concern for knowing size and number of particles emitted by engines is being increased recently. This interest is promoted by last studies about particle harmful effects on health and is enhanced by recent changes in internal combustion engines technology. This study is focused on the implementation of a method to determine the particle size distribution made up in current methodology for vehicles certification in Europe. It will use an automated Digital Image Analysis Algorithm (DIAA) to determine particle size trends from Scanning Electron Microscope (SEM) images of filters charged in a dilution system used for measuring specific particulate emissions. The experimental work was performed on a steady state direct injection Diesel en- gine with 0.5 MW rated power, being considered as a typical engine in middle power industries. Particulate size distributions obtained using DIAA and a Scanning Mobil- ity Particle Sizer (SMPS), nowadays considered as the most reliable technique, were compared. Although number concentration detected by this method does not repre- sent real flowing particle concentration, this algorithm fairly reproduces the trends observed with SMPS when the engine load is varied.

  11. In situ pH within particle beds of bioactive glasses.

    PubMed

    Zhang, Di; Hupa, Mikko; Hupa, Leena

    2008-09-01

    The in vitro behavior of three bioactive glasses with seven particle size distributions was studied by measuring the in situ pH inside the particle beds for 48h in simulated body fluid (SBF). After immersion, the surface of the particles was characterized with a field emission scanning electron microscope equipped with an energy-dispersive X-ray analyzer. In addition, the results were compared with the reactions of the same glasses formed as plates. A similar trend in pH as a function of immersion time was observed for all systems. However, the pH inside the particle beds was markedly higher than that in the bulk SBF of the plates. The pH decreased as power functions with increasing particle size, i.e. with decreasing surface area. The in vitro reactivity expressed as layer formation strongly depended on the particle size and glass composition. The average thickness of the total reaction layer decreased with the increase in sample surface area. Well-developed silica and calcium phosphate layers typically observed on glass plates could be detected only on some particles freely exposed to the solution. No distinct reaction layers were observed on the finest particles, possibly because the layers spread out on the large surface area. Differences in the properties of the bulk SBF and the solution inside the particle bed were negligible for particles larger than 800microm. The results enhance our understanding of the in vitro reactions of bioactive glasses in various product forms and sizes.

  12. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters.

  13. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    PubMed

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Quantitative Test of the Applicability of Independent Scattering to High Albedo Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1993-01-01

    To test the hypothesis that the independent scattering calculation widely used to model radiative transfer in atmospheres and clouds will give a useful approximation to the intensity and linear polarization of visible light scattered from an optically thick surface of transparent particles, laboratory measurements are compared to the independent scattering calculation for a surface of spherical particles with known optical constants and size distribution. Because the shape, size distribution, and optical constants of the particles are known, the independent scattering calculation is completely determined and the only remaining unknown is the net effect of the close packing of the particles in the laboratory sample surface...

  15. Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations,more » size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.« less

  16. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model.

    PubMed

    Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua

    2017-11-01

    The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem

    PubMed Central

    Simon, Holly M.; Smith, Maria W.; Herfort, Lydie

    2014-01-01

    Our previously published research was one of the pioneering studies on the use of metagenomics to directly compare taxonomic and metabolic properties of aquatic microorganisms from different filter size-fractions. We compared size-fractionated water samples representing free-living and particle-attached communities from four diverse habitats in the Columbia River coastal margin, analyzing 12 metagenomes consisting of >5 million sequence reads (>1.6 Gbp). With predicted peptide and rRNA data we evaluated eukaryotic, bacterial and archaeal populations across size fractions and related their properties to attached and free-living lifestyles, and their potential roles in carbon and nutrient cycling. In this focused review, we expand our discussion on the use of high-throughput sequence data to relate microbial community structure and function to the origin, fate and transport of particulate organic matter (POM) in coastal margins. We additionally discuss the potential impact of the priming effect on organic matter cycling at the land-ocean interface, and build a case for the importance, in particle-rich estuaries and coastal margin waters, of microbial activities in low-oxygen microzones within particle interiors. PMID:25250019

  18. Terrestrial in situ sampling of dust devils (relative particle loads and vertical grain size distributions) as an equivalent for martian dust devils.

    NASA Astrophysics Data System (ADS)

    Raack, J.; Dennis, R.; Balme, M. R.; Taj-Eddine, K.; Ori, G. G.

    2017-12-01

    Dust devils are small vertical convective vortices which occur on Earth and Mars [1] but their internal structure is almost unknown. Here we report on in situ samples of two active dust devils in the Sahara Desert in southern Morocco [2]. For the sampling we used a 4 m high aluminium pipe with sampling areas made of removable adhesive tape. We took samples between 0.1-4 m with a sampling interval of 0.5 m and between 0.5-2 m with an interval of 0.25 m, respectively. The maximum diameter of all particles of the different sampling heights were then measured using an optical microscope to gain vertical grain size distributions and relative particle loads. Our measurements imply that both dust devils have a general comparable internal structure despite their different strengths and dimensions which indicates that the dust devils probably represents the surficial grain size distribution they move over. The particle sizes within the dust devils decrease nearly exponential with height which is comparable to results by [3]. Furthermore, our results show that about 80-90 % of the total particle load were lifted only within the first meter, which is a direct evidence for the existence of a sand skirt. If we assume that grains with a diameter <31 μm can go into suspension [4], our results show that only less than 0.1 wt% can be entrained into the atmosphere. Although this amount seems very low, these values represent between 60 and 70 % of all lifted particles due to the small grain sizes and their low weight. On Mars, the amount of lifted particles will be general higher as the dust coverage is larger [5], although the atmosphere can only suspend smaller grain sizes ( <20 μm) [6] compared to Earth. During our field campaign we observed numerous larger dust devils each day which were up to several hundred meters tall and had diameters of several tens of meters. This implies a much higher input of fine grained material into the atmosphere (which will have an influence on the climate, weather, and human health [7]) compared to the relative small dust devils sampled during our field campaign. [1] Thomas and Gierasch (1985) Science 230 [2] Raack et al. (2017) Astrobiology [3] Oke et al. (2007) J. Arid Environ. 71 [4] Balme and Greeley (2006) Rev. Geophys. 44 [5] Christensen (1986) JGR 91 [6] Newman et al. (2002) JGR 107 [7] Gillette and Sinclair (1990) Atmos. Environ. 24

  19. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals.

    PubMed

    Emami, Shahram; Siahi-Shadbad, Mohammadreza; Barzegar-Jalali, Mohammad; Adibkia, Khosro

    2018-06-01

    This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.

  20. Digesta retention patterns of solute and different-sized particles in camelids compared with ruminants and other foregut fermenters.

    PubMed

    Dittmann, Marie T; Runge, Ullrich; Ortmann, Sylvia; Lang, Richard A; Moser, Dario; Galeffi, Cordula; Schwarm, Angela; Kreuzer, Michael; Clauss, Marcus

    2015-07-01

    The mean retention times (MRT) of solute or particles in the gastrointestinal tract and the forestomach (FS) are crucial determinants of digestive physiology in herbivores. Besides ruminants, camelids are the only herbivores that have evolved rumination as an obligatory physiological process consisting of repeated mastication of large food particles, which requires a particle sorting mechanism in the FS. Differences between camelids and ruminants have hardly been investigated so far. In this study we measured MRTs of solute and differently sized particles (2, 10, and 20 mm) and the ratio of large-to-small particle MRT, i.e. the selectivity factors (SF(10/2mm), SF(20/2mm), SF(20/10mm)), in three camelid species: alpacas (Vicugna pacos), llamas (Llama glama), and Bactrian camels (Camelus bactrianus). The camelid data were compared with literature data from ruminants and non-ruminant foregut fermenters (NRFF). Camelids and ruminants both had higher SF(10/2mm)FS than NRFF, suggesting convergence in the function of the FS sorting mechanism in contrast to NRFF, in which such a sorting mechanism is absent. The SF(20/10mm)FS did not differ between ruminants and camelids, indicating that there is a particle size threshold of about 1 cm in both suborders above which particle retention is not increased. Camelids did not differ from ruminants in MRT(2mm)FS, MRTsoluteFS, and the ratio MRT(2mm)FS/MRTsoluteFS, but they were more similar to 'cattle-' than to 'moose-type' ruminants. Camelids had higher SF(10/2mm)FS and higher SF(20/2mm)FS than ruminants, indicating a potentially slower particle sorting in camelids than in ruminants, with larger particles being retained longer in relation to small particles.

  1. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    PubMed

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. CCN production by new particle formation in the free troposphere

    NASA Astrophysics Data System (ADS)

    Rose, Clémence; Sellegri, Karine; Moreno, Isabel; Velarde, Fernando; Ramonet, Michel; Weinhold, Kay; Krejci, Radovan; Andrade, Marcos; Wiedensohler, Alfred; Ginot, Patrick; Laj, Paolo

    2017-01-01

    Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contributes significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, on Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ˜ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between 1 January and 31 December 2012, we found that 61 % of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF, relative to the transport and growth of pre-existing particles, to CCN size. The averaged production of 50 nm particles during those events was 5072, and 1481 cm-3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 53 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud-related radiative processes.

  3. Deposition rates of fungal spores in indoor environments, factors effecting them and comparison with non-biological aerosols

    NASA Astrophysics Data System (ADS)

    Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

    Particle deposition indoors is one of the most important factors that determine the effect of particle exposure on human health. While many studies have investigated the particle deposition of non-biological aerosols, few have investigated biological aerosols and even fewer have studied fungal spore deposition indoors. The purpose of this study was, for the first time, to investigate the deposition rates of fungal particles in a chamber of 20.4 m 3 simulating indoor environments by: (1) releasing fungal particles into the chamber, in sufficient concentrations so the particle deposition rates can be statistically analysed; (2) comparing the obtained deposition rates with non-bioaerosol particles of similar sizes, investigated under the same conditions; and (3) investigating the effects of ventilation on the particle deposition rates. The study was conducted for a wide size range of particle sizes (0.54-6.24 μm), at three different air exchange rates (0.009, 1.75 and 2.5 h -1). An Ultraviolet Aerodynamic Particle Sizer Spectrometer (UVAPS) was used to monitor the particle concentration decay rate. The study showed that the deposition rates of fungal spores ( Aspergillus niger and Penicillium species) and the other aerosols (canola oil and talcum powder) were similar, especially at very low air exchange rates (in the order of 0.009). Both the aerosol and the bioaerosol deposition rates were found to be a function of particle size. The results also showed increasing deposition rates with increasing ventilation rates, for all particles under investigation. These conclusions are important in understanding the dynamics of fungal spores in the air.

  4. Particle Size Distributions of Particulate Emissions from the Ferroalloy Industry Evaluated by Electrical Low Pressure Impactor (ELPI)

    PubMed Central

    Kero, Ida; Naess, Mari K.; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm – 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385

  5. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate

    PubMed Central

    Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong

    2017-01-01

    Zein-based nano/microparticles have been demonstrated to be promising carrier systems for both the food industry and biomedical applications. However, the fabrication of size-controlled zein particles has been a challenging issue. In this study, a modified anti-solvent precipitation method was developed, and the effects of various factors, such as mixing method, solvent/anti-solvent ratio, temperature, zein concentrations and the presence of sodium caseinate (SC) on properties of zein particles were investigated. Evidence is presented that, among the previously mentioned factors, the mixing method, especially mixing rate, could be used as an effective parameter to control the size of zein particles without changing other parameters. Moreover, through fine-tuning the mixing rate together with zein concentration, particles with sizes ranging from nanometers to micrometers and low polydispersity index values could be easily obtained. Based on the size-controlled fabrication method, SC-coated zein nanoparticles could also be obtained in a size-controlled manner by incubation of the coating material with the already-formed zein particles. The resultant nanoparticles showed better performance in both drug loading and controlled release, compared with zein/SC hybrid nanoparticles fabricated by adding aqueous ethanol solution to SC solution. The possible mechanisms of the nanoprecipitation process and self-assembly formation of these nanoparticles are discussed. PMID:29184408

  6. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate.

    PubMed

    Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong

    2017-01-01

    Zein-based nano/microparticles have been demonstrated to be promising carrier systems for both the food industry and biomedical applications. However, the fabrication of size-controlled zein particles has been a challenging issue. In this study, a modified anti-solvent precipitation method was developed, and the effects of various factors, such as mixing method, solvent/anti-solvent ratio, temperature, zein concentrations and the presence of sodium caseinate (SC) on properties of zein particles were investigated. Evidence is presented that, among the previously mentioned factors, the mixing method, especially mixing rate, could be used as an effective parameter to control the size of zein particles without changing other parameters. Moreover, through fine-tuning the mixing rate together with zein concentration, particles with sizes ranging from nanometers to micrometers and low polydispersity index values could be easily obtained. Based on the size-controlled fabrication method, SC-coated zein nanoparticles could also be obtained in a size-controlled manner by incubation of the coating material with the already-formed zein particles. The resultant nanoparticles showed better performance in both drug loading and controlled release, compared with zein/SC hybrid nanoparticles fabricated by adding aqueous ethanol solution to SC solution. The possible mechanisms of the nanoprecipitation process and self-assembly formation of these nanoparticles are discussed.

  7. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPR MAX ), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. An improved methodology of asymmetric flow field flow fractionation hyphenated with inductively coupled mass spectrometry for the determination of size distribution of gold nanoparticles in dietary supplements.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-11-13

    Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.

  9. Project environmental microbiology as related to planetary quarantine

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1974-01-01

    Microbiological analyses of soil particles allow for the following conclusions: (1) there is a considerable range in the values of aerobic, mesophilic microbial counts associated with different size soil fractions; (2) as soil particle size increases, there is an increase in the mean microbial concentration per particle; (3) plate counts of aerobic, mesophilic organisms in unheated soils yielded a mean concentration of about six organisms per particle for the smallest soil fraction; (4) aerobic, mesophilic counts for sonicated particles heated at 80 C for 20 minutes yielded mean values of about two organisms per particle for the smallest particles; (5) some actinomycetes associated with the soil fractions could survive dry heat treatment at 110 C for one hour; and (6) soil particles stored under ambient laboratory conditions for 2.5 years aerobic, mesophilic plate counts which were comparable or slightly greater than the counts for more recently collected soil.

  10. An experimental and theoretical investigation on torrefaction of a large wet wood particle.

    PubMed

    Basu, Prabir; Sadhukhan, Anup Kumar; Gupta, Parthapratim; Rao, Shailendra; Dhungana, Alok; Acharya, Bishnu

    2014-05-01

    A competitive kinetic scheme representing primary and secondary reactions is proposed for torrefaction of large wet wood particles. Drying and diffusive, convective and radiative mode of heat transfer is considered including particle shrinking during torrefaction. The model prediction compares well with the experimental results of both mass fraction residue and temperature profiles for biomass particles. The effect of temperature, residence time and particle size on torrefaction of cylindrical wood particles is investigated through model simulations. For large biomass particles heat transfer is identified as one of the controlling factor for torrefaction. The optimum torrefaction temperature, residence time and particle size are identified. The model may thus be integrated with CFD analysis to estimate the performance of an existing torrefier for a given feedstock. The performance analysis may also provide useful insight for design and development of an efficient torrefier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. High transport efficiency of nanoparticles through a total-consumption sample introduction system and its beneficial application for particle size evaluation in single-particle ICP-MS.

    PubMed

    Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Fujii, Shin-Ichiro; Takatsu, Akiko; Inagaki, Kazumi; Fujimoto, Toshiyuki

    2017-02-01

    In order to facilitate reliable and efficient determination of both the particle number concentration (PNC) and the size of nanoparticles (NPs) by single-particle ICP-MS (spICP-MS) without the need to correct for the particle transport efficiency (TE, a possible source of bias in the results), a total-consumption sample introduction system consisting of a large-bore, high-performance concentric nebulizer and a small-volume on-axis cylinder chamber was utilized. Such a system potentially permits a particle TE of 100 %, meaning that there is no need to include a particle TE correction when calculating the PNC and the NP size. When the particle TE through the sample introduction system was evaluated by comparing the frequency of sharp transient signals from the NPs in a measured NP standard of precisely known PNC to the particle frequency for a measured NP suspension, the TE for platinum NPs with a nominal diameter of 70 nm was found to be very high (i.e., 93 %), and showed satisfactory repeatability (relative standard deviation of 1.0 % for four consecutive measurements). These results indicated that employing this total consumption system allows the particle TE correction to be ignored when calculating the PNC. When the particle size was determined using a solution-standard-based calibration approach without an NP standard, the particle diameters of platinum and silver NPs with nominal diameters of 30-100 nm were found to agree well with the particle diameters determined by transmission electron microscopy, regardless of whether a correction was performed for the particle TE. Thus, applying the proposed system enables NP size to be accurately evaluated using a solution-standard-based calibration approach without the need to correct for the particle TE.

  12. Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-06-01

    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp < 0.96 μm. Non-exchangeable aliphatic (H-C), unsaturated aliphatic (H-C-C=), oxygenated saturated aliphatic (H-C-O), acetalic (O-CH-O) and aromatic (Ar-H) protons were determined by proton nuclear magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 1.5 < dp < 3.0 μm to 73.9 ± 12.3 nmol m-3 for particles with dp < 0.49 μm. The molar H / C ratios varied from 0.48 ± 0.05 to 0.92 ± 0.09, which were comparable to those observed for combustion-related organic aerosol. The R-H was the most abundant group, representing about 45% of measured total non-exchangeable organic hydrogen concentrations, followed by H-C-O (27%) and H-C-C= (26%). Levoglucosan, amines, ammonium and methanesulfonate were identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  13. Vegetable Oil-Loaded Nanocapsules: Innovative Alternative for Incorporating Drugs for Parenteral Administration.

    PubMed

    Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S

    2016-02-01

    An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.

  14. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  15. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    PubMed

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas with high concentrations of NH4NO3 and other volatile particles.

  16. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    PubMed

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  17. Ultrasonic synthesis of hydroxyapatite in non-cavitation and cavitation modes.

    PubMed

    Nikolaev, A L; Gopin, A V; Severin, A V; Rudin, V N; Mironov, M A; Dezhkunov, N V

    2018-06-01

    The size control of materials is of great importance in research and technology because materials of different size and shape have different properties and applications. This paper focuses on the synthesis of hydroxyapatite in ultrasound fields of different frequencies and intensities with the aim to find the conditions which allow control of the particles size. The results are evaluated by X-ray diffraction, Transmission Electron Microscopy, morphological and sedimentation analyses. It is shown that the hydroxyapatite particles synthesized at low intensity non-cavitation regime of ultrasound have smaller size than those prepared at high intensity cavitation regime. The explanation of observed results is based on the idea of formation of vortices at the interface between phosphoric acid and calcium hydroxide solution where the nucleation of hydroxyapatite particles is taken place. Smaller vortices formed at high frequency non-cavitation ultrasound regime provide smaller nucleation sites and smaller resulting particles, compared to vortices and particles obtained without ultrasound. Discovered method has a potential of industrial application of ultrasound for the controlled synthesis of nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Evaluation of the filtration performance of NIOSH-approved N95 filtering facepiece respirators by photometric and number-based test methods.

