Science.gov

Sample records for particle surface layer

  1. Layer by Layer, Nano-particle "Only" Surface Modification of Filtration Membranes

    NASA Astrophysics Data System (ADS)

    Escobar-Ferrand, Luis

    Layer by Layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for the modification of polymeric micro and ultrafiltration (MF/UF) membranes to produce thin film composites (TFC) with potential nanofiltration (NF) and reverse osmosis (RO) capabilities.. A variety of porous substrate membranes with different membrane surface characteristics are employed, but exhibiting in common that wicking of water does not readily occur into the pore structure, including polycarbonate track etched (PCTE), polyethersulfone (PES) and sulfonated PES (SPEES) MF/UF membranes. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those reported by Lee et al. Appropriate selection of the pH's for anionic and cationic particle deposition enables the construction of nanoparticle only layers 100--1200 nm in thickness atop the original membrane substrates. The surface layer thickness varies monotonically with the number of bilayers (anionic/cationic deposition cycles) as expected. The deposition process is optimized to eliminate drying induced cracking and to improve mechanical durability via thickness control and post-deposition hydro-thermal treatment. The hydrodynamic permeability of these TFC membranes is measured to evaluate their performance under typical NF operating conditions using dead-end permeation experiments and their performance compared quantitatively with realistic hydrodynamic models, with favorable results. For track etched polycarbonate MF substrates, surface modification causes a permeability reduction of approximately two orders of magnitude with respect to the bare substrates, to values comparable to those for typical commercial NF membranes. Good quantitative agreement with hydrodynamic models with no adjustable parameters was also established for this case, providing indirect confirmation that the LbL deposited surface layers are largely defect (crack) free

  2. Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear

    SciTech Connect

    Mordyuk, B.N.; Silberschmidt, V.V.; Prokopenko, G.I.; Nesterenko, Yu.V.; Iefimov, M.O.

    2010-11-15

    Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 {mu}m and milled (0.3-0.5 {mu}m). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200-400 nm, while reinforcement with larger particles results in relatively large Al grains (1-2 {mu}m). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti{sub 3}Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.

  3. ISEE particle observations of surface waves at the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Couzens, D.; Parks, G. K.; Anderson, K. A.; Lin, R. P.; Reme, H.

    1985-01-01

    The dual-spacecraft ISEE mission provides a unique opportunity to study the motions of the magnetopause and adjacent boundary layer. By comparing high-time-resolution energetic particle data from ISEE 1 to those of ISEE 2, the velocity and orientation of the inner boundary of the boundary layer can be determined. Two cases are presented. In one, tailward propagating sinusoidally shaped surface waves with a wavelength in excess of 42,000 km and an amplitude of approximately 5000 km are found. In the other, surface waves are indicated with a wavelength of approximately 40,000 km and an amplitude of approximately 11,000 km having steepened nonsinusoidal shapes. The existence of such large-amplitude waves suggests that the particle dynamics near the magnetopause support nonlinear processes.

  4. Fuzzy ternary particle systems by surface-initiated atom transfer radical polymerization from layer-by-layer colloidal core-shell macroinitiator particles.

    PubMed

    Fulghum, Timothy M; Patton, Derek L; Advincula, Rigoberto C

    2006-09-26

    We report the synthesis of ternary polymer particle material systems composed of (a) a spherical colloidal particle core, coated with (b) a polyelectrolyte intermediate shell, and followed by (c) a grafted polymer brush prepared by surface-initiated polymerization as the outer shell. The layer-by-layer (LbL) deposition process was utilized to create a functional intermediate shell of poly(diallyl-dimethylammonium chloride)/poly(acrylic acid) multilayers on the colloid template with the final layer containing an atom transfer radical polymerization (ATRP) macroinitiator polyelectrolyte. The intermediate core-shell architecture was analyzed with FT-IR, electrophoretic mobililty (zeta-potential) measurements, atomic force microscopy, and transmission electron microscopy (TEM) techniques. The particles were then utilized as macroinitiators for the surface-initiated ATRP grafting process for poly(methyl methacrylate) polymer brush. The polymer grafting was confirmed with thermo gravimetric analysis, FT-IR, and TEM. The polymer brush formed the outermost shell for a ternary colloidal particle system. By combining the LbL and surface-initiated ATRP methods to produce controllable multidomain core-shell architectures, interesting functional properties should be obtainable based on independent polyelectrolyte and polymer brush behavior.

  5. [Fractal characteristics of soil particles in surface layer of black soil].

    PubMed

    Miao, Chi-Yuan; Wang, Ya-Feng; Wei, Xin; Xu, Xia; Shi, Wen

    2007-09-01

    Based on the second national soil survey of China, the fractal dimension of soil particles in the surface layers of 36 typical profiles of black soil was calculated. The results showed that the fractal dimension was 2.5831-2.8230, being increased with decreasing diameter of soil texture, but the variability was inconspicuous. The fractal dimension was negatively correlated with the contents of sand (2-0.02 mm) and silt (0.02-0.002 mm) (P < 0.05), but positively correlated with clay (< 0.002 mm) content (P < 0.01). No significant correlations were observed between soil particle fractal dimension and soil organic matter, total nitrogen, total phosphorus, total potassium, and pH. The fractal dimension of soil particles could be used as a comprehensive and quantitative index in evaluating the degradation degree of black soil.

  6. Compliant layer chucking surface

    DOEpatents

    Blaedel, Kenneth L.; Spence, Paul A.; Thompson, Samuel L.

    2004-12-28

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  7. Antifouling Surface Layers for Improved Signal-to-Noise of Particle-Based Immunoassays

    PubMed Central

    Chen, Annie; Kozak, Darby; Battersby, Bronwyn J.; Forrest, Robin M.; Scholler, Nathalie; Urban, Nicole; Trau, Matt

    2010-01-01

    A ten fold improvement in the signal-to-noise (S/N) ratio of an optically encoded silica particle-based immunoassay was achieved through incorporating a protein resistant poly(ethylene glycol) (PEG) surface layer and optimizing antibody immobilization conditions. PEG was activated using 2,2,2-trifluoroethanesulfonyl chloride (tresyl) and required a minimum reaction time of 1.5 hrs. The activated PEG had a reactive half life of approximately 5 hrs when stored in acidified dimethyl sulfoxide (DMSO). By increasing the protein incubation time and concentration, a maximum antibody loading on the particle surface of 1.6×10−2 molecules per nm2 was achieved. The assay S/N ratio was assessed using a multiplexed multicomponent optically encoded species-specific immunoassay. Encoded particles were covalently grafted or nonspecifically coated with either bovine or mouse IgG for the simultaneous detection of complimentary anti-IgG `target' or uncomplimentary anti-IgG `noise'. The versatility and potential as a serum-based assay platform was demonstrated by immobilizing either a polyclonal antibody or an engineered single-chain variable fragment (scFv) capture probe on particles for the detection of the ovarian cancer biomarker, mesothelin (MSLN). The MLSN antigen was spiked into PBS buffer or 50% human serum. Both capture probe orientations and media conditions showed similar low level detection limits of 5 ng/mL; however, a 40% decrease in maximum signal intensity was observed for assays run in 50% serum. PMID:19928944

  8. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  9. Surface modification of Cu metal particles by the chemical reaction between the surface oxide layer and a halogen surfactant

    NASA Astrophysics Data System (ADS)

    Yokoyama, Shun; Takahashi, Hideyuki; Itoh, Takashi; Motomiya, Kenichi; Tohji, Kazuyuki

    2014-01-01

    Surface oxides on small (2-5 μm) copper metal particles can be removed by chemical reaction with tris(2,3-dibromopropyl) isocyanurate (TIC) in diethylene glycol mono-n-hexyl ether (DGHE) solution under mild conditions where metal particles are not damaged. Surface oxides convert to copper bromide species and subsequently dissolve into the solvent. It was found that resultant surface species are resistant to re-oxidation due to remaining surface bromides. This finding opens up a possibility to create microclines based on cheap copper nanoparticles.

  10. Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column.

    PubMed

    Nematollahzadeh, Ali; Shojaei, Akbar; Abdekhodaie, Mohammad J; Sellergren, Börje

    2013-08-15

    Bio-inspired Human Serum Albumin (HSA) imprinted polydopamine nano-layer was produced through oxidative polymerization of dopamine on the pore surface of HSA modified porous silica particles. The coating thickness was controlled by the reaction time and thereby varied within 0-12 nm. The samples were characterized by elemental analysis, FT-IR, DSC, SEM, TEM, TGA, physisorption and thermoporometry. The characterization confirmed the success of evolution and deposition of polydopamine layer on the silica pore surface. Batch rebinding experiment showed that the molecularly imprinted polymer (MIP) with 8.7 nm coating thickness, in comparison with the thinner and thicker coatings, displays the highest uptake of the target protein. The chromatographic evaluation of the materials packed in HPLC columns showed that the HSA imprinted polydopamine offers good mechanical stability and retains practically all the target protein from an HSA solution or human plasma. Affinity of the imprinting column was examined by using Bovine Serum Albumin (BSA) and Immunoglobulin G (IgG) as competitive proteins. The results showed that the template, HSA, was the most adsorbed protein by the imprinted polydopamine layer.

  11. Chalk-Ex: Transport of Optically Active Particles from the Surface Mixed Layer

    DTIC Science & Technology

    2005-05-02

    dissolution , aggregation, and grazing- related "repackaging" into fecal pellets). Approach The focus of the Chalk-Ex project was a sequence of...experiment in which the production term of optically-active particles could be defined, significantly reducing the uncertainty of the net loss rates of...suspended calcite algorithm. The NASA project paid for the 26 T of chalk and some of the ship time for the November 2001 experiments. A DURIP Grant to J

  12. Virosome engineering of colloidal particles and surfaces: bioinspired fusion to supported lipid layers

    NASA Astrophysics Data System (ADS)

    Fleddermann, J.; Diamanti, E.; Azinas, S.; Košutić, M.; Dähne, L.; Estrela-Lopis, I.; Amacker, M.; Donath, E.; Moya, S. E.

    2016-04-01

    Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing.Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing

  13. Prediction and rational correlation of thermophoretically reduced particle mass transfer to hot surfaces across laminar or turbulent forced-convection gas boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1986-01-01

    A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.

  14. Transport of Optically Active Particles From the Surface Mixed Layer: Losses Due to Grazing and Focculation During the Chalk-Ex Study

    DTIC Science & Technology

    2008-09-30

    and H.G. Dam. 1997. Particle size spectra between 1 mm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res. I 44: 1739-1767...in the surface mixed layer at an oligotrophic site, outside the Gulf of Maine, and a more eutrophic site within the Gulf of Maine. The expectation

  15. Formation of grafted surface layers on silicon dioxide particles and their investigation by means of thermoprogrammed oxidation

    NASA Astrophysics Data System (ADS)

    Aleksandrova, E. O.; Novichkov, R. V.; Olenin, A. Yu.; Zuev, B. K.

    2017-03-01

    Silica nanoparticles are obtained according to the Stober-Fink-Bohn method, and their surfaces are chemically modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. It is estimated that sols of porous silica nanoparticles (average sizes, 50-200 nm) form during primary chemical process; the average size of the particles can be increased to 400-500 nm by consecutive growth. Oxythermography (thermoprogrammed oxidation) measurements reveal a stepped dependence between the content of organic substance of nanoparticles and the duration of chemical modification reaction exists. It is concluded that this could be due to the formation of dense shell (or shells) as a result of sols aging between the cycles of growth; such shells impose diffusive restrictions when molecules penetrate into the pores of the internal volume of the particles.

  16. Simulation of the interaction of electromagnetic waves with dispersed particles in the propagation of breather in the surface layer of a liquid medium

    SciTech Connect

    Zabolotin, V.V.; Uvarova, L.A.

    2015-03-10

    A numerical simulation of the interaction of laser radiation with dispersed particles in the course of propagation of breather in the surface layer of the liquid breather was performed. The shape and amplitude of the acoustic signal formed in this interaction were obtained. Two acoustic signals, before and after the impact of a breather on the process of optical sound generation, were compared. Results of the comparison showed that the breather spreading over the surface of the liquid medium affecst the acoustic signal and its effect must be considered in the measurements.

