Sample records for particle sizer system

  1. Ground truth methods for optical cross-section modeling of biological aerosols

    NASA Astrophysics Data System (ADS)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  2. USE OF THE AERODYNAMIC PARTICLE SIZER TO MEASURE PM-COARSE

    EPA Science Inventory

    The aerodynamic particle sizer (APS 3321, TSI, Inc.) measures particle size distributions from 0.5 µm to 20 µm by determining the time-of-flight of individual particles in an accelerating flow field. A complete particle size distribution may be determined in a matter of s...

  3. Aerosol Inlet Characterization Experiment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullard, Robert L.; Kuang, Chongai; Uin, Janek

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  4. Design and evaluation of an inlet conditioner to dry particles for real-time particle sizers.

    PubMed

    Peters, Thomas M; Riss, Adam L; Holm, Ricky L; Singh, Manisha; Vanderpool, Robert W

    2008-04-01

    Real-time particle sizers provide rapid information about atmospheric particles, particularly peak exposures, which may be important in the development of adverse health outcomes. However, these instruments are subject to erroneous readings in high-humidity environments when compared with measurements from filter-based, federal reference method (FRM) samplers. Laboratory tests were conducted to evaluate the ability of three inlet conditioners to dry aerosol prior to entering a real-time particle sizer for measuring coarse aerosols (Model 3321 Aerodynamic Particle Sizer, APS) under simulated highly humid conditions. Two 30 day field studies in Birmingham, AL, USA were conducted to compare the response of two APSs operated with and without an inlet conditioner to that measured with FRM samplers. In field studies, the correlation of PM(10-2.5) derived from the APS and that measured with the FRM was substantially stronger with an inlet conditioner applied (r2 ranged from 0.91 to 0.99) than with no conditioner (r2 = 0.61). Laboratory experiments confirmed the ability of the heater and desiccant conditioner to remove particle-borne moisture. In field tests, water was found associated with particles across the sizing range of the APS (0.5 microm to 20 microm) when relative humidity was high in Birmingham. Certain types of inlet conditioners may substantially improve the correlation between particulate mass concentration derived from real-time particle sizers and filter-based samplers in humid conditions.

  5. Particle Sizer

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Microspheres are tiny plastic beads that represent the first commercial products manufactured in orbit. An example of how they are used is a new aerodynamic particle sizer designated APS 33B produced by TSI Incorporated. TSI purchased the microspheres from the National Bureau of Standards which certified their exact size and the company uses them in calibration of the APS 33B* instrument, latest in a line of TSI systems for generating counting and weighing minute particles of submicron size. Instruments are used for evaluating air pollution control devices, quantifying environments, meteorological research, testing filters, inhalation, toxicology and other areas where generation or analysis of small airborne particles is required. * The APS 33B is no longer being manufactured. An improved version, APS 3320, is now being manufactured. 2/28/97

  6. NARSTO EPA SS PITTSBURGH GAS PM PROPERTY DATA

    Atmospheric Science Data Center

    2018-04-09

    ... Sizer Nephelometer Aerosol Collector SMPS - Scanning Mobility Particle Sizer Fluorescence Spectroscopy ... Get Google Earth Related Data:  Environmental Protection Agency Supersites Pittsburgh, Pennsylvania ...

  7. Submicron Aerosol Characterization of Water by a Differential Mobility Particle Sizer.

    DTIC Science & Technology

    1987-02-01

    7 :-711 no0 StIHICRON AEROSOL CHARACTERIZATION OF WATER DY A vi1 DIFFERENTIAL NOBILITY PA.. (U) DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON... WATER BY A DIFFERENTIAL MOBILITY PARTICLE SIZER (U) by B. Kournikakis, A. Gunning, J. Fildes and J. Ho Project No. 251SD EL .TE APR 099?07uD February...RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA SUFFIELD MEMORANDUM NO. 1193 SUBMICRON AEROSOL CHARACTERIZATION OF WATER BY Accession For A DIFFERENTIAL

  8. Performance Comparison of Field Portable Instruments to the Scanning Mobility Particle Sizer Using Monodispersed and Polydispersed Sodium Chloride Aerosols.

    PubMed

    Vo, Evanly; Horvatin, Matthew; Zhuang, Ziqing

    2018-05-21

    This study compared the performance of the following field portable aerosol instrument sets to performance of the reference Scanning Mobility Particle Sizer (SMPS): the handheld CPC-3007, the portable aerosol mobility spectrometer (PAMS), the NanoScan scanning mobility particle sizer (NanoScan SMPS) combined with an optical particle sizer (OPS). Tests were conducted with monodispersed and polydispersed aerosols. Monodispersed aerosols were controlled at the approximate concentration of 1 × 105 particles cm-3 and four monodispersed particle sizes of 30, 60, 100, and 300 nm were selected and classified for the monodispersed aerosol test, while three different steady-state concentration levels (low, medium, and high: ~8 × 103, 5 × 104, and 1 × 105 particles cm-3, respectively) were selected for the polydispersed aerosol test. For all four monodispersed aerosol sizes, particle concentrations measured with the NanoScan SMPS were within 13% of those measured with the reference SMPS. Particle concentrations measured with the PAMS were within 25% of those measured with the reference SMPS. Concentrations measured with the handheld condensation particle counter were within 30% of those measured with the reference SMPS. For the polydispersed aerosols, the particle sizes and concentrations measured with the NanoScan-OPS compared most favorably with those measured with the reference SMPS for three different concentration levels of low, medium, and high (concentration deviations ≤10% for all three concentration levels; deviations of particle size ≤4%). Although the particle-size comparability between the PAMS and the reference SMPS was quite reasonable with the deviations within 10%, the polydispersed particle concentrations measured with the PAMS were within 36% of those measured with the reference SMPS. The results of this evaluation will be useful for selecting a suitable portable device for our next workplace study phase of respiratory protection assessment. This study also provided the advantages and limitations of each individual portable instrument and therefore results from this study can be used by industrial hygienists and safety professionals, with appropriate caution, when selecting a suitable portable instrument for aerosol particle measurement in nanotechnology workplaces.

  9. Exposure to particle number, surface area and PM concentrations in pizzerias

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Morawska, L.; Stabile, L.; Viola, A.

    2010-10-01

    The aim of this work was to quantify exposure to particles emitted by wood-fired ovens in pizzerias. Overall, 15 microenvironments were chosen and analyzed in a 14-month experimental campaign. Particle number concentration and distribution were measured simultaneously using a Condensation Particle Counter (CPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). The surface area and mass distributions and concentrations, as well as the estimation of lung deposition surface area and PM 1 were evaluated using the SMPS-APS system with dosimetric models, by taking into account the presence of aggregates on the basis of the Idealized Aggregate (IA) theory. The fraction of inhaled particles deposited in the respiratory system and different fractions of particulate matter were also measured by means of a Nanoparticle Surface Area Monitor (NSAM) and a photometer (DustTrak DRX), respectively. In this way, supplementary data were obtained during the monitoring of trends inside the pizzerias. We found that surface area and PM 1 particle concentrations in pizzerias can be very high, especially when compared to other critical microenvironments, such as the transport hubs. During pizza cooking under normal ventilation conditions, concentrations were found up to 74, 70 and 23 times higher than background levels for number, surface area and PM 1, respectively. A key parameter is the oven shape factor, defined as the ratio between the size of the face opening in respect to the diameter of the semicircular oven door, and particular attention must also be paid to hood efficiency.

  10. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    NASA Astrophysics Data System (ADS)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  11. Size response of an SMPS-APS system to commercial multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Bok; Lee, Jun-Hyun; Bae, Gwi-Nam

    2010-02-01

    Carbon nanotubes (CNTs) are representative-engineered nanomaterials with unique properties. The safe production of CNTs urgently requires reliable tools to assess inhalation exposure. In this study, on-line aerosol instruments were employed to detect the release of multi-walled CNTs (MWCNTs) in workplace environments. The size responses of aerosol instruments consisting of both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) were examined using five types of commercial MWCNTs. A MWCNT solution and powder were aerosolized using atomizing and shaking methods, respectively. Regardless of the phase and purity, the aerosolized MWCNTs showed consistent size distributions with both SMPS and APS. The SMPS and APS measurements revealed a dominant broad peak at approximately 200-400 nm and a distinct narrow peak at approximately 2 μm, respectively. Comparing with field application of the two aerosol instruments, the APS response could be a fingerprint of the MWCNTs in a real workplace environment. A modification of the atomizing method is recommended for the long-term inhalation toxicity studies.

  12. Atmospheric bioaerosols transported via dust storms in the western United States

    NASA Astrophysics Data System (ADS)

    Hallar, A. Gannet; Chirokova, Galina; McCubbin, Ian; Painter, Thomas H.; Wiedinmyer, Christine; Dodson, Craig

    2011-09-01

    Measurements are presented showing the presence of biological material within frequent dust storms in the western United States. Previous work has indicated that biological particles were enhancing the impact of dust storms on the formation of clouds. This paper presents multiple case studies, between April and May 2010, showing the presence of and quantifying the amount of biological material via an Ultraviolet Aerodynamic Particle Sizer during dust events. All dust storms originated in the Four Corners region in the western Untied States and were measured at Storm Peak Laboratory, a high elevation facility in northwestern Colorado. From an Aerodynamic Particle Sizer, the mean dust particle size during these events was approximately 1 μm, with number concentrations between 6 cm-3 and 12 cm-3. Approximately 0.2% of these dust particles had fluorescence signatures, indicating the presence of biological material.

  13. Flocculation, Optics and Turbulence in the Community Sediment Transport Model System: Application of Oasis Results

    DTIC Science & Technology

    2012-09-30

    Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 instrumented with a Sequoia Scientific LISST-100x Type B laser particle sizer and a Digital...work was presented at Ocean Sciences 2012 is a session co-chaired by Hill, Bowers, Sherwood, and Wayne Slade from Sequoia Scientific. Wayne

  14. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    NASA Astrophysics Data System (ADS)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (<100 #/cm3), stressing the efficiency of the abatement system of the two plants. At Hinwil, particles sampled at the stack were mainly constituted of NaCl and KCl, two salts known to be involved in the corrosion process in incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  15. Surgical smoke control with local exhaust ventilation: Experimental study.

    PubMed

    Lee, Taekhee; Soo, Jhy-Charm; LeBouf, Ryan F; Burns, Dru; Schwegler-Berry, Diane; Kashon, Michael; Bowers, Jay; Harper, Martin

    2018-04-01

    This experimental study aimed to evaluate airborne particulates and volatile organic compounds (VOCs) from surgical smoke when a local exhaust ventilation (LEV) system is in place. Surgical smoke was generated from human tissue in an unoccupied operating room using an electrocautery surgical device for 15 min with 3 different test settings: (1) without LEV control; (2) control with a wall irrigation suction unit with an in-line ultra-low penetration air filter; and (3) control with a smoke evacuation system. Flow rate of LEVs was approximately 35 L/min and suction was maintained within 5 cm of electrocautery interaction site. A total of 6 experiments were conducted. Particle number and mass concentrations were measured using direct reading instruments including a condensation particle counter (CPC), a light-scattering laser photometer (DustTrak DRX), a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS), and a viable particle counter. Selected VOCs were collected using evacuated canisters using grab, personal and area sampling techniques. The largest average particle and VOCs concentrations were found in the absence of LEV control followed by LEV controls. Average ratios of LEV controls to without LEV control ranged 0.24-0.33 (CPC), 0.28-0.39 (SMPS), 0.14-0.31 (DustTrak DRX), and 0.26-0.55 (APS). Ethanol and isopropyl alcohol were dominant in the canister samples. Acetaldehyde, acetone, acetonitrile, benzene, hexane, styrene, and toluene were detected but at lower concentrations (<500 μg/m 3 ) and concentrations of the VOCs were much less than the National Institute for Occupational Safety and Health recommended exposure limit values. Utilization of the LEVs for surgical smoke control can significantly reduce but not completely eliminate airborne particles and VOCs.

  16. Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process.

    PubMed

    Schlagenhauf, Lukas; Chu, Bryan T T; Buha, Jelena; Nüesch, Frank; Wang, Jing

    2012-07-03

    The abrasion behavior of an epoxy/carbon nanotube (CNT) nanocomposite was investigated. An experimental setup has been established to perform abrasion, particle measurement, and collection all in one. The abraded particles were characterized by particle size distribution and by electron microscopy. The abrasion process was carried out with a Taber Abraser, and the released particles were collected by a tube for further investigation. The particle size distributions were measured with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) and revealed four size modes for all measured samples. The mode corresponding to the smallest particle sizes of 300-400 nm was measured with the SMPS and showed a trend of increasing size with increasing nanofiller content. The three measured modes with particle sizes from 0.6 to 2.5 μm, measured with the APS, were similar for all samples. The measured particle concentrations were between 8000 and 20,000 particles/cm(3) for measurements with the SMPS and between 1000 and 3000 particles/cm(3) for measurements with the APS. Imaging by transmission electron microscopy (TEM) revealed that free-standing individual CNTs and agglomerates were emitted during abrasion.

  17. DESIGN AND EVALUATION OF AN INLET CONDITIONER TO DRY PARTICLES FOR AN AERODYNAMIC PARTICLE SIZER

    EPA Science Inventory

    Atmospheric particulate matter is one of six pollutants for which the Environmental Protection Agency (EPA) has set National Ambient Air Quality Standards. Particulate matter standards are specified by particle size as PM 2.5 defined as the mass concentration of ′fine...

  18. Aerosol and trace gas flux measurements from a mobile car platform on the highway

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Miller, S. J.; Staebler, R. M.; Taylor, P.

    2016-12-01

    Mobile flux measurements of aerosols and trace gases at the surface can provide valuable information about the vertical transport of these compounds from near-surface sources. These measurements can be complimentary to stationary tower measurements or elevated mobile measurements from aircraft and unmanned aerial systems (UAS). In July, 2016 a mobile platform (Toyota Highlander), outfitted with a sonic anemometer (ATI), an open path CO2/H2O analyzer (Licor), and an ultrafine particle sizer (DMT), was driven on highways as part of a chasing study to investigate vehicle-induced turbulence and mixing. The open path analyzer and particle sizer inlet were co-located with the anemometer in order to investigate the feasibility of making flux measurements of heat, momentum, water vapour, CO2, and sub-micron aerosols on the highway. These highway flux measurements are compared to stationary platform measurements made upwind and downwind of the highway. Statistical and spectral analyses are used to demonstrate the validity of the mobile measurements. Uncertainties due to flow distortion around the vehicle, under-sampling, and heterogeneity of the vertical temperature and concentrations are investigated and discussed.

  19. Total Organisms Per Liter of Air with Particle Size Distribution (TOLAp): New Unit of Measure for the Test and Evaluation of Biodetectors

    DTIC Science & Technology

    2010-09-01

    captured by the unit of measure. A bioaerosol with particles the size of peas poses a relatively low threat because the particles will settle to the...background particles. Something as simple as green fluorescent protein (GFP) could act as a signal to a fluorescently gated particle sizer, indicating that a

  20. NARSTO EPA SS LOS ANGELES SMPS DATA

    Atmospheric Science Data Center

    2018-04-09

    ... Ground Station Instrument:  SMPS - Scanning Mobility Particle Sizer Location:  Los Angeles, ... Get Google Earth Related Data:  Environmental Protection Agency Supersites Los Angeles, California ...

  1. THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)

    EPA Science Inventory

    The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
    quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
    particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...

  2. Particle sizer and DNA sequencer

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.

    2005-09-13

    An electrophoretic device separates and detects particles such as DNA fragments, proteins, and the like. The device has a capillary which is coated with a coating with a low refractive index such as Teflon.RTM. AF. A sample of particles is fluorescently labeled and injected into the capillary. The capillary is filled with an electrolyte buffer solution. An electrical field is applied across the capillary causing the particles to migrate from a first end of the capillary to a second end of the capillary. A detector light beam is then scanned along the length of the capillary to detect the location of the separated particles. The device is amenable to a high throughput system by providing additional capillaries. The device can also be used to determine the actual size of the particles and for DNA sequencing.

  3. Contribution from indoor sources to particle number and mass concentrations in residential houses

    NASA Astrophysics Data System (ADS)

    He, Congrong; Morawska, Lidia; Hitchins, Jane; Gilbert, Dale

    As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify emission characteristics of indoor particle sources in 15 houses. Submicrometer particle number and approximation of PM 2.5 concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak), respectively. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured by using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and a DustTrak. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, cooking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than five times, while PM 2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively.

  4. A Comparative Analysis of the Resources Required for Test and Evaluation on Army-Led Weapon System Programs, Based Upon Program Size and Acquisition Management Complexity

    DTIC Science & Technology

    2007-12-01

    Program Manager PMO Program Manager Office POM Program Objective Memorandum PPE Personal Protective Equipment PPT Production Prove...test • Technical feasibility test • Engineering development test • Production prove-out test ( PPT ) • Software qualification test 22 • Live fire...improvement BIDS (P3I) system is equipped with a detection suite to include high volume samplers, a fluorescent particle counter/sizer, a flow

  5. Characterizing temporal changes of agricultural particulate matter number concentrations

    NASA Astrophysics Data System (ADS)

    Docekal, G. P.; Mahmood, R.; Larkin, G. P.; Silva, P. J.

    2017-12-01

    It is widely accepted among literature that particulate matter (PM) are of detriment to human health and the environment as a whole. These effects can vary depending on the particle size. This study examines PM size distributions and number concentrations at a poultry house. Despite much literature on PM concentrations at agricultural facilities, few studies have looked at the size distribution of particles at such facilities from the nucleation up through the coarse mode. Two optical particle counters (OPCs) were placed, one inside of a chicken house, and one on the outside of an exhaust fan to determine particle size distributions. In addition, a scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) sampled poultry house particles to give sizing information from a full size range of 10 nm - 20 mm. The data collected show several different types of events where observed size distributions changed. While some of these are due to expected dust generation events producing coarse mode particles, others suggest particle nucleation and accumulation events at the smaller size ranges that also occurred. The data suggest that agricultural facilities have an impact one the presence of PM in the environment beyond just generation of coarse mode dust. Data for different types of size distribution changes observed will be discussed.

  6. Electrospray-assisted ultraviolet aerodynamic particle sizer spectrometer for real-time characterization of bacterial particles.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Hwang, Gi Byoung; Lee, Byung Uk; Lee, Seung Bok; Jurng, Jong Soo; Bae, Gwi Nam

    2010-01-15

    The ultraviolet aerodynamic particle sizer (UVAPS) spectrometer is a novel, commercially available aerosol counter for real-time, continuous monitoring of viable bioaerosols based on the fluorescence induced from living microorganisms. For aerosolization of liquid-based microorganisms, general aerosolization methods such as atomization or nebulization may not be adequate for an accurate and quantitative characterization of the microorganisms because of the formation of agglomerated particles. In such cases, biological electrospray techniques have an advantage because they generate nonagglomerated particles, attributable to the repulsive electrical forces among particles with unipolar charges. Biological electrosprays are quickly gaining potential for the detection and control of living organisms in applications ranging from mass spectrometry to developmental microbiology. In this study, we investigated the size distribution, total concentration, and fluorescence percentage of bacterial particles in a real-time manner by electrospray-assisted UVAPS. A suspension containing Escherichia coli as a test microorganism was sprayed in a steady cone-jet mode using a specially designed electrospray system with a point-to-orifice-plate configuration based on charge-reduced electrospray size spectrometry. With the electrospray process, 98% of the total E. coli particle number concentration had a size of <1 mum and the geometric mean diameter was 0.779 mum, as compared with the respective values of 78% and 0.907 mum after nebulization. The fractions of fluorescence responsive particles and of particles that contained viable organisms in culture were 12% and 7%, respectively, from the electrospray process and 34% and 24% from nebulization. These results demonstrate that (1) the presence of agglomerated particles can lead to markedly overestimated fluorescence and culturability percentages compared with the values obtained from nonagglomerated particles, and (2) electrospray-assisted UVAPS can provide more accurate and quantitative real-time characterization of liquid-based microorganisms, owing to the generation of nonagglomerated particles.

  7. Deployment of ARM Aerial Facility Scanning Mobility Particle Sizer Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian

    2016-09-01

    Atmospheric aerosols influence global climate by scattering and absorbing sunlight (direct effects) and by changing the microphysical structure, lifetime, and coverage of clouds (indirect effects). While it is widely accepted that aerosol indirect effects cool the Earth-atmosphere system by increasing cloud reflectivity and coverage, the magnitudes of the indirect effects are poorly quantified. One key aerosol property for understanding aerosol indirect effects is the ability of aerosol particles to form cloud droplets at atmospheric relevant supersaturations—i.e., cloud condensation Nuclei (CCN) activity. For particles consisting of typical atmospheric inorganic compounds, their CCN activity is well understood and can be effectively predictedmore » using Köhler theory based on physicochemical properties of the solute, such as its mass, molar volume, and activity coefficient. However, atmospheric aerosols often consist of hundreds of organic species, which can contribute ~20-90% to the total fine aerosol mass. Depending on their properties, organic species can significantly influence the ability of aerosol particles to act as CCN and form cloud droplets. This project focuses on the CCN activity of secondary organic aerosol (SOA) compounds formed from key biogenic volatile organic compounds (VOCs) under representative conditions, and the relationship between the hygroscopicity and composition of organic aerosols. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (AAF) scanning mobility particles sizer (SMPS) was deployed during a ~ 2-week intensive measurement campaign, taking place February 10-February 23, 2016 at the Pacific Northwest National Laboratory (PNNL) Environmental Simulation Chamber. The SMPS was operated with a CCN counter (CCNc). Aerosol particles were first classified by the differential mobility analyzer inside the SMPS; the classified aerosol will then be simultaneously characterized by a condensation particle counter (CPC) (part of the SMPS) and the CCNc.« less

  8. Uncertainty propagation using the Monte Carlo method in the measurement of airborne particle size distribution with a scanning mobility particle sizer

    NASA Astrophysics Data System (ADS)

    Coquelin, L.; Le Brusquet, L.; Fischer, N.; Gensdarmes, F.; Motzkus, C.; Mace, T.; Fleury, G.

    2018-05-01

    A scanning mobility particle sizer (SMPS) is a high resolution nanoparticle sizing system that is widely used as the standard method to measure airborne particle size distributions (PSD) in the size range 1 nm–1 μm. This paper addresses the problem to assess the uncertainty associated with PSD when a differential mobility analyzer (DMA) operates under scanning mode. The sources of uncertainty are described and then modeled either through experiments or knowledge extracted from the literature. Special care is brought to model the physics and to account for competing theories. Indeed, it appears that the modeling errors resulting from approximations of the physics can largely affect the final estimate of this indirect measurement, especially for quantities that are not measured during day-to-day experiments. The Monte Carlo method is used to compute the uncertainty associated with PSD. The method is tested against real data sets that are monosize polystyrene latex spheres (PSL) with nominal diameters of 100 nm, 200 nm and 450 nm. The median diameters and associated standard uncertainty of the aerosol particles are estimated as 101.22 nm  ±  0.18 nm, 204.39 nm  ±  1.71 nm and 443.87 nm  ±  1.52 nm with the new approach. Other statistical parameters, such as the mean diameter, the mode and the geometric mean and associated standard uncertainty, are also computed. These results are then compared with the results obtained by SMPS embedded software.

  9. Effective density and morphology of particles emitted from small-scale combustion of various wood fuels.

    PubMed

    Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma

    2014-11-18

    The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.

  10. Fine and ultrafine particle doses in the respiratory tract from digital printing operations.

    PubMed

    Voliotis, Aristeidis; Karali, Irene; Kouras, Athanasios; Samara, Constantini

    2017-01-01

    In this study, we report for the first time particle number doses in different parts of the human respiratory tract and real-time deposition rates for particles in the 10 nm to 10 μm size range emitted by digital printing operations. Particle number concentrations (PNCs) and size distribution were measured in a typical small-sized printing house using a NanoScan scanning mobility particle sizer and an optical particle sizer. Particle doses in human lung were estimated applying a multiple-path particle dosimetry model under two different breathing scenarios. PNC was dominated by the ultrafine particle fractions (UFPs, i.e., particles smaller than 100 nm) exhibiting almost nine times higher levels in comparison to the background values. The average deposition rate fοr each scenario in the whole lung was estimated at 2.0 and 2.9 × 10 7 particles min -1 , while the respective highest particle dose in the tracheobronchial tree (2.0 and 2.9 × 10 9 particles) was found for diameter of 50 nm. The majority of particles appeared to deposit in the acinar region and most of them were in the UFP size range. For both scenarios, the maximum deposition density (9.5 × 10 7 and 1.5 × 10 8 particles cm -2 ) was observed at the lobar bronchi. Overall, the differences in the estimated particle doses between the two scenarios were 30-40% for both size ranges.

  11. CONTINUOUS MEASUREMENT OF FINE AND ULTRAFINE PARTICULATE MATTER, CRITERIA POLLUTANTS AND METEOROLOGICAL CONDITIONS IN URBAN EL PASO, TEXAS

    EPA Science Inventory

    Continuous measurements of aerosol size distributions were made in El Paso, TX, for a period in winter 1999. Size distribution measurements were performed at two urban locations in El Paso using two pairs of the scanning mobility particle sizer and the aerodynamic particle si...

  12. The application of STEP-technology® for particle and protein dispersion detection studies in biopharmaceutical research.

    PubMed

    Gross-Rother, J; Herrmann, N; Blech, M; Pinnapireddy, S R; Garidel, P; Bakowsky, U

    2018-05-30

    Particle detection and analysis techniques are essential in biopharmaceutical industries to evaluate the quality of various parenteral formulations regarding product safety, product quality and to meet the regulations set by the authority agencies. Several particle analysis systems are available on the market, but for the operator, it is quite challenging to identify the suitable method to analyze the sample. At the same time these techniques are the basis to gain a better understanding in biophysical processes, e.g. protein interaction and aggregation processes. The STEP-Technology® (Space and Time resolved Extinction Profiles), as used in the analytical photocentrifuge LUMiSizer®, has been shown to be an effective and promising technique to investigate particle suspensions and emulsions in various fields. In this study, we evaluated the potentials and limitations of this technique for biopharmaceutical model samples. For a first experimental approach, we measured silica and polystyrene (PS) particle standard suspensions with given particle density and refractive index (RI). The concluding evaluation was performed using a variety of relevant data sets to demonstrate the significant influences of the particle density for the final particle size distribution (PSD). The most challenging property required for successful detection, turbidity, was stated and limits have been set based on the depicted absorbance value at 320 nm (A320 values). Furthermore, we produced chemically cross-linked protein particle suspensions to model physically "stable" protein aggregates. These results of LUMiSizer® analysis have been compared to the orthogonal methods of nanoparticle tracking analysis (NTA), dynamic light scattering (DLS) and micro-flow imaging (MFI). Sedimentation velocity distributions showed similar tendencies, but the PSDs and absolute size values could not be obtained. In conclusion, we could demonstrate some applications as well as limitations of this technique for biopharmaceutical samples. In comparison to orthogonal methods this technique is a great complementary approach if particle data e.g. density or refractive index can be determined. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    PubMed Central

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056

  14. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  15. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less

  16. Comparison of the SidePak personal monitor with the Aerosol Particle Sizer (APS).

    PubMed

    Sánchez Jiménez, Araceli; van Tongeren, Martie; Galea, Karen S; Steinsvåg, Kjersti; MacCalman, Laura; Cherrie, John W

    2011-06-01

    The aim of this study was to compare the performance of the TSI Aerodynamic Particle Sizer (APS) and the TSI portable photometer SidePak to measure airborne oil mist particulate matter (PM) with aerodynamic diameters below 10 μm, 2.5 μm and 1 μm (PM(10), PM(2.5) and PM(1)). Three SidePaks each fitted with either a PM(10), PM(2.5) or a PM(1) impactor and an APS were run side by side in a controlled chamber. Oil mist from two different mineral oils and two different drilling fluid systems commonly used in offshore drilling technologies were generated using a nebulizer. Compared to the APS, the SidePaks overestimated the concentration of PM(10) and PM(2.5) by one order of magnitude and PM(1) concentrations by two orders of magnitude after exposure to oil mist for 3.3-6.5 min at concentrations ranging from 0.003 to 18.1 mg m(-3) for PM(10), 0.002 to 3.96 mg m(-3) for PM(2.5) and 0.001 to 0.418 mg m(-3) for PM(1) (as measured by the APS). In a second experiment a SidePak monitor previously exposed to oil mist overestimated PM(10) concentrations by 27% compared to measurements from another SidePak never exposed to oil mist. This could be a result of condensation of oil mist droplets in the optical system of the SidePak. The SidePak is a very useful instrument for personal monitoring in occupational hygiene due to its light weight and quiet pump. However, it may not be suitable for the measurement of particle concentrations from oil mist.

  17. Multi-Instrument Manager Tool for Data Acquisition and Merging of Optical and Electrical Mobility Size Distributions

    NASA Astrophysics Data System (ADS)

    Tritscher, Torsten; Koched, Amine; Han, Hee-Siew; Filimundi, Eric; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron; Kykal, Carsten; Bischof, Oliver F.

    2015-05-01

    Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIMTM) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range.

  18. Assessing the Biological Threat Posed by Suicide Bombers

    DTIC Science & Technology

    2016-02-01

    These were sterilized with a bleach solution, rinsed with distilled water, and allowed to air dry . The swabs consisted of small wipes with a calibrated...gel to shield organisms from the heat and pressure of the HE blast, our results show particles too small to see with the naked eye had placed viable...ACRONYMS AND ABBREVIATIONS AIDS APS ARL-SLAD Autoimmune Deficiency Syndrome Aerodynamic Particle Sizer Army Research Laboratory-Survivability

  19. Impact of Pluronic F-68 vs Tween 80 on Fabrication and Evaluation of Acyclovir SLNs for Skin Delivery.

    PubMed

    Bhupinder, Kaur; Newton, Maria J

    2016-01-01

    The solid lipid nanoparticles (SLNs) of Acyclovir (ACV) were fabricated with Soya lecithin and Fractionated Coconut oil (medium chain glyceride) as a first time combination. The research was focused on developing ACV-SLN by using high pressure hot-homogenization technique. The ingredients were used in different concentrations and ratios to identify the best formulation design. The tween 80 and Pluronic F-68 were used in various concentrations in formulation design to assess the impact on the fabrication and evaluation of SLNs. The impact of nanotechnology gain to play a vital role in the topical pharmaceutical products and the related patents will play a significant role in related industries. The SLNs were subjected to various characterization techniques such as XRD, FTIR, Master sizer analysis and zeta potential. The mean particle size was determined by master sizer and zeta sizer. Transmission electron microscopy (TEM) was used as a tool to analyze the morphology and other features. The zeta potential and drug entrapment efficiency (EE%) were also determined for the prepared ACV-SLNs. The efficiency of drug release from prepared formulations was studied by using in vitro study with the utilization of dialysis membrane technique. SLN dispersions exhibited the average size in nano range. SLNs with small particle size found to have predetermined encapsulation efficiency, and relatively high loading capacity and predetermined in vitro drug release profile. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Agricultural Influences on Cache Valley, Utah Air Quality During a Wintertime Inversion Episode

    NASA Astrophysics Data System (ADS)

    Silva, P. J.

    2017-12-01

    Several of northern Utah's intermountain valleys are classified as non-attainment for fine particulate matter. Past data indicate that ammonium nitrate is the major contributor to fine particles and that the gas phase ammonia concentrations are among the highest in the United States. During the 2017 Utah Winter Fine Particulate Study, USDA brought a suite of online and real-time measurement methods to sample particulate matter and potential gaseous precursors from agricultural emissions in the Cache Valley. Instruments were co-located at the State of Utah monitoring site in Smithfield, Utah from January 21st through February 12th, 2017. A Scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) acquired size distributions of particles from 10 nm - 10 μm in 5-min intervals. A URG ambient ion monitor (AIM) gave hourly concentrations for gas and particulate ions and a Chromatotec Trsmedor gas chromatograph obtained 10 minute measurements of gaseous sulfur species. High ammonia concentrations were detected at the Smithfield site with concentrations above 100 ppb at times, indicating a significant influence from agriculture at the sampling site. Ammonia is not the only agricultural emission elevated in Cache Valley during winter, as reduced sulfur gas concentrations of up to 20 ppb were also detected. Dimethylsulfide was the major sulfur-containing gaseous species. Analysis indicates that particle growth and particle nucleation events were both observed by the SMPS. Relationships between gas and particulate concentrations and correlations between the two will be discussed.

  1. Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure

    NASA Astrophysics Data System (ADS)

    Calderón, Leonardo; Han, Taewon T.; McGilvery, Catriona M.; Yang, Letao; Subramaniam, Prasad; Lee, Ki-Bum; Schwander, Stephan; Tetley, Teresa D.; Georgopoulos, Panos G.; Ryan, Mary; Porter, Alexandra E.; Smith, Rachel; Chung, Kian Fan; Lioy, Paul J.; Zhang, Junfeng; Mainelis, Gediminas

    2017-04-01

    The increasing prevalence and use of nanotechnology-enabled consumer products have increased potential consumer exposures to nanoparticles; however, there is still a lack of data characterizing such consumer exposure. The research reported here investigated near-field airborne exposures due to the use of 13 silver (Ag)-based and 5 zinc (Zn)-based consumer sprays. The products were sprayed into a specially designed glove box, and all products were applied with equal spraying duration and frequency. Size distribution and concentration of the released particles were assessed using a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the presence of metals in all investigated products. Spray liquids and airborne particles from select products were examined using transmission electron microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDS). We found that all sprays produced airborne particles ranging in size from nano-sized particles (<100 nm) to coarse particles (>2.5 μm); however, there was a substantial variation in the released particle concentration depending on a product. The total aerosol mass concentration was dominated by the presence of coarse particles, and it ranged from ∼30 μg/m3 to ∼30,000 μg/m3. The TEM verified the presence of nanoparticles and their agglomerates in liquid and airborne states. The products were found to contain not only Ag and Zn compounds - as advertised on the product labeling - but also a variety of other metals including lithium, strontium, barium, lead, manganese and others. The results presented here can be used as input to model population exposures as well as form a basis for human health effects studies due to the use nanotechnology-enabled products.

  2. On-line determination of nanometric and sub-micrometric particle physicochemical characteristics using spectral imaging-aided Laser-Induced Breakdown Spectroscopy coupled with a Scanning Mobility Particle Sizer

    NASA Astrophysics Data System (ADS)

    Amodeo, Tanguy; Dutouquet, Christophe; Le Bihan, Olivier; Attoui, Michel; Frejafon, Emeric

    2009-10-01

    Laser-Induced Breakdown Spectroscopy has been employed to detect sodium chloride and metallic particles with sizes ranging from 40 nm up to 1 µm produced by two different particle generators. The Laser-Induced Breakdown Spectroscopy technique combined with a Scanning Mobility Particle Sizer was evaluated as a potential candidate for workplace surveillance in industries producing nanoparticle-based materials. Though research is still currently under way to secure nanoparticle production processes, the risk of accidental release is not to be neglected. Consequently, there is an urgent need for the manufacturers to have at their command a tool enabling leak detection in-situ and in real time so as to protect workers from potential exposure. In this context, experiments dedicated to laser-induced plasma particle interaction were performed. To begin with, spectral images of the laser-induced plasma vaporizing particles were recorded to visualize the spatio-temporal evolution of the atomized matter and to infer the best recording parameters for Laser-Induced Breakdown Spectroscopy analytical purposes, taking into account our experimental set-up specificity. Then, on this basis, time-resolved spectroscopic measurements were performed to make a first assumption of the Laser-Induced Breakdown Spectroscopy potentialities. Particle size dependency on the LIBS signal was examined. Repeatability and limits of detection were assessed and discussed. All the experiments carried out with low particle concentrations point out the high time delays corresponding to the Laser-Induced Breakdown Spectroscopy signal emergence. Plasma temperature temporal evolution was found to be a key parameter to explain this peculiarity inherent to laser/plasma/particle interaction.

  3. OZONE-ISOPRENE REACTION: RE-EXAMINATION OF THE FORMATION OF SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. Using a scanning mobility particle sizer, the volume distribution of the aerosol was found in the range 0.05 - 0.2 µm. The aerosol yield w...

  4. The effect of simulated air conditions on N95 filtering facepiece respirators performance.

    PubMed

    Ramirez, Joel A; O'Shaughnessy, Patrick T

    2016-07-01

    The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity.

  5. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  6. Super-micron Particles over US Coastal Region: Seasonal Changes from TCAP data

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Fast, J. D.; Zelenyuk, A.; Tomlinson, J. M.; Chand, D.; Barnard, J.; Jefferson, A.

    2016-12-01

    Numerous studies have demonstrated that wind-blown dust and ocean wave breaking are two major sources of atmospheric super-micron particles. However, the fate of generated super-micron particles and their relative contribution to the aerosol microphysical and optical properties is not well understood especially for coastal regions with complex interplay of local and large-scale flow patterns. To estimate this contribution, we take advantage of an integrated dataset collected from ground-based observations during the recent Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/) over the North Atlantic Ocean and US coastal region (Cape Cod, MA, USA). This region represents a crossroads of flow patterns with pronounced seasonal changes. Conducted from June 2012 through June 2013, TCAP involved one-month summer and winter periods of intensive aircraft observations that included the U.S. Department of Energy (DOE) Gulfstream-159 (G-1) aircraft. Aerosol size spectra, chemical composition and total scattering data were collected with high temporal resolution (<1 min) during the TCAP flights. The twelve-month TCAP dataset integrates ground-based observations from a suite of instruments for measuring cloud, aerosol and radiative properties, including the Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS) and a three-wavelength nephelometer. To demonstrate the importance of super-micron particles on the climate-relevant aerosol microphysical and optical properties, we examine data from the ground-based and airborne instruments. In particular, we show that the contribution of super-micron particles to the total scattering can be large (up to 50%) during winter period and this large contribution is mostly associated with sea-salt particles. The expected application of our results to the evaluation and improvement of regional and global climate models will be discussed as well.

  7. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  8. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  9. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  10. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  11. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  12. Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Roldin, P.; Williams, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R. M.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.

    2010-12-01

    Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research). Under controlled laboratory conditions, the number size distribution from 20 to 200 nm determined by mobility size spectrometers of different design are within an uncertainty range of ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. Instruments with identical design agreed within ±3% in the peak number concentration when all settings were done carefully. Technical standards were developed for a minimum requirement of mobility size spectrometry for atmospheric aerosol measurements. Technical recommendations are given for atmospheric measurements including continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyser. In cooperation with EMEP (European Monitoring and Evaluation Program), a new uniform data structure was introduced for saving and disseminating the data within EMEP. This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.

  13. Ash particulate formation from pulverized coal under oxy-fuel combustion conditions.

    PubMed

    Jia, Yunlu; Lighty, JoAnn S

    2012-05-01

    Aerosol particulates are generated by coal combustion. The amount and properties of aerosol particulates, specifically size distribution and composition, can be affected by combustion conditions. Understanding the formation of these particles is important for predicting emissions and understanding potential deposition. Oxy-fuel combustion conditions utilize an oxygen-enriched gas environment with CO(2). The high concentration of CO(2) is a result of recycle flue gas which is used to maintain temperature. A hypothesis is that high CO(2) concentration reduces the vaporization of refractory oxides from combustion. A high-temperature drop-tube furnace was used under different oxygen concentrations and CO(2) versus N(2) to study the effects of furnace temperature, coal type, and gas phase conditions on particulate formation. A scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) were utilized for particle size distributions ranging from 14.3 nm to 20 μm. In addition, particles were collected on a Berner low pressure impactor (BLPI) for elemental analysis using scanning electron microscopy and energy dispersive spectroscopy. Three particle size modes were seen: ultrafine (below 0.1 μm), fine (0.1 to 1.0 μm), and coarse (above 1 μm). Ultrafine mass concentrations were directly related to estimated particle temperature, increasing with increasing temperature. For high silicon and calcium coals, Utah Skyline and PRB, there was a secondary effect due to CO(2) and the hypothesized reaction. Illinois #6, a high sulfur coal, had the highest amount of ultrafine mass and most of the sulfur was concentrated in the ultrafine and fine modes. Fine and coarse mode mass concentrations did not show a temperature or CO(2) relationship. (The table of contents graphic and abstract graphic are adapted from ref 27.). © 2012 American Chemical Society

  14. Advanced Multi-Moment Microphysics for Precipitation and Tropical Cyclone Forecast Improvement within COAMPS

    DTIC Science & Technology

    2010-09-30

    of predicting up to three moments (total number concentration, mass, and the 6th-moment reflectivity factor) of hydrometeor hydrometeor particle size...R. Novak, F. E. Barthold, M. J. Bodner, J. J. Levit , C. B. Entwistle, T. Jensen, J. S. Kain, M. C. Coniglio, and R. S. Schneider, 2010: An overview

  15. Sizer's Legacy Seen in Push to Revamp High Schools

    ERIC Educational Resources Information Center

    Viadero, Debra

    2009-01-01

    With the death last week of Theodore R. Sizer, precollegiate education lost one of its most influential thinkers and a founder of the contemporary movement to improve schools. Mr. Sizer died Oct. 21 at his home in Harvard, Mass., of colon cancer. He was 77. Over his long career, Mr. Sizer was dean of the Harvard Graduate School of Education,…

  16. A facility for gas- and condensed-phase measurements behind shock waves

    NASA Astrophysics Data System (ADS)

    Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.

    2005-09-01

    A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.

  17. Application of direct-reading and elemental carbon analysis methods to measure mass-based penetration of carbon nanotubes through elastomeric half-face and filtering facepiece respirators.

    PubMed

    Vo, Evanly; Zhuang, Ziqing; Birch, Eileen; Birch, Quinn

    2016-01-01

    The aim of this study was to apply a direct-reading aerosol instrument method and an elemental carbon (EC) analysis method to measure the mass-based penetration of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) through elastomeric half-mask respirators (EHRs) and filtering facepiece respirators (FFRs). For the direct-reading aerosol instrument method, two scanning mobility particle sizer/aerodynamic particle sizer systems were used to simultaneously determine the upstream (outside respirator) and downstream (inside respirator) test aerosols. For the EC analysis method, upstream and downstream CNTs were collected on filter cassettes and then analyzed using a thermal-optical technique. CNT mass penetrations were found in both methods to be within the associated efficiency requirements for each type and class of the respirator models that were tested. Generally, the penetrations of SWCNTs and MWCNTs had a similar trend with penetration being the highest for the N95 EHRs, followed by N95 FFRs, P100 EHRs, and P100 FFRs. This trend held true for both methods; however, the CNT penetration determined by the direct-reading aerosol instrument method (0.009-1.09% for SWCNTs and 0.005-0.21% for MWCNTs) was greater relative to the penetration values found through EC analysis method (0.007-0.69% for SWCNTs and 0.004-0.13% for MWCNTs). The results of this study illustrate considerations for how the methods can be used to evaluate penetration of morphologically complex materials through FFRs and EHRs.

  18. Volatile properties of particles emitted by compressed natural gas and diesel buses during steady-state and transient driving modes.

    PubMed

    Jayaratne, E R; Meyer, N K; Ristovski, Z D; Morawska, L

    2012-01-03

    Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady-state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilizing a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100 and 250 °C, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilization began at around 40 °C, with the majority occurring by 80 °C. Particles produced during hard acceleration from rest exhibited lower volatility than those produced during other times of the cycle. On the basis of our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these nonvolatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100 °C removed ultrafine particle numbers by 69-82% when a nucleation mode was present and just 18% when it was not.

  19. Synthesis and characterization of nanomagnetite particles and their polymer coated forms.

    PubMed

    Utkan, Guldem Guven; Sayar, Filiz; Batat, Pinar; Ide, Semra; Kriechbaum, Manfred; Pişkin, Erhan

    2011-01-15

    Superparamagnetic nanoparticles were prepared by coprecipitation of ferrous (Fe(2+)) and ferric (Fe(3+)) aqueous solution by a base. Nanomagnetite particles were coated with poly(St/PEG-EEM/DMAPM) and poly(St/PEG-MA/DMAPM) layer by emulsifier-free emulsion polymerization. Chemical structure of nanoparticles was characterized by both FTIR and (1)H NMR. Particle morphologies were determined by Zeta Sizer, DLS, XRD and SAXS. Structural analysis showed that after polymer coating nanomagnetite particles kept their superparamagnetic property. Besides the synthesized magnetites, polymer coated forms of these particles are more biocompatible, well dispersable and uniform. These properties make them a very strong candidate for bioengineering applications, such as bioseparation, gene transfer. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Pinatubo Aerosol Evolution: Using Composite Data Sets to Build the Global- to Micro-Scale Picture and Assess Consistency of Different Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Pueschel, R. F.; Livingston, J. M.; Bergstrom, R.; Hamill, P.

    1994-01-01

    This paper brings together experimental evidence required to build realistic models of the global evolution of physical, chemical, and optical properties of the aerosol resulting from the 1991 Pinatubo volcanic eruption. Such models are needed to compute the effects of the aerosol on atmospheric chemistry, dynamics, radiation, and temperature. Whereas there is now a large and growing body of post-Pinatubo measurements by a variety of techniques, some results are in conflict, and a self-consistent, unified picture is needed, along with an assessment of remaining uncertainties. This paper examines data from photometers, radiometers, impactors, optical counters/sizers, and lidars operated on the ground, aircraft, balloons, and spacecraft. Example data sources include: - Tracking sunphotometers and lidars at Mauna Loa Observatory (MLO) and on the DC-8 - Particle spectrometers and wire impactors on the ER-2 and DC-8 - Dustsondes (particle counters/sizers on balloons) - SAGE II, SAM II, AVHRR, CLAES, and ISAMS sensors on a variety of satellites. We assess the mutual consistency of these disparate data sets and recommend 'consensus" properties and uncertainties in the process of developing a composite data set. Recommended properties include the spatial and temporal evolution of particle chemical composition, shape, wavelength and temperature-dependent refractive index, size distribution, and optical depth spectra. Supporting references are cited and representative data shown.

  1. Pinatubo Aerosol Evolution: Using Composite Data Sets to Build the Global- To Micro-Scale Picture and Assess Consistency of Different Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Pueschel, R. F.; Livingston, J. M.; Bergstrom, R.; Hamill, P.; Lawless, James G. (Technical Monitor)

    1994-01-01

    This paper brings together experimental evidence required to build realistic models of the global evolution of physical, chemical, and optical properties of the aerosol resulting from the 1991 Pinatubo volcanic eruption. Such models are needed to compute the effects of the aerosol on atmospheric chemistry, dynamics, radiation, and temperature. Whereas there is now a large and crowing body of post-Pinatubo measurements by a variety of techniques, some results are in conflict, and a self-consistent, unified picture is needed, along with an assessment of remaining uncertainties. This paper examines, data from photometers, radiometers, impactors, optical counter/sizers, and lidars operated on the ground, aircraft, balloons, and spacecraft. Example data sources include: (1) Tracking sunphotometers and lidars at Mauna Loa Observatory (MLO) and on the DC-8. (2) Particle spectrometers and wire impactors on the ER-2 and DC-8. (3) Dustsondes (particle counter/sizers on balloons). and (3) SAGE II, SAM II, AVHRR, CLAES, and ISAMS sensors on a variety of satellites. We assess the mutual consistency of these disparate data sets and recommend 'consensus' properties and uncertainties in the process of developing a composite data set. Recommended properties include the spatial and temporal evolution of particle chemical composition, shape, wavelength-and temperature-dependent refractive index, size distribution, and optical depth spectra. Supporting references are cited and representative data shown.

  2. Aging of Diesel and Wood Burning Emissions in Smogchamber Experiments

    NASA Astrophysics Data System (ADS)

    Prevot, Andre S. H.

    2010-05-01

    Photochemical aging experiments were performed for emissions of a diesel passenger car and logwood-burner at the smogchamber at the Paul Scherrer Institute in Switzerland. The measurements include black carbon measurements (with Aethalometer, Multi-Angle Absorption Photometer, Single Particle Soot Photometer (SP-2), and Photoacoustic Spectrometer), organic mass measurements with the Aerodyne high-resolution Aerosol mass spectrometer and off-line GC-MS measurements. Single particle composition was measured with the TSI-Aerosol time-of-flight mass spectrometer. The size distribution is characterized with a scanning mobility particle sizer, and the hygroscopicity with a hygroscopicity tandem differential mobility analyzer. The given overview of the results of experiments during the last 1.5 years will focus on the formation secondary organic aerosol and include the oxidation of primary organic aerosols and the change of optical and hygroscopic properties. A considerable variability of most results is found for different after treatment systems of diesel cars and for different burning conditions of the log-wood burner which will be discussed in detail.

  3. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  4. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J. C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-09-01

    In the companion paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter) based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  5. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelle, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Mineau, J.-L.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J.-C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-01-01

    In a companion (Part 1) paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosols Counter) based on scattering measurements at angles of 12 and 60°. that allows some speciation of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overwhelm those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Wien (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  6. Continuous Flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) Method of Measuring Size-Resolved Sea-Salt Particle Fluxes

    NASA Astrophysics Data System (ADS)

    Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.

    2017-12-01

    The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for sea-salt and ammoniums sulfate particle fluxes. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the sea-salt particle fluxes measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The sea-salt particle detection limit of the Hy-Res REA flux system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and sea-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the sea-salt particle fluxes. In principle, the instrument can be applied to measure fluxes of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).

  7. CHARACTERIZATION OF ROTATING-WING AIRCRAFT EMISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; Mahurin, Shannon Mark

    2007-01-01

    Rotating-wing aircraft or helicopters are heavily used by the US military to transport cargo, troops and personnel, and perform combat missions. Similar helicopter engines (those from the Chinook helicopter, for example) are being used by civilian companies to lift and transport heavy loads. Emissions data for this type of engines are limited but are important for development and design of air quality control strategy for military installations and bases in the country that are surrounded by cities and metropolitan areas. Major gaseous, selected air toxics, and particulate emissions data from helicopters were measured for T700-GE-700 and T700-GE-701C running JP-8 andmore » Fischer-Tropsch fuels in separate engine exhaust tests. Each engine-fuel combination test was run at three engine power levels from idle to maximum in sequence in each test in June 2007 at Hunter Army Airfield (HAAF) in Savannah, GA. The emissions from these engines were smaller than those (T33 and T56) tested earlier in terms of gas concentrations and particulate mass/number concentration. The mode diameter of a particle size distribution obtained from a test run throughout the whole campaign was smaller than 100 nm by a research-grade fast scanning mobility particle sizer, which was confirmed by a commercial scanning mobility particle sizer taking sample from a collocated position right at the engine exhaust exit plane. Use of FT fuel led to reduced particulate and gaseous emissions as compared to the use of JP-8 fuel on the same engine. Production of nanoparticles (with mobility diameter smaller than 20 nm) by the engine running on JP-8 fuel was clearly observed using a nano-DMA equipped scanning mobility particle sizer a few meters downstream from the engine exhaust plane. The production was proportional to the engine power setting, and likely to be caused by the sulfur content in the JP-8 fuel. Sulfate/sulfur data measured at the engine exhaust and the same downstream location supports such a hypothesis. Such a production was not observed when FT-fuel was used that further strengthens the hypothesis, since the sulfur content of the FT-fuel was zero. This work was supported by the Department of Defense Strategic Environmental Research and Defense Program (SERDP) under project number WP 1401.« less

  8. Ground based and airborne atmospheric measurements near bucharest

    NASA Astrophysics Data System (ADS)

    Nemuc, Anca; Boscornea, Andreea; Belegante, Livio; Vasilescu, Jeni; Vajaiac, Sorin; Ene, Dragos; Marmureanu, Luminita; Andrei, Simona

    2018-04-01

    This paper presents the results from a coordinated approach for atmospheric investigation, exploring synergies between different techniques. A wide range of instruments have been used during an intensive measurement period both from ground (lidar, sunphotometer, aethalometer and Aerosol Chemical Speciation Monitor) and airborne (aerodynamic particle sizer, the Picarro gas analyzer and the NO2 CAPS analyzer) in 2016 over Magurele, 6 km South West of Bucharest.

  9. Advanced instrumentation for QELS experiments

    NASA Technical Reports Server (NTRS)

    Tscharnuter, Walther; Weiner, Bruce; Thomas, John

    1989-01-01

    Quasi Elastic Light Scattering (QELS) experiments have become an important tool in both research and quality control applications during the past 25 years. From the crude beginnings employing mechanically driven spectrum analyzers, an impressive array of general purpose digital correlators and special purpose particle sizers is now commercially available. The principles of QELS experiments are reviewed, their advantages and disadvantages are discussed and new instrumentation is described.

  10. Real-time measurement of UV-inactivated Escherichia coli bacterial particles by electrospray-assisted UVAPS spectrometry.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Bae, Gwi Nam

    2011-08-01

    The ultraviolet aerodynamic particle sizer (UVAPS) is a novel commercially available aerosol spectrometer for real-time continuous monitoring of viable bioaerosols, based on fluorescence from living microorganisms. In a previous study, we developed an electrospray-assisted UVAPS using biological electrospray techniques, which have the advantage of generating non-agglomerated single particles by the repulsive electrical forces. With this electrospraying of suspensions containing microorganisms, the analytical system can supply more accurate and quantitative information about living microorganisms than with conventional aerosolization. Using electrospray-assisted UVAPS, we investigated the characteristics of bacterial particles with various viabilities in real-time. Escherichia coli was used as the test microorganism, and its initial viability was controlled by the degree of exposure to UV irradiation. In the stable cone-jet domain, the particle size distributions of test bacterial particles remained almost uniform regardless of the degree of UV inactivation. However, the fluorescence spectra of the bacterial particles changed with the degree of UV inactivation. The fluorescence characteristics of UV-inactivated bacterial particles tended to show a similar decline with viability, determined by the sampling and culture method, although the percentage showing fluorescence was higher than that showing viability. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.

  12. A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers

    NASA Astrophysics Data System (ADS)

    Japuntich, Daniel A.; Franklin, Luke M.; Pui, David Y.; Kuehn, Thomas H.; Kim, Seong Chan; Viner, Andrew S.

    2007-01-01

    Two different air filter test methodologies are discussed and compared for challenges in the nano-sized particle range of 10-400 nm. Included in the discussion are test procedure development, factors affecting variability and comparisons between results from the tests. One test system which gives a discrete penetration for a given particle size is the TSI 8160 Automated Filter tester (updated and commercially available now as the TSI 3160) manufactured by the TSI, Inc., Shoreview, MN. Another filter test system was developed utilizing a Scanning Mobility Particle Sizer (SMPS) to sample the particle size distributions downstream and upstream of an air filter to obtain a continuous percent filter penetration versus particle size curve. Filtration test results are shown for fiberglass filter paper of intermediate filtration efficiency. Test variables affecting the results of the TSI 8160 for NaCl and dioctyl phthalate (DOP) particles are discussed, including condensation particle counter stability and the sizing of the selected particle challenges. Filter testing using a TSI 3936 SMPS sampling upstream and downstream of a filter is also shown with a discussion of test variables and the need for proper SMPS volume purging and filter penetration correction procedure. For both tests, the penetration versus particle size curves for the filter media studied follow the theoretical Brownian capture model of decreasing penetration with decreasing particle diameter down to 10 nm with no deviation. From these findings, the authors can say with reasonable confidence that there is no evidence of particle thermal rebound in the size range.

  13. Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.

    2009-01-01

    This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.

  14. Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events

    NASA Astrophysics Data System (ADS)

    Manigrasso, M.; Stabile, L.; Avino, P.; Buonanno, G.

    2013-03-01

    Aerosol generation events due to combustion processes are characterized by high particle emissions in the nucleation mode range. Such particles are characterized by very short atmospheric lifetimes, leading to rapid decay in time and space from the emission point. Therefore, the deposited fraction of inhaled particles (dose) also changes. In fact, close to the emission source, high short-term peak exposures occur. The related exposure estimates should therefore rely on measurements of aerosol number-size distributions able to track rapid aerosol dynamics. In order to study the influence of the time resolution on such estimates, simultaneous measurements were carried out via Scanning Mobility Particle Sizer (SMPS) and Fast Mobility Particle Sizer (FMPS) spectrometers during particle generation events in both indoor (cooking activities) and outdoor (airstrip and urban street canyons) microenvironments. Aerosol size distributions in the range 16-520 nm were measured by SMPS and FMPS at frequencies of 0.007 s-1 and 1 s-1, respectively. Based on the two datasets, respiratory dosimetry estimates were made on the basis of the deposition model of the International Commission on Radiological Protection. During cooking activities, SMPS measurements give an approximate representation of aerosol temporal evolution. Consequently, the related instant doses can be approximated to a fair degree. In the two outdoor microenvironments considered, aerosol size distributions change rapidly: the FMPS is able to follow such evolution, whereas the SMPS is not. The high short-term peak concentrations, and the consequent respiratory doses, evidenced by FMPS data are hardly described by SMPS, which is unable to track the fast aerosol changes. The health relevance of such short peak exposures has not been thoroughly investigated in scientific literature, therefore, in the present paper highly time-resolved and size-resolved dosimetry estimates were provided in order to deepen this aspect.

  15. Rifaximin - Chitosan Nanoparticles for Inflammatory Bowel Disease (IBD).

    PubMed

    Kumar, Jatinder; Newton, Amaldoss M J

    2017-01-01

    Inflammatory Bowel Disease (IBD) cannot be controlled easily and the recurrence is the most challenging issue for the physicians. There are various controlled and colon targeted drug delivery systems available for the treatment with limited success rate. Nanoparticles prepared by using the colon targeted polymers such as chitosan may improve the IBD due to their smaller size, unique physico chemical properties and targeting potential. The aim of this investigation was designed to formulate and develop a colon targeted polysaccharide nanoparticles of rifaximin (RFX) by using linear polysaccharide chitosan, for the improvement of rifaximin solubility, overall therapeutic efficacy and colon targeting. The research was focused on developing RFX nanoparticles for the treatment of Inflammatory Bowel Disease (IBD) by ionic gelation method. Nanoparticles were subjected to various characterization techniques such as XRD, FTIR and mean particle size (MPS) by Master Sizer and Zeta Sizer. Transmission Electron Microscopy (TEM), drug entrapment efficiency and zeta potential are also determined for the developed formulations. The efficiency of drug release from prepared formulation was studied in vitro by using a dialysis bag diffusion technique in the buffer condition mimicking stomach, intestine and colonic pH conditions. The prepared nanoparticles demonstrated the size in the nano range. The drug release profile was controlled in the upper GI tract and the maximum amount of drug was released in the colonic conditions. The prepared nanoparticles significantly improved the solubility of rifaximin. The zeta potential of the best chitosan preparation was found to be 37.79, which confirms the stability of prepared nanosuspension. Nanoparticles with small particle size found to have high encapsulation efficiency and relatively high loading capacity and predetermined in vitro release profile. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Direct observation of new particle formation during ozonolysis of isoprene and ethene competing against the growth of preexisting particles

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Sato, Kei; Sakamoto, Yosuke; Hirokawa, Jun

    2017-12-01

    Secondary organic aerosol formation during the ozonolysis of isoprene and ethene in the presence of ammonium nitrate seed particles (surface area concentrations = (0.8-3) × 107 nm2 cm-3) was investigated using a 1 nm scanning mobility particle sizer. Based on the size distribution of formed particles, particles with a diameter smaller than the minimum diameter of the seed particles (less than ∼6 nm) formed under dry conditions, but the formation of such particles was substantially suppressed during isoprene ozonolysis and was not observed during ethane ozonolysis under humid conditions. We propose that oligomeric hydroperoxides generated by stabilized Criegee intermediates (sCIs), including C1-sCI (CH2OO), contribute to new particle formation while competing to be taken up onto preexisting particles. The OH reaction products of isoprene and ethene seem to not contribute to new particle formation; however, they are taken up onto preexisting particles and contribute to particle growth.

  17. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the system and has linear relationship with the irradiation intensity. These results demonstrate that, upon ageing, organic aerosols can produce photo-sensitizers which auto-photo-catalyses their SOA growth.

  18. Characterization of Nanoparticle Release from Surface Coatings by the Simulation of a Sanding Process

    PubMed Central

    Göhler, Daniel; Stintz, Michael; Hillemann, Lars; Vorbau, Manuel

    2010-01-01

    Nanoparticles are used in industrial and domestic applications to control customized product properties. But there are several uncertainties concerning possible hazard to health safety and environment. Hence, it is necessary to search for methods to analyze the particle release from typical application processes. Based on a survey of commercial sanding machines, the relevant sanding process parameters were employed for the design of a miniature sanding test setup in a particle-free environment for the quantification of the nanoparticle release into air from surface coatings. The released particles were moved by a defined airflow to a fast mobility particle sizer and other aerosol measurement equipment to enable the determination of released particle numbers additionally to the particle size distribution. First, results revealed a strong impact of the coating material on the swarf mass and the number of released particles. PMID:20696941

  19. Shipborne measurements of aerosol number size distribution and hygroscopicity over the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Phillips, B.; Dawson, K. W.; Reed, R. E.; Meskhidze, N.

    2016-12-01

    We report aerosol number size distribution and hygroscopicity data collected over the Pacific Ocean near the Hawaii Ocean Timeseries (HOT) Station ALOHA (centered near 22°N, 158°W). From June 25 to July 3, 2016 our hygroscopicity tandem differential mobility analyzer (HTDMA)/scanning mobility particle sizer (SMPS) system was deployed onboard of NOAA Ship Hi'ialakai that participated in mooring operations associated with the Woods Hole Oceanographic Institution WHOTS project. The ambient aerosol data was collected during the ship's planned operations. The inlet was located at the bow of the ship and the air samples were drawn (using 3/8 inch stainless steel tubing) inside a dry, air-conditioned lab. The region north of Oahu was very clean, with total particle number approximately 200 cm-3, occasionally dropping below 100 cm-3. We compare our particle number size distribution and hygroscopicity data with previously reported estimates. Our measurements contribute to process-level understanding of the role of sea spray aerosol in marine boundary layer cloud condensation nuclei (CCN) budget and provide crucial information to the community interested in studying and projecting climate change using Earth System Models.

  20. Traffic aerosol lobar doses deposited in the human respiratory system.

    PubMed

    Manigrasso, Maurizio; Vernale, Claudio; Avino, Pasquale

    2017-06-01

    Aerosol pollution in urban environments has been recognized to be responsible for important pathologies of the cardiovascular and respiratory systems. In this perspective, great attention has been addressed to Ultra Fine Particles (UFPs < 100 nm), because they efficiently penetrate into the respiratory system and are capable of translocating from the airways into the blood circulation. This paper describes the aerosol regional doses deposited in the human respiratory system in a high-traffic urban area. The aerosol measurements were carried out on a curbside in downtown Rome, on a street characterized by a high density of autovehicular traffic. Aerosol number-size distributions were measured by means of a Fast Mobility Particle Sizer in the range from 5.6 to 560 nm with a 1 s time resolution. Dosimetry estimates were performed with the Multiple-Path Particle Dosimetry model by means of the stochastic lung model. The exposure scenario close to traffic is represented by a sequence of short-term peak exposures: about 6.6 × 10 10 particles are deposited hourly into the respiratory system. After 1 h of exposure in proximity of traffic, 1.29 × 10 10 , 1.88 × 10 10 , and 3.45 × 10 10 particles are deposited in the head, tracheobronchial, and alveolar regions. More than 95 % of such doses are represented by UFPs. Finally, according to the greater dose estimated, the right lung lobes are expected to be more susceptible to respiratory pathologies than the left lobes.

  1. [Submicron particles in smoke resulting from welding alloys and cast alloy in metalworking industry].

    PubMed

    Avino, P; Manigrasso, M; Fanizza, Carla; Carrai, P; Solfanelli, Linda

    2013-01-01

    The toxicity of welding fumes depends on both chemical composition and ability to penetrate and deposit deeply in the lungs. Their penetration and deposition in the regions of the respiratory system is mainly determined by their size. The knowledge of the size distribution of welding fumes is a crucial information towards the estimate of the doses of toxic compounds delivered into the respiratory tract. Particle number size distribution was continuously measured during different welding operations by means of a Fast Mobility Particle Sizer, which counts and classifies particles, according to their electrical mobility, in 32 size-channels, in the range from 5.6 to 523 nm, with is time resolution. The temporal evolution of submicrometric particles (6-523 nm), nucleation mode particles (6-16 nm) and the fraction 19-523 nm before, during and after the welding operations performed with/without local exhaust ventilation are reported and extensively discussed. Before welding, nucleation mode particles represent about 7% of submicrometric particles; after about 40 s from the welding start, the percent contribution of nucleation mode particles increases to 60%. Total and nucleation mode particle concentrations increase from 2.1 x 10(4) to 2.0 x 10(6) and from 1.6 x 10(3) to 1.0 x 10(6), respectively. The temporal variation of the particle number size distribution across the peaks, evidences the strong and fast-evolving contribution of nucleation mode particles: peak values are maintained for less than 10 s. The implication of such contribution on human health is linked to high deposition efficiency of the submicrometric particles in the alveolar interstitial region of the human respiratory system, where gas exchange occurs.