    PubMed

    Rengasamy, Samy; Miller, Adam; Eimer, Benjamin C

    2011-01-01

    N95 particulate filtering facepiece respirators are certified by measuring penetration levels photometrically with a presumed severe case test method using charge neutralized NaCl aerosols at 85 L/min. However, penetration values obtained by photometric methods have not been compared with count-based methods using contemporary respirators composed of electrostatic filter media and challenged with both generated and ambient aerosols. To better understand the effects of key test parameters (e.g., particle charge, detection method), initial penetration levels for five N95 model filtering facepiece respirators were measured using NaCl aerosols with the aerosol challenge and test equipment employed in the NIOSH respirator certification method (photometric) and compared with an ultrafine condensation particle counter method (count based) for the same NaCl aerosols as well as for ambient room air particles. Penetrations using the NIOSH test method were several-fold less than the penetrations obtained by the ultrafine condensation particle counter for NaCl aerosols as well as for room particles indicating that penetration measurement based on particle counting offers a more difficult challenge than the photometric method, which lacks sensitivity for particles < 100 nm. All five N95 models showed the most penetrating particle size around 50 nm for room air particles with or without charge neutralization, and at 200 nm for singly charged NaCl monodisperse particles. Room air with fewer charged particles and an overwhelming number of neutral particles contributed to the most penetrating particle size in the 50 nm range, indicating that the charge state for the majority of test particles determines the MPPS. Data suggest that the NIOSH respirator certification protocol employing the photometric method may not be a more challenging aerosol test method. Filter penetrations can vary among workplaces with different particle size distributions, which suggests the need for the development of new or revised "more challenging" aerosol test methods for NIOSH certification of respirators.

  19. Biomass particle models with realistic morphology and resolved microstructure for simulations of intraparticle transport phenomena

    DOE PAGES

    Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; ...

    2014-12-09

    Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, includingmore » cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species ( Populus tremuloides, quaking aspen) and a softwood pine ( Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.« less

  20. Gypsum crystal size distribution in four continuous flow stirred slurry boric acid reactors in series compared with the batch

    NASA Astrophysics Data System (ADS)

    Çakal, G. Ö.; Eroğlu, İ.; Özkar, S.

    2006-04-01

    Colemanite, one of the important boron minerals, is dissolved in aqueous sulfuric acid to produce boric acid. In this reaction, gypsum is obtained as a by-product. Gypsum crystals are in the shape of thin needles. These crystals should be grown to an easily filterable size in order to increase the production yield and purity of boric acid. In this paper, the particle size distributions and the volume-weighted mean diameters of the gypsum crystals obtained in batch and continuous flow systems were compared. Experiments in both batch and continuous reactors were performed at a temperature of 85 °C, a stirring rate of 400 rpm, and the inlet CaO to SO42- molar ratio of 1.0 using colemanite mineral in particle size smaller than 150 μm. The average diameter of the gypsum crystals obtained at 3.5 h from the batch reactor was found to be 37-41 μm. This value for the continuous system at steady state was observed to change between 44-163 μm. The particle size of the gypsum crystals was found to increase with the residence time of the solid in the continuous system.

  1. Dissolution Kinetics of Spheroidal-Shaped Precipitates in Age-Hardenable Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Anjabin, Nozar; Salehi, Majid Seyed

    2018-05-01

    As a first attempt, a mathematical model is proposed to predict the dissolution kinetics of non-spherical secondary phase precipitates during solution heat treatment of age-hardenable aluminum alloys. The model uses general spheroidal geometry to describe the dissolution process of the alloys containing needle/disc-shaped particles with different size distributions in a finite matrix. It is found that as the aspect ratio deviates from unity, the dissolution rate is accelerated. Also, the dissolution rate of the particles in the alloy containing the particle size distribution is lower than that of mono-sized particles system. The modeling results for dissolution of θ' precipitates in an Al-Cu alloy are compared with experiments, and a good agreement was found between the modeling and the experimental results. The proposed model can be applied to different isothermal and non-isothermal annealing conditions.

  2. Study of TiO2 particles size, dyes, and catalyst to improve the performance of DSSC

    NASA Astrophysics Data System (ADS)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-02-01

    This study reports effort to improve performance of solar cells by using various natural dyes in dye-sensitized solar cell (DSSC). We applied three kind of natural dye, i.e, black rice dye, cactus dye and dragon fruit dye. We found that performance of DSSC which employ black rice dye was higher than other natural dyes. It is because the wider spectrum wavelength of black rice dyes. Its performance also compared with rhutenium dye (N719). Effect of TiO2 particle to DSSC performance was also investigated. It was concluded that smaller TiO2 particle size will increase the performance of DSSC solar cells. It was because the smaller particle size (high surface area) will load more dye. In addition, we also demonstrated the use of graphite from lead pencil as counter electrode.

  3. Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors

    PubMed Central

    Rennie, Anthony J. R.; Martins, Vitor L.; Smith, Rachel M.; Hall, Peter J.

    2016-01-01

    Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs−1) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles. PMID:26911531

  4. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    PubMed

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.

    PubMed

    Thorpe, Andrew; Walsh, Peter T

    2013-08-01

    Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the photometer-type dust monitors on the other hand showed little correlation. The Respicon also accurately measured the inhalable concentration, whereas the modified PDM underestimated it by ~27%. Photometer responses varied considerably with changing particle size, which resulted in appreciable errors in airborne inhalable dust concentration measurements. Similar trends were also observed during field trials. Despite having limitations, both the modified PDM and Respicon showed promise as real-time inhalable dust monitors.

  6. 40 CFR 79.61 - Vehicle emissions inhalation exposure guideline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... velocity as the particle of the test substance. It is used to compare particles of different sizes, densities and shapes, and to predict where in the respiratory tract such particles may be deposited. It... conditions so that there is more complete mixing of the exhaust emissions. (C) Wall losses. The delivery...

  7. 40 CFR 79.61 - Vehicle emissions inhalation exposure guideline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... velocity as the particle of the test substance. It is used to compare particles of different sizes, densities and shapes, and to predict where in the respiratory tract such particles may be deposited. It... conditions so that there is more complete mixing of the exhaust emissions. (C) Wall losses. The delivery...

  8. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    PubMed

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  9. Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes

    NASA Astrophysics Data System (ADS)

    Pohjalainen, Elina; Kallioinen, Jani; Kallio, Tanja

    2015-04-01

    Traditionally electrodes for lithium ion batteries are manufactured using carbon additives to increase the conductivity. However, in case of lithium titanate, Li4Ti5O12 (LTO), carbon free electrodes have gathered some interest lately. Therefore two LTO materials synthesized using the same synthesis but different end milling process resulting in materials with different particle size and surface area are compared here using electrodes manufactured with and without carbon additives. Both LTO samples (LTO-SP with small primary particle size and high surface area, and LTO-LP with larger primary particle size and small surface area) produce similar capacities and voltages with or without carbon additives at low C-rates at the room temperature. However, at high C-rates and/or sub-zero temperatures electrodes with carbon additives produce higher capacities and smaller ohmic losses and this behavior is more pronounced for the LTO electrodes with smaller primary particle size and larger surface area. These results show that the feasibility of carbon free LTO electrodes depends on the properties of LTO affecting the morphology of the electrode and consequently, the transport properties. This is most pronounced under conditions where electron and Li+ ion transfer become limiting (high C-rates and low temperature).

  10. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol.

    PubMed

    Wang, Ding; Niu, Wenqi; Tan, Minghui; Wu, Mingbo; Zheng, Xuejun; Li, Yanpeng; Tsubaki, Noritatsu

    2014-05-01

    Pt nanocatalysts loaded on reduced graphene oxide (Pt/RGO) were prepared by means of a convenient microwave-assisted reduction approach with ethylene glycol as reductant. The conversion of cellulose or cellobiose into sorbitol was used as an application reaction to investigate their catalytic performance. Various metal nanocatalysts loaded on RGO were compared and RGO-supported Pt exhibited the highest catalytic activity with 91.5 % of sorbitol yield from cellobiose. The catalytic performances of Pt nanocatalysts supported on different carbon materials or on silica support were also compared. The results showed that RGO was the best catalyst support, and the yield of sorbitol was as high as 91.5 % from cellobiose and 58.9 % from cellulose, respectively. The improvement of catalytic activity was attributed to the appropriate Pt particle size and hydrogen spillover effect of Pt/RGO catalyst. Interestingly, the size and dispersion of supported Pt particles could be easily regulated by convenient adjustment of the microwave heating temperature. The catalytic performance was found to initially increase and then decrease with increasing particle size. The optimum Pt particle size was 3.6 nm. These findings may offer useful guidelines for designing novel catalysts with beneficial catalytic performance for biomass conversion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.

    PubMed

    Stabile, Luca; Cauda, Emanuele; Marini, Sara; Buonanno, Giorgio

    2014-08-01

    Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  12. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective.

    PubMed

    Hedberg, Yolanda; Gustafsson, Johanna; Karlsson, Hanna L; Möller, Lennart; Odnevall Wallinder, Inger

    2010-09-03

    Production of ferrochromium alloys (FeCr), master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr), ferrosiliconchromium (FeSiCr), stainless steel (316L), iron (Fe), chromium (Cr), and chromium(III)oxide (Cr2O3), in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549). The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF) of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III)-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III) from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death after 24 h exposure. It is evident that particle and alloy characteristics such as particle size and surface composition are important aspects to consider when assessing particle toxicity and metal release from alloy particles compared to pure metal particles. Generated results clearly elucidate that neither the low released concentrations of metals primarily as a result of protective and poorly soluble surface oxides, nor non-bioavailable chromium complexes, nor the particles themselves of occupational relevance induced significant acute toxic response, with exception of DNA damage from stainless steel.

  13. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    PubMed Central

    2010-01-01

    Background Production of ferrochromium alloys (FeCr), master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr), ferrosiliconchromium (FeSiCr), stainless steel (316L), iron (Fe), chromium (Cr), and chromium(III)oxide (Cr2O3), in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549). Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF) of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III)-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III) from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death after 24 h exposure. Conclusion It is evident that particle and alloy characteristics such as particle size and surface composition are important aspects to consider when assessing particle toxicity and metal release from alloy particles compared to pure metal particles. Generated results clearly elucidate that neither the low released concentrations of metals primarily as a result of protective and poorly soluble surface oxides, nor non-bioavailable chromium complexes, nor the particles themselves of occupational relevance induced significant acute toxic response, with exception of DNA damage from stainless steel. PMID:20815895

  14. Comparative measurements using different particle size instruments

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    This paper discusses the measurement and comparison of particle size and velocity measurements in sprays. The general nature of sprays and the development of standard, consistent research sprays are described. The instruments considered in this paper are: pulsed laser photography, holography, television, and cinematography; laser anemometry and interferometry using visibility, peak amplitude, and intensity ratioing; and laser diffraction. Calibration is by graticule, reticle, powders with known size distributions in liquid cells, monosize sprays, and, eventually, standard sprays. Statistical analyses including spatial and temporal long-time averaging as well as high-frequency response time histories with conditional sampling are examined. Previous attempts at comparing instruments, the making of simultaneous or consecutive measurements with similar types and different types of imaging, interferometric, and diffraction instruments are reviewed. A program of calibration and experiments for comparing and assessing different instruments is presented.

  15. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions.

    PubMed

    Duffus, Laudina J; Norton, Jennifer E; Smith, Paul; Norton, Ian T; Spyropoulos, Fotios

    2016-07-01

    Whilst literature describing edible Pickering emulsions is becoming increasingly available, current understanding of these systems still suffers from a lack of consistency in terms of the (processing and formulation) conditions within which these structures have been studied. The current study aims to provide a comparative analysis of the behaviour of different edible Pickering candidates and their ability to stabilise emulsion droplets, under well-controlled and uniform experimental conditions, in order to clearly identify the particle properties necessary for successful Pickering functionality. More specifically, an extensive investigation into the suitability of various food-grade material to act as Pickering particles and provide stable oil-in-water (O/W) and water-in-oil (W/O) emulsions was carried out. Polysaccharide and flavonoid particles were characterised in terms of their size, ζ-potential, interfacial activity and wettability, under equivalent conditions. Particles were subsequently used to stabilise 20% w/w O/W and W/O emulsions, in the absence of added surfactant or other known emulsifying agents, through different processing routes. All formed Pickering emulsions were shown to resist significant droplet size variation and remain stable at particle concentrations between 2 and 3% w/w. The main particle prerequisites for successful Pickering stabilisation were: particle size (200nm - 1μm); an affinity for the emulsion continuous phase and a sufficient particle charge to extend stability. Depending upon the employed emulsification process, the resulting emulsion formation and stability behaviour can be reasonably predicted a priori from the evaluation of specific particle characteristics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise.

    PubMed

    Harrison, Michael; Moyna, Niall M; Zderic, Theodore W; O'Gorman, Donal J; McCaffrey, Noel; Carson, Brian P; Hamilton, Marc T

    2012-07-10

    Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70-120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43-55 nm (medium) particle range. VLDL-TG in smaller particles (29-43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity.

  17. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    PubMed Central

    2012-01-01

    Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). Results The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium) particle range. VLDL-TG in smaller particles (29–43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. Conclusions These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity. PMID:22672707

  18. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles

    PubMed Central

    Hedberg, Jonas; Di Bucchianico, Sebastiano; Möller, Lennart; Odnevall Wallinder, Inger; Elihn, Karine; Karlsson, Hanna L.

    2016-01-01

    Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80–100 wt% for metallic Ni) than in cell medium after 24h (ca. 1–3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20–40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies. PMID:27434640

  19. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    PubMed

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  20. The Size Distribution of Atmospheric Aerosols at Kosan, Korea during ACE-Asia: Changes due to Dust Input and Scavenging by Precipitation

    NASA Astrophysics Data System (ADS)

    Jung, C.; Kim, J.; Choi, B.; Brechtel, F. J.; Buzorius, G.; Oh, S.

    2001-12-01

    Measurements of size-resolved aerosol number concentrations were made at the Kosan supersite in Korea during the ACE-Asia intensive observation period. An optical particle counter (OPC) was used for measurements in the 0.3-25.0 micrometer diameter size range every ten minutes while a scanning electrical mobility spectrometer (SEMS) was used for smaller particles. A comparison of size distributions between dust and non-dust input periods and times with and without precipitation has been performed. During dust events, the number and volume concentrations of large particles (>1.35 micrometer) increased by factors of 10 and 1000, respectively. Also, a dominant number mode diameter between 2.23-3.67 micrometer was observed during dust events. The number concentrations of smaller particles observed by the OPC (0.3-1 micrometer) and SEMS (0.005-0.6 micrometer) were relatively smaller during dust events, consistent with previous studies and the effect of coagulation processes (Zaizen et al., 1995; Chun et al., 2001). During precipitation events, coarse mode particles (>1 micrometer) were scavenged more efficiently than smaller particles. This result suggests that large particles are efficiently scavenged by impaction with raindrops. In contrast, relatively minor reductions in the number concentrations of small particles (0.3-1 micrometer) were observed during precipitation events. SEMS results during one precipitation event indicate factor of three reductions in total number and area concentrations for particle sizes below the detection limit of the OPC. Results from theoretical analyses of scavenging rates as a function of particle size during precipitation events will be presented and compared to values derived from observed size distributions. References Chun, Y., Kim, J., Choi, J. C., Boo, K. O., Oh, S. N., and Lee, M. (2001). Characteristic number size distribution of aerosol during Asian dust period in Korea, Atmospheric Environment, 35, 2715-2721. Zaizen, Y., Ikegami, M., Okada, K., and Makino, Y. (1995). Aerosol concentration observed at Zhangye in China, J. Meteorological Society in Japan, 73, 891-897.

  1. Particle size distributions of lead measured in battery manufacturing and secondary smelter facilities and implications in setting workplace lead exposure limits.

    PubMed

    Petito Boyce, Catherine; Sax, Sonja N; Cohen, Joel M

    2017-08-01

    Inhalation plays an important role in exposures to lead in airborne particulate matter in occupational settings, and particle size determines where and how much of airborne lead is deposited in the respiratory tract and how much is subsequently absorbed into the body. Although some occupational airborne lead particle size data have been published, limited information is available reflecting current workplace conditions in the U.S. To address this data gap, the Battery Council International (BCI) conducted workplace monitoring studies at nine lead acid battery manufacturing facilities (BMFs) and five secondary smelter facilities (SSFs) across the U.S. This article presents the results of the BCI studies focusing on the particle size distributions calculated from Personal Marple Impactor sampling data and particle deposition estimates in each of the three major respiratory tract regions derived using the Multiple-Path Particle Dosimetry model. The BCI data showed the presence of predominantly larger-sized particles in the work environments evaluated, with average mass median aerodynamic diameters (MMADs) ranging from 21-32 µm for the three BMF job categories and from 15-25 µm for the five SSF job categories tested. The BCI data also indicated that the percentage of lead mass measured at the sampled facilities in the submicron range (i.e., <1 µm, a particle size range associated with enhanced absorption of associated lead) was generally small. The estimated average percentages of lead mass in the submicron range for the tested job categories ranged from 0.8-3.3% at the BMFs and from 0.44-6.1% at the SSFs. Variability was observed in the particle size distributions across job categories and facilities, and sensitivity analyses were conducted to explore this variability. The BCI results were compared with results reported in the scientific literature. Screening-level analyses were also conducted to explore the overall degree of lead absorption potentially associated with the observed particle size distributions and to identify key issues associated with applying such data to set occupational exposure limits for lead.

  2. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  3. Flow Microscopy Imaging Is Sensitive to Characteristics of Subvisible Particles in Peginesatide Formulations Associated With Severe Adverse Reactions.

    PubMed

    Daniels, Austin L; Randolph, Theodore W

    2018-05-01

    The presence of subvisible particles in formulations of therapeutic proteins is a risk factor for adverse immune responses. Although the immunogenic potential of particulate contaminants likely depends on particle structural characteristics (e.g., composition, size, and shape), exact structure-immunogenicity relationships are unknown. Images recorded by flow imaging microscopy reflect information about particle morphology, but flow microscopy is typically used to determine only particle size distributions, neglecting information on particle morphological features that may be immunologically relevant. We recently developed computational techniques that utilize the Kullback-Leibler divergence and multidimensional scaling to compare the morphological properties of particles in sets of flow microscopy images. In the current work, we combined these techniques with expectation maximization cluster analyses and used them to compare flow imaging microscopy data sets that had been collected by the U.S. Food and Drug Administration after severe adverse drug reactions (including 7 fatalities) were observed in patients who had been administered some lots of peginesatide formulations. Flow microscopy images of particle populations found in the peginesatide lots associated with severe adverse reactions in patients were readily distinguishable from images of particles in lots where severe adverse reactions did not occur. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Metal Matrix Composites Directionally Solidified

    NASA Astrophysics Data System (ADS)

    Ares, Alicia Esther; Schvezov, Carlos Enrique

    The present work is focus on studying the dendritic solidification of metal matrix composites, MMCs, (using zinc-aluminum, ZA, alloys as matrix and the addition of SiC and Al2O3 particles). The compounds were obtained by as-cast solidification, under continuous stirring and in a second stage were directionally solidified in order to obtain different dendritic growth (columnar, equiaxed and columnar-to-equiaxed transition (CET)). The results in MMCs were compared with those obtained in directional solidification of ZA alloys, primarily with regard to structural parameters. The size and evolution of microstructure, according to the size of the MMCs particles and the variation of the thermal parameters was analyzing. In general it was found that the size of the microstructure (secondary dendritic spacing) decreases with the increase of particles in the matrix. When cooling rate increases, particle size decreases, and a higher cooling rate causes finer and more homogeneous dendrites Also, the segregation which was found in the matrix of the composites was significantly less than in the case of ZA alloys.