  17. The Martian surface layer

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Moore, Henry J.

    1992-01-01

    The global characteristics of the Martian surface layer are discussed on the basis of thermal, albedo, color, and radar data for the region between approximately 60 deg S and 60 deg N. Thermal data reveal the presence of large low- and high-inertia regions of the northern hemisphere, with much of the south covered by material of moderate inertia. There is a strong anticorrelation between inertia and albedo, a correlation between inertia and rock abundance, and, over much of the planet, a correlation of radar-derived density with inertia. Viking Orbiter color data indicate the presence of three major surface materials: low-inertia, bright-red material that is presumably dust; high-inertia, dark-grey material interpreted to be lithic material mixed with palagonitelike dust; and moderate-inertia, dark-red material that is rough at subpixel scales and interpreted to be indurated. Observations from the Viking landing sites show rocks, fines of varying cohesion and crusts. These sites have indications of aeolian erosion and deposition in the recent past.

  18. Comparative study of the surface layer density of liquid surfaces

    NASA Astrophysics Data System (ADS)

    Chacón, E.; Fernández, E. M.; Duque, D.; Delgado-Buscalioni, R.; Tarazona, P.

    2009-11-01

    Capillary wave fluctuations blur the inherent structure of liquid surfaces in computer simulations. The intrinsic sampling method subtracts capillary wave fluctuations and yields the intrinsic surface structure, leading to a generic picture of the liquid surface. The most relevant magnitude of the method is the surface layer density ns that may be consistently determined from different properties: the layering structure of the intrinsic density profiles, the turnover rate for surface layer particles, and the hydrodynamic damping rate of capillary waves. The good agreement among these procedures provides evidence for the physical consistency of the surface layering hypothesis, as an inherent physical property of the liquid surfaces. The dependence of the surface compactness, roughness, and exchange rate with temperature is analyzed for several molecular interaction models.

  19. Observed particle sizes and fluxes of Aeolian sediment in the near surface layer during sand-dust storms in the Taklamakan Desert

    NASA Astrophysics Data System (ADS)

    Huo, Wen; He, Qing; Yang, Fan; Yang, Xinghua; Yang, Qing; Zhang, Fuyin; Mamtimin, Ali; Liu, Xinchun; Wang, Mingzhong; Zhao, Yong; Zhi, Xiefei

    2016-08-01

    Monitoring, modeling and predicting the formation and movement of dust storms across the global deserts has drawn great attention in recent decades. Nevertheless, the scarcity of real-time observations of the wind-driven emission, transport and deposition of dusts has severely impeded progress in this area. In this study, we report an observational analysis of sand-dust storm samples collected at seven vertical levels from an 80-m-high flux tower located in the hinterland of the great Taklamakan Desert for ten sand-dust storm events that occurred during 2008-2010. We analyzed the vertical distribution of sandstorm particle grain sizes and horizontal sand-dust sediment fluxes from the near surface up to 80 m high in this extremely harsh but highly representative environment. The results showed that the average sandstorm grain size was in the range of 70 to 85 μm. With the natural presence of sand dunes and valleys, the horizontal dust flux appeared to increase with height within the lower surface layer, but was almost invariant above 32 m. The average flux values varied within the range of 8 to 14 kg m-2 and the vertical distribution was dominated by the wind speed in the boundary layer. The dominant dust particle size was PM100 and below, which on average accounted for 60-80 % of the samples collected, with 0.9-2.5 % for PM0-2.5, 3.5-7.0 % for PM0-10, 5.0-14.0 % for PM0-20 and 20.0-40.0 % for PM0-50. The observations suggested that on average the sand-dust vertical flux potential is about 0.29 kg m-2 from the top of the 80 m tower to the upper planetary boundary layer and free atmosphere through the transport of particles smaller than PM20. Some of our results differed from previous measurements from other desert surfaces and laboratory wind-dust experiments, and therefore provide valuable observations to support further improvement of modeling of sandstorms across different natural environmental conditions.

  20. Formulation of stability-dependent empirical relations for turbulent intensities from surface layer turbulence measurements for dispersion parameterization in a lagrangian particle dispersion model

    NASA Astrophysics Data System (ADS)

    Hari Prasad, K. B. R. R.; Srinivas, C. V.; Satyanarayana, A. N. V.; Naidu, C. V.; Baskaran, R.; Venkatraman, B.

    2015-08-01

    Season- and stability-dependent turbulence intensity ( σ u / u *, σ v / u *, σ w / u *) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components ( u', v', w') measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux-profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for σ u , σ v , σ w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.

  1. Layer-by-layer self-assembly of ceramic particles for complex shape coating synthesis

    NASA Astrophysics Data System (ADS)

    Qiu, Hongwei

    Layer-by-layer (LbL) self-assembly was explored as a non-line-of-sight method for uniform infiltration and deposition of a multilayer of ceramic particles into complex structures. Key parameters for controlling the LbL self-assembly process were studied using a model system which consisted of a silicon substrate, 100 nm and 500 nm silica particles, and a polycation/polyanion combination. We correlated the surface coverage of the silica particles to the NaCl concentration used in deposition of the polyelectrolyte layers and to the number of the polyelectrolyte layers deposited. The effect of particle size on the surface coverage was rationally explained based on the screening length. We found that the effects of particle size, polydispersity, and electrolyte concentration in the particle suspension on the surface coverage and morphology of the first silica particle layer deposited on the polyelectrolyte layer surface were highly coupled, and resolving these effects was important for infiltrating a uniform coating of multilayer silica particle assemblies into a cellular structure as an ultimate complex substrate. Based on this understanding, the Lbl, self-assembly method was applied as a method of assembling, infiltrating, and immobilizing a 4-layer coating of negatively charged ˜3 mum Pd/NaAI(Si)O catalyst particles in the confined space of the cellular structure with ˜400 mum interconnected cells. The 4-layer coating deposited on the inner wall of a stainless steel capillary tube was mechanically stable under water flow rate up to 10 ml/min over the pH range of 3 to 11. Scotch tape peeling evaluation suggested that failure locations were mostly within the catalyst particle assembly, but near the assembly-PEM interface region.

  2. The neutral surface layer above rough surfaces

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2014-05-01

    It is generally accepted that turbulent fluxes (momentum and scalar fluxes) are approx. constant with height above horizontal surfaces with low roughness. But what will happen when the roughness sub-layer is large as found over cities, forests and rough seas? In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer, especially the shape of the spectra of the wind components and scalars and corresponding fluxes. Here we make the hypothesis that the detached-eddy model can also be used to explain the experimental results related to the 3-dimensional turbulence structure above rough surfaces. Measurements are taken both over land (grass and forest) and over sea (Baltic Sea and hurricane Fabian in the Atlantic) above the roughness sub-layer. Analysis of the turbulence structure shows a striking similarity between the different sites. Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  3. Surface layers of bacteria.

    PubMed Central

    Beveridge, T J; Graham, L L

    1991-01-01

    Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance of the results in terms of our perception of the makeup and function of bacterial surfaces and their interaction with the surrounding environment. Images PMID:1723487

  4. Boundary layer effects on particle impaction and capture

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1984-01-01

    The inertial impaction and deposition of small particles on larger bodies with viscous boundary layers are considered theoretically, in a detailed comment on a paper by Menguturk et al. (1983). Topics addressed include cushion effects, the dimensionless groups corresponding to the diameter range (3-6 microns) examined by Menguturk et al. in a numerical example, analogous effects of particle-gas energy and mass exchange in boundary layers, and the combined effects of particle inertia and diffusion. It is argued that the inertial effects can be characterized in terms of a body, boundary-layer, or sublayer Stokes number. In a reply by Menguturk et al., the focus is on the application of the theoretical model to the erosion of blade surfaces in large gas turbines; the Stokes number is found to be of limited practical value in these cases, because the particle motion is not primarily normal to the blade surfaces.

  5. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  6. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Liu, Yichong; Yan, Xiaoqin; Kang, Zhuo; Li, Yong; Shen, Yanwei; Sun, Yihui; Wang, Li; Zhang, Yue

    2016-07-01

    One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices.

  7. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting

    PubMed Central

    Liu, Yichong; Yan, Xiaoqin; Kang, Zhuo; Li, Yong; Shen, Yanwei; Sun, Yihui; Wang, Li; Zhang, Yue

    2016-01-01

    One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices. PMID:27443692

  8. Detector for Particle Surface Contamination

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A. (Inventor); Schwindt, Christian J. (Inventor); Mattson, Carl B. (Inventor)

    1999-01-01

    A system and method for detecting and quantizing particle fallout contamination particles which are collected on a transparent disk or other surface employs an optical detector, such as a CCD camera, to obtain images of the disk and a computer for analyzing the images. From the images, the computer detects, counts and sizes particles collected on the disk The computer also determines, through comparison to previously analyzed images, the particle fallout rate, and generates an alarm or other indication if the rate exceeds a maximum allowable value. The detector and disk are disposed in a housing having an aperture formed therein for defining the area on the surface of the disk which is exposed to the particle fallout. A light source is provided for evenly illuminating the disk. A first drive motor slowly rotates the disk to increase the amount of its surface area which is exposed through the aperture to the particle fallout. A second motor is also provided for incrementally scanning the disk in a radial direction back and forth over the camera so that the camera eventually obtains images of the entire surface of the disk which is exposed to the particle fallout.

  9. Spatial variability of concentrations of chlorophyll a, dissolved organic matter and suspended particles in the surface layer of the Kara Sea in September 2011 from lidar data

    NASA Astrophysics Data System (ADS)

    Pelevin, V. V.; Zavjalov, P. O.; Belyaev, N. A.; Konovalov, B. V.; Kravchishina, M. D.; Mosharov, S. A.

    2017-01-01

    The article presents results of underway remote laser sensing of the surface water layer in continuous automatic mode using the UFL-9 fluorescent lidar onboard the R/V Akademik Mstislav Keldysh during cruise 59 in the Kara Sea in 2011. The description of the lidar, the approach to interpreting seawater fluorescence data, and certain methodical aspects of instrument calibration and measurement are presented. Calibration of the lidar is based on laboratory analysis of water samples taken from the sea surface during the cruise. Spatial distribution of chlorophyll a, total organic carbon and suspended matter concentrations in the upper quasi-homogeneous layer are mapped and the characteristic scales of the variability are estimated. Some dependencies between the patchiness of the upper water layer and the atmospheric forcing and freshwater runoff are shown.

  10. Transport of Optically Active Particles from the Surface Mixed Layer: Losses due to Grazing and Focculation during the Chalk-Ex Study

    DTIC Science & Technology

    2001-09-30

    spectra between 1 mm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res. I 44: 1739-1767. Waite, A., S. Gallager and...in the surface mixed layer at an oligotrophic site, outside the Gulf of Maine, and a more eutrophic site within the Gulf of Maine. The expectation

  11. Double layers acting as particles accelerators

    SciTech Connect

    Sanduloviciu, M.; Lozneanu, E.

    1995-12-31

    It is shown that self-consistent stable and unstable double layers generated in plasma after a self-organisation process are able to accelerate charged particles. The implication of cosmic double layers (Dls) in the acceleration of electrical charged particles long been advocated by Alfven and his Stockholm school is today disputed by argument that static electric fields associated with Dls are conservative and consequently the line integral of the electric field outside the DL balances the line integral inside it. Related with this dispute we will evidence some, so far not considered, facts which are in our opinion arguments that aurora Dls are able to energize particles. For justifying this assertion we start from recent experimental results concerning the phenomenology of self-consistent Dls whose generation involve beside ionisations the neutrals excitations which are at tile origin of the light phenomena as those observed in auroras.