  2. Measurements of Primary Biogenic Aerosol Particles with an Ultraviolet Aerodynamic Particle Sizer (UVAPS) During AMAZE-08

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2008-12-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the AMazonian Aerosol CharacteriZation Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. The presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 μm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as 'viable aerosols' or 'fluorescent bioparticles' (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. First data analyses show a pronounced peak of FBAP at diameters around 2-3 μm. In this size range the biogenic particle fraction was generally higher than 50 %. Additionally, bursts of FBAP have been observed nearly every day just before sunrise. During these periods the coarse (super-micron) aerosol consisted almost completely of fluorescent bioparticles.

  3. Harmonisation of nanoparticle concentration measurements using GRIMM and TSI scanning mobility particle sizers

    NASA Astrophysics Data System (ADS)

    Joshi, Manish; Sapra, B. K.; Khan, Arshad; Tripathi, S. N.; Shamjad, P. M.; Gupta, Tarun; Mayya, Y. S.

    2012-12-01

    Regional studies focusing on the role of atmospheric nanoparticles in climate change have gained impetus in the last decade. Several multi-institutional studies involving measurement of nanoparticles with several kinds of instruments are on the rise. It is important to harmonize these measurements as the instruments may work on different techniques or principles and are developed by different manufacturers. Scanning mobility particle sizers (SMPS) are often used to measure size distribution of nanoparticles in the airborne phase. Two such commercially available instruments namely, GRIMM and TSI-SMPS have been compared for ambient and laboratory generated conditions. A stand-alone condensation particle counter (CPC) of TSI make was used as a reference for particle concentration measurements. The consistency of the results in terms of mean size and geometric standard deviation was seen to be excellent for both the SMPSs, with GRIMM always showing slightly (approximately 10 %) lower mean size. The integrated number concentration from GRIMM-SMPS was seen to be closer to stand-alone reference CPC compared to TSI-SMPS, for an ambient overnight comparison. However, a concentration-dependent response, i.e. the variations between the two instruments increasing with the concentration, was observed and possible reasons for this have been suggested. A separate experiment was performed for studying the modifying effect of diffusion dryer and sheath air dryer on the measured aerosol size spectra. A significant hygroscopic growth was noted when diffusion dryer was attached to one of the SMPS. The introduction of sheath air dryer in GRIMM-SMPS produced a significant shift towards lower mean size. These results have been compared and discussed with the recent inter-comparison results to strengthen and harmonize the measurement protocols.

  4. [Pollution Characteristics and Light Extinction Effects of Water-soluble Ions in PM2.5 During Winter Hazy Days at North Suburban Nanjing].

    PubMed

    Zhou, Yao-yao; Ma, Yan; Zheng, Jun; Cui, Fen-ping; Wang, Li

    2015-06-01

    To investigate the characteristics of water-soluble ions in PM2.5 and their contribution to light extinction in haze days, on-line monitoring of PM2.5. was conducted at North Suburban Nanjing from 25 January through 3 February, 2013. Water-soluble components were collected with a particle-into-liquid sampler (PILS), and analyzed by ion chromatography (IC) for the contents of SO4(2-), NO3-, NH4+, Cl-, Na+, K+, Mg2+ and Ca2+ Simultaneously particle size distributions were measured using scanning mobility particle sizer (SMPS) and Aerodynamic Particle Sizer (APS). The absorption and scattering coefficients were measured by three-wavelength photoacoustic soot spectrometer (PASS-3). Trace gases (SO2, NO2 etc.) were also monitored. The results showed that the average concentrations of total water-soluble ions were 70.3 and 22.9 microg x m(-3) in haze and normal days, respectively. Secondary hygroscopic components including SO4(2-), NO3- and NH4+ were the major ionic pollutants. Hazy days favored the conversion of SO2 and NOx, to SO4(2-) and NO3-, respectively, and in particular the oxidation of NOx. Using multiple linear regression statistical method, the empirical relationship between the dry aerosol extinction coefficient and the chemical composition was established. NH4NO3 was found to be the largest contributor to aerosol extinction in winter in Nanjing, followed by (NH4)2SO4, OC and EC. In two heavy pollution events, the increase of ion concentrations was influenced by the increase of primary emissions and secondary transformation.

  5. Characterization of sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  6. Ted Sizer's Opening Remarks, Fall Forum 2000, Providence, Rhode Island

    ERIC Educational Resources Information Center

    Sizer, Theodore

    2009-01-01

    This article presents Ted Sizer's opening remarks during the Fall Forum in 2000 at Providence, Rhode Island. In his opening remarks, Sizer reviews what the Coalition of Essential Schools (CES) is, and what it is not. CES, he contends, is not a fixed school design but rather, a set of ideas, ideas and conditions and convictions, called principles,…

  7. Micromechanics and Piezo Enhancements of HyperSizer

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Yarrington, Phillip; Collier, Craig S.

    2006-01-01

    The commercial HyperSizer aerospace-composite-material-structure-sizing software has been enhanced by incorporating capabilities for representing coupled thermal, piezoelectric, and piezomagnetic effects on the levels of plies, laminates, and stiffened panels. This enhancement is based on a formulation similar to that of the pre-existing HyperSizer capability for representing thermal effects. As a result of this enhancement, the electric and/or magnetic response of a material or structure to a mechanical or thermal load, or its mechanical response to an applied electric or magnetic field can be predicted. In another major enhancement, a capability for representing micromechanical effects has been added by establishment of a linkage between HyperSizer and Glenn Research Center s Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program, which was described in several prior NASA Tech Briefs articles. The linkage enables Hyper- Sizer to localize to the fiber and matrix level rather than only to the ply level, making it possible to predict local failures and to predict properties of plies from those of the component fiber and matrix materials. Advanced graphical user interfaces and database structures have been developed to support the new HyperSizer micromechanics capabilities.

  8. Comparison of Aerosol Volume Size Distributions between Surface and Ground-based Remote Sensing Measurements Downwind of Seoul, Korea during MAPS-Seoul

    NASA Astrophysics Data System (ADS)

    Kim, P.; Choi, Y.; Ghim, Y. S.

    2016-12-01

    Both sunphotometer (Cimel, CE-318) and skyradiometer (Prede, POM-02) were operated in May, 2015 as a part of the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign. These instruments were collocated at the Hankuk University of Foreign Studies (Hankuk_UFS) site of AErosol RObotic NETwork (AERONET) and the Yongin (YGN) site of SKYradiometer NETwork (SKYNET). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer (WRAS) system consisting of a scanning mobility particle sizer (Grimm, Model 5.416; 45 bins, 0.01-1.09 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement site (37.34oN, 127.27oE, 167 m above sea level) is located about 35 km southeast of downtown Seoul. To investigate the discrepancies in volume concentrations, effective diameters and fine mode volume fractions, we compared the volume size distributions from sunphotometer, skyradiometer, and WRAS system when the measurement time coincided within 5 minutes considering that the measurement intervals were different between instruments.

  9. Aerodynamic particle size analysis of aerosols from pressurized metered-dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 Aerodynamic Particle Sizer aerosol spectrometer.

    PubMed

    Mitchell, Jolyon P; Nagel, Mark W; Wiersema, Kimberly J; Doyle, Cathy C

    2003-10-22

    The purpose of this research was to compare three different methods for the aerodynamic assessment of (1) chloroflurocarbon (CFC)--fluticasone propionate (Flovent), (2) CFC-sodium cromoglycate (Intal), and (3) hydrofluoroalkane (HFA)--beclomethasone dipropionate (Qvar) delivered by pressurized metered dose inhaler. Particle size distributions were compared determining mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD), and fine particle fraction <4.7 microm aerodynamic diameter (FPF(<4.7 microm)). Next Generation Pharmaceutical Impactor (NGI)-size distributions for Flovent comprised finer particles than determined by Andersen 8-stage impactor (ACI) (MMAD = 2.0 +/- 0.05 micro m [NGI]; 2.8 +/- 0.07 microm [ACI]); however, FPF(<4.7 microm) by both impactors was in the narrow range 88% to 93%. Size distribution agreement for Intal was better (MMAD = 4.3 +/- 0.19 microm (NGI), 4.2 +/- 0.13 microm (ACI), with FPF(<4.7 microm) ranging from 52% to 60%. The Aerodynamic Particle Sizer (APS) undersized aerosols produced with either formulation (MMAD = 1.8 +/- 0.07 micro m and 3.2 +/- 0.02 micro m for Flovent and Intal, respectively), but values of FPF(<4.7 microm)from the single-stage impactor (SSI) located at the inlet to the APS (82.9% +/- 2.1% [Flovent], 46.4% +/- 2.4% [Intal]) were fairly close to corresponding data from the multi-stage impactors. APS-measured size distributions for Qvar (MMAD = 1.0 +/- 0.03 micro m; FPF(<4.7 micro m)= 96.4% +/- 2.5%), were in fair agreement with both NGI (MMAD = 0.9 +/- 0.03 micro m; FPF(<4.7 microm)= 96.7% +/- 0.7%), and ACI (MMAD = 1.2 +/- 0.02 microm, FPF(<4.7 microm)= 98% +/- 0.5%), but FPF(<4.7 microm) from the SSI (67.1% +/- 4.1%) was lower than expected, based on equivalent data obtained by the other techniques. Particle bounce, incomplete evaporation of volatile constituents and the presence of surfactant particles are factors that may be responsible for discrepancies between the techniques.

  10. Digital Image Analysis Algorithm For Determination of Particle Size Distributions In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Armas, O.; Ballesteros, R.; Gomez, A.

    One of the most serious problems associated to Diesel engines is pollutant emissions, standing out nitrogen oxides and particulate matter. However, although current emis- sions standards in Europe and America with regard to light vehicles and heavy duty engines refer the particulate limit in mass units, concern for knowing size and number of particles emitted by engines is being increased recently. This interest is promoted by last studies about particle harmful effects on health and is enhanced by recent changes in internal combustion engines technology. This study is focused on the implementation of a method to determine the particle size distribution made up in current methodology for vehicles certification in Europe. It will use an automated Digital Image Analysis Algorithm (DIAA) to determine particle size trends from Scanning Electron Microscope (SEM) images of filters charged in a dilution system used for measuring specific particulate emissions. The experimental work was performed on a steady state direct injection Diesel en- gine with 0.5 MW rated power, being considered as a typical engine in middle power industries. Particulate size distributions obtained using DIAA and a Scanning Mobil- ity Particle Sizer (SMPS), nowadays considered as the most reliable technique, were compared. Although number concentration detected by this method does not repre- sent real flowing particle concentration, this algorithm fairly reproduces the trends observed with SMPS when the engine load is varied.

  11. "Sniffer"—a novel tool for chasing vehicles and measuring traffic pollutants

    NASA Astrophysics Data System (ADS)

    Pirjola, L.; Parviainen, H.; Hussein, T.; Valli, A.; Hämeri, K.; Aaalto, P.; Virtanen, A.; Keskinen, J.; Pakkanen, T. A.; Mäkelä, T.; Hillamo, R. E.

    To measure traffic pollutants with high temporal and spatial resolution under real conditions a mobile laboratory was designed and built in Helsinki Polytechnic in close co-operation with the University of Helsinki. The equipment of the van provides gas phase measurements of CO and NO x, number size distribution measurements of fine and ultrafine particles by an electrical low pressure impactor, an ultrafine condensation particle counter and a scanning mobility particle sizer. Two inlet systems, one above the windshield and the other above the bumper, enable chasing of different type of vehicles. Also, meteorological and geographical parameters are recorded. This paper introduces the construction and technical details of the van, and presents data from the measurements performed during an LIPIKA campaign on the highway in Helsinki. Approximately 90% of the total particle number concentration was due to particles smaller than 50 nm on the highway in Helsinki. The peak concentrations exceeded often 200,000 particles cm -3 and reached sometimes a value of 10 6 cm -3. Typical size distribution of fine particles possessed bimodal structure with the modal mean diameters of 15-20 nm and ˜150 nm. Atmospheric dispersion of traffic pollutions were measured by moving away from the highway along the wind direction. At a distance of 120-140 m from the source the concentrations were diluted to one-tenth from the values at 9 m from the source.

  12. Miniaturized ultrafine particle sizer and monitor

    NASA Technical Reports Server (NTRS)

    Qi, Chaolong (Inventor); Chen, Da-Ren (Inventor)

    2011-01-01

    An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles.

  13. [Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].

    PubMed

    Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming

    2012-12-01

    A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm.

  14. In situ measurements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Durand, Pierre; Bourgeois, Quentin; Denjean, Cyrielle; Vignelles, Damien; Couté, Benoit; Jeannot, Matthieu; Verdier, Nicolas; Mallet, Marc

    2018-03-01

    Mineral dust from arid areas is a major component of global aerosol and has strong interactions with climate and biogeochemistry. As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) to investigate atmospheric chemistry and its impacts in the Mediterranean region, an intensive field campaign was performed from mid-June to early August 2013 in the western basin including in situ balloon-borne aerosol measurements with the light optical aerosol counter (LOAC). LOAC is a counter/sizer that provides the aerosol concentrations in 19 size classes between 0.2 and 100 µm, and an indication of the nature of the particles based on dual-angle scattering measurements. A total of 27 LOAC flights were conducted mainly from Minorca Island (Balearic Islands, Spain) but also from Ile du Levant off Hyères city (SE France) under 17 light dilatable balloons (meteorological sounding balloons) and 10 boundary layer pressurised balloons (quasi-Lagrangian balloons). The purpose was to document the vertical extent of the plume and the time evolution of the concentrations at constant altitude (air density) by in situ observations. LOAC measurements are in agreement with ground-based measurements (lidar, photometer), aircraft measurements (counters), and satellite measurements (CALIOP) in the case of fair spatial and temporal coincidences. LOAC has often detected three modes in the dust particle volume size distributions fitted by lognormal laws at roughly 0.2, 4 and 30 µm in modal diameter. Thanks to the high sensitivity of LOAC, particles larger than 40 µm were observed, with concentrations up to about 10-4 cm-3. Such large particles were lifted several days before and their persistence after transport over long distances is in conflict with calculations of dust sedimentation. We did not observe any significant evolution of the size distribution during the transport from quasi-Lagrangian flights, even for the longest ones ( ˜ 1 day). Finally, the presence of charged particles is inferred from the LOAC measurements and we speculate that electrical forces might counteract gravitational settling of the coarse particles.

  15. Characterization of Particulate Fume and Oxides Emission from Stainless Steel Plasma Cutting.

    PubMed

    Wang, Jun; Hoang, Tien; Floyd, Evan L; Regens, James L

    2017-04-01

    Plasma cutting is a metal fabrication process that employs an electrically conductive plasma arc to cut metals. The metal fume emitted from stainless steel plasma cutting may consist of hexavalent chromium (Cr6+), which is a carcinogen, and other toxicants. Overexposure to plasma cutting fume may cause pulmonary toxicity and other health effects. This study was to evaluate the effects of operation parameters (arc current and arc time) on the fume formation rates, Cr6+ and other oxides concentrations, particle size distributions (PSD), and particle morphology. A fume chamber and high-volume pump were used to collect fume produced from cutting ER308L stainless steel plates with arc currents varying between 20 and 50 A. The amount of fume collected on glass fiber filters was gravimetrically determined and normalized to arc time. Cr6+ and other oxides in the fume were analyzed using ion chromatography. PSD of the fume was examined using a scanning mobility particle sizer and an aerodynamic particle sizer for fine and coarse fractions, respectively. The particle morphology was imaged through a transmission electron microscope (TEM). Total fume generation rate increased with arc current and ranged from 16.5 mg min-1 at 20 A to 119.0 mg min-1 at 50 A. Cr6+ emissions (219.8-480.0 µg min-1) from the plasma cutting were higher than welding fume in a previous study. Nitrogen oxides level can be an indicator of oxidation level and Cr6+ formation (R = 0.93). Both PSD measurement and TEM images confirmed a multimodal size distribution. A high concentration of a fine fraction of particles with geometric mean sizes from 96 to 235 nm was observed. Higher arc current yielded more particles, while lower arc current was not able to penetrate the metal plates. Hence, the worker should optimize the arc current to balance cut performance and fume emission. The findings indicated that arc current was the dominant factor in fume emission from plasma cutting. Appropriate ventilation and respiratory protection should be used to reduce workers' exposure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    NASA Astrophysics Data System (ADS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant low-pressure compaction may reduce the risk of particle exposure if powders are handled in operations with few agitations such as pouring or tapping. Repeated agitation, e.g., mixing, of these compacted powders, would result in reduced (app. 20% for Bentonite) or highly increased (app. 225% for Nanofil®5) dustiness and thereby alter the exposure risk significantly.

  17. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.

    2012-03-01

    Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.

  18. Deposition velocity of ultrafine particles measured with the Eddy-Correlation Method over the Nansen Ice Sheet (Antarctica)

    NASA Astrophysics Data System (ADS)

    Contini, D.; Donateo, A.; Belosi, F.; Grasso, F. M.; Santachiara, G.; Prodi, F.

    2010-08-01

    This work reports an analysis of the concentration, size distribution, and deposition velocity of atmospheric particles over snow and iced surfaces on the Nansen Ice Sheet (Antarctica). Measurements were performed using the eddy-correlation method at a remote site during the XXII Italian expedition of the National Research Program in Antarctica (PNRA) in 2006. The measurement system was based on a condensation particle counter (CPC) able to measure particles down to 9 nm in diameter with a 50% efficiency and a Differential Mobility Particle Sizer for evaluating particle size distributions from 11 to 521 nm diameter in 39 channels. A method based on postprocessing with digital filters was developed to take into account the effect of the slow time response of the CPC. The average number concentration was 1338 cm-3 (median, 978 cm-3; interquartile range, 435-1854 cm-3). Higher concentrations were observed at low wind velocities. Results gave an average deposition velocity of 0.47 mm/s (median, 0.19 mm/s; interquartile range, -0.21 -0.88 mm/s). Deposition increased with the friction velocity and was on average 0.86 mm/s during katabatic wind characterized by velocities higher than 4 m/s. Observed size distributions generally presented two distinct modes, the first at approximately 15-20 nm and the second (representing on average 70% of the total particles) at 60-70 nm. Under strong-wind conditions, the second mode dominated the average size distribution.

  19. Exposure to ultrafine particles in asphalt work.

    PubMed

    Elihn, Karine; Ulvestad, Bente; Hetland, Siri; Wallen, Anna; Randem, Britt Grethe

    2008-12-01

    An epidemiologic study has demonstrated that asphalt workers show increased loss of lung function and an increase of biomarkers of inflammation over the asphalt paving season. The aim of this study was to investigate which possible agent(s) causes the inflammatory reaction, with emphasis on ultrafine particles. The workers' exposure to total dust, polycyclic aromatic hydrocarbons, and NO(2) was determined by personal sampling. Exposure to ultrafine particles was measured by means of particle counters and scanning mobility particle sizer mounted on a van following the paving machine. The fractions of organic and elemental carbon were determined. Asphalt paving workers were exposed to ultrafine particles with medium concentration of about 3.4 x 10(4)/cm(3). Ultrafine particles at the paving site originated mainly from asphalt paving activities and traffic exhaust; most seemed to originate from asphalt fumes. Oil mist exceeded occupational limits on some occasions. Diesel particulate matter was measured as elemental carbon, which was low, around 3 microg/m(3). NO(2) and total dust did not exceed limits. Asphalt pavers were exposed to relatively high concentrations of ultrafine particles throughout their working day, with possible adverse health effects.

  20. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study revealsmore » that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the retrieved density and refractive index tend to decrease with an increase of the relative humidity.« less

  1. Note on Professor Sizer's Paper.

    ERIC Educational Resources Information Center

    Balderston, Frederick E.

    1979-01-01

    Issues suggested by John Sizer's paper, an overview of the assessment of institutional performance, include: the efficient-frontier approach, multiple-criterion decision-making models, performance analysis approached as path analysis, and assessment of academic quality. (JMD)

  2. Impact of heating method on the flocculation process using thermosensitive polymer.

    PubMed

    Lemanowicz, Marcin; Kuźnik, Wojciech; Gibas, Mirosław; Dzido, Grzegorz; Gierczycki, Andrzej

    2012-09-01

    The impact of suspension heating method on the flocculation process using thermosensitive polymer is reported in this paper. In experiments a model suspension of chalk in RO water (purified by Reverse Osmosis) was destabilized using a copolymer of N-isopropylacrylamide (NIPAM) and cationic diallyldimethyl ammonium chloride (DADMAC). The measurements were made using a laboratory setup consisting of a mixing tank with four baffles, Rushton turbine, laser particle sizer Analysette 22 by Fritsch and a system of pump and thermostating devices. Two different modes of heating were used. In the first case the temperature of the system was gently raised above the Lower Critical Solution Temperature (LCST) using an electrical heater placed inside the tank, while in the second case the system temperature was rapidly raised by an injection of hot water directly into the tank. It was proven that heating method as well as the polymer concentration was crucial to the shape and size of created flocs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers.

    PubMed

    Gröhn, Arto; Suonmaa, Valtteri; Auvinen, Ari; Lehtinen, Kari E J; Jokiniemi, Jorma

    2009-08-15

    In this study, we designed and built a condensing heat exchanger capable of simultaneous fine particle emission reduction and waste heat recovery. The deposition mechanisms inside the heat exchanger prototype were maximized using a computer model which was later compared to actual measurements. The main deposition mechanisms were diffusio- and thermophoresis which have previously been examined in similar conditions only separately. The obtained removal efficiency in the experiments was measured in the total number concentration and ranged between 26 and 40% for the given pellet stove and the heat exchanger. Size distributions and number concentrations were measured with a TSI Fast mobility particle sizer (FMPS). The computer model predicts that there exists a specific upper limit for thermo- and diffusiophoretic deposition for each temperature and water vapor concentration in the flue gas.

  4. Solid rocket motor plume particle size measurements using multiple optical techniques in a probe

    NASA Astrophysics Data System (ADS)

    Manser, John R.

    1995-03-01

    An experimental investigation to measure particle size distributions in the plume of sub-scale solid rocket motors was conducted. A phase-Doppler particle analyzer (pDPA) in conjunction with three-wavelength extinction measurements were used in a specially designed particle collection probe in an attempt to determine the entire plume particle size distribution. In addition, a laser ensemble particle sizer was used for comparative data. The PDPA and Malvem distributions agreed in the observed modes near 1 and 4.5 micron diameter (d). Scanning electron microscope (SEM) pictures of collected particles were in good agreement with the measured Malvem Sauter mean diameter (d(sub 32)) of 2.59 micron. Data analysis indicates that less than 3% of the total mass of the particles was contained in particles with diameter d dess than 0.5 micron. Therefore, the PDPA, which can typically measure particles down to a minimum diameter of 0.5 micron with a dynamic range (d(sub max):d(sub min)) of 50:1, can be used by itself to determine the particle size distribution. Multiple wavelength measurements were found to be very sensitive to inaccuracies in the measured transmittances.

  5. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the oleic acid model aerosol system is of limited relevance to complex internally mixed atmospheric aerosol, the generic findings presented in this paper give useful insights into the nature of heterogeneous chemical processes.

  6. Characterization of manufactured TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Vaslin-Reimann, S.; Ausset, P.; Maillé, M.

    2013-04-01

    Technological advances in nanomaterials have allowed the development of new applications in industry, increasing the probability of finding airborne manufactured and engineered nano-objects in the workplace, as well as in ambient air. Scientific studies on health and environmental risks have indicated that airborne nano-objects in ambient air have potential adverse effects on the health of exposed workers and the general population. For regulatory purposes, ambient measurements of particulate matter are based on the determination of mass concentrations for PM10 and PM2.5, as regulated in the European Directive 2008/50/EC. However, this legislation is not suitable for airborne manufactured and engineered nano-objects. Parameters characterising ultrafine particles, such as particle number concentration and size distribution, are under consideration for future health-based legislation, to monitor workplaces and to control industrial processes. Currently, there are no existing regulations covering manufactured airborne nano-objects. There is therefore a clear, unaddressed need to focus on the toxicology and exposure assessment of nano-objects such as titanium dioxide (TiO2), which are manufactured and engineered in large quantities in industry. To perform reliable toxicology studies it is necessary to determine the relevant characteristics of nano-objects, such as morphology, surface area, agglomeration, chemical composition, particle size and concentration, by applying traceable methods. Manufacturing of nanomaterials, and their use in industrial applications, also require traceable characterisation of the nanomaterials, particularly for quality control of the process. The present study arises from the OECD WPMN sponsorship programme, supported by the French Agency for Environmental and Occupational Health Safety (ANSES), in order to develop analytical methods for the characterization of TiO2 nanoparticles in size and count size distribution, based on different techniques to characterize five different manufactured TiO2 nanoparticles. In this study, different measurement techniques have been implemented: Transmission Electron Microscopy (TEM), Scanning Mobility Particle Sizer (SMPS) and Aerodynamic Particle Sizer (APS). The TEM results lead to a relatively good agreement between data from the manufacturer and our characterizations of primary particle size. With regard to the dustiness, the results show a strong presence of agglomerates / aggregates of primary particles and a significant presence of emitted airborne nanoparticles with a diameter below 100 nm (composed of isolated primary particles and small aggregates / agglomerates formed from a few primary particles): the number proportion of these particles varies from 0 to 44 % in the measurement range 14-360 nm depending on the types of powders and corrections of measurements.

  7. Techniques used by United Kingdom consultant plastic surgeons to select implant size for primary breast augmentation.

    PubMed

    Holmes, W J M; Timmons, M J; Kauser, S

    2015-10-01

    Techniques used to estimate implant size for primary breast augmentation have evolved since the 1970s. Currently no consensus exists on the optimal method to select implant size for primary breast augmentation. In 2013 we asked United Kingdom consultant plastic surgeons who were full members of BAPRAS or BAAPS what was their technique for implant size selection for primary aesthetic breast augmentation. We also asked what was the range of implant sizes they commonly used. The answers to question one were grouped into four categories: experience, measurements, pre-operative external sizers and intra-operative sizers. The response rate was 46% (164/358). Overall, 95% (153/159) of all respondents performed some form of pre-operative assessment, the others relied on "experience" only. The most common technique for pre-operative assessment was by external sizers (74%). Measurements were used by 57% of respondents and 3% used intra-operative sizers only. A combination of measurements and sizers was used by 34% of respondents. The most common measurements were breast base (68%), breast tissue compliance (19%), breast height (15%), and chest diameter (9%). The median implant size commonly used in primary breast augmentation was 300cc. Pre-operative external sizers are the most common technique used by UK consultant plastic surgeons to select implant size for primary breast augmentation. We discuss the above findings in relation to the evolution of pre-operative planning techniques for breast augmentation. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Real-Time Measurements of Gas/Particle Partitioning of Semivolatile Organic Compounds into Different Probe Particles in a Teflon Chamber

    NASA Astrophysics Data System (ADS)

    Liu, X.; Day, D. A.; Ziemann, P. J.; Krechmer, J. E.; Jimenez, J. L.

    2017-12-01

    The partitioning of semivolatile organic compounds (SVOCs) into and out of particles plays an essential role in secondary organic aerosol (SOA) formation and evolution. Most atmospheric models treat the gas/particle partitioning as an equilibrium between bulk gas and particle phases, despite potential kinetic limitations and differences in thermodynamics as a function of SOA and pre-existing OA composition. This study directly measures the partitioning of oxidized compounds in a Teflon chamber in the presence of single component seeds of different phases and polarities, including oleic acid, squalane, dioctyl sebacate, pentaethylene glycol, dry/wet ammonium sulfate, and dry/wet sucrose. The oxidized compounds are generated by a fast OH oxidation of a series of alkanols under high nitric oxide conditions. The observed SOA mass enhancements are highest with oleic acid, and lowest with wet ammonium sulfate and sucrose. A chemical ionization mass spectrometer (CIMS) was used to measure the decay of gas-phase organic nitrates, which reflects uptake by particles and chamber walls. We observed clear changes in equilibrium timescales with varying seed concentrations and in equilibrium gas-phase concentrations across different seeds. In general, the gas evolution can be reproduced by a kinetic box model that considers partitioning and evaporation with particles and chamber walls, except for the wet sucrose system. The accommodation coefficient and saturation mass concentration of each species in the presence of each seed are derived using the model. The changes in particle size distributions and composition monitored by a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are investigated to probe the SOA formation mechanism. Based on these results, the applicability of partitioning theory to these systems and the relevant quantitative parameters, including the dependencies on seed particle composition, will be discussed.

  9. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  10. An analysis of field-aged diesel particulate filter performance: particle emissions before, during, and after regeneration.

    PubMed

    Barone, Teresa L; Storey, John M E; Domingo, Norberto

    2010-08-01

    A field-aged, passive diesel particulate filter (DPF) used in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during, and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. A condensation particle counter and scanning mobility particle sizer measured total number concentration and number-size distributions, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However, after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 +/- 1 mg/hp-hr before regeneration to 3 +/- 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameters less than 50 nm may have been emitted after regeneration because these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after 4 yr of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 sec of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty Federal Test Procedure (FTP) when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.

  11. Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings

    NASA Astrophysics Data System (ADS)

    Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy

    2015-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.

  12. Investigation of solid particles in the mainstream aerosol of the Tobacco Heating System THS2.2 and mainstream smoke of a 3R4F reference cigarette.

    PubMed

    Pratte, P; Cosandey, S; Goujon Ginglinger, C

    2017-11-01

    Combustion of biomass produces solid carbon particles, whereas their generation is highly unlikely when a biomass is heated instead of being burnt. For instance, in the Tobacco Heating System (THS2.2), the tobacco is heated below 350°C and no combustion takes place. Consequently, at this relatively low temperature, released compounds should form an aerosol consisting of suspended liquid droplets via a homogeneous nucleation process. To verify this assumption, mainstream aerosol generated by the heat-not-burn product, THS2.2, was assessed in comparison with mainstream smoke produced from the 3R4F reference cigarette for which solid particles are likely present. For this purpose, a methodology was developed based on the use of a commercial Dekati thermodenuder operating at 300°C coupled with a two-stage impactor to trap solid particles. If any particles were collected, they were subsequently analyzed by a scanning electron microscope and an electron dispersive X-ray. The setup was first assessed using glycerine-based aerosol as a model system. The removal efficiency of glycerin was determined to be 86 ± 2% using a Trust Science Innovation (TSI) scanning mobility particle sizer, meaning that quantification of solid particles can be achieved as long as their fraction is larger than 14% in number. From experiments conducted using the 3R4F reference cigarette, the methodology showed that approximately 80% in number of the total particulate matter was neither evaporated nor removed by the thermodenuder. This 80% in number was attributed to the presence of solid particles and/or low volatile liquid droplets. The particles collected on the impactor were mainly carbon based. Oxygen, potassium, and chloride traces were also noted. In comparison, solid particles were not detected in the aerosol of THS2.2 after passing through the thermodenuder operated at 300°C. This result is consistent with the fact that no combustion process takes place in THS2.2 and no formation and subsequent transfer of solid carbon particles is expected to occur in the mainstream aerosol.

  13. Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens

    NASA Astrophysics Data System (ADS)

    Psichoudaki, Magda; Nenes, Athanasios; Florou, Kalliopi; Kaltsonoudis, Christos; Pandis, Spyros N.

    2018-04-01

    This study explores the Cloud Condensation Nuclei (CCN) activity of atmospheric particles during intense biomass burning periods in an urban environment. During a one-month campaign in the center of Athens, Greece, a CCN counter coupled with a Scanning Mobility Particle Sizer (SMPS) and a high resolution Aerosol Mass Spectrometer (HR-AMS) were used to measure the size-resolved CCN activity and composition of the atmospheric aerosols. During the day, the organic fraction of the particles was more than 50%, reaching almost 80% at night, when the fireplaces were used. Positive Matrix Factorization (PMF) analysis revealed 4 factors with biomass burning being the dominant source after 18:00 until the early morning. The CCN-based overall hygroscopicity parameter κ ranged from 0.15 to 0.25. During the night, when the biomass burning organic aerosol (bbOA) dominated, the hygroscopicity parameter for the mixed organic/inorganic particles was on average 0.16. The hygroscopicity of the biomass-burning organic particles was 0.09, while the corresponding average value for all organic particulate matter during the campaign was 0.12.

  14. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  15. Sources and dynamics of fluorescent particles in hospitals.

    PubMed

    Pereira, M L; Knibbs, L D; He, C; Grzybowski, P; Johnson, G R; Huffman, J A; Bell, S C; Wainwright, C E; Matte, D L; Dominski, F H; Andrade, A; Morawska, L

    2017-09-01

    Fluorescent particles can be markers of bioaerosols and are therefore relevant to nosocomial infections. To date, little research has focused on fluorescent particles in occupied indoor environments, particularly hospitals. In this study, we aimed to determine the spatial and temporal variation of fluorescent particles in two large hospitals in Brisbane, Australia (one for adults and one for children). We used an Ultraviolet Aerodynamic Particle Sizer (UVAPS) to identify fluorescent particle sources, as well as their contribution to total particle concentrations. We found that the average concentrations of both fluorescent and non-fluorescent particles were higher in the adults' hospital (0.06×10 6 and 1.20×10 6  particles/m 3 , respectively) than in the children's hospital (0.03×10 6 and 0.33×10 6  particles/m 3 , respectively) (P<.01). However, the proportion of fluorescent particles was higher in the children's hospital. Based on the concentration results and using activity diaries, we were able to identify sources of particle production within the two hospitals. We demonstrated that particles can be easily generated by a variety of everyday activities, which are potential sources of exposure to pathogens. Future studies to further investigate their role in nosocomial infection are warranted. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kukla, P; Wright, J; Harris, G

    2003-08-24

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testingmore » is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.« less

  17. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas.

    PubMed

    Kurth, Laura M; McCawley, Michael; Hendryx, Michael; Lusk, Stephanie

    2014-07-01

    People who live in Appalachian areas where coal mining is prominent have increased health problems compared with people in non-mining areas of Appalachia. Coal mines and related mining activities result in the production of atmospheric particulate matter (PM) that is associated with human health effects. There is a gap in research regarding particle size concentration and distribution to determine respiratory dose around coal mining and non-mining areas. Mass- and number-based size distributions were determined with an Aerodynamic Particle Size and Scanning Mobility Particle Sizer to calculate lung deposition around mining and non-mining areas of West Virginia. Particle number concentrations and deposited lung dose were significantly greater around mining areas compared with non-mining areas, demonstrating elevated risks to humans. The greater dose was correlated with elevated disease rates in the West Virginia mining areas. Number concentrations in the mining areas were comparable to a previously documented urban area where number concentration was associated with respiratory and cardiovascular disease.

  18. Sampling and analysis of aircraft engine cold start particles and demonstration of an electrostatic personal particle sampler.

    PubMed

    Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary

    2003-01-01

    Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles.

  19. Characterisation of Exposure to Ultrafine Particles from Surgical Smoke by Use of a Fast Mobility Particle Sizer.

    PubMed

    Ragde, Siri Fenstad; Jørgensen, Rikke Bramming; Føreland, Solveig

    2016-08-01

    Electrosurgery is a method based on a high frequency current used to cut tissue and coagulate small blood vessels during surgery. Surgical smoke is generated due to the heat created by electrosurgery. The carcinogenic potential of this smoke was assumed already in the 1980's and there has been a growing interest in the potential adverse health effects of exposure to the particles in surgical smoke. Surgical smoke is known to contain ultrafine particles (UFPs) but the knowledge about the exposure to UFPs produced by electrosurgery is however sparse. The aims of the study were therefore to characterise the exposure to UFPs in surgical smoke during different types of surgical procedures and on different job groups in the operating room, and to characterise the particle size distribution. Personal exposure measurements were performed on main surgeon, assistant surgeon, surgical nurse, and anaesthetic nurse during five different surgical procedures [nephrectomy, breast reduction surgery, abdominoplasty, hip replacement surgery, and transurethral resection of the prostate (TURP)]. The measurements were performed with a Fast Mobility Particle Sizer (FMPS) to assess the exposure to UPFs and to characterize the particle size distribution. Possible predictors of exposure were investigated using Linear Mixed Effect Models. The exposure to UFPs was highest during abdominoplasty arithmetic mean (AM) 3900 particles cm(-3) and lowest during hip replacement surgeries AM 400 particles cm(-3). The different job groups had similar exposure during the same types of surgical procedures. The use of electrosurgery resulted in short term high peak exposure (highest maximum peak value 272 000 particles cm(-3)) to mainly UFPs. The size distribution of particles varied between the different types of surgical procedures, where nephrectomy, hip replacement surgery, and TURP produced UFPs with a dominating mode of 9nm while breast reduction surgery and abdominoplasty produced UFPs with a dominating mode of 70 and 81nm, respectively. Type of surgery was the strongest predictor of exposure. When only including breast reduction surgery in the analysis, the use of one or two ES pencils during surgery was a significant predictor of exposure. When only including hip replacement surgery, the operating room was a significant predictor of exposure. The use of electrosurgery resulted in short-term high peak exposures to mainly UFPs in surgical smoke. Type of surgery was the strongest predictor of exposure and the different types of surgical procedures produced different sized particles. The job groups had similar exposure. Compared to other occupational exposures to UFPs involving hot processes, the personal exposure levels for UFPs were low during the use of electrosurgery. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. HITEMP Material and Structural Optimization Technology Transfer

    NASA Technical Reports Server (NTRS)

    Collier, Craig S.; Arnold, Steve (Technical Monitor)

    2001-01-01

    The feasibility of adding viscoelasticity and the Generalized Method of Cells (GMC) for micromechanical viscoelastic behavior into the commercial HyperSizer structural analysis and optimization code was investigated. The viscoelasticity methodology was developed in four steps. First, a simplified algorithm was devised to test the iterative time stepping method for simple one-dimensional multiple ply structures. Second, GMC code was made into a callable subroutine and incorporated into the one-dimensional code to test the accuracy and usability of the code. Third, the viscoelastic time-stepping and iterative scheme was incorporated into HyperSizer for homogeneous, isotropic viscoelastic materials. Finally, the GMC was included in a version of HyperSizer. MS Windows executable files implementing each of these steps is delivered with this report, as well as source code. The findings of this research are that both viscoelasticity and GMC are feasible and valuable additions to HyperSizer and that the door is open for more advanced nonlinear capability, such as viscoplasticity.

  1. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.

    2018-01-01

    The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.

  2. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  3. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors.

    PubMed

    Cheng, Yu-Hsiang; Huang, Cheng-Hsiung; Huang, Hsiao-Lin; Tsai, Chuen-Jinn

    2010-12-15

    Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about <6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Characterization of biological aerosol exposure risks from automobile air conditioning system.

    PubMed

    Li, Jing; Li, Mingzhen; Shen, Fangxia; Zou, Zhuanglei; Yao, Maosheng; Wu, Chang-yu

    2013-09-17

    Although use of automobile air conditioning (AC) was shown to reduce in-vehicle particle levels, the characterization of its microbial aerosol exposure risks is lacking. Here, both AC and engine filter dust samples were collected from 30 automobiles in four different geographical locations in China. Biological contents (bacteria, fungi, and endotoxin) were studied using culturing, high-throughput gene sequence, and Limulus amebocyte lysate (LAL) methods. In-vehicle viable bioaerosol concentrations were directly monitored using an ultraviolet aerodynamic particle sizer (UVAPS) before and after use of AC for 5, 10, and 15 min. Regardless of locations, the vehicle AC filter dusts were found to be laden with high levels of bacteria (up to 26,150 CFU/mg), fungi (up to 1287 CFU/mg), and endotoxin (up to 5527 EU/mg). More than 400 unique bacterial species, including human opportunistic pathogens, were detected in the filter dusts. In addition, allergenic fungal species were also found abundant. Surprisingly, unexpected fluorescent peaks around 2.5 μm were observed during the first 5 min use of AC, which was attributed to the reaerosolization of those filter-borne microbial agents. The information obtained here can assist in minimizing or preventing the respiratory allergy or infection risk from the use of automobile AC system.

  5. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-09-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  6. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  7. How Changing a Life Can Help Change Schools

    ERIC Educational Resources Information Center

    Johnson, Bil

    2009-01-01

    Changing lives, changing schools, indeed--any impact the author has had on changing schools in any way is because Ted and Nancy Sizer changed his life and growth as an educator. In this article, he describes how the Sizers have been a part of his development as an educator.

  8. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours,more » underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.« less

  9. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    PubMed

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  10. Co-release of hexabromocyclododecane (HBCD) and Nano- and microparticles from thermal cutting of polystyrene foams.

    PubMed

    Zhang, Haijun; Kuo, Yu-Ying; Gerecke, Andreas C; Wang, Jing

    2012-10-16

    Polystyrene foam is a very important insulation material, and hexabromocyclododecane (HBCD) is frequently used as its flame retardant. HBCD is persistent, bioaccumulative, and toxic, and therefore workplace exposure and environmental emission should be avoided. In this study, we investigated the co-release of HBCD and aerosol particles during the thermal cutting of expanded polystyrene foam (EPS) and extruded polystyrene foam (XPS). The generated particles were simultaneously measured by a fast mobility particle sizer (FMPS) and collected by a cascade impactor (NanoMoudi). In the breathing zone of a cutting worker, the number concentration of aerosol particles was above 1 × 10(12) particles m(-3), and the air concentration of HBCD was more than 50 μg m(-3). Most of the released HBCD was partitioned into particles with an aerodynamic diameter at the nanometer scale. The average concentrations of HBCD in these submicrometer particles generated from the thermal cutting of EPS and XPS were 13 times and 15 times higher than the concentrations in raw foams, respectively. An occupational exposure assessment indicated that more than 60% of HBCD and 70% of particles deposited in the lung of cutting worker would be allocated to the alveolar region. The potential subchronic (or chronic) toxicity jointly caused by the particles and HBCD calls for future studies.

  11. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    NASA Astrophysics Data System (ADS)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  12. A Quiet Voice

    ERIC Educational Resources Information Center

    Schrader, Teri

    2009-01-01

    The Common Principles have been at the very center of the author's professional practice. When she first read Ted Sizer's writing and learned about the Coalition of Essential Schools, she felt as though he was talking directly to her. Not only did every word of the then nine Common Principles make sense, but after reading Sizer's work, her own…

  13. Shoving Our Way into Young People's Lives

    ERIC Educational Resources Information Center

    McGraw, Amanda

    2011-01-01

    This paper uses Sizer and Sizer's concept of "shoving" to examine the school experiences of a group of young people who left mainstream school early and some time later enrolled in an alternative educational setting designed to reengage early school leavers in formal learning. "Shoving" is a way to explain why so many young…

  14. Column and Near-surface Aerosol Properties during TCAP: Temporal Changes in a Coastal Region

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M. S.; Berg, L. K.; Shilling, J. E.; Fast, J. D.; Michalsky, J. J.; Lantz, K. O.; Hodges, G.

    2013-12-01

    An important problem facing climate-related studies is to separate the impacts of naturally occurring and anthropogenic aerosol. This problem is even more challenging in coastal regions located downwind of large metropolitan areas. Cape Cod situated on the easternmost portion of Massachusetts (along the east coast of the United States) is an example of one of these regions. The Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/) was designed to study the evolution of optical, microphysical and chemical properties of both marine aerosol and aerosol transported from North America to the Atlantic as well as their impact on the radiation energy budget. The TCAP has been recently conducted (2012-2013) on Cape Cod with support from the U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). During the TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod. The AMF site (at 41.87°N; 70.28°W) was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), a three-wavelength nephelometer, and suite of instruments to measure the aerosol chemical composition. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and in situ measurements (SMPS, APS, nephelometer, chemical composition), respectively. The importance of this variability to direct aerosol radiative forcing at different time scales and its relation to the long-range transport will be discussed. Some regional model results will also be presented.

  15. Ted, Expecting Us

    ERIC Educational Resources Information Center

    Cushman, Kathleen

    2009-01-01

    In a roomful of people, Ted Sizer always went right to the kids. With merry eyes and delighted smile, he would adjust his tall frame so he could speak directly with the young one. Then he would ask just the right question about what this interesting person was thinking and doing. One could tell that the conversation engaged Sizer completely. He…

  16. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    PubMed

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  17. Real-Time Measurements and Characterization of Airborne Particulate Matter from a Primary Silicon Carbide Production Plant.

    PubMed

    Jørgensen, Rikke Bramming; Kero, Ida Teresia

    2017-12-20

    Airborne particulate matter in the silicon carbide (SiC) industry is a known health hazard. The aims of this study were to elucidate whether the particulate matter generated inside the Acheson furnace during active operation is representative of the overall particulate matter in the furnace hall, and whether the Acheson furnaces are the main sources of ultrafine particles (UFP) in primary SiC production. The number concentration of ultrafine particles was evaluated using an Electrical Low Pressure Impactor (ELPI TM , Dekati Ltd., Tampere, Finland), a Fast Mobility Particle Sizer (FMPS TM , TSI, Shoreview, MN, USA) and a Condensation Particle Counter (CPC, TSI, Shoreview, MN, USA). The results are discussed in terms of particle number concentration, particle size distribution and are also characterized by means of electron microscopy (TEM/SEM). Two locations were investigated; the industrial Acheson process furnace hall and a pilot furnace hall; both of which represent an active operating furnace. The geometric mean of the particle number concentration in the Acheson process furnace hall was 7.7 × 10⁴ particles/cm³ for the UFP fraction and 1.0 × 10⁵ particles/cm³ for the submicrometre fraction. Particulate matter collected at the two sites was analysed by electron microscopy. The PM from the Acheson process furnace hall is dominated by carbonaceous particles while the samples collected near the pilot furnace are primarily rich in silicon.

  18. Real-Time Measurements and Characterization of Airborne Particulate Matter from a Primary Silicon Carbide Production Plant

    PubMed Central

    2017-01-01

    Airborne particulate matter in the silicon carbide (SiC) industry is a known health hazard. The aims of this study were to elucidate whether the particulate matter generated inside the Acheson furnace during active operation is representative of the overall particulate matter in the furnace hall, and whether the Acheson furnaces are the main sources of ultrafine particles (UFP) in primary SiC production. The number concentration of ultrafine particles was evaluated using an Electrical Low Pressure Impactor (ELPITM, Dekati Ltd., Tampere, Finland), a Fast Mobility Particle Sizer (FMPSTM, TSI, Shoreview, MN, USA) and a Condensation Particle Counter (CPC, TSI, Shoreview, MN, USA). The results are discussed in terms of particle number concentration, particle size distribution and are also characterized by means of electron microscopy (TEM/SEM). Two locations were investigated; the industrial Acheson process furnace hall and a pilot furnace hall; both of which represent an active operating furnace. The geometric mean of the particle number concentration in the Acheson process furnace hall was 7.7 × 104 particles/cm3 for the UFP fraction and 1.0 × 105 particles/cm3 for the submicrometre fraction. Particulate matter collected at the two sites was analysed by electron microscopy. The PM from the Acheson process furnace hall is dominated by carbonaceous particles while the samples collected near the pilot furnace are primarily rich in silicon. PMID:29261158

  19. A Descriptive Evaluation of Software Sizing Models

    DTIC Science & Technology

    1987-09-01

    2-22 2.3.2 SPQR Sizer/FP ............................... 2-25 2.3.3 QSM Size Planner: Function Points .......... 2-26 2.3.4 Feature...Characteristics ............................. 4-20 4.5.3 Results and Conclusions ..................... 4-20 4.6 Application of the SPQR SIZER/FP Approach...4-19 4-7 SPQR Function Point Estimate for the CATSS Sensitivity Model .................................................. 4-23 4-8 ASSET-R

  20. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  1. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator.

    PubMed

    Biddiscombe, Martyn F; Barnes, Peter J; Usmani, Omar S

    2006-01-01

    Pharmacological aerosols of precisely controlled particle size and narrow dispersity can be generated using the spinning-top aerosol generator (STAG). The ability of the STAG to generate monodisperse aerosols from solutions of raw drug compounds makes it a valuable research instrument. In this paper, the versatility of this instrument has been further demonstrated by aerosolizing a range of commercially available nebulized pulmonary therapy preparations. Nebules of Flixotide (fluticasone propionate), Pulmicort (budesonide), Combivent (salbutamol sulphate and ipratropium bromide), Bricanyl (terbutaline sulphate), Atrovent(ipratropium bromide), and Salamol (salbutamol sulphate) were each mixed with ethanol and delivered to the STAG. Monodisperse drug aerosol distributions were generated with MMADs of 0.95-6.7 microm. To achieve larger particle sizes from the nebulizer drug suspensions, the STAG formed compound particle agglomerates derived from the smaller insoluble drug particles. These compound agglomerates behaved aerodynamically as a single particle, and this was verified using an aerodynamic particle sizer and an Andersen Cascade Impactor. Scanning electron microscope images demonstrated their physical structure. On the other hand using the nebulizer drug solutions, spherical particles proportional to the original droplet diameter were generated. The aerosols generated by the STAG can allow investigators to study the scientific principles of inhaled drug deposition and lung physiology for a range of therapeutic agents.

  2. Aerosol and gamma background measurements at Basic Environmental Observatory Moussala

    NASA Astrophysics Data System (ADS)

    Angelov, Christo; Arsov, Todor; Penev, Ilia; Nikolova, Nina; Kalapov, Ivo; Georgiev, Stefan

    2016-03-01

    Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW) station Moussala BEO (2925 m a.s.l., 42°10'45'' N, 23°35'07'' E). Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.

  3. Characterization of particle exposure in ferrochromium and stainless steel production.

    PubMed

    Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo

    2016-07-01

    This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping operations. Particle number concentration and size distribution measurements provide important information regarding exposure to ultrafine particles, which cannot be seen in particle mass measurements.

  4. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    NASA Astrophysics Data System (ADS)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  5. Syntheses of crosslinked latex nanoparticles using differential microemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Hassmoro, N. F.; Rusop, M.; Abdullah, S.

    2013-06-01

    The differential microemulsion polymerization was used to synthesize latex nanoparticles. In this paper, 1, 3-butylene glycol dimethacrylate (1, 3-BGDMA) was used as a crosslinker respectively 1-5 weight% of monomer total. Butyl acrylate (BA), butyl methacrylate (BMA), and methacrylic acid (MAA) was used as the monomer. The thin film of latex nanoparticles were prepared by using spin coating method and have been dried at 100°C for 5 minutes. The amount of the crosslinker added in the polymerization was optimized and we found that the particle sizes fall in the range of 30-60 nm. The structural morphology of the uncrosslinked latex represented the most homogeneous image compared to the crosslinked latex. The effect of the amount of crosslinker on the particle sizes investigated by the Zeta-sizer Nano series while Atomic Force microscopy (AFM) was used to study the structural properties of latex nanoparticles.

  6. WormSizer: high-throughput analysis of nematode size and shape.

    PubMed

    Moore, Brad T; Jordan, James M; Baugh, L Ryan

    2013-01-01

    The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy) mutant is short and fat and that a Long (Lon) mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma) mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc) and Roller (Rol) mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.

  7. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: Changes of mass, size, effective density, morphology and mixing state

    NASA Astrophysics Data System (ADS)

    Li, Kangwei; Chen, Linghong; Han, Ke; Lv, Biao; Bao, Kaiji; Wu, Xuecheng; Gao, Xiang; Cen, Kefa

    2017-02-01

    Atmospheric soot aging process is always accompanied by secondary particle formation, which is a comprehensive environmental issue that deserves great attention. On one hand, aging of primary soot could change its own physicochemical properties; on the other hand, complex air pollution caused by pollutant emission from various sources (e.g., vehicle exhausts, coal-fired flue gases and biogenic VOCs emission) may contribute to secondary particle formation onto primary particle surface. In this study, aging of combustion soot in isoprene/SO2/NOx system was investigated under controlled laboratory conditions in several smog chamber experiments. During the evolution of soot, several physical properties such as mass, size, effective density, morphology and mixing state were determined simultaneously by an integrated aerosol analytical system of Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer-Aerosol Particle Mass Analyzer-Condensation Particle Counter (DMA-APM-CPC) and Transmission Electron Microscopy coupled with Energy-dispersive X-ray Spectrometry (TEM/EDX) techniques. Here, based on the experimental results of soot aging under different gas-phase composition and relative humidity (RH), we firstly proposed possible aging pathways of soot in isoprene/SO2/NOx system. A synergetic effect was speculated to exist between SO2 and isoprene on soot aging process, which led to more secondary particle formation. At the same time, TEM/EDX analysis showed that a competitive mechanism between H2SO4(g) and isoprene oxidation vapor may exist: H2SO4(g) firstly condensed onto fresh soot, then an acceleration of isoprene oxidation products formed onto H2SO4 pre-coated soot. In isoprene/SO2/NOx system, high RH conditions could contribute to soot aging and new particle formation. The changes of effective density and dynamic shape factor of soot also indicated that high RH conditions could accelerate soot aging process, and led chain-like soot into more spherical morphology, which was further confirmed from the STEM image. Moreover, it was found that volume equivalent coating thickness (Δrve) could also be applied to normalized characterize soot aging parameters like diameter growth factor (Gfd) and mass growth factor (Gfm) in a complex reaction system like isoprene/SO2/NOx. Our results revealed the dual mechanism (competitive effect&cooperative effect) of isoprene and SO2 on photochemical aging of soot, which is of significance for improving understanding of complex air pollution in China.

  8. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    NASA Astrophysics Data System (ADS)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  9. Fluorescent biological aerosol particles: Concentrations, emissions, and exposures in a northern California residence.

    PubMed

    Tian, Y; Liu, Y; Misztal, P K; Xiong, J; Arata, C M; Goldstein, A H; Nazaroff, W W

    2018-04-06

    Residences represent an important site for bioaerosol exposure. We studied bioaerosol concentrations, emissions, and exposures in a single-family residence in northern California with 2 occupants using real-time instrumentation during 2 monitoring campaigns (8 weeks during August-October 2016 and 5 weeks during January-March 2017). Time- and size-resolved fluorescent biological aerosol particles (FBAP) and total airborne particles were measured in real time in the kitchen using an ultraviolet aerodynamic particle sizer (UVAPS). Time-resolved occupancy status, household activity data, air-change rates, and spatial distribution of size-resolved particles were also determined throughout the house. Occupant activities strongly influenced indoor FBAP levels. Indoor FBAP concentrations were an order of magnitude higher when the house was occupied than when the house was vacant. Applying an integral material-balance approach, geometric mean of total FBAP emissions from human activities observed to perturb indoor levels were in the range of 10-50 million particles per event. During the summer and winter campaigns, occupants spent an average of 10 and 8.5 hours per day, respectively, awake and at home. During these hours, the geometric mean daily-averaged FBAP exposure concentration (1-10 μm diameter) was similar for each subject at 40 particles/L for summer and 29 particles/L for winter. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. How comparable are size-resolved particle number concentrations from different instruments?

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental stationarity and in the data analysis only the middle 18 minutes of data are analyzed. Because of variations in the discretization of the different instrumental configurations, the data are analyzed both after being transformed onto a common size resolution and in terms of a fitted modal distribution. Diagnostic analysis are conducted to assess the impact of SMPS configuration on total number concentration, model geometric mean diameter and distribution dispersion. Preliminary results indicate that selection of DMA exerts the larger control over instrument response.

  11. Automating Structural Analysis of Spacecraft Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2004-01-01

    A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  12. Combining Airborne and Lidar Measurements for Attribution of Aerosol Layers

    NASA Astrophysics Data System (ADS)

    Nikandrova, A.; Väänänen, R.; Tabakova, K.; Kerminen, V. M.; O'Connor, E.

    2016-12-01

    The aim of this work was to identify discrete aerosol layers and diagnose their origin, investigate the strength of mixing within the free-troposphere and with the boundary layer (BL), and understand the impact that mixing has on local and long-range transport of aerosol. For these purposes we combined airborne in-situ aerosol measurements with data obtained by a High Spectral Resolution Lidar (HSRL). The HSRL was deployed in Hyytiälä, Southern Finland, from January to September 2014 as a part of the US DoE ARM (Atmospheric Radiation Measurement) Mobile Facility during the BAECC (Biogenic Aerosols - Effects on Cloud and Climate) Campaign. Two airborne campaigns took place in April and August 2014 during the BAECC campaign. The vertical profile of backscatter coefficient from the HSRL was used to diagnose the location and depth of significant aerosol layers in the atmosphere. Frequently, in addition to the BL, one or two tropospheric layers were identified. In-situ measurements of the aerosol size distribution in these layers were obtained from a Scanning Mobility Particle Sizer (SMPS) and Optical Particle Sizer (OPS), that were installed on board the aircraft; these measurements were combined to cover sizes ranging from 10 nm to 10 µm. As expected, the highest number concentration of aerosol particles at all size ranges was found predominantly in the BL. Many upper layers had size distributions with a similar shape to that in the BL but with overall lower concentrations attributed to dilution of particles into a large volume of air. Hence, these layers were likely of very similar origin to the air in the BL and presumably were the result of lofted residual layers. Intervening layers however, could contain markedly different distribution shapes, which could be attributed to both different air mass origins, and different ambient relative humidity. Potential for mixing between two discreet elevated layers was often seen as a thin interface layer, which exhibited a combination of properties from both layers. Strong turbulent mixing ensured lower variability in the size distribution in the BL on short timescales, with more variability seen in the free troposphere. 96-hour back trajectories from multiple altitudes were used to diagnose the air mass origin of each discrete layer.

  13. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  14. Design and Evaluation of a Personal Diffusion Battery.

    PubMed

    Vosburgh, Donna J H; Klein, Timothy; Sheehan, Maura; Anthony, T Renee; Peters, Thomas M

    A four-stage personal diffusion battery (pDB) was designed and constructed to measure submicron particle size distributions. The pDB consisted of a screen-type diffusion battery, solenoid valve system, and electronic controller. A data inversion spreadsheet was created to solve for the number median diameter (NMD), geometric standard deviation (GSD), and particle number concentration of unimodal aerosols using stage number concentrations from the pDB combined with a handheld condensation particle counter (pDB+CPC). The inversion spreadsheet included particle entry losses, theoretical penetrations across screens, the detection efficiency of the CPC, and constraints so the spreadsheet solved to values within the pDB range. Size distribution parameters (NMD, GSD, and number concentration) measured with the pDB+CPC with inversion spreadsheet were within 25% of those measured with a scanning mobility particle sizer (SMPS) for 5 of 12 polydisperse combustion aerosols. For three tests conducted with propylene torch exhaust, the pDB+CPC with inversion spreadsheet successfully identified that the NMD was smaller than the constraint value of 16 nm. The ratio of the nanoparticle portion of the aerosol compared to the reference ( R nano ) was calculated to determine the ability of pDB+CPC with inversion spreadsheet to measure the nanoparticle portion of the aerosols. The R nano ranged from 0.87 to 1.01 when the inversion solved and from 0.06 to 2.01 when the inversion solved to a constraint. The pDB combined with CPC has limited use as a personal monitor but combining the pDB with a different detector would allow for the pDB to be used as a personal monitor.

  15. Design and Evaluation of a Personal Diffusion Battery

    PubMed Central

    Vosburgh, Donna J. H.; Klein, Timothy; Sheehan, Maura; Anthony, T. Renee; Peters, Thomas M.

    2016-01-01

    A four-stage personal diffusion battery (pDB) was designed and constructed to measure submicron particle size distributions. The pDB consisted of a screen-type diffusion battery, solenoid valve system, and electronic controller. A data inversion spreadsheet was created to solve for the number median diameter (NMD), geometric standard deviation (GSD), and particle number concentration of unimodal aerosols using stage number concentrations from the pDB combined with a handheld condensation particle counter (pDB+CPC). The inversion spreadsheet included particle entry losses, theoretical penetrations across screens, the detection efficiency of the CPC, and constraints so the spreadsheet solved to values within the pDB range. Size distribution parameters (NMD, GSD, and number concentration) measured with the pDB+CPC with inversion spreadsheet were within 25% of those measured with a scanning mobility particle sizer (SMPS) for 5 of 12 polydisperse combustion aerosols. For three tests conducted with propylene torch exhaust, the pDB+CPC with inversion spreadsheet successfully identified that the NMD was smaller than the constraint value of 16 nm. The ratio of the nanoparticle portion of the aerosol compared to the reference (R nano) was calculated to determine the ability of pDB+CPC with inversion spreadsheet to measure the nanoparticle portion of the aerosols. The R nano ranged from 0.87 to 1.01 when the inversion solved and from 0.06 to 2.01 when the inversion solved to a constraint. The pDB combined with CPC has limited use as a personal monitor but combining the pDB with a different detector would allow for the pDB to be used as a personal monitor. PMID:26900207

  16. Structural Sizing of a Horizontal Take-Off Launch Vehicle with an Air Collection and Enrichment System

    NASA Technical Reports Server (NTRS)

    McCurdy, David R.; Roche, Joseph M.

    2004-01-01

    In support of NASA's Next Generation Launch Technology (NGLT) program, the Andrews Gryphon booster was studied. The Andrews Gryphon concept is a horizontal lift-off, two-stage-to-orbit, reusable launch vehicle that uses an air collection and enrichment system (ACES). The purpose of the ACES is to collect atmospheric oxygen during a subsonic flight loiter phase and cool it to cryogenic temperature, ultimately resulting in a reduced initial take-off weight To study the performance and size of an air-collection based booster, an initial airplane like shape was established as a baseline and modeled in a vehicle sizing code. The code, SIZER, contains a general series of volume, surface area, and fuel fraction relationships that tie engine and ACES performance with propellant requirements and volumetric constraints in order to establish vehicle closure for the given mission. A key element of system level weight optimization is the use of the SIZER program that provides rapid convergence and a great deal of flexibility for different tank architectures and material suites in order to study their impact on gross lift-off weight. This paper discusses important elements of the sizing code architecture followed by highlights of the baseline booster study.

  17. Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines

    NASA Astrophysics Data System (ADS)

    Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji

    Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.

  18. Analysis of surgical smoke produced by various energy-based instruments and effect on laparoscopic visibility.

    PubMed

    Weld, Kyle J; Dryer, Stephen; Ames, Caroline D; Cho, Kuk; Hogan, Chris; Lee, Myonghwa; Biswas, Pratim; Landman, Jaime

    2007-03-01

    We analyzed the smoke plume produced by various energy-based laparoscopic instruments and determined its effect on laparoscopic visibility. The Bipolar Macroforceps, Harmonic Scalpel, Floating Ball, and Monopolar Shears were applied in vitro to porcine psoas muscle. An Aerodynamic Particle Sizer and Electrostatic Classifier provided a size distribution of the plume for particles >500 nm and <500 nm, and a geometric mean particle size was calculated. A Condensation Particle Counter provided the total particle-number concentration. Electron microscopy was used to characterize particle size and shape further. Visibility was calculated using the measured-size distribution data and the Rayleigh and Mie light-scattering theories. The real-time instruments were successful in measuring aerosolized particle size distributions in two size ranges. Electron microscopy revealed smaller, homogeneous, spherical particles and larger, irregular particles consistent with cellular components. The aerosol produced by the Bipolar Macroforceps obscured visibility the least (relative visibility 0.887) among the instruments tested. Particles from the Harmonic Scalpel resulted in a relative visibility of 0.801. Monopolar-based instruments produced plumes responsible for the poorest relative visibility (Floating Ball 0.252; Monopolar Shears 0.026). Surgical smoke is composed of two distinct particle populations caused by the nucleation of vapors as they cool (the small particles) and the entrainment of tissue secondary to mechanical aspects (the large particles). High concentrations of small particles are most responsible for the deterioration in laparoscopic vision. Bipolar and ultrasonic instruments generate a surgical plume that causes the least deterioration of visibility among the instruments tested.