  5. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  6. Multiple Method Analysis of TiO2 Nanoparticle Uptake in Rice (Oryza sativa L.) Plants.

    PubMed

    Deng, Yingqing; Petersen, Elijah J; Challis, Katie E; Rabb, Savelas A; Holbrook, R David; Ranville, James F; Nelson, Bryant C; Xing, Baoshan

    2017-09-19

    Understanding the translocation of nanoparticles (NPs) into plants is challenging because qualitative and quantitative methods are still being developed and the comparability of results among different methods is unclear. In this study, uptake of titanium dioxide NPs and larger bulk particles (BPs) in rice plant (Oryza sativa L.) tissues was evaluated using three orthogonal techniques: electron microscopy, single-particle inductively coupled plasma mass spectroscopy (spICP-MS) with two different plant digestion approaches, and total elemental analysis using ICP optical emission spectroscopy. In agreement with electron microscopy results, total elemental analysis of plants exposed to TiO 2 NPs and BPs at 5 and 50 mg/L concentrations revealed that TiO 2 NPs penetrated into the plant root and resulted in Ti accumulation in above ground tissues at a higher level compared to BPs. spICP-MS analyses revealed that the size distributions of internalized particles differed between the NPs and BPs with the NPs showing a distribution with smaller particles. Acid digestion resulted in higher particle numbers and the detection of a broader range of particle sizes than the enzymatic digestion approach, highlighting the need for development of robust plant digestion procedures for NP analysis. Overall, there was agreement among the three techniques regarding NP and BP penetration into rice plant roots and spICP-MS showed its unique contribution to provide size distribution information.

  7. PCOS is Associated with Atherogenic Changes in Lipoprotein Particle Number and Size Independent of Body Weight

    PubMed Central

    Sidhwani, Seema; Scoccia, Bert; Sunghay, Shwetha; Stephens-Archer, Chantale N.; Mazzone, Theodore; Sam, Susan

    2011-01-01

    Objective Adverse changes in lipoprotein particle number and size are common with insulin resistance and are associated with increased cardiovascular risk. Comprehensive information regarding lipoprotein particle number and size, and how these parameters relate to body weight, insulin resistance and hyperandrogenemia is lacking in PCOS. We tested the hypothesis that PCOS is associated with atherogenic changes in lipoprotein profile independent of body weight and examined the role of insulin resistance and androgens in these atherogenic changes. Design Case-control study performed at Clinical Research Center at an Academic Medical Center in United States. Patients and Measurements Fasting Blood was obtained from 25 PCOS and 25 control women of similar age and BMI. Lipoprotein particle number and size was determined by nuclear magnetic resonance and compared between the groups. Results The mean BMI for both groups was less than 30 kg/m2 (P=0.33). Women with PCOS had an increase in VLDL particle number (P=0.005), LDL particle number (P=0.02) and a decrease in HDL size (P=0.04). LDL size was borderline decreased (P=0.09). These differences persisted after adjustment for ethnicity, alcohol and tobacco intake and exercise. In stepwise regression models, bioavailable testosterone was the only predictor of LDL cholesterol, triglyceride, VLDL and LDL particle number. SHBG was the only predictor of LDL and HDL size. Conclusions Independent of body weight, PCOS was associated with changes in lipoprotein profile that increases risk for cardiovascular disease. These changes were present in a mostly non-obese group of women and were more closely related to androgens than fasting insulin. PMID:21521284

  8. Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence

    NASA Astrophysics Data System (ADS)

    Fan, Y. R.; Huang, G. H.; Baetz, B. W.; Li, Y. P.; Huang, K.

    2017-06-01

    In this study, a copula-based particle filter (CopPF) approach was developed for sequential hydrological data assimilation by considering parameter correlation structures. In CopPF, multivariate copulas are proposed to reflect parameter interdependence before the resampling procedure with new particles then being sampled from the obtained copulas. Such a process can overcome both particle degeneration and sample impoverishment. The applicability of CopPF is illustrated with three case studies using a two-parameter simplified model and two conceptual hydrologic models. The results for the simplified model indicate that model parameters are highly correlated in the data assimilation process, suggesting a demand for full description of their dependence structure. Synthetic experiments on hydrologic data assimilation indicate that CopPF can rejuvenate particle evolution in large spaces and thus achieve good performances with low sample size scenarios. The applicability of CopPF is further illustrated through two real-case studies. It is shown that, compared with traditional particle filter (PF) and particle Markov chain Monte Carlo (PMCMC) approaches, the proposed method can provide more accurate results for both deterministic and probabilistic prediction with a sample size of 100. Furthermore, the sample size would not significantly influence the performance of CopPF. Also, the copula resampling approach dominates parameter evolution in CopPF, with more than 50% of particles sampled by copulas in most sample size scenarios.

  9. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    PubMed

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  11. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Furthermore, analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  12. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, D. B.; Radney, J. G.; Lum, J.

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Furthermore, analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  13. Application of close-packed structures in dental resin composites.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-03-01

    The inorganic filler particles in dental resin composites serve to improve their mechanical properties and reduce polymerization shrinkage during their use. Efforts have been made in academia and industry to increase the filler particle content, but, few studies examine the theoretical basis for the maximum particle loading. This work evaluates the packing of spherical particles in a close-packed state for highly loaded composites. Calculations show that for low dispersity particles, the maximum amount of particles is 74.05vol%, regardless of the particle size. This can be further improved by using a mix of large and small particles or by the use of non-spherical particles. For representative spherical particles with a diameter of 1000nm, two types of secondary particles with respective sizes of 414nm (d I ) and 225nm (d II ) are selected. The results show that after embedding secondary particles I & II into primary spherical particles, the packing factor is increased to 81.19% for the close-packed structures, which shows an improvement of 9.64%, compared to the 74.05% obtained only with primary spherical particles. This packing factor is also higher than either structure with the embedded secondary particles I or II. Examples of these mixtures with different spherical particle sizes are shown as a theoretical estimation, serving as a guideline for the design and formulation of new dental resin composites with better properties and improved performance. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.

    2012-02-01

    An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.

  15. Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate.

    PubMed

    Crimi, Michelle; Ko, Saebom

    2009-02-01

    In situ chemical oxidation using permanganate is an approach to organic contaminant site remediation. Manganese dioxide particles are products of permanganate reactions. These particles have the potential to deposit in the subsurface and impact the flow-regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport and contact between the oxidant and contaminants of concern. The goals of this research were to determine if MnO(2) can be stabilized/controlled in an aqueous phase, and to determine the dependence of particle stabilization on groundwater characteristics. Bench-scale experiments were conducted to study the ability of four stabilization aids (sodium hexametaphosphate (HMP), Dowfax 8390, xanthan gum, and gum arabic) in maintaining particles suspended in solution under varied reaction conditions and time. Variations included particle and stabilization aid concentrations, ionic content, and pH. HMP demonstrated the most promising results, as compared to xanthan gum, gum arabic, and Dowfax 8390 based on results of spectrophotometric studies of particle behavior, particle filtration, and optical measurements of particle size and zeta potential. HMP inhibited particle settling, provided for greater particle stability, and resulted in particles of a smaller average size over the range of experimental conditions evaluated compared to results for systems that did not include HMP. Additionally, HMP did not react unfavorably with permanganate. These results indicate that the inclusion of HMP in a permanganate oxidation system improves conditions that may facilitate particle transport.

  16. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  17. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  18. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    DOE PAGES

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; ...

    2018-01-11

    Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less

  19. Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization.

    PubMed

    Ambrus, Rita; Radacsi, Norbert; Szunyogh, Tímea; van der Heijden, Antoine E D M; Ter Horst, Joop H; Szabó-Révész, Piroska

    2013-03-25

    Interest in submicron-sized drug particles has emerged from both laboratory and industrial perspectives in the last decade. Production of crystals in the nano size scale offers a novel way to particles for drug formulation solving formulation problems of drugs with low solubility in class II of the Biopharmaceutical Classification System. In this work niflumic acid nanoparticles with a size range of 200-800nm were produced by the novel crystallization method, electrospray crystallization. Their properties were compared to those from evaporative and anti-solvent crystallizations, using the same organic solvent, acetone. There is a remarkable difference in the product crystal size depending on the applied methods. The size and morphology were analyzed by scanning electron microscopy and laser diffraction. The structure of the samples was investigated using differential scanning calorimetry, Fourier-transformed infrared spectroscopy and X-ray powder diffraction. The particles produced using electrospray crystallization process were probably changing from amorphous to crystalline state after the procedure. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; Gupta, Shalabh; Pecharsky, Vitalij K.; Hadimani, Ravi L.

    2018-05-01

    Gadolinium silicide (Gd5Si4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd5Si4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd5Si4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd5Si3 impurity. As the particle sizes decrease, the volume fraction of Gd5Si3 phase increases at the expense of the Gd5Si4 phase, and the ferromagnetic transition temperature of Gd5Si4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.

  1. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.

    Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less

  2. Measurement of particulates

    NASA Technical Reports Server (NTRS)

    Woods, D.

    1980-01-01

    The size distributions of particles in the exhaust plumes from the Titan rockets launched in August and September 1977 were determined from in situ measurements made from a small sampling aircraft that flew through the plumes. Two different sampling instruments were employed, a quartz crystal microbalance (QCM) cascade impactor and a forward scattering spectrometer probe (FSSP). The QCM measured the nonvolatile component of the aerosols in the plume covering an aerodynamic size ranging from 0.05 to 25 micrometers diameter. The FSSP, flown outside the aircraft under the nose section, measured both the liquid droplets and the solid particles over a size range from 0.5 to 7.5 micrometers in diameter. The particles were counted and classified into 15 size intervals. The presence of a large number of liquid droplets in the exhaust clouds is discussed and data are plotted for each launch and compared.

  3. The impact of the characteristics of volcanic ash on forecasting.

    NASA Astrophysics Data System (ADS)

    Beckett, Frances; Hort, Matthew; Millington, Sarah; Stevenson, John; Witham, Claire

    2013-04-01

    The eruption of Eyjafjallajökull during April - May 2010 and Grímsvötn in May 2011, Iceland, caused the widespread dispersion of volcanic ash across the NE Atlantic, and ultimately into UK and European airspace. This resulted in thousands of flights to and from affected countries across Europe to be cancelled. The Met Office, UK, is the home of the London VAAC, a Volcanic Ash Advisory Centre, and as such is responsible for providing reports and forecasts for the movement of volcanic ash clouds covering the UK, Iceland and the north-eastern part of the North Atlantic ocean. To forecast the dispersion of volcanic ash requires that the sedimentation of ash particles through the atmosphere is effectively modelled. The settling velocity of an ash particle is a function of its size, shape and density, plus the density and viscosity of the air through which it is falling. We consider the importance of characterising the physical properties of ash when modelling the long range dispersion of ash particles through the atmosphere. Using the Reynolds number dependent scheme employed by NAME, the Lagrangian particle model used operationally by the Met Office, we calculate the settling velocity and thus the maximum travel distance of an ash particle through an idealised atmosphere as a function of its size, shape and density. The results are compared to measured particle sizes from deposits across Europe following the eruption of Eyjafjallajökull in 2010. Further, the particle size distribution (PSD) of ash in a volcanic cloud with time is modelled using NAME: the particle density distribution and particle shape factor are varied and the modelled PSD compared to the PSD measured in the ash cloud during the eruption of Eyjafjallajökull in 2010 by the FAAM research aircraft. The influence of the weather on PSD is also considered by comparing model output using an idealised atmosphere to output using NWP driven meteorological fields. We discuss the sensitivity of forecasts of the dispersion of volcanic ash to the representation of particle characteristics in NAME, the importance of representing the weather in ash fall models, and the implications of these results for the operational forecasting of volcanic ash dispersion at the London VAAC.

  4. The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments

    PubMed Central

    2015-01-01

    The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution. PMID:24433049

  5. Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics.

    PubMed

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-02-01

    In this study, the effect of particle characteristics on the ultrasonic control of membrane fouling was investigated. Ultrasound at 20 kHz was applied to a cross-flow filtration system with gamma-alumina membranes in the presence of colloidal silica particles. Experimental results indicated that particle concentration affected the ability of ultrasound to control membrane fouling, with less effective control of fouling at higher particle concentrations. Measurements of sound wave intensity and images of the cavitation region indicated that particles induced additional cavitation bubbles near the ultrasonic source, which resulted in less turbulence reaching the membrane surface and subsequently less effective control of fouling. When silica particles were modified to be hydrophobic, greater inducement of cavitation bubbles near the ultrasonic source occurred for a fixed concentration, also resulting in less effective control of fouling. Particle size influenced the cleaning ability of ultrasound, with better permeate recovery observed with larger particles. Particle size did not affect sound wave intensity, suggesting that the more effective control of fouling by large particles was due to greater lift and cross-flow drag forces on larger particles compared to smaller particles.

  6. Gold particle formation via photoenhanced deposition on lithium niobate

    NASA Astrophysics Data System (ADS)

    Zaniewski, A. M.; Meeks, V.; Nemanich, R. J.

    2017-05-01

    In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E-8M to 9E-7M) and high (1E-5M to 1E-3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E-8 to 1E-3M).

  7. Discrete bivariate population balance modelling of heteroaggregation processes.

    PubMed

    Rollié, Sascha; Briesen, Heiko; Sundmacher, Kai

    2009-08-15

    Heteroaggregation in binary particle mixtures was simulated with a discrete population balance model in terms of two internal coordinates describing the particle properties. The considered particle species are of different size and zeta-potential. Property space is reduced with a semi-heuristic approach to enable an efficient solution. Aggregation rates are based on deterministic models for Brownian motion and stability, under consideration of DLVO interaction potentials. A charge-balance kernel is presented, relating the electrostatic surface potential to the property space by a simple charge balance. Parameter sensitivity with respect to the fractal dimension, aggregate size, hydrodynamic correction, ionic strength and absolute particle concentration was assessed. Results were compared to simulations with the literature kernel based on geometric coverage effects for clusters with heterogeneous surface properties. In both cases electrostatic phenomena, which dominate the aggregation process, show identical trends: impeded cluster-cluster aggregation at low particle mixing ratio (1:1), restabilisation at high mixing ratios (100:1) and formation of complex clusters for intermediate ratios (10:1). The particle mixing ratio controls the surface coverage extent of the larger particle species. Simulation results are compared to experimental flow cytometric data and show very satisfactory agreement.

  8. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.

    PubMed

    Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio

    2017-01-25

    In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.

  9. Expression of Superparamagnetic Particles on FORC Diagrams

    NASA Astrophysics Data System (ADS)

    Hirt, A. M.; Kumari, M.; Crippa, F.; Petri-Fink, A.

    2015-12-01

    Identification of superparamagnetic (SP) particles in natural materials provides information on processes that lead to the new formation or dissolution of iron oxides. SP particles express themselves on first-order reversal curve (FORC) diagrams as a distribution centered near the origin of the diagram. Pike et al. (2001, GJI, 145, 721) demonstrated that thermal relaxation produces an upward shift in the FORC distribution, and attributed this to a pause encountered at each reversal field. In this study we examine the relationship between this upward shift and particles size on two sets of synthetic iron oxide nanoparticles. One set of coated magnetite particles have well-constrained particles size with 9, 16 and 20 nm as their diameter. A second set from the FeraSpin™ Series, consisting of FeraSpinXS, M and XL, were evaluated. Rock magnetic experiments indicate that the first set of samples is exclusively magnetite, whereas the FeraSpin samples contain predominantly magnetite with some degree of oxidation. Samples from both sets show that the upward shift of the FORC distribution at the origin increases with decreasing particle size. The amount of shift in the FeraSpin series is less when compared to the samples from the first set. This is attributed to the effect of interaction that counteracts the effect of thermal relaxation behavior of the SP particles. The FeraSpin series also shows a broader FORC distribution on the vertical axis that appears to be related to non-saturation of the hysteresis curve at maximum applied field. This non-saturation behavior can be due to spins of very fine particles or oxidation to hematite. AC susceptibility at low temperature indicates that particle interaction may affect the effective magnetic particle size. Our results suggest that the FORC distribution in pure SP particle systems provides information on the particle size distribution or oxidation, which can be further evaluated with low temperature techniques.

  10. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction.

    PubMed

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-11-16

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  11. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange.

    PubMed

    Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequentmore » effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.« less

  13. Monte Carlo simulation of light reflection from cosmetic powders on the skin

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi; Motoda, Masafumi; Igarashi, Takanori; Nakao, Keisuke

    2011-07-01

    The reflection and scattering properties of light incident on skin covered with powder particles have been investigated. A three-layer skin structure with a spot is modeled, and the propagation of light in the skin and the scattering of light by particles on the skin surface are simulated by means of a Monte Carlo method. Under the condition in which only single scattering of light occurs in the powder layer, the reflection spectra of light from the skin change dramatically with the size of powder particles. The color difference between normal skin and spots is found to diminish more when powder particles smaller than the wavelength of light are used. It is shown that particle polydispersity suppresses substantially the extreme spectral change caused by monodisperse particles with a size comparable to the light wavelength.

  14. Acoustic sand detector for fluid flowstreams

    DOEpatents

    Beattie, Alan G.; Bohon, W. Mark

    1993-01-01

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  15. Composition distributions in FePt(Au) nanoparticles

    NASA Astrophysics Data System (ADS)

    Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.

    2010-08-01

    Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.

  16. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core-shell and fully porous particles.

    PubMed

    Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken

    2013-10-18

    The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation.

    PubMed

    Chen, Xiao-Bo; Li, Yun-Cang; Hodgson, Peter D; Wen, Cuie

    2009-07-01

    The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20min, 2h, 5h and 8h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti-OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89+/-0.76microm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79+/-0.31 to 10.25+/-0.39microm.

  18. Effect of milling methods on performance of Ni-Y 2O 3-stabilized ZrO 2 anode for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cho, Hyoup Je; Choi, Gyeong Man

    A Ni-YSZ (Y 2O 3-stabilized ZrO 2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni-YSZ/YSZ/Ni-YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements. Pellets made by using high-energy milled NiO-YSZ powders have much smaller particle sizes and a more uniform distribution of Ni particles than pellets made from ball-milled powder, and thus the polarization resistance of the electrode is also smaller. The maximum power density of the anode-supported cell prepared by using the high-energy milled powder is ∼850 mW cm -2 at 800 °C compared with ∼500 mW cm -2 for the cell with ball-milled powder. Thus, high-energy milling is found to be more effective in reducing particle size and obtaining a uniform distribution of Ni particles.