  12. Mars Surface Layers in Infrared

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 29 May 2002) Infrared imaging from NASA's Mars Odyssey spacecraft shows signs of layering exposed at the surface in a region of Mars called Terra Meridiani. The brightness levels show daytime surface temperatures, which range from about minus 20 degrees to zero degrees Celsius (minus 4 degrees to 32 degrees Fahrenheit). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. However, several rock layers can be seen to have distinctly different temperatures, indicating that physical properties vary from layer to layer. These differences suggest that the environment on this part of Mars varied through time as these layers were formed. The image is a mosaic combining four exposures taken by the thermal emission imaging system aboard Odyssey during the first two months of the Odyssey mapping mission, which began in February 2002. The area shown is about 120 kilometers (75 miles) across, at approximately 358 degrees east (2 degrees west) longitude and 3 degrees north latitude.

  13. Mars Surface Layers in Infrared

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Infrared imaging from NASA's Mars Odyssey spacecraft shows signs of layering exposed at the surface in a region of Mars called Terra Meridiani.

    The brightness levels show daytime surface temperatures, which range from about minus 20 degrees to zero degrees Celsius (minus 4 degrees to 32 degrees Fahrenheit). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. However, several rock layers can be seen to have distinctly different temperatures, indicating that physical properties vary from layer to layer. These differences suggest that the environment on this part of Mars varied through time as these layers were formed.

    The image is a mosaic combining four exposures taken by the thermal emission imaging system aboard Odyssey during the first two months of the Odyssey mapping mission, which began in February 2002. The area shown is about 120 kilometers (75 miles) across, at approximately 358 degrees east (2 degrees west) longitude and 3 degrees north latitude.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and JPL. JPL is a division of the California Institute of Technology in Pasadena.

  14. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): Degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R. M.; Pöschl, U.

    2009-12-01

    We present a kinetic double-layer surface model (K2-SURF) that describes the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles exposed to ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals. The model is based on multiple experimental studies of PAH degradation and on the PRA framework (Pöschl-Rudich-Ammann, 2007) for aerosol and cloud surface chemistry and gas-particle interactions. For a wide range of substrates, including solid and liquid organic and inorganic substances (soot, silica, sodium chloride, octanol/decanol, organic acids, etc.), the concentration- and time-dependence of the heterogeneous reaction between PAHs and O3 can be efficiently described with a Langmuir-Hinshelwood-type mechanism. Depending on the substrate material, the Langmuir adsorption constants for O3 vary over three orders of magnitude (Kads,O3 ≍ 10-15-10-13 cm3), and the second-order rate coefficients for the surface layer reaction of O3 with different PAH vary over two orders of magnitude (kSLR,PAH,O3 ≍ 10-18-10-17 cm2 s-1). The available data indicate that the Langmuir adsorption constants for NO2 are similar to those of O3, while those of H2O are several orders of magnitude smaller (Kads,H2O ≍ 10-18-10-17 cm3). The desorption lifetimes and adsorption enthalpies inferred from the Langmuir adsorption constants suggest chemisorption of NO2 and O3 and physisorption of H2O. Note, however, that the exact reaction mechanisms, rate limiting steps and possible intermediates still remain to be resolved (e.g., surface diffusion and formation of O atoms or O3- ions at the surface). The K2-SURF model enables the calculation of ozone uptake coefficients, γO3, and of PAH concentrations in the quasi-static particle surface layer. Competitive adsorption and chemical transformation of the surface (aging) lead to a strong non-linear dependence of γO3 on time and gas phase composition, with different characteristics under dilute atmospheric and

  15. Active particles on curved surfaces

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael

    Active systems have proved to be very sensitive to the geometry of their environment. This is often achieved by spending significant time at the boundary, probing its shape by gliding along it. I will discuss coarse graining the microscopic dynamics of self-propelled particles on a general curved surface to predict the way the density profile on the surface depends on its geometry. Beyond confined active particles, this formalism is a natural starting point to study objects that cannot leave the boundary at all, such as cells crawling on a curved substrate, animals running on uneven ground, or active colloids trapped at an interface.

  16. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): Degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Garland, Rebecca M.; Pöschl, Ulrich

    2010-05-01

    We present a kinetic double-layer surface model (K2-SURF) that describes the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles exposed to ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals [1]. The model is based on multiple experimental studies of PAH degradation and on the Pöschl-Rudich-Ammann (PRA) framework [2] for aerosol and cloud surface chemistry and gas-particle interactions. For a wide range of substrates, including solid and liquid organic and inorganic substances (soot, silica, sodium chloride, octanol/decanol, organic acids, etc.), the concentration- and time-dependence of the heterogeneous reaction between PAHs and O3 can be efficiently described with a Langmuir-Hinshelwood-type mechanism. Depending on the substrate material, the Langmuir adsorption constants for O3 vary over three orders of magnitude, and the second-order rate coefficients for the surface layer reaction of O3 with different PAH vary over two orders of magnitude. The available data indicate that the Langmuir adsorption constants for NO2 are similar to those of O3, while those of H2O are several orders of magnitude smaller. The desorption lifetimes and adsorption enthalpies suggest chemisorption of NO2 and O3 and physisorption of H2O. Note, however, that the exact reaction mechanisms, rate limiting steps and possible intermediates still remain to be resolved (e.g., surface diffusion and formation of O atoms or O3- ions at the surface). The K2-SURF model enables the calculation of ozone uptake coefficients, γO3, and of PAH concentrations in the quasi-static particle surface layer. Competitive adsorption and chemical transformation of the surface (aging) lead to a strong non-linear dependence of γO3 on time and gas phase composition, with different characteristics under dilute atmospheric and concentrated laboratory conditions. Under typical ambient conditions, γO3 of PAH-coated aerosol particles are expected to be in the range of 10-6 - 10

  17. Subnanometer Palladium Particles Synthesized by Atomic Layer Deposition

    SciTech Connect

    Feng, Hao P.; Libera, Joseph A.; Stair, Peter C.; Miller, Jeffrey T.; Elam, Jeffrey W.

    2011-06-03

    Monodispersed palladium nanoparticle catalysts were synthesized by atomic layer deposition (ALD) using alternating exposures of Pd hexafluoroacetylacetonate (Pd(hfac)₂) and formalin on an alumina support. The size of the ALD Pd particles could be tuned by adjusting the preparation conditions. Conventional ALD conditions produced Pd particles with an average size of 1.4 nm. Removal of surface hydroxyls from the alumina support by a chemical treatment using trimethyl aluminum (TMA) before performing Pd ALD led to nanoparticles larger than 2 nm. Ultrasmall (subnanometer) Pd particles were synthesized using low-temperature metal precursor exposures, followed by applying protective ALD alumina overcoats. The ALD Pd particles were characterized by transmission electron microscopy, extended X-ray absorption fine structure, and diffuse reflectance infrared Fourier transform spectroscopy techniques. The Pd loadings were measured by X-ray fluorescence. The catalytic performance of ALD Pd particles of different sizes was compared in the methanol decomposition reaction. The specific activity (normalized by Pd loading) of the ultrasmall Pd particles was higher than those of the larger particles. Considering the metal dispersion factor, the turnover frequency (TOF) of the ultrasmall Pd particles is comparable to that of the medium-sized (1.4 nm, on average) Pd particles synthesized under standard ALD conditions. The large Pd particles (>2 nm) are a factor of 2 less active than the smaller Pd particles.

  18. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R. M.; Pöschl, U.

    2009-09-01

    We present a kinetic double-layer surface model (K2-SURF) that describes the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles exposed to ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals. The model is based on multiple experimental studies of PAH degradation and on the PRA framework (Pöschl et al., 2007) for aerosol and cloud surface chemistry and gas-particle interactions. For a wide range of substrates, including solid and liquid organic and inorganic substances (soot, silica, sodium chloride, octanol/decanol, organic acids, etc.), the concentration- and time-dependence of the heterogeneous reaction between PAHs and O3 can be efficiently described with a Langmuir-Hinshelwood-type mechanism. Depending on the substrate material, the Langmuir adsorption constants for O3 vary over three orders of magnitude (Kads,O3≍10-15-10-13 cm3), and the second-order rate coefficients for the surface layer reaction of O3 with different PAH vary over two orders of magnitude (kSLR,PAH,O3≍10-18-10-17 cm2 s-1). The available data indicate that the Langmuir adsorption constants for NO2 are similar to those of O3, while those of H2O are several orders of magnitude smaller (Kads,H2O≍10-18-10-17 cm3). The desorption lifetimes and adsorption enthalpies inferred from the Langmuir adsorption constants suggest chemisorption of NO2 and O3 - possibly in the form of O atoms - and physisorption of H2O. The K2-SURF model enables the calculation of ozone uptake coefficients, γO3, and of PAH concentrations in the quasi-static particle surface layer. Competitive adsorption and chemical transformation of the surface (aging) lead to a strong non-linear dependence of γO3 on time and gas phase composition, with different characteristics under dilute atmospheric and concentrated laboratory conditions. Under typical ambient conditions, γO3 of PAH-coated aerosol particles are expected to be in the range of 10-6-10-5. At ambient temperatures, NO2 alone

  19. Permeability changes in layered sediments: impact of particle release.

    PubMed

    Blume, Theresa; Weisbrod, Noam; Selker, John S

    2002-01-01

    One of the mechanisms of sudden particle release from grain surfaces in natural porous media is a decrease in salt concentration of the permeating fluid to below the critical salt concentration. Particle release can cause a change in hydraulic conductivity of the matrix, either by washing out the fines and thus increasing the pore sizes or by the plugging of pore constrictions. The phenomenon of permeability changes as a result of particle detachment was investigated in a series of column experiments. Coarse and fine sediments from the Hanford Formation in southeast Washington were tested. Columns were subject to a pulse of highly saline solution (NaNO3) followed by a fresh water shock causing particle release. Outflow rates and changes in hydraulic head as well as electric conductivity and pH were monitored over time. No permeability decrease occurred within the coarse matrix alone. However, when a thin layer of fine sediment was embedded within the coarse material (mimicking field conditions at the Hanford site), permeability irreversibly decreased to 10% to 20% of the initial value. Evidence suggests that most of this permeability decrease was a result of particles detached within the fine layer and its subsequent clogging. An additional observation was a sudden increase in pH in the outflow solution, generated in situ during the fresh water shock. Because layered systems are common in natural settings, our results suggest that alteration between sodium solution and fresh water can lead to particle release and subsequently reduce the overall permeability of the matrix.

  20. Electromagnetic precipitation and ducting of particles in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Davey, K. R.; Melcher, J. R.

    1980-01-01

    A method for analyzing magnetic migration of particles in turbulent flows is applied to the prediction of particle trajectories and densities in turbulent aerodynamic boundary layers. Results for conditions typical of aircraft with 30-40 micron particles indicate a large upstream collection and a 5% loss of particles during one pass through the boundary layer. The capacity of the magnetic field to achieve a balance with turbulent diffusion in confining the particles to the boundary layer is discussed.

  1. Structure analysis of layer-by-layer multilayer films of colloidal particles

    NASA Astrophysics Data System (ADS)

    Batys, Piotr; Nosek, Magdalena; Weroński, Paweł

    2015-03-01

    We have mimicked the layer-by-layer self-assembling process of monodisperse colloidal particles at a solid-liquid interface using the extended random sequential adsorption model of hard spheres. We have studied five multilayer structures of similar thickness, each created at a different single-layer surface coverage. For each multilayer, we have determined its particle volume fraction as a function of distance from the interface. Additionally, we have characterized the film structure in terms of 2D and 3D pair-correlation functions. We have found that the coverage of about 0.3 is optimal for producing a uniform, constant-porosity multilayer in a minimum number of adsorption cycles. The single-layer coverage has also a significant effect on the primary maximum of 2D radial distribution function. In the case of multilayer with the coverage lower than 0.30 the 2D pair-correlation functions of even layers exhibit maxima decreasing with the increase in the layer number. We have verified our theoretical predictions experimentally. We have used fluorescence microscopy to determine the 2D pair-correlation functions for the second, third, and fourth layers of multilayer formed of micron-sized spherical latex particles. We have found a good agreement between our theoretical and experimental results, which confirms the validity of the extended RSA model.

  2. Vacuum probe sampler removes micron-sized particles from surfaces

    NASA Technical Reports Server (NTRS)

    Whitfield, W. J.