  19. Measurement of an electronic cigarette aerosol size distribution during a puff

    NASA Astrophysics Data System (ADS)

    Belka, Miloslav; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav; Pospisil, Jiri

    Electronic cigarettes (e-cigarettes) have become very popular recently because they are marketed as a healthier alternative to tobacco smoking and as a useful tool to smoking cessation. E-cigarettes use a heating element to create an aerosol from a solution usually consisting of propylene glycol, glycerol, and nicotine. Despite the wide spread of e-cigarettes, information about aerosol size distributions is rather sparse. This can be caused by the relative newness of e-cigarettes and by the difficulty of the measurements, in which one has to deal with high concentration aerosol containing volatile compounds. Therefore, we assembled an experimental setup for size measurements of e-cigarette aerosol in conjunction with a piston based machine in order to simulate a typical puff. A TSI scanning mobility particle sizer 3936 was employed to provide information about particle concentrations and sizes. An e-cigarette commercially available on the Czech Republic market was tested and the results were compared with a conventional tobacco cigarette. The particles emitted from the e-cigarette were smaller than those of the conventional cigarette having a CMD of 150 and 200 nm. However, the total concentration of particles from e-cigarette was higher.

  20. Ultrafine particle emissions from essential-oil-based mosquito repellent products.

    PubMed

    Liu, J; Fung, D; Jiang, J; Zhu, Y

    2014-06-01

    Ultrafine particle (UFP) emissions from three essential-oil-based mosquito repellent products (lemon eucalyptus (LE), natural insects (NI), and bite shield (BS)) were tested in a 386 l chamber at a high air exchange rate of 24/h with filtered laboratory air. Total particle number concentration and size distribution were monitored by a condensation particle counter and a scanning mobility particle sizer, respectively. UFPs were emitted from all three products under indoor relevant ozone concentrations (~ 17 ppb). LE showed a nucleation burst followed by a relatively stable and continuous emission while the other two products (NI and BS) showed episodic emissions. The estimated maximum particle emission rate varied from 5.4 × 10(9) to 1.2 × 10(12) particles/min and was directly related to the dose of mosquito repellent used. These rates are comparable to those due to other indoor activities such as cooking and printing. The emission duration for LE lasted for 8-78 min depending on the dose applied while the emission duration for NI and BS lasted for 2-3 h. Certain essential-oil-based mosquito repellents can produce high concentrations of UFPs when applied, even at low ozone levels. Household and personal care products that contain essential oil may need to be tested at indoor relevant ozone levels to determine their potential to increase personal UFP exposures. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations

    PubMed Central

    Csavina, Janae; Landázuri, Andrea; Wonaschütz, Anna; Rine, Kyle; Rheinheimer, Paul; Barbaris, Brian; Conant, William; Sáez, A. Eduardo; Betterton, Eric A.

    2013-01-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. Fine particulates such as those resulting from smelting operations may disperse more readily into the environment than coarser tailings dust. Fine particles also penetrate more deeply into the human respiratory system, and may become more bioavailable due to their high specific surface area. In this work, we report the size-fractionated chemical characterization of atmospheric aerosols sampled over a period of a year near an active mining and smelting site in Arizona. Aerosols were characterized with a 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactor (MOUDI), a scanning mobility particle sizer (SMPS), and a total suspended particulate (TSP) collector. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources. Observation of ultrafine particle number concentration (SMPS) show the highest readings when the wind comes from the general direction of the smelting operations site. PMID:23441050

  2. Optical extinction dependence on wavelength and size distribution of airborne dust

    NASA Astrophysics Data System (ADS)

    Pangle, Garrett E.; Hook, D. A.; Long, Brandon J. N.; Philbrick, C. R.; Hallen, Hans D.

    2013-05-01

    The optical scattering from laser beams propagating through atmospheric aerosols has been shown to be very useful in describing air pollution aerosol properties. This research explores and extends that capability to particulate matter. The optical properties of Arizona Road Dust (ARD) samples are measured in a chamber that simulates the particle dispersal of dust aerosols in the atmospheric environment. Visible, near infrared, and long wave infrared lasers are used. Optical scattering measurements show the expected dependence of laser wavelength and particle size on the extinction of laser beams. The extinction at long wavelengths demonstrates reduced scattering, but chemical absorption of dust species must be considered. The extinction and depolarization of laser wavelengths interacting with several size cuts of ARD are examined. The measurements include studies of different size distributions, and their evolution over time is recorded by an Aerodynamic Particle Sizer. We analyze the size-dependent extinction and depolarization of ARD. We present a method of predicting extinction for an arbitrary ARD size distribution. These studies provide new insights for understanding the optical propagation of laser beams through airborne particulate matter.

  3. Deposition rates of fungal spores in indoor environments, factors effecting them and comparison with non-biological aerosols

    NASA Astrophysics Data System (ADS)

    Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

    Particle deposition indoors is one of the most important factors that determine the effect of particle exposure on human health. While many studies have investigated the particle deposition of non-biological aerosols, few have investigated biological aerosols and even fewer have studied fungal spore deposition indoors. The purpose of this study was, for the first time, to investigate the deposition rates of fungal particles in a chamber of 20.4 m 3 simulating indoor environments by: (1) releasing fungal particles into the chamber, in sufficient concentrations so the particle deposition rates can be statistically analysed; (2) comparing the obtained deposition rates with non-bioaerosol particles of similar sizes, investigated under the same conditions; and (3) investigating the effects of ventilation on the particle deposition rates. The study was conducted for a wide size range of particle sizes (0.54-6.24 μm), at three different air exchange rates (0.009, 1.75 and 2.5 h -1). An Ultraviolet Aerodynamic Particle Sizer Spectrometer (UVAPS) was used to monitor the particle concentration decay rate. The study showed that the deposition rates of fungal spores ( Aspergillus niger and Penicillium species) and the other aerosols (canola oil and talcum powder) were similar, especially at very low air exchange rates (in the order of 0.009). Both the aerosol and the bioaerosol deposition rates were found to be a function of particle size. The results also showed increasing deposition rates with increasing ventilation rates, for all particles under investigation. These conclusions are important in understanding the dynamics of fungal spores in the air.

  4. Nanoparticle concentrations and composition in a dental office and dental laboratory: A pilot study on the influence of working procedures.

    PubMed

    Lang, Andreja; Ovsenik, Maja; Verdenik, Ivan; Remškar, Maja; Oblak, Čedomir

    2018-05-01

    During material treatment in dentistry particles of different size are released in the air. To examine the degree of particle exposure, air scanning to dental employees was performed by the Scanning Mobility Particle Sizer. The size, shape and chemical composition of particles collected with a low-pressure impactor were determined by scanning electronic microscopy and X-ray dispersive analysis. The average concentrations of nanoparticles during working periods in a clean dental laboratory (45,000-56,000 particles/cm 3 ), in an unclean dental laboratory (28,000-74,000 particles/cm 3 ), and in a dental office (21,000-50,000 particles/cm 3 ), were significantly higher compared to average concentrations during nonworking periods in the clean dental laboratory (11,000-24,000 particles/cm 3 ), unclean laboratory (14,000-40,000 particles/cm 3 ), and dental office (13,000-26,000 particles/cm 3 ). Peak concentration of nanoparticles in work-intensive periods were found significantly higher (up to 773,000 particles/cm 3 ), compared to the non-working periods (147,000 particles/cm 3 ) and work-less intensive periods (365,000 particles/cm 3 ). The highest mass concentration value ranged from 0.055-0.166 mg/m 3 . X-ray dispersive analysis confirmed the presence of carbon, potassium, oxygen, iron, aluminum, zinc, silicon, and phosphorus as integral elements of dental restorative materials in form of nanoparticle clusters, all smaller than 100 nm. We concluded that dental employees are exposed to nanoparticles in their working environment and are therefore potentially at risk for certain respiratory and systematic diseases.

  5. Assessment of nanoparticles release into the environment during drilling of carbon nanotubes/epoxy and carbon nanofibres/epoxy nanocomposites.

    PubMed

    Starost, Kristof; Frijns, Evelien; Van Laer, Jo; Faisal, Nadimul; Egizabal, Ainhoa; Elizextea, Cristina; Blazquez, Maria; Nelissen, Inge; Njuguna, James

    2017-10-15

    The risk assessment, exposure and understanding of the release of embedded carbon nanotubes (CNTs) and carbon nanofibers (CNFs) from commercial high performance composites during machining processes are yet to be fully evaluated and quantified. In this study, CNTs and CNFs were dispersed in epoxy matrix through calendaring process to form nanocomposites. The automated drilling was carried out in a specially designed drilling chamber that allowed elimination of background noise from the measurements. Emission measurements were taken using condensed particle counter (CPC), scanning mobility particle sizer (SMPS) and DMS50 Fast Particulate Size Spectrometer. In comparison to the neat epoxy, the study results revealed that the nano-filled samples produced an increase of 102% and 227% for the EP/CNF and EP/CNT sample respectively in average particle number concentration emission. The particle mass concentration indicated that the EP/CNT and EP/CNF samples released demands a vital new perspective on CNTs and CNFs embedded within nanocomposite materials to be considered and evaluated for occupational exposure assessment. Importantly, the increased concentration observed at 10nm aerosol particle sizes measurements strongly suggest that there are independent CNTs being released at this range. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    NASA Astrophysics Data System (ADS)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003), Environmental Science and Technology 37(7), 1371-1378. Zardini, A. A. et al., (2010), Journal of Aerosol Science, 41, 760-770.

  7. The Air Pollution Exposure Laboratory (APEL) for controlled human exposure to diesel exhaust and other inhalants: characterization and comparison to existing facilities.

    PubMed

    Birger, Nicholas; Gould, Timothy; Stewart, James; Miller, Mark R; Larson, Timothy; Carlsten, Chris

    2011-03-01

    The Air Pollution Exposure Laboratory (APEL) was designed for the controlled inhalation of human subjects to aged and diluted diesel exhaust (DE) to mimic "real-world" occupational and environmental conditions. An EPA Tier 3-compliant, 6.0 kW diesel generator is operated under discrete cyclic loads to simulate diesel on-road emissions. The engine accepts standard ultra-low sulfur diesel or a variety of alternative fuels (such as biodiesel) via a partitioned tank. A portion of raw exhaust is drawn into the primary dilution system and is diluted 9:1 with compressed air at standard temperature (20°C) and humidity (40%) levels. The exhaust is further diluted approximately 25:1 by high efficiency particulate air (HEPA)-filtered air (FA) and then aged for 4 min before entering the 4 × 6 × 7-foot exposure booth. An optional HEPA filter path immediately proximal to the booth can generate a particle-reduced (gas-enriched) exposure. In-booth particulate is read by a nephelometer to provide an instantaneous light scattering coefficient for closed-loop system control. A Scanning Mobility Particle Sizer and multi-stage impactor measures particle size distribution. Filter sampling allows determination of sessional average concentrations of size-fractionated and unfractionated particulate oxidative potential, elemental carbon, organic carbon and trace elements. Approximately 300 μg/m(3) PM(2.5) is routinely achievable at APEL and is well characterized in terms of oxidative potential and elemental components. APEL efficiently creates fresh DE, appropriately aged and diluted for human experimentation at safe yet realistic concentrations. Description of exposure characteristics allows comparison to other international efforts to deepen the current evidence base regarding the health effects of DE.

  8. Novel insight on photochemistry at interfaces: potential impact on Seconday Aerosol Formation?

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; George, C.; Aregahegn, K.

    2014-12-01

    Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms cannot account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer (DMA) and Condensation Particle Sizer (CPC), we identified that traces in the aerosol phase of glyoxal chemistry products, namely imidazole-2-carboxaldehyde (IC) are strong photo-sensitizers when irradiated with near-UV. In the presence of volatile organic compounds such as terpenes, this chemistry leads to a fast aerosol growth. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (+/-)ESI-HRMS and UPLC/(+/-)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiment ts, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant. These results demonstrate that, upon ageing, organic aerosols can produce photo-sensitizers which auto-photo-catalyse their SOA growth.

  9. Optical properties of soot particles: measurement - model comparison

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.

  10. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles. Cladosporium spp., which are among the most abundant fungal spores in many terrestrial environments, were not correlated with any of the real-time fluorescence channels, suggesting that the real-time fluorescence instruments are relatively insensitive to PBAP classes with dark, highly absorptive cell walls. Fluorescence microscopy images of cascade impactor plates showed large numbers of coarse-mode particles consistent with the morphology and weak fluorescence expected of sea salt. Some of these particles were attached to biological cells, suggesting that a marine source influenced the PBAPs observed at the site and that the ocean may be an important contributor to PBAP loadings in coastal environments.

  11. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-02-01

    Primary biological aerosol particles (PBAP) can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4) with the ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles. Cladosporium spp., which are among the most abundant fungal spores in many terrestrial environments, were not correlated with any of the real-time fluorescence channels, suggesting that the real-time fluorescence instruments are insensitive to PBAP classes with dark, highly absorptive cell walls. Fluorescence microscopy images of cascade impactor plates showed large numbers of coarse mode particles consistent with the morphology and weak fluorescence expected of sea salt. Some of these particles were attached to biological cells, suggesting that a marine source influenced the PBAP observed at the site and that the ocean may be an important contributor to PBAP loadings in coastal environments.

  12. [Airborne particles in a multi-wall carbon nanotube production plant: observation of particle emission and personal exposure 1: Measurement in the packing process].

    PubMed

    Takaya, Mitsutoshi; Serita, Fumio; Ono-Ogasawara, Mariko; Shinohara, Yasushi; Saito, Hiroyuki; Koda, Shigeki

    2010-01-01

    In order to assess the exposure risks of multiwall carbon nanotubes (MWCNT) for packing workers, we carried out real-time monitoring in the two types of packing facilities of MWCNT, and exposure measurements for the packing workers. In the real-time monitoring, a scanning mobility particle sizer (SMPS) and an optical particle counter (OPC) were used to measure nanoscale particles and sub-micron/micron scale particles, respectively. A personal sampler with PM 4.0 was used to measure the personal exposures in the packing facilities. One of the packing facilities is manually operated and the other is automated. The concentrations of airborne dust in both facilities were almost the same as each other at 0.24 mg/m(3) (total dust). However, the results of personal exposure measurements were quite different between the two facilities. The exposure concentrations of workers in the manually and automated operations were 2.39/0.39 (total/respirable) mg/m(3) and 0.29/0.08 (total/respirable) mg/m(3), respectively. From the time series study, submicron scale particles were released into the workplace air when the CNT products were put into temporary container bags from a hopper and manually packed into shipping bags. However, the task-related nanoscale particle release was not observed. The manual packing operation is one of the "hot spots" in MWCNT production facilities, and automation brings much improvement to reduce MWCNT exposure.

  13. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    NASA Astrophysics Data System (ADS)

    Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting similar behavior to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established, reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10-400 nm) in every experiment and with an optical particle counter (OPC, 0.1-2.0 μm) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM 1.1) ranged from 10 to >300 μg m -3 and yields ranged from 5% to 37%. Steady-state nucleation rates and SOA mass formation rates were ˜10 cm -3 s -1 and ˜10 μg m -3 min -1, respectively.

  14. Soot Particle Studies - Instrument Inter-Comparison – Project Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, E.; Sedlacek, A.; Onasch, T. B.

    2010-03-06

    An inter-comparison study of instruments designed to measure the microphysical and optical properties of soot particles was completed. The following mass-based instruments were tested: Couette Centrifugal Particle Mass Analyzer (CPMA), Time-of-Flight Aerosol Mass Spectrometer - Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Soot Particle-Aerosol Mass Spectrometer (SP-AMS) and Photoelectric Aerosol Sensor (PAS2000CE). Optical instruments measured absorption (photoacoustic, interferometric, and filter-based), scattering (in situ), and extinction (light attenuation within an optical cavity). The study covered an experimental matrix consisting of 318 runs that systematically tested the performance of instruments across a range of parameters including: fuel equivalence ratiomore » (1.8 {le} {phi} {le} 5), particle shape (mass-mobility exponent (D{sub f m}), 2.0 {le} D{sub f m} {le} 3.0), particle mobility size (30 {le} d{sub m} {le} 300 nm), black carbon mass (0.07 {le} m{sub BC} {le} 4.2 fg) and particle chemical composition. In selected runs, particles were coated with sulfuric acid or dioctyl sebacate (DOS) (0.5 {le} {Delta}r{sub ve} {le} 201 nm) where {Delta}r{sub ve} is the change in the volume equivalent radius due to the coating material. The effect of non-absorbing coatings on instrument response was determined. Changes in the morphology of fractal soot particles were monitored during coating and denuding processes and the effect of particle shape on instrument response was determined. The combination of optical and mass based measurements was used to determine the mass specific absorption coefficient for denuded soot particles. The single scattering albedo of the particles was also measured. An overview of the experiments and sample results are presented.« less

  15. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    NASA Astrophysics Data System (ADS)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  16. Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites.

    PubMed

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2017-07-01

    In this study, the characteristics of airborne particles generated during injection molding and grinding processes of carbon nanotube reinforced polycarbonate composites (CNT-PC) were investigated. Particle number concentration, size distribution, and morphology of particles emitted from the processes were determined using real-time particle sizers and transmission electron microscopy. The air samples near the operator's breathing zone were collected on filters and analyzed using scanning electron microscope for particle morphology and respirable fiber count. Processing and grinding during recycling of CNT-PC released airborne nanoparticles (NPs) with a geometric mean (GM) particle concentration from 4.7 × 10 3 to 1.7 × 10 6 particles/cm 3 . The ratios of the GM particle concentration measured during the injection molding process with exhaust ventilation relative to background were up to 1.3 (loading), 1.9 (melting), and 1.4 (molding), and 101.4 for grinding process without exhaust ventilation, suggesting substantial NP exposures during these processes. The estimated mass concentration was in the range of 1.6-95.2 μg/m 3 . Diverse particle morphologies, including NPs, NP agglomerates, particles with embedded or protruding CNTs and fibers, were observed. No free CNTs were found during any of the investigated processes. The breathing zone respirable fiber concentration during the grinding process ranged from non-detectable to 0.13 fiber/cm 3 . No evidence was found that the emissions were affected by the number of recycling cycles. Institution of exposure controls is recommended during these processes to limit exposures to airborne NPs and CNT-containing fibers.

  17. Monitor for detecting and assessing exposure to airborne nanoparticles

    NASA Astrophysics Data System (ADS)

    Marra, Johan; Voetz, Matthias; Kiesling, Heinz-Jürgen

    2010-01-01

    An important safety aspect of the workplace environment concerns the severity of its air pollution with nanoparticles (NP; <100 nm) and ultrafine particles (UFP; <300 nm). Depending on their size and chemical nature, exposure to these particles through inhalation can be hazardous because of their intrinsic ability to deposit in the deep lung regions and the possibility to subsequently pass into the blood stream. Recommended safety measures in the nanomaterials industry are pragmatic, aiming at exposure minimization in general, and advocating continuous control by monitoring both the workplace air pollution level and the personal exposure to airborne NPs. This article describes the design and operation of the Aerasense NP monitor that enables intelligence gathering in particular with respect to airborne particles in the 10-300 nm size range. The NP monitor provides real time information about their number concentration, average size, and surface areas per unit volume of inhaled air that deposit in the various compartments of the respiratory tract. The monitor's functionality relies on electrical charging of airborne particles and subsequent measurements of the total particle charge concentration under various conditions. Information obtained with the NP monitor in a typical workplace environment has been compared with simultaneously recorded data from a Scanning Mobility Particle Sizer (SMPS) capable of measuring the particle size distribution in the 11-1086 nm size range. When the toxicological properties of the engineered and/or released particles in the workplace are known, personal exposure monitoring allows a risk assessment to be made for a worker during each workday, when the workplace-produced particles can be distinguished from other (ambient) particles.

  18. Characterisation of particle emissions from the driving car fleet and the contribution to ambient and indoor particle concentrations

    NASA Astrophysics Data System (ADS)

    Palmgren, Finn; Wåhlin, Peter; Kildesø, Jan; Afshari, Alireza; Fogh, Christian L.

    The population is mainly exposed to high air pollution concentrations in the urban environment, where motor vehicle emissions constitute the main source of fine and ultrafine particles. These particles can penetrate deep into the respiratory system, and studies indicate that the smaller the particle, the larger the health impacts. The chemical composition, surface reactivity and physical properties are also important. However, the knowledge about chemical and physical properties of particles and the temporal and spatial variability of the smallest particles is still very limited. The present study summarises the first results of a larger project with the aims to improve the knowledge. The concentration and the emissions of ultrafine particles from petrol and diesel vehicles, respectively, have been quantified using Scanning Mobility Particle Sizer of ultrafine particles in the size range 6-700 nm and routine monitoring data from urban streets and urban background in Denmark. The quantification was carried out using receptor modelling. The number size distributions of petrol and diesel emissions showed a maximum at 20-30 nm and non-traffic at ≈100 nm. The contribution of ultrafine particles from diesel vehicles is dominating in streets. The same technique has been applied on PM 10, and ≈50% contribution from non-traffic. The technique has also been introduced in relation to elemental and organic carbon, and the first data showed strong correlation between traffic pollution and elemental carbon. The outdoor air quality has a significant effect on indoor pollution levels, and we spend most of the time indoors. Knowledge about the influence of ambient air pollution on the concentrations in the indoor environment is therefore crucial for assessment of human health effects of traffic pollution. The results of our studies will be included in air quality models for calculation of human exposure. Preliminary results from our first campaign showed, that the deposition rate of particles in the apartment is negligible in the particle size range 100-500 nm. In the size range below 100 nm the deposition rate increases with decreasing particle diameter to a value of approximately 1 h -1 at 10 nm. The penetration efficiency shows a maximum of 60% at 100 nm. More detailed studies of exchange of particles in outdoor/indoor air and the transformation are planned to take place during three next campaigns.

  19. Characterization of diesel particles: effects of fuel reformulation, exhaust aftertreatment, and engine operation on particle carbon composition and volatility.

    PubMed

    Alander, Timo J A; Leskinen, Ari P; Raunemaa, Taisto M; Rantanen, Leena

    2004-05-01

    Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.

  20. Determining size-specific emission factors for environmental tobacco smoke particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured everymore » minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.« less

  1. Aerosol-chamber study of the α-pinene/O 3 reaction: influence of particle acidity on aerosol yields and products

    NASA Astrophysics Data System (ADS)

    Iinuma, Yoshiteru; Böge, Olaf; Gnauk, Thomas; Herrmann, Hartmut

    α-Pinene ozonolysis was carried out in the presence of ammonium sulfate or sulfuric acid seed particles in a 9 m 3 Teflon chamber at the mixing ratios of 100 ppbv for α-pinene and about 70 ppbv for ozone. The evolution of size distribution was measured by means of a differential mobility particle sizer (DMPS). The resulting secondary organic aerosol (SOA) was sampled by a denuder/quartz fiber filter combination for the determination of the total organic carbon concentration (TOC) in the particle phase, using a thermographic method and by a denuder/PTFE filter combination for the analysis of individual chemical species in the particle phase using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS). cis-Pinic acid ( m/ z 185) and another species tentatively identified at m/ z 171 and 199 were the major particle phase species for both seed particles although the product yields were different, indicating the influence of seed particle acidity. A thermographic method for the determination of TOC showed an increase of particle phase organics by 40% for the experiments with higher acidity. CE-ESI-MS analysis showed a large increase in the concentration of compounds with Mw>300 from the experiments with sulfuric acid seed particles. These results suggest that the seed particle acidity enhances the yield of SOA and plays an important role in the formation of larger molecules in the particle phase. Our results from direct particle phase chemical analysis suggest for the first time that condensation of smaller organics takes place by polymerization or aldol condensation following the formation of aldehydes, such as pinonaldehyde from the terpene ozonolysis.

  2. Fabrication of monodispersive nanoscale alginate-chitosan core-shell particulate systems for controlled release studies

    NASA Astrophysics Data System (ADS)

    Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed

    2014-12-01

    Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core-shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.

  3. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.

    PubMed

    Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun

    2011-09-01

    We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Silica nanoparticles capture atmospheric lead: implications in the treatment of environmental heavy metal pollution.

    PubMed

    Yang, Xifei; Shen, Zhiguo; Zhang, Bing; Yang, Jianping; Hong, Wen-Xu; Zhuang, Zhixiong; Liu, Jianjun

    2013-01-01

    Lead (Pb) contamination in the air is a severe global problem, most notably in China. Removal of Pb from polluted air remains a significant challenge. It is unclear what potential effects silica nanoparticles (SiNPs) exposure can have on atmospheric Pb. Here we first characterized the features of SiNPs by measuring the particle size, zeta potential and the specific surface area of SiO(2) particles using a Nicomp 380/ZLS submicron particle sizer, the Brunauer-Emmett-Teller (BET) method and transmission electronic microscopy (TEM). We measured the content of the metal Pb adsorbed by SiNPs exposed to two Pb polluted electric battery plants using inductively coupled plasma mass spectrometry (ICP-MS). It is found that SiNPs exposed to two Pb polluted electric battery plants absorb more atmospheric Pb compared to either blank control or micro-sized SiO(2) particles in a time-dependent manner. This is the first study demonstrating that SiNPs exposure can absorb atmospheric Pb in the polluted environment. These novel findings indicate that SiNPs have potential to serve as a significant adsorbent of Pb from industrial pollution, implicating a potentially novel application of SiNPs in the treatment of environmental heavy metal pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    NASA Astrophysics Data System (ADS)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  6. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species ( m/ z 400-500), which can be due to accretion/acid-base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4-9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  7. Crumpling of graphene oxide through evaporative confinement in nanodroplets produced by electrohydrodynamic aerosolization

    NASA Astrophysics Data System (ADS)

    Kavadiya, Shalinee; Raliya, Ramesh; Schrock, Michael; Biswas, Pratim

    2017-02-01

    Restacking of graphene oxide (GO) nanosheets results in loss of surface area and creates limitations in its widespread use for applications. Previously, two-dimensional (2D) GO sheets have been crumpled into 3D structures to prevent restacking using different techniques. However, synthesis of nanometer size crumpled graphene particles and their direct deposition onto a substrate have not been demonstrated under room temperature condition so far. In this work, the evaporative crumpling of GO sheets into very small size (<100 nm) crumpled structures using an electrohydrodynamic atomization technique is described. Systematic study of the effect of different electrohydrodynamic atomization parameters, such as (1) substrate-to-needle distance, (2) GO concentration in the precursor solution, and (3) flow rate (droplet size) on the GO crumpling, is explored. Crumpled GO (CGO) particles are characterized online using a scanning mobility particle sizer (SMPS) and off-line using electron microscopy. The relation between the confinement force and the factors affecting the crumpled structure is established. Furthermore, to expand the application horizons of the structure, crumpled GO-TiO2 nanocomposites are synthesized. The method described here allows a simple and controlled production of graphene-based particles/composites with direct deposition onto any kind of substrate for a variety of applications.

  8. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particlemore » sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.« less

  9. Laboratory Studies of Temperature and Relative Humidity Dependence of Aerosol Nucleation during the TANGENT 2017 IOP Study

    NASA Astrophysics Data System (ADS)

    Ouyang, Q.; Tiszenkel, L.; Stangl, C. M.; Krasnomowitz, J.; Johnston, M. V.; Lee, S.

    2017-12-01

    In this poster, we will present recent measurements of temperature and relative humidity dependence of aerosol nucleation of sulfuric acid under the conditions representative of the ground level to the free troposphere. Aerosol nucleation is critically dependent on temperature, but the current global aerosol models use nucleation algorithms that are independent of temperature and relative humidity due to the lack of experimental data. Thus, these models fail to simulate nucleation in a wide range of altitude and latitude conditions. We are currently conducting the Tandem Aerosol Nucleation and Growth Environment Tube (TANGENT) the intense observation period (IOP) experiments to investigate the aerosol nucleation and growth properties independently, during nucleation and growth. Nucleation takes place from sulfuric acid, water and some base compounds in a fast flow nucleation tube (FT-1). Nucleation precursors are detected with two chemical ionization mass spectrometers (CIMS) and newly nucleated particles are measured with a particle size magnifier (PSM) and a scanning mobility particle sizers (SMPS). Then these particles grow further in the second flow tube (FT-2) in the presence of oxidants of biogenic organic compounds. Chemical compositions of grown particles are further analyzed with a nano-aerosol mass spectrometer (NAMS). Our experimental results will provide a robust algorithm for aerosol nucleation and growth rates as a function of temperature and relative humidity.

  10. [Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].

    PubMed

    Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

    2014-08-01

    Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.

  11. Temporal distribution and other characteristics of new particle formation events in an urban environment.

    PubMed

    Pushpawela, Buddhi; Jayaratne, Rohan; Morawska, Lidia

    2018-02-01

    Studying the characteristics of new particle formation (NPF) is important as it is generally recognized as a major contributor to particle pollution in urban environments. We investigated NPF events that occurred during a 1-year period in the urban environment of Brisbane, Australia, using a neutral cluster and air ion spectrometer (NAIS) which is able to monitor both neutral and charged particles and clusters down to a size of 0.8 nm. NPF events occurred on 41% of days, with the occurrence rate of 7% greater in the summer than in the winter. We derived the first diurnal event distribution of NPF events anywhere in the world and showed that the most probable starting time of an NPF event was near 08:30 a.m., being about an hour earlier in the winter than in the summer. During NPF days, 10% of particles were charged. The mean neutral and charged particle concentrations on NPF days were, respectively, 49% and 14% higher than those on non-event days. The mean formation rate of 2-3 nm particles during an NPF event was 20.8 cm -3  s -1 . The formation rate of negatively charged particles was about 10% higher than that of positively charged particles. The mean particle growth rate in the size range up to 20 nm was 6.2 nm h -1 . These results are compared and contrasted with corresponding values that have been derived with the scanning mobility particle sizer (SMPS) at the same location and with values that have been reported with the NAIS at other locations around the world. This is the first comprehensive study of the characteristics of NPF events over a significantly long period in Australia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.

    2013-08-01

    A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 μm diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.

  13. The influence of human physical activity and contaminated clothing type on particle resuspension.

    PubMed

    McDonagh, A; Byrne, M A

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Simultaneous Measurements of Nanoaerosols and Radioactive Aerosols Containing the Short-lived Radon Isotopes.

    PubMed

    Otahal, P P S; Burian, I; Ondracek, J; Zdimal, V; Holub, R F

    2017-11-01

    The activity size distribution of the Equilibrium-Equivalent Concentration (EER) of 222Rn is one of the most important parameters for the estimation of radiation dose by inhalation of radon decay products. A series of measurements of the EER activity size distribution were performed by the screen diffusion battery in Radon-Aerosol chamber (10 m3) at the National Institute for Nuclear, Chemical, and Biological Protection (SUJCHBO). These measurements were performed at different levels of radon concentration. For this study, the Graded Screen Array Diffusion Battery (GSA DB), developed by the SUJCHBO (based on Earl Knutson and Robert F Holub design), consists of 10 screens and backup filter used to collect all particles that penetrated the screens. The measuring range of this GSA DB allows measuring the radioactive nanoaerosols in the size range from 0.5 to 100 nm. The Earl Knutson algorithm was used for EER activity size distribution evaluation. The results of EER activity size distribution were subsequently compared with the aerosol particle size distribution measured by Scanning Mobility Particle Sizer Spectrometer (SMPS 3936 N, TSI Inc., MN, USA). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Atmospheric properties measurements and data collection from a hot-air balloon

    NASA Astrophysics Data System (ADS)

    Watson, Steven M.; Olson, N.; Dalley, R. P.; Bone, W. J.; Kroutil, Robert T.; Herr, Kenneth C.; Hall, Jeff L.; Schere, G. J.; Polak, M. L.; Wilkerson, Thomas D.; Bodrero, Dennis M.; Borys, R. O.; Lowenthal, D.

    1995-02-01

    Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various atmospheric measurements and remote sensing tasks. We have been performing experiments in these areas since the winter of 1993. These platforms are extremely inexpensive to operate, do not cause disturbances such as prop wash and high airspeeds, and have substantial payload lifting and altitude capabilities. The equipment operated and tested on the balloons included FTIR spectrometers, multi-spectral imaging spectrometer, PM10 Beta attenuation monitor, mid- and far-infrared cameras, a radiometer, video recording equipment, ozone meter, condensation nuclei counter, aerodynamic particle sizer with associated computer equipment, a tethersonde and a 2.9 kW portable generator providing power to the equipment. Carbon monoxide and ozone concentration data and particle concentrations and size distributions were collected as functions of altitude in a wintertime inversion layer at Logan, Utah and summertime conditions in Salt Lake City, Utah and surrounding areas. Various FTIR spectrometers have been flown to characterize chemical plumes emitted from a simulated industrial stack. We also flew the balloon into diesel and fog oil smokes generated by U.S. Army and U.S. Air Force turbine generators to obtain particle size distributions.

  16. Diurnal and seasonal trends and source apportionment of redox-active metals in Los Angeles using a novel online metal monitor and Positive Matrix Factorization (PMF)

    NASA Astrophysics Data System (ADS)

    Mousavi, Amirhosein; Sowlat, Mohammad H.; Sioutas, Constantinos

    2018-02-01

    In the present study, we identified the sources of four redox-active metals, including Iron (Fe), Chromium (Cr), Cupper (Cu), and Manganese (Mn) and quantified the contribution of these sources to PM2.5 concentrations in central Los Angeles, California, by employing time-resolved measurements (i.e., a time resolution of 2 h) with a recently developed online metal monitor and Positive Matrix Factorization (PMF). Size distribution of ambient PM (14 nm-10 μm) was measured using the Scanning Mobility Particle Sizer (SMPS) and Optical Particle Sizer (OPS). Auxiliary variables were also collected, including elemental (EC) and organic carbon (OC), gaseous pollutants (NO2 and O3), meteorological parameters (including relative humidity (RH) and temperature), and traffic data (for heavy- (HDVs) and light-duty vehicles (LDVs)). A 4-factor solution was found to be optimum for the chemically-speciated dataset, whereas a 5-factor solution appeared to be most plausible for the size distribution data. The factors included fresh traffic, soil/road dust, urban background aerosol, secondary aerosol, and nucleation (only resolved for the size distribution data). Fresh traffic was the major contributor to Fe and Cu concentrations, whereas Cr was mostly found in the urban background aerosol (reflecting a mixture of small local sources as well as aged traffic emissions), and Mn mostly came from both soil/road dust and was to a lesser degree found in urban background aerosol. Secondary aerosol did not contribute to the concentrations of any of these metals, but was associated with very high loading of OC, as expected. Even though the urban background aerosol and secondary aerosol appeared to be characterized by "aged" particles and have a rather homogeneous spatial distribution, the reactions and processes involved in their formation are entirely different. Our results provide insights into the sources of redox-active metals in central Los Angeles. They also underscore the benefits of novel measurement techniques for PM-bound metals, which could enhance our understanding of the sources of atmospheric aerosols by providing us with measurements with finer time resolutions that otherwise would not have been possible using traditional filter-based measurement techniques.

  17. Nuclear Weapon Environment Model. Volume II. Computer Code User’s Guide.

    DTIC Science & Technology

    1979-02-01

    J.R./IfW-09obArt AT NAME AND ADDRESS 10 PROGRAM ELEMENT PROJECT. TASK ’A a *0 RK UONGANIZATION TRW Defense and Space Systems GroupA 8WOKUINMES One...SIZE I I& DENSITY / DENSITY ZERO ,-NO OR TIME TOO YES LARGE? I CALL SIZER I r SETUP GRID IDIAGNOSTICI -7 PRINT DESIRED NOY-LOOP .? D I INCREMENT Y I I

  18. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  19. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE PAGES

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    2018-03-30

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  20. Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust

    PubMed Central

    Chubb, Lauren G.; Cauda, Emanuele G.

    2017-01-01

    Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139

  1. Aerosol partitioning in mixed-phase clouds at the Jungfraujoch (3580 m asl)

    NASA Astrophysics Data System (ADS)

    Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.

    2003-04-01

    Field measurements on the partitioning between the interstitial and the liquid/ice phase in natural clouds were performed at the high-alpine research station Jungfraujoch (3580 m asl, Switzerland) during a summer and a winter campaign. The size distributions of the total and the interstitial aerosol were determined by means of a scanning mobility particle sizer (SMPS). From these, size resolved scavenging ratios were calculated. Simultaneously, cloud water content (CWC) and cloud particle size distributions along with meteorological data were obtained. In cold mixed phase clouds (existing of liquid droplets and ice crystals), strong differences were found in comparison to the warm summer clouds. In the warm cloud types all particles above a certain diameter were activated and thereby the scavenging ratio (number of activated particles divided by the total number concentration) above a certain threshold diameter approached 1. In the winter clouds, the scavenging ratio never reached the value of 1 and could be as low as 0. These observations are explained by the Bergeron-Findeisen process: Here, particles are also activated to droplets in the first step, but after the formation of the ice phase droplets evaporate while the ice crystals grow, due to difference in the saturation vapor pressure over water and ice. This release of aerosol particles to the interstitial aerosol has significant implications for the climate forcing: It can be expected that the number of CCN is of less importance as soon as ice crystals are formed.

  2. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  3. Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Chen, Haihan; Hodshire, Anna L.; Ortega, John; Greenberg, James; McMurry, Peter H.; Carlton, Annmarie G.; Pierce, Jeffrey R.; Hanson, Dave R.; Smith, James N.

    2018-01-01

    Most prior field studies of new particle formation (NPF) have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11-16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11-16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH) and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1) ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2) nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3) increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.

  4. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  5. Evaluation of filter media for particle number, surface area and mass penetrations.

    PubMed

    Li, Lin; Zuo, Zhili; Japuntich, Daniel A; Pui, David Y H

    2012-07-01

    The National Institute for Occupational Safety and Health (NIOSH) developed a standard for respirator certification under 42 CFR Part 84, using a TSI 8130 automated filter tester with photometers. A recent study showed that photometric detection methods may not be sensitive for measuring engineered nanoparticles. Present NIOSH standards for penetration measurement are mass-based; however, the threshold limit value/permissible exposure limit for an engineered nanoparticle worker exposure is not yet clear. There is lack of standardized filter test development for engineered nanoparticles, and development of a simple nanoparticle filter test is indicated. To better understand the filter performance against engineered nanoparticles and correlations among different tests, initial penetration levels of one fiberglass and two electret filter media were measured using a series of polydisperse and monodisperse aerosol test methods at two different laboratories (University of Minnesota Particle Technology Laboratory and 3M Company). Monodisperse aerosol penetrations were measured by a TSI 8160 using NaCl particles from 20 to 300 nm. Particle penetration curves and overall penetrations were measured by scanning mobility particle sizer (SMPS), condensation particle counter (CPC), nanoparticle surface area monitor (NSAM), and TSI 8130 at two face velocities and three layer thicknesses. Results showed that reproducible, comparable filtration data were achieved between two laboratories, with proper control of test conditions and calibration procedures. For particle penetration curves, the experimental results of monodisperse testing agreed well with polydisperse SMPS measurements. The most penetrating particle sizes (MPPSs) of electret and fiberglass filter media were ~50 and 160 nm, respectively. For overall penetrations, the CPC and NSAM results of polydisperse aerosols were close to the penetration at the corresponding median particle sizes. For each filter type, power-law correlations between the penetrations measured by different instruments show that the NIOSH TSI 8130 test may be used to predict penetrations at the MPPS as well as the CPC and NSAM results with polydisperse aerosols. It is recommended to use dry air (<20% RH) as makeup air in the test system to prevent sodium chloride particle deliquescing and minimizing the challenge particle dielectric constant and to use an adequate neutralizer to fully neutralize the polydisperse challenge aerosol. For a simple nanoparticle penetration test, it is recommended to use a polydisperse aerosol challenge with a geometric mean of ~50 nm with the CPC or the NSAM as detectors.

  6. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel.

    PubMed

    Miettinen, Mirella; Torvela, Tiina; Leskinen, Jari T T

    2016-10-01

    Exposure to stainless steel (SS) welding aerosol that contain toxic heavy metals, chromium (Cr), manganese (Mn), and nickel (Ni), has been associated with numerous adverse health effects. The gas tungsten arc welding (GTAW) is commonly applied to SS and produces high number concentration of substantially smaller particles compared with the other welding techniques, although the mass emission rate is low. Here, a field study in a workshop with the GTAW as principal welding technique was conducted to determine the physicochemical properties of the airborne particles and to improve the understanding of the hazard the SS welding aerosols pose to welders. Particle number concentration and number size distribution were measured near the breathing zone (50cm from the arc) and in the middle of the workshop with condensation particle counters and electrical mobility particle sizers, respectively. Particle morphology and chemical composition were studied using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the middle of the workshop, the number size distribution was unimodal with the geometric mean diameter (GMD) of 46nm. Near the breathing zone the number size distribution was multimodal, and the GMDs of the modes were in the range of 10-30nm. Two different agglomerate types existed near the breathing zone. The first type consisted of iron oxide primary particles with size up to 40nm and variable amounts of Cr, Mn, and Ni replacing iron in the structure. The second type consisted of very small primary particles and contained increased proportion of Ni compared to the proportion of (Cr + Mn) than the first agglomerate type. The alterations in the distribution of Ni between different welding aerosol particles have not been reported previously. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  7. High concentrations of coarse particles emitted from a cattle feeding operation

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-08-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was present in internal mixtures with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences may lead to errors in estimates of aerosol effects on local air quality, visibility, and public health.

  8. Evaluation of nano- and submicron particle penetration through ten nonwoven fabrics using a wind-driven approach.

    PubMed

    Gao, Pengfei; Jaques, Peter A; Hsiao, Ta-Chih; Shepherd, Angie; Eimer, Benjamin C; Yang, Mengshi; Miller, Adam; Gupta, Bhupender; Shaffer, Ronald

    2011-01-01

    Existing face mask and respirator test methods draw particles through materials under vacuum to measure particle penetration. However, these filtration-based methods may not simulate conditions under which protective clothing operates in the workplace, where airborne particles are primarily driven by wind and other factors instead of being limited to a downstream vacuum. This study was focused on the design and characterization of a method simulating typical wind-driven conditions for evaluating the performance of materials used in the construction of protective clothing. Ten nonwoven fabrics were selected, and physical properties including fiber diameter, fabric thickness, air permeability, porosity, pore volume, and pore size were determined. Each fabric was sealed flat across the wide opening of a cone-shaped penetration cell that was then housed in a recirculation aerosol wind tunnel. The flow rate naturally driven by wind through the fabric was measured, and the sampling flow rate of the Scanning Mobility Particle Sizer used to measure the downstream particle size distribution and concentrations was then adjusted to minimize filtration effects. Particle penetration levels were measured under different face velocities by the wind-driven method and compared with a filtration-based method using the TSI 3160 automated filter tester. The experimental results show that particle penetration increased with increasing face velocity, and penetration also increased with increasing particle size up to about 300 to 500 nm. Penetrations measured by the wind-driven method were lower than those obtained with the filtration method for most of the fabrics selected, and the relative penetration performances of the fabrics were very different due to the vastly different pore structures.

  9. Photooxidation of Alpha-Pinene at High Relative Humidity in the Presence of Increasing Concentrations of NOx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yong; Ezell, Michael J.; Zelenyuk, Alla

    2008-06-01

    The photooxidation of ~1 ppm alpha-pinene in the presence of increasing concentrations of NO2 was studied in a Teflon chamber at relative humidities from 70 - 88% and temperatures from 296 - 304 K. The loss of alpha-pinene and formation of gas phase products were followed using proton transfer reaction mass spectrometry (PTR-MS). Gas phase reaction products measured by PTR-MS and their yields include formaldehyde (5 + 1%), formic acid (2.5 + 1.4%), methanol (0.6 + 0.3%), acetaldehyde (3.9 + 1.7%), acetic acid (10 + 2%), acetone (11.5 + 3.1%), pinonaldehyde (22 + 6%), and pinene oxide (0.9 + 0.1%).more » There was evidence of organic nitrates in the gas phase and small peaks were tentatively assigned to norpinonaldehyde, 4-oxopinonaldehyde, propanedial, 2,3-dioxobutanal and 3,5,6-trioxoheptanal or 3-hydroxymethyl-2,2-dimethylcyclobutylethanone. The formation and growth of new particles were followed using a scanning mobility particle sizer (SMPS), and their chemical composition was probed using single particle mass spectrometry (SPLAT II). SPLAT II analysis also provided measurements of the vacuum aerodynamic diameters of the newly formed secondary organic aerosol (SOA) particles and, in combination with the electrical mobility diameter, a particle density of 1.21 + 0.02 g cm-3 was calculated, 20% larger than often assumed in calculating SOA yields. SPLAT II showed that the suspended SOA consisted of a complex mixture of organic nitrates and organics, possibly including pinonic acid, pinic acid and trans-sobrerol. Three-wavelength light scattering measurements made using an integrating nephelometer were consistent with particles having a refractive index characteristic of organic compounds, but the data could not be well matched at all three wavelengths with a single refractive index. The effect of addition of cyclohexane or NO on particle formation showed that ozonolysis was the major mechanism of SOA formation in this system. However, unlike simple ozonolysis, organic nitrates are formed in both the gas and particle phases. Identifying and measuring specific organic nitrates in both the gas and particle phases in air may help to elucidate why SOA formation has been reported in field studies to be associated with polluted urban areas, yet the carbon in these particles is largely contemporary, i.e., non-fossil fuel carbon.« less

  10. Fabrication, Characterization, In vitro Evaluation of Solid Lipid Nanoemulsion of Flunarizine dihydrochloride for Nasal Delivery.

    PubMed

    Newton, Maria J; Harjot, Kaur

    2017-01-01

    Flunarizine dihydrochloride (FHC) is used for the prophylaxis to migraine. Flunarizine has solubility problems which is practically insoluble in water and alcohol. Nanoemulsion is the approach to increase the solubility of the insoluble drugs. Nanoemulsions of FHC was prepared which can be given through the alternate route such as nasal drug delivery for migraine. In this research work the solubility of the poorly soluble FHC was successfully improved by preparing it as a nano emulsion. Nanoemulsions can pass through the biological membrane easily so it can be delivered through nasal mucosa by which it may provide a quicker onset of action. The currently available dosage forms are in the form of tablet. The formulations were prepared by using Glycerl Monostearate (GMS), Tween 80 as surfactant and PEG 400: Ethanol as co-surfactant in the distilled water. Nanoemulsions were prepared by step by step procedure. The prepared nanoemulsions were analyzed preliminarily by Master Sizer followed by Zeta Sizer by using the technique Dynamic Photon Correlation Spectroscopy. The best nanoemulsion was subjected to Zeta Potential study. The TEM analysis was carried out on the best formulation to gain the detailed information about the formulation. The best formulation was selected based on the physical appearance, homogenecity of the preparation, Preliminary Master Sizer analysis report, Secondary Zeta Sizer analysis report with Zeta Potential and TEM. The best formulation demonstrated the size in nano range with improved solubility. The FHC nano emulsion was prepared successfully which improved the solubility of the drug. The drug release study on simulated nasal fluid revealed that the preparation is suitable to be delivered through the nasal route. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.

    PubMed

    Stabile, Luca; Cauda, Emanuele; Marini, Sara; Buonanno, Giorgio

    2014-08-01

    Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  12. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  13. Low and Mid Level Tropical Atmosphere Characterization during African Dust Outbreaks Using Particle Size Distribution Data Retrieved from ICE-T and PRADACS Field Studies

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, O.; Mayol-Bracero, O. L.; Sepulveda-Vallejo, P.; Heymsfield, A.

    2013-12-01

    Cloud formation in the tropical atmosphere is difficult to characterize when factors such as the Saharan Air Layer (SAL) play a role influencing the dynamic and thermodynamic processes. In order to characterize particle number size distribution across the Eastern Caribbean with the possible influence of African dust at low and mid levels, data collected during July 2011 from ground-based instruments and an aircraft platform were analyzed. Aerosol measurements from the ocean surface to ~8 km were performed below and in and around clouds by the National Center for Atmospheric Research (NCAR) C130 aircraft during the Ice in Clouds Experiment-Tropical (ICE-T) using the Passive Cavity Aerosol Spectrometer Probe (PCASP), while low-level measurements of aerosols were performed at the University of Puerto Rico-Rio Piedras Campus (UPRRP) during the Puerto Rican African Dust and Cloud Study (PRADACS) using an Optical Particle Counter (OPC) and a Scanning Mobility Particle Sizer (SMPS). Preliminary results using HYSPLIT back trajectories, flight tracks, SAL images and OPC/SMPS/PCASP time series all indicate peaks and troughs in aerosol concentrations at both low and mid levels over time, but the concentration was influenced by how strong the dust outbreak was as well as its horizontal travel speed. These and additional results regarding correlations between wind directions, cloud cover and atmospheric inversions will be presented.

  14. Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Ji Hyun; Ahn, Kangho; Kim, Sun Man; Jeon, Ki Soo; Lee, Jong Seong; Yu, Il Je

    2012-09-01

    With the increased production and widespread use of nanomaterials, human and environmental exposure to nanomaterials is inevitably increasing. Therefore, this study monitored the possible nanoparticle exposure at a workplace that manufactures silver nanoparticles. To estimate the potential exposure of workers, personal sampling, area monitoring, and real-time monitoring were conducted over 3 days using a scanning mobility particle sizer and dust monitor at a workplace where the workers handle nanomaterials. The area sampling concentrations obtained from the injection room showed the highest concentration, ranging from 0.00501 to 0.28873 mg/m3. However, apart from the injection room, none of the area samplings obtained from other locations showed a concentration higher than 0.0013 mg/m3. Meanwhile, the personal sampling concentrations ranged from 0.00004 to 0.00243 mg/m3 over the 3 days of sampling, which was much lower than the silver TLV. The particle number concentrations at the silver nanoparticle manufacturing workplace were 911,170 (1st day), 1,631,230 (2nd day), and 1,265,024 (3rd day) particles/cm3 with a size range of 15-710.5 nm during the operation of the reactor, while the concentration decreased to 877,364.9 (1st day), 492,732 (2nd day), and 344,343 (3rd day) particles/cm3 when the reactor was stopped.

  15. Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice.

    PubMed

    Conley, J; Yang, H; Wilson, T; Blasetti, K; Di Ninno, V; Schnell, G; Wong, J P

    1997-06-01

    The aerosol delivery of liposome-encapsulated ciprofloxacin by using 12 commercially available jet nebulizers was evaluated in this study. Aerosol particles containing liposome-encapsulated ciprofloxacin generated by the nebulizers were analyzed with a laser aerodynamic particle sizer. Mean mass aerodynamic diameters (MMADs) and geometric standard deviations (GSDs) were determined, and the drug contents of the sampling filters from each run onto which aerosolized liposome-encapsulated ciprofloxacin had been deposited were analyzed spectrophotometrically. The aerosol particles of liposome-encapsulated ciprofloxacin generated by these nebulizers ranged from 1.94 to 3.5 microm, with GSDs ranging from 1.51 to 1.84 microm. The drug contents of the sampling filters exposed for 1 min to aerosolized liposome-encapsulated ciprofloxacin range from 12.7 to 40.5 microg/ml (0.06 to 0.2 mg/filter). By using the nebulizer selected on the basis of most desirable MMADs, particle counts, and drug deposition, aerosolized liposome-encapsulated ciprofloxacin was used for the treatment of mice infected with 10 times the 50% lethal dose of Francisella tularensis. All mice treated with aerosolized liposome-encapsulated ciprofloxacin survived the infection, while all ciprofloxacin-treated or untreated control mice succumbed to the infection (P < 0.001). These results suggest that aerosol delivery of liposome-encapsulated ciprofloxacin to the lower respiratory tract is feasible and that it may provide an effective therapy for the treatment of respiratory tract infections.

  16. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately uponmore » mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.« less

  17. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  18. Indoor secondary pollutants from household product emissions in the presence of ozone: A bench-scale chamber study.

    PubMed

    Destaillats, Hugo; Lunden, Melissa M; Singer, Brett C; Coleman, Beverly K; Hodgson, Alfred T; Weschler, Charles J; Nazaroff, William W

    2006-07-15

    Ozone-driven chemistry is a source of indoor secondary pollutants of potential health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields for most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid, and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of secondary particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10(5) molecules cm(-3) were determined by an indirect method. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate chamber study, we exposed the dry residue of two products to ozone and observed the formation of gas-phase and particle-phase secondary oxidation products.

  19. The Unique Properties of Agricultural Aerosols Measured at a Cattle Feeding Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranuma, Naruki; Brooks, S. D.; Gramann, J.

    2011-05-11

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the nominally upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portablemore » Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy (RM) was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of fugitive dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 µm or less) were as high as 1200 μg/m3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was composed of internally mixed with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences will lead to serious errors in estimates of aerosol effects on climate, visibility, and public health.« less

  20. Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst.

    PubMed

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin

    2014-02-15

    A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The unique properties of agricultural aerosols measured at a cattle feeding operation

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-05-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the nominally upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy (RM) was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of fugitive dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant percentage of the organic particles, up to 28 %, were composed of internally mixed with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences will lead to serious errors in estimates of aerosol effects on climate, visibility, and public health.

  2. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.

    PubMed

    Say, R; Şenay, R Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. Km values were 0.26 and 0.87 mM and Vmax values were 0.36 IU mg(-1) and 22.32 IU mg(-1) for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70-80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Aerosol Size Distributions During ACE-Asia: Retrievals From Optical Thickness and Comparisons With In-situ Measurements

    NASA Astrophysics Data System (ADS)

    Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.

  4. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation.

    PubMed

    Jørgensen, Rikke Bramming; Buhagen, Morten; Føreland, Solveig

    2016-07-01

    To investigate the exposure to number concentration of ultrafine particles and the size distribution in the breathing zone of workers during rehabilitation of a subsea tunnel. Personal exposure was measured using a TSI 3091 Fast Mobility Particle Sizer (FMPS), measuring the number concentration of submicrometre particles (including ultrafine particles) and the particle size distribution in the size range 5.6-560 nm. The measurements were performed in the breathing zone of the operators by the use of a conductive silicone tubing. Working tasks studied were operation of the slipforming machine, operations related to finishing the verge, and welding the PVC membrane. In addition, background levels were measured. Arithmetic mean values of ultrafine particles were in the range 6.26×10(5)-3.34×10(6). Vertical PVC welding gave the highest exposure. Horizontal welding was the work task with the highest maximum peak exposure, 8.1×10(7) particles/cm(3). Background concentrations of 4.0×10(4)-3.1×10(5) were found in the tunnel. The mobility diameter at peak particle concentration varied between 10.8 nm during horizontal PVC welding and during breaks and 60.4 nm while finishing the verge. PVC welding in a vertical position resulted in very high exposure of the worker to ultrafine particles compared to other types of work tasks. In evaluations of worker exposure to ultrafine particles, it seems important to distinguish between personal samples taken in the breathing zone of the worker and more stationary work area measurements. There is a need for a portable particle-sizing instrument for measurements of ultrafine particles in working environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Experimental and environmental factors affect spurious detection of ecological thresholds

    USGS Publications Warehouse

    Daily, Jonathan P.; Hitt, Nathaniel P.; Smith, David; Snyder, Craig D.

    2012-01-01

    Threshold detection methods are increasingly popular for assessing nonlinear responses to environmental change, but their statistical performance remains poorly understood. We simulated linear change in stream benthic macroinvertebrate communities and evaluated the performance of commonly used threshold detection methods based on model fitting (piecewise quantile regression [PQR]), data partitioning (nonparametric change point analysis [NCPA]), and a hybrid approach (significant zero crossings [SiZer]). We demonstrated that false detection of ecological thresholds (type I errors) and inferences on threshold locations are influenced by sample size, rate of linear change, and frequency of observations across the environmental gradient (i.e., sample-environment distribution, SED). However, the relative importance of these factors varied among statistical methods and between inference types. False detection rates were influenced primarily by user-selected parameters for PQR (τ) and SiZer (bandwidth) and secondarily by sample size (for PQR) and SED (for SiZer). In contrast, the location of reported thresholds was influenced primarily by SED. Bootstrapped confidence intervals for NCPA threshold locations revealed strong correspondence to SED. We conclude that the choice of statistical methods for threshold detection should be matched to experimental and environmental constraints to minimize false detection rates and avoid spurious inferences regarding threshold location.

  6. Evolution of aerosol downwind of a major highway

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.

    2010-12-01

    Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of turbulent dispersion as a function of distance from the highway, and a traffic camera was used to determine traffic density, composition and speed. These measurements differ from previous studies in that turbulence is measured under realistic conditions and hence the relationship of the aerosol evolution to atmospheric stability and mixing will also be quantified. Preliminary results suggest that aerosol size and composition does change on the sub-grid scale, and sub-grid scale parameterizations of turbulence and particle chemistry should be included in models to accurately represent these effects.

  7. The influence of mineral dust particles on the energy output of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Roesch, C.; Eltahir, E. A. B.; Al-awwad, Z.; Alqatari, S.; Cziczo, D. J.; Roesch, M.

    2016-12-01

    The city of Al Khafji in Saudi Arabia plans to provide a regular supply of desalinated water from the Persian Gulf while simultaneously cutting back on the usage of fossil fuels. The power for the high energy-consuming reverse osmosis (RO) process will be derived from photovoltaic (PV) cells as a cleaner and resource-conserving means of energy production. Numerous sun hours (yearly 3000) makes the Persian Gulf region's geographical location appropriate for applying PV techniques at this scale. A major concern for PV power generation is mineral dust from desert regions accumulating on surfaces and thereby reducing the energy output. This study aims to show the impact of dust particles on the PV energy reduction by examining dust samples from various Persian Gulf regions. Bulk samples were collected at the surface. The experimental setup involved a sealed container with a solar panel unit (SPU), including an adjustable mounting plate, solar cells (amorphous and monocrystalline), and a pyranometer (SMP3, Kipp & Zonen Inc.). A Tungsten Halogen lamp was used as the light source. Dust particles were aerosolized with a shaker (Multi-Wrist shaker, Lab line). Different techniques were applied to characterize each sample: the particle size distributions were measured using an Optical Particle Sizer (OPS, TSI Inc.), the chemical composition was analyzed using the Particle Analysis by Mass Spectrometry (PALMS) instrument, and Transmission Electron Microscope Energy-Dispersive X-ray spectroscopy (TEM-EDX) was used to define morphology, size and structure. Preliminary results show that the energy output is affected by aerosol morphology (monodisperse, polydisperse), composition and solar cell type.

  8. Characterization of aerosol particle episodes in Finland caused by wildfires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Niemi, J. V.; Tervahattu, H.; Vehkamäki, H.; Martikainen, J.; Laakso, L.; Kulmala, M.; Aarnio, P.; Koskentalo, T.; Sillanpää, M.; Makkonen, U.

    2005-04-01

    We studied the sources, compositions and size distributions of aerosol particles during long-range transport (LRT) PM2.5 episodes occurred on 12-15 August, 26-28 August and 5-6 September 2002 in Finland. Backward air mass trajectories, satellite detections of fire areas, and dispersion modelling results indicate that emissions from wildfires in Russia and other Eastern European countries arrived to Finland during the episodes. Individual particle analyses using scanning electron microscopy (SEM) coupled with energy dispersive X-ray analyses (EDX) showed that the proportion of S-rich particles increased during the episodes and they contained elevated fractions of K, which indicates emissions from biomass burning. These aerosols were mixed with S-rich emissions from fossil fuel burning during the transport, since air masses came through polluted areas of Europe. Minor amounts of coarse Ca-rich particles were also brought by LRT during the episodes, and they probably originated from wildfires and/or from Estonian and Russian oil-shale burning industrial areas. The ion chromatography analysis showed that concentrations of sulphate (SO42-), total nitrate (NO3-+HNO3(g)) and total ammonium (NH4++NH3(g)) increased during the episodes, but the ratio of total amount of these ions to PM10 concentration decreased indicating unusually high fractions of other chemical components. The particle number size distribution measurements with differential mobility particle sizer (DMPS) showed that the concentrations of 90-500 nm particles increased during the episodes, but the concentrations of particles smaller than 90nm decreased. The reduction of the smallest particles was caused by suppressed new particle formation due to the vapour and molecular cluster uptake of LRT particles. Our results show that the emissions from wildfires in Russian and other Eastern European deteriorated air quality on very large areas, even at the distance of over 1000 km from the fire areas.

  9. Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology.

    PubMed

    Cheng, Y S; Yazzie, D; Gao, J; Muggli, D; Etter, J; Rosenthal, G J

    2003-01-01

    Polylactic acid (PLA) powders have been used as vector particles to carry pharmaceutical material. Drugs incorporated in the PLA powder can be retained in the lung for a longer period and may be more effective than free-form drugs. A new formulation of L-PLA dry powder, which was easy to disperse in the air, was produced by using a supercritical technology. The L-PLA powder was characterized in terms of physical particle size and aerodynamic size as generated with a Turbuhaler dry powder inhaler (DPI). Electron microscopy analysis of the particles indicated that they were individual particles in bulk form and became aggregate particles after generation by the Turbuhaler. Aerodynamic particle size analysis using both an Aerodynamic Particle Sizer (APS) aerosol spectrometer and Andersen impactor showed that the aerodynamic size decreased as the flow rate in the Turbuhaler increased from 28.3 to 90 L min(-1). Deposition patterns in the human respiratory tract were estimated using a realistic physical replica of human airways. Deposition of the L-PLA was high (80.8%) in the oral airway at 28.3 L min(-1) and an average of 73.4% at flow rates of 60 and 90 L min(-1). In the lung region, the deposition totaled 7.2% at 28.3 L min(-1), 18.3% at 60 L min(-1), and 17.6% at 90 L min(-1). These deposition patterns were consistent with aerodynamic size measurement, which showed 76 to 86% deposition in the USP/EP (US Pharmacopoeia/European Pharmacopoeia) induction port. As the flow rate increased, fewer aggregates were formed resulting in the smaller aerodynamic particles. As a result, more particles penetrated the oral airways and were available for deposition in the lung. Our results showed that L-PLA particles as manufactured by the supercritical technology could be used in a DPI that does not require the use of carrier particles to facilitate aerosol delivery.

  10. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  11. Human exposure to polyhexamethylene guanidine phosphate from humidifiers in residential settings: Cause of serious lung disease.

    PubMed

    Lee, Ji Hyun; Yu, Il Je

    2017-11-01

    Exposure to the humidifier disinfectant, polyhexamethylene guanidine phosphate (PHMG), in mists generated from ultrasonic humidifiers was studied in a simulation chamber and apartment rooms. PHMG is suspected as a causative agent of lung disease in Korea residences. In the simulation-chamber study, the amount of disinfectant discharged from three different ultrasonic humidifiers was measured. Mists generated at 1, 2, and 4 times the recommended amount of disinfectant were sampled with an impinger, and the effect of relative humidity (RH) on airborne disinfectant concentration was studied by changing RH from 60%-70% to 90%-100%. In addition, particle size distribution (PSD) in mists was measured by scanning mobility particle sizer (SMPS), aerodynamic particle sizer (APS), and Mastersizer. In the apartment study, mists generated from ultrasonic humidifiers were sampled for 6 h in small and large rooms during fall ( n = 10) and winter ( n = 15). In the simulation study, the humidifiers discharged 205 ± 24.6 ml/h of mist at maximum capacity. Concentrations of airborne disinfectant increased with increasing concentration of disinfectant. RH affected airborne disinfectant concentration in the chamber, with increasing concentration with increasing RH. Below RH 70%, no airborne PHMG was detected. PHMG-containing mists generated from ultrasonic humidifier showed various sizes ranging from 149-157 nm to 690-740 nm to larger than 5.4 µm by SMPS, APS, and Mastersizer, respectively. Surface area mean diameter measured by Mastersizer ranged from 5.39 µm to 5.72 µm. In the apartment study conducted during the fall, the geometric mean (GM) and geometric standard deviation (GSD) and arithmetic mean (AM) and standard deviation (SD) of airborne PHMG concentration were 3.22 + 5.13 µg/m 3 and 8.26 ± 12.18 µg/m 3 , respectively. In the winter, GM + GSD and AM ± SD of airborne PHMG concentration were 0.21 + 2.11 µg/m 3 and 0.35 ± 0.62 µg/m 3 , respectively. RH and temperature in the apartment rooms for fall and winter were 22.5 ± 1.7°C, 74.5 ± 15.6% and 22.0 ± 2°C, 51.1 ± 12.9%, respectively. Different RHs in the fall and winter resulted in very different airborne concentrations of disinfectant in the apartment rooms. Exposure levels and PSD of mists generated from ultrasonic humidifiers in apartments are not sufficient to conclude that PHMG causes lung disease in Korean residences.

  12. Characterization of aerosol particle episodes in Finland caused by wildfires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Niemi, J. V.; Tervahattu, H.; Vehkamäki, H.; Martikainen, J.; Laakso, L.; Kulmala, M.; Aarnio, P.; Koskentalo, T.; Sillanpää, M.; Makkonen, U.