  19. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies

    NASA Astrophysics Data System (ADS)

    Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar

    2016-10-01

    In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.

  20. Influence of the weighing bar position in vessel on measurement of cement’s particle size distribution by using the buoyancy weighing-bar method

    NASA Astrophysics Data System (ADS)

    Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.

    2018-02-01

    The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.

  1. Impacts of Cellulose Fiber Particle Size and Starch Type on Expansion During Extrusion Processing.

    PubMed

    Kallu, Sravya; Kowalski, Ryan J; Ganjyal, Girish M

    2017-07-01

    Objective of this study was to understand the impacts of cellulose fiber with different particle size distributions, and starches with different molecular weights, on the expansion of direct expanded products. Fiber with 3 different particle size distributions (<125, 150 to 250, 300 to 425 μm) and 4 types of starches representing different amylose contents (0%, 23%, 50%, and 70%) were investigated. Feed moisture content (18 ± 0.5 % w.b) and extruder temperature (140 °C) were kept constant and only the extruder screw speed was varied (100, 175, and 250 rpm) to achieve different specific mechanical energy inputs. Fiber particle size and starch type significantly influenced the various product parameters. In general, the smaller fiber particle size resulted in extrudate with higher expansion ratio. Starch with an amylose: amylopectin ratio of 23:77 resulted in highest expansion compared to the other starches, when no fiber was added. Interestingly, starch with 50:50, amylose: amylopectin ratio in combination with smaller fiber particles resulted in product with significantly greater expansion than the control starch extrudates. Aggregation of fiber and shrinkage of surface was observed in the Scanning Electron Microscope images at 10% fiber level. The results suggest the presence of active interactions between the cellulose fiber particles and corn starch molecules during the expansion process. A better understanding of these interactions can help in the development of high fiber extruded products with better expansion. © 2017 Institute of Food Technologists®.

  2. The Messy Aerosol Submodel MADE3 (v2.0b): Description and a Box Model Test

    NASA Technical Reports Server (NTRS)

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, N.; Zaveri, R. A.; Metzger, S.; Aquila, Valentina

    2014-01-01

    We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl)chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealized marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HClCl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse particles. MADE3 and PartMC- MOSAIC show substantial differences in the fine particle size distributions (sizes about 2 micrometers) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

  3. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in size segregated aerosol particles suggested that combustion processes could strongly affect isotopic fractionation in aerosol particles of different sizes thereby potentially affecting an interpretation of ambient atmospheric observations.

  4. Electrospray-assisted ultraviolet aerodynamic particle sizer spectrometer for real-time characterization of bacterial particles.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Hwang, Gi Byoung; Lee, Byung Uk; Lee, Seung Bok; Jurng, Jong Soo; Bae, Gwi Nam

    2010-01-15

    The ultraviolet aerodynamic particle sizer (UVAPS) spectrometer is a novel, commercially available aerosol counter for real-time, continuous monitoring of viable bioaerosols based on the fluorescence induced from living microorganisms. For aerosolization of liquid-based microorganisms, general aerosolization methods such as atomization or nebulization may not be adequate for an accurate and quantitative characterization of the microorganisms because of the formation of agglomerated particles. In such cases, biological electrospray techniques have an advantage because they generate nonagglomerated particles, attributable to the repulsive electrical forces among particles with unipolar charges. Biological electrosprays are quickly gaining potential for the detection and control of living organisms in applications ranging from mass spectrometry to developmental microbiology. In this study, we investigated the size distribution, total concentration, and fluorescence percentage of bacterial particles in a real-time manner by electrospray-assisted UVAPS. A suspension containing Escherichia coli as a test microorganism was sprayed in a steady cone-jet mode using a specially designed electrospray system with a point-to-orifice-plate configuration based on charge-reduced electrospray size spectrometry. With the electrospray process, 98% of the total E. coli particle number concentration had a size of <1 mum and the geometric mean diameter was 0.779 mum, as compared with the respective values of 78% and 0.907 mum after nebulization. The fractions of fluorescence responsive particles and of particles that contained viable organisms in culture were 12% and 7%, respectively, from the electrospray process and 34% and 24% from nebulization. These results demonstrate that (1) the presence of agglomerated particles can lead to markedly overestimated fluorescence and culturability percentages compared with the values obtained from nonagglomerated particles, and (2) electrospray-assisted UVAPS can provide more accurate and quantitative real-time characterization of liquid-based microorganisms, owing to the generation of nonagglomerated particles.

  5. Effect of fit testing on the protection offered by n95 filtering facepiece respirators against fine particles in a laboratory setting.

    PubMed

    Reponen, Tiina; Lee, Shu-An; Grinshpun, Sergey A; Johnson, Erik; McKay, Roy

    2011-04-01

    This study investigated particle-size-selective protection factors (PFs) of four models of N95 filtering facepiece respirators (FFRs) that passed and failed fit testing. Particle size ranges were representative of individual viruses and bacteria (aerodynamic diameter d(a) = 0.04-1.3 μm). Standard respirator fit testing was followed by particle-size-selective measurement of PFs while subjects wore N95 FFRs in a test chamber. PF values obtained for all subjects were then compared to those obtained for the subjects who passed the fit testing. Overall fit test passing rate for all four models of FFRs was 67%. Of these, 29% had PFs <10 (the Occupational Safety and Health Administration Assigned Protection Factor designated for this type of respirator). When only subjects that passed fit testing were included, PFs improved with 9% having values <10. On average, the PFs were 1.4 times (29.5/21.5) higher when only data for those who passed fit testing were included. The minimum PFs were consistently observed in the particle size range of 0.08-0.2 μm. Overall PFs increased when subjects passed fit testing. The results support the value of fit testing but also show for the first time that PFs are dependent on particle size regardless of fit testing status.

  6. Generation of dense granular deposits for porosity analysis: assessment and application of large-scale non-smooth granular dynamics

    NASA Astrophysics Data System (ADS)

    Schruff, T.; Liang, R.; Rüde, U.; Schüttrumpf, H.; Frings, R. M.

    2018-01-01

    The knowledge of structural properties of granular materials such as porosity is highly important in many application-oriented and scientific fields. In this paper we present new results of computer-based packing simulations where we use the non-smooth granular dynamics (NSGD) method to simulate gravitational random dense packing of spherical particles with various particle size distributions and two types of depositional conditions. A bin packing scenario was used to compare simulation results to laboratory porosity measurements and to quantify the sensitivity of the NSGD regarding critical simulation parameters such as time step size. The results of the bin packing simulations agree well with laboratory measurements across all particle size distributions with all absolute errors below 1%. A large-scale packing scenario with periodic side walls was used to simulate the packing of up to 855,600 spherical particles with various particle size distributions (PSD). Simulation outcomes are used to quantify the effect of particle-domain-size ratio on the packing compaction. A simple correction model, based on the coordination number, is employed to compensate for this effect on the porosity and to determine the relationship between PSD and porosity. Promising accuracy and stability results paired with excellent computational performance recommend the application of NSGD for large-scale packing simulations, e.g. to further enhance the generation of representative granular deposits.

  7. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    PubMed

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Effects of grinding processes on enzymatic degradation of wheat straw.

    PubMed

    Silva, Gabriela Ghizzi D; Couturier, Marie; Berrin, Jean-Guy; Buléon, Alain; Rouau, Xavier

    2012-01-01

    The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size ∼800 μm) to fine particles (∼50 μm) using sieve-based grindings, then ultra-fine particles ∼20 μm by jet milling and ∼10 μm by ball milling. The wheat straw degradability was enhanced by the decrease of particle size until a limit: ∼100 μm, up to 36% total carbohydrate and 40% glucose hydrolysis yields. Ball milling samples overcame this limit up to 46% total carbohydrate and 72% glucose yields as a consequence of cellulose crystallinity reduction (from 22% to 13%). Ball milling appeared to be an effective pretreatment with similar glucose yield and superior carbohydrate yield compared to steam explosion pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effects of Particle Size and Porosity on In Vivo Remodeling of Settable Allograft Bone/Polymer Composites

    PubMed Central

    Prieto, Edna M.; Talley, Anne D.; Gould, Nicholas R.; Zienkiewicz, Katarzyna J.; Drapeau, Susan J.; Kalpakci, Kerem N.

    2014-01-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity (LV) and high viscosity (HV) grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105 – 500 μm) allograft particles healed at 12 weeks post-implantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. PMID:25581686

  10. Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city

    NASA Astrophysics Data System (ADS)

    Xie, Yongdong; Xu, Guangju

    2017-09-01

    In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.

  11. Synthesis and characterization of polystyrene embolization particles doped with tantalum oxide nanoparticles for X-ray contrast.

    PubMed

    Morrison, Rachel; Thompson, James; Bird, Luke; Hill, Mark A; Townley, Helen

    2015-08-01

    Radiopaque and fluorescent embolic particles have been synthesized and characterised to match the size of vasculature found in tumours to ensure effective occlusion of the vessels. A literature search showed that the majority of vessels surrounding a tumour were less than 50 µm and therefore polydispersed polystyrene particles with a peak size of 50 µm have been synthesised. The embolic particles contain 5-8 nm amorphous tantalum oxide nanoparticles which provide X-ray contrast. Embolic particles containing up to 9.4 wt% tantalum oxide were prepared and showed significant contrast compared to the undoped polystyrene particles. The X-ray contrast of the embolic particles was shown to be linear (R(2) = 0.9) with respect to the concentration of incorporated tantalum nanoparticles. A model was developed which showed that seventy-five 50 µm embolic particles containing 10% tantalum oxide could provide the same contrast as 5 cm of bone. Therefore, the synthesized particles would provide sufficient X-ray contrast to enable visualisation within a tumour.

  12. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.

    2017-04-01

    Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.

  13. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions.

    PubMed

    Ajiboye, Adejumoke Lara; Trivedi, Vivek; Mitchell, John C

    2017-08-21

    Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO 2 ). The efficiency of the scCO 2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6-10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1-16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h.

  14. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles

    PubMed Central

    Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2017-01-01

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623

  15. Laboratory Simulation of Impacts upon Aluminum Foils of the Stardust Spacecraft: Calibration of Dust Particle Size from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.

    2006-01-01

    Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.

  16. Particle Size Measurements From the First Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  17. Particle Size Measurements from the first Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  18. Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size

    NASA Astrophysics Data System (ADS)

    Kydd, Jocelyn; Rajakaruna, Harshana; Briski, Elizabeta; Bailey, Sarah

    2018-03-01

    Many commercial ships will soon begin to use treatment systems to manage their ballast water and reduce the global transfer of harmful aquatic organisms and pathogens in accordance with upcoming International Maritime Organization regulations. As a result, rapid and accurate automated methods will be needed to monitoring compliance of ships' ballast water. We examined two automated particle counters for monitoring organisms ≥ 50 μm in minimum dimension: a High Resolution Laser Optical Plankton Counter (HR-LOPC), and a Flow Cytometer with digital imaging Microscope (FlowCAM), in comparison to traditional (manual) microscopy considering plankton concentration, size frequency distributions and particle size measurements. The automated tools tended to underestimate particle concentration compared to standard microscopy, but gave similar results in terms of relative abundance of individual taxa. For most taxa, particle size measurements generated by FlowCAM ABD (Area Based Diameter) were more similar to microscope measurements than were those by FlowCAM ESD (Equivalent Spherical Diameter), though there was a mismatch in size estimates for some organisms between the FlowCAM ABD and microscope due to orientation and complex morphology. When a single problematic taxon is very abundant, the resulting size frequency distribution curves can become skewed, as was observed with Asterionella in this study. In particular, special consideration is needed when utilizing automated tools to analyse samples containing colonial species. Re-analysis of the size frequency distributions with the removal of Asterionella from FlowCAM and microscope data resulted in more similar curves across methods with FlowCAM ABD having the best fit compared to the microscope, although microscope concentration estimates were still significantly higher than estimates from the other methods. The results of our study indicate that both automated tools can generate frequency distributions of particles that might be particularly useful if correction factors can be developed for known differences in well-studied aquatic ecosystems.

  19. Harmonisation of nanoparticle concentration measurements using GRIMM and TSI scanning mobility particle sizers

    NASA Astrophysics Data System (ADS)

    Joshi, Manish; Sapra, B. K.; Khan, Arshad; Tripathi, S. N.; Shamjad, P. M.; Gupta, Tarun; Mayya, Y. S.

    2012-12-01

    Regional studies focusing on the role of atmospheric nanoparticles in climate change have gained impetus in the last decade. Several multi-institutional studies involving measurement of nanoparticles with several kinds of instruments are on the rise. It is important to harmonize these measurements as the instruments may work on different techniques or principles and are developed by different manufacturers. Scanning mobility particle sizers (SMPS) are often used to measure size distribution of nanoparticles in the airborne phase. Two such commercially available instruments namely, GRIMM and TSI-SMPS have been compared for ambient and laboratory generated conditions. A stand-alone condensation particle counter (CPC) of TSI make was used as a reference for particle concentration measurements. The consistency of the results in terms of mean size and geometric standard deviation was seen to be excellent for both the SMPSs, with GRIMM always showing slightly (approximately 10 %) lower mean size. The integrated number concentration from GRIMM-SMPS was seen to be closer to stand-alone reference CPC compared to TSI-SMPS, for an ambient overnight comparison. However, a concentration-dependent response, i.e. the variations between the two instruments increasing with the concentration, was observed and possible reasons for this have been suggested. A separate experiment was performed for studying the modifying effect of diffusion dryer and sheath air dryer on the measured aerosol size spectra. A significant hygroscopic growth was noted when diffusion dryer was attached to one of the SMPS. The introduction of sheath air dryer in GRIMM-SMPS produced a significant shift towards lower mean size. These results have been compared and discussed with the recent inter-comparison results to strengthen and harmonize the measurement protocols.

  20. Nanoparticle Distributions in Cancer and other Cells from Light Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    We have measured the optical properties of whole cells and lysates using light transmission spectroscopy (LTS). LTS provides both the optical extinction coefficient in the wavelength range from 220 to 1100 nm and (by spectral inversion using a Mie model) the particle distribution density in the size range from 1 to 3000 nm. Our current work involves whole cells and lysates of cultured human oral cells and other plant and animal cells. We have found systematic differences in the optical extinction between cancer and normal whole cells and lysates, which translate to different particle size distributions (PSDs) for these materials. We have also found specific power-law dependences of particle density with particle diameter for cell lysates. This suggests a universality of the packing distribution in cells that can be compared to ideal Apollonian packing, with the cell modeled as a fractal body comprised of spheres on all size scales.

  1. Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes

    NASA Astrophysics Data System (ADS)

    Ragettli, Martina S.; Corradi, Elisabetta; Braun-Fahrländer, Charlotte; Schindler, Christian; de Nazelle, Audrey; Jerrett, Michael; Ducret-Stich, Regina E.; Künzli, Nino; Phuleria, Harish C.

    2013-10-01

    A better understanding of ultrafine particle (UFP) exposure in different urban transport microenvironments is important for epidemiological exposure assessments and for policy making. Three sub-studies were performed to characterize personal exposure to UFP concentration and average particle size distribution diameters in frequently traveled commuter microenvironments in the city of Basel, Switzerland. First, the spatial variation of sidewalk UFP exposures within urban areas and transport-specific microenvironments was explored. Second, exposure to UFP concentration and average particle size were quantified for five modes of transportation (walking, bicycle, bus, tram, car) during different times of the day and week, along the same route. Finally, the contribution of bicycle commuting along two different routes (along main roads, away from main roads) to total daily exposures was assessed by 24-h personal measurements. In general, smaller average particle sizes and higher UFP levels were measured at places and for travel modes in close proximity to traffic. Average trip UFP concentrations were higher in car (31,784 particles cm-³) and on bicycle (22,660 particles cm-³) compared to walking (19,481 particles cm-³) and public transportation (14,055-18,818 particles cm-³). Concentrations were highest for all travel modes during weekday morning rush hours, compared to other time periods. UFP concentration was lowest in bus, regardless of time period. Bicycle travel along main streets between home and work place (24 min on average) contributed 21% and 5% to total daily UFP exposure in winter and summer, respectively. Contribution of bicycle commutes to total daily UFP exposure could be reduced by half if main roads are avoided. Our results show the importance of considering commuter behavior and route choice in exposure assessment studies.

  2. An analytical force balance model for dust particles with size up to several Debye lengths

    NASA Astrophysics Data System (ADS)

    Aussems, D. U. B.; Khrapak, S. A.; Doǧan, I.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-11-01

    In this study, we developed a revised stationary force balance model for particles in the regime a / λ D < 10 . In contrast to other analytical models, the pressure and dipole force were included too, and for anisotropic plasmas, a novel contribution to the dipole moment was derived. Moreover, the Coulomb logarithm and collection cross-section were modified. The model was applied on a case study where carbon dust is formed near the plasma sheath in the linear plasma device Pilot-PSI. The pressure force and dipole force were found to be significant. By tracing the equilibrium position, the particle radius was determined at which the particle deposits. The obtained particle radius agrees well with the experimentally obtained size and suggests better agreement as compared to the unrevised model.

  3. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning

    PubMed Central

    Dutta, Dipankar; Salifu, Mariama; Sirianni, Rachael W.; Stabenfeldt, Sarah E.

    2016-01-01

    Poly(D,L-lactic-co-glycolic) acid (PLGA)-based submicron particles are uniquely posed to overcome limitations of conventional drug delivery systems. However, tailoring cargo/payload release profiles from PLGA micro/nanoparticles typically requires optimization of the multi-parameter formulation, where small changes may cause drastic shifts in the resulting release profiles. In this study, we aimed to establish whether refining the average diameter of submicron particle populations after formulation alters protein release profiles. PLGA particles were first produced via double emulsion-solvent evaporation method to encapsulate bovine serum albumin. Particles were then subjected to centrifugal fractioning protocols varying in both spin time and force to determine encapsulation efficiency and release profile of differently sized populations that originated from a single batch. We found the average particle diameter was related to marked alterations in encapsulation efficiencies (range: 36.4–49.4%), burst release (range: 15.8–49.1%), and time for total cargo release (range: 38–78 days). Our data corroborate previous reports relating PLGA particle size with such release characteristics, however, this is the first study, to our knowledge, to directly compare particle population size while holding all formulation parameters constant. In summary, centrifugal fractioning to selectively control the population distribution of sub-micron PLGA particles represents a feasible tool to tailor release characteristics. PMID:26517011

  5. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.