    1968-01-01

    Vacuum probe sampler removes micron-sized particles from sensitive surfaces, without damage to the surface. The probe has a critical orifice to ensure an optimum airflow rate that disturbs the boundary layer of air and raises bacteria from the surface into the probe with the moving air stream.

  3. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the

  4. Nanoengineering Catalyst Supports via Layer-by Layer Surface Functionalization

    SciTech Connect

    Yan, Wenfu; Mahurin, Shannon Mark; Overbury, Steven {Steve} H; Dai, Sheng

    2006-01-01

    Recent progress in the layer-by-layer surface modification of oxides for the preparation of highly active and stable gold nanocatalysts is briefly reviewed. Through a layer-by-layer surface modification approach, the surfaces of various catalyst supports including both porous and nonporous silica materials and TiO{sub 2} nanoparticles were modified with monolayers or multilayers of distinct metal oxide ultra-thin films. The surface-modified materials were used as supports for Au nanoparticles, resulting in highly active nanocatalysts for low-temperature CO oxidation. Good stability against sintering under high-temperature treatment was achieved for a number of the Au catalysts through surface modification of the support material. The surface modification of supports can be a viable route to control both the composition and structure of support and nanoparticle interfaces, thereby tailoring the stability and activity of the supported catalyst systems.

  5. Correlation studies on surface particle detection methods

    NASA Technical Reports Server (NTRS)

    Peterson, Ronald V.; White, James C.

    1988-01-01

    The accurate determination of dust levels on optical surfaces is necessary to assess sensor system performance. A comparison study was made on several particle measurement methods including those based on direct imaging and light scattering. The effectiveness of removing the particles from the surface prior to determining particle size distributions was also assessed. These studies revealed that some methods, especially those requiring particle removal before analysis, are subject to large systematic errors affecting particle size distributions. Thus, an understanding of the particle measurement methods employed is necessary before any surface cleanliness or obstruction value assignments are accepted as true representations of an optical surface contamination condition.

  6. Layered double oxide (LDO) particle containing photoreactive hybrid layers with tunable superhydrophobic and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Deák, Ágota; Janovák, László; Csapó, Edit; Ungor, Ditta; Pálinkó, István; Puskás, Sándor; Ördög, Tibor; Ricza, Tamás; Dékány, Imre

    2016-12-01

    Inorganic/organic hybrid layers have been prepared having superhydrophobic as well as photoreactive properties. The hybrid thin films with micro- and nanosized dual-scale surface roughness consist of ∼25 μm layered double oxide (LDO) photocatalyst particles and low surface energy poly(perfluorodecyl acrylate) [p(PFDAc)] fluoropolymer binder material. The application of [p(PFDAc)] resulted in the decrease in the surface free energy of the hydrophilic LDO. The structured surface LDO with ∼12% ZnO phase content were synthesized from layer double hydroxide (LDH) spheres. The determined excitation wavelength and the calculated band gap energy values were 386 nm and 3.23 eV, respectively. The hybrid thin films were prepared by a simple spray-coating method, which is a low-cost, fast and scalable film-forming technique. The surface roughness and also the wetting properties of the two-component hybrid layers proved to be finely adjustable by the LDO:fluoropolymer ratio. It was found that at 80-90 wt% LDO content, the thin films with a surface free energy value of ∼12 mJ/m2 displayed superhydrophobic behaviour (Θ > 150°) with satisfactory photocatalytic properties. This means special photoreactive surfaces with superhydrophobic properties instead of the conventional superhydropilic photocatalyst layers. According to the benzoic acid photodegradation test experiments of benzoic acid, the hybrid layers with 80-90 wt% LDO content photooxidized 22-24% of the initial test molecule concentration (0.17 g/L) under UV-A (λmax = 365 nm) illumination.

  7. Carbides composite surface layers produced by (PTA)

    SciTech Connect

    Tajoure, Meloud; Tajouri, Ali E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar E-mail: dr.mokhtarphd@yahoo.com; Akreem, Mosbah

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  8. Particle Deposition onto Enclosure Surfaces

    DTIC Science & Technology

    2009-08-20

    Rate, P 16 4.3 Comparison of vd and fi 16 5. Methods for Measurement of Particle Deposition 19 5.1 Measuring Particle Deposition Rate, p 19...deposition. 18 5. Methods for Measurement of Particle Deposition Owing to its importance for numerous engineering systems, the processes of particle...particle counter, time-of-flight aerosol spectrometer, electrical aerosol mobility analyzer, as well as aerosol generation methods , can be found in

  9. Reactor concepts for atomic layer deposition on agitated particles: A review

    SciTech Connect

    Longrie, Delphine Deduytsche, Davy; Detavernier, Christophe

    2014-01-15

    The number of possible applications for nanoparticles has strongly increased in the last decade. For many applications, nanoparticles with different surface and bulk properties are necessary. A popular surface modification technique is coating the particle surface with a nanometer thick layer. Atomic layer deposition (ALD) is known as a reliable method for depositing ultrathin and conformal coatings. In this article, agitation or fluidization of the particles is necessary for performing ALD on (nano)particles. The principles of gas fluidization of particles will be outlined, and a classification of the gas fluidization behavior of particles based on their size and density will be given. Following different reactor concepts that have been designed to conformally coat (nano)particles with ALD will be described, and a concise overview will be presented of the work that has been performed with each of them ending with a concept reactor for performing spatial ALD on fluidized particles.

  10. Uncertainties in Surface Layer Modeling

    NASA Astrophysics Data System (ADS)

    Pendergrass, W.

    2015-12-01

    A central problem for micrometeorologists has been the relationship of air-surface exchange rates of momentum and heat to quantities that can be predicted with confidence. The flux-gradient profile developed through Monin-Obukhov Similarity Theory (MOST) provides an integration of the dimensionless wind shear expression where is an empirically derived expression for stable and unstable atmospheric conditions. Empirically derived expressions are far from universally accepted (Garratt, 1992, Table A5). Regardless of what form of these relationships might be used, their significance over any short period of time is questionable since all of these relationships between fluxes and gradients apply to averages that might rarely occur. It is well accepted that the assumption of stationarity and homogeneity do not reflect the true chaotic nature of the processes that control the variables considered in these relationships, with the net consequence that the levels of predictability theoretically attainable might never be realized in practice. This matter is of direct relevance to modern prognostic models which construct forecasts by assuming the universal applicability of relationships among averages for the lower atmosphere, which rarely maintains an average state. Under a Cooperative research and Development Agreement between NOAA and Duke Energy Generation, NOAA/ATDD conducted atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of legacy flux-gradient formulations (the ϕ functions, see Monin and Obukhov, 1954) for the exchange of heat and momentum. At the Duke Energy Ocotillo site, NOAA/ATDD installed sonic anemometers reporting wind and temperature fluctuations at 10Hz at eight elevations. From these observations, ϕM and ϕH were derived from a two-year database of mean and turbulent wind and temperature observations. From this extensive measurement database, using a

  11. Surface activity of solid particles with extremely rough surfaces.

    PubMed

    Nonomura, Yoshimune; Komura, Shigeyuki

    2008-01-15

    The solid particles are adsorbed at liquid-liquid interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the extreme roughness on the particle surface affects their adsorption properties. In our previous work, we discussed the adsorption behavior of the solid particles with microstructured surfaces using the so-called Wenzel model [Y. Nonomura et al., J. Phys. Chem. B 110 (2006) 13124]. In the present study, the wettability and the adsorbed position of the particles with extremely rough surfaces are studied based on the Cassie-Baxter model. We predict that the adsorbed position and the interfacial energy depend on the interfacial tensions between the solid and liquid phases, the radius of the particle, and the fraction of the particle surface area that is in contact with the external liquid phase. Interestingly, the initial state of the system governs whether the particle is adsorbed at the interface or not. The shape of the particle is also an important factor which governs the adsorbed position. The disk-shaped particle and the spherical particle which is partially covered with the extremely rough surface, i.e. Janus particle, are adsorbed at the liquid-liquid interface in an oriented state. We should consider not only the interfacial tensions, but also the surface structure and the particle shape to control the adsorption behavior of the particle.

  12. Water molecules orientation in surface layer

    NASA Astrophysics Data System (ADS)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  13. Enrichment and association of lead and bacteria at particulate surfaces in a salt-marsh surface layer

    USGS Publications Warehouse

    Harvey, R.W.; Lion, Leonard W.; Young, L.Y.; Leckie, J.O.

    1982-01-01

    The particle-laden surface layer (approx 150-370 mu m) and subsurface waters of a South San Francisco Bay salt marsh were sampled over 2 tidal cycles and analyzed for particle numbers and particulate-associated and total concentrations of Pb and bacteria. Laboratory studies examined the ability of a bacterial isolate from the surface layer and a bacterial 'film-former' to sorb Pb at environmentally significant concentrations in seawater. Degrees by which Pb concentrated in the surface layer relative to the subsurface strongly correlated with enrichments of surface layer bacteria (bacterioneuston). A significant fraction of the bacterioneuston and surface layer Pb were associated with particles. Particle-bound bacterioneuston may interact with Pb at particulate surfaces in this microenvironment.

  14. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  15. Algorithm for Computing Particle/Surface Interactions

    NASA Technical Reports Server (NTRS)

    Hughes, David W.

    2009-01-01

    An algorithm has been devised for predicting the behaviors of sparsely spatially distributed particles impinging on a solid surface in a rarefied atmosphere. Under the stated conditions, prior particle-transport models in which (1) dense distributions of particles are treated as continuum fluids; or (2) sparse distributions of particles are considered to be suspended in and to diffuse through fluid streams are not valid.

  16. Layer-by-layer rose petal mimic surface with oleophilicity and underwater oleophobicity.

    PubMed

    Huang, Hsiu-chin; Zacharia, Nicole S

    2015-01-20

    Surfaces designed with specific wetting properties are still a key challenge in materials science. We present here a facile preparation of a surface assembled by the layer-by-layer technique, using a colloidal dispersion of ionomer particles and linear polyethylene imine. The colloidal ethylene-co-methacrylic acid (EMAA) particles are on the order of half a micron in size with surface features from 40 to 100 nm in width. The resultant surface has roughness on two length scales, one on the micron scale due to the packing of particles and one on the nanoscale due to these surface features on the EMAA particles. This hierarchical structure results in a hydrophobic surface with good water pinning properties (∼550 μN). We show that there is a balance between maximizing contact angle and water pinning force. Furthermore, this surface is oleophilic with regard to many organic solvents, also demonstrating underwater oleophobicity, and given the difference in wetting between aqueous and organic phases, this material may be a candidate material for oil/water separations.

  17. Surface layering effect of diluted Intralipid

    NASA Astrophysics Data System (ADS)

    Foschum, F.; Bodenschatz, N.; Krauter, P.; Nothelfer, S.; Liemert, A.; Simon, E.; Kröner, S.; Kienle, A.

    2015-07-01

    In this study the formation of a surface layer on top of an Intralipid dilution was studied. By use of spatial frequency reflectance and spatially resolved reflectance the surface layer could be characterized. The influence on the determination of the optical properties assuming a semi-infinite medium in the theory was investigated. By use of an angularly resolved reflectance device the formation even on a horizontally orientated glass slide could be shown.

  18. Surface layering properties of Intralipid phantoms.

    PubMed

    Bodenschatz, Nico; Krauter, Philipp; Foschum, Florian; Nothelfer, Steffen; Liemert, André; Simon, Emanuel; Kröner, Sabrina; Kienle, Alwin

    2015-02-07

    Intralipid has become an extensively studied and widely used reference and calibration phantom for diffuse optical imaging technologies. In this study we call attention to the layering properties of Intralipid emulsions, which are commonly assumed to have homogeneous optical properties. By measurement of spatial frequency domain reflectance in combination with an analytical solution of the radiative transfer equation for two-layered media, we make quantitative investigations on the formation of a surface layer on different dilutions of Intralipid. Our findings are verified by an independent spatially resolved reflectance setup giving evidence of a time dependent, thin and highly scattering surface layer on top of Intralipid-water emulsions. This layer should be considered when using Intralipid as an optical calibration or reference phantom.