    2005-08-01

    We studied the sources, compositions and size distributions of aerosol particles during long-range transport (LRT) PM2.5 episodes which occurred on 12-15 August, 26-28 August and 5-6 September 2002 in Finland. Backward air mass trajectories, satellite detections of fire areas and dispersion modelling results indicate that emissions from wildfires in Russia and other Eastern European countries arrived in Finland during these episodes. Elemental analyses using scanning electron microscopy (SEM) coupled with energy dispersive X-ray microanalyses (EDX) showed that the proportions of S-rich particles and agglomerates (agglomeration was caused partly by the sampling method used) increased during the episodes, and they contained elevated fractions of K, indicating emissions from biomass burning. These aerosols were mixed with S-rich emissions from fossil fuel burning during transport since air masses came through polluted areas of Europe. Minor amounts of coarse Ca-rich particles were also brought by LRT during the episodes, and they probably originated from wildfires and/or from Estonian and Russian oil-shale-burning industrial areas. Ion chromatography analysis showed that concentrations of sulphate (SO42-), total nitrate (NO3-+HNO3(g)) and total ammonium (NH4++NH3(g)) increased during the episodes, but the ratio of the total amount of these ions to PM10 concentration decreased, indicating unusually high fractions of other chemical components. Particle number size distribution measurements with differential mobility particle sizer (DMPS) revealed that concentrations of particles 90-500 nm increased during the episodes, while concentrations of particles smaller than 90 nm decreased. The reduction of the smallest particles was caused by suppressed new particle formation due to vapour and molecular cluster uptake of LRT particles. Our results show that emissions from wildfires in Russian and other Eastern European countries deteriorated air quality of very large areas, even at distances of over 1000 km from the fire areas.

  13. Overview of TANGENT (Tandem Aerosol Nucleation and Growth ENvironment Tube) 2017 IOP Study

    NASA Astrophysics Data System (ADS)

    Tiszenkel, L.

    2017-12-01

    New particle formation consists of two steps: nucleation and growth of nucleated particles. However, most laboratory studies have been conducted under conditions where these two processes are convoluted together, thereby hampering the detailed understanding of the effect of chemical species and atmospheric conditions on two processes. The objective of the Tandem Aerosol Nucleation and Growth ENvironment Tube (TANGENT) laboratory study is to investigate aerosol nucleation and growth properties independently by separating these two processes in two different flow tubes. This research is a collaboration between the University of Alabama in Huntsville and the University of Delaware. In this poster we will present the experimental setup of TANGENT and summarize the key results from the first IOP (intense observation period) experiments undertaken during Summer 2017. Nucleation takes place in a temperature- and RH-controlled fast flow reactor (FT-1) where sulfuric acid forms from OH radicals and sulfur dioxide. Sulfuric acid and impurity base compounds are detected with chemical ionization mass spectrometers (CIMS). Particle sizes and number concentrations of newly nucleated particles are measured with a scanning mobility particle sizer (SMPS) and particle size magnifier (PSM), providing concentrations of particles between 1-100 nm. The nucleation particles are transferred directly to the growth tube (FT-2) where oxidants and biogenic organic precursors are added to grow nucleated nanoparticles. Sizes of particles after growth are analyzed with an additional SMPS and elemental chemical composition of 50 nm and above particles detected with a nano-aerosol mass spectrometer (NAMS). TANGENT provides the unique ability to conduct experiments that can monitor and control reactant concentrations, aerosol size and aerosol chemical composition during nucleation and growth. Experiments during this first IOP study have elucidated the effects of sulfur dioxide, particle size, relative humidity, temperature, oxidants and biogenic organics on nanoparticle formation and growth. In another 3 companion posters, we will discuss findings of these results in detail.

  14. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    PubMed Central

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm.
RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide.
CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.


Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045

  15. Measurement of nonvolatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2016-01-01

    An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA is of extremely low volatility.

  16. Measurement of non-volatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA is of extremely low volatility.

  17. Number size distribution of particulate emissions of heavy-duty engines in real world test cycles

    NASA Astrophysics Data System (ADS)

    Lehmann, Urs; Mohr, Martin; Schweizer, Thomas; Rütter, Josef

    Five in-service engines in heavy-duty trucks complying with Euro II emission standards were measured on a dynamic engine test bench at EMPA. The particulate matter (PM) emissions of these engines were investigated by number and mass measurements. The mass of the total PM was evaluated using the standard gravimetric measurement method, the total number concentration and the number size distribution were measured by a Condensation Particle Counter (lower particle size cut-off: 7 nm) and an Electrical Low Pressure Impactor (lower particle size: 32 nm), respectively. The transient test cycles used represent either driving behaviour on the road (real-world test cycles) or a type approval procedure. They are characterised by the cycle power, the average cycle power and by a parameter for the cycle dynamics. In addition, the particle number size distribution was determined at two steady-state operating modes of the engine using a Scanning Mobility Particle Sizer. For quality control, each measurement was repeated at least three times under controlled conditions. It was found that the number size distributions as well as the total number concentration of emitted particles could be measured with a good repeatability. Total number concentration was between 9×10 11 and 1×10 13 particles/s (3×10 13-7×10 14 p/kWh) and mass concentration was between 0.09 and 0.48 g/kWh. For all transient cycles, the number mean diameter of the distributions lay typically at about 120 nm for aerodynamic particle diameter and did not vary significantly. In general, the various particle measurement devices used reveal the same trends in particle emissions. We looked at the correlation between specific gravimetric mass emission (PM) and total particle number concentration. The correlation tends to be influenced more by the different engines than by the test cycles.

  18. Enabling a Better Aft Heat Shield Solution for Future Mars Science Laboratory Class Vehicles

    NASA Technical Reports Server (NTRS)

    McGuire, Mary K.; Covington, Melmoth A.; Goldstein, Howard E.; Arnold, James O.; Beck, Robin

    2013-01-01

    System studies are described that compare masses and estimated manufacturing costs of options for the as-flown Mars Science Laboratory (MSL) aft body Thermal Light Weight Ablator (SLA) 561-V and its thickness was not optimized using the standard TPS Sizer Tool widely used for heat shield design. Use of the TPS sizing tool suggests that optimization of the SLA thickness could reduce the aft heat shield mass by 40 percent. Analysis of the predicted aft-shell aerothermodynamics suggests that the bulk of MSL class entry vehicle heat shields could incorporate Advanced Flexible Reusable Surface Insulation (AFRSI). AFRSI has a wellestablished record of relatively inexpensive manufacturing and flight certification based on its use on the lee side of the Space Shuttle. Runs with the TPS Sizer show that the AFRSI solution would be 60 percent lighter than the as-flown SLA. The issue of Reaction Control System (RCS) heating on the aft shell could be addressed by locally impregnating the AFRSI with silicone to enhance its robustness to short bursts ofheating. Stagnation point arcjet testing has shown that silicone impregnated AFRSI performs well at heat rates of 115 W/cm2 and 0.1 atmospheres for a duration of 40 seconds, far beyond conditions that are expected for MSL class vehicles. The paper concludes with a discussion of manufacturing processes for AFRSI, impregnation approaches and relative cost comparisons to the SLA solution.

  19. Comparisons of Particulate Size Distributions from Multiple Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Zhang, Yizhou

    In this study, a comparison of particle size distribution (PSD) measurements from eight different combustion strategies was conducted at four different load-speed points. The PSDs were measured using a scanning mobility particle sizer (SMPS) together with a condensation particle counter (CPC). To study the influence of volatile particles, PSD measurements were performed with and without a volatile particle remover (thermodenuder, TD) at both low and high dilution ratios. The common engine platform utilized in the experiment helps to eliminate the influence of background particulate and ensures similarity in dilution conditions. The results show a large number of volatile particles were present under LDR sample conditions for most of the operating conditions. The use of a TD, especially when coupled with HDR, was demonstrated to be effective at removing volatile particles and provided consistent measurements across all combustion strategies. The PSD comparison showed that gasoline premixed combustion strategies such as HCCI and GCI generally have low PSD magnitudes for particle sizes greater than the Particle Measurement Programme (PMP) cutoff diameter (23 nm), and the PSDs were highly nuclei-mode particle dominated. The strategies using diesel as the only fuel (DLTC and CDC) generally showed the highest particle number emissions for particles larger than 23 nm and had accumulation-mode particle dominated PSDs. A consistent correlation between the increase of the direct-injection of diesel fuel and a higher fraction of accumulation-mode particles was observed over all combustion strategies. A DI fuel substitution study and injector nozzle geometry study were conducted to better understand the correlation between PSD shape and DI fueling. It was found that DI fuel properties has a clear impact on PSD behavior for CDC and NG DPI. Fuel with lower density and lower sooting tendency led to a nuclei-mode particle dominated PSD shape. For NG RCCI, accumulation-mode particle concentration was found to be insensitive to DI fuel properties. Similar PSD behavior of increased nuclei-mode particle fraction was also observed when a smaller orifice nozzle was used for CDC and NG DPI operation. For NG DPI, a reduction of DI fuel fraction generally led to a reduction in accumulation-mode particles.

  20. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles

    NASA Astrophysics Data System (ADS)

    Savage, Nicole J.; Krentz, Christine E.; Könemann, Tobias; Han, Taewon T.; Mainelis, Gediminas; Pöhlker, Christopher; Huffman, J. Alex

    2017-11-01

    Atmospheric particles of biological origin, also referred to as bioaerosols or primary biological aerosol particles (PBAP), are important to various human health and environmental systems. There has been a recent steep increase in the frequency of published studies utilizing commercial instrumentation based on ultraviolet laser/light-induced fluorescence (UV-LIF), such as the WIBS (wideband integrated bioaerosol sensor) or UV-APS (ultraviolet aerodynamic particle sizer), for bioaerosol detection both outdoors and in the built environment. Significant work over several decades supported the development of the general technologies, but efforts to systematically characterize the operation of new commercial sensors have remained lacking. Specifically, there have been gaps in the understanding of how different classes of biological and non-biological particles can influence the detection ability of LIF instrumentation. Here we present a systematic characterization of the WIBS-4A instrument using 69 types of aerosol materials, including a representative list of pollen, fungal spores, and bacteria as well as the most important groups of non-biological materials reported to exhibit interfering fluorescent properties. Broad separation can be seen between the biological and non-biological particles directly using the five WIBS output parameters and by taking advantage of the particle classification analysis introduced by Perring et al. (2015). We highlight the importance that particle size plays on observed fluorescence properties and thus in the Perring-style particle classification. We also discuss several particle analysis strategies, including the commonly used fluorescence threshold defined as the mean instrument background (forced trigger; FT) plus 3 standard deviations (σ) of the measurement. Changing the particle fluorescence threshold was shown to have a significant impact on fluorescence fraction and particle type classification. We conclude that raising the fluorescence threshold from FT + 3σ to FT + 9σ does little to reduce the relative fraction of biological material considered fluorescent but can significantly reduce the interference from mineral dust and other non-biological aerosols. We discuss examples of highly fluorescent interfering particles, such as brown carbon, diesel soot, and cotton fibers, and how these may impact WIBS analysis and data interpretation in various indoor and outdoor environments. The performance of the particle asymmetry factor (AF) reported by the instrument was assessed across particle types as a function of particle size, and comments on the reliability of this parameter are given. A comprehensive online supplement is provided, which includes size distributions broken down by fluorescent particle type for all 69 aerosol materials and comparing threshold strategies. Lastly, the study was designed to propose analysis strategies that may be useful to the broader community of UV-LIF instrumentation users in order to promote deeper discussions about how best to continue improving UV-LIF instrumentation and results.

  1. Standoff detection of bioaerosols over wide area using a newly developed sensor combining a cloud mapper and a spectrometric LIF lidar

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Simard, Jean-Robert; Roy, Gilles; Lahaie, Pierre; Nadeau, Denis; Mathieu, Pierre

    2013-10-01

    A standoff sensor called BioSense was developed to demonstrate the capacity to map, track and classify bioaerosol clouds from a distant range and over wide area. The concept of the system is based on a two steps dynamic surveillance: 1) cloud detection using an infrared (IR) scanning cloud mapper and 2) cloud classification based on a staring ultraviolet (UV) Laser Induced Fluorescence (LIF) interrogation. The system can be operated either in an automatic surveillance mode or using manual intervention. The automatic surveillance operation includes several steps: mission planning, sensor deployment, background monitoring, surveillance, cloud detection, classification and finally alarm generation based on the classification result. One of the main challenges is the classification step which relies on a spectrally resolved UV LIF signature library. The construction of this library relies currently on in-chamber releases of various materials that are simultaneously characterized with the standoff sensor and referenced with point sensors such as Aerodynamic Particle Sizer® (APS). The system was tested at three different locations in order to evaluate its capacity to operate in diverse types of surroundings and various environmental conditions. The system showed generally good performances even though the troubleshooting of the system was not completed before initiating the Test and Evaluation (T&E) process. The standoff system performances appeared to be highly dependent on the type of challenges, on the climatic conditions and on the period of day. The real-time results combined with the experience acquired during the 2012 T & E allowed to identify future ameliorations and investigation avenues.

  2. Dealing with non-unique and non-monotonic response in particle sizing instruments

    NASA Astrophysics Data System (ADS)

    Rosenberg, Phil

    2017-04-01

    A number of instruments used as de-facto standards for measuring particle size distributions are actually incapable of uniquely determining the size of an individual particle. This is due to non-unique or non-monotonic response functions. Optical particle counters have non monotonic response due to oscillations in the Mie response curves, especially for large aerosol and small cloud droplets. Scanning mobility particle sizers respond identically to two particles where the ratio of particle size to particle charge is approximately the same. Images of two differently sized cloud or precipitation particles taken by an optical array probe can have similar dimensions or shadowed area depending upon where they are in the imaging plane. A number of methods exist to deal with these issues, including assuming that positive and negative errors cancel, smoothing response curves, integrating regions in measurement space before conversion to size space and matrix inversion. Matrix inversion (also called kernel inversion) has the advantage that it determines the size distribution which best matches the observations, given specific information about the instrument (a matrix which specifies the probability that a particle of a given size will be measured in a given instrument size bin). In this way it maximises use of the information in the measurements. However this technique can be confused by poor counting statistics which can cause erroneous results and negative concentrations. Also an effective method for propagating uncertainties is yet to be published or routinely implemented. Her we present a new alternative which overcomes these issues. We use Bayesian methods to determine the probability that a given size distribution is correct given a set of instrument data and then we use Markov Chain Monte Carlo methods to sample this many dimensional probability distribution function to determine the expectation and (co)variances - hence providing a best guess and an uncertainty for the size distribution which includes contributions from the non-unique response curve, counting statistics and can propagate calibration uncertainties.

  3. Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice.

    PubMed Central

    Conley, J; Yang, H; Wilson, T; Blasetti, K; Di Ninno, V; Schnell, G; Wong, J P

    1997-01-01

    The aerosol delivery of liposome-encapsulated ciprofloxacin by using 12 commercially available jet nebulizers was evaluated in this study. Aerosol particles containing liposome-encapsulated ciprofloxacin generated by the nebulizers were analyzed with a laser aerodynamic particle sizer. Mean mass aerodynamic diameters (MMADs) and geometric standard deviations (GSDs) were determined, and the drug contents of the sampling filters from each run onto which aerosolized liposome-encapsulated ciprofloxacin had been deposited were analyzed spectrophotometrically. The aerosol particles of liposome-encapsulated ciprofloxacin generated by these nebulizers ranged from 1.94 to 3.5 microm, with GSDs ranging from 1.51 to 1.84 microm. The drug contents of the sampling filters exposed for 1 min to aerosolized liposome-encapsulated ciprofloxacin range from 12.7 to 40.5 microg/ml (0.06 to 0.2 mg/filter). By using the nebulizer selected on the basis of most desirable MMADs, particle counts, and drug deposition, aerosolized liposome-encapsulated ciprofloxacin was used for the treatment of mice infected with 10 times the 50% lethal dose of Francisella tularensis. All mice treated with aerosolized liposome-encapsulated ciprofloxacin survived the infection, while all ciprofloxacin-treated or untreated control mice succumbed to the infection (P < 0.001). These results suggest that aerosol delivery of liposome-encapsulated ciprofloxacin to the lower respiratory tract is feasible and that it may provide an effective therapy for the treatment of respiratory tract infections. PMID:9174185

  4. Methodology for measurement of diesel particle size distributions from a city bus working in real traffic conditions

    NASA Astrophysics Data System (ADS)

    Armas, O.; Gómez, A.; Mata, C.

    2011-10-01

    The study of particulate matter (PM) and nitrogen oxides emissions of diesel engines is nowadays a necessary step towards pollutant emission reduction. For a complete evaluation of PM emissions and its size characterization, one of the most challenging goals is to adapt the available techniques and the data acquisition procedures to the measurement and to propose a methodology for the interpretation of instantaneous particle size distributions (PSD) of combustion-derived particles produced by a vehicle during real driving conditions. In this work, PSD from the exhaust gas of a city bus operated in real driving conditions with passengers have been measured. For the study, the bus was equipped with a rotating disk diluter coupled to an air supply thermal conditioner (with an evaporating tube), the latter being connected to a TSI Engine Exhaust Particle Sizer spectrometer. The main objective of this work has been to propose an alternative procedure for evaluating the influence of several transient sequences on PSD emitted by a city bus used in real driving conditions with passengers. The transitions studied were those derived from the combination of four possible sequences or categories during real driving conditions: idle, acceleration, deceleration with fuel consumption and deceleration without fuel consumption. The analysis methodology used in this work proved to be a useful tool for a better understanding of the phenomena related to the determination of PSD emitted by a city bus during real driving conditions with passengers.

  5. Persistent Daily Aerosol Nucleation Events at Mountain-Top Location

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; Wiedinmyer, C.; Lowenthal, D. H.

    2009-12-01

    Atmospheric aerosols are of great consequence since they can impact climate through direct and indirect forcing, degrade air quality and visibility, and have detrimental effects on human health. Thus, an important phenomenon is atmospheric aerosol formation, the production of nanometer-size particles by nucleation and their growth to detectable sizes. Storm Peak Laboratory (3210 m AMSL), owned and operated by the Desert Research Institute (DRI), is located on the west summit of Mt. Werner in the Park Range near Steamboat Springs in northwestern Colorado. This site has been used in aerosol studies for more than 20 years. Daily nucleation events have been observed Storm Peak Laboratory between 2002 and 2009 with a TSI Scanning Mobility Particle Sizer (SMPS) (model 3936) coupled with a TSI model 3022 condensation particle counter (CPC). This instrument was set to measure particles with diameters between 8 and 335 nm. These events were observed during all measurement periods in the spring, summer and winter months. Nucleation was consistently seen in the mid-afternoon each day. This study includes 422 days of data; in 320 of these days nucleation events were observed. Thus, the nucleation events occurred during 76% of the measurement days, including during cloud events, and appear to be associated with elevated levels of ultraviolet radiation. This work will compare and contrast days with and without nucleation events, by investigating the radiation and meteorological conditions present. The results presented will provide further insight to the insitu production of aerosols via nucleation.

  6. Physical and microbiological stability of an extemporaneous tacrolimus suspension for paediatric use.

    PubMed

    Han, J; Beeton, A; Long, P F; Wong, I; Tuleu, C

    2006-04-01

    An extemporaneous suspension of tacrolimus for paediatric use has recently been developed but poor bioavailability and erratic plasma concentrations were observed during clinical use. It was not clear whether this was due to changes in the physical properties of the suspension during storage. The aim of this work was to investigate the physical and microbiological stability over the recommended 8-week shelf-life of this extemporaneous tacrolimus suspension. Suspensions (0.5 mg/mL) were custom made by a special manufacturer under Good Manufacturing Practice conditions. The procedure involved mixing tacrolimus capsule contents into Ora Plus and Simple Syrup (1 : 1) using a mortar and pestle followed by an homogenization step. The particle sizes of the suspensions were measured using a MasterSizer. A light microscope equipped with polarizers was used to visualize any particle size changes or crystal growth. Viable bacterial and fungal contamination was assessed using standard colony count techniques on solid media. The suspensions were kept at 22-26 degrees C and evaluated weekly. The volume mean diameter d((4,3)) from laser diffraction did not change significantly. Light microscopy did not reveal any significant change in particle size or crystal growth. Contamination by viable and culturable micro-organisms could not be detected. The suspension was physically (particle size) and microbiologically stable during the 8-week study period suggesting other factors including poor dosing could be responsible for the pharmacokinetic variation observed during clinical use which warrants further investigation.

  7. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY.

    PubMed

    Kasumba, John; Hopke, Philip K; Chalupa, David C; Utell, Mark J

    2009-09-01

    Sources contributing to the submicron particles (100-470 nm) measured between January 2002 and December 2007 at two different New York State Department of Environmental Conservation (NYS DEC) sites in Rochester, NY were identified and apportioned using a bilinear receptor model, positive matrix factorization (PMF). Measurements of aerosol size distributions and number concentrations for particles in the size range of 10-500 nm have been made since December 2001 to date in Rochester. The measurements are being made using a scanning mobility particle sizer (SMPS) consisting of a DMA and a CPC (TSI models 3071 and 3010, respectively). From December 2001 to March 2004, particle measurements were made at the NYS DEC site in downtown Rochester, but it was moved to the eastside of Rochester in May 2004. Each measurement period was divided into three seasons i.e., winter (December, January, and February), summer (June, July, and August), and the transitional periods (March, April, May, September, October, and November) so as to avoid experimental uncertainty resulting from too large season-to-season variability in ambient temperature and solar photon intensity that would lead to unstable/non-stationary size distributions. Therefore, the seasons were analyzed independently for possible sources. Ten sources were identified at both sites and these include traffic, nucleation, residential/commercial heating, industrial emissions, secondary nitrate, ozone- rich secondary aerosol, secondary sulfate, regionally transported aerosol, and a mixed source of nucleation and traffic. These results show that the measured total outdoor particle number concentrations in Rochester generally vary with similar temporal patterns, suggesting that the central monitoring site data can be used to estimate outdoor exposure in other parts of the city.

  8. Surface-Modification of Carbonate Apatite Nanoparticles Enhances Delivery and Cytotoxicity of Gemcitabine and Anastrozole in Breast Cancer Cells

    PubMed Central

    Mozar, Fitya Syarifa; Chowdhury, Ezharul Hoque

    2017-01-01

    pH sensitive nanoparticles of carbonate apatite (CA) have been proven to be effective delivery vehicles for DNA, siRNAs and proteins. More recently, conventional anti-cancer drugs, such as doxorubicin, methotrexate and cyclophosphamide have been successfully incorporated into CA for intracellular delivery to breast cancer cells. However, physical and chemical properties of drug molecules appeared to affect their interactions with CA, with hydrophillic drug so far exhibiting better binding affinity and cellular uptakes compared to hydrophobic drugs. In this study, anastrozole, a non-steroidal aromatase inhibitor which is largely hydrophobic, and gemcitabine, a hydrophilic nucleoside inhibitor were used as solubility models of chemotherapy drug. Aggregation tendency of poorly soluble drugs resulting in larger particle-drug complex size might be the main factor hindering their delivery effectiveness. For the first time, surface modification of CA with poly(ethylene glycol) (PEG) has shown promising result to drastically reduce anastrozole- loaded CA particle size, from approximately 1000 to 500 nm based on zeta sizer analysis. Besides PEG, a cell specific ligand, in this case fibronectin, was attached to the particles in order to facilitate receptor mediated endocytosis based on fibronectin–integrin interaction. High-performance liquid chromatography (HPLC) was performed to measure uptake of the drugs by breast cancer cells, revealing that surface modification increased the drug uptake, especially for the hydrophobic drug, compared to the uncoated particles and the free drug. In vitro chemosensitivity assay and in vivo tumor regression study also showed that coated apatite/drug nanoparticle complexes presented higher cytotoxicity and tumor regression effects than uncoated apatite/drug nanoparticles and free drugs, indicating that surface modification successfully created optimum particles size with the consequence of more effective uptake along with favorable pharmacokinetics of the particles. PMID:28590445

  9. Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene

    NASA Astrophysics Data System (ADS)

    Hinks, Mallory L.; Montoya-Aguilera, Julia; Ellison, Lucas; Lin, Peng; Laskin, Alexander; Laskin, Julia; Shiraiwa, Manabu; Dabdub, Donald; Nizkorodov, Sergey A.

    2018-02-01

    The effect of relative humidity (RH) on the chemical composition of secondary organic aerosol (SOA) formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI-HRMS). Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS) at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75-90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.

  10. On the interaction between radon progeny and particles generated by electronic and traditional cigarettes

    NASA Astrophysics Data System (ADS)

    Vargas Trassierra, C.; Cardellini, F.; Buonanno, G.; De Felice, P.

    2015-04-01

    During their entire lives, people are exposed to the pollutants present in indoor air. Recently, Electronic Nicotine Delivery Systems, mainly known as electronic cigarettes, have been widely commercialized: they deliver particles into the lungs of the users but a "second-hand smoke" has yet to be associated to this indoor source. On the other hand, the naturally-occurring radioactive gas, i.e. radon, represents a significant risk for lung cancer, and the cumulative action of these two agents could be worse than the agents separately would. In order to deepen the interaction between radon progeny and second-hand aerosol from different types of cigarettes, a designed experimental study was carried out by generating aerosol from e-cigarette vaping as well as from second-hand traditional smoke inside a walk-in radon chamber at the National Institute of Ionizing Radiation Metrology (INMRI) of Italy. In this chamber, the radon present in air comes naturally from the floor and ambient conditions are controlled. To characterize the sidestream smoke emitted by cigarettes, condensation particle counters and scanning mobility particle sizer were used. Radon concentration in the air was measured through an Alphaguard ionization chamber, whereas the measurement of radon decay product in the air was performed with the Tracelab BWLM Plus-2S Radon daughter Monitor. It was found an increase of the Potential Alpha-Energy Concentration (PAEC) due to the radon decay products attached to aerosol for higher particle number concentrations. This varied from 7.47 ± 0.34 MeV L-1 to 12.6 ± 0.26 MeV L-1 (69%) for the e-cigarette. In the case of traditional cigarette and at the same radon concentration, the increase was from 14.1 ± 0.43 MeV L-1 to 18.6 ± 0.19 MeV L-1 (31%). The equilibrium factor increases, varying from 23.4% ± 1.11% to 29.5% ± 0.26% and from 30.9% ± 1.0% to 38.1 ± 0.88 for the e-cigarette and traditional cigarette, respectively. These growths still continue for long time after the combustion, by increasing the exposure risk.

  11. Use of a Chamber to Comprehensively Characterise Emissions and Subsequent Processes from a Light-Duty Diesel Engine

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Alfarra, M. R. R.; Whitehead, J.; McFiggans, G.; Kong, S.; Harrison, R. M.; Alam, M. S.; Hamilton, J. F.; Pereira, K. L.; Holmes, R. E.

    2014-12-01

    Around 1 in 3 light duty vehicles in the UK use diesel engines, meaning that on-road emissions of particulates, NOx and VOCs and subsequent chemical processes are substantially different to countries where gasoline engines dominate. As part of the Natural Environment Research Council (NERC) Com-Part project, emissions from a diesel engine dynamometer rig representative of the EURO 4 standard were studied. The exhaust was passed to the Manchester aerosol chamber, which consists of an 18 m3 teflon bag and by injecting a sample of exhaust fumes into filtered and chemically scrubbed air, a controllable dilution can be performed and the sample held in situ for analysis by a suite of instruments. The system also allows the injection of other chemicals (e.g. ozone, additional VOCs) and the initiation of photochemistry using a bank of halogen bulbs and a filtered Xe arc lamp to simulate solar light. Because a large volume of dilute emissions can be held for a period of hours, this permits a wide range of instrumentation to be used and relatively slow processes studied. Furthermore, because the bag is collapsible, the entire particulate contents can be collected on a filter for offline analysis. Aerosol microphysical properties are studied using a Scanning Mobility Particle Sizer (SMPS) and Centrifugal Particle Mass Analyser (CPMA); aerosol composition using a Soot Particle Aerosol Mass Spectrometer (SP-AMS), Single Particle Soot Photometer (SP2), Sunset Laboratories OC EC analyser and offline gas- and high performance liquid chromatography (employing advanced mass spectrometry such as ion trap and fourier transform ion cyclotron resonance); VOCs using comprehensive 2D gas chromatography; aerosol optical properties using a Cavity Attenuated Phase Shift Single Scattering Albedo monitor (CAPS-PMSSA), 3 wavelength Photoacoustic Soot Spectrometer (PASS-3) and Multi Angle Absorption Photometer (MAAP); particle hygroscopcity using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) and monodisperse Cloud Condensation Nuclei counter (CCN); and measurements of ozone, NOx and CO2. Here we present the first results, where we explored the trends as a function of engine speed, load, exhaust treatment (an oxidizing catalytic converter), dilution factor and exposure to light.

  12. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.

    PubMed

    Miller, Arthur; Drake, Pamela L; Hintz, Patrick; Habjan, Matt

    2010-07-01

    An air quality survey was conducted at a precious metals refinery in order to evaluate worker exposures to airborne metals and to provide detailed characterization of the aerosols. Two areas within the refinery were characterized: a furnace room and an electro-refining area. In line with standard survey practices, both personal and area air filter samples were collected on 37-mm filters and analyzed for metals by inductively coupled plasma-atomic emission spectroscopy. In addition to the standard sampling, measurements were conducted using other tools, designed to provide enhanced characterization of the workplace aerosols. The number concentration and number-weighted particle size distribution of airborne particles were measured with a fast mobility particle sizer (FMPS). Custom-designed software was used to correlate particle concentration data with spatial location data to generate contour maps of particle number concentrations in the work areas. Short-term samples were collected in areas of localized high concentrations and analyzed using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to determine particle morphology and elemental chemistry. Analysis of filter samples indicated that all of the workers were exposed to levels of silver above the Occupational Safety and Health Administration permissible exposure limit of 0.01 mg m(-3) even though the localized ventilation was functioning. Measurements with the FMPS indicated that particle number concentrations near the furnace increased up to 1000-fold above the baseline during the pouring of molten metal. Spatial mapping revealed localized elevated particle concentrations near the furnaces and plumes of particles rising into the stairwells and traveling to the upper work areas. Results of TEM/EDS analyses confirmed the high number of nanoparticles measured by the FMPS and indicated the aerosols were rich in metals including silver, lead, antimony, selenium, and zinc. Results of the survey were used to deduce appropriate strategies for mitigation of worker exposure to airborne metals.

  13. Simultaneous measurements of new particle formation at 1 s time resolution at a street site and a rooftop site

    NASA Astrophysics Data System (ADS)

    Zhu, Yujiao; Yan, Caiqing; Zhang, Renyi; Wang, Zifa; Zheng, Mei; Gao, Huiwang; Gao, Yang; Yao, Xiaohong

    2017-08-01

    This study is the first to use two identical Fast Mobility Particle Sizers for simultaneous measurement of particle number size distributions (PNSDs) at a street site and a rooftop site within 500 m distance in wintertime and springtime to investigate new particle formation (NPF) in Beijing. The collected datasets at 1 s time resolution allow deduction of the freshly emitted traffic particle signal from the measurements at the street site and thereby enable the evaluation of the effects on NPF in an urban atmosphere through a site-by-site comparison. The number concentrations of 8 to 20 nm newly formed particles and the apparent formation rate (FR) in the springtime were smaller at the street site than at the rooftop site. In contrast, NPF was enhanced in the wintertime at the street site with FR increased by a factor of 3 to 5, characterized by a shorter NPF time and higher new particle yields than at the rooftop site. Our results imply that the street canyon likely exerts distinct effects on NPF under warm or cold ambient temperature conditions because of on-road vehicle emissions, i.e., stronger condensation sinks that may be responsible for the reduced NPF in the springtime but efficient nucleation and partitioning of gaseous species that contribute to the enhanced NPF in the wintertime. The occurrence or absence of apparent growth for new particles with mobility diameters larger than 10 nm was also analyzed. The oxidization of biogenic organics in the presence of strong photochemical reactions is suggested to play an important role in growing new particles with diameters larger than 10 nm, but sulfuric acid is unlikely to be the main species for the apparent growth. However, the number of datasets used in this study is relatively small, and larger datasets are essential to draw a general conclusion.

  14. Characterization of particle number size distribution and new particle formation in Southern China.

    PubMed

    Huang, Xiaofeng; Wang, Chuan; Peng, Jianfei; He, Lingyan; Cao, Liming; Zhu, Qiao; Cui, Jie; Wu, Zhijun; Hu, Min

    2017-01-01

    Knowledge of particle number size distribution (PND) and new particle formation (NPF) events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality, haze, and human health. In this study, seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer (SMPS) at four sites in Southern China, including three urban sites and one background site. Particles were measured in the size range of 15-615nm, and the median particle number concentrations (PNCs) were found to vary in the range of 0.3×10 4 -2.2×10 4 cm -3 at the urban sites and were approximately 0.2×10 4 cm -3 at the background site. The peak diameters at the different sites varied largely from 22 to 102nm. The PNCs in the Aitken mode (25-100nm) at the urban sites were up to 10 times higher than they were at the background site, indicating large primary emissions from traffic at the urban sites. The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events. The frequencies of NPF events at the different sites were 0%-30%, with the highest frequency occurring at an urban site during autumn. With higher SO 2 concentrations and higher ambient temperatures being necessary, NPF at the urban site was found to be more influenced by atmospheric oxidizing capability, while NPF at the background site was limited by the condensation sink. This study provides a unique dataset of particle number and size information in various environments in Southern China, which can help understand the sources, formation, and the climate forcing of aerosols in this quickly developing region, as well as help constrain and validate NPF modeling. Copyright © 2016. Published by Elsevier B.V.

  15. Atmospheric Fate and Transport of Agricultural Dust and Ammonia

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W.; Fitz, D. R.

    2008-12-01

    Agricultural fugitive dust and odor are significant sources of localized air pollution in the semi-arid southern Great Plains. Daily episodes of ground-level fugitive dust emissions from the cattle feedlots associated with increased cattle activity in the early evenings are routinely observed, while consistently high ammonia is observed throughout the day. Here we present measurements of aerosol size distributions and concentrations of gas and particulate phase ammonia species collected at a feedlot in Texas during summers of 2006, 2007 and 2008. A GRIMM sequential mobility particle sizer and GRIMM 1.108 aerosol spectrometer were used to determine aerosol size distributions in the range of 10 nm to 20 µm aerodynamic diameter at the downwind and upwind edges of the facility. Using aqueous scrubbers, simultaneous measurements of both gas phase and total ammonia species present in the gas and particle phases were also collected. In addition to the continuous measurements at the edges of the facility, coincident aerosol and ammonia measurements were obtain at an additional site further downwind (~3.5 km). Taken together our measurements will be used to quantify aerosol and ammonia dispersion and transport. Relationships between the fate and transport of the aerosols and ammonia will be discussed.

  16. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Inhalation Properties and Stability of Nebulized Naked siRNA Solution for Pulmonary Therapy.

    PubMed

    Tahara, Kohei; Hashimoto, Wakana; Takeuchi, Hirofumi

    2016-01-01

    The use of naked unmodified small interfering RNA (N-siRNA) without vector has previously been investigated as a pulmonary therapy. However, little is known regarding stabilities and aerodynamic particle sizes of N-siRNA-containing droplets; nebulizers have not yet been optimized for N-siRNA solutions. Thus, in this study, we investigated the feasibility of inhaled N-siRNA solutions for pulmonary therapy using nebulization. Various nebulizers and N-siRNA concentrations were assessed in terms of siRNA integrity after nebulization, and inhalation properties including aerodynamic particle size were examined. In comparison with ultrasonic-, air-jet-, and vibrating-mesh nebulizers, N-siRNA integrity was not affected by nebulization. Thus, in further experiments, performances of N-siRNA aerosols with different nebulizers and N-siRNA concentrations were evaluated and screened using an aerodynamic particle sizer (APS) which employed the time-of-flight principle or a cascade impactor. Mean mass aerodynamic diameters of N-siRNA-containing droplets from vibrating-mesh nebulizers tended to decrease with increasing N-siRNA concentrations, reflecting the influence of N-siRNA solutions on surface tension, as indicated by contact angles. These data indicate the utility of APS instruments for investigating the nebulized characteristics of expensive drugs including siRNAs and may facilitate the development of N-siRNA inhalation formulations.

  18. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  19. Light-Absorbing Aerosol during NASA GRIP: Overview of Observations in the Free Troposphere and Associated with Tropical Storm Systems

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C. A.; Craig, L.; Dhaniyala, S.; Dibb, J. E.; Hudgins, C. H.; Ismail, S.; Latham, T.; Nenes, A.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2010-12-01

    Aerosols play a significant role in regulating Earth’s climate. Absorbing aerosols typically constitute a small fraction of ambient particle mass but can contribute significantly to direct and indirect climate forcing depending on size, mixing state, concentration, chemical composition, and vertical and spatial distribution. Aerosols may also significantly affect tropical storm/hurricane dynamics through direct light absorption and activation as cloud nuclei. An extensive suite of instrumentation measuring aerosol chemical, physical, and optical properties was deployed aboard the NASA DC-8 to characterize aerosol during the NASA GRIP (Genesis and Rapid Intensification Processes; August-September 2010) mission. The majority of flight time was spent at high altitude (greater than 9 km) and thus much of the sampling was done in the free troposphere, including extensive sampling in the vicinity of tropical storm systems and more diffuse cirrus clouds. With operations based in Fort Lauderdale, FL and St. Croix, U.S. Virgin Islands, a large geographic region was sampled including much of the Gulf of Mexico and tropical Atlantic Ocean. Observations are reported for light-absorbing carbon aerosol (mainly black carbon, BC) primarily using a single particle soot photometer (SP2). The SP2 employs single-particle laser-induced incandescence to provide a mass-specific measurement not subject to scattering interference that is optimal for the low concentration environments like those encountered during GRIP. BC mass concentrations, 100-500 nm size distributions, and mixing state (i.e. coating thickness of scattering material) are presented. Total and sub-micron aerosol absorption coefficients (principally from BC and dust aerosol) are reported using a particle soot absorption photometer (PSAP) along with comparisons with calculated absorption coefficients derived from SP2 observations in various conditions. In addition, dust aerosol is specifically identified using optical and aerodynamic size distributions obtained from an optical particle counter (OPC) and aerodynamic particle sizer (APS), respectively, as well as by filter-based analyses of chemical composition. BC and dust concentrations, size distribution, and optical properties are reported for clear-sky conditions and in the regions surrounding tropical storms to better understand the radial and vertical distribution of light-absorbing aerosol associated with hurricanes. Observations during GRIP are compared to an extensive characterization of the Saharan Air Layer (SAL) made during the 2006 NAMMA (NASA African Monsoon Multidisciplinary Analyses) mission to assess changes in concentration and aerosol size distribution during transport and cloud interaction.

  20. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    NASA Astrophysics Data System (ADS)

    Wierzbicka, A.; Bohgard, M.; Pagels, J. H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A.

    2015-04-01

    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and characteristics suitable for exposure assessment, which is crucial for estimating health effects in epidemiological and toxicological studies.

  1. Respirator Performance against Nanoparticles under Simulated Workplace Activities

    PubMed Central

    Vo, Evanly; Zhuang, Ziqing; Horvatin, Matthew; Liu, Yuewei; He, Xinjian; Rengasamy, Samy

    2017-01-01

    Filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs) are commonly used by workers for protection against potentially hazardous particles, including engineered nanoparticles. The purpose of this study was to evaluate the performance of these types of respirators against 10–400 nm particles using human subjects exposed to NaCl aerosols under simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured for eight combinations of respirator models (2 N95 FFRs, 2 P100 FFRs, 2 N95 EHRs, and 2 P100 EHRs) worn by 25 healthy test subjects (13 females and 12 males) with varying face sizes. Before beginning a SWPF test for a given respirator model, each subject had to pass a quantitative fit test. Each SWPF test was performed using a protocol of six exercises for 3 min each: (i) normal breathing, (ii) deep breathing, (iii) moving head side to side, (iv) moving head up and down, (v) bending at the waist, and (vi) a simulated laboratory-vessel cleaning motion. Two scanning mobility particle sizers were used simultaneously to measure the upstream (outside the respirator) and downstream (inside the respirator) test aerosol; SWPF was then calculated as a ratio of the upstream and downstream particle concentrations. In general, geometric mean SWPF (GM-SWPF) was highest for the P100 EHRs, followed by P100 FFRs, N95 EHRs, and N95 FFRs. This trend holds true for nanoparticles (10–100 nm), larger size particles (100–400 nm), and the ‘all size’ range (10–400 nm). All respirators provided better or similar performance levels for 10–100 nm particles as compared to larger 100–400 nm particles. This study found that class P100 respirators provided higher SWPFs compared to class N95 respirators (P<0.05) for both FFR and EHR types. All respirators provided expected performance (i.e. fifth percentile SWPF > 10) against all particle size ranges tested. PMID:26180261

  2. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling time (minute). The chamber pressure, temperature, relative humidity (RH), O2 and CO2 concentrations were monitored and controlled continuously. Nano-TiO2 aerosols collected on Nuclepore filters were analyzed with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. In summary, we report that the nano-particle aerosols generated and delivered to our exposure chamber have: 1) steady mass concentration; 2) homogenous composition free of contaminants; 3) stable particle size distributions with a count-median aerodynamic diameter of 157 nm during aerosol generation. This system reliably and repeatedly creates test atmospheres that simulate occupational, environmental or domestic ENM aerosol exposures.

  3. Whole-Body Nanoparticle Aerosol Inhalation Exposures

    PubMed Central

    Yi, Jinghai; Chen, Bean T.; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L.; Stapleton, Phoebe A.; Minarchick, Valerie C.; Nurkiewicz, Timothy R.

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 5. The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size 6, which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria 5. A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m3 whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm3) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m3). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpreand Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m3/min), and t is the sampling time (minute). The chamber pressure, temperature, relative humidity (RH), O2 and CO2 concentrations were monitored and controlled continuously. Nano-TiO2 aerosols collected on Nuclepore filters were analyzed with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. In summary, we report that the nano-particle aerosols generated and delivered to our exposure chamber have: 1) steady mass concentration; 2) homogenous composition free of contaminants; 3) stable particle size distributions with a count-median aerodynamic diameter of 157 nm during aerosol generation. This system reliably and repeatedly creates test atmospheres that simulate occupational, environmental or domestic ENM aerosol exposures. PMID:23685643

  4. Effect of nitrogen oxides (NO and NO2) and toluene on SO2 photooxidation, nucleation and growth: A smog chamber study

    NASA Astrophysics Data System (ADS)

    Li, Kangwei; Chen, Linghong; White, Stephen J.; Han, Ke; Lv, Biao; Bao, Kaiji; Wu, Xuecheng; Gao, Xiang; Azzi, Merched; Cen, Kefa

    2017-08-01

    The formation and growth of new particles has recently been shown to have a significant influence on Chinese haze pollution, and sulfuric acid has long been recognized as a major contributor to new particle formation. In this study, four comparison groups of experiments related to SO2 photooxidation, as well as aerosol nucleation and growth, have been conducted in the CAPS-ZJU (Complex Air Pollution Study-Zhejiang University) smog chamber. These were conducted either under SO2/NOx or SO2/toluene gas-phase environments in the absence of seed particles. During aerosol nucleation and growth process, several physical properties such as mass, size and effective density were measured simultaneously by Scanning Mobility Particle Sizer (SMPS) and Differential Mobility Analyzer-Aerosol Particle Mass Analyzer-Condensation Particle Counter (DMA-APM-CPC). The effective density of new particles decreased from 1.8 to 1.35 g/cm3 as the particle size increased from 20 to 65 nm. The single particle mass showed good power-law relationship with mobility diameter, with an average mass-mobility exponent of 2.885. A new algorithm and a reference density of 1.38 g/cm3 based on size-resolved single particle mass (SPM) were proposed to calculate the mass concentration of new particles. Two methods based on Log Normal and Max Concentration were applied to derive particle growth rate (GR), and data merging from both methods was implemented to decrease calculation uncertainty. Meanwhile, both continuous nucleation and inhibition of further growth in sub-20 nm size range were observed in different experiments depending on composition, and possible reasons were analyzed. The presence of NO was found to suppress nucleation and subsequent aerosol growth; while the presence of NO2 or toluene promoted it. It was concluded that decreasing NOx (NO or NO2) or increasing toluene may promote SO2 photooxidation, nucleation and subsequent aerosol growth, all of which is significant for deeper understanding of complex air pollution in China.

  5. Evaluation of a coupled dispersion and aerosol process model against measurements near a major road

    NASA Astrophysics Data System (ADS)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Ketzel, M.; Kukkonen, J.

    2007-02-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible at this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic vapour of 1012 molecules cm-3 was shown to be in a disagreement with the measured particle size evolution, while the modelling runs with the concentration of condensable organic vapour of 109-1010 molecules cm-3 resulted in particle sizes that were closest to the measured values.

  6. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G. P.; Salimi, F.; Morawska, L.; Sioutas, C.; Querol, X.

    2015-05-01

    Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long-term data sets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-means clustering analysis, we categorized the collected aerosol size distributions into three main categories: "Traffic" (prevailing 44-63% of the time), "Nucleation" (14-19%) and "Background pollution and Specific cases" (7-22%). Measurements from Rome (Italy) and Los Angeles (USA) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles' burst lasted 1-4 h, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. Nucleation events lasting for 2 h or more occurred on 55% of the days, this extending to > 4 h in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

  7. Structural Analysis and Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Collier Research and Development Corporation received a one-of-a-kind computer code for designing exotic hypersonic aircraft called ST-SIZE in the first ever Langley Research Center software copyright license agreement. Collier transformed the NASA computer code into a commercial software package called HyperSizer, which integrates with other Finite Element Modeling and Finite Analysis private-sector structural analysis program. ST-SIZE was chiefly conceived as a means to improve and speed the structural design of a future aerospace plane for Langley Hypersonic Vehicles Office. Including the NASA computer code into HyperSizer has enabled the company to also apply the software to applications other than aerospace, including improved design and construction for offices, marine structures, cargo containers, commercial and military aircraft, rail cars, and a host of everyday consumer products.

  8. Dustiness of Fine and Nanoscale Powders

    PubMed Central

    Evans, Douglas E.; Baron, Paul A.

    2013-01-01

    Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. PMID:23065675

  9. Characteristics of formation and growth of atmospheric nanoparticles observed at four regional background sites in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Yumi; Kim, Sang-Woo; Yoon, Soon-Chang; Park, Jin-Soo; Lim, Jae-Hyun; Hong, Jihyung; Lim, Han-Cheol; Ryu, Jegyu; Lee, Chul-Kyu; Heo, Bok-Haeng

    2016-02-01

    Measurements of the number concentration and size distribution of atmospheric nanoparticles were conducted at four sites on the west coast of the Korean Peninsula by using identical scanning mobility particle sizers (SMPSs) in October 2012. The new particle formation and subsequent growth (NPF) of atmospheric nanoparticles, which were identified by the cyclostationary empirical orthogonal function (CSEOF) analysis technique, was observed on 11 out of 21 days at the Baengnyeong-do Comprehensive Monitoring Observatory (BCMO); and on 10 out of 21 days at the Korea Global Atmosphere Watch Center (KGAWC) from October 9 to 29, 2012. We also observed NPF events for 9 out of 21 days at both the Gosan Climate Observatory (GCO) and the Jeju Comprehensive Monitoring Observatory (JCMO). During the study period, NPF was simultaneously observed for five days at all four sites, which indicates that the NPF event had a spatial extent of at least 540 km. A cold, dry and cloud-free continental air mass originated from northern China, formed favorable environmental conditions (e.g., increasing solar insolation at the surface) on simultaneous NPF at the four sites. These synoptic weather patterns were closely associated with an extraordinary typhoon passing over the south of Japan. The mean values of particle formation rates at BCMO (1.26 cm- 3 s- 1) and KGAWC (1.49 cm- 3 s- 1) were relatively higher than those at GCO (0.39 cm- 3 s- 1) and JCMO (0.74 cm- 3 s- 1), however, the growth rate showed a similar level among four sites. An increase in the spatial homogeneity and inter-site correlation of atmospheric particles among the four sites was apparent for small particles (diameter < 30 nm) on simultaneous NPF event days.

  10. IMAA (Integrated Measurements of Aerosol in Agri valley) campaign: Multi-instrumental observations at the largest European oil/gas pre-treatment plant area

    NASA Astrophysics Data System (ADS)

    Calvello, Mariarosaria; Caggiano, Rosa; Esposito, Francesco; Lettino, Antonio; Sabia, Serena; Summa, Vito; Pavese, Giulia

    2017-11-01

    A short-term intensive multi-instrumental measurement campaign (Integrated Measurements of Aerosol in Agri valley - IMAA) was carried out near the largest European oil and gas pre-treatment plant (Centro Olio Val d'Agri - COVA) in a populated area, where, so far, ample characterization of aerosol loading is missing. As such, between the 2 and 17 July in 2013, using a number of instruments analyses were carried out on physical, chemical, morphological and optical properties of aerosol at this distinctive site, at both ground and over the atmospheric column, including the investigation of the mixing and transformation of particles. The observation of slag silicates with a rough surface texture is consistent with the presence of oil-related activities which represent the only industrial activity in the area. Desulfurization/sulfur liquefaction processes occurring at COVA can explain the peculiar morphology of calcium-sodium-aluminum particles. The common COVA source was associated with high concentrations of sulfur, nickel and zinc, and with significant correlations between zinc-sulfur and zinc-nickel. The Optical Particle Sizer (OPS) data, hygroscopicity and optical properties of atmospheric aerosol are consistent with the typical oil-derived gaseous emissions (e.g. sulfur dioxide and methane) that strongly influence the mixing state of particles and their size distributions. Continuous combustion processes at COVA were found to be responsible for Equivalent Black Carbon (EBC) concentrations from their relevant contribution to the total number of fine particles. The expected significant contribution of WS (water soluble) and BC (Black Carbon) components to the total Aerosol Optical Depth (AOD) are consistent with the results from the radiometric model especially for July 3 and 16.

  11. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels.

    PubMed

    Book, Emily K; Snow, Richard; Long, Thomas; Fang, Tiegang; Baldauf, Richard

    2015-06-01

    Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration. The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.

  12. Influence of bio-fuels on passenger car vehicle emissions

    NASA Astrophysics Data System (ADS)

    Petrea, M.; Kapernaum, M.; Wahl, C.

    2009-04-01

    In order to reduce the emissions of air pollutants, vehicles design and fuel formulation have changed. Ultra clean vehicle technologies started to be used in increased number. As a result, the emissions composition is expected to change as well. The use of new technologies and new fuels require new emissions tests especially for non-regulated compounds. The interest in using bio fuels as alternative fuels for petroleum-based ones has increased constantly in the last years. The advantages of the bio fuels usage is given by their similar proprieties, characteristics of renew ability, biodegradability and potential beneficial effects on the exhaust emission. The study involved measurements on a roller test facility of a reference passenger car representing new technologies (emission standards, injection system). The vehicle operated by use of reference gasoline and reference gasoline blended (10 and 20%) with bio-ethanol (EtOH). The measurements used different driving cycles: ARTEMIS cycle, real world driving cycle, NEDC cycle, the standard European driving cycle and additionally, a driving cycle consisting in Idle, 30, 50, 90 km/h. The sampling positions were before and after the catalyst and in the exhaust pipe. The detailed speciation of NMVOC' (non methane volatile organic compounds) was completed by use of active carbon tubes, DNPH (2,4-dinitrophenylhydrazine) tubes and cold traps. The particles were monitored by use of an on-line EEPS (Engine Exhaust Particle Sizer). CO2, NO, NO2 and NOX (NO +NO2) were continuously monitored by use of an on- line FTIR (Fourier transform infrared spectroscopy)- MEXA system. The investigations reveal that among the carbonylic compounds 15 oxygenated species were found in engine out exhaust and only 3 in tailpipe emissions, namely formaldehyde, acetaldehyde and acroleine. These are of great interest due to their impacts on human health. The hydrocarbons emissions decrease by increased of EtOH content. New compounds were observed. The nitro-compounds found in the after engine position by increased EtOH were no more found in the exhaust gas. The results show that total particle concentration, mass and diameter decreased substantially after catalyst and filter by increased ethanol blend.

  13. Real-time monitoring of particles, PAH, and CO in an occupied townhouse.

    PubMed

    Wallace, L

    2000-01-01

    Beginning in October 1996, indoor and sometimes outdoor air at an occupied house in a suburban area of Virginia has been monitored continuously for particles, PAH, and CO. Two Climet monitors have been used to count particles in six size ranges between 0.3 and > 10 microns, with 1-minute averages being collected every 5 minutes. Two Ecochem PAH monitors have been used to sample for particle-bound PAHs once every minute. Also, two Langan CO monitor-data loggers have measured CO once each minute while logging the PAH data. Two Aethalometers measure black carbon. A single Scanning Mobility Particle Sizer (SMPS) measures ultrafine particles. The pairs of monitors are set up either to provide an indoor/outdoor or an upstairs office/downstairs kitchen comparison. Air exchange is occasionally measured using a Bruel & Kjaer 1302 SF6 monitor, as a parameter necessary for estimating deposition rates for particles and PAH. Results from the first 16 months of monitoring (approximately 10 M observations) include: neighborhood woodburning and morning rush hour traffic are the most important sources of PAH and black carbon outdoors; candles, matches, incense, and frying, sauteeing, broiling, deep-frying, and stir-frying are additional important indoor sources of PM. One citronella candle was an extremely powerful PAH source. Neither woodburning nor vehicles appears to be an important source of particles indoors, but frying, grilling, and sauteeing are extremely strong indoor sources, together with combustion events such as use of matches and candles. Physical movement was an important source of coarse but not fine particles. Use of the gas stove for extended periods of time led to increased CO concentrations--vehicles and woodburning were relatively minor sources in comparison. The gas oven, gas burners, and electric toaster oven were important sources of ultrafine particles (< 0.1 micron). A source-proximity effect was noted with the kitchen monitor reading two to five times higher than the upstairs monitor for particles from kitchen events, while the upstairs monitor often read higher than the kitchen monitor for events caused by physical activity alone.

  14. DDT Analysis of Wetland Sediments in Upper Escambia Bay, Florida

    NASA Astrophysics Data System (ADS)

    Hopko, M. N.; Wright, J.; Liebens, J.; Vaughan, P.

    2017-12-01

    Dichlorodiphenyltrichloroethane (DDT) was a commonly used pesticide from World War II through the 1960's. DDT is generally used to control mosquito populations and as an agricultural insecticide. The pesticide and its degradation products (DDD and DDE) can bioaccumulate within ecosystems having negative implications for animal and human health. Consequently, DDT usage was banned in the United States in 1973. In a contaminant study performed in Escambia Bay, Florida, in 2009, DDT was present in 25% of study sites, most of which were located in the upper bay wetlands. Concentrations were well above the Florida Department of Environmental Protection's (FDEP) Probable Effect Level (PEL) and ratios of DDT and its metabolites indicated a recent introduction to the system. A follow-up study performed in 2016 found no DDT, but did show DDE at several sites. The current study repeated sampling in May 2017 at sites from the 2009 and 2016 studies. Sediment samples were collected in triplicate using a ponar sampler and DDT, DDD and DDE were extracted using EPA methods 3540c and 3620c. Extracts were analyzed using a gas chromatograph with electron capture detection (GC-ECD) as per EPA method 8081c. Sediment was also analyzed for organic carbon and particle size using an elemental NC analyzer and a laser diffraction particle sizer. Results show the presence of breakdown products DDE and DDD at multiple sites, but no detectable levels of DDT at any site. Sampling sites with high levels of DDT contamination in 2009 show only breakdown products in both 2016 and 2017. Particle size has little influence on DDD or DDE concentrations but OC is a controlling factor as indicated for contaminated sites by Pearson correlations between OC and DDE and DDD of 0.82 and 0.92, respectively. The presence of only DDD and/or DDE in the 2016 and 2017 studies indicates that the parent, DDT, has not been re-introduced into the watershed since 2009 but is degrading in the environment.

  15. Chemical exposure among professional ski waxers--characterization of individual work operations.

    PubMed

    Freberg, Baard Ingegerdsson; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag G; Daae, Hanne Line; Hersson, Merete; Molander, Paal

    2013-04-01

    Preparation of skis prior to skiing competitions involves several individual work operations and the use of a wide variety of chemically based ski waxing products to improve the performance of the skis, including products used after skiing for wax removal and ski sole cleaning. Modern ski waxes consist mainly of petroleum-derived straight-chain aliphatic hydrocarbons, perfluoro-n-alkanes or polyfluorinated n-alkanes. The wax cleaning products contain solvents such as neat aliphatic hydrocarbons (aliphates) or a mixture with limonene. Different ski waxing work operations can result in contaminated workroom atmospheres. The aim of this study was to assess the chemical exposures related to the individual ski waxing work operations by investigating the specific work operations in controlled model experiments. Four main work operations with potential exposures were identified: (i) application of glider waxes, (ii) scraping and brushing of applied glider waxes, (iii) application of base/grip waxes, and (iv) ski sole cleaning. Aerosol particle masses were sampled using conical samplers equipped with 37-mm PVC, 5-µm pore size filters and cyclones equipped with 37-mm PVC, 0.8-µm pore size filters for the inhalable and the respirable aerosol mass fractions, respectively. For measurements of particle number concentrations, a Scanning Mobility Particle Sizer was used. Mean aerosol particle mass concentrations of 18.6 mg m(-3) and 32.2 mg m(-3) were measured during application of glider wax powders in the respirable and in the inhalable aerosol mass fractions, respectively. Particle number concentration of ~900 000 particles cm(-3) was measured during application of glider wax powder products. Ski sole cleaning with products containing aliphates displayed solvent air concentrations up to 62.5 p.p.m. This study shows that the potential exposure to generated particles during ski waxing and ski preparation is considerable, especially during work using glide wax powders.

  16. Water-based condensation particle counters comparison near a major freeway with significant heavy-duty diesel traffic

    NASA Astrophysics Data System (ADS)

    Lee, Eon S.; Polidori, Andrea; Koch, Michael; Fine, Philip M.; Mehadi, Ahmed; Hammond, Donald; Wright, Jeffery N.; Miguel, Antonio. H.; Ayala, Alberto; Zhu, Yifang

    2013-04-01

    This study compares the instrumental performance of three TSI water-based condensation particle counter (WCPC) models measuring particle number concentrations in close proximity (15 m) to a major freeway that has a significant level of heavy-duty diesel traffic. The study focuses on examining instrument biases and performance differences by different WCPC models under realistic field operational conditions. Three TSI models (3781, 3783, and 3785) were operated for one month in triplicate (nine units in total) in parallel with two sets of Scanning Mobility Particle Sizer (SMPS) spectrometers for the concurrent measurement of particle size distributions. Inter-model bias under different wind directions were first evaluated using 1-min raw data. Although all three WCPC models agreed well in upwind conditions (lower particle number concentrations, in the range of 103-104 particles cm-3), the three models' responses were significantly different under downwind conditions (higher particle number concentrations, above 104 particles cm-3). In an effort to increase inter-model linear correlations, we evaluated the results of using longer averaging time intervals. An averaging time of at least 15 min was found to achieve R2 values of 0.96 or higher when comparing all three models. Similar results were observed for intra-model comparisons for each of the three models. This strong linear relationship helped identify instrument bias related to particle number concentrations and particle size distributions. The TSI 3783 produced the highest particle counts, followed by TSI 3785, which reported 11% lower during downwind conditions than TSI 3783. TSI 3781 recorded particle number concentrations that were 24% lower than those observed by TSI 3783 during downwind condition. We found that TSI 3781 underestimated particles with a count median diameter less than 45 nm. Although the particle size dependency of instrument performance was found the most significant in TSI 3781, both models 3783 and 3785 showed somewhat size dependency. In addition, within each tested WCPC model, one unit was found to count significantly different and be more sensitive to particle size than the other two. Finally, exponential regression analysis was used to numerically quantify instrumental inter-model bias. Correction equations are proposed to adjust the TSI 3781 and 3785 data to the most recent model TSI 3783.

  17. A Year-round Observation of Size Distribution of Aerosol Particles at the Cape Ochiishi, Japan

    NASA Astrophysics Data System (ADS)

    Miura, K.; Mukai, H.; Hashimoto, S.; Uematsu, M.

    2010-12-01

    New particle formation by nucleation of gas-phase compounds emitted from marine biogenic sources is very important for climate change. To clarify the mechanism of the formation, size distributions of submicron aerosols have been measured at the Cape Ochiishi, facing the North Western Pacific Ocean where primary productivity is high. A test observation was done from 22nd May to 18th June 2008 and a year-round observation has been performed from 16th October 2009 to 7th September 2010. The size distribution from 10 nm to 487 nm in diameter was measured with a scanning mobility particle sizer (SMPS, TSI 3034). Sample air was dried to lower than 40%. Transport of sulfate, organic carbon (OC), and black carbon (BC) was estimated with Chemical weather FORecasting System (CFORS), developed by Prof. Uno, Kyushu University, Japan. Existence of inversion layer was estimated with temperature profile measured at surface, 10m, 30m, and 50m in altitude. The burst of the particles smaller than 20nm in diameter continuing longer than 3 hrs was observed ten times until 3rd November 2009. Two were observed in early summer and the other was in autumn. Banana shape was faintly observed five times. Transport of sulfate, OC, and BC was observed 3, 8, 9 times, respectively. Source of air mass was estimated with these elements, weather map, and wind direction. Five air masses were estimated to continental. Clearly nucleation related to marine sources was not observed. The size distribution of burst evens of maritime and continental air mass showed the shift of mode to larger diameter. Strong inversion of temperature was observed once. The value of size distribution did not show high. Minimum value of size distribution was observed in the strong rain on 27th October. Acknowledgments This study was partly supported by the Grant-in-Aids for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan (18067005). The observation was performed at the monitoring station of the National Institute for Environmental Studies.

  18. Ozonolysis of α-phellandrene - Part 1: Gas- and particle-phase characterisation

    NASA Astrophysics Data System (ADS)

    Mackenzie-Rae, Felix A.; Liu, Tengyu; Deng, Wei; Saunders, Sandra M.; Fang, Zheng; Zhang, Yanli; Wang, Xinming

    2017-06-01

    The ozonolysis of α-phellandrene, a highly reactive conjugated monoterpene largely emitted by Eucalypt species, is characterised in detail for the first time using a smog chamber at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Gas-phase species were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF), with yields from a large number of products obtained, including formaldehyde (5-9 %), acetaldehyde (0.2-8 %), glyoxal (6-23 %), methyl glyoxal (2-9 %), formic acid (22-37 %) and acetic acid (9-22 %). Higher m/z second-generation oxidation products were also observed, with products tentatively identified according to a constructed degradation mechanism. OH yields from α-phellandrene and its first-generation products were found to be 35 ± 12 and 15 ± 7 %, respectively, indicative of prominent hydroperoxide channels. An average first-generation rate coefficient was determined as 1.0 ± 0.7 × 10-16 cm3 molecule-1 s-1 at 298 K, showing ozonolysis as a dominant loss process for both α-phellandrene and its first-generation products in the atmosphere. Endocyclic conjugation in α-phellandrene was also found to be conducive to the formation of highly condensible products with a large fraction of the carbon mass partitioning into the aerosol phase, which was monitored with a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (AMS). Nucleation was observed almost instantaneously upon ozonolysis, indicating the rapid formation of extremely low-volatility compounds. Particle nucleation was found to be suppressed by the addition of either NO2 or a Criegee scavenger, with it being proposed that stabilised Criegee intermediates are important for new particle formation in the system. Aerosol yields ranged from 25 to 174 % depending on mass loadings, with both first- and second-generation products identified as large contributors to the aerosol mass. In short, with a high chemical reactivity and aerosol-forming propensity, α-phellandrene is expected to have an immediate impact on the local environment to which it is emitted, with ozonolysis likely to be an important contributor to the significant blue haze and frequent nocturnal nucleation events observed over Eucalypt forests.

  19. Crystallization of calcium oxalate in minimally diluted urine

    NASA Astrophysics Data System (ADS)

    Bretherton, T.; Rodgers, A.