    PubMed

    Li, Ying; Yang, Da-Jian; Chen, Shi-Lin; Chen, Si-Bao; Chan, Albert Sun-Chi

    2008-07-09

    The aim of the study was to develop and evaluate a new method for the production of puerarin phospholipids complex (PPC) microparticles. The advanced particle formation method, solution enhanced dispersion by supercritical fluids (SEDS), was used for the preparation of puerarin (Pur), phospholipids (PC) and their complex particles for the first time. Evaluation of the processing variables on PPC particle characteristics was also conducted. The processing variables included temperature, pressure, solution concentration, the flow rate of supercritical carbon dioxide (SC-CO2) and the relative flow rate of drug solution to CO2. The morphology, particle size and size distribution of the particles were determined. Meanwhile Pur and phospholipids were separately prepared by gas antisolvent precipitation (GAS) method and solid characterization of particles by the two supercritical methods was also compared. Pur formed by GAS was more orderly, purer crystal, whereas amorphous Pur particles between 0.5 and 1microm were formed by SEDS. The complex was successfully obtained by SEDS exhibiting amorphous, partially agglomerated spheres comprised of particles sized only about 1microm. SEDS method may be useful for the processing of other pharmaceutical preparations besides phospholipids complex particles. Furthermore adopting a GAS process to recrystallize pharmaceuticals will provide a highly versatile methodology to generate new polymorphs of drugs in addition to conventional techniques.

  6. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area

    PubMed Central

    Jeong, Hoon Y.; Lee, Jun H.; Hayes, Kim F.

    2010-01-01

    Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276–345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation. PMID:21085620

  7. Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia).

    PubMed

    Bhuvaneshwari, M; Iswarya, V; Vishnu, S; Chandrasekaran, N; Mukherjee, Amitava

    2018-07-01

    The rapid increase in production and usage of ZnO particles in recent years has instigated the concerns regarding their plausible effects on the environment. Current study explores the trophic transfer potential of ZnO particles of different sizes (50, 100 nm and bulk particles) from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia) and the contribution of ZnO (ions) (effect of dissolved Zn ions that remain in test medium after separation NPs) to the overall toxicity of ZnO (total) (impact of both particle and dissolved Zn ions). Toxicity and uptake of ZnO (total) and ZnO (ions) in algae were found to be dependent on the concentration and particle size. Feeding of Zn accumulated algae (517 ± 28, 354.7 ± 61 and 291 ± 20 µg/g dry wt.) post-exposure to 61 µM of ZnO (total) of 50, 100 nm and bulk ZnO particles caused a significant decrease in the survival (15-20%) of daphnia. A significant amount of Zn accumulation was observed in daphnia even after the 48 h depuration period. Biomagnification factor was found to be nearly 1 for all the sizes of ZnO particles tested. For 50 nm ZnO, the BMF was higher when compared to other two sizes, reaching the mean value of 1.06 ± 0.01 at 61 µM. Further analysis revealed that the dietary uptake of different sizes of ZnO particles caused ultra-structural damages and degradation of internal organs in daphnia. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The nature of (sub-)micrometre cometary dust particles detected with MIDAS

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.

    2015-10-01

    The MIDAS Atomic Force Microscope (AFM) onboard Rosetta collects dust particles and produces three-dimensional images with nano- to micrometre resolution. To date, several tens of particles have been detected, allowing determination of their properties at the smallest scale. The key features will be presented, including the particle size, their fragile character, and their morphology. These findings will be compared with the results of other Rosetta dust experiments.

  9. Deposition and clearance of inhaled particles.

    PubMed Central

    Stuart, B O

    1984-01-01

    Theoretical models of respiratory tract deposition of inhaled particles are compared to experimental studies of deposition patterns in humans and animals, as governed principally by particle size, density, respiratory rate and flow parameters. Various models of inhaled particle deposition make use of approximations of the respiratory tract to predict fractional deposition caused by fundamental physical processes of particle impaction, sedimentation, and diffusion. These models for both total deposition and regional (nasopharyngeal, tracheobronchial, and pulmonary) deposition are compared with early and recent experimental studies. Reasonable correlation has been obtained between theoretical and experimental studies, but the behavior in the respiratory tract of very fine (less than 0.1 micron) particles requires further investigation. Properties of particle shape, charge and hygroscopicity as well as the degree of respiratory tract pathology also influence deposition patterns; definitive experimental work is needed in these areas. The influence upon deposition patterns of dynamic alterations in inspiratory flow profiles caused by a variety of breathing patterns also requires further study, and the use of differing ventilation techniques with selected inhaled particle sizes holds promise in diagnosis of respiratory tract diseases. Mechanisms of conducting airway and alveolar clearance processes involving the pulmonary macrophage, mucociliary clearance, dissolution, transport to systemic circulation, and translocation via regional lymphatic vessels are discussed. PMID:6376108

  10. Influence of stabilizers on the physicochemical characteristics of inhaled insulin powders produced by supercritical antisolvent process.

    PubMed

    Kim, Yong Ho; Sioutas, Constantinos; Shing, Katherine S

    2009-01-01

    To examine the effect of stabilizers on aerosol physicochemical characteristics of inhaled insulin particles produced using a supercritical fluid technology. Insulin with stabilizers such as mannitol and trehalose was micronized by aerosol solvent extraction system (ASES). The supercritically-micronized insulin particles were characterized for size, shape, aerosol behavior, crystallinity and secondary structure. Experimental results indicated that when insulin was incorporated with the most commonly used stabilizer mannitol (insulin/mannitol: 15/85 wt.%, designated IM), the particles formed were irregular and needle-shaped and had a tendency to agglomerate. With the incorporation of a second stabilizer trehalose (insulin/mannitol/trehalose: 15/70/15 wt.%, designated IMT), the particles were relatively uniform, more spherical, less cohesive, and less agglomerated in an air flow, when compared to IM particles. The mass median aerodynamic diameter of the IMT particles was 2.32 mum which is suitable for use in inhalation therapy. In vitro deposition test using micro-orifice uniform deposit impactor showed 69 +/- 7 wt.% of the IMT particles was deposited in stage 3, 4, 5 and 6 while 41 +/- 15 wt.% of the IM particles was deposited in the same stages. In terms of insulin stability, secondary structures of insulin particles were not adversely affected by the ASES processing studied here. When properly formulated (as in IMT particles), ASES process can produce particles with appropriate size and size distribution suitable for pulmonary insulin delivery.

  11. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-03-22

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared intomore » lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel having dimensions less than specified values.« less

  12. Evaluating Simulated Tropical Convective Cores using HAIC-HIWC Microphysics and Dynamics Observations

    NASA Astrophysics Data System (ADS)

    Stanford, M.; Varble, A.; Zipser, E. J.; Strapp, J. W.; Leroy, D.; Schwarzenboeck, A.; Korolev, A.; Potts, R.

    2016-12-01

    A model intercomparison study is conducted to identify biases in simulated tropical convective core microphysical properties using two popular bulk parameterization schemes (Thompson and Morrison) and the Fast Spectral Bin Microphysics (FSBM) scheme. In-situ aircraft measurements of total condensed water content (TWC) and particle size distributions are compared with output from high-resolution WRF simulations of 4 mesoscale convective system (MCS) cases during the High Altitude Ice Crystals-High Ice Water Content (HAIC-HIWC) field campaign conducted in Darwin, Australia in 2014 and Cayenne, French Guiana in 2015. Observations of TWC collected using an isokinetic evaporator probe (IKP) optimized for high IWC measurements in conjunction with particle image processing from two optical array probes aboard the Falcon-20 research aircraft were used to constrain mass-size relationships in the observational dataset. Hydrometeor mass size distributions are compared between retrievals and simulations providing insight into the well-known high bias in simulated convective radar reflectivity. For TWC > 1 g m-3 between -10 and -40°C, simulations generally produce significantly greater median mass diameters (MMDs). Observations indicate that a sharp particle size mode occurs at 300 μm for large TWC values (> 2 g m-3) regardless of temperature. All microphysics schemes fail to reproduce this feature, and relative contributions of different hydrometeor species to this size bias vary between schemes. Despite far greater sample sizes, simulations also fail to produce high TWC conditions with very little of the mass contributed by large particles for a range of temperatures, despite such conditions being observed. Considering vapor grown particles alone in comparison with observations fails to correct the bias present in all schemes. Decreasing horizontal resolution from 1 km to 333 m shifts graupel and rain size distributions to slightly smaller sizes, but increased resolution alone will clearly not eliminate model biases. Results instead indicate that biases in both hydrometeor size distribution assumptions and parameterized processes also exist and need to be addressed before cloud and precipitation properties of convective systems can be adequately predicted.

  13. Aerodynamic particle size analysis of aerosols from pressurized metered-dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 Aerodynamic Particle Sizer aerosol spectrometer.

    PubMed

    Mitchell, Jolyon P; Nagel, Mark W; Wiersema, Kimberly J; Doyle, Cathy C

    2003-10-22

    The purpose of this research was to compare three different methods for the aerodynamic assessment of (1) chloroflurocarbon (CFC)--fluticasone propionate (Flovent), (2) CFC-sodium cromoglycate (Intal), and (3) hydrofluoroalkane (HFA)--beclomethasone dipropionate (Qvar) delivered by pressurized metered dose inhaler. Particle size distributions were compared determining mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD), and fine particle fraction <4.7 microm aerodynamic diameter (FPF(<4.7 microm)). Next Generation Pharmaceutical Impactor (NGI)-size distributions for Flovent comprised finer particles than determined by Andersen 8-stage impactor (ACI) (MMAD = 2.0 +/- 0.05 micro m [NGI]; 2.8 +/- 0.07 microm [ACI]); however, FPF(<4.7 microm) by both impactors was in the narrow range 88% to 93%. Size distribution agreement for Intal was better (MMAD = 4.3 +/- 0.19 microm (NGI), 4.2 +/- 0.13 microm (ACI), with FPF(<4.7 microm) ranging from 52% to 60%. The Aerodynamic Particle Sizer (APS) undersized aerosols produced with either formulation (MMAD = 1.8 +/- 0.07 micro m and 3.2 +/- 0.02 micro m for Flovent and Intal, respectively), but values of FPF(<4.7 microm)from the single-stage impactor (SSI) located at the inlet to the APS (82.9% +/- 2.1% [Flovent], 46.4% +/- 2.4% [Intal]) were fairly close to corresponding data from the multi-stage impactors. APS-measured size distributions for Qvar (MMAD = 1.0 +/- 0.03 micro m; FPF(<4.7 micro m)= 96.4% +/- 2.5%), were in fair agreement with both NGI (MMAD = 0.9 +/- 0.03 micro m; FPF(<4.7 microm)= 96.7% +/- 0.7%), and ACI (MMAD = 1.2 +/- 0.02 microm, FPF(<4.7 microm)= 98% +/- 0.5%), but FPF(<4.7 microm) from the SSI (67.1% +/- 4.1%) was lower than expected, based on equivalent data obtained by the other techniques. Particle bounce, incomplete evaporation of volatile constituents and the presence of surfactant particles are factors that may be responsible for discrepancies between the techniques.

  14. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

    PubMed

    Brown, D M; Wilson, M R; MacNee, W; Stone, V; Donaldson, K

    2001-09-15

    Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest that ultrafine particles composed of low-toxicity material such as polystyrene have proinflammatory activity as a consequence of their large surface area. This supports a role for such particles in the adverse health effects of PM(10). Copyright 2001 Academic Press.

  15. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic shape factors in both the transition and vacuum regime can be derived. The measured dynamic shape factors of quartz agree quite well with the spheroidal shape distributions derived through studies of the optical properties.

  16. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    NASA Astrophysics Data System (ADS)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia

    2016-12-01

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  17. Particle Sizes in the Coma of Comet 45P/Honda-Mrkos-Pajdušáková from Arecibo Radar Observations

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Howell, Ellen S.; Harmon, John K.; Lejoly, Cassandra; Rivera-Valentin, Edgard G.; Virkki, Anne; Zambrano-Marin, Luisa F.; Taylor, Patrick A.; Harris, Walter M.; Mueller, Beatrice E. A.; Samarasinha, Nalin H.; Rodriguez Sanchez-Vahamonde, Carolina

    2017-10-01

    Radar observations of cometary comae can provide information about not only the cross-section of the coma, but also constraints on the particle sizes comprising the coma. Harmon et al. (2011) described analysis of radar observations of comet 103P/Hartley 2 to constrain the sizes of its coma particles, as well as modeling to analyze the particle velocity distribution in the coma and orientation with respect to the sun. Arecibo Observatory planetary radar system observations of comet 45P/Honda-Mrkos-Pajdušáková were obtained 9-16 February 2017 by transmitting a continuous wave of polarized radio waves at the comet. By examining the polarization ratios of the returned signal (whether it has the same sense or opposite sense of the transmitted signal), we can look for non-zero same sense polarization signal. Detectable same sense signal indicates the presence of particles with sizes larger than the Rayleigh transition size criteria, a = λ/2π ≈ 2 cm (for the Arecibo wavelength of 12.6 cm).The observations show strong opposite sense signal return from the comet nucleus, as well as a larger ‘skirt’ of surrounding grains in the coma. Preliminary analysis of this data indicates at least a weak same sense polarized signal, implying a population of grains larger than 2 cm in the coma. The sizes of particles in the coma, compared with the area of the coma, can help us constrain the minimum mass for particles at the Rayleigh size limit in the 45P coma. Further, a detectable grain halo of large particles around 45P would imply significant lofting of grains from the comet nucleus.ReferencesHarmon, John K., et al. "Radar observations of comet 103P/Hartley 2." The Astrophysical Journal Letters 734.1 (2011): L2.

  18. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom

    PubMed Central

    Qian, J; Hospodsky, D; Yamamoto, N; Nazaroff, W W; Peccia, J

    2012-01-01

    The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants. PMID:22257156

  19. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells

    PubMed Central

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-01-01

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061

  20. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    NASA Astrophysics Data System (ADS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-05-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.

  1. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.

    PubMed

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-03-10

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.

  2. Development of Nanofluids as Lubricant to Study Friction and Wear Behavior of Stainless Steels

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi Ranjan; Bhattacharjee, Santu; Das, Tuhin

    A number of nanofluids have been prepared to study the effect of lubrication properties of nanofluids on stainless steels taking Kaolin and Boron Nitride (BN) as the lubricant particles and Sodium Dodecyl Sulfate (SDS), Cetyl Trimethyl Ammonium Bromide (CTAB), Sodium Hexa Meta Phosphate (SHMP) as dispersants in the same liquid medium i.e. water. A pin on disc tribometer is being used to access the tribological behaviour of the prepared nanofluids. The particle size of these particle dispersions are examined with a nanoparticle size analyzer. It has been found that the use of dispersants significantly control the particle size and tribological behavior of the nanofluids as for Boron Nitride particle with Sodium Dodecyl Sulfate (SDS) as dispersant has got a very low value of coefficient of friction being equal to 0.142 while without dispersant the value is 0.498. Similarly, in case of Kaolin water with SDS as dispersant the value of coefficient of friction obtained is 0.161 and without dispersant it is 0.333. Sodium Dodecyl Sulfate (SDS) as dispersant has resulted a very low coefficient of friction compared to other dispersants tested even though it doesn’t always assure a least particle size. The role of SDS in yielding the lowest friction has pursued significant attention for further investigation.

  3. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations.

    PubMed

    Hudda, N; Fruin, S A

    2016-04-05

    We measured particle size distributions and spatial patterns of particle number (PN) and particle surface area concentrations downwind from the Los Angeles International Airport (LAX) where large increases (over local background) in PN concentrations routinely extended 18 km downwind. These elevations were mostly comprised of ultrafine particles smaller than 40 nm. For a given downwind distance, the greatest increases in PN concentrations, along with the smallest mean sizes, were detected at locations under the landing jet trajectories. The smaller size of particles in the impacted area, as compared to the ambient urban aerosol, increased calculated lung deposition fractions to 0.7-0.8 from 0.5-0.7. A diffusion charging instrument (DiSCMini), that simulates alveolar lung deposition, measured a fivefold increase in alveolar-lung deposited surface area concentrations 2-3 km downwind from the airport (over local background), decreasing steadily to a twofold increase 18 km downwind. These ratios (elevated lung-deposited surface area over background) were lower than the corresponding ratios for elevated PN concentrations, which decreased from tenfold to twofold over the same distance, but the spatial patterns of elevated concentrations were similar. It appears that PN concentration can serve as a nonlinear proxy for lung deposited surface area downwind of major airports.

  4. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    PubMed Central

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  5. Volume and surface area size distribution, water mass and model fitting of GCE/CASE/WATOX marine aerosols

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.

    1990-06-01

    As a part of the Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX), size distributions of marine aerosols were measured at two altitudes of about 2750 and 150 m above sea level (asl) over the size range 0.1 ˜ 32 μm. Lognormal fitting was applied to the corrected aerosol size spectra to determine the volume and surface area size distributions of the CASE-WATOX marine aerosols. Each aerosol size distribution was fitted with three lognormal distributions representing fine-, large-, and giant-particle modes. Water volume fraction and dry particle size of each aerosol size distribution were also calculated using empirical formulas for particle size as a function of relative humidity and particle type. Because of the increased influence from anthropogenic sources in the continental United States, higher aerosol volume concentrations were observed in the fine-particle mode near-shore off the east coast; 2.11 and 3.63 μm3 cm-3 for free troposphere (FT) and marine boundary layer (MBL), compared with the open-sea Bermuda area values; 0.13 and 0.74 μm3 cm-3 for FT and MBL. The large-particle mode exhibits the least variations in volume distributions between the east coast and open-sea Bermuda area, having a volume geometric median diameter (VGMD) between 1.4 and 1.6 μm and a geometric standard deviation between 1.57 and 1.68. For the giant-particle mode, larger VGMD and volume concentrations were observed for marine aerosols nearshore off the east coast than in the open-sea Bermuda area because of higher relative humidity and higher surface wind speed conditions. Wet VGMD and aerosol water volume concentrations at 15 m asl ship level were determined by extrapolating from those obtained by analysis of the CASE-WATOX aircraft aerosol data. Abundance of aerosol water in the MBL serves as an important pathway for heterogeneous conversion of SO2 in sea salt aerosol particles.

  6. A Process-Based Transport-Distance Model of Aeolian Transport

    NASA Astrophysics Data System (ADS)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  7. The effect of mitigation measures on size distributed mass concentrations of atmospheric particles and black carbon concentrations during the Olympic Summer Games 2008 in Beijing.

    PubMed

    Schleicher, Nina; Norra, Stefan; Dietze, Volker; Yu, Yang; Fricker, Mathieu; Kaminski, Uwe; Chen, Yuan; Cen, Kuang

    2011-12-15

    The period of the 2008 Olympic Summer Games in Beijing can be considered as a unique opportunity to study the influences of emission reduction measures on air quality improvement. Within this study atmospheric particles of different size classes (2.5 to 80 μm) were investigated before, during, and after the Olympic Games period in order to observe and assess the success of short-term measures to mitigate extreme urban aerosol pollution and also to investigate, which particle size classes were reduced most effectively. Furthermore, black carbon (BC) concentrations in fine particles (PM(2.5)) during the source control period were compared to those of the previous years in order to investigate the decrease of combustion-derived aerosols. It is shown that besides the implemented mitigation measures precipitation decisively contributed to a considerable decrease of particulate air pollution in Beijing compared to the respective concentrations during the time directly before and after the Olympic Games, and also compared to average August concentrations during the previous years and the following year 2009. Particles of the fine fraction of the coarse mode (2.5 to 5 μm), which have a residence time in the order of several days and which, therefore, are typically transported over long distances from outside of Beijing, were less efficiently reduced than coarser particles. This indicates that long-range transport of atmospheric particles is difficult to control and that presumably the established mitigation area was not large enough to also reduce the fine fraction of the coarse mode more efficiently. Furthermore, the study showed that coarse geogenic particles, which originated to a high percentage from construction sites and resuspension processes due to traffic seemed to be reduced most efficiently during the Olympic Games period. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Dietary sugarcane bagasse and coarse particle size of corn are beneficial to performance and gizzard development in broilers fed normal and high sodium diets.