  19. Surface layering properties of Intralipid phantoms

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Krauter, Philipp; Foschum, Florian; Nothelfer, Steffen; Liemert, André; Simon, Emanuel; Kröner, Sabrina; Kienle, Alwin

    2015-02-01

    Intralipid has become an extensively studied and widely used reference and calibration phantom for diffuse optical imaging technologies. In this study we call attention to the layering properties of Intralipid emulsions, which are commonly assumed to have homogeneous optical properties. By measurement of spatial frequency domain reflectance in combination with an analytical solution of the radiative transfer equation for two-layered media, we make quantitative investigations on the formation of a surface layer on different dilutions of Intralipid. Our findings are verified by an independent spatially resolved reflectance setup giving evidence of a time dependent, thin and highly scattering surface layer on top of Intralipid-water emulsions. This layer should be considered when using Intralipid as an optical calibration or reference phantom.

  20. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE PAGES

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...

    2017-02-24

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  1. The Role of Surface Layer Processes in Solid Propellant Combustion.

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Satyanarayanan R.

    The qualitative multidimensional theory of composite solid propellant combustion based on the sandwich burning methodology was applied to certain specific problems: (a) burning rate enhancement by ferric oxide, (b) plateau burning behavior caused by binder melt flow effects, and (c) characterization of the combustion of new energetic oxidizers--ADN and HNIW. Exothermic reactions at the interfacial contact lines between AP particles and the binder in the surface layer of the burning propellant assume significance in the presence of ferric oxide, and control the burning rate. Binder melt flow covers adjacent AP particle surfaces increasingly at higher pressures, and disperses the O/F leading edge flames attached to coarse particles. It also causes fine AP/binder matrix areas on the surface not to support a steady premixed flame at intermediate pressures, resulting in an overall decrease in the burning rate with increasing pressure, which implies plateau or mesa effects. ADN self -deflagration rate is significantly higher than that of AP, and controls the sandwich burning rate to a great extent. The O/F flame of ADN and binder still behaves as rate limiting, although strongly supported by ADN self-deflagration. ADN melts and vaporizes substantially before the binder, allowing for the possibility of complex physical processes in the surface layer. The strong exothermic decomposition of HNIW at moderate temperatures causes the oxidizer particles in the surface layer to be the sites of burning rate control. The problems addressed in this study combinedly point to the significance of crucial surface layer processes under the situations of interest, and signal a need to characterize such processes directly and in greater detail.

  2. Surface Chemistry in Electrochemical Atomic Layer Processing

    DTIC Science & Technology

    2007-11-02

    example, where a thin film of a material is formed an atomic layer at a time. That is, surface limited reactions are used to deposit individual atomic...The present studies were designed to investigate these surface limited reactions. To determine what the structures of the deposits were, and how that structure influenced subsequent deposition .

  3. Longitudinal vortices in concave surface boundary layer

    NASA Astrophysics Data System (ADS)

    Crane, R. I.,; Winoto, S. H.

    1980-01-01

    Local measurements of mean and fluctuating velocity by laser anemometer were made inside the developing concave surface boundary layer in a free surface water channel at Reynolds numbers up to 16000. Concave surface radius was 3.5 times channel width and the ratio of spanwise mean boundary layer thickness to surface radius ranged between 0.03 and 0.11. Systems of longtitudinal vortices developed without artificial triggering. Vortex wavelength varied across the span by as much as a factor of 2, but mean wavelength was typically 1.3 times the boundary layer thickness and did not vary significantly in the flow direction. Continuous vortex growth at Reynolds number = 9800 contrasted with apparent breakup of the vortices at Reynolds number = 16000.

  4. Polymer surface treatment with particle beams

    DOEpatents

    Stinnett, Regan W.; VanDevender, J. Pace

    1999-01-01

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications.

  5. Polymer surface treatment with particle beams

    DOEpatents

    Stinnett, R.W.; VanDevender, J.P.

    1999-05-04

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

  6. Inclined lidar observations of boundary layer aerosol particles above the Kongsfjord, Svalbard

    NASA Astrophysics Data System (ADS)

    Lampert, Astrid; Ström, Johan; Ritter, Christoph; Neuber, Roland; Yoon, Young; Chae, Nam; Shiobara, Masataka

    2012-10-01

    An inclined lidar with vertical resolution of 0.4 m was used for detailed boundary layer studies and to link observations at Zeppelin Mountain (474 m) and Ny-Ålesund, Svalbard. We report on the observation of aerosol layers directly above the Kongsfjord. On 29 April 2007, a layer of enhanced backscatter was observed in the lowest 25 m above the open water surface. The low depolarization ratio indicated spherical particles. In the afternoon, this layer disappeared. The ultrafine particle concentration at Zeppelin and Corbel station (close to the Kongsfjord) was low. On 1 May 2007, a drying process in the boundary layer was observed. In the morning, the atmosphere up to Zeppelin Mountain showed enhanced values of the backscatter coefficient. Around noon, the top of the highly reflecting boundary layer decreased from 350 to 250 m. The top of the boundary layer observed by lidar was confirmed by radiosonde data.

  7. Surface layer effects on waste glass corrosion

    SciTech Connect

    Feng, X.

    1993-12-31

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties.

  8. Transition induced by fixed and freely convecting spherical particles in laminar boundary layers

    NASA Astrophysics Data System (ADS)

    Petrie, H. L.; Morris, P. J.; Bajwa, A. R.; Vincent, D. C.

    1993-08-01

    An experimental and analytical study of aspects of transition induced by disturbances from spherical particles in laminar boundary layers is discussed. The generation of turbulent wedges by fixed spherical particles in a laminar boundary layer on or near the surface of a flat plate is considered experimentally using flow visualization with fluorescent dye and laser Doppler velocimetry. Turbulent spots generated by freely convecting spherical particles that are released in the freestream to fall into a flat plate laminar boundary layer and impact the plate are also discussed. A combination of dye flow visualization and a video based particle tracking technique was used to study the convecting particle problem. Although the Reynolds number at the critical condition for turbulent wedge generation by fixed particles and turbulent spot generation by convecting particles are similar, transition in these two situations appears to be fundamentally different. The development of a turbulent wedge near the critical condition is a relatively gradual process. In contrast, turbulent spots form relatively quickly after the convecting particles enter the boundary layer and impact the plate. Turbulent wedge formation downstream of a fixed particle results from the destabilization of the near wall flow by the vortical structures shed into particle wake. This shedding process is dominated by periodically shed loop shaped hairpin vortices. Observation of subharmonic oscillations at 1/2 and 1/4 of this shedding frequency suggest that a chaotic route to turbulence by a series of period doubling bifurcations is possible.

  9. Chaotic particle motion under linear surface waves.

    PubMed

    Bohr, Tomas; Hansen, Jonas Lundbek

    1996-12-01

    We investigate the motion of infinitesimal particles in the flow field inside the fluid under a traveling surface wave. It is shown that, even for two-dimensional waves, a superposition of two or more traveling harmonic waves is enough to generate chaotic particle motion, i.e., Lagrangian chaos. (c) 1996 American Institute of Physics.

  10. Beta particle monitor for surfaces

    DOEpatents

    MacArthur, Duncan W.

    1997-01-01

    A beta radiation detector which is capable of reliably detecting beta radiation emitted from a surface. An electrically conductive signal collector is adjustably mounted inside an electrically conductive enclosure which may define a single large opening for placing against a surface. The adjustable mounting of the electrically conductive signal collector can be based on the distance from the surface or on the expected beta energy range. A voltage source is connected to the signal collector through an electrometer or other display means for creating an electric field between the signal collector and the enclosure. Air ions created by the beta radiation are collected and the current produced is indicated on the electrometer or other display means.

  11. Beta particle monitor for surfaces

    DOEpatents

    MacArthur, D.W.

    1997-10-21

    A beta radiation detector which is capable of reliably detecting beta radiation emitted from a surface. An electrically conductive signal collector is adjustably mounted inside an electrically conductive enclosure which may define a single large opening for placing against a surface. The adjustable mounting of the electrically conductive signal collector can be based on the distance from the surface or on the expected beta energy range. A voltage source is connected to the signal collector through an electrometer or other display means for creating an electric field between the signal collector and the enclosure. Air ions created by the beta radiation are collected and the current produced is indicated on the electrometer or other display means. 2 figs.

  12. Electrohydrodynamic removal of particles from drop surfaces

    NASA Astrophysics Data System (ADS)

    Nudurupati, S.; Janjua, M.; Singh, P.; Aubry, N.

    2009-07-01

    A uniform electric field is used for cleaning drops of the particles they often carry on their surface. In a first step, particles migrate to either the drop’s poles or equator. This is due to the presence of an electrostatic force for which an analytical expression is derived. In a second step, particles concentrated near the poles are released into the ambient liquid via tip streaming, and those near the equator are removed by stretching the drop and breaking it into several droplets. In the latter case, particles are all concentrated in a small middle daughter droplet.

  13. Electrohydrodynamic removal of particles from drop surfaces.

    PubMed

    Nudurupati, S; Janjua, M; Singh, P; Aubry, N

    2009-07-01

    A uniform electric field is used for cleaning drops of the particles they often carry on their surface. In a first step, particles migrate to either the drop's poles or equator. This is due to the presence of an electrostatic force for which an analytical expression is derived. In a second step, particles concentrated near the poles are released into the ambient liquid via tip streaming, and those near the equator are removed by stretching the drop and breaking it into several droplets. In the latter case, particles are all concentrated in a small middle daughter droplet.

  14. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: IV. Diffuse Layer Charge/Potential Relationships

    EPA Science Inventory

    Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...

  15. Lunar particle shadows and boundary layer experiment: Plasma and energetic particles on the Apollo 15 and 16 subsatellites

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Chase, L. M.; Lin, R. P.; Mccoy, J. E.; Mcguire, R. E.

    1974-01-01

    The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance.

  16. Breakup of particle clumps on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Gurupatham, S.; Hossain, M.; Dalal, B.; Fischer, I.; Singh, P.; Joseph, D.

    2011-11-01

    In this talk we describe the mechanism by which clumps of some powdered materials breakup and disperse on a liquid surface to form a monolayer of particles. We show that a clump breaks up because when particles on its outer periphery come in contact with the liquid surface they are pulled into the interface by the vertical component of capillary force overcoming the cohesive forces which keep them attached, and then these particles move away from the clump. In some cases, the clump itself is broken into smaller pieces and then these smaller pieces break apart by the aforementioned mechanism. The newly-adsorbed particles move away from the clump, and each other, because when particles are adsorbed on a liquid surface they cause a flow on the interface away from themselves. This flow may also cause particles newly-exposed on the outer periphery of the clump to break away. Since millimeter-sized clumps can breakup and spread on a liquid surface within a few seconds, their behavior appears to be similar to that of some liquid drops which can spontaneously disperse on solid surfaces.

  17. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    PubMed

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques.