    1998-09-01

    Crystallization of calcium oxalate was studied in minimally diluted (92%) urine using a mixed suspension mixed product crystallizer in series with a Malvern particle sizer. The crystallization was initiated by constant flow of aqueous sodium oxalate and urine into the reaction vessel via two independent feed lines. Because the Malvern cell was in series with the reaction vessel, noninvasive measurement of particle sizes could be effected. In addition, aliquots of the mixed suspension were withdrawn and transferred to a Coulter counter for crystal counting and sizing. Steady-state particle size distributions were used to determine nucleation and growth kinetics while scanning electron microscopy was used to examine deposited crystals. Two sets of experiments were performed. In the first, the effect of the concentration of the exogenous sodium oxalate was investigated while in the second, the effect of temperature was studied. Calcium oxalate nucleation and growth rates were found to be dependent on supersaturation levels inside the crystallizer. However, while growth rate increased with increasing temperature, nucleation rates decreased. The favored phases were the trihydrate at 18°C, the dihydrate at 38° and the monohydrate at 58°C. The results of both experiments are in agreement with those obtained in other studies that have been conducted in synthetic and in maximally diluted urine and which have employed invasive crystal counting and sizing techniques. As such, the present study lends confidence to the models of urinary calcium oxalate crystallization processes which currently prevail in the literature.

  20. Fluorimetric detection of Sn(2+) ion in aqueous medium using Salicylaldehyde based nanoparticles and application to natural samples analysis.

    PubMed

    Patil, Kishor S; Mahajan, Prasad G; Patil, Shivajirao R

    2017-01-05

    The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn(2+) ions by enhancing the fluorescence intensity preference to Cu(2+), Fe(3+), Fe(2+), Ni(2+), NH4(+), Ca(2+), Pb(2+), Hg(2+) and Zn(2+) ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn(2+) helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn(2+) and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn(2+) is further used to develop an analytical method for detection of Sn(2+) from aqueous medium in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fluorimetric detection of Sn2 + ion in aqueous medium using Salicylaldehyde based nanoparticles and application to natural samples analysis

    NASA Astrophysics Data System (ADS)

    Patil, Kishor S.; Mahajan, Prasad G.; Patil, Shivajirao R.

    2017-01-01

    The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3 nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn2 + ions by enhancing the fluorescence intensity preference to Cu2 +, Fe3 +, Fe2 +, Ni2 +, NH4+, Ca2 +, Pb2 +, Hg2 + and Zn2 + ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn2 + helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn2 + and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn2 + is further used to develop an analytical method for detection of Sn2 + from aqueous medium in environmental samples.

  2. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation.

    PubMed

    Sahana, Basudev; Santra, Kousik; Basu, Sumit; Mukherjee, Biswajit

    2010-09-07

    The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide)-85:15 (PLGA) was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w) and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM) and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.

  3. Enhanced Deposition by Electrostatic Field-Assistance Aggravating Diesel Exhaust Aerosol Toxicity for Human Lung Cells.

    PubMed

    Stoehr, Linda C; Madl, Pierre; Boyles, Matthew S P; Zauner, Roland; Wimmer, Monika; Wiegand, Harald; Andosch, Ancuela; Kasper, Gerhard; Pesch, Markus; Lütz-Meindl, Ursula; Himly, Martin; Duschl, Albert

    2015-07-21

    Air pollution is associated with increased risk of cardiovascular and pulmonary diseases, but conventional air quality monitoring gives no information about biological consequences. Exposing human lung cells at the air-liquid interface (ALI) to ambient aerosol could help identify acute biological responses. This study investigated electrode-assisted deposition of diesel exhaust aerosol (DEA) on human lung epithelial cells (A549) in a prototype exposure chamber. A549 cells were exposed to DEA at the ALI and under submerged conditions in different electrostatic fields (EFs) and were assessed for cell viability, membrane integrity, and IL-8 secretion. Qualitative differences of the DEA and its deposition under different EFs were characterized using scanning mobility particle sizer (SMPS) measurements, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Upon exposure to DEA only, cell viability decreased and membrane impairment increased for cells at the ALI; submerged cells were unaffected. These responses were enhanced upon application of an EF, as was DEA deposition. No adverse effects were observed for filtered DEA or air only, confirming particle-induced responses. The prototype exposure chamber proved suitable for testing DEA-induced biological responses of cells at the ALI using electrode-assisted deposition and may be useful for analysis of other air pollutants.

  4. Case study on risk evaluation of printed electronics using nanosilver ink.

    PubMed

    Kim, Ellen; Lee, Ji Hyun; Kim, Jin Kwon; Lee, Gun Ho; Ahn, Kangho; Park, Jung Duck; Yu, Il Je

    2016-01-01

    With the ever-increasing development of nanotechnology, our society is being surrounded by possible risks related to exposure to manufactured nanomaterials. The consumer market already includes many products that contain silver nanoparticles (AgNPs), including various household products, such as yoga mats, cutting boards, running shirts, and socks. There is a growing concern over the release of AgNPs in workplaces related to the manufacture and application of nanomaterials. This study investigated the release of AgNPs during the operation of a printed electronics printer. Using an exposure simulation chamber, a nanoparticle collector, scanning mobility particle sizer (SMPS), condensation particle counter (CPC), dust monitor, and mixed cellulose ester (MCE) filters are all connected to measure the AgNP exposure levels when operating a printed electronics printer. A very small amount of AgNPs was released during the operation of the printed electronics printer, and the number of AgNPs inside the exposure simulation chamber was lower than that outside background. In addition, when evaluating the potential risks for consumers and workers using a margin of exposure (MOE) approach and target MOE of 1000, the operational results far exceeded the target MOE in this simulation study and in a previous workplace exposure study. The overall results indicate a no-risk concern level in the case of printed electronics using nanosilver ink.

  5. Physical and chemical properties of aerosols at a coastal site Paposo (Chile) during VOCALS campaign

    NASA Astrophysics Data System (ADS)

    Cordova, A. M.; Chand, D.; Wood, R.; Wallace, D.; Hegg, D. A.; Shaw, G. E.; Krejci, R.; Fochesatto, G. J.; Gallardo, L.

    2009-12-01

    One of the primary goals of the VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) Regional Experiment (REx) and associated modeling program is an improved understanding of aerosol indirect effects over the southeast Pacific (SEP). Details on the program are available online at www.eol.ucar.edu/projects/vocals/. To this end, detailed aerosol physical and chemical measurements were made during REx at a coastal land site at Paposo (25o 0.4' S, 70o 27.011' W, 690 masl) in northern Chile, a site ideally positioned for studying continental aerosol sources advecting over the SEP. We present initial analysis of data from Paposo. Detailed measurements of aerosol properties were made from mid October to mid November 2008. Observations from optical particle counters (OPC), nephelometers, aethalometer, scanning mobility particle sizer (SMPS) and the chemical analysis of the submicron aerosols samples collected on teflon filters are being used in this study. Large variations in aerosols parameters were observed which corresponded with changes in meteorology, as determined using trajectory analysis. Ion Chromatograph (IC) analysis of submicron aerosol samples shows that about 41% of submicron mass is sulfate. The light scattering coefficient shows a strong non-linear correlation with aerosol size observed using an OPC. Detailed results will be presented in the AGU meeting.

  6. Flow Reactor for studying Physicochemical and aging properties of SOA

    NASA Astrophysics Data System (ADS)

    Babar, Z. B.

    2016-12-01

    Secondary organic aerosols (SOA) have importance in environmental processes such as affecting earth's radiative balance and cloud formation processes. For studying SOA formation large scale environmental batch reactors and laboratory scale flow reactors have been used. In this study application of flow reactor to study physicochemical properties of SOA is also investigated after its characterization. The flow reactor is of cylindrical design (ID 15 cm x L 70 cm) equipped with UV lamps. It is coupled with various instruments such as scanning mobility particle sizer, NOx analyzer, ozone analyzer, VOC analyzer, hygrometer, and temperature sensors for gas and particle phase measurements. OH radicals were generated by custom build ozone generator and relative humidity. The following characterizations were performed: (1) residence time distribution (RTD) measurements, (2) RH and temperature control, (3) OH radical exposure range (atmospheric aging time), (4) gas phase oxidation of SOA precursors such as α-pinene by OH radical. The flow reactor yielded narrow RTDs. In particular, RH and temperature can be controlled effectively between 0-60% and 22-43oC, respectively. OH radical exposure ranges from 6.49x1010 to 3.68x1011 molecules/cm3s (0.49 to 4.91 days). Our initial efforts on OH radical generation using hydrogen peroxide and its quantification by using flourescenet technique will be also be presented.

  7. Contemporary Studies of American Schooling.

    ERIC Educational Resources Information Center

    Smith, Hilton

    1985-01-01

    Six studies of secondary schooling in the United States by Goodlad, Cusick, Lightfoot, Sizer, Boyer, and Adler are discussed. Differences and commonalities among the studies are examined. Problems of some of the studies are also pointed out. (RM)

  8. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    NASA Astrophysics Data System (ADS)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic vapour of 1012 molecules cm-3 was shown to be in a disagreement with the measured particle size evolution, while the modelling runs with the concentration of condensable organic vapour of 109-1010 molecules cm-3 resulted in particle sizes that were closest to the measured values.

  9. Occupational exposure to ultrafine particles in police officers: no evidence for adverse respiratory effects.

    PubMed

    Jordakieva, G; Grabovac, I; Valic, E; Schmidt, K E; Graff, A; Schuster, A; Hoffmann-Sommergruber, K; Oberhuber, C; Scheiner, O; Goll, A; Godnic-Cvar, J

    2018-01-01

    Inhalation exposure to fine and ultrafine particles (UFPs) has been associated with respiratory diseases. However, little is known on the quality, threshold levels and concentration of these particles causing adverse health effects. The impact of occupational exposure to submicrometer and UFPs was assessed in 30 healthy police shooting instructors by clinical investigation, self-assessment questionnaire, sputum and spirometry and compared to a control group. General laboratory chemistry parameters, circulating cytokines (interleukin [IL]-2, IL-4, IL-5, IL-6, IL-8, interferon-gamma [IFN-γ]), and granulocyte macrophage colony-stimulating factor (GM-CSF) in serum were measured. UFP exposure was recorded by Scanning Mobility Particle Sizer. Concentrations of submicrometer sized airborne particles (< 700 nm) measured between 3.34 × 10 5 /cm 3 and 7.58 × 10 5 /cm 3 at shooting sites, with highest concentrations found in the UFP range (< 100 nm). The size of the monodispersed particles ranged from 54.74 ± 16.25 nm to 98.19 ± 22.83 nm. Short term exposure (4 h) to high levels of UFPs caused an increase of IFN-γ in exposed subjects ( p  = 0.022). 24 h after exposure a significant decrease of IgG, albumin fibrinogen and factor VII was found. Neither directly after 4 h of high levels UFPs exposure nor 24 h after exposure subjective complaints or objective measurements indicating adverse respiratory effects in exposed subjects were found. No consistent indications for adverse respiratory or inflammatory effects directly following exposure and 24 h after exposure to high levels of UFPs in our study group were detected. However we showed the assessment of short-term exposure effects at a genuine occupational setting, which might is relevant when a risk assessment of high level occupational exposures to UFPs is considered.

  10. [Size distribution characteristics of particulate matter in the top areas of coke oven].

    PubMed

    Xie, Qiuyan; Zhao, Hongwei; Yu, Tao; Ning, Zhaojun; Li, Jinmu; Niu, Yong; Zheng, Yuxin; Zhao, Xiulan; Duan, Huawei

    2015-03-01

    To systematically evaluate the environmental exposure information of coke oven workers, we investigated the concentration and size distribution characteristics of the particle matter (PM) in the top working area of coke oven. The aerodynamic particle sizer spectrometer was employed to collect the concentration and size distribution information of PM at a top working area. The PM was divided into PM ≤ 1.0 µm, 1.0 µm < PM ≤ 2.5 µm, 2.5 µm < PM ≤ 5.0 µm, 5.0 µm < PM ≤ 10.0 µm and PM>10.0 µm based on their aerodynamic diameters. The number concentration, surface area concentration, and mass concentration were analyzed between different groups. We also conducted the correlation analysis on these parameters among groups. We found the number and surface area concentration of top area particulate was negatively correlated with particle size, but mass concentration curve showed bimodal type with higher point at PM = 1.0 µm and PM = 5.0 µm. The average number concentration of total particulate matter in the top working area was 661.27 number/cm³, surface area concentration was 523.92 µm²/cm³, and mass concentration was 0.12 mg/m³. The most number of particulate matter is not more than 1 µm (PM(1.0)), and its number concentration and surface area concentration accounted for 96.85% and 67.01% of the total particles respectively. In the correlation analysis, different particle size correlated with the total particulate matter differently. And the characteristic parameters of PM2.5 cannot fully reflect the total information of particles. The main particulate matter pollutants in the top working area of coke oven is PM1.0, and it with PM(5.0) can account for a large proportion in the mass concentration of PM. It suggest that PM1.0 and PM(5.0) should be considered for occupational health surveillance on the particulate matter in the top area of coke oven.

  11. Original monitoring of desert dust in African air masses transported over the Mediterranean Sea by quasi-Lagrangian drifting balloons and sounding balloons during the summer 2013 ChArMEx field campaign

    NASA Astrophysics Data System (ADS)

    Dulac, F.; Renard, J. B.; Durand, P.; Denjean, C.; Bourgeois, Q.; Vignelles, D.; Jeannot, M.; Mallet, M.; Verdier, N.

    2017-12-01

    This study focuses on in situ balloon-borne measurements of mineral dust from summer regional field campaigns in the western Mediterranean basin performed in the framework of ChArMEx (the Chemistry and Aerosol Mediterranean Experiment; see special issue https://www.atmos-chem-phys.net/special_issue334.html). Due to long-range transport from Africa, the lower troposphere over this regional sea is subject to high levels of desert dust with a maximum during the long dry and sunny Mediterranean summer season. Based on developments of boundary-layer pressurized balloons (BLPBs) and of a dedicated optical particle counter named LOAC (Light Optical Aerosol Counter/sizer), we were able to perform original quasi-Lagrangian monitoring of desert dust aerosols over the sea. The strategy combined classical sounding balloons and drifting BLPBs to document both the vertical distribution and long-range transport. A total of 27 LOAC flights were successfully conducted from Minorca Isl. (Spain) or Levant Isl. (France), during 4 Saharan dust transport events, including 10 flights with BLPBs at drifting altitudes between 2.0 and 3.3 km above sea level. The longest flight exceeded 700 km and lasted more than 25 h. Numerous tests and validations of LOAC measurements were performed to qualify the instrument, including comparisons with concurrent airborne measurements, sounding balloons, and remote sensing measurements with an AERONET sun-photometer, and a ground-based and the CALIOP lidar systems. Aerosol optical depths in the balloon vicinity did not exceed about 0.4 but the presence of turbid dust layers was confirmed thanks to dual scattering angle measurements by LOAC allowing the identification of dust particles. LOAC data could generally be fitted by a 3-mode lognormal distribution at roughly 0.2, 4 and 30 µm in modal diameter. Up to about 10-4 dust particles larger than 40 µm per cm3 are reported and no significant evolution of the size distribution was observed during the flights. The presence of such a coarse mode several days after dust emission is unexpected due to gravitational sedimentation. An indirect evidence of the presence of charged particles has been derived from the LOAC measurements and we speculate that electrical forces might counteract gravitational settling of the coarse particles.

  12. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  13. Generation and Characterization of Nanoaerosols Using a Portable Scanning Mobility Particle Sizer and Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Marty, Adam J.

    The purpose of this research is to demonstrate the ability to generate and characterize a nanometer sized aerosol using solutions, suspensions, and a bulk nanopowder, and to research the viability of using an acoustic dry aerosol generator/elutriator (ADAGE) to aerosolize a bulk nanopowder into a nanometer sized aerosol. The research compares the results from a portable scanning mobility particle sizer (SMPS) to the more traditional method of counting and sizing particles on a filter sample using scanning electron microscopy (SEM). Sodium chloride aerosol was used for the comparisons. The sputter coating thickness, a conductive coating necessary for SEM, was measured on different sizes of polystyrene latex spheres (PSLS). Aluminum oxide powder was aerosolized using an ADAGE and several different support membranes and sound frequency combinations were explored. A portable SMPS was used to determine the size distributions of the generated aerosols. Polycarbonate membrane (PCM) filter samples were collected for subsequent SEM analysis. The particle size distributions were determined from photographs of the membrane filters. SMPS data and membrane samples were collected simultaneously. The sputter coating thicknesses on four different sizes of PSLS, range 57 nanometers (nm) to 220 nm, were measured using transmission electron microscopy and the results from the SEM and SMPS were compared after accounting for the sputter coating thickness. Aluminum oxide nanopowder (20 nm) was aerosolized using a modified ADAGE technique. Four different support membranes and four different sound frequencies were tested with the ADAGE. The aerosol was collected onto PCM filters and the samples were examined using SEM. The results indicate that the SMPS and SEM distributions were log-normally distributed with a median diameter of approximately 42 nm and 55 nm, respectively, and geometric standard deviations (GSD) of approximately 1.6 and 1.7, respectively. The two methods yielded similar distributional trends with a difference in median diameters of approximately 11 -- 15 nm. The sputter coating thickness on the different sizes of PSLSs ranged from 15.4 -- 17.4 nm. The aerosols generated, using the modified ADAGE, were low in concentration. The particles remained as agglomerates and varied widely in size. An aluminum foil support membrane coupled with a high sound frequency generated the smallest agglomerates. A well characterized sodium chloride aerosol was generated and was reproducible. The distributions determined using SEM were slightly larger than those obtained from SMPS, however, the distributions had relatively the same shape as reflected in their GSDs. This suggests that a portable SMPS is a suitable method for characterizing a nanoaerosol. The sizing techniques could be compared after correcting for the effects of the sputter coating necessary for SEM examination. It was determined that the sputter coating thickness on nano-sized particles and particles up to approximately 220 nm can be expected to be the same and that the sputter coating can add considerably to the size of a nanoparticle. This has important implications for worker health where nanoaerosol exposure is a concern. The sputter coating must be considered when SEM is used to describe a nanoaerosol exposure. The performance of the modified ADAGE was less than expected. The low aerosol output from the ADAGE prevented a more detailed analysis and was limited to only a qualitative comparison. Some combinations of support membranes and sound frequencies performed better than others, particularly conductive support membranes and high sound frequencies. In conclusion, a portable SMPS yielded results similar to those obtained by SEM. The sputter coating was the same thickness on the PSLSs studied. The sputter coating thickness must be considered when characterizing nanoparticles using SEM. Finally, a conductive support membrane and higher frequencies appeared to generate the smallest agglomerates using the ADAGE technique.

  14. Calibrations and Comparisons of Aerosol Spectrometers linking Ground and Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Williamson, C.; Brock, C. A.; Erdesz, F.

    2015-12-01

    The nucleation-mode aerosol size spectrometer (NMASS), a fast-time response instrument measuring aerosol size distributions between 5 and 60nm, is to sample in the boundary layer and free troposphere on NASA's Atmospheric Tomography mission (ATom), providing contiguous data with global coverage in all four seasons. In preparation for this the NMASS is calibrated for the expected flight conditions and compatibility studies are made with ground-based instrumentation. The NMASS is comprised of 5 parallel condensation particle counters (CPCs) using perfluoro-tributylamine as a working fluid. Understanding the variation of CPC counting efficiencies with respect to the chemical composition of the sample is important for accurate data analysis and can be used to give indirect information about sample chemical composition. This variation is strongly dependent on the working fluid. The absolute responses and associated variations of the NMASS to ammonium sulfate and limonene ozonolysis products, compounds pertinent to the composition of particles nucleated in the free troposphere and boundary later, are compared to those of butanol, diethylene-glycol and water based CPCs, which are more commonly used in ground-based measurements. While fast time-response is key to measuring aerosol size distributions on flights, high size-resolution is often prioritized for ground-based measurements, and so a scanning mobility particle sizer (SMPS) is commonly used. Inter-comparison between NMASS and SMPS data is non-trivial because of the different working principles and resolutions of the instruments and yet it is vital, for example, for understanding the sources of particles observed during flights and the global relevance of phenomena observed from field stations and in chambers. We report compatibility studies on inversions of data from the SMPS and NMASS, evaluating temporal and spatial resolution and sources of uncertainty.

  15. Cloud condensation nuclei closure study on summer arctic aerosol

    NASA Astrophysics Data System (ADS)

    Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.

    2011-03-01

    We present an aerosol - cloud condensation nuclei CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in summer 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration is then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory and an internally mixed aerosol. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one. One possible explanation is that the smaller particles that activate at these supersaturations have a relative larger insoluble organic mass fraction and thus are less good CCN than the larger particles. At 0.20, 0.15 and 0.10% supersaturation, the measured CCN number can be represented with different parameters for the hygroscopicity and density of the particles. For the best agreement of the calculated CCNnumber concentration with the measured one the organic fraction of the aerosol needs to be nearly insoluble (қorg=0.02). However, this is not unambigious and қorg=0.2 is found as an upper limit at 0.1% supersaturation.

  16. The influence of organic and inorganic gases during New Particle Formation (NPF) events at the Mediterranean remote site of ERSA in Cape-Corsica during the summer of 2013.

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Sauvage, Stephane; Michoud, Vincent; Sellegri, Karine; Berland, Kevin; Kukui, Alexandre; Hallemans, Elise; Zannoni, Nora; Kalogridis, Cerise; Gros, Valerie; Dusanter, Sebastien; Locoge, Nadine; Doussin, Jean-francois

    2017-04-01

    As part of the CHARMEX (Chemistry Aerosol Mediterranean Experiments) project, more than one hundred organic and inorganic gaseous compounds were measured in the summer of 2013 at the Mediterranean remote site of ERSA in Cape-Corsica. During this period, New Particle formation (NPF) events were identified from July 31th to august 2nd when air masses originated from the North-eastern sector (Southern Europe). The results were compared to a non-NPF event from July 21th to July 23rd for which the same wind sectors were identified. They showed that the particles number [10-20 nm] measured by SMPS (Scanning Mobility Particle Sizer) were more correlated with carbon monoxide (CO) during non-NPF events indicating an influence of more polluted and more aged air masses (residence time of CO of 60 days). Sulfuric acid (H2SO4) and sulfur dioxide do not show a significant influence in the formation of nucleation events. On the other hand, biogenic Volatile Organic Compounds (BVOCs) such as isoprene, and mono-terpenes as well as their oxidation products (e.g. MACR+MVK, MTOP) showed good correlation during NPF-events in the range of (r from 0.45 to 0.59) higher than the ones reported during non-NPF events (0.11-0.34) highlighting the importance of these BVOCs on NPF days. The comparison of measured vs calculated reactivity (Zannoni et al, 2016) showed that during NPF-events, the missing part of OH reactivity was higher. It indicates that unmeasured species like sesquiterpenes, organo-nitrates, or oxygenated compounds may play a significant role in such events.

  17. The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth

    NASA Astrophysics Data System (ADS)

    Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.

    2013-12-01

    Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.

  18. The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth

    NASA Astrophysics Data System (ADS)

    Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.

    2014-12-01

    also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.

  19. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  20. ACT Payload Shroud Structural Concept Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart B.; Bednarcyk, Brett A.

    2010-01-01

    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.

  1. Filter quality of electret masks in filtering 14.6–594 nm aerosol particles: Effects of five decontamination methods

    PubMed Central

    Lin, Tzu-Hsien; Chen, Chih-Chieh; Kuo, Chung-Wen

    2017-01-01

    This study investigates the effects of five decontamination methods on the filter quality (qf) of three commercially available electret masks—N95, Gauze and Spunlace nonwoven masks. Newly developed evaluation methods, the overall filter quality (qf,o) and the qf ratio were applied to evaluate the effectiveness of decontamination methods for respirators. A scanning mobility particle sizer is utilized to measure the concentration of polydispersed particles with diameter 14.6–594 nm. The penetration of particles and pressure drop (Δp) through the mask are used to determine qf and qf,o. Experimental results reveal that the most penetrating particle size (MPS) for the pre-decontaminated N95, Gauze and Spunlace masks were 118 nm, 461 nm and 279 nm, respectively, and the respective penetration rates were 2.6%, 23.2% and 70.0%. The Δp through the pretreated N95 masks was 9.2 mm H2O at the breathing flow rate of heavy-duty workers, exceeding the Δp values obtained through Gauze and Spunlace masks. Decontamination increased the sizes of the most penetrating particles, changing the qf values of all of the masks: qf fell as particle size increased because the penetration increased. Bleach increased the Δp of N95, but destroyed the Gauze mask. However, the use of an autoclave reduces the Δp values of both the N95 and the Gauze mask. Neither the rice cooker nor ethanol altered the Δp of the Gauze mask. Chemical decontamination methods reduced the qf,o values for the three electret masks. The value of qf,o for PM0.1 exceeded that for PM0.1–0.6, because particles smaller than 100 nm had lower penetration, resulting in a better qf for a given pressure drop. The values of qf,o, particularly for PM0.1, reveal that for the tested treatments and masks, physical decontamination methods are less destructive to the filter than chemical methods. Nevertheless, when purchasing new or reusing FFRs, penetration should be regarded as the priority. PMID:29023492

  2. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been confirmed by filter samples. First data analyses show a pronounced peak of FBAP at diameters around 2-3 µm. In this size range the biogenic particle fraction was generally higher than 50%. Additionally, bursts of FBAP have been observed nearly every day just before sunrise. During these periods the coarse (super-micron) aerosol consisted almost completely out of fluorescent bioparticles.

  3. Black Carbon Particle Number Distribution Measurements during the ATHENS-2013 Winter Campaign

    NASA Astrophysics Data System (ADS)

    Gkatzelis, Georgios; Papanastasiou, Dimitris; Florou, Kalliopi; Kaltsonoudis, Christos; Louvaris, Eyaggelos; Bezentakos, Spiridon; Biskos, Georgios; Pandis, Spuros

    2014-05-01

    Black Carbon (BC) particles emitted by anthropogenic sources play an important role both in climate change and in air quality degradation. Open burning in forests and savannas, combustion of diesel and solid fuels for cooking and heating in homes represent the majority of BC emissions. Earlier work has focused on the BC atmospheric direct radiative forcing that is mostly related to its mass concentration and optical properties of the corresponding particles. A variety of measurement techniques are used to measure the mass concentration of BC by taking advantage of its optical or physical properties. Moreover, the carbonaceous particles containing BC are also important for the indirect forcing of climate. This effect is mostly related to the number concentration of BC particles. The number distribution of BC particles especially below 100 nm is quite uncertain due to limitations of the existing measurement techniques. In this work we employed a thermodenuder-based method as an approach for the measurement of the BC number distribution. More specifically, we combined a thermodenuder (TD) operating at temperatures up to 300 ° C, with a Scanning Mobility Particle Sizer (SMPS) and a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF AMS). Aerosol size and composition measurements were carried out both at ambient and at elevated TD temperatures in Athens field campaign during January and February of 2013. In parallel, a Multi-Angle Absorption Photometer (MAAP) provided information about the BC mass concentration while a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) measured the mixing state and the hygroscopicity of the particles as a function of their size. These measurements were then combined to estimate the number concentration of BC particles. Our analysis focused on different periods during the study. During some of them one source dominated the carbonaceous aerosol concentration. Such periods included rush hour traffic, nighttime wood burning, clean air transported from other areas, mixed sources, etc. The number fraction remaining after heating at 300 ° C for approximately 15 s during wood burning events was 80-90%, suggesting that practically all particles contained nonvolatile material. Combining the SMPS, MAAP, AMS, and HTDMA measurements we show that most of the sampled material was BC. On the contrary, during rush hour traffic the number fraction remaining was only 50-60% suggesting that more than half of the particles did not contain BC.

  4. Original sounding and drifting balloon-borne measurements in the western Mediterranean with the aerosol counter/sizer LOAC during summer ChArMEx campaigns, with a focus on desert dust events

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Verdier, Nicolas; Chazette, Patrick; Crenn, Vincent; Sciare, Jean; Totems, Julien; Durand, Pierre; Barret, Brice; Jambert, Corinne; Mallet, Marc; Menut, Laurent; Mailler, Sylvain; Basart, Sara; Baldasano, José Maria

    2015-04-01

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of ~250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles (12° and 60°), allowing the determination of the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 µm and some identification of the nature of particles dominating different size classes. Following laboratory calibration, the sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with other in situ sensors at the surface and with remote sensing measurements on the vertical were performed to give confidence in measurements. The instrument has been operated at the surface, under all kinds of balloons up to more than 35 km in altitude, including tethered, sounding, open stratospheric and new boundary-layer pressurized drifting balloons (BLPB) from CNES, and was tested on board a small UAV. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Presented results are focused on the LOAC balloon-borne measurements performed in the western Mediterranean basin during MISTRALS/ChArMEx campaigns (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-hjome.org; http://charmex.lsce.ipsl.fr), with a focus on African dust events. Two test flights with a first version of LOAC under sounding balloons were first successfully performed in late June 2012 near Marseille during an intense dust event. In 2013, 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August . A number of the 2013 flights were coupled with ozone concentration measurements (see presentation of Gheusi et al. in the same session). LOAC balloons were especially, but not only, dedicated to study the various Saharan dust events that occurred during the campaign. In particular, a series of flights were conducted every 12 hours during the 15-19 June dust event. Forest fire smoke from North America was also sampled in late June over Minorca, as well as anthropogenic polluted layers in various occasions. LOAC data (available from ChArMEx database http://mistrals.sedoo.fr/ChArMEx) are interpreted with the help of coincident lidar, sun photometer remote sensing measurements available in Menorca, and satellite products and air mass trajectories. The sounding flights allow us to determine the vertical extent of the various aerosol layers, and to follow the particle size distribution and the concentration evolution along the vertical. The low altitude drifting balloons, which stayed roughly at constant altitude between 350 and 3330 m up to more than 25 h, allow us to study the time-evolution of the aerosol concentrations in the same air mass. Under both balloon types, LOAC has detected larges particles up to ~30 µm in diameter. The flights drifting within dust layers indicate that there is a relatively stable particle size distribution during transport over the sea, with no clear sedimentation loss of large particles. Aerosol simulations with the CHIMERE and NMMB/§BSC chemistry-transport models are compared to LOAC measurements. Acknowledgements: LOAC was developed with support of the French ANR. Balloon operations were performed by CNES and special acknowledgements are addressed to Gilles Dupouy, Françoise Douchin and collaborators for field operations. Alexis Doerenbacher from Météo-France and Claude Basdevant from Ecole Polytechnique are also acknowledged for their helpful contribution in providing balloon-related forecasts, quicklooks and data (http://www.lmd.polytechnique.fr/BAMED/index.html). The LOAC balloon campaigns were mainly funded by CNES, ADEME and CNRS/INSU, with support from CEA and Météo-France.

  5. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    PubMed

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  6. Assessment of personal exposure to airborne nanomaterials: Evaluation of a novel sampler

    NASA Astrophysics Data System (ADS)

    Faure, Bertrand; Dozol, Hélène; Brouard, Christophe; Guiot, Arnaud; Clavaguera, Simon

    2017-06-01

    A novel sampler, the NANOBADGE, has been developed to assess personal exposure to nano-objects, agglomerates and aggregates (NOAA) at the workplace. The NANOBADGE collects particles on filters subsequently analyzed by X-Ray Fluorescence spectroscopy (XRF), which provides a mass-based quantification with chemical selectivity. The NANOBADGE was benchmarked against a scanning mobility particle sizer (SMPS) and a DiSCmini by carrying out simultaneous measurements on test aerosols of ZnO or TiO2 for particle sizes between 20 and 400 nm for which the DiSCmini has its highest accuracy. The effective density and shape of the NOAA present in the test aerosols were determined experimentally to compare number-based data obtained with the SMPS and the DiSCmini with mass-based data obtained with the NANOBADGE. The agreement between the SMPS and the NANOBADGE sampler was within ± 25 % on all test aerosols. The converted DiSCmini data matched the SMPS and sampler data for polydisperse aerosols in the specified size range as long as the DiSCmini assumptions meet the aerosol characteristics (i.e. lognormal size distribution with a given geometric standard deviation σg = 1.9). The detection limits of the NANOBADGE sampler were in the order of tens of nanograms per filter, which is low enough to reliably detect exposure levels below the recommended exposure limit (REL) of the National Institute for Occupational Safety and Health (NIOSH) and the Institut National de Recherche et de Sécurité (INRS) for ultrafine ZnO and TiO2 even for short-term exposure situations.

  7. Comparison of carcinogen, carbon monoxide, and ultrafine particle emissions from narghile waterpipe and cigarette smoking: Sidestream smoke measurements and assessment of second-hand smoke emission factors

    PubMed Central

    Daher, Nancy; Saleh, Rawad; Jaroudi, Ezzat; Sheheitli, Hiba; Badr, Thérèse; Sepetdjian, Elizabeth; Al Rashidi, Mariam; Saliba, Najat; Shihadeh, Alan

    2009-01-01

    The lack of scientific evidence on the constituents, properties, and health effects of second-hand waterpipe smoke has fueled controversy over whether public smoking bans should include the waterpipe. The purpose of this study was to investigate and compare emissions of ultrafine particles (UFP, <100 nm), carcinogenic polyaromatic hydrocarbons (PAH), volatile aldehydes, and carbon monoxide (CO) for cigarettes and narghile (shisha, hookah) waterpipes. These smoke constituents are associated with a variety of cancers, and heart and pulmonary diseases, and span the volatility range found in tobacco smoke. Sidestream cigarette and waterpipe smoke was captured and aged in a 1 m3 Teflon-coated chamber operating at 1.5 air changes per hour (ACH). The chamber was characterized for particle mass and number surface deposition rates. UFP and CO concentrations were measured online using a fast particle spectrometer (TSI 3090 Engine Exhaust Particle Sizer), and an indoor air quality monitor. Particulate PAH and gaseous volatile aldehydes were captured on glass fiber filters and DNPH-coated SPE cartridges, respectively, and analyzed off-line using GC–MS and HPLC–MS. PAH compounds quantified were the 5- and 6-ring compounds of the EPA priority list. Measured aldehydes consisted of formaldehyde, acetaldehyde, acrolein, methacrolein, and propionaldehyde. We found that a single waterpipe use session emits in the sidestream smoke approximately four times the carcinogenic PAH, four times the volatile aldehydes, and 30 times the CO of a single cigarette. Accounting for exhaled mainstream smoke, and given a habitual smoker smoking rate of 2 cigarettes per hour, during a typical one-hour waterpipe use session a waterpipe smoker likely generates ambient carcinogens and toxicants equivalent to 2–10 cigarette smokers, depending on the compound in question. There is therefore good reason to include waterpipe tobacco smoking in public smoking bans. PMID:20161525

  8. Comparison of carcinogen, carbon monoxide, and ultrafine particle emissions from narghile waterpipe and cigarette smoking: Sidestream smoke measurements and assessment of second-hand smoke emission factors

    NASA Astrophysics Data System (ADS)

    Daher, Nancy; Saleh, Rawad; Jaroudi, Ezzat; Sheheitli, Hiba; Badr, Thérèse; Sepetdjian, Elizabeth; Al Rashidi, Mariam; Saliba, Najat; Shihadeh, Alan

    2010-01-01

    The lack of scientific evidence on the constituents, properties, and health effects of second-hand waterpipe smoke has fueled controversy over whether public smoking bans should include the waterpipe. The purpose of this study was to investigate and compare emissions of ultrafine particles (UFP, <100 nm), carcinogenic polyaromatic hydrocarbons (PAH), volatile aldehydes, and carbon monoxide (CO) for cigarettes and narghile (shisha, hookah) waterpipes. These smoke constituents are associated with a variety of cancers, and heart and pulmonary diseases, and span the volatility range found in tobacco smoke. Sidestream cigarette and waterpipe smoke was captured and aged in a 1 m 3 Teflon-coated chamber operating at 1.5 air changes per hour (ACH). The chamber was characterized for particle mass and number surface deposition rates. UFP and CO concentrations were measured online using a fast particle spectrometer (TSI 3090 Engine Exhaust Particle Sizer), and an indoor air quality monitor. Particulate PAH and gaseous volatile aldehydes were captured on glass fiber filters and DNPH-coated SPE cartridges, respectively, and analyzed off-line using GC-MS and HPLC-MS. PAH compounds quantified were the 5- and 6-ring compounds of the EPA priority list. Measured aldehydes consisted of formaldehyde, acetaldehyde, acrolein, methacrolein, and propionaldehyde. We found that a single waterpipe use session emits in the sidestream smoke approximately four times the carcinogenic PAH, four times the volatile aldehydes, and 30 times the CO of a single cigarette. Accounting for exhaled mainstream smoke, and given a habitual smoker smoking rate of 2 cigarettes per hour, during a typical one-hour waterpipe use session a waterpipe smoker likely generates ambient carcinogens and toxicants equivalent to 2-10 cigarette smokers, depending on the compound in question. There is therefore good reason to include waterpipe tobacco smoking in public smoking bans.

  9. Assessment of penetration through vacuum cleaners and recommendation of wet cyclone technology.

    PubMed

    Seo, Youngjin; Han, Taewon

    2013-04-01

    In many commercial vacuum cleaners, the captured aerosol particles contained in the dust collector may accidentally release from the exhaust filtration owing to leakage or penetration. Vacuum cleaners may cause dust to become airborne by exhausting air that is not completely filtered. This may cause the operator to inhale dust, in turn causing health problems. This study aimed to investigate the dust penetration rates from three commercial vacuum cleaners and suggest the best technique for completely filtering exhaust air using a combination of cyclonic separation and water filtration. The commercial vacuum cleaners were tested inside a custom-built hood, and the exhausted particles were monitored using a sampling probe in conjunction with an aerosol particle sizer Quartzose mineral dusts were added to each vacuum cleaner through the dust transport line. A 2400 L/min wet cyclone was employed as the proposed vacuum cleaner It was designed using Stokes scaling, and its collection characteristics were evaluated using polystyrene latex beads. Surprisingly, the conventional vacuum cleaners failed to capture an overall average of approximately 14% of the particles in the given size range. However, only approximately 3.8% of the collected particles escaped from the vacuum cleaner that used the wet cyclone technology. Thus, the proposed vacuum cleaner should potentially be an effective method for vacuuming household dust. The successful investigation of conventional vacuum cleaners is useful for both manufacturers and users. As an effective vacuum cleaning mechanism, household dust is able to migrate along the thin water, film that forms on the inner walls of the cyclone vacuum cleaner. It collects dust in a small water inflow (3 mL/min), which allows it to capture a higher percentage of contaminants than most of the currently available vacuum cleaners. The significantly low accidental exposure rates achieved by this new vacuum cleaner enable healthy conditions in various environments, including indoors.

  10. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules and potential interferences

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Huffman, J. A.; Pöschl, U.

    2012-01-01

    Primary biological aerosol particles (PBAP) are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP) by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS) or the wide issue bioaerosol sensor (WIBS). In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM) exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient supermicron particle fluorescence in wavelength ranges used for most FBAP instruments is likely to be dominated by biological material and that such instrumentation is able to discriminate between FBAP and non-biological material in many situations. More detailed follow-up studies on single particle fluorescence are still required to reduce these uncertainties further, however.

  11. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules and potential interferences

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Huffman, J. A.; Pöschl, U.

    2011-09-01

    Primary biological aerosol particles (PBAP) are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP) by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS) or the wide issue bioaerosol sensor (WIBS). In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM) exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient supermicron particle fluorescence in wavelength ranges used for most FBAP instruments is likely to be dominated by biological material and that such instrumentation is able to discriminate between FBAP and non-biological material in many situations. More detailed follow-up studies on single particle fluorescence are still required to reduce these uncertainties further, however.

  12. Concentration levels and source apportionment of ultrafine particles in road microenvironments

    NASA Astrophysics Data System (ADS)

    Argyropoulos, G.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Voliotis, A.; Tsakis, A.; Chasapidis, L.; Konstandopoulos, A.; Eleftheriadis, K.

    2016-03-01

    A mobile laboratory unit (MOBILAB) with on-board instrumentation (Scanning Mobility Particle Sizer, SMPS; Ambient NOx analyzer) was used to measure size-resolved particle number concentrations (PNCs) of quasi-ultrafine particles (UFPs, 9-372 nm), along with NOx, in road microenvironments. On-road measurements were carried out in and around a large Greek urban agglomeration, the Thessaloniki Metropolitan Area (TMA). Two 2-week measurement campaigns were conducted during the warm period of 2011 and the cold period of 2012. During each sampling campaign, MOBILAB was driven through a 5-day inner-city route and a second 5-day external route covering in total a wide range of districts (urban, urban background, industrial and residential), and road types (major and minor urban roads, freeways, arterial and interurban roads). All routes were conducted during working days, in morning and in afternoon hours under real-world traffic conditions. Spatial classification of MOBILAB measurements involved the assignment of measurement points to location bins defined by the aspect ratio of adjacent urban street canyons (USCs). Source apportionment was further carried out, by applying Positive Matrix Factorization (PMF) to particle size distribution data. Apportioned PMF factors were interpreted, by employing a two-step methodology, which involved (a) statistical association of PMF factor contributions with 12 h air-mass back-trajectories ending at the TMA during MOBILAB measurements, and (b) Multiple Linear Regression (MLR) using PMF factor contributions as the dependent variables, while relative humidity, solar radiation flux, and vehicle speed were used as the independent variables. The applied data analysis showed that low-speed cruise and high-load engine operation modes are the two dominant sources of UFPs in most of the road microenvironments in the TMA, with significant contributions from background photochemical processes during the warm period, explaining the reversed seasonal variation of UFP concentrations, compared to those observed in cities across Northern Europe. It was also demonstrated that town planning exerts a profound effect on the mitigation of traffic emissions.

  13. Optimization and characterization of condensation nucleation light scattering detection coupled with supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Yang, Shaoping

    This dissertation is an investigation of two aspects of coupling condensation nucleation light scattering detection (CNLSD) with supercritical fluid chromatography (SFC). In the first part, it was demonstrated that CNLSD was compatible with packed column SFC using either pure CO2 or organic solvent modified CO2 as mobile phases. Factors which were expected to affect the interface between SFC and CNLSD were optimized for the detector to reach low detection limits. With SFC using pure CO2 as mobile phase, the detection limit of CNLSD with SFC was observed to be at low nanogram levels, which was at the same level of flame ionization detection (FID) coupled with SFC. For SFC using modified CO2 as mobile phase, detection limits at the picogram level were observed for CNLSD at optimal conditions, which were at least ten times lower than those reached by evaporative light scattering detection. In the second part, particle size distributions of aerosols produced from rapid expansion of supercritical solutions were measured with a scanning mobility particle sizer. The effect of the factors, which were investigated in the first part for their effects on signal intensities and signal to noise ratios (S/N), on particle size distributions (PSDs) of both analyte and background were investigated. Whenever possible, both particle sizes and particle number obtained from PSDs were used to explain the optimization results. In general, PSD data support the observations made in the first part. The detection limits of CNLSD obtained were much higher than predicted. PSDs did not provide direct explanation of this problem. The amount of analyte deposited in the transport tubing, evaporated to gas phase, and condensed to form particles was determined experimentally. Almost no analyte was found in the gas phase. Less than 3% was found in the particle forms. The vast majority of analyte was lost in the transport tubing, especially in the short distance after supercritical fluid expansion. A mechanism was proposed to explain the loss of analyte in the transport tubing.

  14. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a comparison of the distribution of the most prevalent reaction products relative to the expected distribution derived using chemical kinetics simulations based on the Master Chemical Mechanism (MCM) limonene mechanism will be discussed.

  15. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    PubMed

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test aerosols might cause artifacts by counting "phantom particles." Overall, the information obtained from this study will help understand the limitations of the SMPS in measuring nanoparticles so that one can adequately interpret the results for risk assessments and exposure prevention in an occupational or ambient environment.

  16. Efficiency of five chemical protective clothing materials against nano and submicron aerosols when submitted to mechanical deformations.

    PubMed

    Ben Salah, Mehdi; Hallé, Stéphane; Tuduri, Ludovic

    2016-01-01

    Due to their potential toxicity, the use of nanoparticles in the workplace is a growing concern. Some studies indicate that nanoparticles can penetrate the skin and lead to adverse health effects. Since chemical protective clothing is the last barrier to protect the skin, this study aims to better understand nanoparticle penetration behaviour in dermal protective clothing under mechanical deformation. For this purpose, five of the most common types of fabrics used in protective clothing, one woven and four nonwoven, were chosen and submitted to different simulated exposure conditions. They were tested against polydispersed NaCl aerosols having an electrical-mobility diameter between 14 and 400 nm. A bench-scale exposure setup and a sampling protocol was developed to measure the level of penetration of the aerosols through the material samples of disposable coveralls and lab coat, while subjecting them to mechanical deformations to simulate the conditions of usage in the workplace. Particle size distribution of the aerosol was determined upstream and downstream using a scanning mobility particle sizer (SMPS). The measured efficiencies demonstrated that the performances of nonwoven materials were similar. Three nonwovens had efficiencies above 99%, while the woven fabric was by far, the least effective. Moreover, the results established that mechanical deformations, as simulated for this study, did not have a significant effect on the fabrics' efficiencies.

  17. Aerosol Activation Properties within and above Mixing Layer in the North China Plain

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Ran, L.

    2013-12-01

    Aerosol particles, serving as cloud condensation nuclei (CCN), may modify the properties of clouds and have an impact on climate. The vertical distribution of aerosols and their activation properties is critical to quantify the effect of aerosols on clouds. An intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP 2013), was conducted in the North China Plain during the late July and early August 2013 to measure the vertical profiles of atmospheric components in this polluted region and estimate their effects on atmospheric environment and climate. Aerosols were measured with in-situ instruments and Lidar. Particularly, the aerosols were collected at 1000 m height with a 1 m3 bag sampler attached to a tethered balloon, and subsequently measured with combined scanning mobility particle sizer (SMPS) and CCN counter. Comparisons of size-resolved activation ratios at ground level and 1000 m height showed that aerosols in upper atmosphere were not only less concentrated, but also less CCN-active than those at the surface. The difference in aerosol properties between upper atmosphere and the ground indicates that the analysis of impacts of aerosols on cloud might be misleading in heavily polluted region based on the relationship of cloud properties and surface aerosols or column without considering the vertical distribution of aerosol activation abilities.

  18. Efficient, Multi-Scale Designs Take Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Engineers can solve aerospace design problems faster and more efficiently with a versatile software product that performs automated structural analysis and sizing optimization. Collier Research Corporation's HyperSizer Structural Sizing Software is a design, analysis, and documentation tool that increases productivity and standardization for a design team. Based on established aerospace structural methods for strength, stability, and stiffness, HyperSizer can be used all the way from the conceptual design to in service support. The software originated from NASA s efforts to automate its capability to perform aircraft strength analyses, structural sizing, and weight prediction and reduction. With a strategy to combine finite element analysis with an automated design procedure, NASA s Langley Research Center led the development of a software code known as ST-SIZE from 1988 to 1995. Collier Research employees were principal developers of the code along with Langley researchers. The code evolved into one that could analyze the strength and stability of stiffened panels constructed of any material, including light-weight, fiber-reinforced composites.

  19. Real-time measurement of size-resolved elemental composition ratio for flame synthesized composite nanoparticle aggregates using a tandem SMPS-ICP-OES

    PubMed Central

    Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim

    2017-01-01

    Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work. PMID:28435179

  20. Real-time measurement of size-resolved elemental composition ratio for flame synthesized composite nanoparticle aggregates using a tandem SMPS-ICP-OES.

    PubMed

    Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim

    2017-01-01

    Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work.

  1. Characterization of aerosols produced by cell sorters and evaluation of containment

    PubMed Central

    Holmes, Kevin L.

    2011-01-01

    In spite of the recognition by the flow cytometry community of potential aerosol hazards associated with cell sorting, there has been no previous study that has thoroughly characterized the aerosols that can be produced by cell sorters. In this study an Aerodynamic Particle Sizer was used to determine the concentration and aerodynamic diameter of aerosols produced by a FACS Aria II cell sorter under various conditions. Aerosol containment and evacuation was also evaluated using this novel methodology. The results showed that high concentrations of aerosols in the range of 1–3 μm can be produced in fail mode and that with decreased sheath pressure, aerosol concentration decreased and aerodynamic diameter increased. Although the engineering controls of the FACS Aria II for containment were effective, sort chamber evacuation of aerosols following a simulated nozzle obstruction was ineffective. However, simple modifications to the FACS Aria II are described that greatly improved sort chamber aerosol evacuation. The results of this study will facilitate the risk assessment of cell sorting potentially biohazardous samples by providing much needed data regarding aerosol production and containment. PMID:22052694

  2. Electrothermal piezoresistive cantilever resonators for personal measurements of nanoparticles in workplace exposure

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Wu, Wenze; Uhde, Erik; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Low-cost and low-power piezoresistive cantilever resonators with integrated electrothermal heaters are developed to support the sensing module enhancement of the second generation of handheld cantilever-based airborne nanoparticle (NP) detector (CANTOR-2). These sensors are used for direct-reading of exposure to carbon engineered nanoparticles (ENPs) at indoor workplaces. The cantilever structures having various shapes of free ends are created using silicon bulk micromachining technologies (i.e, rectangular, hammer-head, triangular, and U-shaped cantilevers). For a complete wearable CANTOR-2, all components of the proposed detector can be grouped into two main units depending on their packaging placements (i.e., the NP sampler head and the electronics mounted in a handy-format housing). In the NP sampler head, a miniaturized electrophoretic aerosol sampler and a resonant silicon cantilever mass sensor are employed to collect the ENPs from the air stream to the cantilever surfaces and measuring their mass concentration, respectively. After calibration, the detected ENP mass concentrations of CANTOR-2 show a standard deviation from fast mobility particle sizer (FMPS, TSI 3091) of 8-14%.

  3. Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest

    NASA Astrophysics Data System (ADS)

    Ila Gosselin, Marie; Rathnayake, Chathurika M.; Crawford, Ian; Pöhlker, Christopher; Fröhlich-Nowoisky, Janine; Schmer, Beatrice; Després, Viviane R.; Engling, Guenter; Gallagher, Martin; Stone, Elizabeth; Pöschl, Ulrich; Huffman, J. Alex

    2016-12-01

    Bioaerosols pose risks to human health and agriculture and may influence the evolution of mixed-phase clouds and the hydrological cycle on local and regional scales. The availability and reliability of methods and data on the abundance and properties of atmospheric bioaerosols, however, are rather limited. Here we analyze and compare data from different real-time ultraviolet laser/light-induced fluorescence (UV-LIF) instruments with results from a culture-based spore sampler and offline molecular tracers for airborne fungal spores in a semi-arid forest in the southern Rocky Mountains of Colorado. Commercial UV-APS (ultraviolet aerodynamic particle sizer) and WIBS-3 (wideband integrated bioaerosol sensor, version 3) instruments with different excitation and emission wavelengths were utilized to measure fluorescent aerosol particles (FAPs) during both dry weather conditions and periods heavily influenced by rain. Seven molecular tracers of bioaerosols were quantified by analysis of total suspended particle (TSP) high-volume filter samples using a high-performance anion-exchange chromatography system with pulsed amperometric detection (HPAEC-PAD). From the same measurement campaign, Huffman et al. (2013) previously reported dramatic increases in total and fluorescent particle concentrations during and immediately after rainfall and also showed a strong relationship between the concentrations of FAPs and ice nuclei (Huffman et al., 2013; Prenni et al., 2013). Here we investigate molecular tracers and show that during rainy periods the atmospheric concentrations of arabitol (35.2 ± 10.5 ng m-3) and mannitol (44.9 ± 13.8 ng m-3) were 3-4 times higher than during dry periods. During and after rain, the correlations between FAP and tracer mass concentrations were also significantly improved. Fungal spore number concentrations on the order of 104 m-3, accounting for 2-5 % of TSP mass during dry periods and 17-23 % during rainy periods, were obtained from scaling the tracer measurements and from multiple analysis methods applied to the UV-LIF data. Endotoxin concentrations were also enhanced during rainy periods, but showed no correlation with FAP concentrations. Average mass concentrations of erythritol, levoglucosan, glucose, and (1 → 3)-β-D-glucan in TSP samples are reported separately for dry and rainy weather conditions. Overall, the results indicate that UV-LIF measurements can be used to infer fungal spore concentrations, but substantial development of instrumental and data analysis methods appears to be required for improved quantification.

  4. Multicultural Mosaic: A Family Book Club.

    ERIC Educational Resources Information Center

    Dias-Mitchell, Laurie; Harris, Elizabeth

    2001-01-01

    Authors, a library media specialist and a literature/language arts teacher, both recipients of Theodore R. Sizer Fellowships, describe their joint project, "Multicultural Mosaic: A Family Book Club." Their proposal was to strengthen the home-school connection by establishing a book club accessible to all middle and high school students…

  5. Extreme Experiences and Asking the Unaskable: An Interview with Ted Sizer.

    ERIC Educational Resources Information Center

    Minton, Elaine

    1996-01-01

    The renowned educational reformer talks about how memorable, "extreme" learning experiences have shaped his views on education; how to create collegial support; the things that have given him satisfaction; his father's influence on him; the irrepressible optimism of teenagers; taking advantage of serendipitous events; and how questioning…

  6. Ten Years after "A Nation at Risk."

    ERIC Educational Resources Information Center

    Asayesh, Gelareh

    1993-01-01

    In April 1983, the National Commission on Excellence in Education issued a 32-page report ("A Nation at Risk") calling for drastic educational reforms. A decade later, four top education reformers--John Goodlad, Henry Levin, Phillip Schlechty, and Ted Sizer--assess this document and its legacy. Most see substantial progress despite the…

  7. Preparing for Disruption by Creating Future Possible Selves

    ERIC Educational Resources Information Center

    Bridglall, Beatrice L.

    2018-01-01

    It is perhaps more evident now than at any other time in human history that current technologies are racing ahead while skills and organizations are lagging behind. In the context of such uncertainty, Maxine Greene's and Theodore Sizer's ideas about empowering students to develop resiliency, perspective, judgment, and flexibility, as well…

  8. Poly(vinyl alcohol) stabilization of acrylic emulsion polymers using the miniemulsion approach

    NASA Astrophysics Data System (ADS)

    Kim, Noma

    Miniemulsion approach was employed to obtain stable acrylic latexes of n-butyl acrylate and methyl methacrylate (50/50 wt%) stabilized with poly(vinyl alcohol) (PVA) and to enhance the grafting reaction between PVA and acrylic monomers at the water/droplet interface. The stability of miniemulsions were studied in terms of the type and concentration of' the stabilizer, and the PVA partitioning were determined as a function of the PVA concentration. Using the comparison of PVA partitioning at droplet surface and grafted PVA as a function of concentration, it was suggested that the water/monomer interface is the main grafting site in the miniemulsion polymerization. Seeded emulsion and miniemulsion copolymerizations initiated with water-soluble (hydrogen peroxide, HPO), partially water-soluble (t-butyl peroxide, TBHP), and oil-soluble (t-butyl peroxyoctoate, TBPO) initiators were carried out to further investigate the oil/water interface as the grafting site for PVA. The interaction between the capillary wall in the CHDF (capillary hydrodynamic fractionation) chromatographic particle sizer and the water-soluble polymers adsorbed on the particle surface was studied using different types of water-soluble polymers and eluants. Different grafting architectures depending on the initiation site were suggested based on the CHDF results. The amounts of grafted PVA produced in miniemulsion polymers initiated with TBHP and TBPO were substantially less than those in the corresponding seeded emulsion polymerizations. The effect on the internal viscosity at the interface was proposed to explain the difference in grafting in terms of polymerization methods. Aqueous phase and interface grafting were studied using the measurement of the degree of hydrolysis (DH) of the serum PVA and adsorbed PVA after miniemulsion polymerizations. Based on the results, it was found that aqueous phase and interface grafting occurred in the HPO system; however, interface grafting dominated the TBHP system. Colloidal instability in conventional emulsion polymerizations was investigated and compared with the corresponding miniemulsion polymerization. It was found that the grafted PVA in conventional emulsion polymerizations was more hydrophobic presumably due to a greater amount of grafted chains than that in similar miniemulsion polymerizations and this could be correlated with the colloidal instability during conventional emulsion polymerizations.

  9. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola including the PTU sonde, transmission and batteries is below 1 kg. The results obtained during these flights and related campaigns such as the ground-based winter campaign Paris-Fog in Ile de France (fog life circle) and the Pre-ChArMEx/TRAQA summer campaign on the French Mediterranean coast will be presented, as well as future campaigns in which LOAC is involved, especially ChArMEx, (flights in the lower troposphere above the Mediterranean Sea), and Strateole (long duration flights in the tropical stratosphere). Balloon operation of LOAC will tentatively been shown during EGU.

  10. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection systemmore » to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.« less

  11. Preliminary characterization of submicron secondary aerosol in the amazon forest - ATTO station

    NASA Astrophysics Data System (ADS)

    Carbone, S.; Ferreira De Brito, J.; Andreae, M. O.; Pöhlker, C.; Chi, X.; Saturno, J.; Barbosa, H. M.; Artaxo, P.

    2014-12-01

    Biogenic secondary organic aerosol particles are investigated in the Amazon in the context of the GoAmazon Project. The forest naturally emits a large number of gaseous compounds; they are called the volatile organic compounds (VOCs). They are emitted through processes that are not totally understood. Part of those gaseous compounds are converted into aerosol particles, which affect the biogeochemical cycles, the radiation balance, the mechanisms involving cloud formation and evolution, among few other important effects. In this study the aerosol life-cycle is investigated at the ATTO station, which is located about 150 km northeast of Manaus, with emphasis on the natural organic component and its impacts in the ecosystem. To achieve these objectives physical and chemical aerosol properties have been investigated, such as the chemical composition with aerosol chemical speciation monitor (ACSM), nanoparticle size distribution (using the SMPS - Scanning Mobility Particle Sizer), optical properties with measurements of scattering and absorption (using nephelometers and aethalometers). Those instruments have been operating continuously since February 2014 together with trace gases (O3, CO2, CO, SO2 and NOx) analyzers and additional meteorological instruments. On average PM1 (the sum of black carbon, organic and inorganic ions) totalized 1.0±0.3 μg m-3, where the organic fraction was dominant (75%). During the beginning of the dry season (July/August) the organic aerosol presented a moderate oxygenated character with the oxygen to carbon ratio (O:C) of 0.7. In the wet season some episodes containing significant amount of chloride and backward wind trajectories suggest aerosol contribution from the Atlantic Ocean. A more comprehensive analysis will include an investigation of the different oxidized fractions of the organic aerosol and optical properties.

  12. Preliminary analysis of columnar aerosol properties in relation to surface PM measurements in the DAMOCLES 2006 field campaign (Spain)

    NASA Astrophysics Data System (ADS)

    Estelles, V.; Esteve, A.; Pey, J.; Martinez-Lozano, J. A.; Utrillas, M. P.; Querol, X.; de La Rosa, J.; Gonzalez-Castanedo, Y.; Alastuey, A.; Gangoiti, G.

    2009-04-01

    The DAMOCLES network is a Spanish thematic network, started in 2004, whose main objective is the establishment of a link among the different groups that perform research on atmospheric aerosols in Spain. Under the DAMOCLES coordination, a field campaign was held in summer 2006 at the INTA installations (El Arenosillo, Huelva) for the intercomparison of different kind of instruments devoted to in - situ and columnar aerosol measurement. During this field campaign, two daily meteorological soundings were carried out at noon and midnight for characterization of the atmospheric condition. A plane was also flown by the National Institute of Aerospace Technology (INTA) to carry airborne sensors for measuring different atmospheric factors: meteorological parameters, ozone with a 2BTech analyzer, and aerosol particle size distributions in the range (0.01-2) microns, by using a PCASP probe. The columnar aerosol properties were measured by seven CIMEL CE318 sun photometers. For in situ aerosol characterization, high volume collectors (DIGITEL and MCV) with DIGITEL for PM10, PM2.5 and PM1 measurement were used, with two cascade impactors for particulate matter measurement in 7 -8 granulometric fractions. For the PM10, PM2.5 and PM1 measurement, quartz fibre filters of 150 mm diameter were adapted. Other in situ deployed instruments were a Scanning Mobility Particle Sizer (SMPS, Model 3936), two Aerodynamic Particle Sizer (APS Model 3321) and one Grimm Spectrometer (Model #190). For characterization of the aerosol scattering at ground level, three integrating nephelometers TSI-3563 were used. For the columnar profiling we deployed five LIDAR instruments. In this study we have related the columnar aerosol measurements retrieved with one CE318 sun photometer to the surface PM measurements, mainly in some interesting situations where nearby pollution sources were influencing the local atmosphere. For the sun photometric analysis, we have applied the EuroSkyRad package (ESR.pack) to the data from the CE318 serial number #430, from the University of Valencia at Burjassot (Spain). This package is a quite new open source package composed of scripts and inversion algorithms for the processing of both Prede POM and Cimel CE318 instruments. The chemical analysis and source apportionment of the PM data was previously presented. Mean levels recorded during the campaign reached 23, 15 and 12 µg m-3 for PM10, PM2.5 and PM1, respectively. These values fell in the usual range of rural background sites of Southern Spain. Two kind of PM episodes were detected: short episodes recorded at midnight to early morning or at midday, coinciding with transitory hours when the land-sea breeze changed and stagnation conditions occurred, with pollution coming from the Huelva area; and a longer PM episode starting on 30th June 2006 and ending at the end of 1st July 2006, probably associated with the mid to long range transport of polluted air masses from Western Iberia and the Gulf of Cadiz.

  13. Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.

    PubMed

    Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H

    2017-07-01

    Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.

  14. Characterization of events of transport over the Mediterranean Basin during summer 2012

    NASA Astrophysics Data System (ADS)

    Bucci, Silvia; Fierli, Federico; Di Donfrancesco, Guido; Diliberto, Luca; Viterbini, Maurizio; Ravetta, François; Pap, Ines; Weinhold, Kay; Größ, Johannes; Wiedensohler, Alfred; Cairo, Francesco

    2014-05-01

    Long-range transport has a great influence on the atmospheric composition in the Mediterranean Basin (MB). This work focuses on the dust intrusion events and the outflows of polluted air from the Po Valley during the PEGASOS (Pan-European Gas-AeroSOls Climate Interaction Study), TRAQA (TRAnsport et Qualité de l'Air au dessus du bassin Méditerranéen) and Supersito Arpa (Emilia Romagna) measurements campaigns of June - July 2012. In order to investigate the sources and identify the transport patterns, numerical simulations, in-situ, remote sensing and airborne aerosol measurements were jointly used. The ground based lidar situated at the San Pietro Capofiume (SPC) station, in the eastern part of the Po Valley, provides continuous measurements of backscatter and depolarization profiles and the Aerodynamical Particle Sizer (APS), in the same site, gives the aerosol spectral distribution at the ground. Observations show two main events of mineral aerosol inflow over north Italy (19- 21 June and 29-01 July). Optical properties provide a primary discrimination between coarser (likely dust) and finer particles (probably anthropogenic). The vertical statistical distribution of the different aerosol classes shows that larger particles are mainly individuated over the Planetary Boundary Layer (PBL) level while smaller particles tend to follow the daily evolution of the PBL or remain confined under it. Dust events are also detected during the TRAQA airborne campaign in the area of the gulf of Genoa, contributing to the identification of the dust plume characterization. Cluster trajectories analysis coupled to mesoscale simulations highlights the effective export of air masses from the Sahara with frequent intrusions of dust over the Po Valley, as recorded in the observational SPC site. Transport analysis also indicates an inversion of the main advection pattern (the Po Valley outflow is mainly directed eastward in the Adriatic region) during 23th and 26th June, with a possible impact of the Po Valley emissions on the Genoa Gulf where simultaneous airborne observations occurred.

  15. Lung burden and deposition distribution of inhaled atmospheric urban ultrafine particles as the first step in their health risk assessment

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Füri, Péter; Németh, Zoltán; Balásházy, Imre; Hofmann, Werner; Farkas, Árpád

    2015-03-01

    Realistic median particle number size distributions were derived by a differential mobility particle sizer in a diameter range of 6-1000 nm for near-city background, city centre, street canyon and road tunnel environments in Budapest. Deposition of inhaled particles within airway generations of an adult woman was determined by a stochastic lung deposition model for sleeping, sitting, light and heavy exercise breathing conditions. Deposition fractions in the respiratory tract were considerable and constant for all physical activities with a mean of 56%. Mean deposition fraction in the extra-thoracic region averaged for the urban environments was decreasing monotonically from 26% for sleeping to 9.4% for heavy exercise. The mean deposition fractions in the tracheobronchial region were constant for the physical activities and urban environments with an overall mean of 12.5%, while the mean deposition fraction in the acinar region averaged for the urban locations increased monotonically with physical activity from 14.7% for sleeping to 34% for heavy exercise. The largest contribution of the acinar deposition to the lung deposition was 75%. The deposition rates in the lung were larger than in the extra-thoracic region, and the deposition rate in the lung was increasingly realised in the AC region by physical activity. It was the extra-thoracic region that received the largest surface density deposition rates; its loading was higher by 3 orders of magnitude than for the lung. Deposition fractions in the airway generations exhibited a distinct peak in the acinar region. The maximum of the curves was shifted to peripheral airway generations with physical activity. The shapes of the surface density deposition rate curves were completely different from those for the deposition rates, indicating that the first few airway generations received the highest surface loading in the lung.