    PubMed

    Kheravii, S K; Swick, R A; Choct, M; Wu, Shu-Biao

    2017-09-01

    An experiment was conducted to evaluate the effects of sugarcane bagasse (SB) and particle size on broiler performance, gizzard development, ileal microflora, litter quality, and bird welfare under a wet litter challenge model. A total of 672 one-day-old Ross 308 male broilers was allocated to 48 pens using a 2 × 2 × 2 factorial arrangement of treatments with corn particle size-coarse 3,576 μm (CC) or fine 1,113 μm (FC) geometric mean diameter, SB - 0 or 2% and sodium (Na) - 0.16 or 0.40% with increased Na level to induce wet litter. A 3-way particle size × Na × SB interaction (P < 0.05) was observed for weight gain at d 10. Birds fed FC showed a higher weight gain compared to birds fed CC when 0.40% Na without SB diet or 0.16% Na with 2% SB diet was offered. A significant particle size × SB interaction was observed at d 24 on feed conversion ratio (FCR; P < 0.001) and weight gain (P < 0.05). FCR was reduced by 2% SB supplementation in birds fed CC but increased in birds fed FC. Further, weight gain of birds fed 2% SB was higher in birds fed CC but not in those fed FC. On d 35, birds fed 2% SB had a higher weight gain (P < 0.001) compared to those without SB, and a SB × particle size interaction on relative gizzard weight (P < 0.05) and pH (P < 0.05) was present. SB reduced gizzard pH and increased the relative gizzard weight in birds fed the FC diet but not the CC diet (P < 0.05). Counts of ileal Bacillus spp. were increased in birds fed SB (P < 0.05) on d 24. No effects of SB and particle size on litter quality and bird welfare were observed, but higher Na increased litter moisture and footpad dermatitis (FPD) scores (P < 0.001). These findings suggest that SB independently or in combination with CC improves performance in older birds regardless of Na level in diets, possibly through improved gizzard development and gut microflora of birds. © 2017 Poultry Science Association Inc.

  9. Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.

    PubMed

    Sajjadi, H; Tavakoli, B; Ahmadi, G; Dhaniyala, S; Harner, T; Holsen, T M

    2016-07-01

    In this work a series of computational fluid dynamics (CFD) simulations were performed to predict the deposition of particles on a newly designed passive dry deposition (Pas-DD) sampler. The sampler uses a parallel plate design and a conventional polyurethane foam (PUF) disk as the deposition surface. The deposition of particles with sizes between 0.5 and 10 μm was investigated for two different geometries of the Pas-DD sampler for different wind speeds and various angles of attack. To evaluate the mean flow field, the k-ɛ turbulence model was used and turbulent fluctuating velocities were generated using the discrete random walk (DRW) model. The CFD software ANSYS-FLUENT was used for performing the numerical simulations. It was found that the deposition velocity increased with particle size or wind speed. The modeled deposition velocities were in general agreement with the experimental measurements and they increased when flow entered the sampler with a non-zero angle of attack. The particle-size dependent deposition velocity was also dependent on the geometry of the leading edge of the sampler; deposition velocities were more dependent on particle size and wind speeds for the sampler without the bend in the leading edge of the deposition plate, compared to a flat plate design. Foam roughness was also found to have a small impact on particle deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOEpatents

    Huber, Dale L [Albuquerque, NM

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  11. The influence of wildfires on aerosol size distributions in rural areas.

    PubMed

    Alonso-Blanco, E; Calvo, A I; Fraile, R; Castro, A

    2012-01-01

    The number of particles and their size distributions were measured in a rural area, during the summer, using a PCASP-X. The aim was to study the influence of wildfires on particle size distributions. The comparative studies carried out reveal an average increase of around ten times in the number of particles in the fine mode, especially in sizes between 0.10 and 0.14 μm, where the increase is of nearly 20 times. An analysis carried out at three different points in time--before, during, and after the passing of the smoke plume from the wildfires--shows that the mean geometric diameter of the fine mode in the measurements affected by the fire is smaller than the one obtained in the measurements carried out immediately before and after (0.14 μm) and presents average values of 0.11 μm.

  12. The Influence of Wildfires on Aerosol Size Distributions in Rural Areas

    PubMed Central

    Alonso-Blanco, E.; Calvo, A. I.; Fraile, R.; Castro, A.

    2012-01-01

    The number of particles and their size distributions were measured in a rural area, during the summer, using a PCASP-X. The aim was to study the influence of wildfires on particle size distributions. The comparative studies carried out reveal an average increase of around ten times in the number of particles in the fine mode, especially in sizes between 0.10 and 0.14 μm, where the increase is of nearly 20 times. An analysis carried out at three different points in time—before, during, and after the passing of the smoke plume from the wildfires—shows that the mean geometric diameter of the fine mode in the measurements affected by the fire is smaller than the one obtained in the measurements carried out immediately before and after (0.14 μm) and presents average values of 0.11 μm. PMID:22629191

  13. Photographic techniques for characterizing streambed particle sizes

    USGS Publications Warehouse

    Whitman, Matthew S.; Moran, Edward H.; Ourso, Robert T.

    2003-01-01

    We developed photographic techniques to characterize coarse (>2-mm) and fine (≤2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wadeable and contained gravel—cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.

  14. Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM

    PubMed Central

    Wojcieszak, Robert; Raj, Gijo

    2014-01-01

    Summary CdS quantum dots were grown on mesoporous TiO2 films by successive ionic layer adsorption and reaction processes in order to obtain CdS particles of various sizes. AFM analysis shows that the growth of the CdS particles is a two-step process. The first step is the formation of new crystallites at each deposition cycle. In the next step the pre-deposited crystallites grow to form larger aggregates. Special attention is paid to the estimation of the CdS particle size by X-ray photoelectron spectroscopy (XPS). Among the classical methods of characterization the XPS model is described in detail. In order to make an attempt to validate the XPS model, the results are compared to those obtained from AFM analysis and to the evolution of the band gap energy of the CdS nanoparticles as obtained by UV–vis spectroscopy. The results showed that XPS technique is a powerful tool in the estimation of the CdS particle size. In conjunction with these results, a very good correlation has been found between the number of deposition cycles and the particle size. PMID:24605274

  15. Continuous measurement of suspended-sediment discharge in rivers by use of optical backscatterance sensors

    USGS Publications Warehouse

    Schoellhamer, D.H.; Wright, S.A.; Bogen, J.; Fergus, T.; Walling, D.

    2003-01-01

    Optical sensors have been used to measure turbidity and suspended-sediment concentration by many marine and estuarine studies, and optical sensors can provide automated, continuous time series of suspended-sediment concentration and discharge in rivers. Three potential problems with using optical sensors are biological fouling, particle-size variability, and particle-reflectivity variability. Despite varying particle size, output from an optical backscatterance sensor in the Sacramento River at Freeport, California, USA, was calibrated successfully to discharge-weighted, cross-sectionally averaged suspended-sediment concentration, which was measured with the equal discharge-, or width-increment, methods and an isokinetic sampler. A correction for sensor drift was applied to the 3-year time series. However, the calibration of an optical backscatterance sensor used in the Colorado River at Cisco, Utah, USA, was affected by particle-size variability. The adjusted time series at Freeport was used to calculate hourly suspended-sediment discharge that compared well with daily values from a sediment station at Freeport. The appropriateness of using optical sensors in rivers should be evaluated on a site-specific basis and measurement objectives, potential particle size effects, and potential fouling should be considered.

  16. Kinetic modeling of the formation and growth of inorganic nano-particles during pulverized coal char combustion in O 2/N 2 and O 2/CO 2 atmospheres

    DOE PAGES

    Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en; ...

    2016-08-01

    In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO 2 and H 2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolutionmore » of the number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O 2/N 2 and O 2/CO 2 atmospheres .« less

  17. Kinetic modeling of the formation and growth of inorganic nano-particles during pulverized coal char combustion in O 2/N 2 and O 2/CO 2 atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en

    In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO 2 and H 2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolutionmore » of the number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O 2/N 2 and O 2/CO 2 atmospheres .« less

  18. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  19. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry.

    PubMed

    Choi, Kwang-Min; Kim, Jin-Ho; Park, Ju-Hyun; Kim, Kwan-Sick; Bae, Gwi-Nam

    2015-01-01

    This study aims to elucidate the exposure properties of nanoparticles (NPs; <100 nm in diameter) in semiconductor manufacturing processes. The measurements of airborne NPs were mainly performed around process equipment during fabrication processes and during maintenance. The number concentrations of NPs were measured using a water-based condensation particle counter having a size range of 10-3,000 nm. The chemical composition, size, and shape of NPs were determined by scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were <100 nm in those areas. On the other hand, particle size exceeded 100 nm in diffusion, metallization, ion implantation, and wet cleaning/etching process. The results show that the SiO2 and TiO2 are the major NPs present in semiconductor cleanroom environments.

  20. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    PubMed Central

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  1. Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques.

    PubMed

    Oster, C G; Kissel, T

    2005-05-01

    Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous release rates.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jomekian, A.; Faculty of Chemical Engineering, Iran University of Science and Technology; Behbahani, R.M., E-mail: behbahani@put.ac.ir

    Ultra porous ZIF-8 particles synthesized using PEO/PA6 based poly(ether-block-amide) (Pebax 1657) as structure directing agent. Structural properties of ZIF-8 samples prepared under different synthesis parameters were investigated by laser particle size analysis, XRD, N{sub 2} adsorption analysis, BJH and BET tests. The overall results showed that: (1) The mean pore size of all ZIF-8 samples increased remarkably (from 0.34 nm to 1.1–2.5 nm) compared to conventionally synthesized ZIF-8 samples. (2) Exceptional BET surface area of 1869 m{sup 2}/g was obtained for a ZIF-8 sample with mean pore size of 2.5 nm. (3) Applying high concentrations of Pebax 1657 to themore » synthesis solution lead to higher surface area, larger pore size and smaller particle size for ZIF-8 samples. (4) Both, Increase in temperature and decrease in molar ratio of MeIM/Zn{sup 2+} had increasing effect on ZIF-8 particle size, pore size, pore volume, crystallinity and BET surface area of all investigated samples. - Highlights: • The pore size of ZIF-8 samples synthesized with Pebax 1657 increased remarkably. • The BET surface area of 1869 m{sup 2}/gr obtained for a ZIF-8 synthesized sample with Pebax. • Increase in temperature had increasing effect on textural properties of ZIF-8 samples. • Decrease in MeIM/Zn{sup 2+} had increasing effect on textural properties of ZIF-8 samples.« less

  3. Does Graft Particle Type and Size Affect Ridge Dimensional Changes After Alveolar Ridge Split Procedure?

    PubMed

    Kheur, Mohit G; Kheur, Supriya; Lakha, Tabrez; Jambhekar, Shantanu; Le, Bach; Jain, Vinay

    2018-04-01

    The absence of an adequate volume of bone at implant sites requires augmentation procedures before the placement of implants. The aim of the present study was to assess the ridge width gain with the use of allografts and biphasic β-tricalcium phosphate with hydroxyapatite (alloplast) in ridge split procedures, when each were used in small (0.25 to 1 mm) and large (1 to 2 mm) particle sizes. A randomized controlled trial of 23 subjects with severe atrophy of the mandible in the horizontal dimension was conducted in a private institute. The patients underwent placement of 49 dental implants after a staged ridge split procedure. The patients were randomly allocated to alloplast and allograft groups (predictor variable). In each group, the patients were randomly assigned to either small graft particle or large graft particle size (predictor variable). The gain in ridge width (outcome variable) was assessed before implant placement. A 2-way analysis of variance test and the Student unpaired t test were used for evaluation of the ridge width gain between the allograft and alloplast groups (predictor variable). Differences were considered significant if P values were < .05. The sample included 23 patients (14 men and 9 women). The patients were randomly allocated to the alloplast (n = 11) or allograft (n = 12) group before the ridge split procedure. In each group, they were assigned to a small graft particle or large graft particle size (alloplast group, small particle in 5 and large particle size in 6 patients; allograft group, small particle in 6 and large particle size in 6). A statistically significant difference was observed between the 2 graft types. The average ridge width gain was significantly greater in the alloplast group (large, 4.40 ± 0.24 mm; small, 3.52 ± 0.59 mm) than in the allograft group (large, 3.82 ± 0.19 mm; small, 2.57 ± 0.16 mm). For both graft types (alloplast and allograft), the large particle size graft resulted in a greater ridge width gain compared with the small particle size graft (P < .05). Within the limitations of the present study, we suggest the use of large particle alloplast as the graft material of choice for staged ridge split procedures in the posterior mandible. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. A novel approach to a fine particle coating using porous spherical silica as core particles.

    PubMed

    Ishida, Makoto; Uchiyama, Jumpei; Isaji, Keiko; Suzuki, Yuta; Ikematsu, Yasuyuki; Aoki, Shigeru

    2014-08-01

    Abstract The applicability of porous spherical silica (PSS) was evaluated as core particles for pharmaceutical products by comparing it with commercial core particles such as mannitol (NP-108), sucrose and microcrystalline cellulose spheres. We investigated the physical properties of core particles, such as particle size distribution, flow properties, crushing strength, plastic limit, drying rate, hygroscopic property and aggregation degree. It was found that PSS was a core particle of small particle size, low friability, high water adsorption capacity, rapid drying rate and lower occurrence of particle aggregation, although wettability is a factor to be carefully considered. The aggregation and taste-masking ability using PSS and NP-108 as core particles were evaluated at a fluidized-bed coating process. The functional coating under the excess spray rate shows different aggregation trends and dissolution profiles between PSS and NP-108; thereby, exhibiting the formation of uniform coating under the excess spray rate in the case of PSS. This expands the range of the acceptable spray feed rates to coat fine particles, and indicates the possibility of decreasing the coating time. The results obtained in this study suggested that the core particle, which has a property like that of PSS, was useful in overcoming such disadvantages as large particle size, which feels gritty in oral cavity; particle aggregation; and the long coating time of the particle coating process. These results will enable the practical fine particle coating method by increasing the range of optimum coating conditions and decreasing the coating time in fluidized bed technology.

  5. Size resolved ultrafine particles emission model--a continues size distribution approach.

    PubMed

    Nikolova, Irina; Janssen, Stijn; Vrancken, Karl; Vos, Peter; Mishra, Vinit; Berghmans, Patrick

    2011-08-15

    A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Improving Dielectric Properties of PVDF Composites by Employing Surface Modified Strong Polarized BaTiO₃ Particles Derived by Molten Salt Method.

    PubMed

    Fu, Jing; Hou, Yudong; Zheng, Mupeng; Wei, Qiaoyi; Zhu, Mankang; Yan, Hui

    2015-11-11

    BaTiO3/polyvinylidene fluoride (BT/PVDF) is the extensive reported composite material for application in modern electric devices. However, there still exists some obstacles prohibiting the further improvement of dielectric performance, such as poor interfacial compatibility and low dielectric constant. Therefore, in depth study of the size dependent polarization and surface modification of BT particle is of technological importance in developing high performance BT/PVDF composites. Here, a facile molten-salt synthetic method has been applied to prepare different grain sized BT particles through tailoring the calcination temperature. The size dependent spontaneous polarizationof BT particle was thoroughly investigated by theoretical calculation based on powder X-ray diffraction Rietveld refinement data. The results revealed that 600 nm sized BT particles possess the strong polarization, ascribing to the ferroelectric size effect. Furthermore, the surface of optimal BT particles has been modified by water-soluble polyvinylprrolidone (PVP) agent, and the coated particles exhibited fine core-shell structure and homogeneous dispersion in the PVDF matrix. The dielectric constant of the resulted composites increased significantly, especially, the prepared composite with 40 vol % BT loading exhibited the largest dielectric constant (65, 25 °C, 1 kHz) compared with the literature values of BT/PVDF at the same concentration of filler. Moreover, the energy storage density of the composites with tailored structure was largely enhanced at the low electric field, showing promising application as dielectric material in energy storage device. Our work suggested that introduction of strong polarized ferroelectric particles with optimal size and construction of core-shell structured coated fillers by PVP in the PVDF matrix are efficacious in improving dielectric performance of composites. The demonstrated approach can also be applied to the design and preparation of other polymers-based nanocomposites filled with ferroelectric particles to achieve desirable dielectric properties.

  7. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  8. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  9. Synthesis of the zeolitic imidazolate framework ZIF-4 from the ionic liquid 1-butyl-3-methylimidazolium imidazolate

    NASA Astrophysics Data System (ADS)

    Hovestadt, Maximilian; Schwegler, Johannes; Schulz, Peter S.; Hartmann, Martin

    2018-05-01

    A new synthesis route for the zeolitic imidazolate framework ZIF-4 using imidazolium imidazolate is reported. Additionally, the ionic liquid-derived material is compared to conventional ZIF-4 with respect to the powder X-ray diffraction pattern pattern, nitrogen uptake, particle size, and separation potential for olefin/paraffin gas mixtures. Higher synthesis yields were obtained, and the different particle size affected the performance in the separation of ethane and ethylene.

  10. Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and vaccine adjuvant activity

    PubMed Central

    2013-01-01

    Background Nanosuspensions are an important class of delivery system for vaccine adjuvants and drugs. Previously, we developed a nanosuspension consisting of the synthetic TLR4 ligand glucopyranosyl lipid adjuvant (GLA) and dipalmitoyl phosphatidylcholine (DPPC). This nanosuspension is a clinical vaccine adjuvant known as GLA-AF. We examined the effects of DPPC supplier, buffer composition, and manufacturing process on GLA-AF physicochemical and biological activity characteristics. Results DPPC from different suppliers had minimal influence on physicochemical and biological effects. In general, buffered compositions resulted in less particle size stability compared to unbuffered GLA-AF. Microfluidization resulted in rapid particle size reduction after only a few passes, and 20,000 or 30,000 psi processing pressures were more effective at reducing particle size and recovering the active component than 10,000 psi. Sonicated and microfluidized batches maintained good particle size and chemical stability over 6 months, without significantly altering in vitro or in vivo bioactivity of GLA-AF when combined with a recombinant malaria vaccine antigen. Conclusions Microfluidization, compared to water bath sonication, may be an effective manufacturing process to improve the scalability and reproducibility of GLA-AF as it advances further in the clinical development pathway. Various sources of DPPC are suitable to manufacture GLA-AF, but buffered compositions of GLA-AF do not appear to offer stability advantages over the unbuffered composition. PMID:24359024

  11. Assessing consumption of bioactive micro-particles by filter-feeding Asian carp

    USGS Publications Warehouse

    Jensen, Nathan R.; Amberg, Jon J.; Luoma, James A.; Walleser, Liza R.; Gaikowski, Mark P.