  18. Electrorotation of colloidal particles and cells depends on surface charge.

    PubMed Central

    Maier, H

    1997-01-01

    The importance of surface conductivity to the frequency-dependent polarizability and the rotation of particles in circular electric fields (electrorotation) is emphasized by various theoretical and experimental investigations. Although surface conductivity seems to be naturally related to the ionic double layer, there is rare experimental evidence of a direct relationship. To highlight the role of surface charges in electrorotation, an apparatus was developed with a symmetrical three-electrode arrangement for field frequencies between 25 Hz and 80 MHz. The three-dimensional electrostatic field distribution between the electrodes was evaluated numerically. With this device, rotating, gradient, and homogeneous electric fields of defined precision and homogeneity could be applied to slightly conducting suspensions. Surface properties of monodisperse latex particles (O 9.67 microm), carrying weak acid groups, were characterized by suspension conductometric titration. This procedure determined the amount of carboxyl groups and showed that strong acid groups were missing on the surface of these particles. To obtain the electrophoretic mobility, the spheres were separated by free-flow electrophoresis, and the zeta-potential was calculated from these data. Single-particle rotation experiments on fractions of specified electrophoretic mobility were carried out at frequencies between 25 Hz and 20 MHz. By analyzing the pH dependence of the rotation velocity, it could be shown that the rotation rate is determined by surface charges, both at the peak in rotation rate near the Maxwell-Wagner frequency (MWF) and at low frequencies. The inversion of the rotation direction at the MWF peak for vanishing surface charges was demonstrated. An analytical model for the double layer and dissociation on a charged surface was developed that is valid for low and high zeta-potentials. This model could provide convincing evidence of the linear dependence of the MWF rotation velocity on surface

  19. Influence of buoyant media on particle layer dynamics in microfiltration membranes.

    PubMed

    Aryal, R K; Vigneswaran, S; Kandasamy, Jaya

    2010-01-01

    This study forms a part of the physical study of the membrane bioreactor in presence of buoyancy media. Kaolin clay suspension with buoyancy media (anthracite) was used as a suspension and the particle layer development on membrane surface with evolution of time was studied. Presence of buoyancy media reduced the pressure development by almost two folds compared to in absence of the media. The particles deposition on membrane surface was size selective. The mean particle diameter (0.45 mum) deposited on the membrane surface remained almost similar in presence of the media after 7 hrs run where as in its absence the mean diameter finer particles deposition occurred at the beginning followed by coarser particles.

  20. Distribution of icy particles across Enceladus' surface

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Stephan, K.; Wagner, R.; Hansen, G. B.; Brown, R. H.; Cassini Vims Science Team

    Compositionally, the surface of Enceladus is build up almost completely by water ice [1]. However, distinct variations in the size of water ice particles are apparent. The Visual and Infrared Mapping Spectrometer [2] observed Enceladus with high spatial resolution during two Cassini flybys in 2005 (orbit 4 and 11). A detailed analysis of the VIMS spectra in comparison to theoretically calculated water ice spectra supports the assumption that almost pure water ice characterizes the surface of Enceladus and that the particle size varies between 0.002 and 0.1mm. Three dis-tinct spectral units can be separated exhibiting different particle sizes which are strongly correlated to surface features. A comparison between the classifications of particle sizes and geological maps of the regions observed during the flybys 4 and 11 demonstrate this result. Our measurements show that the particle size of water ice increases toward younger regions with the largest ones in "fresh" surface material. The smallest particles were generally found in old more or less densely cratered plains and the larger ones in younger tectonically resurfaced areas [4]. The largest particles are concentrated in the so called "tiger stripes" of the south polar area [1,5]. Our findings support the results of [1,7] with amorphous water ice being concen-trated in older terrain due to the longterm exposure to incoming radiation, and crys-talline water ice in the vicinity of the younger resurfaced regions, esp. the South Pole. Amorphization usually goes along with the destruction of water ice particles, resulting in the decrease of mean particle size. Unlike the Galilean satellites, which undergo a daily thermal cycle resulting in the crystallization of ice particles, the surface stays cooler (70K) [6] on Enceladus and the water ice remains in an amor-phous state. In contrast the sulci esp. the "tiger stripes" close to the South Pole are characterized by higher temperature [1,5,6], which leads to the

  1. Particle aggregation with simultaneous surface growth

    SciTech Connect

    pablo.mitchell@cal.Berkeley.EDU

    2003-04-29

    Particle aggregation with simultaneous surface growth was modeled using a dynamic Monte Carlo method. The Monte Carlo algorithm begins in the particle inception zone and constructs aggregates via ensemble-averaged collisions between spheres and deposition of gaseous species on the sphere surfaces. Simulations were conducted using four scenarios. The first, referred to as scenario 0, is used as a benchmark and simulates aggregation in the absence of surface growth. Scenario 1 forces all balls to grow at a uniform rate while scenario 2 only permits them to grow once they have collided and stuck to each other. The last one is a test scenario constructed to confirm conclusions drawn from scenarios 0-2. The transition between the coalescent and the fully-developed fractal aggregation regimes is investigated using shape descriptors to quantify particle geometry. They are used to define the transition between the coalescent and fractal growth regimes. The simulations demonstrate that the morphology of aggregating particles is intimately related to both the surface deposition and particle nucleation rates.

  2. Microthermal Instrument for Measuring Surface Layer Seeing

    NASA Astrophysics Data System (ADS)

    Li, Xue-Bao; Zheng, Yan-Fang; Deng, Lin Hua; Xu, Guang

    2012-02-01

    Microthermal fluctuations are introduced by atmospheric turbulence very near the ground. In order to detect microthermal fluctuations at Fuxian Solar Observatory (FSO), a microthermal instrument has been developed. The microthermal instrument consists of a microthermal sensor, which is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors, an associated signal processing unit, and a data collection, & communication subsystem. In this paper, after a brief introduction to surface layer seeing, we discuss the instrumentation behind the microthermal detector we have developed and then present the results obtained. The results of the evaluation indicate that the effect of the turbulent surface boundary layer to astronomical seeing would become sufficiently small when installing a telescope at a height of 16m or higher from the ground at FSO.

  3. Dynamic air layer on textured superhydrophobic surfaces.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model.

  4. All-nanoparticle layer-by-layer surface modification of micro- and ultrafiltration membranes.

    PubMed

    Escobar-Ferrand, Luis; Li, Diya; Lee, Daeyeon; Durning, Christopher J

    2014-05-20

    Layer-by-layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for surface modification of polymeric micro- and ultrafiltration (MF/UF) membranes to produce novel thin film composite (TFC) membranes intended for nanofiltration (NF) and reverse osmosis (RO) applications. A wide variety of porous substrate membranes with different surface characteristics are successfully employed. This report gives detailed results for polycarbonate track etched (PCTE), polyethersulfone (PES), and sulfonated PES (SPEES) MF/UF substrates. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those in prior works for solid substrates (e.g., Lee et al.). Appropriate selection of the pH for anionic and cationic particle deposition enables construction of nanoparticle-only layers 100-1200 nm in thickness atop the original porous membrane substrates. The surface layer thickness appears to vary linearly with the number of bilayers deposited, i.e., with the number of anionic/cationic deposition cycles. The deposition process is optimized to eliminate drying-induced cracking and improve mechanical durability via thickness control and postdeposition hydrothermal treatment. "Dead-end" permeation tests using dextran standards reveal the hydraulic characteristics and separations capability for the PCTE-based TFC membranes. The results show that nanoparticle-based LbL surface modification of MF and UF rated media can produce TFC membranes with NF capabilities.

  5. Focusing of particles scattered by a surface

    NASA Astrophysics Data System (ADS)

    Babenko, P. Yu.; Zinov'ev, A. N.; Shergin, A. P.

    2015-06-01

    It has been shown by computer simulation that the coefficient of reflection of argon atoms scattered by crystalline aluminum and germanium targets at glancing angles of less than 4° is close to unity and the beam of scattered particles exhibits focusing (the angular distributions of particles are strongly compressed). Whereas beam focusing with respect to the azimuth is well known and has already been studied, sharp focusing in the surface-normal direction at small glancing angles has not been studied so far. This effect is confirmed by the experimental results. It is associated with multiple scattering of incident particles by the atomic chain. The simulation results allowed finding quite accurately the amplitude of thermal vibrations of surface atoms ((0.123 ± 0.007) Å for aluminum), which agrees well with the experiment.

  6. Experimental study of shear layer instability below a free surface

    NASA Astrophysics Data System (ADS)

    André, Matthieu A.; Bardet, Philippe M.

    2015-11-01

    Relaxation of a laminar boundary layer at a free surface is an inviscidly unstable process and can lead to millimeter-scale surface waves, influencing interfacial processes. Due to the small time- and length-scales involved, previous experimental studies have been limited to visual observations and point-wise measurements of the surface profile to determine instability onset and frequency. However, effects of viscosity, surface tension, and non-linearity of the wave profile have not been systematically studied. In fact, no data have been reported on the velocity fields associated with this instability. In the present study, planar laser induced fluorescence and particle image velocimetry provide surface profiles coupled with liquid phase velocity fields for this instability in a time resolved manner. Wave steepness (ak, with a the amplitude and k the wave number) and Reynolds and Weber numbers based on momentum thickness range from 0 to 1.2, 143 to 177, and 4.79 to 6.61, respectively. Large datasets are analyzed to gain statistical information on the surface behavior. Discrete vortices are resolved, showing that the shear layer becomes unstable and rolls up above a Reynolds number of 140. The detection onset and steepness of the subsequent surface deformation by the vortices depend upon the Weber number. Non-linear behavior such as vortex motion and wave profile asymmetry are observed at steepness larger than 0.5.

  7. Enhanced cycle performance of a Na/NiCl2 battery based on Ni particles encapsulated with Ni3S2 layer

    NASA Astrophysics Data System (ADS)

    Ao, Xin; Wen, Zhaoyin; Hu, Yingying; Wu, Tian; Wu, Xiangwei; He, Qiming

    2017-02-01

    Nickel particles with different contents of Ni3S2 surface layer were prepared for their application as cathode materials in Na/NiCl2 batteries. The surface modification of nickel particles is found to prevent their growth and battery degradation during cycling. The optimum level of surface modification was determined by electrochemical tests and morphology characterization. Excessive Ni3S2 layer seems to cause particle aggregation resulting in low reversible capacity. The capacity of the cell with optimum level of Ni3S2 surface modification layer after 50 cycles is about 4 times greater than that without Ni3S2 surface modification layer.

  8. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    NASA Astrophysics Data System (ADS)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of <2°. Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  9. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  10. Lunar surface outgassing and alpha particle measurements

    SciTech Connect

    Lawson, S. L.; Feldman, W. C.; Lawrence, David J. ,; Moore, K. R.; Elphic, R. C.; Maurice, S.; Belian, Richard D.; Binder, Alan B.

    2002-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particle?; produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-2 18 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238.

  11. Development of titanium oxide layer containing nanocrystalline zirconia particles with tetragonal structure: Structural and biological characteristics.

    PubMed

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Ko, Young Gun; Shin, Dong Hyuk

    2015-07-01

    This study investigated the microstructural, mechanical and biological properties of oxide layers containing tetragonal zirconia (t-ZrO2) particles on pure titanium produced by plasma electrolytic oxidation (PEO) process. For this purpose, PEO processes were carried out at an AC current density of 200mA/cm(2) for 180s in potassium pyrophosphate (K4P2O7) electrolytes with and without t-ZrO2 powder. Structural investigations using transmission electron microscopy exhibited that the present nanocrystalline oxide layer evidenced the successful incorporation of a myriad of t-ZrO2 particles working as an intermediate medium to reinforce the adhesion strength between the substrate and oxide layer. Regarding biomimetic apatite formation, the t-ZrO2 particles uniformly spread were of considerable importance in triggering the nucleation and growth of biomimetic apatite on the surface of the oxide layer immersed in a simulated body fluid solution. The growth and proliferation rates of the osteoblasts (MC3T3-E1) cultured on the oxide layer with t-ZrO2 particles were higher than that without t-ZrO2 particles due to the higher roughness providing the better sites for the filopodia extension and interlocking.

  12. Surface Particle Detectors in Space Weather forecast

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot

    Recently several groups report on the development of the alarm system based on the surface particle detector data. Among them are high-latitude neutron monitors network "Spaceship Earth", coordinated by the group from Bartol Research Center; Muon network coordinated by the group from Shinshu University and Athens Neutron Monitor Data Processing Center. In the presented report, based on the information content of data from particle detectors of Aragats Space Environmental Center (ASEC) we made attempt to review possibility of surface particle detectors in Space Weather forecasts. Particle monitors located at ASEC at 1000, 2000 and 3200 m altitudes (40˚25 N, 44˚15 E; Vertical cut-off rigidity in 2007: 7.1 GV) detect charged and neutral components of the secondary cosmic rays with different energy thresholds and various angles of incidence. ASEC monitors reliably detect the highest energy CR due to unique geographical location and large underground high energy muon detector. Forecasting of the Solar Energetic Proton (SEP) events by surface particle detectors is based on the detection of the Ground Level Enhancements (GLE). Unfortunately not all SEPs contain particles energetic enough to produce GLE, therefore, the efficiency of the warnings will not be very high. Nonetheless, we can expect that the major events, (like 1859, 1956, 1972, 1989) with high probability will generate GLEs and surface detectors can provide forewarnings on upcoming abundant SEP particles. With the exception of the event on 20 January, when due to very good magnetic connection of the flare site with earth, all relativistic particles seem to come simultaneously, the enhancements of GeV solar particles detected by surface particle detectors can alert on upcoming severe radiation storm. The alerts from middle and low latitude monitors are even more important compared to high latitude networks, because of lower probability of false alarms. If an enhancement occurs at monitors with large cutoff

  13. Small particle transport across turbulent nonisothermal boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  14. Lunar Surface Outgassing and Alpha Particle Measurements

    NASA Astrophysics Data System (ADS)

    Lawson, S. L.; Feldman, W. C.; Lawrence, D. J.; Moore, K. R.; Elphic, R. C.; Maurice, S.; Belian, R. D.; Binder, A. B.