  16. Secondary organic aerosol from atmospheric photooxidation of indole

    NASA Astrophysics Data System (ADS)

    Montoya-Aguilera, Julia; Horne, Jeremy R.; Hinks, Mallory L.; Fleming, Lauren T.; Perraud, Véronique; Lin, Peng; Laskin, Alexander; Laskin, Julia; Dabdub, Donald; Nizkorodov, Sergey A.

    2017-09-01

    Indole is a heterocyclic compound emitted by various plant species under stressed conditions or during flowering events. The formation, optical properties, and chemical composition of secondary organic aerosol (SOA) formed by low-NOx photooxidation of indole were investigated. The SOA yield (1. 3 ± 0. 3) was estimated from measuring the particle mass concentration with a scanning mobility particle sizer (SMPS) and correcting it for wall loss effects. The high value of the SOA mass yield suggests that most oxidized indole products eventually end up in the particle phase. The SOA particles were collected on filters and analysed offline with UV-vis spectrophotometry to measure the mass absorption coefficient (MAC) of the bulk sample. The samples were visibly brown and had MAC values of ˜ 2 m2 g-1 at λ = 300 nm and ˜ 0. 5 m2 g-1 at λ = 400 nm, comparable to strongly absorbing brown carbon emitted from biomass burning. The chemical composition of SOA was examined with several mass spectrometry methods. Direct analysis in real-time mass spectrometry (DART-MS) and nanospray desorption electrospray high-resolution mass spectrometry (nano-DESI-HRMS) were both used to provide information about the overall distribution of SOA compounds. High-performance liquid chromatography, coupled to photodiode array spectrophotometry and high-resolution mass spectrometry (HPLC-PDA-HRMS), was used to identify chromophoric compounds that are responsible for the brown colour of SOA. Indole derivatives, such as tryptanthrin, indirubin, indigo dye, and indoxyl red, were found to contribute significantly to the visible absorption spectrum of indole SOA. The potential effect of indole SOA on air quality was explored with an airshed model, which found elevated concentrations of indole SOA during the afternoon hours contributing considerably to the total organic aerosol under selected scenarios. Because of its high MAC values, indole SOA can contribute to decreased visibility and poor air quality.

  17. Formation of Oxidized Organic Aerosol (OOA) through Fog Processing in the Po Valley

    NASA Astrophysics Data System (ADS)

    Gilardoni, S.; Paglione, M.; Rinaldi, M.; Giulianelli, L.; Massoli, P.; Hillamo, R. E.; Carbone, S.; Lanconelli, C.; Laaksonen, A. J.; Russell, L. M.; Poluzzi, V.; Fuzzi, S.; Facchini, C.

    2014-12-01

    Aqueous phase chemistry might be responsible for the formation of a significant fraction of the organic aerosol (OA) observed in the atmosphere, and could explain some of the discrepancies between OA concentration and properties predicted by models and observed in the environment. Aerosol - fog interaction and its effect on submicron aerosol properties were investigated in the Po Valley (northern Italy) during fall 2011, in the framework of the Supersite project (ARPA Emilia Romagna). Composition and physical properties of submicron aerosol were measured online by a High Resolution- Time of Flight - Aerosol Mass Spectrometer (HR-TOF-AMS), a Soot Photometer - Aerosol Mass Spectrometer (SP-AMS), and a Tandem Differential Mobility Particle Sizer (TDMPS). Organic functional group analysis was performed off-line by Hydrogen - Nuclear Magnetic Resonance (H-NMR) spectrometry and by Fourier Transform Infrared (FTIR) spectrometry. Aerosol absorption, scattering, and total extinction were measured simultaneously with a Particle Soot Absorption Photometer (PSAP), a Nephelometer, and a Cavity Attenuated Phase Shift Spectrometer particle extinction monitor (CAPS PMex), respectively. Water-soluble organic carbon in fog-water was characterized off-line by HR-TOF-AMS. Fourteen distinct fog events were observed. Fog dissipation left behind an aerosol enriched in particles larger than 400 nm, typical of fog and cloud processing, and dominated by secondary species, including ammonium nitrate, ammonium sulfate and oxidized OA (OOA). Source apportionment of OA allowed us to identify OOA as the difference between total OA and primary OA (hydrocarbon like OA and biomass burning OA). The formation of OOA through fog processing is proved by the correlation of OOA concentration with hydroxyl methyl sulfonate signal and by the similarity of OOA spectra with organic mass spectra obtained by re-aerosolization of fog water samples. The oxygen to carbon ratio and the hydrogen to carbon ratio of this OOA fraction was about 0.6 and 1.3, respectively. Organic functional group analysis showed that OOA observed after fog dissipation was characterized by organic-sulfur and organic-nitrogen species.

  18. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.

    2012-02-01

    An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.

  19. Instrument comparison for Aerosolized Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration, than the PDRs. Two apparently identical DC devices were statistically different with each other for fine particles but not for UFP. DC devices and SMPS were statistically different with each other for both sizes of particles. Two apparently identical GRIMM devices were statistically different with each other for fine particles. For UFP, results of GRIMM device were statistically different than SMPS but not for fine particles. These observations suggest that inter-device within instrument and inter-instrument agreements depend on particle size and instrument characteristics to measure nanoparticles at different concentration levels.

  20. Self-association properties of 4-[1-hydroxy-1-methylethyl]-2-propyl-1-[4-[2-[tetrazole-5-yl]phenyl]phenyl] methylimidazole-5-carboxylic acid monohydrate (CS-088), an antiglaucoma ophthalmic agent.

    PubMed

    Kikuchi, Takayuki; Ito, Nobuya; Suzuki, Masahiko; Kusai, Akira; Iseki, Ken; Sasaki, Hitoshi

    2005-08-11

    Self-association properties of CS-088, an antiglaucoma ophthalmic agent, were investigated. Various analytical methods, such as surface tension measurement, demonstrated that CS-088 is a self-associating compound with critical micellar concentration (CMC) of approximately 10 mg/mL. Light scattering analysis revealed that the micellar molecular weight (MMW) of CS-088 aggregates well above the CMC was approximately 2260, corresponding to a pentamer. In addition, the MMW corresponding to a dimer was detected by NMR spectroscopy, indicating that self-association of monomers to pentamers is via the formation of dimers. According to the Stokes-Einstein equation, hydrodynamic radii of the dimer and pentamer were calculated to be 0.87 and 1.16 nm, respectively. The concentration-dependent change in the NMR chemical shift indicated that hydrophobic interaction between biphenyl groups is an important factor in the self-association of CS-088 molecules. Furthermore, measurement of particle size distribution using a Nicomp Submicron Particle-Sizer revealed that the addition of either n-propanol or urea to CS-088 solution led to monomerization of the dimers and pentamers, suggesting that not only hydrophobic interaction but also hydrogen bonding is involved in stabilizing CS-088 aggregates. No bigger aggregate than a pentamer was formed in the absence of NaCl, whereas further aggregation was observed with increasing concentrations of NaCl.

  1. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Iijima, Akihiro; Sato, Keiichi; Yano, Kiyoko; Tago, Hiroshi; Kato, Masahiko; Kimura, Hirokazu; Furuta, Naoki

    Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 400 °C. The number concentration of the abrasion dusts and their aerodynamic diameters ( Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution. Simultaneously, the abrasion dusts were also collected based on their size by using an Andersen low-volume sampler, and the concentrations of metallic elements (K, Ti, Fe, Cu, Zn, Sb and Ba) in the size-classified dusts were measured by ICP-AES and ICP-MS. The number distributions of the brake abrasion dusts had a peak at Dp values of 1 and 2 μm; this peak shifted to the coarse side with an increase in the disk temperature. The mass distributions calculated from the number distributions have peaks between Dp values of 3 and 6 μm. The shapes of the elemental mass distributions (Ti, Fe, Cu, Zn, Sb and Ba) in size-classified dusts were very similar to the total mass distributions of the brake abrasion dusts. These experimental results indicated that the properties of brake abrasion dusts were consistent with the characteristics of Sb-enriched fine airborne particulate matter. Based on these findings and statistical data, the estimation of Sb emission as airborne particulate matter from friction brakes was also discussed.

  2. Investigation of Biomass Burning Aerosol Hygroscopicity Using a New Tandem Differential Mobility Analyzer and New Inversion Routine.

    NASA Astrophysics Data System (ADS)

    Oxford, C. R.; Williams, B. J.

    2017-12-01

    Biomass burning aerosol (BBA) constitutes a significant fraction of atmospheric aerosol and impacts health, visibility, and radiative forcing. The nature and scale of these impacts are influenced by the size distribution of the aerosol. Hygroscopicity governs the water content of an aerosol at elevated relative humidity, and thus determines the size distribution of the hydrated aerosol. Characterization of BBA during the second Fire Lab At Missoula Experiment (FLAME-II) determined that BBA with high inorganic concentrations did not have a single hygroscopicity, but exhibited a bimodal nature. Mechanisms contributing to this bimodality could include condensation of hygrophilic inorganics, release of hygrophobic soot aerosol, presence of non-spherical morphologies, and condensation of volatile organic compounds with low hygroscopicity. Conclusions from FLAME-II attribute the bimodality to externally mixed BBA at a given diameter. Other authors, using different fuels, attribute differences in BBA hygroscopicity to non-spherical morphologies. We measured the hygroscopicity of BBA emitted from the burning of grasses obtained from western Montana in a laboratory burn chamber. The investigation used a newly built Tandem Differential Mobility Analyzer (TDMA) and a Scanning Mobility Particle Sizer together with a new TDMA inversion routine specifically designed for the analysis of multi-charged phenomena. Additionally, we used Transmission Electron Microscopy (TEM) to assess particle morphology. Outputs from the inversion routine along with images from TEM were used to evaluate reasons for hygroscopicity dependence on mobility diameter.

  3. Teaching for Intelligence I: A Collection of Articles.

    ERIC Educational Resources Information Center

    Presseisen, Barbara Z., Ed.

    This collection of articles offers theories and thoughts presented at the 1998 Teaching for Intelligence Conference. They highlight a wide and diverse range of views on pedagogy, achievement, and the state of education. Section 1, "The Need for Intelligence in Schooling," includes "On the Habit of Informed Skepticism" (Theodore R. Sizer);…

  4. Loud and Clear

    ERIC Educational Resources Information Center

    Meier, Deborah

    2009-01-01

    In this article, the author talks about Ted Sizer and describes him as a "schoolman," a Mr. Chips figure with all the romance that surrounded that image. Accustomed to models of brute power, parents, teachers, bureaucrats, and even politicians were attracted to his message of common decency. There's a way of talking about, and to, school people…

  5. The Preservice Teachers Are Watching: Framing and Reframing the Field Experience

    ERIC Educational Resources Information Center

    Scherff, Lisa; Singer, Nancy Robb

    2012-01-01

    In this article we employ Sizers' (1999) school- and classroom-based lenses for observation and apply them to the events and interactions that teacher education students see during school-based field experiences. Our data include online reflections and discussions among 33 students enrolled in a teacher education program at a large, public…

  6. Fast Track: A Language Arts Program for Middle School Gifted

    ERIC Educational Resources Information Center

    Schneider, Jean

    2008-01-01

    "Fast Track" is a pseudonym for an accelerated, advanced language arts program for verbally gifted and high potential students in grades 6-8. The critical thinking model used for "Fast Track" was gleaned from Coalition of Essential Schools founder Ted Sizer's Habits of Mind: significance, evidence, connections, perspective, and supposition, as…

  7. Progressive Failure Analysis of Composite Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Collier, Craig S.; Arnold, Steven M.

    2006-01-01

    A new progressive failure analysis capability for stiffened composite panels has been developed based on the combination of the HyperSizer stiffened panel design/analysis/optimization software with the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). MAC/GMC discretizes a composite material s microstructure into a number of subvolumes and solves for the stress and strain state in each while providing the homogenized composite properties as well. As a result, local failure criteria may be employed to predict local subvolume failure and the effects of these local failures on the overall composite response. When combined with HyperSizer, MAC/GMC is employed to represent the ply level composite material response within the laminates that constitute a stiffened panel. The effects of local subvolume failures can then be tracked as loading on the stiffened panel progresses. Sample progressive failure results are presented at both the composite laminate and the composite stiffened panel levels. Deformation and failure model predictions are compared with experimental data from the World Wide Failure Exercise for AS4/3501-6 graphite/epoxy laminates.

  8. Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.

    2012-01-01

    Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.

  9. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    NASA Astrophysics Data System (ADS)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition, inorganic nitrate evaporated in the PAM reactor as sulfate was added to the particles. These results suggest that the chemical composition of aerosols and their degree of photochemical aging, particularly for organics, are also crucial in determining aerosol mass concentrations.

  10. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from mechanical abrasion of automotive brake pads. The peak of the mass-based particle size distribution of brake abrasion dust was found in a diameter of 2-3 μm. From the morphological viewpoints, shape of brake abrasion dust particle was typically edge- shaped, and high concentrated Sb and sulfur were simultaneously detected in a brake abrasion dust particle because Sb2S3 is used as a solid lubricant for automotive brake pad. Indeed, at the roadside site, total concentration of airborne Sb was twice as much as that observed at residential site. Moreover, the most concentrated Sb was found in a diameter of 2.1-3.6 μm for the roadside APM. Furthermore, in the collected particles with this size range, we found a number of particles of which morphological profiles were similar to those of the brake abrasion dust. Consequently, an automotive brake abrasion dust is expected as the predominant source of airborne Sb in the roadside atmosphere.

  11. Physical and chemical properties of ice residuals during the 2013 and 2014 CLACE campaigns

    NASA Astrophysics Data System (ADS)

    Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Hammer, Emanuel; Gysel, Martin; Färber, Raphael; Fuchs, Claudia; Schnaiter, Martin; Baltensperger, Urs; Schmidt, Susan; Schneider, Johannes; Bigi, Alessandro; Toprak, Emre; Linke, Claudia; Klimach, Thomas

    2014-05-01

    The shortcomings in our understanding and, thus, representation of aerosol-cloud interactions are one of the major sources of uncertainty in climate model projections. Among the poorly understood processes is mixed-phase cloud formation via heterogeneous nucleation, and the subsequent spatial and temporal evolution of such clouds. Cloud glaciation augments precipitation formation, resulting in decreased cloud cover and lifetime, and affects cloud radiative properties. Meanwhile, the physical and chemical properties of atmospherically relevant ice nuclei (IN), the sub-population of aerosol particles which enable heterogeneous nucleation, are not well known. Extraction of ice residuals (IR) in mixed-phase clouds is a difficult task, requiring separation of the few small, freshly formed ice crystals (the IR within such crystals can be deemed representative of the original IN) not only from interstitial particles, but also from the numerous supercooled droplets which have aerodynamic diameters similar to those of the ice crystals. In order to address the difficulties with ice crystal sampling and IR extraction in mixed-phase clouds, the new Ice Selective Inlet (ISI) has been designed and deployed at the Jungfraujoch field site. Small ice crystals are selectively sampled via the inlet with simultaneous counting, sizing and imaging of hydrometeors contained in the cloud by a set of optical particle spectrometers, namely Welas optical particle counters (OPC) and a Particle Phase Discriminator (PPD). The heart of the ISI is a droplet evaporation unit with ice-covered inner walls, resulting in removal of droplets using the Wegener-Bergeron-Findeisen process, while transmitting a relatively high fraction of small ice crystals. The ISI was deployed in the winters of 2013 and 2014 at the high alpine Jungfraujoch site (3580 m.a.s.l) during the intensive CLACE field campaigns. The measurements focused on analysis of the physical and chemical characteristics of IR and the microphysical properties of mixed-phase clouds. A host of aerosol instrumentation was deployed downstream of the ISI, including a Grimm OPC and a scanning mobility particle sizer (SMPS) for number size distribution measurements, as well as a single particle mass spectrometer (ALABAMA; 2013 only), single particle soot photometers (SP2) and a Wideband Integrated Bioaerosol Sensor (WIBS-4) for analysis of the chemical composition, with particular focus on the content of black carbon (BC) and biological particles in IR. Corresponding instrumentation sampled through a total aerosol inlet. By comparing observations from the ISI with those from the total inlet the characteristics of ice residuals relative to the total aerosol could be established. First results from these analyses will be presented.

  12. Development and evaluation of an acoustic device to estimate size distribution of channel catfish in commercial ponds

    USDA-ARS?s Scientific Manuscript database

    As one step in the continued effort to utilize acoustic methods and techniques to the betterment of catfish aquaculture, an acoustic “catfish sizer” was designed to determine the size distribution of Channel Catfish Ictalurus punctatus in commercial ponds. The catfish sizer employed a custom-built 4...

  13. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Northern California

    NASA Astrophysics Data System (ADS)

    Post, A.; Conley, S. A.; Zhao, Y.; Cliff, S. S.; Faloona, I. C.; Wexler, A. S.; Lighthall, D.

    2012-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley have prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County. Six months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, approximately monthly ozone surveys are conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. The measurements exhibit no systematic diurnal variations of ozone or water vapor, an indication that the site primarily samples lower free tropospheric air which has not been significantly influenced by either local emissions or convective coupling to the surface. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal patterns of influence that long range transport has on California air quality.

  14. Stabilising nanofluids in saline environments.

    PubMed

    Al-Anssari, Sarmad; Arif, Muhammad; Wang, Shaobin; Barifcani, Ahmed; Iglauer, Stefan

    2017-12-15

    Nanofluids (i.e. nanoparticles dispersed in a fluid) have tremendous potential in a broad range of applications, including pharmacy, medicine, water treatment, soil decontamination, or oil recovery and CO 2 geo-sequestration. In these applications nanofluid stability plays a key role, and typically robust stability is required. However, the fluids in these applications are saline, and no stability data is available for such salt-containing fluids. We thus measured and quantified nanofluid stability for a wide range of nanofluid formulations, as a function of salinity, nanoparticle content and various additives, and we investigated how this stability can be improved. Zeta sizer and dynamic light scattering (DLS) principles were used to investigate zeta potential and particle size distribution of nanoparticle-surfactant formulations. Also scanning electron microscopy was used to examine the physicochemical aspects of the suspension. We found that the salt drastically reduced nanofluid stability (because of the screening effect on the repulsive forces between the nanoparticles), while addition of anionic surfactant improved stability. Cationic surfactants again deteriorated stability. Mechanisms for the different behaviour of the different formulations were identified and are discussed here. We thus conclude that for achieving maximum nanofluid stability, anionic surfactant should be added. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. First application of an online method for quantification of maritime molecular iodine and hypoiodic acid in maritime aerosol during PEGASO cruise

    NASA Astrophysics Data System (ADS)

    Götz, Sven; Dall'Osto, Manuel; Simó, Rafel; Hoffmann, Thosten

    2015-04-01

    The atmospheric chemistry of iodine is important in multiple ways. The focus lies on the ability to influence the oxidizing capacity of the atmosphere, i.e. by destruction of ozone, and the formation of iodine oxide particles (IOP), i.e. the influence on condensation nuclei (CCN). Using a variation of techniques, like differential optical absorption spectroscopy (DOAS), laser-induced fluorescence (LIF), inductively coupled plasma mass spectrometry (ICP-MS) and atmospheric pressure chemical ionization with tandem mass spectrometry (APCI-MS/MS), the reactive iodine species of atomic iodine (I), molecular iodine (I2), iodine monoxide (IO) and iodine dioxide (OIO) have all been detected in the atmosphere from Antarctica to the equatorial marine boundary layer (MBL). In the past few years there have been active research on IO, especially after revealing significant levels in open ocean measurements, and higher iodine oxides. In addition to atmospheric measurements, significant developments in laboratory kinetics, photochemistry and heterogeneous chemistry of iodine species have been accomplished. [1] Here we introduce the first field application of an online-method for detecting gaseous molecular iodine and HOI, which is a further development of a technique [2] based on selective photolytic dissociation, followed by oxidization and particle formation of iodine compounds. The particles are than size-segregated and detected by a scanning mobility particle sizer (SMPS) system. Initial IOP forming is performed in a reaction chamber providing specific wavelengths according to corresponding bond dissociation thresholds. Additionally offline sampling of iodine and iodine containing interhalogenes with coated diffusion denuders [3] were carried out throughout the cruise to compare both methods after analysis with GC/MS. Furthermore filter samples were taken to perform non-target analysis of organic compounds by UHPLC/ESI(+/-)-HR-MS. Preliminary results of iodine related analysis from the PEGASO cruise (plankton-derived emissions of trace gases and aerosols in the southern ocean) will be shown. [1] Saiz-Lopez, A.; Plane, J. M.C.; Baker, A. R.; Carpenter, L. J., von Glasow, R.; Gómez Martín, J. C.; McFiggans, G.; Saunders, R. W.; Chem. Rev., 2012, 112, 1773-1804 [2] MacDonald, S. M.; Gómez Martin, J. C.; Chance, R.; Warriner, S.; Saiz-Lopez, A.; Carpenter, L. J., Plane, J. M. C.; Atmos. Chem. Phys., 2014, 14, 5841-5852 [3] Huang, R. J.; Hoffmann, T.; Anal. Chemistry, 2009, 81, 1777-1783

  16. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    NASA Astrophysics Data System (ADS)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of growing particles that moved over the measurement site. The particles of the regional event as well as the particles of the plume were uniformly distributed in the vertical direction and showed a similar growth rate of approximately 2 nm/h. The plume caused sharp discontinuities in the number size distribution of the growing particle mode. These kinds of discontinuities are seen quite often on SMEAR II data during NPF events and it is likely that they are caused by inhomogeneous NPF in the horizontal direction (possibly narrow long plumes). This work is supported by European Commission under the Framework Programme 7 (FP7-ENV-2010-265148) and by the Academy of Finland Centre of Excellence program (project no. 1118615). The Zeppelin is accompanied by an international team of scientists and technicians. They are all warmly acknowledged. References [1] Kulmala, M., et al., (2013), Direct Observations of Atmospheric Aerosol Nucleation, Science, 339, 943-946 [2] Kulmala, M., et al., (2012), Measurement of the nucleation of atmospheric aerosol particles, Nature Protocols, 7, 1651-1667

  17. Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Chieh; Hsu, Shih-Chieh; Tsai, Chuen-Jinn; Chou, Charles C.-K.; Lin, Neng-Huei; Lee, Chung-Te; Roam, Gwo-Dong; Pui, David Y. H.

    2013-10-01

    The characteristics of atmospheric ultrafine particles (i.e. <100 nm, nanoparticles or PM0.1), PM2.5 and PM10 were studied at the Lulin Atmospheric Background Station (LABS, 2862 m a.s.l., Taiwan) as part of the 7SEAS/Dongsha campaign. Sampling was conducted in July and August of 2009 and September to November of 2010, during which two 96-h and four 72-h PM samples were taken. Real-time particle size distributions were measured continuously from July to August of 2009 and July to November of 2010. PM0.1, PM2.5 and PM10 were collected by using two MOUDIs (micro-orifice uniform deposit impactor, MSP 110) and a Dichotomous PM10 sampler (Andersen SA-241) while real-time size distributions of particles of 5.5-350 nm in diameter were measured by an SMPS (scanning mobility particle sizer, TSI 3936). Filter samples were analyzed for gravimetric mass and chemical compositions, including organic carbon (OC), element carbon (EC), water-soluble ions and trace elements. Meteorology parameters and gaseous O3 and CO concentrations were also monitored along with the SMPS data for studying particle nucleation, condensation, SOA (secondary organic aerosol) formation and long-range air pollutant transport at the LABS. SMPS data showed that nanoparticle concentrations at the LABS remained relatively stable at low level (˜300-500 #/cm3) during the nighttime (22:00-04:00), increased during daytime, and reached a maximum (˜2000-4000 #/cm3) in the afternoon (12:00-16:00). The NMD (number median diameter) showed an opposite trend with the peak number concentrations observed in the afternoon corresponding to the smallest NMD (20-40 nm). These results indicate the dominance of local sources rather than the transport from other atmospheric air because that the lifetime of nanoparticles was only few minutes. Chemical analysis of filter samples showed that the concentrations of trace elements K and Mn, which serve as biomass burning markers, were elevated in the fine particle fractions during November 9-12th when the air mass passed through South and Southeast Asia prior to reaching the LABS. The concentrations of K and Mn would have been low if the aerosols had local origins The biomass burning derived K was found in all fine particle samples at the LABS suggesting that the free troposphere around Taiwan is frequently impacted by the long-range transport of biomass burning plumes via the westerly winds.

  18. An episode of extremely high PM concentrations over Central Europe caused by dust emitted over the southern Ukraine

    NASA Astrophysics Data System (ADS)

    Birmili, W.; Schepanski, K.; Ansmann, A.; Spindler, G.; Tegen, I.; Wehner, B.; Nowak, A.; Reimer, E.; Mattis, I.; Müller, K.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Wiedensohler, A.; Althausen, D.; Schladitz, A.; Tuch, T.; Löschau, G.

    2007-08-01

    On 24 March 2007, the atmosphere over Central Europe was affected by an episode of exceptionally high mass concentrations of aerosol particles, most likely caused by a dust storm in the Southern Ukraine on the preceding day. At ground-based measurement stations in Slovakia, the Czech Republic, Poland and Germany PM10 mass concentrations rose to values between 200 and 1400 μg m-3. An evaluation of PM10 measurements from 360 monitoring stations showed that the dust cloud advanced along a narrow corridor at speeds of up to 70 km h-1. According to lidar observations over Leipzig, Germany, the high aerosol concentrations were confined to a homogeneous boundary layer of 1800 m height. The wavelength dependence of light extinction using both lidar and sun photometer measurements suggested the dominance of coarse particles during the main event. At a wavelength of 532 nm, relatively high volume extinction coefficients (300-400 Mm-1) and a particle optical depth of 0.65 was observed. In-situ measurements with an aerodynamic particle sizer at Melpitz, Germany, confirmed the presence of a coarse particle mode with a mode diameter >2 μm, whose maximum concentration coincided with that of PM10. A chemical particle analysis confirmed the dominance of non-volatile and insoluble matter in the coarse mode as well as high enrichments of Ti and Fe, which are characteristic of soil dust. A combination of back trajectory calculations and satellite images allowed to identify the dust source with confidence: On 23 March 2007, large amounts of dust were emitted from dried-out farmlands in the southern Ukraine, facilitated by wind gusts up to 100 km h-1. The unusual vertical stability and confined height of this dust layer as well as the rapid transport under dry conditions led to the conservation of high aerosol mass concentrations along the transect and thus to the extraordinary high aerosol concentrations over Central Europe. Our observations demonstrate the capacity of a combined apparatus of in situ and remote sensing measurements to characterise such a dust with a variety of aerosol parameters. As a conclusion, the description of dust emission, transport and transformation processes needs to be improved, especially when facing the possible effects of further anthropogenic desertification and climate change.

  19. Evaluation of the filler packing structures in dental resin composites: From theory to practice.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2018-07-01

    The aim of this study is to evaluate the packing properties of uniform silica particles and their mixture with secondary particles yielding maximally loaded dental composites. We intend to verify the difference between the idealized models (the close-packed structures and the random-packed structures) and the actual experimental results, in order to provide guidance for the preparation of dental composites. The influence of secondary particle size and the resin composition on the physical-mechanical properties and the rheological properties of the experimental dental composites was also investigated. Silica particles (S-920, S-360, and S-195) with average diameters of 920, 360, and 195nm were synthesized via the Stöber process. Their morphology and size distribution were determined by field-emission scanning electron microscopy and laser particle sizer. A series of silica fillers, S-920, S-920+195, S-920+360, and S-920+360+195, were then formulated with two Bis-GMA/TEGDMA resins (weight ratios of 70:30 and 50:50). For these experimental dental composites, their maximum filler loadings were assessed and compared to the theory. The mechanical properties, degree of conversion, depth of cure, and polymerization shrinkage of these composites were then evaluated. Their rheological behaviors were measured with a rheometer. Unimodal S-920 had the maximally filler loading of 70.80wt% with the 5B5T resin, close to the theoretical estimation of the random loose packing (71.92wt%). The maximum loading of the S-920+360+195 filled composite was 72.92wt% for the same resin, compared to the theoretical estimation of 89.29wt% obtained for the close-packed structures. These findings indicate that random loose packing matches more closely to the real packing state for the filler formulations used. When maximally loaded, the composite with S-920+360+195 produced the best mechanical properties and the lowest polymerization shrinkage. The degree of conversion and depth of cure were higher with secondary particles added, and the viscosity of all unpolymerized pastes exhibited shear thinning behavior. Theoretical estimations of filler packing structures provide a useful guidance in the design of multimodal filler formulations and the preparation of dental composites with higher filler loading, improved physical-mechanical properties. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  20. Use of the Single Particle Soot Photometer (SP2) as a pre-filter for ice nucleation measurements: effect of particle mixing state and determination of SP2 conditions to fully vaporize refractory black carbon

    NASA Astrophysics Data System (ADS)

    Schill, Gregory P.; DeMott, Paul J.; Levin, Ezra J. T.; Kreidenweis, Sonia M.

    2018-05-01

    Ice nucleation is a fundamental atmospheric process that impacts precipitation, cloud lifetimes, and climate. Challenges remain to identify and quantify the compositions and sources of ice-nucleating particles (INPs). Assessment of the role of black carbon (BC) as an INP is particularly important due to its anthropogenic sources and abundance at upper-tropospheric cloud levels. The role of BC as an INP, however, is unclear. This is, in part, driven by a lack of techniques that directly determine the contribution of refractory BC (rBC) to INP concentrations. One previously developed technique to measure this contribution uses the Single Particle Soot Photometer (SP2) as a pre-filter to an online ice-nucleating particle counter. In this technique, rBC particles are selectively heated to their vaporization temperature in the SP2 cavity by a 1064 nm laser. From previous work, however, it is unclear under what SP2 conditions, if any, the original rBC particles were fully vaporized. Furthermore, previous work also left questions about the effect of the SP2 laser on the ice-nucleating properties of several INP proxies and their mixtures with rBC.To answer these questions, we sampled the exhaust of an SP2 with a Scanning Mobility Particle Sizer and a Continuous Flow Diffusion Chamber. Using Aquadag® as an rBC proxy, the effect of several SP2 instrument parameters on the size distribution and physical properties of particles in rBC SP2 exhaust were explored. We found that a high SP2 laser power (930 nW/(220 nm PSL)) is required to fully vaporize a ˜ 0.76 fg rBC particle. We also found that the exhaust particle size distribution is minimally affected by the SP2 sheath-to-sample ratio; the size of the original rBC particle, however, greatly influences the size distribution of the SP2 exhaust. The effect of the SP2 laser on the ice nucleation efficiency of Snomax®, NX-illite, and Suwannee River Fulvic Acid was studied; these particles acted as proxies for biological, illite-rich mineral dust, and brown carbon INPs, respectively. The original size distribution and ice nucleation efficiency of all non-rBC proxies were unaffected by the SP2 laser. Furthermore, the ice nucleation efficiencies of all proxies were not affected when externally mixed with rBC. These proxies, however, always show a reduction in ice-nucleating ability when internally mixed with rBC. We end this work with recommendations for users who wish to use the SP2 as a pre-filter to remove large rBC particles from an aerosol stream.

  1. Task-based exposure assessment of nanoparticles in the workplace

    NASA Astrophysics Data System (ADS)

    Ham, Seunghon; Yoon, Chungsik; Lee, Euiseung; Lee, Kiyoung; Park, Donguk; Chung, Eunkyo; Kim, Pilje; Lee, Byoungcheun

    2012-09-01

    Although task-based sampling is, theoretically, a plausible approach to the assessment of nanoparticle exposure, few studies using this type of sampling have been published. This study characterized and compared task-based nanoparticle exposure profiles for engineered nanoparticle manufacturing workplaces (ENMW) and workplaces that generated welding fumes containing incidental nanoparticles. Two ENMW and two welding workplaces were selected for exposure assessments. Real-time devices were utilized to characterize the concentration profiles and size distributions of airborne nanoparticles. Filter-based sampling was performed to measure time-weighted average (TWA) concentrations, and off-line analysis was performed using an electron microscope. Workplace tasks were recorded by researchers to determine the concentration profiles associated with particular tasks/events. This study demonstrated that exposure profiles differ greatly in terms of concentrations and size distributions according to the task performed. The size distributions recorded during tasks were different from both those recorded during periods with no activity and from the background. The airborne concentration profiles of the nanoparticles varied according to not only the type of workplace but also the concentration metrics. The concentrations measured by surface area and the number concentrations measured by condensation particle counter, particulate matter 1.0, and TWA mass concentrations all showed a similar pattern, whereas the number concentrations measured by scanning mobility particle sizer indicated that the welding fume concentrations at one of the welding workplaces were unexpectedly higher than were those at workplaces that were engineering nanoparticles. This study suggests that a task-based exposure assessment can provide useful information regarding the exposure profiles of nanoparticles and can therefore be used as an exposure assessment tool.

  2. Measurements of Gas-phase H2so4, Oh, So2 and Aerosol Size Distribution On Mount Zugspitze At The Schneefernerhaus: Estimation of Sources and Sinks of Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Uecker, J.; Hanke, M.; Kamm, S.; Umann, B.; Arnold, F.; Poeschl, U.; Niessner, R.

    Gas-phase sulfuric acid and OH have been measured by the novel MPI-K ULTRA- CIMS (ultra-trace gas detection by CIMS technique) at the Schneefernerhaus( 2750 m asl; below the summit of Mount Zugspitze, Germany) in October 2001. These mea- surements were accompanied by measurements of SO2 with another MPI-K CIMS instrument and aerosol size distribution measurements by DMPS (differential mobil- ity particle sizer) operated by the Institut fuer Wasserchemie (Technische Universitaet Muenchen). In that way a data set was obtained which allows investigating major sources and sinks of sulfuric acid under relative clean conditions. H2SO4 and espe- cially OH concentrations are relatively well correlated to solar flux. Noon maximum concentrations of OH and H2SO4 of 6.5·106 and 2·106 cm-3, respectively, were ob- served. The average SO2 concentrations were below 20 ppt. The aerosol size distribu- tion was obtained in 39 size ranges from 10 to 1056 nm. Typical aerosol concentrations are in the range of 400 to 1800 cm-3 during the discussed period of time. An estima- tion of the production rate of H2SO4 was inferred building on the reaction of SO2 and OH, while the loss rate was calculated by considering the condensation of H2SO4 on aerosol particles (Fuchs and Sutugin approach). Results of the measurements and calculations will be discussed.

  3. Towards depth profiling of organic aerosols in real time using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Hoffmann, Thorsten

    2014-05-01

    Organic aerosol accounts for a substantial fraction of tropospheric aerosol and has implications on the earth's climate and human health. However, the characterization of its chemical composition and transformations remain a major challenge and is still connected to large uncertainties (IPCC, 2013). Recent measurements revealed that organic aerosol particles may reside in an amorphous or semi-solid phase state which impedes the diffusion within the particles (Virtanen et al., 2010; Shiraiwa et al., 2011). This means that reaction products which are formed on the surface of a particle, e.g. by OH, NO3 or ozone chemistry, cannot diffuse into the particle's core and remain at the surface. Eventually, this leads to particles with a core/shell structure. In the particles' cores the initial compounds are preserved whereas the shells contain mainly the oxidation products. By analyzing the particles' cores and shells separately, thus, it is possible to obtain valuable information on the formation and evolution of the aerosols' particle and gas phase. Here we present the development of the aerosol flowing atmospheric-pressure afterglow (AeroFAPA) technique which allows the mass spectrometric analysis of organic aerosols in real time. The AeroFAPA is an ion source based on a helium glow discharge at atmospheric pressure. The plasma produces excited helium species and primary reagent ions which are transferred into the afterglow region where the ionization of the analytes takes place. Due to temperatures of only 80 ° C to 150 ° C and ambient pressure in the afterglow region, the ionization is very soft and almost no fragmentation of organic molecules is observed. Thus, the obtained mass spectra are easy to interpret and no extensive data analysis procedure is necessary. Additionally, first results of a combination of the AeroFAPA-MS with a scanning mobility particle sizer (SMPS) suggest that it is not only possible to analyze the entire particle phase but rather that a separate analysis of the particles' shells and cores is feasible by adjusting flow rates and temperatures in the ionization region. References: IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press. A. Virtanen; J. Joutsensaari; T. Koop; J. Kannosto; P. Yli-Pirila; J. Leskinen; J. M. Makela; J. K. Holopainen; U. Pöschl; M. Kulmala; D. R. Worsnop; A. Laaksonen, "An amorphous solid state of biogenic secondary organic aerosol particles", Nature 7317, 824-827 [2010]. M. Shiraiwa; M. Ammann; T. Koop; U. Pöschl, "Gas uptake and chemical aging of semisolid organic aerosol particles", P. Natl. Acad. Sci. USA 27, 11003-11008 [2011].

  4. Development and characterization of polymeric nanoparticulate delivery system for hydrophillic drug: Gemcitabine

    NASA Astrophysics Data System (ADS)

    Khurana, Jatin

    Gemcitabine is a nucleoside analogue, used in various carcinomas such as non small cell lung cancer, pancreatic cancer, ovarian cancer and breast cancer. The major setbacks to the conventional therapy with gemcitabine include its short half-life and highly hydrophilic nature. The objectives of this investigation were to develop and evaluate the physiochemical properties, drug loading and entrapment efficiency, in vitro release, cytotoxicity, and cellular uptake of polymeric nano-particulate formulations containing gemcitabine hydrochloride. The study also entailed development and validation of a high performance liquid chromatography (HPLC) method for the analysis of gemcitabine hydrochloride. A reverse phase HPLC method using a C18 Luna column was developed and validated. Alginate and Poly lactide co glycolide/Poly-epsilon-caprolactone (PLGA:PCL 80:20) nanoparticles were prepared by multiple emulsion-solvent evaporation methodology. An aqueous solution of low viscosity alginate containing gemcitabine was emulsified into 10% solution of dioctyl-sulfosuccinate in dichloro methane (DCM) by sonication. The primary emulsion was then emulsified in 0.5% (w/v) aqueous solution of polyvinyl alcohol (PVA). Calcium chloride solution (60% w/v) was used to cause cross linking of the polymer. For PLGA:PCL system, the polymer mix was dissolved in dichloromethane (DCM) and an aqueous gemcitabine (with and without sodium chloride) was emulsified under ultrasonic conditions (12-watts; 1-min). This primary emulsion was further emulsified in 2% (w/v) PVA under ultrasonic conditions (24-watts; 3-min) to prepare a multiple-emulsion (w/o/w). In both cases DCM, the organic solvent was evaporated (20- hours, magnetic-stirrer) prior to ultracentrifugation (10000-rpm for PLGA:PCL; 25000-rpm for alginate). The pellet obtained was washed thrice with de-ionized water to remove PVA and any free drug and re-centrifuged. The particles were re-suspended in de-ionized water and then lyophilized to obtain the dried powdered delivery formulation. Particle size and surface charge of the nano-particles were measured using zeta-sizer. The surface morphology and microstructure were evaluated by scanning electron microscopy The drug loading and entrapment efficiencies were evaluated by a HPLC method (Luna C18 column (4.6 X 250 mm), 95/5 (v/v) 0.04M ammonium acetate/acetonitrile mobile phase (pH 5.5), 1.0 ml/min flow rate and 268 nm UV detection). Differential scanning calorimetry (DSC) was used to determine the physical state of gemcitabine in the nanoparticles. The cytotoxicity in pancreatic cancer cells (BxPC-3) was evaluated by MTT assay. The cellular uptake of gemcitabine solution and gemcitabine loaded alginate nano-particle suspension in BxPC-3 cells was determined for 15, 30 and 60 minutes. The particle-size and surface-charge was 564.7+/-56.5nm and -25.65+/-1.94mV for PLGA:PCL and 210.6+/-6.90nm and -33.21+/-1.63mV for alginate. Both the nano-particles were distinctly spherical and non-porous. The drug load was 5.14% for PLGA:PCL and 6.87% for alginate-particles, and the practical entrapment efficiency was found to be 54.1 % and 22.4% respectively. However, in case of PLGA:PCL particles, a two-fold increase in the entrapment efficiency was observed with the addition of sodium-chloride. The absence of endothermic melting peak of the drug in the DSC thermogram was an indication of the non-crystalline state of gemcitabine in the nanoparticles. In addition, there was no cytotoxicity associated with nanoparticle concentrations at-or-below 5 mg/mL. The uptake of nano-particles was around 4 times higher than the solution with treatment for 15 minutes and increased to almost 7 times following treatment for 60 minutes. Gemcitabine hydrochloride could be successfully formulated into a sustained release nano-particulate formulation using calcium cross-linked alginate and dioctyl sulfo succinate system. The nano-particulate delivery system exhibited better cytotoxic activity and also significantly enhanced the accumulation of the drug in BxPC-3 cell monolayers.

  5. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25 nm h-1. Interestingly enough there were also events were condensed vapors were evaporating from the condensed phase thus shrinking the size of the particles in all sizes. Aerosol optical thickness was relatively small at 0.1-0.3 at 500 nm, with high daily variability, showing how meteorological conditions are critical for the observed aerosol concentrations. The study allows the characterization of a unique fueled fleet emissions and its impact on atmospheric chemistry, particle formation and other atmospheric dynamic processes.

  6. Formulation and characterization of biocompatible and stable I.V. itraconazole nanosuspensions stabilized by a new stabilizer polyethylene glycol-poly(β-Benzyl-l-aspartate) (PEG-PBLA).

    PubMed

    Zong, Lanlan; Li, Xiaohua; Wang, Haiyan; Cao, Yanping; Yin, Li; Li, Mengmeng; Wei, Zhihao; Chen, Dongxiao; Pu, Xiaohui; Han, Jihong

    2017-10-05

    Amphiphilic block copolymers, PEG-PBLA with different molecular weights, were synthesized and used as new stabilizers for Itraconazole nannosuspensions (ITZ-PBLA-Nanos). ITZ-PBLA-Nanos were prepared by the microprecipitation-high pressure homogenization method, and the particle size and zeta potential were measured using a ZetaSizer Nano-ZS90. Morphology and crystallinity were studied using TEM, DSC and powder X-ray. The effect of the PEG-to-PBLA ratio, and the drug-to-stabilizer ratio were investigated to obtain the optimal formulation. It was found that the optimal length of hydrophobic block was 25 BLA-NCA molecules and the optimal ratio of drug/stabilizer was 1:1, where the resulted average particle size of ITZ-PBLA-Nanos was 262.1±7.13nm with a PDI value of 0.163±0.011. The images of TEM suggest that ITZ-PBLA-Nanos were rectangular in shape. ITZ existed as crystals in the nanoparticles as suggested by the DSC and XRD results. Compared with the crude drug suspensions, the dissolution rate of ITZ nanocrystals, was significantly increased and was similar to Sporanox ® injection. The ITZ-PBLA-Nanos also demonstrated better dilution stability and storage stability compared with ITZ-F68-Nanos. The particle size of ITZ-PBLA-Nanos did not change significantly after incubated in rat plasma for 24h which is a good attribute for I.V. administration. Acute toxicity tests showed that ITZ-PBLA-Nanos has the highest LD 50 compared with ITZ-F68-Nanos and Sporanox ® injection. ITZ-PBLA-Nanos also showed stronger inhibiting effect on the growth of Candida albicans compared with Sporanox ® injection. Therefore, PEG-PBLA has a promising potential as a biocompatible stabilizer for ITZ nanosuspensions and potentially for other nanosuspensions as well. Copyright © 2017. Published by Elsevier B.V.

  7. Using GC×GC-ToF-MS to characterise SVOC from diesel exhaust emissions

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ramadhas, A. S.; Stark, C. P.; Liu, D.; Xu, H.; Harrison, R. M.

    2014-12-01

    Despite intensive research over the last 20 years, a number of major research questions remain concerning the sources and properties of road traffic-generated particulate matter. There are major knowledge gaps concerning the composition of primary vehicle exhaust aerosol, and its contribution to secondary organic aerosol (SOA) formation. These uncertainties relate especially to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOC) are compounds which partition directly between the gas and aerosol phases under ambient conditions, and include compounds with saturation concentrations roughly between 0.1 and 104 μg m-3. The SVOC in engine exhaust are typically hydrocarbons in the C15-C35 range. They are largely uncharacterised, other than the n-alkanes, because they are unresolved by traditional gas chromatography and form a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, samples were collected from the exhaust of a diesel engine with and without abatement devices fitted. Engine exhaust was diluted with air and collected using both filter and impaction (MOUDI), to resolve total mass and size resolved mass respectively. Particle size distribution was evaluated by sampling simultaneously with a Scanning Mobility Particle Sizer (SMPS). 2D Gas-Chromatography Time-of-Flight Mass-Spectrometry (GC×GC-ToF-MS) was exploited to characterise and quantify the composition of SVOC from the exhaust emission. The SVOC was observed to contain predominantly n-alkanes, alkyl-cyclohexanes and aromatics; similar to both fresh lubricating oil and fuel. Preliminary results indicate that the contribution of diesel fuel to the exhaust SVOC composition is dominant at high speeds, and a more pronounced contribution from lubricating oil is observed at low speeds. Differences were also observed in the SVOC composition when using different fuel types, engine lubricants, starting temperatures and collecting samples with and without abatement devices fitted. The wealth of compounds identified and quantified in the C15-C35 range included PAH, esters, carboxylic acids, alkanes, alkenes, alcohols and hopanes.

  8. The statistical distribution of aerosol properties in sourthern West Africa

    NASA Astrophysics Data System (ADS)

    Haslett, Sophie; Taylor, Jonathan; Flynn, Michael; Bower, Keith; Dorsey, James; Crawford, Ian; Brito, Joel; Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Batenburg, Anneke; Schulz, Christiane; Schneider, Johannes; Borrmann, Stephan; Sauer, Daniel; Duplissy, Jonathan; Lee, James; Vaughan, Adam; Coe, Hugh

    2017-04-01

    The population and economy in southern West Africa have been growing at an exceptional rate in recent years and this trend is expected to continue, with the population projected to more than double to 800 million by 2050. This will result in a dramatic increase in anthropogenic pollutants, already estimated to have tripled between 1950 and 2000 (Lamarque et al., 2010). It is known that aerosols can modify the radiative properties of clouds. As such, the entrainment of anthropogenic aerosol into the large banks of clouds forming during the onset of the West African Monsoon could have a substantial impact on the region's response to climate change. Such projections, however, are greatly limited by the scarcity of observations in this part of the world. As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, three research aircraft were deployed, each carrying equipment capable of measuring aerosol properties in-situ. Instrumentation included Aerosol Mass Spectrometers (AMS), Single Particle Soot Photometers (SP2), Condensation Particle Counters (CPC) and Scanning Mobility Particle Sizers (SMPS). Throughout the intensive aircraft campaign, 155 hours of scientific flights covered an area including large parts of Benin, Togo, Ghana and parts of Côte D'Ivoire. Approximately 70 hours were dedicated to the measurement of cloud-aerosol interactions, with many other flights producing data contributing towards this objective. Using datasets collected during this campaign period, it is possible to build a robust statistical understanding of aerosol properties in this region for the first time, including size distributions and optical and chemical properties. Here, we describe preliminary results from aerosol measurements on board the three aircraft. These have been used to describe aerosol properties throughout the region and time period encompassed by the DACCIWA aircraft campaign. Such statistics will be invaluable for improving future projections of cloud properties and radiative effects in the region.

  9. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    NASA Astrophysics Data System (ADS)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH < 1%) and under high-NOx conditions using CH3ONO as OH source. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer); the SOA yields were in the range from 0.003 to 0.87 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. Transmission (TEM) and Scanning (SEM) Electron Microscopy observations were performed to characterize the physical state of SOA produced from the OH reaction with guaiacol; they display both liquid and solid particles (in an amorphous state). GC-FID (Gas Chromatography - Flame Ionization Detection) and GC-MS (Gas Chromatography - Mass Spectrometry) analysis show the formation of nitroguaiacol isomers as main oxidation products in the gas- and aerosol-phases. In the gas-phase, the formation yields were (10 ± 2) % for 4-nitroguaiacol (1-hydroxy-2-methoxy-4-nitrobenzene; 4-NG) and (6 ± 2) % for 3- or 6-nitroguaiacol (1-hydroxy-2-methoxy-3-nitrobenzene or 1-hydroxy-2-methoxy-6-nitrobenzene; 3/6-NG; the standards are not commercially available so both isomers cannot be distinguished) whereas in SOA their yield were much lower (≤0.1%). To our knowledge, this work represents the first identification of nitroguaiacols as gaseous oxidation products of the OH reaction with guaiacol. As the reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  10. Exposure monitoring of graphene nanoplatelets manufacturing workplaces.

    PubMed

    Lee, Ji Hyun; Han, Jong Hun; Kim, Jae Hyun; Kim, Boowook; Bello, Dhimiter; Kim, Jin Kwon; Lee, Gun Ho; Sohn, Eun Kyung; Lee, Kyungmin; Ahn, Kangho; Faustman, Elaine M; Yu, Il Je

    2016-01-01

    Graphenes have emerged as a highly promising, two-dimensional engineered nanomaterial that can possibly substitute carbon nanotubes. They are being explored in numerous R&D and industrial applications in laboratories across the globe, leading to possible human and environmental exposures to them. Yet, there are no published data on graphene exposures in occupational settings and no readily available methods for their detection and quantitation exist. This study investigates for the first time the potential exposure of workers and research personnel to graphenes in two research facilities and evaluates the status of the control measures. One facility manufactures graphene using graphite exfoliation and chemical vapor deposition (CVD), while the other facility grows graphene on a copper plate using CVD, which is then transferred to a polyethylene terephthalate (PET) sheet. Graphene exposures and process emissions were investigated for three tasks - CVD growth, exfoliation, and transfer - using a multi-metric approach, which utilizes several direct reading instruments, integrated sampling, and chemical and morphological analysis. Real-time instruments included a dust monitor, condensation particle counter (CPC), nanoparticle surface area monitor, scanning mobility particle sizer, and an aethalometer. Morphologically, graphenes and other nanostructures released from the work process were investigated using a transmission electron microscope (TEM). Graphenes were quantified in airborne respirable samples as elemental carbon via thermo-optical analysis. The mass concentrations of total suspended particulate at Workplaces A and B were very low, and elemental carbon concentrations were mostly below the detection limit, indicating very low exposure to graphene or any other particles. The real-time monitoring, especially the aethalometer, showed a good response to the released black carbon, providing a signature of the graphene released during the opening of the CVD reactor at Workplace A. The TEM observation of the samples obtained from Workplaces A and B showed graphene-like structures and aggregated/agglomerated carbon structures. Taken together, the current findings on common scenarios (exfoliation, CVD growth, and transfer), while not inclusive of all graphene manufacturing processes, indicate very minimal graphene or particle exposure at facilities manufacturing graphenes with good manufacturing practices.

  11. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    NASA Astrophysics Data System (ADS)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the volatility of the aerosol, and compare observed SOA yields to other OFR and smog chamber SOA generation methods. Additionally, estimates of OH radical exposure in the OFR during different vehicle experiments of varying fuel type and speed were observed to vary as determined from a high-NOx and variable humidity calibration set.

  12. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    NASA Astrophysics Data System (ADS)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  13. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods.

    PubMed

    Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E

    2018-03-12

    In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS's particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind.

  14. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods

    PubMed Central

    Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E

    2018-01-01

    Abstract Objectives In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Methods Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Results Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. Conclusions High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS’s particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind. PMID:29300818

  15. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of small ions on the other hand were rather similar on workdays and weekends. In general, NPF bursts changed the diurnal cycle of particle number as well as intermediate and large ions by causing an extra peak between 09:00 and 14:00. On average, during the NPF bursts the concentrations of intermediate ions were 8.5-10 times higher than on NPF non-event days, depending on the polarity, and the concentrations of large ions and particles were 1.5-1.8 and 1.2 times higher, respectively. Because the median concentrations of intermediate ions were considerably higher on NPF event days in comparison to NPF non-event days, the results indicate that intermediate ion concentrations could be used as an indication for NPF in Paris. The results suggest that NPF was a source of ions and aerosol particles in Paris and therefore contributed to both air quality degradation and climatic effects, especially in the spring and summer.

  16. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools

    PubMed Central

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-01-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 gram meter−1 (g m−1) at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws’ blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 RPM generated the greatest amount of dust. All the miter saws generated less dust in the ‘chopping mode’ than in the ‘chopping and sliding’ mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade’s teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. PMID:28395343

  17. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools.

    PubMed

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-03-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 g m-1 at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws' blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 rpm generated the greatest amount of dust. All the miter saws generated less dust in the 'chopping mode' than in the 'chopping and sliding' mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade's teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. Published by Oxford University Press on behalf of The British Occupational Hygiene Society 2017.

  18. OSA Proceedings on Picosecond Electronics and Optoelectronics. Volume 4

    DTIC Science & Technology

    1989-01-01

    Weisbuch, and G. A. Mourou vi Optical Phonon-Assisted Tunneling in Double Quantum - Well Structures ........ 111 Y Oberli, Jagdeep Shah, T. C. Damen, R. F...GaAs Quantum Wells During Photoexcitation .......................................... 158 Stephen M. Goodnick and Paolo Lugli Phonons and Phonon...246 R. A. Buhnnan Optical Detection of Resonant Tunneling of Electrons in Quantum Wells ........ 247 G. Livescu, A. M, Fox, T. Sizer, W. H. Knox, and

  19. The sizing of hamstring grafts for anterior cruciate reconstruction: intra- and inter-observer reliability.

    PubMed

    Dwyer, Tim; Whelan, Daniel B; Khoshbin, Amir; Wasserstein, David; Dold, Andrew; Chahal, Jaskarndip; Nauth, Aaron; Murnaghan, M Lucas; Ogilvie-Harris, Darrell J; Theodoropoulos, John S

    2015-04-01

    The objective of this study was to establish the intra- and inter-observer reliability of hamstring graft measurement using cylindrical sizing tubes. Hamstring tendons (gracilis and semitendinosus) were harvested from ten cadavers by a single surgeon and whip stitched together to create ten 4-strand hamstring grafts. Ten sports medicine surgeons and fellows sized each graft independently using either hollow cylindrical sizers or block sizers in 0.5-mm increments—the sizing technique used was applied consistently to each graft. Surgeons moved sequentially from graft to graft and measured each hamstring graft twice. Surgeons were asked to state the measured proximal (femoral) and distal (tibial) diameter of each graft, as well as the diameter of the tibial and femoral tunnels that they would drill if performing an anterior cruciate ligament (ACL) reconstruction using that graft. Reliability was established using intra-class correlation coefficients. Overall, both the inter-observer and intra-observer agreement were >0.9, demonstrating excellent reliability. The inter-observer reliability for drill sizes was also excellent (>0.9). Excellent correlation was seen between cylindrical sizing, and drill sizes (>0.9). Sizing of hamstring grafts by multiple surgeons demonstrated excellent intra-observer and intra-observer reliability, potentially validating clinical studies exploring ACL reconstruction outcomes by hamstring graft diameter when standard techniques are used. III.

  20. Design of Fiber Reinforced Foam Sandwich Panels for Large Ares V Structural Applications

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.; Hopkins, Dale A.

    2010-01-01

    The preliminary design of three major structural components within NASA's Ares V heavy lift vehicle using a novel fiber reinforced foam composite sandwich panel concept is presented. The Ares V payload shroud, interstage, and core intertank are designed for minimum mass using this panel concept, which consists of integral composite webs separated by structural foam between two composite facesheets. The HyperSizer structural sizing software, in conjunction with NASTRAN finite element analyses, is used. However, since HyperSizer does not currently include a panel concept for fiber reinforced foam, the sizing was performed using two separate approaches. In the first, the panel core is treated as an effective (homogenized) material, whose properties are provided by the vendor. In the second approach, the panel is treated as a blade stiffened sandwich panel, with the mass of the foam added after completion of the panel sizing. Details of the sizing for each of the three Ares V components are given, and it is demonstrated that the two panel sizing approaches are in reasonable agreement for thinner panel designs, but as the panel thickness increases, the blade stiffened sandwich panel approach yields heavier panel designs. This is due to the effects of local buckling, which are not considered in the effective core property approach.

  1. Volatility Properties of Internally- and Externally-Mixed Ambient Aerosols at an Anthropogenically-influenced Forest Site in Southeastern USA

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Subramanian, R.

    2015-12-01

    Secondary organic aerosol (SOA) from biogenic sources has a significant contribution to ambient aerosol loadings in Southeastern USA and thus contributes to adverse health effects of air pollution and influences regional and global climate. Volatility properties of biogenic SOA determine its concentration, reactivity, and lifetime, but are still largely unknown. As part of a larger study to assess the effect of biogenic SOA on aerosol optical properties, a set of instruments, including scanning mobility sizers (SMPS), single particle soot photometer (SP2), and a thermodenuder, was deployed during June 2015 at a Duke Forest site near Chapel Hill, NC. The site is characterized by a significant contribution of both biogenic and urban (mostly traffic) sources. Measurements of changes in aerosol volume and optical size upon heating in the thermodenuder at different temperatures are used to derive volatility properties of the ambient aerosol. A limited set of experiments was carried out using the tandem differential mobility analysis (TDMA) approach to investigate whether the ambient aerosol at the Duke Forest site is internally mixed with respect to its volatility properties. In this presentation we will discuss equilibrium and kinetic aspects of aerosol volatility observed during this study and implications of external vs. internal mixing for derivation of bulk volatility properties of ambient aerosol.

  2. Mobile phones as monitors of personal exposure to air pollution: Is this the future?

    PubMed

    Nyarku, Mawutorli; Mazaheri, Mandana; Jayaratne, Rohan; Dunbabin, Matthew; Rahman, Md Mahmudur; Uhde, Erik; Morawska, Lidia

    2018-01-01

    Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone-BROAD Life-equipped with air pollution sensors (PM2.5 and VOC), to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust) and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306), DustTrak, Aerodynamic Particle Counter (APS), Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) and Formaldehyde Analyser. Overall, we found that the phone's response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone's response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It should be kept in mind, however, that a mobile phone measuring air quality alone cannot as such 'reduce the burden of disease to air pollution, as knowing ambient concentrations is only one of the building block in this quest. As long as individuals cannot avoid exposure e.g. in urban areas, knowing concentrations is not sufficient to reduce potential adverse effects. Yet, there are many situations and microenvironments, which individuals could avoid knowing the concentrations and also being aware of the risk caused by exposure to them. This includes for example to proximity to vehicle emissions, either for social purposes (e.g. street cafes) or exercising (e.g. walking or jogging along busy roads)or indoor environments affected by combustion emissions (smoking, candle burning, open fire).

  3. Mobile phones as monitors of personal exposure to air pollution: Is this the future?

    PubMed Central

    Nyarku, Mawutorli; Mazaheri, Mandana; Jayaratne, Rohan; Dunbabin, Matthew; Rahman, Md Mahmudur; Uhde, Erik

    2018-01-01

    Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone—BROAD Life—equipped with air pollution sensors (PM2.5 and VOC), to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust) and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306), DustTrak, Aerodynamic Particle Counter (APS), Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) and Formaldehyde Analyser. Overall, we found that the phone’s response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone’s response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It should be kept in mind, however, that a mobile phone measuring air quality alone cannot as such 'reduce the burden of disease to air pollution, as knowing ambient concentrations is only one of the building block in this quest. As long as individuals cannot avoid exposure e.g. in urban areas, knowing concentrations is not sufficient to reduce potential adverse effects. Yet, there are many situations and microenvironments, which individuals could avoid knowing the concentrations and also being aware of the risk caused by exposure to them. This includes for example to proximity to vehicle emissions, either for social purposes (e.g. street cafes) or exercising (e.g. walking or jogging along busy roads)or indoor environments affected by combustion emissions (smoking, candle burning, open fire). PMID:29474387

  4. Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan.

    PubMed

    Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching

    2010-10-01

    Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.

  5. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhou, Liantong; Zhang, Xiangyu; Xu, Caijia; Dong, Liming; Yao, Maosheng

    2016-01-01

    Air samples from twelve sampling sites (including seven intra-plant sites, one upwind site and four downwind sites) from a wastewater treatment plant (WWTP) in Beijing were collected using a Reuter Centrifugal Sampler High Flow (RCS); and their microbial fractions were studied using culturing and high throughput gene sequence. In addition, the viable (fluorescent) bioaerosol concentrations for 7 intra-plant sites were also monitored for 30 min each using an ultraviolet aerodynamic particle sizer (UV-APS). Both air and water samples collected from the plant were investigated for possible bacterial antibiotic resistance genes and integrons using polymerase chain reaction (PCR) coupled with gel electrophoresis. The results showed that the air near sludge thickening basin was detected to have the highest level of culturable bacterial aerosols (up to 1697 CFU/m3) and fungal aerosols (up to 930 CFU/m3). For most sampling sites, fluorescent peaks were observed at around 3-4 μm, except the office building with a peak at 1.5 μm, with a number concentration level up to 1233-6533 Particles/m3. About 300 unique bacterial species, including human opportunistic pathogens, such as Comamonas Testosteroni and Moraxella Osloensis, were detected from the air samples collected over the biological reaction basin. In addition, we have detected the sul2 gene resistant to cotrimoxazole (also known as septra, bactrim and TMP-SMX) and class 1 integrase gene from the air samples collected from the screen room and the biological reaction basin. Overall, the screen room, sludge thickening basin and biological reaction basin imposed significant microbial exposure risks, including those from airborne antibiotic resistance genes.

  6. Femoral sizing in total knee arthroplasty is rotation dependant.

    PubMed

    Koninckx, Angelique; Deltour, Arnaud; Thienpont, Emmanuel

    2014-12-01

    The mismatch between the medio-lateral (ML) and the antero-posterior (AP) size of femoral components in total knee arthroplasty (TKA) has been linked to gender, ethnicity, morphotype and height differences in patients. The hypothesis of this study was that the AP size measurement of a femoral component increases with more external rotation in posterior referencing TKA. During a 2-year period, 201 patients were included in this prospective study. The AP distance of the distal femur was measured with an AP sizer of the Vanguard (Biomet, Warsaw, US) knee system. This AP sizer allows to dial in external rotation by 1° increments and to determine the femoral size with an anterior boom. AP size was noted at 0°, 3° and 5° of external rotation and then compared for ML matching. Antero-posterior and corresponding ML sizes match perfectly for the Vanguard at 0° of external rotation and a central boom position on the anterior femoral surface. Then, the anterior boom was positioned on the antero-lateral cortex and the AP size increased a mean (SD) 1 (0.5) mm. With 3° of external rotation, the AP size increased a mean (SD) 2.3 (0.4) mm and for 5° a mean (SD) 3.8 (0.3) mm (P < 0.05). This increase in AP size resulted in ML overhang of 2.2 (1.2) mm for 3° and 4.8 (2.6) mm for 5° (P < 0.05). Antero-posterior size measurement of the distal femur is determined by the anatomy of the anterior surface with a higher antero-lateral cortex and the amount of external rotation that is dialled in during surgery. Since these parameters vary case per case, the availability of narrow components offers more surgical options to the surgeon and its importance extends beyond the gender aspect allowing different amounts of external rotation to be used without ML overhang. II.

  7. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of organic nitrogen compounds, with an average N/C ratio ~3.8 times that of OOA. Most strikingly is the enhancement of the CxHyN2+ family ions in FOM spectra, indicating the presence of imidazole compounds, which commonly result from the aqueous phase reactions of tropospheric aldehyde such as glyoxal, formaldehyde or acetaldehyde with amino compounds. The results of this study demonstrate that aqueous phase reactions in fog water lead to the formation of some oxidized and nitrogen-containing compounds. Details and the environmental implications of results will be discussed.

  8. ARTIST: An International Project Investigating Aerosol Retention in a Ruptured Steam Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guentay, S.; Dehbi, A.; Suckow, D.