    2012-01-01

    Silver carp Hypophthalmichthys molitrix (SVC) and bighead carp H. nobilis (BHC) have impacted waters in the US since their escape. Current chemical controls for aquatic nuisance species are non-selective. Development of a bioactive micro-particle that exploits filter-feeding habits of SVC or BHC could result in a new control tool. It is not fully understood if SVC or BHC will consume bioactive micro-particles. Two discrete trials were performed to: 1) evaluate if SVC and BHC consume the candidate micro-particle formulation; 2) determine what size they consume; 3) establish methods to evaluate consumption of filter-feeders for future experiments. Both SVC and BHC were exposed to small (50-100 μm) and large (150-200 μm) micro-particles in two 24-h trials. Particles in water were counted electronically and manually (microscopy). Particles on gill rakers were counted manually and intestinal tracts inspected for the presence of micro-particles. In Trial 1, both manual and electronic count data confirmed reductions of both size particles; SVC appeared to remove more small particles than large; more BHC consumed particles; SVC had fewer overall particles in their gill rakers than BHC. In Trial 2, electronic counts confirmed reductions of both size particles; both SVC and BHC consumed particles, yet more SVC consumed micro-particles compared to BHC. Of the fish that ate micro-particles, SVC consumed more than BHC. It is recommended to use multiple metrics to assess consumption of candidate micro-particles by filter-feeders when attempting to distinguish differential particle consumption. This study has implications for developing micro-particles for species-specific delivery of bioactive controls to help fisheries, provides some methods for further experiments with bioactive micro-particles, and may also have applications in aquaculture.

  12. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    PubMed

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    PubMed Central

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm.
RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide.
CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.


Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045

  14. The first products made in space: Monodisperse latex particles

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Micale, F. J.; Sudol, E. D.; Tseng, C.-M.; Sheu, H.-R.; Kornfeld, D. M.

    1988-01-01

    The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles.

  15. Controlled Microwave-Assisted Growth of Monodisperse of Silica Nanoparticles under Acid Catalysis (Postprint)

    DTIC Science & Technology

    2012-11-26

    appear truncated with flat surfaces and have polyhedron shape, whereas particles in Figure 8b,c have smoother surfaces compared to those in Figure 7a, but...appear to be polyhedron in shape. (b, c) Spherical SiO2 NPs are observed for the larger particles. Particles imaged in b have average sizes of 163 ± 13

  16. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  17. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE PAGES

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov; ...

    2017-12-08

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  18. Aerosol Measurements in the Atmospheric Surface Layer at L'Aquila, Italy: Focus on Biogenic Primary Particles

    NASA Astrophysics Data System (ADS)

    Pitari, Giovanni; Coppari, Eleonora; De Luca, Natalia; Di Carlo, Piero; Pace, Loretta

    2014-09-01

    Two year measurements of aerosol concentration and size distribution (0.25 μm < d < 30 μm) in the atmospheric surface layer, collected in L'Aquila (Italy) with an optical particle counter, are reported and analysed for the different modes of the particle size distribution. A different seasonal behaviour is shown for fine mode aerosols (largely produced by anthropogenic combustion), coarse mode and large-sized aerosols, whose abundance is regulated not only by anthropogenic local production, but also by remote natural sources (via large scale atmospheric transport) and by local sources of primary biogenic aerosols. The observed total abundance of large particles with diameter larger than 10 μm is compared with a statistical counting of primary biogenic particles, made with an independent technique. Results of these two observational approaches are analysed and compared to each other, with the help of a box model driven by observed meteorological parameters and validated with measurements of fine and coarse mode aerosols and of an atmospheric primary pollutant of anthropogenic origin (NOx). Except in winter months, primary biogenic particles in the L'Aquila measurement site are shown to dominate the atmospheric boundary layer population of large aerosol particles with diameter larger than 10 μm (about 80 % of the total during summer months), with a pronounced seasonal cycle, contrary to fine mode aerosols of anthropogenic origin. In order to explain these findings, the main mechanisms controlling the abundance and variability of particulate matter tracers in the atmospheric surface layer are analysed with the numerical box-model.

  19. A Comparison of the Performance of Efficient Data Analysis Versus Fine Particle Dose as Metrics for the Quality Control of Aerodynamic Particle Size Distributions of Orally Inhaled Pharmaceuticals.

    PubMed

    Tougas, Terrence P; Goodey, Adrian P; Hardwell, Gareth; Mitchell, Jolyon; Lyapustina, Svetlana

    2017-02-01

    The performance of two quality control (QC) tests for aerodynamic particle size distributions (APSD) of orally inhaled drug products (OIPs) is compared. One of the tests is based on the fine particle dose (FPD) metric currently expected by the European regulators. The other test, called efficient data analysis (EDA), uses the ratio of large particle mass to small particle mass (LPM/SPM), along with impactor sized mass (ISM), to detect changes in APSD for QC purposes. The comparison is based on analysis of APSD data from four products (two different pressurized metered dose inhalers (MDIs) and two dry powder inhalers (DPIs)). It is demonstrated that in each case, EDA is able to detect shifts and abnormalities that FPD misses. The lack of sensitivity on the part of FPD is due to its "aggregate" nature, since FPD is a univariate measure of all particles less than about 5 μm aerodynamic diameter, and shifts or changes within the range encompassed by this metric may go undetected. EDA is thus shown to be superior to FPD for routine control of OIP quality. This finding augments previously reported superiority of EDA compared with impactor stage groupings (favored by US regulators) for incorrect rejections (type I errors) when incorrect acceptances (type II errors) were adjusted to the same probability for both approaches. EDA is therefore proposed as a method of choice for routine quality control of OIPs in both European and US regulatory environments.

  20. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  1. Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry

    NASA Astrophysics Data System (ADS)

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  2. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan

    2017-04-01

    A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.

  3. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    PubMed

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  4. Physical characteristics of indigestible solids affect emptying from the fasting human stomach.

    PubMed Central

    Meyer, B; Beglinger, C; Neumayer, M; Stalder, G A

    1989-01-01

    Gastric emptying of indigestible solids depends on their size. It is not clear whether physical characteristics other than particle size affect emptying of indigestible solids from the fasting human stomach. We studied gastric emptying of three differently shaped particles, (cubes, spheres, rods) of either hard or soft consistency during the fasting state in human volunteers. The shape of indigestible particles did not affect their emptying. The area under the gastric emptying curve (AUC: particles x hour) was for hard cubes 24.7 (2.2), for hard spheres 27.9 (1.6), for hard rods 26.9 (2.7). All soft particles emptied faster than their identically shaped hard counterparts, but there was no difference among the three shapes (AUC for soft cubes: 29.2 (3.0), for soft spheres 32.0 (1.8), for soft rods 34.1 (1.2). If gastric emptying of hard and soft particles was compared independently of their shape, soft particles emptied significantly faster than hard ones: AUC 31.8 (1.2) v 26.5 (1.3) (p less than 0.01). In conclusion, the consistency but not the shape significantly affects gastric emptying. Specific physical characteristics other than size and shape may affect gastric emptying of indigestible particles which may be of importance in the design of drugs. PMID:2599438

  5. Size-resolved particle emission factors for individual ships

    NASA Astrophysics Data System (ADS)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  6. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process.

    PubMed

    Kim, Min-Soo; Song, Ha-Seung; Park, Hee Jun; Hwang, Sung-Joo

    2012-01-01

    The aims of this study were to identify how the solvent selection affects particle formation and to examine the effect of the initial drug solution concentration on mean particle size and particle size distribution in the supercritical antisolvent (SAS) process. Amorphous atorvastatin calcium was precipitated from seven different solvents using the SAS process. Particles with mean particle size ranging between 62.6 and 1493.7 nm were obtained by varying organic solvent type and solution concentration. By changing the solvent, we observed large variations in particle size and particle size distribution, accompanied by different particle morphologies. Particles obtained from acetone and tetrahydrofuran (THF) were compact and spherical fine particles, whereas those from N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO) were agglomerated, with rough surfaces and relatively larger particle sizes. Interestingly, the mean particle size of atorvastatin calcium increased with an increase in the boiling point of the organic solvent used. Thus, for atorvastatin particle formation via the SAS process, particle size was determined mainly by evaporation of the organic solvent into the antisolvent phase. In addition, the mean particle size was increased with increasing drug solution concentration. In this study, from the aspects of particle size and solvent toxicity, acetone was the better organic solvent for controlling nanoparticle formation of atorvastatin calcium.

  7. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    NASA Astrophysics Data System (ADS)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  8. Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles

    NASA Astrophysics Data System (ADS)

    Ugolnikov, Oleg S.; Maslov, Igor A.; Kozelov, Boris V.; Dlugach, Janna M.

    2016-06-01

    Wide-field polarization measurements of the twilight sky background during several nights with bright and extended noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependence of the degree of polarization of sunlight scattered by cloud particles in a wide range of scattering angles (from 40° to 130°). This range covers the linear polarization maximum near 90° and large-angle slope of the curve. The polarization in this angle range is most sensitive to the particle size. The method of separation of scattering on cloud particles from the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles; the best-fit model radius of particles (0.06 μm) and maximum radius (about 0.1 μm) are estimated.

  9. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.

    PubMed

    Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter

    2008-09-01

    The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.

  10. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan P.; Fridlind, Ann M.; Knopf, Daniel A.; Miller, Ron L.; García-Pando, Carlos Perez

    2017-01-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 24 micrometer contributes the largest INP number.

  11. How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Fridlind, A. M.; Knopf, D. A.; Miller, R. L.; Pérez García-Pando, C.

    2017-12-01

    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 2-4 μm contributes the largest INP number.

  12. Blowing in the Wind: I. Velocities of Chondrule-sized Particles in a Turbulent Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Fonda, Mark (Technical Monitor)

    2003-01-01

    Small but macroscopic particles - chondrules, higher temperature mineral inclusions, metal grains, and their like - dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust, and to their diffusion in the nebula, which we explore separately.

  13. Nanoparticle concentrations and composition in a dental office and dental laboratory: A pilot study on the influence of working procedures.

    PubMed

    Lang, Andreja; Ovsenik, Maja; Verdenik, Ivan; Remškar, Maja; Oblak, Čedomir

    2018-05-01

    During material treatment in dentistry particles of different size are released in the air. To examine the degree of particle exposure, air scanning to dental employees was performed by the Scanning Mobility Particle Sizer. The size, shape and chemical composition of particles collected with a low-pressure impactor were determined by scanning electronic microscopy and X-ray dispersive analysis. The average concentrations of nanoparticles during working periods in a clean dental laboratory (45,000-56,000 particles/cm 3 ), in an unclean dental laboratory (28,000-74,000 particles/cm 3 ), and in a dental office (21,000-50,000 particles/cm 3 ), were significantly higher compared to average concentrations during nonworking periods in the clean dental laboratory (11,000-24,000 particles/cm 3 ), unclean laboratory (14,000-40,000 particles/cm 3 ), and dental office (13,000-26,000 particles/cm 3 ). Peak concentration of nanoparticles in work-intensive periods were found significantly higher (up to 773,000 particles/cm 3 ), compared to the non-working periods (147,000 particles/cm 3 ) and work-less intensive periods (365,000 particles/cm 3 ). The highest mass concentration value ranged from 0.055-0.166 mg/m 3 . X-ray dispersive analysis confirmed the presence of carbon, potassium, oxygen, iron, aluminum, zinc, silicon, and phosphorus as integral elements of dental restorative materials in form of nanoparticle clusters, all smaller than 100 nm. We concluded that dental employees are exposed to nanoparticles in their working environment and are therefore potentially at risk for certain respiratory and systematic diseases.

  14. How do dairy cows chew?--particle size analysis of selected feeds with different particle length distributions and of respective ingested bolus particles.

    PubMed

    Schadt, I; Ferguson, J D; Azzaro, G; Petriglieri, R; Caccamo, M; Van Soest, P; Licitra, G

    2012-08-01

    Not only feed but also respective bolus particle size could alter diet efficiency and cow performance. The objective of this project was to characterize particle size of selected feeds and respective swallowed boli. Feed samples included 6 different particle length rye grass hay samples, 1 grass silage, 1 corn silage, and 1 total mixed ration (TMR). Rye grass hay samples consisted of long hay and chopped hay particles retained on the 19- (19_PSPS hay), 8- (8_PSPS hay), and 1.18-mm (1.18_PSPS hay) Penn State Particle Separator (PSPS) screens and those collected on the pan (PSPS_pan hay). A sixth hay treatment was rye grass forage cut at 50-mm lengths and dried to hay (50-mm hay). Treatments were offered to 4 nonlactating and 4 lactating cows following rumen evacuation. Swallowed boli were collected and the number of chews per gram of ingested feed dry matter was determined. Feed and bolus particles of lengths ≥5mm were collected on a 1.6-mm screen using a horizontal wet sieving technique. This cut point was chosen, as the literature suggests that most fecal particles are shorter than 5mm. Dry matter proportions on this screen (PROP_1.6) were determined and particle lengths of retained particles were measured by image analysis. Mean particle lengths (ML) were calculated considering particles ≥5mm in length. Boli of long hay, of 19_PSPS hay, of 8_PSPS hay, and of 50-mm hay had similar ML of 10 to 11mm. Bolus PROP_1.6 were also similar between these treatments, ranging from 0.54 to 0.69. Bolus particle lengths and distributions of these treatments were not related to respective hay particles. Bolus of 1.18_PSPS hay had PROP_1.6 of 0.51 and a smaller ML of 8mm. The PSPS_pan hay had PROP_1.6 of only 0.33, but was still chewed intensely. Apparently, little particle size reduction occurred when cows ate the TMR or the silages. Feed and respective bolus PROP_1.6 were as follows: 0.66 and 0.59 in grass silage, 0.52 and 0.55 in corn silage, and 0.44 and 0.38 in the TMR. Feed and respective bolus ML were as follows: 13.8 and 11.6mm in grass silage, 12.0 and 11.2mm in corn silage, and 13.1 and 12.5mm in the TMR. Rye grass hay particles retained on PSPS screens ≥8mm, with ML of at least 25mm were longer compared with TMR particles, but respective bolus particles were shorter. Bolus particle size is not associated with the size of large feed particles chewed to a constant size that is appropriate for deglutition. This size may be related to feed chemical composition. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. DIRECT COUNTING AND SIZING OF MITOCHONDRIA IN SOLUTION

    PubMed Central

    Gear, Adrian R. L.; Bednarek, Jana M.

    1972-01-01

    Resistive particle counting has been developed for the accurate sizing and counting of mitochondria in solution. The normal detection limit with a 30 µ aperture is 0.48 µ diameter, or 0.056 µ3 particle volume The mean volume of rat liver mitochondria was 0.42 µ3 or 0.93 µ in diameter. The average value for numbers of particles per milligram of mitochondrial protein was 4.3 x 103, and per gram of rat liver was about 11 x 1010. These values compare satisfactorily with those derived by light microscopy and electron microscopy. The mean volume for mitochondria from rat heart was 0 60 µ3 and from rat kidney cortex, 0.23 µ3. These values agree within 15% of those determined by electron microscopy of whole tissue. Mitochondrial fragility and contaminating subcellular organelles were shown to have little influence on the experimentally determined size distributions The technique may be applied to rapid swelling studies, as well as to estimations of the number and size of mitochondria from animals under different conditions such as liver regeneration and hormonal, pathological, or drug-induced states Mitochondrial DNA, RNA, cytochrome c-oxidase, cytochrome (a ÷ a 3), and iron were nearly constant per particle over large differences in particle size. Such data may be particularly valuable for biogenesis studies and support the hypothesis that the net amount per particle of certain mitochondrial constituents remains constant during mitochondrial growth and enlargement PMID:4339279

  16. Nanoparticle generation and interactions with surfaces in vacuum systems

    NASA Astrophysics Data System (ADS)

    Khopkar, Yashdeep

    Extreme ultraviolet lithography (EUVL) is the most likely candidate as the next generation technology beyond immersion lithography to be used in high volume manufacturing in the semiconductor industry. One of the most problematic areas in the development process is the fabrication of mask blanks used in EUVL. As the masks are reflective, there is a chance that any surface aberrations in the form of bumps or pits could be printed on the silicon wafers. There is a strict tolerance to the number density of such defects on the mask that can be used in the final printing process. Bumps on the surface could be formed when particles land on the mask blank surface during the deposition of multiple bi-layers of molybdenum and silicon. To identify, and possibly mitigate the source of particles during mask fabrication, SEMATECH investigated particle generation in the VEECO Nexus deposition tool. They found several sources of particles inside the tool such as valves. To quantify the particle generation from vacuum components, a test bench suitable for evaluating particle generation in the sub-100 nm particle size range was needed. The Nanoparticle test bench at SUNY Polytechnic Institute was developed as a sub-set of the overall SEMATECH suite of metrology tools used to identify and quantify sources of particles inside process tools that utilize these components in the semiconductor industry. Vacuum valves were tested using the test bench to investigate the number, size and possible sources of particles inside the valves. Ideal parameters of valve operation were also investigated using a 300-mm slit valve with the end goal of finding optimized parameters for minimum particle generation. SEMATECH also pursued the development of theoretical models of particle transport replicating the expected conditions in an ion beam deposition chamber assuming that the particles were generated. In the case of the ion beam deposition tool used in the mask blank fabrication process, the ion beam in the tool could significantly accelerate particles. Assuming that these particles are transported to various surfaces inside the deposition tool, the next challenge is to enhance the adhesion of the particles on surfaces that are located in the non-critical areas inside the tool. However, for particles in the sub-100 nm size range, suitable methods do not exist that can compare the adhesion probability of particles upon impact for a wide range of impact velocities, surfaces and particle types. Traditional methods, which rely on optical measurement of particle velocities in the micron-size regime, cannot be used for sub-100 nm particles as the particles do not scatter sufficient light for the detectors to function. All the current methods rely on electrical measurements taken from impacting particles onto a surface. However, for sub-100 nm particles, the impact velocity varies in different regions of the same impaction spot. Therefore, electrical measurements are inadequate to quantify the exact adhesion characteristics at different impact velocities to enable a comparison of multiple particle-surface systems. Therefore, we propose a new method based on the use of scanning electron microscopy (SEM) imaging to study the adhesion of particles upon impact on surfaces. The use of SEM imaging allows for single particle detection across a single impaction spot and, therefore, enables the comparison of different regions with different impact velocities in a single impaction spot. The proposed method will provide comprehensive correlation between the adhesion probability of sub-100 nm particles and a wide range of impact velocities and angles. The location of each particle is compared with impact velocity predicted by using computational fluid dynamics methods to generate a comprehensive adhesion map involving the impact of 70 nm particles on a polished surface across a large impact velocity range. The final adhesion probability map shows higher adhesion at oblique impact angles compared to normal incidence impacts. Theoretical and experiments with micron-sized particles have shown that the contact area between the particle and the surface decreases at lower incidence angles which results in a decrease in the adhesion probability of the particle. The most likely cause of this result was the role of plastic deformation of particles and its effect on adhesion. Therefore, 70 nm sucrose particles were also impacted under similar impaction conditions to compare the role of plastic deformation on the adhesion characteristics of a particle. Sucrose particles have approximately 10 times more modulus of elasticity than Polystyrene Latex (PSL) particles and were found to have almost no adhesion on the surface at the same impact velocities where the highest adhesion of PSL particles was measured. Besides the role of plastic deformation, the influence of other possible errors in this process was investigated but not found to be significant. (Abstract shortened by UMI.).