    2002-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-218 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. Once released, the radon spreads out by "bouncing" across the surface on ballistic trajectories in a randomwalk process. The half-life of radon-222 allows the gas to spread out by several 100 km before it decays (depositing approximately half of the polonium-218 recoil nuclides on the lunar surface) and allows the APS to detect gas release events up to several days after they occur. The long residence time of the lead-210 precursor to polonium-210 allows the mapping of gas vents which have been active over the last approximately 60 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution.

  15. Diurnal ocean surface layer model validation

    NASA Technical Reports Server (NTRS)

    Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.

    1990-01-01

    The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.

  16. Surface preparation of substances for continuous convective assembly of fine particles

    DOEpatents

    Rossi, Robert

    2003-01-01

    A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.

  17. Double layer -- a particle accelerator in the magnetosphere

    SciTech Connect

    Fu, Xiangrong

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  18. Modelling of particle distribution in the melting layer

    NASA Astrophysics Data System (ADS)

    de Wolf, D. A.; Russchenberg, H. W. J.; Ligthart, L. P.

    1990-12-01

    The analysis of radiowave propagation through, and radar scattering from, the melting layer requires a model of the melting ice particles with appropriate statistics of shape, size, and orientation distributions. Previous studies have indicated that the melting layer can be modeled by a collection of wet snow spheroids in air, of which the effective permittivity and the volume fraction are the most important parameters. It is proposed that the distribution of spheroid shapes can be modeled by a flat probability density of depolarization parameter lambda (3) between a minimum and a maximum value. The location of the average lambda (3) is crucial; the width is less important.

  19. A model for thin layer formation by delayed particle settling at sharp density gradients

    NASA Astrophysics Data System (ADS)

    Prairie, Jennifer C.; White, Brian L.

    2017-02-01

    Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.

  20. Enhancing surface coverage and growth in layer-by-layer assembly of protein nanoparticles.

    PubMed

    Mohanta, Vaishakhi; Patil, Satish

    2013-10-29

    Thin films of bovine serum albumin (BSA) nanoparticles are fabricated via layer-by-layer assembly. The surface of BSA nanoparticles have two oppositely acting functional groups on the surface: amine (NH2) and carboxylate (COO(-)). The protonation and deprotonation of these functional groups at different pH vary the charge density on the particle surface, and entirely different growth can be observed by varying the nature of the complementary polymer and the pH of the particles. The complementary polymers used in this study are poly(dimethyldiallylammonium chloride) (PDDAC) and poly(acrylic acid) (PAA). The assembly of BSA nanoparticles based on electrostatic interaction with PDDAC suffers from the poor loading of the nanoparticles. The assembly with PAA aided by a hydrogen bonding interaction shows tremendous improvement in the growth of the assembly over PDDAC. Moreover, the pH of the BSA nanoparticles was observed to affect the loading of nanoparticles in the LbL assembly with PAA significantly.

  1. Observations of specular reflective particles and layers in crystal clouds.

    PubMed

    Balin, Yurii S; Kaul, Bruno V; Kokhanenko, Grigorii P; Penner, Ioganes E

    2011-03-28

    In the present article, results of observations of high crystal clouds with high spatial and temporal resolution using the ground-based polarization LOSA-S lidar are described. Cases of occurrence of specularly reflective layers formed by particles oriented predominantly in the horizontal plane are demonstrated. Results of measuring echo-signal depolarization are compared for linear and circular polarization states of the initial laser beam.

  2. Methotrexate intercalated layered double hydroxides with different particle sizes: structural study and controlled release properties.

    PubMed

    Zhang, Xiao-Qing; Zeng, Mei-Gui; Li, Shu-Ping; Li, Xiao-Dong

    2014-05-01

    To study the influence of particle size on release properties, drug efficacy and other properties, a series of methotrexate intercalated layered double hydroxides (MTX/LDHs) nanohybrids with different particle sizes were synthesized through traditional coprecipitation method, by using the mixture of water and polyethylene glycol (volume ratio is 3:1) as solvent. The relationship between particle size and hydrothermal treatment conditions (i.e., time and temperature) had been systematically investigated, and the results indicate that the particle size can be precisely controlled between 70 and 300 nm. Elemental C/H/N and inductive coupled plasma (ICP) analysis indicated that different hydrothermal treatment almost has no effect on compositions of the nanohybrids. X-ray diffraction (XRD) patterns and fourier transform infrared spectroscopy (FTIR) investigations manifested the successful intercalation of MTX anions. MTX/LDHs particles exhibited hexagonal platelet morphology with round corner, due to the adsorption of MTX anions on positively charged LDHs surface. In addition, the crystallinity of MTX/LDHs increased with the particle diameters and the thermal stability of MTX anions was enhanced by holding together with LDHs layers. The in vitro release showed that bigger particles have much longer release duration, and the bioassay tests indicated that bigger particles are more efficient in the suppression of the tumor cells.

  3. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  4. Scaling laws of passive tracer dispersion in the turbulent surface layer.

    PubMed

    Skvortsov, Alex; Jamriska, Milan; Dubois, Timothy C

    2010-11-01

    Experimental results for passive tracer dispersion in the turbulent surface layer under stable conditions are presented. In this case, the dispersion of tracer particles is determined by the interplay of three mechanisms: relative dispersion (celebrated Richardson's mechanism), shear dispersion (particle separation due to variation of the mean velocity field) and specific surface-layer dispersion (induced by the gradient of the energy dissipation rate in the turbulent surface layer). The latter mechanism results in the rather slow (ballistic) law for the mean squared particle separation. Based on a simplified Langevin equation for particle separation we found that the ballistic regime always dominates at large times. This conclusion is supported by our extensive atmospheric observations. Exit-time statistics are derived from the experimental data set and show a reasonable match with the simple dimensional asymptotes for different mechanisms of tracer dispersion, as well as predictions of the multifractal model and experimental data from other sources.

  5. Radiative transfer theory for active remote sensing of a layer of nonspherical particles

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1984-01-01

    The radiative transfer theory is applied to calculate the scattering by a layer of randomly positioned and oriented nonspherical particles. The scattering amplitude functions of each individual particle are calculated with Waterman's T matrix method, which utilizes vector spherical wave functions for expansion of incident, scattered, and surface fields. The orientation of the particles is described by a probability density function of the Eulerian angles of rotation. A rotation matrix is used to relate the T matrix of the principal frame to that of the natural frame of the particle. The extinction matrix and phase matrix of the radiative transfer equations are expressed in terms of the T matrix elements. The extinction matrix for nonspherical particles is generally nondiagonal. There are only two attenuation rates in a specified direction of propagation. The radiative transfer equations are solved by an iterative method to first order in albedo. Numerical results are illustrated as functions of incidence angle and frequency with applications to active remote sensing.

  6. Surface engineering of nanoparticles in suspension for particle based bio-sensing.

    PubMed

    Sen, Tapas; Bruce, Ian J

    2012-01-01

    Surface activation of nanoparticles in suspension using amino organosilane has been carried out via strict control of a particle surface ad-layer of water using a simple but efficient protocol 'Tri-phasic Reverse Emulsion' (TPRE). This approach produced thin and ordered layers of particle surface functional groups which allowed the efficient conjugation of biomolecules. When used in bio-sensing applications, the resultant conjugates were highly efficient in the hybrid capture of complementary oligonucleotides and the detection of food borne microorganism. TPRE overcomes a number of fundamental problems associated with the surface modification of particles in aqueous suspension viz. particle aggregation, density and organization of resultant surface functional groups by controlling surface condensation of the aminosilane. The approach has potential for application in areas as diverse as nanomedicine, to food technology and industrial catalysis.

  7. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  8. Euler-Lagrange Modeling of Vortex Interaction with a Particle-Laden Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Morales, Fernando

    Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than

  9. Correlation and prediction of thermophoretic and inertial effects on particle deposition from non-isothermal turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The problem of small particle deposition which can cause hot stage corrosion and/or fouling in combustion turbines operating on fuels containing ash or inorganic salts is investigated. Two boundary layer transport phenomena are shown to assume importance in these cases: particle thermophoresis (migration down a temperature gradient) and particle inertia. Thermophoretic and eddy transport across turbulent boundary layers without and with particle inertia effects are quantitatively analyzed. The effects of streamwise blade curvature on particle transport across turbulent boundary layers are determined. It is shown that these phenomena destroy the analogy between mass and heat transfer or mass and momentum transfer. Also studied are the effects on particle deposition of distributed or localized wall blowing, surface roughness, and mainstream turbulence.

  10. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Mackinnon, I. D. R.

    1985-01-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.

  11. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.; MacKinnon, I. D. R.

    1985-11-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.

  12. Modification of surface layer of magnesium oxide via partial dissolution and re-growth of crystallites

    NASA Astrophysics Data System (ADS)

    Gao, Zhiming; Wei, Lingyan; Yan, Tingting; Zhou, Ming

    2011-02-01

    A procedure to modify surface layer of metal oxide is presented. By way of partial dissolution and re-growth of crystallites, a new MgO surface layer on the “core” of the original MgO particles was formed. XRD analyses indicate that the new surface layer is different from the original MgO particles in crystallinity. Thus a higher reducibility of surface non-lattice oxygen species is generated. As the extent of dissolution and re-growth of crystallites increased, reducible surface non-lattice oxygen species increased, which led to a lowering of surface non-lattice oxygen concentration on the X%-MgO catalysts in the OCM reaction atmosphere. This is considered to be the major reason for decreasing of CO2 formation.

  13. Turbulent swirling layer with free surface

    NASA Astrophysics Data System (ADS)

    Bardet, Philippe; Peterson, Per; Savas, Omer

    2007-11-01

    A turbulent annular liquid wall jet, or vortex tube, generated by helical injection inside a tube was characterized experimentally. The resulting hollow confined swirling layer is proposed for use in a thick liquid first-wall chamber concept for inertial fusion power plants. The velocity fields were measured with a single camera split-screen stereoscopic particle image velocimetry scheme. The flow was studied at 5 stations between 1.5 and 4.5 ``vortex tube'' diameters downstream of the injection nozzle in a horizontal plane that coincides with the tube axis. Up to 1024 independent realizations were recorded and analyzed for Reynolds numbers ranging from 3,200 to 14,000 at each station. The turbulent structures are non-isotropic and non-homogeneous. Gradients in average velocity and Reynolds stress result in turbulent kinetic energy production. Between 1.5 and 3.5 diameters, the average azimuthal velocity profile alone is non uniform away from the wall. Persistent large vortical structures are observed. The turbulent kinetic energy decreases slowly with distance while the dissipation decreases rapidly. At 4.5 diameters, the wall effect influences strongly the average velocity profiles. The vortical structures disappear and the turbulent kinetic energy increases.