    2002-07-01

    Steam generator tube ruptures (SGTR) with a concurrent stuck open safety relief valve are counted among the risk dominant accident sequences because of the potential for radioactive products to bypass the containment. Owing to the absence of relevant empirical data and the complexity of the geometry and controlling processes, the aerosol removal in the steam generator (SG) tubes and in the secondary side is not well understood. Therefore, little or no credit is usually taken for aerosol retention due to natural processes in the various components of a SG. To help reduce the uncertainties associated with fission product release followingmore » an SGTR sequence, the Paul Scherrer Institut has initiated an international experimental project to be performed in the ARTIST (AeRosol Trapping In a Steam generaTor) facility in the time period from 2002 to 2007. The ARTIST test section is a scaled model of a real SG, and is comprised of a 264-tube bundle with a maximum height of 3.8 m, as well as one full-size droplet separator and one full-size steam dryer. The ARTIST facility is capable of producing soluble and insoluble aerosols and entrain them at sonic gas flow rates (up to 0.25 kg/s, thus matching comparable values predicted by the codes. In addition, aerosols can be generated at prototypical concentrations (up to 5 g/m{sup 3}) and sizes (0.2-5 mm AMMD). State of the art instrumentation is used (Low-pressure impactors, photometers, on-line particle sizer, online droplet sizer, etc.). The ARTIST project will simulate the flow and retention of aerosol-borne fission products in the SG, and provide a unique database to support safety assessments and analytical models. The project is foreseen in seven phases: 1) Aerosol retention in the tube under dry secondary side conditions, 2) Aerosol retention in the near field close to break under dry conditions, 3) Aerosol retention in the bundle far field under dry conditions, 4) Aerosol retention in the separator and dryer under dry conditions, 5) Aerosol retention in the bundle section under wet conditions, 6) Droplet retention in separator and dryer sections and 7) Integral tests to examine overall retention in the SG unit. The project will investigate phenomena at the separate effect and integral levels, and will also address selected accident management (AM) issues. The kick-off experiments are scheduled for the first half of 2002, and some early results will be summarized at the meeting. (authors)« less

  9. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.

    PubMed

    Jung, Jae Hee; Hwang, Gi Byoung; Lee, Jung Eun; Bae, Gwi Nam

    2011-08-16

    Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ∼980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the antimicrobial activity against test bacterial bioaerosols was enhanced, compared with the deposition of CNTs or Ag nanoparticles alone, whereas the filter pressure drop and bioaerosol filtration efficiency were similar to those of CNT deposition only. At a residence time of 2 h, the relative microbial viabilities of gram-positive S. epidermidis were ∼32, 13, 5, and 0.9% on the control, CNT-, Ag nanoparticle-, and Ag/CNT-deposited filters, respectively, and those of gram-negative E. coli were 13, 2.1, 0.4, and 0.1% on the control, CNTs, Ag nanoparticles, and Ag/CNTs, respectively. These Ag/CNT hybrid nanoparticles may be useful for applications in biomedical devices and antibacterial control systems.

  10. The formation of ultrafine iodine particles from coastal macroalgae

    NASA Astrophysics Data System (ADS)

    McFiggans, G.; Coe, H.; Allan, J. D.; Plane, J. M. C.; Saunders, R.

    2003-04-01

    We will present the first direct evidence for iodine-containing ultrafine particle (ufp) production from macroalgae in the intertidal zone. Ultrafine particles in the coastal environment have been the subject of intense interest(1,2,3) due to their potentially important contributions to both the direct radiation scattering budget and, by activation to form cloud droplets, to the indirect radiative effect. Based on a variety of laboratory studies, it has recently been proposed that photochemical production of condensable iodine oxides is responsible for their formation(4-9). This work shows that previous studies investigating the mechanisms and kinetics of particle formation due to iodine photochemistry are largely untargeted in that they assume gaseous iodocarbons are the precursor material. Models aiming to simulate coastal new particle formation suffer from the same lack of basic understanding of the formation mechanisms (and indeed precursor identities)(7-9). Following measurements of iodine monoxide(10,11) and iodocarbons(12) in the coastal atmosphere, modelling studies have demonstrated the importance of inorganic iodine in gaseous photochemical cycles(13). Volatile iodocarbons have a number of sources, but intertidal macroalgal beds(14) appear to dominate in the coastal zone(15). However, no direct evidence for a relationship between the macroalgae and iodine-containing particle formation have been reported. During the NERC-funded NAMBLEX field project at Mace Head on the west coast of Ireland in August 2002, we conducted a series of experiments on macroalgae in the intertidal zone. A reactor containing Laminaria digitata cropped from an intertidal rock pool was exposed to an ozonised stream of initially particle-free air. Using a scanning mobility particle sizer (SMPS) to sample the reactor output, it was found that extremely large numbers of particles were formed. By increasing the exposure time to the airstream, the particles were allowed to grow above the detection threshold of an aerosol mass spectrometer (AMS). It was found that the dominant m/z fragments above 100 Daltons at all sizes of particle were derived from iodine-containing species, but the mass spectrum exhibited significant differences from that reported for particles generated in the laboratory from iodocarbon photolysis(5,6). Subsequent experiments at UMIST have found a similar response from the related and more widespread macroalga Laminaria hyperborea. In addition, further results from the laboratory program investigating ufp formation from both inorganic and organic precursor molecules will be presented and discussed to aid mechanistic interpretation of the release of ufps from macroalgae. 1. O’Dowd et al., GRL, 1707-1710, 1999, 2. Coe et al., JGR, 26891-26905, 2000, 3. Kolb, Nature, 597-598, 2002, 4. Hoffmann et al., GRL, 1949-1952, 2001, 5. O’Dowd et al., Nature, 632-636, 2002, 6. Jimenez et al., JGR in press, 2003, 7. McFiggans et al., EGS presentation, 2002, 8. McFiggans, CERC3 presentation, 2002, 9. McFiggans et al., 2003, in prep, 10. Alicke et al., Nature, 572-573, 1999, 11. Allan et al., JGR, 14363-14369, 2000, 12. Carpenter et al., JGR, 1679-1689, 1999, 13. McFiggans et al., JGR, 14371-14385, 2000, 14. Carpenter et al., GBC, 1191-1204, 2000, 15. Carpenter et al., ACP, 9-18, 2001.

  11. Excellence in Teacher Education through the Liberal Arts. Proceedings of the Conference on Excellence in Teacher Education through the Liberal Arts (Allentown, PA, May 20-21, 1986).

    ERIC Educational Resources Information Center

    Carbone, Michael J., Ed.; Wonsiewicz, Ann, Ed.

    This volume presents papers given at a conference on the role of liberal arts in teacher education. Titles and authors are: (1) "The Connections between Teacher Education and School Reform" (Theodore R. Sizer) with a panel response by J. William Moore and Others; (2) "Teaching: A Career of Choice" (Edward J. Meade, Jr.); (3) "Liberal Learning and…

  12. Cloud condensation nuclei closure study on summer arctic aerosol

    NASA Astrophysics Data System (ADS)

    Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.

    2011-11-01

    We present an aerosol - cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles >70 nm. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble (κorg=0.02), leading to a mean total κ, κtot, of 0.33 ± 0.13. However, several settings led to closure and κorg=0.2 is found to be an upper limit at 0.1% supersaturation. κorg≤0.2 leads to a κtot range of 0.33 ± 013 to 0.50 ± 0.11. Thus, the organic material ranges from being sparingly soluble to effectively insoluble. These results suggest that an increase in organic mass fraction in particles of a certain size would lead to a suppression of the Arctic CCN activity.

  13. Chemical Characteristics of Particulate Matter from Vehicle emission using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.

    2015-12-01

    Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.

  14. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma.

    PubMed

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo.

  15. Size distributions and exposure concentrations of nanoparticles associated with the emissions of oil mists from fastener manufacturing processes.

    PubMed

    Wang, Ying-Fang; Tsai, Perng-Jy; Chen, Chun-Wan; Chen, Da-Ren; Dai, Yu-Tung

    2011-12-30

    The aims of the present study were set out to measure size distributions and estimate workers' exposure concentrations of oil mist nanoparticles in three selected workplaces of the forming, threading, and heat treating areas in a fastener manufacturing plant by using a modified electrical aerosol detector (MEAD). The results were further compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS) for the validation purpose. Results show that oil mist nanoparticles in the three selected process areas were formed mainly through the evaporation and condensation processes. The measured size distributions of nanoparticles were consistently in the form of uni-modal. The estimated fraction of nanoparticles deposited on the alveolar (AV) region was consistently much higher than that on the head airway (HD) and tracheobronchial (TB) regions in both number and surface area concentration bases. However, a significant difference was found in the estimated fraction of nanoparticles deposited on each individual region while different exposure metrics were used. Comparable results were found between results obtained from both NSAM and MEAD. After normalization, no significant difference can be found between the results obtained from SMPS and MEAD. It is concluded that the obtained MEAD results are suitable for assessing oil mist nanoparticle exposures. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A long-term study of new particle formation in a coastal environment: meteorology, gas phase and solar radiation implications.

    PubMed

    Sorribas, M; Adame, J A; Olmo, F J; Vilaplana, J M; Gil-Ojeda, M; Alados-Arboledas, L

    2015-04-01

    New particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O3, SO2, CO and NO2) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analysed. The mean duration was 9.2±4.2 h. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean formation rate was 2.2±1.7 cm(-3) s(-1), with a maximum in the spring and early autumn and a minimum during the summer and winter. The mean growth rate was 3.8±2.4 nm h(-1) with higher values occurring from spring to autumn. The mean and seasonal formation and growth rates are in agreement with previous observations from continental sites in the Northern Hemisphere. NPF classification of different classes was conducted to explore the effect of synoptic and regional-scale patterns on NPF and growth. The results show that under a breeze regime, the temperature indirectly affects NPF events. Higher temperatures increase the strength of the breeze recirculation, favouring gas accumulation and subsequent NPF appearance. Additionally, the role of high relative humidity in inhibiting the NPF was evinced during synoptic scenarios. The remaining meteorological variables (RH), trace gases (CO and NO), solar radiation, PM10 and condensation sink, showed a moderate or high connection with both formation and growth rates. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Structures for the 3rd Generation Reusable Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2001-01-01

    A major goal of NASA is to create an advance space transportation system that provides a safe, affordable highway through the air and into space. The long-term plans are to reduce the risk of crew loss to 1 in 1,000,000 missions and reduce the cost of Low-Earth Orbit by a factor of 100 from today's costs. A third generation reusable concept vehicle (RCV) was developed to assess technologies required to meet NASA's space access goals. The vehicle will launch from Cape Kennedy carrying a 25,000 lb. payload to the International Space Station (ISS). The system is an air breathing launch vehicle (ABLV) hypersonic lifting body with rockets and uses triple point hydrogen and liquid oxygen propellant. The focus of this paper is on the structural concepts and analysis methods used in developing the third generation reusable launch vehicle (RLV). Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  18. Enhancement of stability of various nZVI suspensions used in groundwater remediation with environmentally friendly organic stabilizers

    NASA Astrophysics Data System (ADS)

    Schmid, Doris; Wagner, Stephan; Velimirović, Milica; Laumann, Susanne; Micić, Vesna; Hofmann, Thilo

    2014-05-01

    The use of nanoscale zero-valent iron (nZVI) particles for in situ remediation of polluted soil and groundwater has been shown as one of the most promising techniques [1]. The success of this technology depends on the mobility, reactivity, and longevity of nZVI particles. The mobility of nZVI particles depends on the properties of the single particles, stability of the particle suspension, and the aquifer material [1,2]. In order to enhance the mobility of nZVI, the mobility-decisive properties of the nZVI particles in suspension such as concentration, size distribution, surface charge, and sedimentation rate have to be investigated and optimized. Previous studies showed that pristine nZVI particles aggregate rapidly in water, reducing the particles radius of influence after injection [3]. In order to prevent aggregation and sedimentation of the nZVI particles, and consequently improve the stability of nZVI suspension and therefore the mobility of the nZVI particles, surface stabilizers can be used to provide electrostatic repulsion and steric or electrosteric stabilization [3,4]. The objective of this lab-scale study is to investigate the potential for enhancing the stability of different nZVI suspensions by means of environmentally friendly organic stabilizers, including carboxymethyl cellulose, pectin, alginate, xanthan, and guar gum. The different nZVI particles used included pristine and polyacrylic acid-coated nZVI particles provided in suspension (Nanofer 25 and Nanofer 25S, respectively, NANOIRON s.r.o., Czech Republic), air-stable nZVI particles (Nanofer Star, (NANOIRON s.r.o., Czech Republic), and milled iron flakes (UVR-FIA, Germany). In order to study the enhancement of nZVI stability (1 g L-1 total iron) different concentrations of organic stabilizers (1-20 wt.%) were applied in these nZVI suspensions. Each nZVI suspension was freshly prepared and treated for 10 minutes with Ultra-Turrax (15 000 rpm) and 10 minutes ultrasonic bath prior to characterization. Suspensions were characterized in terms of particle size distribution (Eyetech, Ambivalue; Malvern Mastersizer 2000), surface charge (Malvern ZetaSizer Nano), pH, EC, zero-valent iron content (H2 production after acid digestion), total iron content (ICP-OES), and sedimentation rate (TurbiScan LAB EXPERT). The results of the first set of experiments carried out with a pristine suspension of milled iron flakes (1 g L-1 total iron) show that the sedimentation rate of the suspension decreased by a factor two when stabilized by a 20 wt.% solution of carboxymethyl cellulose. This indicates that carboxymethyl cellulose was able to increase the stability of the suspension of milled iron flakes. Moreover, the surface charge of milled iron particles became more negatively charged once carboxymethyl cellulose was applied as a stabilizer, confirming an increased potential for milled iron flakes repulsion in the presence of carboxymethyl cellulose. Nevertheless, the size of these particles in the presence of carboxymethyl cellulose did not change for more than 5% compared to the particle size of pristine suspension of milled iron flakes. On the basis of the preliminary results from the sedimentation tests column reactors will be designed in order to compare the transport distances of milled iron flakes and other selected nZVI particles. This research receives funding from the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement n°309517. [1] O'Carroll et al. (2013): Advances in Water Resources 51(0): 104-122. [2] Laumann et al. (2013): Environmental Pollutant 179: 53-60. [3] Phenrat et al. (2007): ES&T 41(1): 284-290. [4] Phenrat et al. (2008): Journal of Nanoparticle Research 10(5): 795-814.

  19. User's Manual and Final Report for Hot-SMAC GUI Development

    NASA Technical Reports Server (NTRS)

    Yarrington, Phil

    2001-01-01

    A new software package called Higher Order Theory-Structural/Micro Analysis Code (HOT-SMAC) has been developed as an effective alternative to the finite element approach for Functionally Graded Material (FGM) modeling. HOT-SMAC is a self-contained package including pre- and post-processing through an intuitive graphical user interface, along with the well-established Higher Order Theory for Functionally Graded Materials (HOTFGM) thermomechanical analysis engine. This document represents a Getting Started/User's Manual for HOT-SMAC and a final report for its development. First, the features of the software are presented in a simple step-by-step example where a HOT-SMAC model representing a functionally graded material is created, mechanical and thermal boundary conditions are applied, the model is analyzed and results are reviewed. In a second step-by-step example, a HOT-SMAC model of an actively cooled metallic channel with ceramic thermal barrier coating is built and analyzed. HOT-SMAC results from this model are compared to recently published results (NASA/TM-2001-210702) for two grid densities. Finally, a prototype integration of HOTSMAC with the commercially available HyperSizer(R) structural analysis and sizing software is presented. In this integration, local strain results from HyperSizer's structural analysis are fed to a detailed HOT-SMAC model of the flange-to-facesheet bond region of a stiffened panel. HOT-SMAC is then used to determine the peak shear and peel (normal) stresses between the facesheet and bonded flange of the panel and determine the "free edge" effects.

  20. De Vega Annuloplasty for Functional Tricupsid Regurgitation: Concept of Tricuspid Valve Orifice Index to Optimize Tricuspid Valve Annular Reduction

    PubMed Central

    Hwang, Ho Young; Chang, Hyoung Woo; Jeong, Dong Seop

    2013-01-01

    We evaluated long-term results of De Vega annuloplasty measured by cylindrical sizers for functional tricuspid regurgitation (FTR) and analyzed the impact of measured annular size on the late recurrence of tricuspid valve regurgitation. Between 2001 and 2011, 177 patients (57.9±10.5 yr) underwent De Vega annuloplasty for FTR. Three cylindrical sizers (actual diameters of 29.5, 31.5, and 33.5 mm) were used to reproducibly reduce the tricuspid annulus. Long-term outcomes were evaluated and risk factor analyses for the recurrence of FTR ≥3+ were performed. Measured annular diameter indexed by patient's body surface area was included in the analyses as a possible risk factor. Operative mortality occurred in 8 patients (4.5%). Ten-year overall and cardiac death-free survivals were 80.5% and 90.8%, respectively. Five and 10-yr freedom rates from recurrent FTR were 96.5% and 93.1%, respectively. Cox proportional hazard model revealed that higher indexed annular size was the only risk factor for the recurrence of FTR (P=0.006). A minimal P value approach demonstrated that indexed annular diameter of 22.5 mm/m2 was a cut-off value predicting the recurrence of FTR. De Vega annuloplasty for FTR results in low rates of recurrent FTR in the long-term. Tricuspid annulus should be reduced appropriately considering patients' body size to prevent recurrent FTR. PMID:24339705

  1. Overview of balloon-borne aerosol measurements with the aerosol counter LOAC, with focus on the ChArMEx 2013 campaign

    NASA Astrophysics Data System (ADS)

    Dulac, François; Renard, Jean-Baptiste

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of 250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles: the first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.2-100 mm; the second angle, at 60°, is used to discriminate between different types of particles dominating different size classes. The sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with measurements from other sensors at the surface are shown. We shall give a quick review of balloon-borne experiences since 2011 with LOAC under all kinds of balloons including tethered, sounding, open stratospheric, and new boundary-layer pressurized drifting balloons (BLBP) from CNES. Observation domains include the atmospheric surface layer, the boundary layer, the free troposphere and the lower stratosphere up to more than 35 km in altitude. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Results from the various campaigns will be illustrated including the study of fog events, urban aerosols, Saharan dust transport over France, stratospheric soot... Emphasis will be put on the ChArMEx campaign (the Chemistry-Aerosol Mediterranean Experiment) performed in summer 2013 in the Mediterranean basin: 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August. Most of the flights were coupled with ozone concentration measurements (see presentation by F. Gheusi et al.). LOAC balloons were especially, but not only, dedicated to study the various Saharan dust events that occurred during the campaign. In particular, a series of flights were conducted every 12 hours during the 15-19 June dust event. Forest fire smoke from North America was also sampled in late June over Minorca, as well as anthropogenic polluted layers in various occasions. LOAC data are used to identify the various turbid layers with the help of coincident lidar and sun photometer remote sensing measurements in Menorca and air mass trajectories. The sounding flights allow one to determine the vertical extent of the various aerosol layers, and to follow the particle size distribution and the concentration evolution along the vertical. The low altitude drifting balloons, which stayed roughly at constant altitude between 350 and 3330 m up to more than 25 h, allow us to study the time-evolution of the aerosol concentrations in the same air mass. Under both balloon types, LOAC has detected larges particles up to 30 mum in diameter. The flights drifting within dust layers indicate that there is a relatively stable particle size distribution during transport over the sea, with no clear sedimentation loss of large particles.

  2. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Paul

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign andmore » much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in 17 manuscripts published in refereed journals.« less

  3. Structural Design and Analysis of the Upper Pressure Shell Section of a Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Paddock, David; Jeans, Jim W.; Hudeck, John D.

    2008-01-01

    This paper presents the results of the structural design and analysis of the upper pressure shell section of a carbon composite demonstration structure for the Composite Crew Module (CCM) Project. The project is managed by the NASA Engineering and Safety Center with participants from eight NASA Centers, the Air Force Research Laboratory, and multiple aerospace contractors including ATK/Swales, Northrop Grumman, Lockheed Martin, Collier Research Corporation, Genesis Engineering, and Janicki Industries. The paper discusses details of the upper pressure shell section design of the CCM and presents the structural analysis results using the HyperSizer structural sizing software and the MSC Nastran finite element analysis software. The HyperSizer results showed that the controlling load case driving most of the sizing in the upper pressure shell section was the internal pressure load case. The regions around the cutouts were controlled by internal pressure and the main parachute load cases. The global finite element analysis results showed that the majority of the elements of the CCM had a positive margin of safety with the exception of a few hot spots around the cutouts. These hot spots are currently being investigated with a more detailed analysis. Local finite element models of the Low Impact Docking System (LIDS) interface ring and the forward bay gussets with greater mesh fidelity were created for local sizing and analysis. The sizing of the LIDS interface ring was driven by the drogue parachute loads, Trans-Lunar Insertion (TLI) loads, and internal pressure. The drogue parachute loads controlled the sizing of the gusset cap on the drogue gusset and TLI loads controlled the sizing of the other five gusset caps. The main parachute loads controlled the sizing of the lower ends of the gusset caps on the main parachute fittings. The results showed that the gusset web/pressure shell and gusset web/gusset cap interfaces bonded using Pi-preform joints had local hot spots in the Pi-preform termination regions. These regions require a detailed three-dimensional analysis, which is currently being performed, to accurately address the load distribution near the Pi-preform termination in the upper and lower gusset caps.

  4. Ice nuclei measurements at a high altitude remote station in the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Schrod, Jann; Bingemer, Heinz; Haunold, Werner; Curtius, Joachim; Decesari, Stefano; Marinoni, Angela; Rinaldi, Matteo; Bonasoni, Paolo; Cristofanelli, Paolo

    2013-04-01

    During a field campaign of the PEGASOS (Pan-European Gas-AeroSOls-climate interactions Study, http://pegasos.iceht.forth.gr/) project in June 2012 we have made daily ice nucleus measurements on top of the Monte Cimone (44.18° N, 10.70° E, 2165 m asl) in the Northern Apennines at the "O. Vittori" Climate Observatory. Samples were taken at this GAW-WMO Global Station in a six hour rhythm (4 a.m., 10 a.m., 4 p.m. and 10 p.m.) and at increased frequency during specific events (e.g. dust transport episodes). Ice nuclei were measured by an offline technique. Aerosol particles of 40 liters of air were collected by electrostatic precipitation on a silicon substrate. Subsequently the ice nuclei were analyzed in the vacuum diffusion chamber FRIDGE [Klein et al. 2010] (FRankfurt Ice Nuclei Deposition FreezinG Experiment) by exposing the particles to supersaturation with respect to ice (106 % to 119 %) at -8 ° C, -13 ° C and -18 ° C. In our setup ice nuclei are activated in deposition and condensation freezing modes. A camera detects and counts ice crystals grown on ice nuclei. Every ice crystal counted is assumed to represent at least one ice nucleus. The mean IN concentration at Mt. Cimone was 60 IN per liter (at -18 ° C and 119% relative humility over ice), significantly higher than a longstanding mean at Mt. Kleiner Feldberg (30 IN/l), Germany for June. A mean active site density (IN per surface area of large aerosol particles) of 2.3 * 109 m-2 was calculated. The origin of the air masses sampled was established based on backward trajectories. With more than 100 IN/l on average (at -18° C and 119% relative humility over ice) the samples originating from North Africa were highest, and activated fractions were 4 to 20 times higher than for other transport sectors. An intensive event of dust transport was recorded by several instruments in the middle of June. At its peak in the morning of the 21st of June large aerosol surface and mass concentrations were observed by an optical particle sizer. A clear increase of submicron particles was noted during the passage of the dust plume. The heavily dust loaded air had high IN concentrations up to 270 IN/l . The maximum fraction of large aerosol particles activated as ice nuclei during this dust event was one ice nucleus in 1250 aerosol particles. Acknowledgements: This work was funded by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit INUIT. References [Klein et al. 2010] Klein, H. ; Haunold, W. ; Bundke, U. ; Nillius, B. ; Wetter, T. ; Schallenberg, S. ; Bingemer, H.: A new method for sampling of atmospheric ice nuclei with subsequent analysis in a static diffusion chamber. In: Atmospheric Research 96 (2010), p. 218 - 224.

  5. Effects of fungal species, cultivation time, growth substrate, and air exposure velocity on the fluorescence properties of airborne fungal spores.

    PubMed

    Saari, S; Mensah-Attipoe, J; Reponen, T; Veijalainen, A M; Salmela, A; Pasanen, P; Keskinen, J

    2015-12-01

    Real-time bioaerosol monitoring is possible with fluorescence based instruments. This study provides information on major factors that can affect the fluorescence properties of airborne fungal spores. Two fluorescence-based bioaerosol detectors, BioScout, and ultraviolet aerodynamic particle sizer (UVAPS), were used to study fluorescent particle fractions (FPFs) of released spores of three fungal species (Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium brevicompactum). Two culture media (agar and gypsum board), three ages of the culture (one week, one month, and four months), and three aerosolization air velocities (5, 15, and 27 m/s) were tested. The results showed that the FPF values for spores released from gypsum were typically lower than for those released from agar indicating that poor nutrient substrate produces spores with lower amounts of fluorescent compounds. The results also showed higher FPF values with lower air velocities in aerosolization. This indicates that easily released fully developed spores have more fluorescent compounds compared to forcibly extracted non-matured spores. The FPFs typically were lower with older samples. The FPF results between the two instruments were similar, except with four-month-old samples. The results can be utilized in field measurements of fungal spores to estimate actual concentrations and compare different instruments with fluorescence-based devices as well as in instrument calibration and testing in laboratory conditions. Fluorescence-based instruments are the only choice for real-time detection of fungal spores at the moment. In general, all fluorescence-based bioaerosol instruments are tested against known bacterial and fungal spores in laboratory conditions. This study showed that fungal species, growth substrate, age of culture, and air current exposure rate have an effect on detection efficiency of fungal spores in the fluorescence-based instruments. Therefore, these factors should be considered in the instrument calibration process. The results are also important when interpreting results of fluorescence-based field measurements of fungal spores. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    NASA Astrophysics Data System (ADS)

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-03-01

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.

  7. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    DOE PAGES

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; ...

    2015-10-14

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometermore » (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.« less

  8. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometermore » (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.« less

  9. Ozonolysis of a series of biogenic organic volatile compounds and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Bernard, François; Quilgars, Alain; Cazaunau, Mathieu; Grosselin, Benoît.; Daele, Véronique; Mellouki, Abdelwahid; Winterhalter, Richard; Moortgat, Geert K.

    2010-05-01

    Secondary organic aerosols are formed via nucleation of atmospheric organic vapours on pre-existing particles observed in various rural environments where the organic fraction represents the major part of the observed nano-particle (Kavouras and Stephanou, 2002; Kulmala et al., 2004a). However, nucleation of organic vapors appears to be unlikely thermodynamically in relevant atmospheric conditions (Kulmala et al., 2004b). In this work, a systematic study has been conducted to investigate the aerosol formation through the ozonolysis of a series of monotepenes using a newly developed aerosol flow reactor and the ICARE indoor simulation chamber. The nucleation thresholds have been determined for SOA formed through the reaction of ozone with a-Pinene, sabinene, myrcene and limonene in absence of any observable existing particles. The measurements were performed using the flow reactor combined to a particle counter (CPC 3022). Number concentrations of SOA have been measured for different concentration of consumed monoterpenes. The data obtained allow us to estimate the nucleation threshold for a range of 0.2 - 45 ppb of consumed monoterpenes. The nucleation threshold values obtained here (≤ 1 ppb of the consumed monoterpenes) have been found to be lower than the previously reported ones (Berndt et al., 2003; Bonn and Moortgat, 2003; Koch et al., 2000; Lee and Kamens, 2005). The ICARE simulation chamber has been used to study the mechanism of the reaction of ozone with various acyclic terpenes (myrcene, ocimene, linalool and a-farnesene) and to derive the SOA mass formation yield. The time-concentration profiles of reactants and products in gas-phase were obtained using in-situ Fourier Transform Infrared Spectroscopy. In addition, the number and mass concentrations of SOA have been monitored with a Scanning Mobility Particle Sizer. The chemical composition of the SOA formed has been tentatively characterised using Liquid Chromatography - Mass Spectrometry. The results obtained will be compared with those from the literature when available and discussed in terms of their atmospheric impact. Berndt, T., O. Böge and F. Stratmann (2003). Gas-phase ozonolysis of a-pinene: gaseous products and particle formation. Atmospheric Environment, 37: 3933-3945. Bonn, B. and G.K. Moortgat (2003). Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons. Journal of Geophysical Research, 30(11). Kavouras, I. and E.G. Stephanou (2002). Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation. Environmental Science and Technology, 36: 5083-5091. Koch, S., R. Winterhalter, E. Uherek, A. Kolloff, P. Neeb and G.K. Moortagt (2000). Formation of new particles in the gas-phase ozonolysis of monoterpenes. Atmospheric Environment, 34: 4031-4042. Kulmala, M., V.-M. Kerminen, T. Anttila, A. Laaksonen and C.D. O'Dowd (2004b). Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 109(D04205): 1-7. Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili and P.H. McMurry (2004a). Formation and growth rates of ultra-fine atmospheric particles: a review of observations. Journal of Aerosol Science, 35: 143-176. Lee, S. and R.M. Kamens (2005). Particle nucleation from the reaction of a-pinene and O3. Atmospheric Environment, 39: 6822-6832.

  10. Heterogeneous reaction kinetics and mechanism of the nitration of aerosolized protein by O3 and NO2

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Sosedova, Yulia; Rouvière, Aurélie; Ammann, Markus; Pöschl, Ulrich

    2010-05-01

    The effects of air pollution on allergic diseases are not yet well-understood. Proteins contained in biogenic aerosol particles (pollen, spores, bacteria, etc.), which accounts for up to 5% of urban air particulate matter, are efficiently nitrated in polluted environments before inhalation and deposition in the human respiratory tract [1], which is likely to trigger immune reactions for allergies. Proteins undergo a nitration reaction that leads to the formation of 3-nitrotyrosine residues. The kinetics and reaction mechanism of protein nitration are still largely unknown. The kinetics of nitration of protein particles by O3 and NO2 was measured using the short-lived radioactive tracer 13N. The routine for the online production of 13N-labeled nitrogen dioxide and the main experimental setup were reported previously [2]. Bovine serum albumin (BSA) was used as a model protein compound. Deliquesced NaCl particles were also used as a reference. Particles generated by an ultrasonic nebulizer were mixed with O3 (0 - 150 ppb) and NO2 (5 - 100 ppb) in a flow tube reactor under humid conditions (30 - 75 % RH), which lead to gel-like swelling of the protein [3, 4]. The reaction time was varied in the range of 4 -10 min by changing the position of the inlet of the reactor. The surface concentration of particles was monitored by a scanning mobility particle sizer (SMPS). After passing through the flow tube reactor, the gas and aerosol flow entered a narrow parallel-plate diffusion denuder coated to selectively absorb gas phase NO2, followed by a particle filter collecting the particles. The γ detectors were attached to each denuders and the filter to count the amount of gamma quanta, which are emitted in the decay of 13N. From the count-rate, the concentration of the corresponding species was derived, which was used for the calculation of uptake coefficients of NO2 (γNO2). In absence of O3 in the flow tube reactor, NO2 uptake by both BSA and deliquesced NaCl were below the detection limit (γNO2 < ~10-6). The γNO2 by BSA is of the order of 10-5, strongly depending on gas phase ozone concentration, which indicates that O3 plays an important role in NO2 uptake. The γNO2 by deliquesced NaCl is one order of magnitude smaller, which is likely to be attributed to the formation of gas phase NO3 and N2O5, as neither O3 nor NO2 is expected to rapidly react with deliquesced NaCl. This amount of uptake is considered to be maximum contribution of gas phase NO3 radicals and N2O5 to uptake of 13N-labeled species by protein particles. The possible mechanisms of high NO2 uptake by protein particles are: 1) surface reaction between adsorbed O3 and NO2 forming NO3 radicals on the surface which react with protein [5], 2) O3 first reacts with protein forming intermediates, followed by reaction with NO2. Further experiments and modelling are under way. REFERENCES [1] Franze et al., Environ. Sci. Tech., 39, 1673 (2005). [2] Sosedova et al., J. Phys. Chem A., 113, 10979 (2009). [3] Mikhailov et al., Atmos. Chem. Phys., 4, 323 (2004). [4] Mikhailov et al., Atmos. Chem. Phys., 9, 9491 (2009). [5] Shiraiwa et al., Atmos. Chem. Phys., 9, 9571 (2009)

  11. Structural Design of Ares V Interstage Composite Structure

    NASA Technical Reports Server (NTRS)

    Sleigh, David W.; Sreekantamurthy, Thammaiah; Kosareo, Daniel N.; Martin, Robert A.; Johnson, Theodore F.

    2011-01-01

    Preliminary and detailed design studies were performed to mature composite structural design concepts for the Ares V Interstage structure as a part of NASA s Advanced Composite Technologies Project. Aluminum honeycomb sandwich and hat-stiffened composite panel structural concepts were considered. The structural design and analysis studies were performed using HyperSizer design sizing software and MSC Nastran finite element analysis software. System-level design trade studies were carried out to predict weight and margins of safety for composite honeycomb-core sandwich and composite hat-stiffened skin design concepts. Details of both preliminary and detailed design studies are presented in the paper. For the range of loads and geometry considered in this work, the hat-stiffened designs were found to be approximately 11-16 percent lighter than the sandwich designs. A down-select process was used to choose the most favorable structural concept based on a set of figures of merit, and the honeycomb sandwich design was selected as the best concept based on advantages in manufacturing cost.

  12. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.

    2017-11-01

    In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.

  13. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma

    PubMed Central

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Objective To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Methods Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. Results The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. Conclusion The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo. PMID:29652919

  14. Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products

    NASA Astrophysics Data System (ADS)

    Lorenz, Christiane; Hagendorfer, Harald; von Goetz, Natalie; Kaegi, Ralf; Gehrig, Robert; Ulrich, Andrea; Scheringer, Martin; Hungerbühler, Konrad

    2011-08-01

    Consumer spray products are already on the market in the cosmetics and household sector, which suggest by their label that they contain engineered nanoparticles (ENP). Sprays are considered critical for human health, because the lungs represent a major route for the uptake of ENP into the human body. To contribute to the exposure assessment of ENP in consumer spray products, we analyzed ENP in four commercially available sprays: one antiperspirant, two shoe impregnation sprays, and one plant-strengthening agent. The spray dispersions were analyzed by inductively coupled plasma mass spectrometry (ICPMS) and (scanning-) transmission electron microscopy ((S)TEM). Aerosols were generated by using the original vessels, and analyzed by scanning mobility particle sizer (SMPS) and (S)TEM. On the basis of SMPS results, the nanosized aerosol depositing in the respiratory tract was modeled for female and male consumers. The derived exposure levels reflect a single spray application. We identified ENP in the dispersions of two products (shoe impregnation and plant spray). Nanosized aerosols were observed in three products that contained propellant gas. The aerosol number concentration increased linearly with the sprayed amount, with the highest concentration resulting from the antiperspirant. Modeled aerosol exposure levels were in the range of 1010 nanosized aerosol components per person and application event for the antiperspirant and the impregnation sprays, with the largest fraction of nanosized aerosol depositing in the alveolar region. Negligible exposure from the application of the plant spray (pump spray) was observed.

  15. Secondary organic aerosol formation from isoprene photo-oxidation during cloud condensation-evaporation cycles (CUMULUS project)

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, Lola; Siekmann, Frank; Giorio, Chiara; Temime-Roussel, Brice; Pangui, Edouard; Morales, Sébastien; Gratien, Aline; Ravier, Sylvain; Monod, Anne; Doussin, Jean-Francois

    2014-05-01

    It is acknowledged that atmospheric photo-oxidation of Volatile Organic Compounds (VOC) leads to the formation of less volatile oxidized species. These compounds can undergo gas-to-particle conversion, leading to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Nevertheless, some of these oxidized species are water soluble and could also partition into cloud droplets. Higher molecular weight and less volatile compounds could be produced in the aqueous phase and remain in the particle phase after water evaporation (Ervens et al., 2011). The aim of the present work is to study SOA formation in the presence of cloud droplets during isoprene photo-oxidation. To this end, an original multiphase approach in a simulation chamber was set up in order to investigate the chemistry occurring in the gaseous, particulate and aqueous phases, and the exchange between these phases. Experiments were performed, within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM chamber (Wang et al., 2011). This chamber was designed to investigate multiphase processes under realistic actinic flux, and accurate control of both temperature and relative humidity. A specific protocol was set up to produce cloud events in the simulation chamber exhibiting a significant lifetime in the presence of light (10-12 minutes). By using this protocol, many clouds could be generated in a single experiment. In each experiment, around 800 ppb of isoprene was injected in the chamber together with HONO under dry conditions before irradiation. A Fourier Transform Infrared Spectrometer (FTIR), a Proton Transfer Reaction Mass Spectrometer (PTR-TOF-MS) and NOx and O3 analyzers were used to analyze gas-phase composition. Dried SOA size distributions and total concentrations were measured by a Scanning Mobility Particle Sizer (SMPS). An Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS) was also used to investigate aerosol composition. Cloud droplets size distributions were measured by a white light Optical Particle Counter (OPC). In all experiments, the dissolution of gaseous oxidation products into aqueous phase and SOA production have been observed during isoprene photo-oxidation in the presence of a cloud event. The overall results in additional SOA mass production and the dynamic of gaseous oxidation products and SOA mass concentrations will be presented. Ervens, B. et al. (2011). Atmospheric Chemistry and Physics 11(21): 11069-11102. Wang, J. et al. (2011). Atmospheric Measurement Techniques 4(11): 2465-2494.

  16. Seasonal variability in airborne bacterial communities at a high elevation site and their relationship to other air studies and to potential sources

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.; Mccubbin, I. B.; Hallar, A. G.; Fierer, N.

    2012-12-01

    Airborne bacteria are a large component of the near-surface atmospheric aerosol; however we know surprisingly little about their spatiotemporal dynamics and even less about their distributions at high-elevation. With this work, we describe seasonal shifts in bacterial abundances, total particle abundances, and bacterial community structure at a high-elevation research station located in Colorado, USA. In addition, we describe the unique composition of these high-elevation airborne bacterial communities as compared to the bacteria commonly observed throughout the lower elevation atmosphere as well as bacteria common to major sources such as leaf surfaces, soils, water bodies and various other surfaces. To address these knowledge gaps, we collected aerosol samples on the rooftop of Storm Peak Laboratory (3200 m ASL) over the course of 2-3 week periods during each of the four calendar seasons. Total bacterial abundances were assessed via flow cytometry, total particle abundances were calculated with an aerodynamic particle sizer, and bacterial communities were characterized using a high-throughput barcoded DNA sequencing approach. The airborne bacterial communities at Storm Peak Lab were then used in a meta-analysis comparing Storm Peak bacteria to other near-surface (lower elevation) bacterial communities and to the communities of likely source environments. Bacterial abundances varied by season, which was similar but not identical to the changes in total particle abundances across the same sampling period. Airborne bacterial community structure varied significantly by season, with the summer communities being the most distinct. Season specific bacterial groups were identified, suggesting that a large proportion of the airborne community may be derived from nearby sources. However following a multi-environment meta-analysis using several air and source derived bacterial community datasets, the high-elevation air communities were the most distinct as compared to the other airborne communities used in the analysis. Furthermore, a very low proportion of the Storm Peak airborne community could be explained by the source environments used in the meta-analysis, suggesting a unique airborne community at high-elevation. High-alpine bacterial communities appear to make up a large fraction of the total atmospheric aerosol, however the different seasonal patterns between bacterial counts and total particle counts suggest that distinct factors control the quantities of different particles making it into the atmosphere. Furthermore, the characteristics of local terrestrial sources that undergo seasonal cycles seem to have a large influence on the airborne communities, but these sources could not explain the occurrence of all airborne bacterial taxa. As airborne bacteria are more commonly being recognized as a ubiquitous component of the atmosphere, a better understanding of their temporal dynamics in the high-alpine environment may give us insight into their many potential roles in atmospheric dynamics, free troposphere atmospheric dispersal patterns, and their role in human and environmental health.

  17. Crusher Inspector (Iron and Steel) 631.381; Mill-End Inspector (Iron and Steel) 619.381; Mill Inspector (Iron and Steel) 619.381; Pipe and Coupling Sizer (Iron and Steel) 619.381; Pipe Walker (Iron and Steel) 619.381; Thread Inspector (Iron and Steel) 619.687 -- Technical Report on Standardization of the General Aptitude Test Battery.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  18. Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels

    NASA Technical Reports Server (NTRS)

    Yarrington, Phillip W.; Collier, Craig S.; Bednarcyk, Brett A.

    2008-01-01

    This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method.

  19. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Water Vapor in ACE-Asia and Their Comparisons to Correlative Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Livingston, J.; Russell, P.; Hegg, D.; Wang, J.; Kahn, R.; Hsu, C.; Masonis, S.; Murayama, T.; hide

    2002-01-01

    In the Spring 2001 phase of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated on 15 of the 19 research flights of the NCAR C-130, while its 14-channel counterpart (AATS-14) flew successfully on all 19 research flights of the CIRPAS Twin Otter. ACE-Asia studied aerosol outflow from the Asian continent to the Pacific basin. It was designed to integrate suborbital and satellite measurements and models to reduce the uncertainty in calculations of the climate forcing due to aerosols. AATS-6 and AATS-14 measured solar beam transmission at six and 14 wavelengths (380-1021 and 354-1558 nm, respectively), yielding aerosol optical depth (AOD) spectra and columnar water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction spectra and water vapor concentration. In this paper, we plan to present examples of the following, preliminary findings that are based in part on our airborne sunphotometer measurements: (1) The wavelength dependence of sunphotometer-derived AOD and extinction indicates that supermicron dust was often a major component of the aerosol, frequently extending to high altitudes. The percentage of full-column AOD (525 nm) that Jay above 3 km was typically 34+/-13%. In contrast, the analogous percentage of columnar water vapor was only 10+/-4%; (2) Initial comparison studies between AOD data obtained by AATS-6 and AATS-14 during coordinated low-level flight legs show agreement well within the instruments' error bars; (3) Aerosol extinction has been derived from airborne in situ measurements of scattering (nephelometers) and absorption (particle soot/ absorption photometer, PSAP) or calculated from particle size distribution measurements (mobility analyzers and aerodynamic particle sizers). Comparison with corresponding extinction values derived from the Ames airborne sunphotometer measurements shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction/optical depth varied among the aerosol layers sampled; (4) Initial comparisons of sunphotometer and satellite-derived AOD using SeaWiFS, MISR and AVHRR show promising results. We also plan to include comparisons with MODIS and TOMS: (5) Initial comparisons of sunphotometer-derived AOD and aerosol extinction profiles with lidars in Tokyo and on a ship show reasonable agreement.

  20. Secondary Organic Aerosol Formation from the Photooxidation of Naphthalene

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Chen, Y.; Wenger, J.

    2009-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants that are released into the atmosphere as a by-product of combustion processes. The gas-phase PAHs can be chemically transformed via reaction with the hydroxyl radical to produce a range of oxidised organic compounds and other pollutants such as ozone and secondary organic aerosol (SOA). Epidemiological studies have established that exposure to this type of air pollution is associated with damaging effects on the respiratory and cardiovascular systems, and can lead to asthma, oxidative stress, health deterioration and even death. The major anthropogenic source of SOA in urban areas is believed to be aromatic hydrocarbons, which are present in automobile fuels and are used as solvents. As a result, research is currently being performed on the characterisation of SOA produced from aromatic hydrocarbons such as toluene, the xylenes and trimethylbenzenes. However, significant amounts of PAHs are also released into urban areas from automobile emissions and the combustion of fossil fuels for home heating. Naphthalene is regularly cited as the most abundant PAH in polluted urban air, with typical ambient air concentrations of 0.05 - 0.20 parts per billion (ppbV) in European cities, comparable to the xylenes. Since naphthalene reacts in an analogous manner to monocyclic aromatic compounds then it is also expected to make a significant contribution to ambient SOA. However, the yield and chemical composition of SOA produced from the atmospheric degradation of naphthalene is not well known. In this presentation, the effects of NOx level and relative humidity on the SOA formation from the phootooixdation of naphthalene will be presented. A series of experiments has been performed in a large atmospheric simulation chamber equipped with a gas chromatograph and analyzers for monitoring nitrogen oxides (NOx) and ozone. SOA formation from the photooxidation of naphthalene was measured using a scanning mobility particle sizer. The effect of NOx concentration on SOA formation was evaluated by varying the initial naphthalene and NOx concentrations. The results clearly show that a higher hydrocarbon to NOx ratio produces a higher yield of SOA. The SOA mass yields were also found to increase as the relative humidity was raised from 0 to 50%. A recently developed denuder-filter sampling technique was used to investigate the gas/particle partitioning behavior of the photooxidation products. This work is the first study of the formation of SOA from naphthalene and the results will be compared to those obtained from other aromatic compounds.

  1. Particulate matter in the indoor air of classrooms—exploratory results from Munich and surrounding area

    NASA Astrophysics Data System (ADS)

    Fromme, H.; Twardella, D.; Dietrich, S.; Heitmann, D.; Schierl, R.; Liebl, B.; Rüden, H.

    Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms. On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004-2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO 2) and various dust particle fractions (PM 10, PM 2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom. The median indoor CO 2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m -3 (PM 2.5) and 91.5 μg m -3 (PM 10) were observed, in summer PM concentrations were significantly reduced (median PM 2.5=12.7 μg m -3, median PM 10=64.9 μg m -3). PM 2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m -3, median in summer: 20.2 μg m -3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM 2.5 by 1.7 μg m -3 per increase in humidity by 10%, by 0.5 μg m -3 per increase in CO 2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m -3 in 5-7th grade classes and by 7.3 μg m -3 in class 8-11 compared to 1-4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m -3 per increase in 10% humidity) and absent regarding CO 2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm -3 (median: 5660 particles cm -3). The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO 2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools.

  2. Micrometeorological flux measurements of aerosol and gases above Beijing

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko; Langford, Ben; Mullinger, Neil; Cowan, Nicholas; Coyle, Mhairi; Acton, William Joe; Lee, James; Fu, Pingqing

    2017-04-01

    Air pollution is estimated to cause 1.6 million premature deaths in China every year and in the winter 2016/17 Beijing had to issue health alerts and put in place ad hoc limitations on industrial and vehicular activity. Much of this pollution is attributed to emissions from industrial processes and in particular coal combustion. By contrast, the diffuse pollutant sources within the city are less well understood. This includes, e.g., emissions from the Beijing traffic fleet, the sewage system, food preparation, solid fuel combustion in the streets and small industrial processes. Within the framework of a major UK-Chinese collaboration to study air pollution and its impact on human health in Beijing, we therefore measured fluxes of a large range of pollutants from a height of 102 m on the 325 m meteorological tower at the Institute of Atmospheric Physics. Several instruments were mounted at 102 m: fluxes of CO2 and H2O were measured with an infrared gas analyser (LiCOR 7500) and fluxes of ozone with a combination of a relative fast-response ozone analyser (ROFI) and a 2B absolute O3 instrument. Total particle number fluxes were measured with a condensation particle counter (TSI CPC 3785), and size-segregated fluxes over the size range 0.06 to 20 μm with a combination of an optical Ultrafine High Sensitivity Aerosol Spectrometer (UHSAS) and an Aerodynamic Particle Sizer Spectrometer (TSI APS3321). Ammonia (NH3) fluxes were measured for the first time above the urban environment using an Aerodyne compact quantum cascade laser (QCL). In addition, composition resolved aerosol fluxes were measured with an Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), operated in a measurement container at the bottom of the tower, which subsampled from a 120 m long copper tube (15 mm OD). The analysis so far suggests that, due to often low wind speeds, fluxes were at times de-coupled from the surface. Fluxes normalised by CO2, a tracer for the amount of fossil fuel consumed, should be less sensitive to transport effects. However, not only fluxes, but also these CO2-ratioed fluxes are highly variable in both space and time, indicating a complex mix of sources, which will be further investigated. The organic aerosol fluxes were the largest we have recorded to date at any urban measurement site. Nitrate, sulphate, chloride and ammonium all showed emissions that followed a similar diurnal cycle as the organic aerosol. Much of this aerosol is likely to have been formed by chemistry below the measurement height, but it nevertheless indicates significant sources of the precursor gases within the footprint. Comparing the measured fluxes of gas-phase NH3 and aerosol NH4+, at 102 m the aerosol phase makes a significant contribution to the reduced nitrogen emission.

  3. Dual sustained release delivery system for multiple route therapy of an antiviral drug.

    PubMed

    Ramyadevi, D; Sandhya, P

    2014-06-01

    The first successful molecule against herpes infections was Acyclovir, which competes with new generations in the market, with its potential activity. The major physicochemical constraints and pharmacokinetics of Acyclovir such as low solubility, poor permeability, less half-life, high dose has initiated many researchers to develop diverse modified release dosage forms. The objective of this work was to design polymeric nanoparticles of Acyclovir and then incorporate the drug-loaded nanoparticles within an in situ gelling system to provide dual sustained release effect, whereby the duration of action and bioavailability through different routes of administration could be improved. The formulation was designed through 3(2) factorial design, first developing the nanoparticles using Polycaprolactone and Pluronic F127 by Solvent evaporation process, followed by dispersion of the suspended nanoparticles into thermosensitive in situ gelling system of Pluronic F127 with Carbopol. The characterization of the nanoparticles and its sol-gel system performed through zeta sizer, SEM, XRD, TG-DSC, FTIR and rheology helped to optimize the formulation. The drug release could be sustained to 60% and 30% at eight hours, for the nanoparticles and their in situ gel systems, respectively, with non-Fickian diffusion mechanism of drug release. The test for % cell viability with NIH3T3 cell line revealed low level of toxicity for the nanoparticles. The statistical significance obtained for the trail formulations experimentally proved its suitability for this dosage form design to achieve desired level of drug release.

  4. Real-time characterization of the mixing state and droplet growth kinetics of CCN sampled during ICARTT

    NASA Astrophysics Data System (ADS)

    Nenes, A.; Medina, J.; Cottrell, L.; Griffin, R.

    2005-12-01

    Ground measurements of cloud condensation nuclei (CCN) were made during July and August of 2004 as part of the NEAQS ITCT-2K4 (New England Air Quality Study - Intercontinental Transport and Chemical Transformation 2004) mission at the Thompson Farm sampling site maintained by the University of New Hampshire. Over the duration of the field campaign, the two CCN instruments (built by Droplet Measurement Technologies, Inc.) were used to measure the concentration of CCN at 0.1, 0.2, 0.3, 0.37, 0.4, 0.5 and 0.6% supersaturation continuously over extended periods of time. One of the CCN instruments sampled unclassified ambient aerosol and the other was operated in our newly developed "Scanning Mobility CCN Analysis" technique (in which classified ambient aerosol obtained from a scanning DMA is introduced into the CCN counter), which allows the rapid characterization of the activation properties of classified ambient aerosol. Aerosol size distributions were measured using a TSI scanning mobility particle sizer (SMPS 3080). Finally, an Aerodyne Aerosol Mass Spectrometer (AMS) operated by the University of New Hampshire was used to measure the size-resolved chemical composition of the aerosol. We analyze the measurements using detailed numerical models of the CCN instrumentation. By close integration of measurements and theory, CCN closure can be assessed and real-time observations of CCN mixing state, ageing and droplet growth kinetics can be obtained. Finally, we derive characteristic aggregate properties for the carbonaceous component of the CCN, and discuss how this information can be introduced into aerosol-cloud interaction modules for GCM assessments of the aerosol indirect effect.

  5. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  6. Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

    NASA Astrophysics Data System (ADS)

    Liu, Tengyu; Li, Zijun; Chan, ManNin; Chan, Chak K.

    2017-06-01

    Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19-20 °C and 65-70 % relative humidity (RH). The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm-3 s, was 1. 35 ± 0. 30 µg min-1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc) of SOA was -1.51 to -0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.

  7. Exposure assessment of carbon nanotubes at pilot factory focusing on quantitative determination of catalytic metals.

    PubMed

    Kato, Nobuyuki; Nagaya, Taiki; Matsui, Yasuto; Yoneda, Minoru

    2017-11-25

    The application of multiwall carbon nanotubes (MWCNTs) currently extends to various fields. However, it has been reported that exposure to CNT causes hazardous effects on animals and cells. The purpose of this study was to quantify the exposure to MWCNT in MWCNT/polymer composites for exposure assessment. We focused on catalytic metals included in the MWCNT and the diameter of dust released during the working processes. Although the Co in MWCNTs is not a common catalyst, it was used as a tracer in this study. A field survey was conducted in a MWCNT/polymer composite pilot factory. Airborne MWCNTs were monitored using black carbon monitors (BCMs) and optical particle sizers (OPSs) and collected on a filter. The MWCNT powder, all polymer resins used during the working processes, and the filter were analyzed in our lab using inductively coupled plasma mass spectrometry (ICP-MS) and electron microscopic observation. The mean concentration of airborne MWCNT contained in the collected dust was 0.92 μg/m 3 a few meters away from the extruder during the working processes (using elemental analysis). The maximum concentration measured using BCMs was shown to be seven times higher than the base concentration during the pelletizing process of polycarbonate (PC) and MWCNT composites. However, free, isolated, and unbound agglomerated MWCNTs were not detected using scanning electron microscopic (SEM) observation. The result obtained by elemental analysis indicated it was possible to quantify MWCNT in composites. The mean concentration at this factory was lower than the recommended exposure limit. However, additional studies during the pelletizing process are required in the future.

  8. Green biosynthesis of silver nanoparticles using Althaea officinalis radix hydroalcoholic extract.

    PubMed

    Korbekandi, Hassan; Asghari, Gholamreza; Chitsazi, Mohammad Reza; Bahri Najafi, Rahim; Badii, Akbar; Iravani, Siavash

    2016-01-01

    The objectives were to study the potential of Althaea officinalis radix in production of silver NPs, and the effect of the extract ethanol concentration on the produced NPs. Seventy and ninety-six percent hydroalcoholic extracts were prepared by percolation of the plant powder. The extract was concentrated by rotary evaporator and then freeze-dried. Silver ions were determined using atomic absorption analysis. The NPs were characterized by Nano-Zeta Sizer and TEM. Both of 70% and 96% of hydroalcoholic extracts of A. officinalis radix successfully synthesized spherical and poly-dispersed silver NPs. The conversion was fast and almost completed in 5 h.

  9. A miniature particle counter LOAC under meteorological balloon for the survey of stratospheric aerosols - comparison with other datasets

    NASA Astrophysics Data System (ADS)

    Vignelles, Damien; Berthet, Bwenael; Renard, Jean-Baptiste; Rieger, Landon; Bourassa, Adam; Vernier, Jean-Paul; Taha, Ghassan; Khaykin, Sergey; Lurton, Thibaut; Jegou, Fabrice; Couté, Benoît; Duverger, Vincent

    2017-04-01

    Stratospheric aerosols contribute to the terrestrial radiative budget during large eruptive events but also during volcanic quiescent periods (Kremser et al. 2016). The survey of background stratospheric aerosols, especially in the middle stratosphere, is challenging due to extreme experimental conditions and low particle concentration. Furthermore, during periods of low volcanic activity, origins and optical properties of aerosols in the middle and high stratosphere are not well defined yet (Neely et al. 2011). We propose to study the capabilities of a new miniature particle counter called LOAC (Light Optical Aerosol Counter), light enough to be carried under meteorological balloons, whichensure a very good frequency of flights and designed to be able to measure and discriminate between several main aerosol types. The LOAC miniature particle counter has been initially designed for balloon-borne tropospheric studies (Renard et al. 2016).Metrological performances of the LOAC instrument have been determined in the laboratory and during balloon flights. Principal limitations of the use of LOAC in the stratosphere areinduced by the temperature variations and the influence of cosmic rays. A detection threshold has been determined in the laboratory to be of 0.8 particule.cm-3 in terms of concentration which also limits the use of LOAC in the stratosphere where aerosol concentrations during volcanic quiescent periods may be lower than this limit. Since June 2013, more than 100 hundred LOAC instruments have been launched under meteorological balloons during the ChArMEx and Voltaire-LOAC field campaigns. This dataset has been studied and compared to satellite records such as OSIRIS, OMPS, and CALIOPbut also to ground-based lidar data (NDACC lidar OHP) and outputs from the WACCM/CARMA model. Results show that large variations in stratospheric aerosols are well defined by satellite but less visible in LOAC records. Instrumental LOAC limitations in the stratosphere can explain some of the difference between remote sensing methods and in-situ measurements but suggest also that local variations in the stratospheric aerosol contents may exist during volcanic quiescent periods. Flights made through the Calbucoplume in stratosphere during the summer 2015 show that LOAC can describe distribution in size and particle concentrations in a perturbed lower stratosphere. In the stratosphere free of volcanic influence, an integration time of 10 minutes shows better results. Kremser et al. (2016) Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys. 54, 2015RG000511. doi:10.1002/2015RG000511 Neely, R.R., English, J.M., Toon, O.B., Solomon, S., Mills, M., Thayer, J.P., 2011. Implications of extinction due to meteoritic smoke in the upper stratosphere: EXTINCTION DUE TO METEORITIC SMOKE. Geophys. Res. Lett. 38, doi:10.1029/2011GL049865 Renard et al. (2016) LOAC: a small aerosol optical sounter/sizer for ground-based and balloon measurements AMT. 9, 1721-1742. doi:10.5194/amt-9-1724-2016

  10. Optical and microphysical properties of aerosol vertical distribution over Vipava valley retrieved by ground-based elastic lidar and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wang, Longlong; Gregorič, Asta; Stanič, Samo; Mole, Maruška; Bergant, Klemen; Močnik, Griša; Drinovec, Luka; Vaupotič, Janja; Miler, Miloš; Gosar, Mateja

    2017-04-01

    Atmospheric aerosols influence Earth's radiation budget, visibility and air quality, as well as the cloud formation processes and precipitation. The structure of the vertical aerosol distribution, in particular that of black carbon, significantly influences the aerosol direct radiative effect, followed by feedbacks on cloud and planetary boundary layer dynamics. The knowledge on aerosol vertical distribution and properties therefore provides an important insight into many atmospheric processes. In order to retrieve the vertical distribution of aerosol properties in the Vipava valley (Slovenia) and the influence of planetary boundary layer height on the local air quality, in-situ and LIDAR measurements were performed. In-situ methods consisted of aerosol size distribution and number concentration and black carbon concentration measurements which were performed during a one-month extensive measurement campaign in spring 2016. Aerosol size distribution (10 nm to 30 µm) was measured at the valley floor using scanning mobility particle sizer (SMPS, Grimm Aerosol Technique, Germany) and optical particle counter (OPC, Grimm Aerosol Technique, Germany). Black carbon concentrations were measured by Aethalometer AE33 (Aerosol d.o.o., Slovenia) at the valley floor (125 m a.s.l.) and at the top of the adjacent mountain ridge (951 m a.s.l.), the later representing regional background conditions. The in-situ measurements were combined with LIDAR remote sensing, where the vertical profiles of aerosol backscattering coefficients were retrieved using the Klett method. In addition, aerosol samples were analyzed by SEM-EDX to obtain aerosol morphology and chemical composition. Two different cases with expected dominant presence of specific aerosol types were investigated in more detail. They show significantly different aerosol properties and distributions within the valley, which has an important implication for the direct radiative effect. In the first case, during a Saharan dust event on 5-6 April 2016 the prevailing aerosols were expected to be mineral dust, while in the second case, during traditional bonfires on 30 April 30 - 1 May 2016 carbonaceous aerosol from biomass burning prevailed. In the Saharan dust case, the height of the mineral dust layer decreased from 2 km to 1 km, causing the mixing of mineral dust within the planetary boundary layer, which resulted in its spreading within the valley. Increased fraction of relatively large mineral aerosols was observed (2.5-10 µm) and their identity was confirmed by SEM-EDX analysis of the collected samples. No significant increase of black carbon concentration was detected, indicating dry deposition of mineral dust and good mixing with the locally emitted black carbon. In the biomass burning case, the LIDAR backscattering coefficient gradually increased due to intensive local emissions within the valley. After 10PM the increasing wind caused the dispersion of aerosols and the total particle concentration of particles smaller than 1 µm indicates smaller sizes of black carbon aerosols in comparison to mineral dust particles.

  11. Aerosol and CCN in southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof

    2010-05-01

    As part of an ongoing study of the microphysical and dynamical controls on precipitation in southwest Saudi Arabia, a number of surface and aircraft-based instruments were used in summer / fall 2009 to measure the size distribution, hygroscopic properties, and cloud droplet nucleation efficiency of the local aerosol. Submicron size distributions were measured using differential mobility analyzers both on the ground and on board the aircraft, while an aerodynamic particle sizer and a forward scattering spectrometer probe were used to measure the supermicron size distributions on the ground and from on board the aircraft, respectively. Identical continuous flow cloud condensation nuclei counters were used to measure CCN spectra at the surface and aloft and a humidified tandem differential mobility analyzer was operated on the ground to measure size-resolved hygroscopicity. The aerosol in this arid environment is characterized by a persistent accumulation mode having hygroscopic and CCN efficiency properties consistent with a sulfate-rich aged aerosol. The particles in that background aerosol are generally sufficiently large and hygroscopic to activate at those supersaturations expected in the convective clouds responsible for most of the regional precipitation, which consequently acts as a lower bound on the resulting cloud droplet concentrations. Though the concentration, size distribution, and properties of the submicron aerosol generally changed very slowly over periods of several hours, abrupt ~doubling in concentration almost always accompanied the arrival of the sea breeze front that began along the Red Sea. Interestingly, the hygroscopicity and the shape of the size distribution differed little in the pre- and post-sea breeze air masses. The dust-dominated coarse mode typically contributed significantly more to the aerosol mass concentration than did the submicron mode and likely controlled the ice nuclei concentration, though no direct measurements were made to confirm this. Results of routine flight patterns designed to examine the spatial, vertical, and day-to-day variability of the aerosol will be presented and the link between the aerosol at the surface and aloft will be quantified. This presentation will emphasize the regional character of the aerosol and will assess its influence on cloud microphysics.

  12. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported biomass burning alters atmospheric composition very significantly. AOT can reach values as high as 2-3 at 550 nm, and concentrations of aerosol species and trace gases are strongly enriched.

  13. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Shen, Wei-De; Xiang, Ru-Li; Zhuge, Lan-Jian; Gao, Wei-Jian; Wang, Wen-Bao

    2007-10-01

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk fibroin in aqueous solution. It is possible that the silk protein nanoparticles are potentially useful in biomaterials such as cosmetics, anti-UV skincare products, industrial materials and surface improving materials, especially in enzyme/drug delivery system as vehicle.

  14. An overview of the Ice Nuclei Research Unit Jungfraujoch/Cloud and Aerosol Characterization Experiment 2013 (INUIT-JFJ/CLACE-2013)

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes

    2014-05-01

    Ice formation in mixed phase tropospheric clouds is an essential prerequisite for the formation of precipitation at mid-latitudes. Ice formation at temperatures warmer than -35°C is only possible via heterogeneous ice nucleation, but up to now the exact pathways of heterogeneous ice formation are not sufficiently well understood. The research unit INUIT (Ice NUcleation research unIT), funded by the Deutsche Forschungsgemeinschaft (DFG FOR 1525) has been established in 2012 with the objective to investigate heterogeneous ice nucleation by combination of laboratory studies, model calculation and field experiments. The main field campaign of the INUIT project (INUIT-JFJ) was conducted at the High Alpine Research Station Jungfraujoch (Swiss Alps, 3580 m asl) during January and February 2013, in collaboration with several international partners in the framework of CLACE2013. The instrumentation included a large set of aerosol chemical and physical analysis instruments (particle counters, particle sizers, particle mass spectrometers, cloud condensation nuclei counters, ice nucleus counters etc.), that were operated inside the Sphinx laboratory and sampled in mixed phase clouds through two ice selective inlets (Ice-CVI, ISI) as well as through a total aerosol inlet that was used for out-of-cloud aerosol measurements. Besides the on-line measurements, also samples for off-line analysis (ESEM, STXM) have been taken in and out of clouds. Furthermore, several cloud microphysics instruments were operated outside the Sphinx laboratory. First results indicate that a large fraction of ice residues sampled from mixed phase clouds contain organic material, but also mineral dust. Soot and lead were not found to be enriched in ice residues. The concentration of heterogeneous ice nuclei was found to be variable (ranging between < 1 and > 100 per liter) and to be strongly dependent on the operating conditions of the respective IN counter. The number size distribution of ice residues appears to show a bimodal distribution with a smaller mode having a modal diameter around 200 nm and a coarse mode at around 2 µm. During the cloud events evaluated so far, agreement between the number concentration of ice residues sampled through the Ice-CVI and the measured concentration of small ice crystals measured outside the laboratory could be achieved. The shape of small ice crystals was found to be mainly irregular. We acknowledge the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG), the help of the custodians at the Jungfraujoch station, and the funding by DFG (FOR 1525) and the federal state Hessen ("LOEWE-Schwerpunkt AmbiProbe").