  17. A Heuristic Probabilistic Approach to Estimating Size-Dependent Mobility of Nonuniform Sediment

    NASA Astrophysics Data System (ADS)

    Woldegiorgis, B. T.; Wu, F. C.; van Griensven, A.; Bauwens, W.

    2017-12-01

    Simulating the mechanism of bed sediment mobility is essential for modelling sediment dynamics. Despite the fact that many studies are carried out on this subject, they use complex mathematical formulations that are computationally expensive, and are often not easy for implementation. In order to present a simple and computationally efficient complement to detailed sediment mobility models, we developed a heuristic probabilistic approach to estimating the size-dependent mobilities of nonuniform sediment based on the pre- and post-entrainment particle size distributions (PSDs), assuming that the PSDs are lognormally distributed. The approach fits a lognormal probability density function (PDF) to the pre-entrainment PSD of bed sediment and uses the threshold particle size of incipient motion and the concept of sediment mixture to estimate the PSDs of the entrained sediment and post-entrainment bed sediment. The new approach is simple in physical sense and significantly reduces the complexity and computation time and resource required by detailed sediment mobility models. It is calibrated and validated with laboratory and field data by comparing to the size-dependent mobilities predicted with the existing empirical lognormal cumulative distribution function (CDF) approach. The novel features of the current approach are: (1) separating the entrained and non-entrained sediments by a threshold particle size, which is a modified critical particle size of incipient motion by accounting for the mixed-size effects, and (2) using the mixture-based pre- and post-entrainment PSDs to provide a continuous estimate of the size-dependent sediment mobility.

  18. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles.

    PubMed

    Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2016-11-20

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    NASA Astrophysics Data System (ADS)

    Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-09-01

    The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x i / d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x i / d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i / d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  20. Entrainment of lactose inhalation powders: a study using laser diffraction.

    PubMed

    Watling, C P; Elliott, J A; Cameron, R E

    2010-07-11

    We have investigated the mechanism of entrainment of lactose inhalation blends released from a dry powder inhaler using a diffraction particle size analyser (Malvern Spraytec). Whether a powder blend entrains as a constant stream of powder (the "erosion" mechanism) or as a few coarse plugs (the "fracture" mechanism) was found by comparing transmission data with particle size information. This technique was then applied to a lactose grade with 0, 5 and 10wt% added fine particles. As the wt% fines increased, the entrainment mechanism was found to change from a mild fracture, consisting of multiple small plugs, to more severe fracture with fewer plugs. The most severe fracture mechanism consisted of either the powder reservoir emptying as a single plug, or of the reservoir emptying after a delay of the order of 0.1s due to the powder sticking to its surroundings. Further to this, three different inhalation grades were compared, and the severity of the fracture was found to be inversely proportional to the flowability of the powder (measured using an annular ring shear tester). By considering the volume of aerosolised fine particles in different blends it was determined that the greater the volume of fines added to a powder, the smaller the fraction of fines that were aerosolised. This was attributed to different behaviour when fines disperse from carrier particles compared with when they disperse from agglomerates of fines. In summary, this paper demonstrates how laser diffraction can provide a more detailed analysis of an inhalation powder than just its size distribution. 2010. Published by Elsevier B.V. All rights reserved.

  1. Key to enhance thermoelectric performance by controlling crystal size of strontium titanate

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Ye, Xinxin; Yaer, Xinba; Wu, Yin; Zhang, Boyu; Miao, Lei

    2015-09-01

    One-step molten salt synthesis process was introduced to fabricate nano to micrometer sized SrTiO3 powders in which effects of synthesis temperature, oxide-to-flux ratios and raw materials on the generation of SrTiO3 powders were examined. 100 nm or above sized pure SrTiO3 particles were obtained at relatively lower temperature of 900∘C. Micro-sized rhombohedral crystals with a maximum size of approximately 12 μm were obtained from SrCO3 or Sr(NO3)2 strontium source with 1:1 O/S ratio. Controlled crystal size and morphology of Nb-doped SrTiO3 particles are prepared by using this method to confirm the performance of thermoelectric properties. The Seebeck coefficient obtained is significantly high when compared with the reported data, and the high ratio of nano particles in the sample has a positive effect on the increase of Seebeck coefficient too, which is likely due to the energy filtering effect at large numbers of grain boundaries resulting from largely distributed structure.

  2. The effect of particle size on the in vivo degradation of poly(d,l-lactide-co-glycolide)/α-tricalcium phosphate micro- and nanocomposites.

    PubMed

    Bennett, Sarah M; Arumugam, Meera; Wilberforce, Samuel; Enea, Davide; Rushton, Neil; Zhang, Xiang C; Best, Serena M; Cameron, Ruth E; Brooks, Roger A

    2016-11-01

    This paper reports the effect of particle size within a resorbable composite on the in vivo degradation rate and host response. Resorbable composites based on poly(d,l-lactide-co-glycolide) (PLGA) reinforced with tricalcium phosphate (TCP) have shown suitable degradation, biological and mechanical properties for bone repair. Composites with nano-sized TCP particles degrade more homogenously in vitro than equivalent composites with micro-sized particles. In this study, PLGA and PLGA/TCP composites containing micro- or nano-sized α-TCP particles were implanted into an ovine distal femoral condyle defect and harvested at 6, 12, 18 and 24weeks. An intimate interface was observed between the new bone tissue and degrading implants. Visual scoring of histological images and semi-automated segmentation of X-ray images were used to quantify implant degradation and the growth of new bone tissue in the implant site. Bone growth into the implant site occurred at a similar rate for both composites and the PLGA control. However, the in vivo degradation rate of the nanocomposite was slower than that of the microcomposite and consequently more closely matched the rate of bone growth. For the first 6weeks, the rate of in vivo degradation matched that of in vitro degradation, but lagged significantly at longer time points. These results point to the potential use of ceramic particle size in controlling composite degradation whilst maintaining good bone formation. This paper concerns degradable composites for orthopaedic application. The effect of particle size on implant degradation in vivo is not yet well characterised and these results give the first opportunity to directly compare in vitro and in vivo degradation rates for composites with micro- and nano-sized particles. This type of data is vital for the validation of models of composite degradation behaviour, which will lead to the design and manufacture of composites with a tailored, predictable degradation profile. The trainable segmentation tool can be used for future studies where X-rays of partially degraded implants (which have complicated greyscales and morphologies) need to be quantified without bias. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Intercomparison and Evaluation of Global Aerosol Microphysical Properties Among Aerocom Models of a Range of Complexity

    NASA Technical Reports Server (NTRS)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; hide

    2014-01-01

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel- mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation an growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

  4. Determining chewing efficiency using a solid test food and considering all phases of mastication.

    PubMed

    Liu, Ting; Wang, Xinmiao; Chen, Jianshe; van der Glas, Hilbert W

    2018-07-01

    Following chewing a solid food, the median particle size, X 50 , is determined after N chewing cycles, by curve-fitting of the particle size distribution. Reduction of X 50 with N is traditionally followed from N ≥ 15-20 cycles when using the artificial test food Optosil ® , because of initially unreliable values of X 50 . The aims of the study were (i) to enable testing at small N-values by using initial particles of appropriate size, shape and amount, and (ii) to compare measures of chewing ability, i.e. chewing efficiency (N needed to halve the initial particle size, N(1/2-Xo)) and chewing performance (X 50 at a particular N-value, X 50,N ). 8 subjects with a natural dentition chewed 4 types of samples of Optosil particles: (1) 8 cubes of 8 mm, border size relative to bin size (traditional test), (2) 9 half-cubes of 9.6 mm, mid-size; similar sample volume, (3) 4 half-cubes of 9.6 mm, and 2 half-cubes of 9.6 mm; reduced particle number and sample volume. All samples were tested with 4 N-values. Curve-fitting with a 2nd order polynomial function yielded log(X 50 )-log(N) relationships, after which N(1/2-Xo) and X 50,N were obtained. Reliable X 50 -values are obtained for all N-values when using half-cubes with a mid-size relative to bin sizes. By using 2 or 4 half-cubes, determination of N(1/2-Xo) or X 50,N needs less chewing cycles than traditionally. Chewing efficiency is preferable over chewing performance because of a comparison of inter-subject chewing ability at the same stage of food comminution and constant intra-subject and inter-subject ratios between and within samples respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Comparison of nanoparticular hydroxyapatite pastes of different particle content and size in a novel scapula defect model

    PubMed Central

    Hruschka, Veronika; Tangl, Stefan; Ryabenkova, Yulia; Heimel, Patrick; Barnewitz, Dirk; Möbus, Günter; Keibl, Claudia; Ferguson, James; Quadros, Paulo; Miller, Cheryl; Goodchild, Rebecca; Austin, Wayne; Redl, Heinz; Nau, Thomas

    2017-01-01

    Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study. PMID:28233833

  6. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters

    NASA Astrophysics Data System (ADS)

    Katata, Lebogang; Tshweu, Lesego; Naidoo, Saloshnee; Kalombo, Lonji; Swai, Hulda

    2012-11-01

    Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 μg/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L8 orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 ± 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 ± 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 ± 2.48 nm and 0.093 ± 0.02.

  7. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    NASA Astrophysics Data System (ADS)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  8. Clustering of particles and pathogens within evaporating drops

    NASA Astrophysics Data System (ADS)

    Park, Jaebum; Kim, Ho-Young

    2017-11-01

    The evaporation of sessile suspension drops leads to accumulation of the particles around the pinned contact line, which is widely termed the coffee ring effect. However, the evaporation behavior of a liquid drop containing a small number of particles with the size comparable to the host drop is unclear yet. Thus, here we investigate the motion and spatial distribution of large particles within a sessile drop. The spherical particles cluster only when their initial distance is below a critical value, which is a function of the diameter and wettability of particle as well as the surface tension and size of the host drop. We rationalize such a critical distance for self-assembly based on the balance of the capillary force and the frictional resistance to sliding and rolling of the particles on a solid substrate. We further discuss the physical significance of this drop-mediated ``Cheerios effect'' in connection with the fate of pathogens residing in drops as a result of sneezing and coughing.

  9. Photocatalytic degradation of RhB with microwave prepared PbMoO4.

    PubMed

    Hernández-Uresti, Diana B; Aguilar-Garib, Juan A; Martínez-de la Cruz, Azael

    2012-01-01

    Synthesized PbMoO4 from H2MoO4 and Pb(NO3)2 with microwaves was compared, in terms of its photocatalytic activity as catalyzer for decomposing rhodamine B (RhB), against samples prepared by hydrothermal and sonochemical methods from the same precursors. Microwave synthesis lasted 20 minutes; hydrothermal, 10 minutes and sonochemical method, 1 hour. Xrays diffraction patterns show that PbMoO4 prepared by these three routes is compounded by the same phase. It is found that microwave synthesized PbMoO4 particles are rounder, in an intermediate size (250 nm), compared to sonochemical (100 nm) and hydrothermal (500 nm) routes; microwave particles also exhibit higher photocatalytic activity for degradation of RhB under a xenon lamp. This difference is not explicable in terms of surface area measurements, but could be explained by UV Light scattering by the rounder particles produced by means of the microwave processing, which are about one half size compared to the wavelength.

  10. Influence of geometry and material of insulating posts on particle trapping using positive dielectrophoresis.

    PubMed

    Pesch, Georg R; Du, Fei; Baune, Michael; Thöming, Jorg

    2017-02-03

    Insulator-based dielectrophoresis (iDEP) is a powerful particle analysis technique based on electric field scattering at material boundaries which can be used, for example, for particle filtration or to achieve chromatographic separation. Typical devices consist of microchannels containing an array of posts but large scale application was also successfully tested. Distribution and magnitude of the generated field gradients and thus the possibility to trap particles depends apart from the applied field strength on the material combination between post and surrounding medium and on the boundary shape. In this study we simulate trajectories of singe particles under the influence of positive DEP that are flowing past one single post due to an external fluid flow. We analyze the influence of key parameters (excitatory field strength, fluid flow velocity, particle size, distance from the post, post size, and cross-sectional geometry) on two benchmark criteria, i.e., a critical initial distance from the post so that trapping still occurs (at fixed particle size) and a critical minimum particle size necessary for trapping (at fixed initial distance). Our approach is fundamental and not based on finding an optimal geometry of insulating structures but rather aims to understand the underlying phenomena of particle trapping. A sensitivity analysis reveals that electric field strength and particle size have the same impact, as have fluid flow velocity and post dimension. Compared to these parameters the geometry of the post's cross-section (i.e. rhomboidal or elliptical with varying width-to-height or aspect ratio) has a rather small influence but can be used to optimize the trapping efficiency at a specific distance. We hence found an ideal aspect ratio for trapping for each base geometry and initial distance to the tip which is independent of the other parameters. As a result we present design criteria which we believe to be a valuable addition to the existing literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperaturemore » and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.« less

  12. Fluorescence imaging of the nanoparticles modified with indocyanine green

    NASA Astrophysics Data System (ADS)

    Gareev, K. G.; Babikova, K. Y.; Postnov, V. N.; Naumisheva, E. B.; Korolev, D. V.

    2017-11-01

    The comparative research of silica, the magnetite and magnetite-silica nanoparticles modified with fluorescent dyes using gas-phase and liquid-phase methods was conducted. At the content of fluorescent dye comparable in size a particular spectrophotometric method, nanoparticles with fluorescein have up to 1000 times larger overall luminous efficiency. It is revealed that magnetic nanoparticles are characterized by a smaller light efficiency in comparison with silica particles, at the same time particles of a magnetite are most effective at modification with fluorescein, and magnetite-silica particles - at modification with indocyanine green.

  13. Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangal, Rahul; Srivastava, Samanvaya; Narayanan, Suresh

    Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size ae, are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein (S-E) equation is known to describe polymer drag on particles, and the non-continuum regime (d < ae), in which several recent studies report faster diffusion of particles than expected from continuum S-E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes d ≥more » ae in entangled polymers with varying molecular weight Mw in order to investigate how the transition from non-continuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO2 nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle-polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveal a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker Mw dependence for Mw>Me than expected from S-E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S-E analysis in which motion of particles is assumed to only disturb sub-chain entangled host segments with sizes comparable to the particle diameter.« less

  14. Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites.

    PubMed

    Mangal, Rahul; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A

    2016-01-19

    Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size a(e), are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein (S-E) equation is known to describe polymer drag on particles, and the noncontinuum regime (d < a(e)), in which several recent studies report faster diffusion of particles than expected from continuum S-E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes d ≥ a(e) in entangled polymers with varying molecular weight M(w) in order to investigate how the transition from noncontinuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO2 nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle-polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveals a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker M(w) dependence for M(w) > M(e) than expected from S-E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S-E analysis in which motion of particles is assumed to only disturb subchain entangled host segments with sizes comparable to the particle diameter.

  15. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  16. Particle Size Distribution in Aluminum Manufacturing Facilities.

    PubMed

    Liu, Sa; Noth, Elizabeth M; Dixon-Ernst, Christine; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine

    2014-10-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM 2.5 measured by PMI was compared to PM 2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM 1.0 ) and quasi-ultrafine (PM 0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM 2.5 versus MiniMOUDI_PM 2.5 was 1.03 mg/m 3 per mg/m 3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM 10 which was PM 1.0 or PM 0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities.

  17. X-ray tomography studies on porosity and particle size distribution in cast in-situ Al-Cu-TiB{sub 2} semi-solid forged composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, James; Mandal, Animesh

    X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT resultsmore » show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.« less

  18. Preparation and encapsulation of white/yellow dual colored suspensions for electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Han, Jingjing; Li, Xiaoxu; Feng, Yaqing; Zhang, Bao

    2014-11-01

    C.I. Pigment Yellow 181 (PY181) composite particles encapsulated by polyethylene (PE) were prepared by dispersion polymerization method, and C.I. Pigment Yellow 110 (PY110) composite particles encapsulated by polystyrene (PS) with mini-emulsion polymerization method were achieved, respectively. The modified pigments were characterized by fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope. Compared with the PE-coated PY 181 pigments, the PS-coated PY-110 particles had a narrow particle size distribution, regular spherical and average particle size of 450 nm. Suspension 1 and suspension 3 were prepared by the two composite particles dispersed in isopar M. A chromatic electrophoretic display cell consisting of yellow particles was successfully fabricated using dispersions of yellow ink particles in a mixed dielectric solvent with white particles as contrast. The response behavior and the contrast ratio to the electric voltage were also examined. The contrast ratio of pigments modified by polystyrene was 1.48, as well as the response time was 2 s, which were better than those of pigments modified by polyethylene.

  19. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    NASA Astrophysics Data System (ADS)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From spheroids to stereo-particles, ηd increases by about 30%. We believe these results may be useful for our understanding of the spatial distribution of mineral dust contained in an aerosol external mixture and to better quantify dust mass concentrations from polarization lidar experiments.

  20. Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles

    DOE PAGES

    Rubio, Mario A.; Gunduz, I. Emre; Groven, Lori J.; ...

    2016-11-11

    Aluminum particles are widely used as a metal fuel in solid propellants. However, poor combustion efficiencies and two-phase flow losses result due in part to particle agglomeration. Engineered composite particles of aluminum (Al) with inclusions of polytetrafluoroethylene (PTFE) or low-density polyethylene (LDPE) have been shown to improve ignition and yield smaller agglomerates in solid propellants, recently. Reductions in agglomeration were attributed to internal pressurization and fragmentation (microexplosions) of the composite particles at the propellant surface. We explore the mechanisms responsible for microexplosions in order to better understand the combustion characteristics of composite fuel particles. Single composite particles of Al/PTFE andmore » Al/LDPE with diameters between 100 and 1200 µm are ignited on a substrate to mimic a burning propellant surface in a controlled environment using a CO 2 laser in the irradiance range of 78–7700 W/cm 2. Furthermore, the effects of particle size, milling time, and inclusion content on the resulting ignition delay, product particle size distributions, and microexplosion tendencies are reported. For example particles with higher PTFE content (30 wt%) had laser flux ignition thresholds as low as 77 W/cm 2, exhibiting more burning particle dispersion due to microexplosions compared to the other materials considered. Composite Al/LDPE particles exhibit relatively high ignition thresholds compared to Al/PTFE particles, and microexplosions were observed only with laser fluxes above 5500 W/cm 2 due to low LDPE reactivity with Al resulting in negligible particle self-heating. However, results show that microexplosions can occur for Al containing both low and high reactivity inclusions (LDPE and PTFE, respectively) and that polymer inclusions can be used to tailor the ignition threshold. Furthermore, this class of modified metal particles shows significant promise for application in many different energetic materials that use metal fuels.« less

Top