  15. Role of snow in the fate of gaseous and particulate exhaust pollutants from gasoline-powered vehicles.

    PubMed

    Nazarenko, Yevgen; Fournier, Sébastien; Kurien, Uday; Rangel-Alvarado, Rodrigo Benjamin; Nepotchatykh, Oleg; Seers, Patrice; Ariya, Parisa A

    2017-04-01

    Little is known about pollution in urban snow and how aerosol and gaseous air pollutants interact with the urban snowpack. Here we investigate interactions of exhaust pollution with snow at low ambient temperature using fresh snow in a temperature-controlled chamber. A gasoline-powered engine from a modern light duty vehicle generated the exhaust and was operated in homogeneous and stratified engine regimes. We determined that, within a timescale of 30 min, snow takes up from the exhaust a large mass of organic pollutants and aerosol particles, which were observed by electron microscopy, mass spectrometry and aerosol sizers. Specifically, the concentration of total organic carbon in the exposed snow increased from 0.948 ± 0.009 to 1.828 ± 0.001 mg/L (homogeneous engine regime) and from 0.275 ± 0.005 to 0.514 ± 0.008 mg/L (stratified engine regime). The concentrations of benzene, toluene and 13 out of 16 measured polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, benz[a]anthracene, chrysene and benzo[a]pyrene in snow increased upon exposure from near the detection limit to 0.529 ± 0.058, 1.840 ± 0.200, 0.176 ± 0.020, 0.020 ± 0.005, 0.025 ± 0.005 and 0.028 ± 0.005 ng/kg, respectively, for the homogeneous regime. After contact with snow, 50-400 nm particles were present with higher relative abundance compared to the smaller nanoparticles (<50 nm), for the homogeneous regime. The lowering of temperature from 25 ± 1 °C to (-8) - (-10) ± 1 °C decreased the median mode diameter of the exhaust aerosol particles from 69 nm to 57 nm (p < 0.1) and addition of snow to 51 nm (p < 0.1) for the stratified regime, but increased it from 20 nm to 27 nm (p < 0.1) for the homogeneous regime. Future studies should focus on cycling of exhaust-derived pollutants between the atmosphere and cryosphere. The role of the effects we discovered should be evaluated as part of assessment of pollutant loads and exposures in regions with a defined winter season. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A Procedure for Structural Weight Estimation of Single Stage to Orbit Launch Vehicles (Interim User's Manual)

    NASA Technical Reports Server (NTRS)

    Martinovic, Zoran N.; Cerro, Jeffrey A.

    2002-01-01

    This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.

  17. Self-Assembled Cubic Liquid Crystalline Nanoparticles for Transdermal Delivery of Paeonol

    PubMed Central

    Li, Jian-Chun; Zhu, Na; Zhu, Jin-Xiu; Zhang, Wen-Jing; Zhang, Hong-Min; Wang, Qing-Qing; Wu, Xiao-Xiang; Wang, Xiu; Zhang, Jin; Hao, Ji-Fu

    2015-01-01

    Background The aim of this study was to optimize the preparation method for self-assembled glyceryl monoolein-based cubosomes containing paeonol and to characterize the properties of this transdermal delivery system to improve the drug penetration ability in the skin. Material/Methods In this study, the cubic liquid crystalline nanoparticles loaded with paeonol were prepared by fragmentation of glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel by high-pressure homogenization. We evaluated the Zeta potential of these promising skin-targeting drug-delivery systems using the Malvern Zeta sizer examination, and various microscopies and differential scanning calorimetry were also used for property investigation. Stimulating studies were evaluated based on the skin irritation reaction score standard and the skin stimulus intensity evaluation standard for paeonol cubosomes when compared with commercial paeonol ointment. In vitro tests were performed on excised rat skins in an improved Franz diffusion apparatus. The amount of paeonol over time in the in vitro penetration and retention experiments both was determined quantitatively by HPLC. Results Stimulating studies were compared with the commercial ointment which indicated that the paeonol cubic liquid crystalline nanoparticles could reduce the irritation in the skin stimulating test. Thus, based on the attractive characteristics of the cubic crystal system of paeonol, we will further exploit the cosmetic features in the future studies. Conclusions The transdermal delivery system of paeonol with low-irritation based on the self-assembled cubic liquid crystalline nanoparticles prepared in this study might be a promising system of good tropical preparation for skin application. PMID:26517086

  18. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    PubMed

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements

    NASA Astrophysics Data System (ADS)

    Louvaris, Evangelos E.; Karnezi, Eleni; Kostenidou, Evangelia; Kaltsonoudis, Christos; Pandis, Spyros N.

    2017-10-01

    A method is developed following the work of Grieshop et al. (2009) for the determination of the organic aerosol (OA) volatility distribution combining thermodenuder (TD) and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA) produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS). In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60-75 % of the cooking OA (COA) at concentrations around 500 µg m-3 consisted of low-volatility organic compounds (LVOCs), 20-30 % of semivolatile organic compounds (SVOCs), and around 10 % of intermediate-volatility organic compounds (IVOCs). The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol-1 and the effective accommodation coefficient was 0.06-0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.

  20. Dispersed gold nanoparticles potentially ruin gold barley yellow dwarf virus and eliminate virus infectivity hazards

    NASA Astrophysics Data System (ADS)

    Alkubaisi, Noorah A.; Aref, Nagwa M. A.

    2017-02-01

    Gold nanoparticles (AuNPs) application melted barley yellow dwarf virus-PAV (BYDV-PAV) spherical nanoparticle capsids. Synergistic therapeutic effects for plant virus resistance were induced by interaction with binding units of prepared AuNPs in a water solution which was characterized and evaluated by zeta sizer, zeta potential and transmission electron microscopy (TEM). The yield of purified nanoparticles of BYDV-PAV was obtained from Hordeum vulgare (Barley) cultivars, local and Giza 121/Justo. It was 0.62 mg/ml from 27.30 g of infected leaves at an A260/A280 ratio. Virus nanoparticle has a spherical shape 30 nm in size by TEM. BYDV-PAV combined with AuNPs to challenge virus function in vivo and in vitro. Dual AuNPs existence in vivo and in vitro affected compacted configuration of viral capsid protein in the interior surface of capsomers, the outer surface, or between the interface of coat protein subunits for 24 and 48 h incubation period in vitro at room temperature. The sizes of AuNPs that had a potentially dramatic deteriorated effect are 3.151 and 31.67 nm with a different intensity of 75.3% for the former and 24.7% for the latter, which enhances optical sensing applications to eliminate virus infectivity. Damages of capsid protein due to AuNPs on the surface of virus subunits caused variable performance in four different types of TEM named puffed, deteriorated and decorated, ruined and vanished. Viral yield showed remarkably high-intensity degree of particle symmetry and uniformity in the local cultivar greater than in Giza 121/Justo cultivar. A high yield of ruined VLPs in the local cultivar than Justo cultivar was noticed. AuNPs indicated complete lysed VLPs and some deteriorated VLPs at 48 h.

  1. Exposure assessment of carbon nanotubes at pilot factory focusing on quantitative determination of catalytic metals

    PubMed Central

    Kato, Nobuyuki; Nagaya, Taiki; Matsui, Yasuto; Yoneda, Minoru

    2017-01-01

    Objectives: The application of multiwall carbon nanotubes (MWCNTs) currently extends to various fields. However, it has been reported that exposure to CNT causes hazardous effects on animals and cells. The purpose of this study was to quantify the exposure to MWCNT in MWCNT/polymer composites for exposure assessment. We focused on catalytic metals included in the MWCNT and the diameter of dust released during the working processes. Although the Co in MWCNTs is not a common catalyst, it was used as a tracer in this study. Methods: A field survey was conducted in a MWCNT/polymer composite pilot factory. Airborne MWCNTs were monitored using black carbon monitors (BCMs) and optical particle sizers (OPSs) and collected on a filter. The MWCNT powder, all polymer resins used during the working processes, and the filter were analyzed in our lab using inductively coupled plasma mass spectrometry (ICP-MS) and electron microscopic observation. Results: The mean concentration of airborne MWCNT contained in the collected dust was 0.92 μg/m3 a few meters away from the extruder during the working processes (using elemental analysis). The maximum concentration measured using BCMs was shown to be seven times higher than the base concentration during the pelletizing process of polycarbonate (PC) and MWCNT composites. However, free, isolated, and unbound agglomerated MWCNTs were not detected using scanning electron microscopic (SEM) observation. Conclusions: The result obtained by elemental analysis indicated it was possible to quantify MWCNT in composites. The mean concentration at this factory was lower than the recommended exposure limit. However, additional studies during the pelletizing process are required in the future. PMID:28993572

  2. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.

    PubMed

    Chen, Wenjin; Wong, Chung; Vosburgh, Evan; Levine, Arnold J; Foran, David J; Xu, Eugenia Y

    2014-07-08

    The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application - SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary "Manual Initialize" and "Hand Draw" tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model for drug screens in industry and academia.

  3. Atmospheric transformation of diesel emissions.

    PubMed

    Zielinska, Barbara; Samy, Shar; McDonald, Jacob D; Seagrave, JeanClare

    2010-04-01

    The hypothesis of this study was that exposing diesel exhaust (DE*) to the atmosphere transforms its composition and toxicity. Our specific aims were (1) to characterize the gas- and particle-phase products of atmospheric transformations of DE under the influence of daylight, ozone (O3), hydroxyl (OH) radicals, and nitrate (NO3) radicals; and (2) to explore the biologic activity of DE before and after the transformations took place. The study was executed with the aid of the EUPHORE (European Photoreactor) outdoor simulation chamber facility in Valencia, Spain. EUPHORE is one of the largest and best-equipped facilities of its kind in the world, allowing investigation of atmospheric transformation processes under realistic ambient conditions (with dilutions in the range of 1:300). DE was generated on-site using a modern light-duty diesel engine and a dynamometer system equipped with a continuous emission-gas analyzer. The engine (a turbocharged, intercooled model with common-rail direct injection) was obtained from the Ford Motor Company. A first series of experiments was carried out in January 2005 (the winter 2005 campaign), a second in May 2005 (the summer 2005 campaign), and a third in May and June 2006 (the summer 2006 campaign). The diesel fuel that was used closely matched the one currently in use in most of the United States (containing 47 ppm sulfur and 15% aromatic compounds). Our experiments examined the effects on the composition of DE aged in the dark with added NO3 radicals and of DE aged in daylight with added OH radicals both with and without added volatile organic compounds (VOCs). In order to remove excess nitrogen oxides (NO(x)), a NO(x) denuder was devised and used to conduct experiments in realistic low-NO(x) conditions in both summer campaigns. A scanning mobility particle sizer was used to determine the particle size and the number and volume concentrations of particulate matter (PM) in the DE. O3, NO(x), and reactive nitrogen oxides (NO(y)) were monitored using chemiluminescence and Fourier transform infrared instruments. At the end of the exposures, samples of particle-associated and semivolatile organic compounds (SVOCs) were collected from the chamber for chemical analysis using an XAD-coated annular denuder followed by a filter and XAD cartridge. (XAD is an adsorbent polystyrene divinylbenzene resin used in sampling cartridges.) Samples for toxicity testing were collected using Teflon filters followed by two XAD cartridges. The chemical analyses included determination of organic carbon (OC), elemental carbon (EC), carbon fractions, inorganic ions (e.g., sulfate and nitrate), and speciated organic compounds (polycyclic aromatic hydrocarbons [PAHs], nitro-PAHs, polar compounds, alkanes, hopanes, and steranes). The toxicity tests were performed with extracts of PM combined with the SVOCs. The biologic activity of these extracts was evaluated in vivo by instilling them into the tracheas of rodents and measuring pulmonary toxicity, inflammation, and oxidative-stress responses. Results from the chemical analyses indicated that aging DE in the dark with added NO3 radicals and aging DE in daylight with and without additions led to the formation of additional particles and SVOC mass caused by reactions of VOCs, SVOCs, and inorganic gases. The greatest increase in mass occurred with the addition of VOCs as co-reactants. The proportions of the pyrolized OC (POC) fraction increased in the organic mass, which suggested that highly polar and oligomeric compounds had been formed. Results from the toxicity testing were consistent with the hypothesis that the toxicity of the samples had been affected by changes in their composition (caused both by the atmospheric aging and by changes in the initial composition of the DE presumably associated with changes in the engine, which was new at the outset and accrued wear during the study).

  4. Intraoperative measurements on the mitral apparatus using optical tracking: a feasibility study

    NASA Astrophysics Data System (ADS)

    Engelhardt, Sandy; De Simone, Raffaele; Wald, Diana; Zimmermann, Norbert; Al Maisary, Sameer; Beller, Carsten J.; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo

    2014-03-01

    Mitral valve reconstruction is a widespread surgical method to repair incompetent mitral valves. During reconstructive surgery the judgement of mitral valve geometry and subvalvular apparatus is mandatory in order to choose for the appropriate repair strategy. To date, intraoperative analysis of mitral valve is merely based on visual assessment and inaccurate sizer devices, which do not allow for any accurate and standardized measurement of the complex three-dimensional anatomy. We propose a new intraoperative computer-assisted method for mitral valve measurements using a pointing instrument together with an optical tracking system. Sixteen anatomical points were defined on the mitral apparatus. The feasibility and the reproducibility of the measurements have been tested on a rapid prototyping (RP) heart model and a freshly exercised porcine heart. Four heart surgeons repeated the measurements three times on each heart. Morphologically important distances between the measured points are calculated. We achieved an interexpert variability mean of 2.28 +/- 1:13 mm for the 3D-printed heart and 2.45 +/- 0:75 mm for the porcine heart. The overall time to perform a complete measurement is 1-2 minutes, which makes the method viable for virtual annuloplasty during an intervention.

  5. Nonlinear and Synchronous Dissolved Organic Matter Dynamics in Streams Across an Agriculture Land Use and Climate Setting

    NASA Astrophysics Data System (ADS)

    Xenopoulos, M. A.; Vogt, R. J.

    2014-12-01

    There is now increasing evidence that non-linearity is a common response in ecological systems to pressures caused by human activities. There is also increasing evidence that exogenous environmental drivers, such as climate, induce spatial and temporal synchrony in a wide range of ecological variables. Using Moran's I and Pearson's correlation, we quantified the synchrony of dissolved organic carbon concentration (DOC) and quality (DOM; e.g., specific UV absorbance, Fluorescence Index, PARAFAC), nutrients, discharge and temperature in 40 streams that span an agriculture gradient (0 to >70% cropland), over 10 years. We then used breakpoint regression, 2D-Kolmogorov-Smirnov test and significant zero crossings (SiZer) analyses to quantify the prevalence of nonlinearity and ecological thresholds (breakpoints) where applicable. There was a high degree of synchrony in DOM quality (r > 0.7) but not DOC (r < 0.4). The degree of synchrony was driven in part by the catchment's land use. With respect to the nonlinear analyses we found non-linearity in ~50% of bivariate datasets analyzed. Non-linearity was also driven in part by the catchment's land use. Breakpoints defined different DOM properties. Nonlinearity and synchronous behaviour in DOM are intimately linked to land use.

  6. Concentration of small ions measured at the center of Tokyo, at the summit of Mt. Fuji, and over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Miura, K.; Ueda, S.; Nagaoka, N.; Fukawa, A.; Nagano, K.; Kobayashi, H.; Yasuda, H.; Yajima, K.; Furutani, H.; Uematsu, M.

    2012-12-01

    /Introduction/ It has been proposed that climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. The cause of it is considered as a new particle formation with ion induced nucleation. The ion induced nucleation is occurred under the low concentration of particles and high concentration of ions, but there are a few reports. Then we have observed small ions, aerosol size distributions, radon concentrations, and intensity of cosmic rays at the summit of Mt. Fuji simultaneously. We also observed the similar elements at the center of Tokyo and over the Pacific Ocean. /Methods/ Observations were performed in summer in 2010 and 2011 at the summit (3776m ASL) and in summer in 2011 at Tarobo (1290m ASL), at the base of the Mt. Fuji and from autumn in 2010 to summer 2011 at the center of Tokyo, and from 1st December 2011 to 6th March 2012 on the R/V Hakuho Maru over the Pacific Ocean. Small ions were measured with the Gerdien type meter (COM-3400). The critical mobility was set 0.7 cm2/V/s and we measured positive and negative ions alternately. Size distributions from 4.4 to 5000 nm in diameter were measured with a scanning mobility particle sizer (SMPS, TSI 3936N25 or 3936L22) and an optical particle counter (OPC, RION KR12 or KC01D). Radon concentration was calculated from concentration of radioactive aerosols collected on a filter. Small ions are generated with ionization of air by cosmic rays or radiation from radioactive substances. Small ions are lost by various mechanisms such as ion-ion recombination and ion-aerosol attachment. /Results and Discussion/ Hourly averaged concentration often showed the diurnal pattern of high in the early morning and low in the evening at Kagurazaka, Tarobo, and the summit in 2010. However, the different pattern of low in the early morning and high in the evening was often observed at the summit in 2011. This pattern had observed by some investigaters. New particle formation with ion-induced nucleation was observed once at night. There is a possibility of descending of stratosphere air mass and low concentration of particles during the period. Conductivity measured on mid-March in Tokyo showed high values. Its variation was well accorded with that of dose measured in the Tokyo Metropolitan Institute of Public Health 4km far from the observation site. Then we regarded this event was the transport of radioactive substances from the Fukushima Daiichi Nuclear Power Station. We estimated the air mass size of radioactive substances from decreasing rate of conductivity. After March 23, the decreasing rate of conductivity became low. We judged the source of ionization was the deposition of radioactive substances and estimated the removal rate of deposition around the site. /Acknowledgments/ This study was partly supported by the Grants-in-Aid for Scientific Research, Category C (Grant No. 22510019), from JSPS. This work was partly performed during the period in which the NPO "Valid Utilization of Mt. Fuji Weather Station" maintained the facilities.

  7. Spherical Cryogenic Hydrogen Tank Preliminary Design Trade Studies

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2007-01-01

    A structural analysis, sizing optimization, and weight prediction study was performed by Collier Research Corporation and NASA Glenn on a spherical cryogenic hydrogen tank. The tank consisted of an inner and outer wall separated by a vacuum for thermal insulation purposes. HyperSizer (Collier Research and Development Corporation), a commercial automated structural analysis and sizing software package was used to design the lightest feasible tank for a given overall size and thermomechanical loading environment. Weight trade studies were completed for different panel concepts and metallic and composite material systems. Extensive failure analyses were performed for each combination of dimensional variables, materials, and layups to establish the structural integrity of tank designs. Detailed stress and strain fields were computed from operational temperature changes and pressure loads. The inner tank wall is sized by the resulting biaxial tensile stresses which cause it to be strength driven, and leads to an optimum panel concept that need not be stiffened. Conversely, the outer tank wall is sized by a biaxial compressive stress field, induced by the pressure differential between atmospheric pressure and the vacuum between the tanks, thereby causing the design to be stability driven and thus stiffened to prevent buckling. Induced thermal stresses become a major sizing driver when a composite or hybrid composite/metallic material systems are used for the inner tank wall for purposes such as liners to contain the fuel and reduce hydrogen permeation.

  8. Global- to Micro-Scale Evolution of the Pinatubo Aerosol: Using Composite Data Sets to Build the Picture and Assess Consistency of Different Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Pueschel, R. F.; Livingston, J. M.; Bergstrom, R.; Lawless, James G. (Technical Monitor)

    1994-01-01

    This paper brings together experimental. evidence required to build realistic models of the global evolution of physical, chemical, and optical properties of the aerosol resulting from the 1991 Pinatubo volcanic eruption. Such models are needed to compute the effects of the aerosol on atmospheric chemistry, dynamics, radiation, and temperature. Whereas there is now a large and growing body of post-Pinatubo measurements by a variety of techniques, some results are in conflict, and a self-consistent, unified picture is needed, along with an assessment of remaining uncertainties. This paper examines data from photometers, radiometers, impactors, optical counters/sizers, and lidars operated on the ground, aircraft, balloons, and spacecraft.

  9. Remote sensing of atmospheric aerosols with the SPEX spectropolarimeter

    NASA Astrophysics Data System (ADS)

    van Harten, G.; Rietjens, J.; Smit, M.; Snik, F.; Keller, C. U.; di Noia, A.; Hasekamp, O.; Vonk, J.; Volten, H.

    2013-12-01

    Characterizing atmospheric aerosols is key to understanding their influence on climate through their direct and indirect radiative forcing. This requires long-term global coverage, at high spatial (~km) and temporal (~days) resolution, which can only be provided by satellite remote sensing. Aerosol load and properties such as particle size, shape and chemical composition can be derived from multi-wavelength radiance and polarization measurements of sunlight that is scattered by the Earth's atmosphere at different angles. The required polarimetric accuracy of ~10^(-3) is very challenging, particularly since the instrument is located on a rapidly moving platform. Our Spectropolarimeter for Planetary EXploration (SPEX) is based on a novel, snapshot spectral modulator, with the intrinsic ability to measure polarization at high accuracy. It exhibits minimal instrumental polarization and is completely solid-state and passive. An athermal set of birefringent crystals in front of an analyzer encodes the incoming linear polarization into a sinusoidal modulation in the intensity spectrum. Moreover, a dual beam implementation yields redundancy that allows for a mutual correction in both the spectrally and spatially modulated data to increase the measurement accuracy. A partially polarized calibration stimulus has been developed, consisting of a carefully depolarized source followed by tilted glass plates to induce polarization in a controlled way. Preliminary calibration measurements show an accuracy of SPEX of well below 10^(-3), with a sensitivity limit of 2*10^(-4). We demonstrate the potential of the SPEX concept by presenting retrievals of aerosol properties based on clear sky measurements using a prototype satellite instrument and a dedicated ground-based SPEX. The retrieval algorithm, originally designed for POLDER data, performs iterative fitting of aerosol properties and surface albedo, where the initial guess is provided by a look-up table. The retrieved aerosol properties, including aerosol optical thickness, single scattering albedo, size distribution and complex refractive index, will be compared with the on-site AERONET sun-photometer, lidar, particle counter and sizer, and PM10 and PM2.5 monitoring instruments. Retrievals of the aerosol layer height based on polarization measurements in the O2A absorption band will be compared with lidar profiles. Furthermore, the possibility of enhancing the retrieval accuracy by replacing the look-up table with a neural network based initial guess will be discussed, using retrievals from simulated ground-based data.

  10. Chemical characterization of biogenic SOA generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2014-10-01

    The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3-0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.

  11. Centennial and Extreme Climate Variability in the Last 1500 Year from the Belize Central Shelf Lagoon (Central America): Successive Droughts and Floods Linked to the Demise of the Mayan Civilization

    NASA Astrophysics Data System (ADS)

    Droxler, A. W.; Agar Cetin, A.; Bentley, S. J.

    2014-12-01

    This study focuses on the last 1500 yr precipitation record archived in the mixed carbonate/siliciclastic sediments accumulated in the Belize Central Shelf Lagoon, part of the Yucatan Peninsula eastern continental margin, proximal to the land areas where the Mayan Civilization thrived and then abruptly collapsed. This study is mainly based upon the detailed analyses of cores, BZE-RH-SVC-58 and 68, retrieved in 30 and 19 m of water depth from Elbow Caye Lagoon and English Caye Channel, respectively. The core timeframe is well-constrained by AMS radiocarbon dating of benthic foraminifera, Quinqueloculina. Carbonate content was determined by carbonate bomb, particle size fractions with a Malvern Master Sizer 2000 particle size analyzer, and element (Ti, Si, K, Fe, Al, Ca, and Sr) counts via X-Ray Fluorescence (XRF). The variations of elements such as Ti and K counts, and Ti/Al in these two cores have recorded, in the past past 1500 years, the weathering rate variations of the adjacent Maya Mountain, defining alternating periods of high precipitation and droughts, linked to large climate fluctuations and extreme events, highly influenced by the ITCZ latitudinal migration. The CE 800-900 century just preceding the Medieval Climate Anomaly (MCA), characterized by unusually low Ti counts and Ti/Al, is interpreted to represent a time of low precipitation and resulting severe droughts in the Yucatan Peninsula, contemporaneous with the Mayan Terminal Classic Collapse. High Ti counts and Ti/Al, although highly variable, during the MCA (CE 900-1350) are interpreted as an unusually warm period characterized by two 100-to-250 years-long intervals of higher precipitation when the number of tropical cyclones peaked. These two intervals of high precipitation during the MCA are separated by a century (CE 1000 -1100) of severe droughts and low tropical storm frequency coinciding with the collapse of Chichen Itza (CE 1040-1100). The Little Ice Age (CE 1350-1850), several centuries during which Ti counts and Ti/Al reach minimum values, is characterized by systematic drier and colder climate conditions with low frequency of tropical cyclones. Two extreme Ti and K count minima might coincide with historical drought times and related Caribbean-wide famines in the year CE 1535 and the last third of the 18th century (CE 1765-1800).

  12. Design of Particle-Based Thermal Energy Storage for a Concentrating Solar Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Zhang, Ruichong; Sawaged, Fadi

    Solid particles can operate at higher temperature than current molten salt or oil, and they can be a heat-transfer and storage medium in a concentrating solar power (CSP) system. By using inexpensive solid particles and containment material for thermal energy storage (TES), the particle-TES cost can be significantly lower than other TES methods such as a nitrate-salt system. The particle-TES system can hold hot particles at more than 800 degrees C with high thermal performance. The high particle temperatures increase the temperature difference between the hot and cold particles, and they improve the TES capacity. The particle-based CSP system ismore » able to support high-efficiency power generation, such as the supercritical carbon-dioxide Brayton power cycle, to achieve >50% thermal-electric conversion efficiency. This paper describes a solid particle-TES system that integrates into a CSP plant. The hot particles discharge to a heat exchanger to drive the power cycle. The returning cold particles circulate through a particle receiver to absorb solar heat and charge the TES. This paper shows the design of a particle-TES system including containment silos, foundation, silo insulation, and particle materials. The analysis provides results for four TES capacities and two silo configurations. The design analysis indicates that the system can achieve high thermal efficiency, storage effectiveness (i.e., percentage usage of the hot particles), and exergetic efficiency. An insulation method for the hot silo was considered. The particle-TES system can achieve high performance and low cost, and it holds potential for next-generation CSP technology.« less

  13. Relationship Between Aerosol Number Size Distribution and Atmospheric Electric Potential Gradient in an Urban Area

    NASA Astrophysics Data System (ADS)

    Wright, Matthew; Matthews, James; Bacak, Asan; Silva, Hugo; Priestley, Michael; Percival, Carl; Shallcross, Dudley

    2016-04-01

    Small ions are created in the atmosphere by ground based radioactive decay and solar and cosmic radiation ionising the air. The ionosphere is maintained at a high potential relative to the Earth due to global thunderstorm activity, a current from the ionosphere transfers charge back to the ground through the weakly ionised atmosphere. A potential gradient (PG) exists between the ionosphere and the ground that can be measured in fair weather using devices such as an electric field mill. PG is inversely-proportional to the conductivity of the air and therefore to the number of ions of a given electrical mobility; a reduction of air ions will cause an increase of PG. Aerosols in the atmosphere act as a sink of air ions with an attachment rate dependent on aerosol size distribution and ion mobility. These relationships have been used to infer high particulate, and hence pollution, levels in historic datasets of atmospheric PG. A measurement campaign was undertaken in Manchester, UK for three weeks in July and August where atmospheric PG was measured with an electric field mill (JCI131, JCI Chilworth) on a second floor balcony, aerosol size distribution measured with a scanning mobility particle sizer (SMPS, TSI3936), aerosol concentration measured with a condensation particle counter (CPC, Grimm 5.403) and local meteorological measurements taken on a rooftop measurement site ~200 m away. Field mill and CPC data were taken at 1 s intervals and SMPS data in 2.5 minute cycles. Data were excluded for one hour either side of rainfall as rainclouds and droplets can carry significant charge which would affect PG. A quantity relating to the attachment of ions to aerosol (Ion Sink) was derived from the effective attachment coefficient of the aerosols. Further measurements with the field mill and CPC were taken at the same location in November 2015 when bonfire events would be expected to increase aerosol concentrations. During the summer measurements, particle number count (PNC) from the CPC and SMPS were very closely correlated. PG was closely related to PNC and the ion sink parameter both with the overall trend, and especially during 'peak' events of high concentration. The data were averaged to a diurnal cycle and the average daily cycle showed variability in PG and PNC consistent with the urban environment including a peak at rush hour and a minimum during the night. Lomb-Scargle periodograms provided the spectral content and daily and weekly peaks were apparent in PG and PNC data. Cross correlation analysis indicates that the best temporal correlation exists between PG and ion sink rate.

  14. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system is a device that produces by acceleration high energy charged particles (e.g., electrons and protons...

  15. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system is a device that produces by acceleration high energy charged particles (e.g., electrons and protons...

  16. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system is a device that produces by acceleration high energy charged particles (e.g., electrons and protons...

  17. Data acquisition system

    DOEpatents

    Shapiro, Stephen L.; Mani, Sudhindra; Atlas, Eugene L.; Cords, Dieter H. W.; Holbrook, Britt

    1997-01-01

    A data acquisition circuit for a particle detection system that allows for time tagging of particles detected by the system. The particle detection system screens out background noise and discriminate between hits from scattered and unscattered particles. The detection system can also be adapted to detect a wide variety of particle types. The detection system utilizes a particle detection pixel array, each pixel containing a back-biased PIN diode, and a data acquisition pixel array. Each pixel in the particle detection pixel array is in electrical contact with a pixel in the data acquisition pixel array. In response to a particle hit, the affected PIN diodes generate a current, which is detected by the corresponding data acquisition pixels. This current is integrated to produce a voltage across a capacitor, the voltage being related to the amount of energy deposited in the pixel by the particle. The current is also used to trigger a read of the pixel hit by the particle.

  18. The Essential Role of Tethered Balloons in Characterizing Boundary Layer Structure and Evolution during Discover-AQ

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2014-12-01

    The NASA DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) provided the opportunity to observe the influence of local and regional circulations on the structure and evolution of the boundary layer (BL) and in turn study the associated effects on air quality and aerosol trends within four different airsheds. An extended network of ground-based instruments, balloon-borne profilers, and remote sensing instruments supported the in-situ airborne measurements made by the NASA aircraft in capturing the structure and evolution of the daytime BL. The Millersville University Atmospheric Research and Aerostat Facility (MARAF) is one of many assets deployed for DISCOVER-AQ. Central to MARAF is a heavy-lift-capacity tethered balloon (aerostat) used to obtain high resolution profiles of meteorological variables, trace gases, and particulates in the BL. The benefit of including a tethered balloon is that it can fill a data void between the surface and the lowest altitudes flown by the aircraft and provide critical time-height series for ground-based remote sensing instruments in the layer below their first range gate. MARAF also includes an acoustic sodar with RASS, MPL4 micropulse Lidar, 4-meter flux tower, rawinsonde system, and a suite of trace gas analyzers (O3, NOx/NO2/NO, CO, and SO2), 3-wavelength nephelometer, and particle sizers/counters spanning the range from 10 nm to 10 microns. MARAF is capable of providing a detailed and nearly continuous Eulerian characterization of the surface layer and lower BL, and with proper FAA airspace authorization, can be deployed both day and night. Three case studies will be presented that incorporate the MARAF into the combined assets of DISCOVER-AQ to better characterize: 1) bay breeze convergence, recirculation, and ramp-up events in Edgewood, MD in July 2011; 2) aerosol transport over Central Valley, CA in January 2013; and 3) multiple sea-bay breeze interactions with a 200-plus ppbv O3 plume downwind of Houston, TX. These observations show a complex BL response to transformational air mass interactions not often captured by other instrument platforms or resolved by operational numerical models. In addition, this paper will report on the benefits of using MARAF for research training.

  19. Rapid Measurements of Aerosol Size Distribution and Hygroscopic Growth via Image Processing with a Fast Integrated Mobility Spectrometer (FIMS)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pinterich, T.; Spielman, S. R.; Hering, S. V.; Wang, J.

    2017-12-01

    Aerosol size distribution and hygroscopicity are among key parameters in determining the impact of atmospheric aerosols on global radiation and climate change. In situ submicron aerosol size distribution measurements commonly involve a scanning mobility particle sizer (SMPS). The SMPS scanning time is in the scale of minutes, which is often too slow to capture the variation of aerosol size distribution, such as for aerosols formed via nucleation processes or measurements onboard research aircraft. To solve this problem, a Fast Integrated Mobility Spectrometer (FIMS) based on image processing was developed for rapid measurements of aerosol size distributions from 10 to 500 nm. The FIMS consists of a parallel plate classifier, a condenser, and a CCD detector array. Inside the classifier an electric field separates charged aerosols based on electrical mobilities. Upon exiting the classifier, the aerosols pass through a three stage growth channel (Pinterich et al. 2017; Spielman et al. 2017), where aerosols as small as 7 nm are enlarged to above 1 μm through water or heptanol condensation. Finally, the grown aerosols are illuminated by a laser sheet and imaged onto a CCD array. The images provide both aerosol concentration and position, which directly relate to the aerosol size distribution. By this simultaneous measurement of aerosols with different sizes, the FIMS provides aerosol size spectra nearly 100 times faster than the SMPS. Recent deployment onboard research aircraft demonstrated that the FIMS is capable of measuring aerosol size distributions in 1s (Figure), thereby offering a great advantage in applications requiring high time resolution (Wang et al. 2016). In addition, the coupling of the FIMS with other conventional aerosol instruments provides orders of magnitude more rapid characterization of aerosol optical and microphysical properties. For example, the combination of a differential mobility analyzer, a relative humidity control unit, and a FIMS was used to measure aerosol hygroscopic growth. Such a system reduced the time of measuring the hygroscopic properties of submicron aerosols (six sizes) to less than three minutes in total, with an error within 1%. Pinterich et al. (2017) Aerosol Sci. Technol. accepted Spielman et al. (2017) Aerosol Sci. Technol. accepted Wang et al. (2016) Nature 539:416-419

  20. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, J. D.; Berg, L. K.; Burleyson, C.

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in land surface, boundary layer, and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign was designed to provide a detailed set of measurements that are needed to obtainmore » a more complete understanding of the lifecycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. Some of the land-atmosphere-cloud interactions that can be studied using HI-SCALE data are shown in Figure 1. HI-SCALE consisted of two 4-week intensive operation periods (IOPs), one in the spring (April 24-May 21) and the other in the late summer (August 28-September 24) of 2016, to take advantage of different stages of the plant lifecycle, the distribution of “greenness” for various types of vegetation in the vicinity of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site, and aerosol properties that vary during the growing season. As expected, satellite measurements indicated that the Normalized Difference Vegetation Index (NDVI) was much “greener” in the vicinity of the SGP site during the spring IOP than the late summer IOP as a result of winter wheat maturing in the spring and being harvested in the early summer. As shown in Figure 2, temperatures were cooler than average and soil moisture was high during the spring IOP, while temperatures were warmer than average and soil moisture was low during the late summer IOP. These factors likely influence the occurrence and lifecycle of shallow clouds. Most of the instrumentation was deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei (CCN) concentrations. The specific instrumentation is listed in Table 1. The team of scientists participating in the G-1 flights were from Pacific Northwest National Laboratory (PNNL), Brookhaven National Laboratory (BNL), and the University of Washington. Routine ARM aerosol measurements made at the surface were supplemented with aerosol microphysical properties measurements, with support from the DOE Environmental Molecular Sciences Laboratory (EMSL) User Facility and the Atmospheric System Radiation (ASR) program. This included deploying a scanning mobility particle sizer (SMPS) to measure aerosol size distribution, a proton transfer reaction-mass spectrometer (PTR-MS) to measure volatile organic compounds, an aerosol mass spectrometer (AMS) to measure bulk aerosol composition, and the single-particle laser ablation time-of-flight mass spectrometer (SPLAT II) to measure single-particle aerosol composition at the SGP site Guest Instrumentation Facility. In this way, characterization of aerosol properties at the surface and on the G-1 were consistent. In addition, the HI-SCALE: Nanoparticle Composition and Precursors add-on campaign was conducted during the second IOP in which several state-of-the-science chemical ionization mass spectrometers were deployed to measure nanoparticle composition and precursors. Scientists participating in the surface measurements were from PNNL, BNL, University California–Irvine, Augsberg College, Colorado University, Aerodyne Inc., and Aerosol Dynamics Inc.« less

  1. Particle-sampling statistics in laser anemometers Sample-and-hold systems and saturable systems

    NASA Technical Reports Server (NTRS)

    Edwards, R. V.; Jensen, A. S.

    1983-01-01

    The effect of the data-processing system on the particle statistics obtained with laser anemometry of flows containing suspended particles is examined. Attention is given to the sample and hold processor, a pseudo-analog device which retains the last measurement until a new measurement is made, followed by time-averaging of the data. The second system considered features a dead time, i.e., a saturable system with a significant reset time with storage in a data buffer. It is noted that the saturable system operates independent of the particle arrival rate. The probabilities of a particle arrival in a given time period are calculated for both processing systems. It is shown that the system outputs are dependent on the mean particle flow rate, the flow correlation time, and the flow statistics, indicating that the particle density affects both systems. The results are significant for instances of good correlation between the particle density and velocity, such as occurs near the edge of a jet.

  2. Event-chain Monte Carlo algorithms for three- and many-particle interactions

    NASA Astrophysics Data System (ADS)

    Harland, J.; Michel, M.; Kampmann, T. A.; Kierfeld, J.

    2017-02-01

    We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.

  3. Distribution of randomly diffusing particles in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-09-01

    Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains in the system may yield distinct particle hopping rates. Starting from the master equations (MEs) governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the deterministic lattice equations (DLEs) specifying the average particle number at each lattice site for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian) diffusion with no steric constraints on the maximum particle number per lattice site as well as the case of diffusion under steric constraints imposing a maximum particle concentration. We find, for both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number of DLEs associated with a given system being independent of the number of particles in the system. From the DLEs we obtain general analytic expressions for the steady-state particle distributions for free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We find that, in the steady state of the system, the average fraction of particles in a given domain is independent of most system properties, such as the arrangement and shape of domains, and only depends on the number of lattice sites in each domain, the particle hopping rates, the number of distinct particle species in the system, and the total number of particles of each particle species in the system. Our results provide general insights into the role of spatially inhomogeneous particle hopping rates in setting the particle distributions in inhomogeneous media.

  4. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and display...

  5. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  6. Sublimation systems and associated methods

    DOEpatents

    Turner, Terry D.; McKellar, Michael G.; Wilding, Bruce M.

    2016-02-09

    A system for vaporizing and sublimating a slurry comprising a fluid including solid particles therein. The system includes a first heat exchanger configured to receive the fluid including solid particles and vaporize the fluid and a second heat exchanger configured to receive the vaporized fluid and solid particles and sublimate the solid particles. A method for vaporizing and sublimating a fluid including solid particles therein is also disclosed. The method includes feeding the fluid including solid particles to a first heat exchanger, vaporizing the fluid, feeding the vaporized fluid and solid particles to a second heat exchanger and sublimating the solid particles. In some embodiments the fluid including solid particles is liquid natural gas or methane including solid carbon dioxide particles.

  7. Method for coating ultrafine particles, system for coating ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Liu, Yung

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particlesmore » with a coating moiety.« less

  8. Preliminary Structural Sizing and Alternative Material Trade Study of CEV Crew Module

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steve M.; Collier, Craig S.; Yarrington, Phillip W.

    2007-01-01

    This paper presents the results of a preliminary structural sizing and alternate material trade study for NASA s Crew Exploration Vehicle (CEV) Crew Module (CM). This critical CEV component will house the astronauts during ascent, docking with the International Space Station, reentry, and landing. The alternate material design study considers three materials beyond the standard metallic (aluminum alloy) design that resulted from an earlier NASA Smart Buyer Team analysis. These materials are graphite/epoxy composite laminates, discontinuously reinforced SiC/Al (DRA) composites, and a novel integrated panel material/concept known as WebCore. Using the HyperSizer (Collier Research and Development Corporation) structural sizing software and NASTRAN finite element analysis code, a comparison is made among these materials for the three composite CM concepts considered by the 2006 NASA Engineering and Safety Center Composite Crew Module project.

  9. Simulation chamber studies of the atmospheric degradation of xylene oxidation products

    NASA Astrophysics Data System (ADS)

    Clifford, G.; Rea, G.; Thuener, L.; Wenger, J.

    2003-04-01

    Aromatic compounds are emitted to the atmosphere from their use in automobile fuels and solvents. In addition to being important primary pollutants, many aromatics, including the xylenes, possess high photochemical reactivity and make a major contribution to the formation of oxidants, such as ozone and nitrates, in the troposphere. The atmospheric oxidation of aromatics produces a wide variety of products and the atmospheric reactivity of many of these species is unknown. The aim of this work was to study the atmospheric degradation processes for dimethylphenols, tolualdehydes and dicarbonyl compounds which are produced from the hydroxyl radical initiated oxidation of the xylenes. Experiments on the hydroxyl (OH) and nitrate radical initiated oxidation of dimethylphenols and tolualdehydes have been performed in a large atmospheric simulation chamber in our laboratory. The chamber is made of FEP foil and has a volume of about 4750 litres. It is equipped with gas chromatography, GC-MS, and in situ FTIR spectroscopy for chemical analysis and a scanning mobility particle sizer for aerosol measurements. Rate coefficients have been determined for the reactions of hydroxyl and nitrate radicals with dimethylphenols and tolualdehydes. Gas-phase products and the yield of secondary organic aerosol have also been determined for the OH-initiated oxidation of these compounds. Mechanisms for the formation of the products are proposed. The photolysis of the unsaturated dicarbonyls, butenedial and 4-oxo-pent-2-enal, has been studied using real sunlight at the European Photoreactor (EUPHORE) in Valencia, Spain. Photolysis rates were measured and indicate that photolysis by sunlight is the major atmospheric degradation process for these compounds. Product studies show the formation of a ketene intermediate that decays to form five membered ring compounds such as furanones and maleic anhydride. Mechanisms for the formation of the products are proposed. Finally, the data obtained in this work is used to access the atmospheric impact of xylene oxidation products and to provide valuable information on their pollution forming potential.

  10. Visibility in the Netherlands during New Year's fireworks: The role of soot and salty aerosol products

    NASA Astrophysics Data System (ADS)

    ten Brink, Harry; Henzing, Bas; Otjes, René; Weijers, Ernie

    2018-01-01

    The visibility on New Year's nights in the Netherlands is low during stagnant weather. This is due to the scattering and absorption of light by the aerosol-smoke from the fireworks. We made an assessment of the responsible aerosol-species. The investigation took place during the New Year's night of 2009. Measurements were made at a regional site in the centre of the country away from specific local sources. An Integrating Nephelometer measured the light-scattering by the inherent compounds after removal of water from the aerosol by drying the air. The actual light-scattering was determined in an open-air scatterometer; it was a factor of five higher than the ;dry; value. The difference in actual and ;dry; light-scattering can only be explained by water-uptake of the salty hygroscopic components of the aerosol. This hypothesis is substantiated by measurements of the composition of the aerosol. The size-dependent concentrations of the salty ionic species were determined on-line with a MARGA-;sizer;. These components were for a large part in particles in the size range that most effectively scatter light. The ;dry; light-scattering was exerted by the inorganic salt components and the sooty carbonaceous material alike. However, the salty products from the fireworks are hygroscopic and take up water at the high relative humidities occurring that night. This explains the fivefold larger light-scattering by the wet ambient aerosol as compared to that by the dry aerosol in the integrating nephelometer. The visibility, which is the inverse of the open-air scattering, is thus indirectly governed by the salty products of the fireworks due to their uptake of water. Under stagnant weather conditions during New Year's nights in the Netherlands both the aerosol concentrations and the relative humidity are high; this implies that the ionic species govern the low visibilities in general, be it via their uptake of water.

  11. Lower tropospheric ozone and aerosol measurements at a coastal mountain site in Central California

    NASA Astrophysics Data System (ADS)

    Post, A.; Faloona, I. C.; Lighthall, D.; Wexler, A. S.; Cliff, S. S.; Conley, S. A.; Zhao, Y.

    2013-12-01

    Increasing concern over the impacts of exogenous air pollution in California's Central Valley has prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County, operated by the Monterey Institute for Research in Astronomy. Eighteen months of ozone and aerosol measurements are presented in the context of long-range transport and its potential impact on surface air quality in the southern San Joaquin Valley. Moreover, several ozone surveys have been conducted by aircraft upwind, over the Pacific Ocean, and downwind, over the Central Valley, to characterize horizontal and vertical transport across the coastal mountains. Diurnal variations present at Chews Ridge indicate the formation of a convective boundary layer on the ridge during the daytime leading to a 6-8 ppb decrease in ozone accompanied by a rise in specific humidity of 2-3 g/kg due to coupling with the forest. During the nighttime, the sampled air masses are representative of free tropospheric conditions which have not been significantly influenced by either local emissions nor convective coupling to the surface. The maximum daily 8-hour average ozone concentration at Chews Ridge is used in lagged correlation analysis with two sites in the San Joaquin Valley, Fresno and Arvin, to de-emphasize the influence of locally produced, diurnally cycled ozone. The correlation coefficients (~0.60) peak between 9-21 hour lag and tend to decorrelate completely within 4-5 days. These and other analyses along with data provided by the aircraft sampling are used to provide a deeper understanding of ozone transport into the San Joaquin Valley. Aerosol size is measured with a scanning mobility particle sizer and composition is analyzed with an 8-stage rotating drum impactor whose substrates are characterized by X-ray fluorescence. Various elemental ratios and back trajectory calculations are used to infer the temporal patterns of influence that long range transport has on California air quality.

  12. Surface-Satellite Measurements for Atmospheric Radiative Transfer (SMART)and Chemical, Optical and Microphysical Measurements of In-Situ Troposphere (COMMIT) Research Activities

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    The GSFC SMART consists of a suite of remote sensing instruments, including many commercially available radiometers, spectrometer, interferometer, and three in-house developed inskuments: micro-pulse lidar (MPL), scanning microwave radiometer (SMiR), and sun-sky-surface photometer (S(sup 3)). SMART cover the spectral range from UV to microwave, and passive to active remote sensing. This is to enrich the EOS-like research activities (i.e., EOS validation, innovative investigations, and long-term local environmental observations). During past years, SMART has been deployed in many NASA supported field campaigns to collocate with satellite nadir overpass for intercomparisons, and for initializing model simulations. Built on the successful experience of SMART, we are currently developing a new ground-based in-situ sampling package, COMMIT, including measurements of trace gases (CO, SO2, NOx, and O3,) concentrations, fine/coarse particle sizers and chemical composition, single- and three-wavelength nephelometers, and surface meteorological probes. COMMIT is built for seeking a relationship between surface in-situ measurements and boundary layer characteristics. This is to enrich EOS-like research on removing boundary layer signal from the entire column from space observation - to deduce the stable (less variability) free-troposphere observations. The COMMIT will try its best to link the chemical, microphysical, and optical properties of the boundary layer with radiation. The next major activities for SMART-COMMIT are scheduled for 2004-2006 in BASE-ASIA and EAST-AIRE. The expected close collaboration of BASE-ASIA with various research projects in Asia (i.e., ABC in South Asia, led by Ramanathan et al.; EAST-AIRE in East Asia, led by Li et al.; and APEX in Northeast Asia, led by Nakajima et al.) will definitely provide a better understanding of the impact of the biomass burning and air pollutants on regional-to-global climate, hydrological and carbon cycles, and tropospheric chemistry in Asia.

  13. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  14. Chemically Reacting One-Dimensional Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The governing equations for the one-dimensional flow of a gas-particle system are discussed. Gas-particle effects are coupled via the system momentum and energy equations with the gas assumed to be chemically frozen or in chemical equilibrium. A computer code for calculating the one-dimensional flow of a gas-particle system is discussed and a user's input guide presented. The computer code provides for the expansion of the gas-particle system from a specified starting velocity and nozzle inlet geometry. Though general in nature, the final output of the code is a startline for initiating the solution of a supersonic gas-particle system in rocket nozzles. The startline includes gasdynamic data defining gaseous startline points from the nozzle centerline to the nozzle wall and particle properties at points along the gaseous startline.

  15. Transistor-based particle detection systems and methods

    DOEpatents

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  16. shock driven instability of a multi-phase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob; Black, Wolfgang; Dahal, Jeevan; Morgan, Brandon

    2015-11-01

    A computational study of a shock driven instability of a multiphse particle-gas system is presented. This instability can evolve in a similar fashion to the Richtmyer-Meshkov (RM) instability, but has addition parameters to be considered. Particle relaxation times, and density differences of the gas and particle-gas system can be adjusted to produce results which are different from the classical RM instability. We will show simulation results from the Ares code, developed at Lawrence Livermore National Laboratory, which uses a particle-in-cell approach to study the effects of the particle-gas system parameters. Mixing parameters will be presented to highlight the suppression of circulation and gas mixing by the particle phase.

  17. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  18. Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide

    NASA Astrophysics Data System (ADS)

    Ning, Y.; Fielding, L. A.; Andrews, T. S.; Growney, D. J.; Armes, S. P.

    2015-04-01

    Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source. Electronic supplementary information (ESI) available: Kinetic data for RAFT polymerisation of SEM, GPC traces of PSEM homopolymers, additional digital photographs and TEM images of various diblock copolymer nanoparticles. Length/width histograms for ZnO particles prepared in the absence of any additive (control), PSES73 homopolymer, and S73-B300 nanoparticle. Additional DCP and LUMiSizer® particle size distributions, N2 adsorption data and elemental microanalyses. See DOI: 10.1039/c5nr00535c

  19. NASA Tech Briefs, September 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Improving Thermomechanical Properties of SiC/SiC Composites; Aerogel/Particle Composites for Thermoelectric Devices; Patches for Repairing Ceramics and Ceramic- Matrix Composites; Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings; An Alternative for Emergency Preemption of Traffic Lights; Vehicle Transponder for Preemption of Traffic Lights; Automated Announcements of Approaching Emergency Vehicles; Intersection Monitor for Traffic-Light-Preemption System; Full-Duplex Digital Communication on a Single Laser Beam; Stabilizing Microwave Frequency of a Photonic Oscillator; Microwave Oscillators Based on Nonlinear WGM Resonators; Pointing Reference Scheme for Free-Space Optical Communications Systems; High-Level Performance Modeling of SAR Systems; Spectral Analysis Tool 6.2 for Windows; Multi-Platform Avionics Simulator; Silicon-Based Optical Modulator with Ferroelectric Layer; Multiplexing Transducers Based on Tunnel-Diode Oscillators; Scheduling with Automated Resolution of Conflicts; Symbolic Constraint Maintenance Grid; Discerning Trends in Performance Across Multiple Events; Magnetic Field Solver; Computing for Aiming a Spaceborne Bistatic- Radar Transmitter; 4-Vinyl-1,3-Dioxolane-2-One as an Additive for Li-Ion Cells; Probabilistic Prediction of Lifetimes of Ceramic Parts; STRANAL-PMC Version 2.0; Micromechanics and Piezo Enhancements of HyperSizer; Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses; Tilt/Tip/Piston Manipulator with Base-Mounted Actuators; Measurement of Model Noise in a Hard-Wall Wind Tunnel; Loci-STREAM Version 0.9; The Synergistic Engineering Environment; Reconfigurable Software for Controlling Formation Flying; More About the Tetrahedral Unstructured Software System; Computing Flows Using Chimera and Unstructured Grids; Avoiding Obstructions in Aiming a High-Gain Antenna; Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft; Tracking Positions and Attitudes of Mars Rovers; Stochastic Evolutionary Algorithms for Planning Robot Paths; Compressible Flow Toolbox; Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines; General Flow-Solver Code for Turbomachinery Applications; Code for Multiblock CFD and Heat-Transfer Computations; Rotating-Pump Design Code; Covering a Crucible with Metal Containing Channels; Repairing Fractured Bones by Use of Bioabsorbable Composites; Kalman Filter for Calibrating a Telescope Focal Plane; Electronic Absolute Cartesian Autocollimator; Fiber-Optic Gratings for Lidar Measurements of Water Vapor; Simulating Responses of Gravitational-Wave Instrumentation; SOFTC: A Software Correlator for VLBI; Progress in Computational Simulation of Earthquakes; Database of Properties of Meteors; Computing Spacecraft Solar-Cell Damage by Charged Particles; Thermal Model of a Current-Carrying Wire in a Vacuum; Program for Analyzing Flows in a Complex Network; Program Predicts Performance of Optical Parametric Oscillators; Processing TES Level-1B Data; Automated Camera Calibration; Tracking the Martian CO2 Polar Ice Caps in Infrared Images; Processing TES Level-2 Data; SmaggIce Version 1.8; Solving the Swath Segment Selection Problem; The Spatial Standard Observer; Less-Complex Method of Classifying MPSK; Improvement in Recursive Hierarchical Segmentation of Data; Using Heaps in Recursive Hierarchical Segmentation of Data; Tool for Statistical Analysis and Display of Landing Sites; Automated Assignment of Proposals to Reviewers; Array-Pattern-Match Compiler for Opportunistic Data Analysis; Pre-Processor for Compression of Multispectral Image Data; Compressing Image Data While Limiting the Effects of Data Losses; Flight Operations Analysis Tool; Improvement in Visual Target Tracking for a Mobile Robot; Software for Simulating Air Traffic; Automated Vectorization of Decision-Based Algorithms; Grayscale Optical Correlator Workbench; "One-Stop Shopping" for Ocean Remote-Sensing and Model Data; State Analysis Database Tool; Generating CAHV and CAHVOmages with Shadows in ROAMS; Improving UDP/IP Transmission Without Increasing Congestion; FORTRAN Versions of Reformulated HFGMC Codes; Program for Editing Spacecraft Command Sequences; Flight-Tested Prototype of BEAM Software; Mission Scenario Development Workbench; Marsviewer; Tool for Analysis and Reduction of Scientific Data; ASPEN Version 3.0; Secure Display of Space-Exploration Images; Digital Front End for Wide-Band VLBI Science Receiver; Multifunctional Tanks for Spacecraft; Lightweight, Segmented, Mostly Silicon Telescope Mirror; Assistant for Analyzing Tropical-Rain-Mapping Radar Data; and Anion-Intercalating Cathodes for High-Energy- Density Cells.

  20. Structures and dynamics in a two-dimensional dipolar dust particle system

    NASA Astrophysics Data System (ADS)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  1. Comparative Emissions of Random Orbital Sanding between Conventional and Self-Generated Vacuum Systems

    PubMed Central

    Liverseed, David R.

    2013-01-01

    Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects. PMID:23065674

  2. Comparative emissions of random orbital sanding between conventional and self-generated vacuum systems.

    PubMed

    Liverseed, David R; Logan, Perry W; Johnson, Carl E; Morey, Sandy Z; Raynor, Peter C

    2013-03-01

    Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects.

  3. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems.

    PubMed

    Thomas, Dennis G; Smith, Jordan N; Thrall, Brian D; Baer, Donald R; Jolley, Hadley; Munusamy, Prabhakaran; Kodali, Vamsi; Demokritou, Philip; Cohen, Joel; Teeguarden, Justin G

    2018-01-25

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.

  4. Development of novel encapsulated formulations using albumin-chitosan as a polymer matrix for ocular drug delivery

    NASA Astrophysics Data System (ADS)

    Addo, Richard Tettey

    Designing formulations for ophthalmic drug delivery is one of the most challenging endeavors facing the pharmaceutical scientist due to the unique anatomy, physiology, and biochemistry of the eye. Current treatment protocols for administration of drugs in eye diseases are primarily solution formulations, gels or ointments. However, these modes of delivery have several drawbacks such as short duration of exposure, need for repeated administrations and non-specific toxicity. We hypothesize that development of ocular drugs in microparticles will overcome the deficiencies of the current modalities of treatment. We based the hypothesis on the preliminary studies conducted with encapsulated tetracaine, an anesthetic used for surgical purposes and atropine, a medication used for several ophthalmic indications including mydriatic and cycloplegic effects. However, atropine is well absorbed into the systemic circulation and has been reported to exert severe systemic side effects after ocular administration (Hoefnagel D. 1961, Morton H. G. 1939 and Lang J. C. 1995) and may lead to serious side effects including death in extreme cases with pediatric use. Based on these observations, the focus of this dissertation is to formulate microparticulate drug carrier for treatment of various conditions of the eye. Purpose: To prepare, characterize, study the in vitro and in vivo interaction of albumin-chitosan microparticles (BSA-CSN MS), a novel particulate drug carrier for ocular drug delivery. Method: Microparticle formulations were prepared by method of spray drying. The percentage drug loading and efficiency were assessed using USP (I) dissolution apparatus. Using Malvern Zeta-Sizer, we determined size and surface charge of the fabrication. Surface morphology of the microparticles was examined using Scanning Electron Microscopy. Microparticles were characterized in terms of thermal properties using Differential Scanning Calorimetry. Human corneal epithelial cells (HCET-1) were exposed up to 120 minutes to different BSA-CSN MS concentrations. Using fluorometry, the influence of temperature and effect of metabolic inhibition were studied. The in vitro uptake and internalization studies were evaluated using confocal microscopy in HCET-1. In vivo studies were evaluated in rabbit's eye using blink response and pupil to cornea ratio for tetracaine and atropine studies respectively. Results: Our results showed particles size in the range of 3-5 microns with encapsulation efficiency of about 96 percent. Differential Scanning Calorimetry showed no drug-polymer interactions. BSA-CSN MS were internalized by the HCET-1 and was affected both by temperature and metabolic inhibitor, sodium azide. There were no signs of ocular surface toxicity or inflammation. The encapsulated drugs exhibited superior properties in vivo compared to the solution formulations currently in clinical use. Conclusion: We successfully developed microparticulate drug carriers for ocular delivery. BSA-CSN MS were internalized by the HCET-1 by temperature dependent active transport mechanism that did not compromise cell viability.

  5. Numerical Study of Particle Damping Mechanism in Piston Vibration System via Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Ming; Shah, Binoy; Keer, Leon; Wang, Jane; Snurr, Randall

    2008-03-01

    Mechanical damping systems with granular particles as the damping media have promising applications in extreme temperature conditions. In particle-based damping systems, the mechanical energy is dissipated through the inelastic collision and friction of particles. In the past, many experiments have been performed to investigate the particle damping problems. However, the detailed energy dissipation mechanism is still unclear due to the complex collision and flow behavior of dense particles. In this work, we use 3-D particle dynamics simulation to investigate the damping mechanism of an oscillating cylinder piston immerged in millimeter-size steel particles. The time evolution of the energy dissipation through the friction and inelastic collision is accurately monitored during the damping process. The contribution from the particle-particle interaction and particle-wall interaction is also separated for investigation. The effects of moisture, surface roughness, and density of particles are carefully investigated in the simulation. The comparison between the numerical simulation and experiment is also performed. The simulation results can help us understand the particle damping mechanism and design the new generation of particle damping devices.

  6. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    NASA Technical Reports Server (NTRS)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  7. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    NASA Astrophysics Data System (ADS)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of this dissertation qualitatively considers an approach to determine critical particle sizes, below which crack propagation will not occur for a coating system that exhibited stable cracks in an interfacial layer between the coating and substrate.

  8. Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field

    NASA Astrophysics Data System (ADS)

    Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.

    2018-02-01

    The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.

  9. Particle dispersing system and method for testing semiconductor manufacturing equipment

    DOEpatents

    Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.

    1998-01-01

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  10. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  11. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  12. Phase transitions in a system of hard Y-shaped particles on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Mandal, Dipanjan; Nath, Trisha; Rajesh, R.

    2018-03-01

    We study the different phases and the phase transitions in a system of Y-shaped particles, examples of which include immunoglobulin-G and trinaphthylene molecules, on a triangular lattice interacting exclusively through excluded volume interactions. Each particle consists of a central site and three of its six nearest neighbors chosen alternately, such that there are two types of particles which are mirror images of each other. We study the equilibrium properties of the system using grand canonical Monte Carlo simulations that implement an algorithm with cluster moves that is able to equilibrate the system at densities close to full packing. We show that, with increasing density, the system undergoes two entropy-driven phase transitions with two broken-symmetry phases. At low densities, the system is in a disordered phase. As intermediate phases, there is a solidlike sublattice phase in which one type of particle is preferred over the other and the particles preferentially occupy one of four sublattices, thus breaking both particle symmetry as well as translational invariance. At even higher densities, the phase is a columnar phase, where the particle symmetry is restored, and the particles preferentially occupy even or odd rows along one of the three directions. This phase has translational order in only one direction, and breaks rotational invariance. From finite-size scaling, we demonstrate that both the transitions are first order in nature. We also show that the simpler system with only one type of particle undergoes a single discontinuous phase transition from a disordered phase to a solidlike sublattice phase with an increasing density of particles.

  13. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for bromine with α-pinene. This work was funded by German Research Foundation (DFG) under grants HE 5214/5-1 and ZE792/5-2. References: Cai, X., and Griffin, R. J.: Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms, J. Geophys. Res., 111, D14206/14201-D14206/14214, 2006. Ofner, J. Balzer, N., Buxmann, J., Grothe, H., Schmitt-Kopplin, Ph., Platt, U., and Zetzsch, C., Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms, Atmos. Chem. Phys. Discuss. 12, 2975-3017, 2012.

  14. System design of a 1 MW north-facing, solid particle receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.; Ho, C.

    Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less

  15. System design of a 1 MW north-facing, solid particle receiver

    DOE PAGES

    Christian, J.; Ho, C.

    2015-05-01

    Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less

  16. Positron emission particle tracking and its application to granular media

    NASA Astrophysics Data System (ADS)

    Parker, D. J.

    2017-05-01

    Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.

  17. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium.

    PubMed

    Zakhari, Monica E A; Anderson, Patrick D; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012)1359-664010.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1%. The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  18. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    NASA Astrophysics Data System (ADS)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  19. To develop a flying fish egg inspection system by a digital imaging base system

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Jywe, Wenyuh; Hsieh, Tung-Hsien; Chen, Chien Hung

    2015-07-01

    This paper develops an automatic optical inspection system for flying fish egg quality inspection. The automatic optical inspection system consists of a 2-axes stage, a digital camera, a lens, a LED light source, a vacuum generator, a tube and a tray. This system can automatically find the particle on the flying egg tray and used stage to driver the tube onto the particle. Then use straw and vacuum generator to pick up the particle. The system pick rate is about 30 particles per minute.

  20. High transport efficiency of nanoparticles through a total-consumption sample introduction system and its beneficial application for particle size evaluation in single-particle ICP-MS.

    PubMed

    Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Fujii, Shin-Ichiro; Takatsu, Akiko; Inagaki, Kazumi; Fujimoto, Toshiyuki

    2017-02-01

    In order to facilitate reliable and efficient determination of both the particle number concentration (PNC) and the size of nanoparticles (NPs) by single-particle ICP-MS (spICP-MS) without the need to correct for the particle transport efficiency (TE, a possible source of bias in the results), a total-consumption sample introduction system consisting of a large-bore, high-performance concentric nebulizer and a small-volume on-axis cylinder chamber was utilized. Such a system potentially permits a particle TE of 100 %, meaning that there is no need to include a particle TE correction when calculating the PNC and the NP size. When the particle TE through the sample introduction system was evaluated by comparing the frequency of sharp transient signals from the NPs in a measured NP standard of precisely known PNC to the particle frequency for a measured NP suspension, the TE for platinum NPs with a nominal diameter of 70 nm was found to be very high (i.e., 93 %), and showed satisfactory repeatability (relative standard deviation of 1.0 % for four consecutive measurements). These results indicated that employing this total consumption system allows the particle TE correction to be ignored when calculating the PNC. When the particle size was determined using a solution-standard-based calibration approach without an NP standard, the particle diameters of platinum and silver NPs with nominal diameters of 30-100 nm were found to agree well with the particle diameters determined by transmission electron microscopy, regardless of whether a correction was performed for the particle TE. Thus, applying the proposed system enables NP size to be accurately evaluated using a solution-standard-based calibration approach without the need to correct for the particle TE.

Top