  14. Dry deposition of large, airborne particles onto a surrogate surface

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Kalman, David; Larson, Timothy

    Simultaneous measurements of particle dry deposition flux and airborne number concentration in the open atmosphere were made using three different types of artificially generated particles in the size range 10-100 μm - perlite, diatomaceous earth and glass beads. A combination of gravimetric analysis, automated microscopy and sonic anemometry provided size-resolved estimates of both the inertial and gravitational components of the quasi-laminar layer particle deposition velocity, ( Vd) b, as a function of size. Eddy inertial deposition efficiency ( ηdI) was determined as a function of dimensionless eddy Stokes number (Stk e). In the range 3particles and gases to environmental surfaces. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA), used in several regulatory models, significantly under-predicted (up to seven times) ( Vd) b for large particles ( da>10 μm).

  15. Investigating evaporation of melting ice particles within a bin melting layer model

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea J.

    first melting layer profile on 10 May 2011 from the Midlatitude Continental Convective Clouds Experiment (MC3E) that is neither too saturated nor too subsaturated is possible and shows considerable mass loss for all particle sizes. Most melting layer profiles sampled during MC3E were too saturated for more than a dozen or two of the smallest particle sizes to experience significant mass loss. The aggregation, accretion, and collision and coalescence processes also countered significant mass loss at the largest particles sizes because these particles are efficient at collecting smaller particles due to their relative large sweep-out area. From these results, it appears that the assumption of negligible mass loss due to evaporation while melting is occurring is not always valid. Studies that use large, low-density snowflakes and high RH environments can safely use the assumption of negligible mass loss. Studies that use small ice particles or low RH environments (RH less than about 80%) cannot use the assumption of negligible mass loss due to evaporation. Retrieval algorithms may be overestimating surface precipitation rates and intensities in subsaturated environments due to the assumptions of negligible mass loss while melting and near-saturated melting layer environments.

  16. Energetic Particle Synthesis of Metastable Layers for Superior Mechanical Properties

    SciTech Connect

    Follstaedt, D.M.; Knapp, J.A.; Myers, S.M.; Dugger, M.T.; Friedmann, T.A.; Sullivan, J.P.; Monteiro, O.R.; Ager, J.W. III; Brown, I.G.; Christenson, T.

    1998-01-01

    Energetic particle methods have been used to synthesize two metastable layers with superior mechanical properties: amorphous Ni implanted with overlapping Ti and C, and amorphous diamond-like carbon (DLC) formed by vacuum-arc deposition or pulsed laser deposition. Elastic modulus, yield stress and hardness were reliably determined for both materials by fitting finite-element simulations to the observed layer/substrate responses during nanoindentation. Both materials show exceptional properties, i.e., the yield stress of amorphous Ni(Ti,C) exceeds that of hardened steels and other metallic glasses, and the hardness of DLC (up to 88 GPa) approaches that of crystalline diamond (approx. 100 GPa). Tribological performance of the layers during unlubricated sliding contact appears favorable for treating Ni-based micro-electromechanical systems: stick-slip adhesion to Ni is eliminated, giving a low coefficient of friction (approx. 0.3-0.2) and greatly reduced wear. We discuss how energetic particle synthesis is critical to forming these phases and manipulating their properties for optimum performance.

  17. Computation of Capillary Interactions among Many Particles at Free Surface

    NASA Astrophysics Data System (ADS)

    Fujita, Masahiro; Koike, Osamu; Yamaguchi, Yukio

    2013-03-01

    We have developed a new computational method to efficiently estimate capillary interactions among many moving particles at a free surface. A novelty of the method is the immersed free surface (IFS) model that transforms the surface tension exerted on a three-phase contact line on a particle surface into the surface tension exerted on an artificially created virtual free surface in the particle. Using the IFS model along with a level set method and an immersed boundary method, we have reasonably simulated a capillary-force-induced self-assembly of particles that is common in coating-drying of particle suspension.

  18. Groupwise surface correspondence using particle filtering

    NASA Astrophysics Data System (ADS)

    Li, Guangxu; Kim, Hyoungseop; Tan, Joo Kooi; Ishikawa, Seiji

    2015-03-01

    To obtain an effective interpretation of organic shape using statistical shape models (SSMs), the correspondence of the landmarks through all the training samples is the most challenging part in model building. In this study, a coarse-tofine groupwise correspondence method for 3-D polygonal surfaces is proposed. We manipulate a reference model in advance. Then all the training samples are mapped to a unified spherical parameter space. According to the positions of landmarks of the reference model, the candidate regions for correspondence are chosen. Finally we refine the perceptually correct correspondences between landmarks using particle filter algorithm, where the likelihood of local surface features are introduced as the criterion. The proposed method was performed on the correspondence of 9 cases of left lung training samples. Experimental results show the proposed method is flexible and under-constrained.

  19. Acoustic tomography in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Ziemann, A.; Arnold, K.; Raabe, A.

    1999-01-01

    Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique) is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

  20. Surface Layer Turbulence During a Frontal Passage

    SciTech Connect

    Piper, M; Lundquist, J K

    2004-06-15

    Some recent investigations have begun to quantify turbulence and dissipation in frontal zones to address the question of what physical mechanism counteracts the intensification of temperature and velocity gradients across a developing front. Frank (1994) examines the turbulence structure of two fronts that passed a 200m instrumented tower near Karlsruhe, Germany. In addition to showing the mean vertical structure of the fronts as they pass the tower, Frank demonstrates that there is an order of magnitude or more increase in turbulent kinetic energy across the frontal zone. Blumen and Piper (1999) reported turbulence statistics, including dissipation rate measurements, from the MICROFRONTS field experiment, where high-frequency turbulence data were collected from tower-mounted hotwire and sonic anemometers in a cold front and in a density current. Chapman and Browning (2001) measured dissipation rate in a precipitating frontal zone with high-resolution Doppler radar. Their measurements were conducted above the surface layer, to heights of 5km. The dissipation rate values they found are comparable to those measured in Kennedy and Shapiro (1975) in an upper-level front. Here, we expand on these recent studies by depicting the behavior of the fine scales of turbulence near the surface in a frontal zone. The primary objective of this study is to quantify the levels of turbulence and dissipation occurring in a frontal zone through the calculation of kinetic energy spectra and dissipation rates. The high-resolution turbulence data used in this study are taken during the cold front that passed the MICROFRONTS site in the early evening hours of 20 March 1995. These new measurements can be used as a basis for parameterizing the effects of surface-layer turbulence in numerical models of frontogenesis. We present three techniques for calculating the dissipation rate: direct dissipation technique, inertial dissipation technique and Kolmogorov's four-fifths law. Dissipation rate

  1. Investigation of shock wave-boundary layer instability on the heated ramp surface

    NASA Astrophysics Data System (ADS)

    Glushneva, A. V.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2015-11-01

    By means of particle image velocimetry method shock-wave boundary layer interaction on the pre-heated ramp surface was investigated. The influence of surface heating on separation region unsteadiness was proved. It was found experimentally that increasing of wall to outer flow temperature ratio raises amplitude of separation region oscillation.

  2. Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications

    NASA Astrophysics Data System (ADS)

    Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas

    2001-11-01

    Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.

  3. Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Hunt, J. C. R.

    2000-08-01

    Experiments were conducted in a wind tunnel in which a turbulent boundary layer was naturally grown over flat beds of three types of nearly mono-disperse spherical particles with different diameters, densities and coefficient of restitution (r) (snow, 0.48 mm, 910 kg m[minus sign]3; mustard seeds, 1.82 mm, 1670 kg m[minus sign]3, r = 0.7; ice particles, 2.80 mm, 910 kg m[minus sign]3, r = 0.8 0.9). The surface wind speeds (defined by the friction velocity u[low asterisk]) were varied between 1.0 and 1.9 times the threshold surface wind speed (defined by u[low asterisk]t). The trajectories, and ejection and impact velocities of the particles were recorded and analysed, even those that were raised only about one diameter into the flow.

  4. Adhesion as an interplay between particle size and surface roughness.

    PubMed

    Katainen, J; Paajanen, M; Ahtola, E; Pore, V; Lahtinen, J

    2006-12-15

    Surface roughness plays an important role in the adhesion of small particles. In this paper we have investigated adhesion as a geometrical effect taking into account both the particle size and the size of the surface features. Adhesion is studied using blunt model particles on surfaces up to 10 nm root-mean-square (RMS) roughness. Measurements with particles both smaller and larger than surface features are presented. Results indicate different behavior in these areas. Adhesion of particles smaller than or similar in size to the asperities depend mainly on the size and shape of the asperities and only weakly on the size of the particle. For large particles also the particle size has a significant effect on the adhesion. A new model, which takes the relative size of particles and asperities into account, is also derived and compared to the experimental data. The proposed model predicts adhesion well over a wide range of particle/asperity length scales.

  5. Oxidation at Surfaces of Uranium Oxide Particles

    NASA Astrophysics Data System (ADS)

    Schueneman, Richard; Burgraff, Larry

    2001-04-01

    Uranium dioxide (UO2 (S)) is unstable in an oxidizing environment and oxidizes until covered with a layer of uranium trioxide (UO3 (C)). During the oxidation process, uranium cations change from U+4 to U+6 and the oxide crystal structure changes from face centered cubic to orthorhombic. Seven UO2(S) samples were prepared by pressing UO2 (S) powder into a tungsten screen and then subjected to five different temperatures and three partial pressures of oxygen. UO2 (S) oxidation was monitored with in situ photoluminescence (PL) spectroscopy. Quantitative oxidation data was obtained with secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS). The in situ PL spectra did not identify UO3 (C) forming on the sample surfaces however, a new PL signature not associated with uranyl was observed. SIMS and XPS data from oxidized UO2 (S) samples indicated that at low temperatures, surface oxidation is kinetically limited and at high temperatures, surface oxidation is limited by diffusion. A model for the oxidation rate to UO3 (C) was not developed due to the temperature dependant oxidation process and high vacuum reduction of amorphous UO3 (A) present on the UO2 (S) sample surfaces prior to oxidation. A PL emission spectra intensity reduction was noticed on a UO3 (C) sample at room temperature under high vacuum. A reduction and re-oxidation of three additional UO3 (C) samples identified a kinetically irreversible reduction process for UO3(C) under high vacuum. A SIMS surface scan was performed on a fourth UO3(C) sample before and after exposure to ultra-high vacuum (10-8 torr) and the results suggest the reduction of UO3(C) to lower oxides (U3O8, U3O7 and UO2) at room temperature.

  6. Thin Water Films at Multifaceted Hematite Particle Surfaces.

    PubMed

    Boily, Jean-François; Yeşilbaş, Merve; Uddin, Munshi Md Musleh; Baiqing, Lu; Trushkina, Yulia; Salazar-Alvarez, Germàn

    2015-12-08

    Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (α-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an "adsorption regime" (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a "condensation regime" (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanoclusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, μ-OH, μ3-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal η-(OH2)2 sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of ∼8 Torr (∼40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the "adsorption regime". These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of μ-OH and μ3-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic

  7. The Lowest Atmosphere: Atmospheric Boundary Layer Including Atmospheric Surface Layer.

    DTIC Science & Technology

    1996-04-01

    troposphere" as a result of frictional forces. A good definition of the atmospheric boundary layer (ABL) (provided to me by the late Dr. Rudy...wind extends light flag. Raises dust and loose paper; small branches are moved. Small trees in leaf begin to sway; crested wavelets form on inland...Calm. Sea like a mirror. Light air Ripples like scales, no foam crest. Light breeze Small wavelets ; crests have glassy appearance, do not break

  8. From surface to subsurface and back again: the contribution of subsurface particle motion to surface armoring

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Jerolmack, D. J.; Ortiz, C. P.; Houssais, M.

    2015-12-01

    Armoring is the development of a coarse surface layer of sediments on a river bed, which overlies a smaller and typically more heterogeneous substrate. All existing models for this phenomenon are predicated on the idea that armoring develops due to size-selective transport and kinetic sieving at the surface of the granular bed. Here examine the development of armoring in the absence of size-selective surface transport, and demonstrate that subsurface particle movement can create an armored surface layer. We first conduct experiments in a laminar and annular flume, over a range of Shields stresses, with bimodal and refractive index-matched spherical sediments; this allows us to image the internal motion of the granular bed that is sheared from above by a viscous oil. Fluid-driven particle motion of the surface layer results in granular shear, that drives motion deep into the bed. This subsurface motion causes an upward migration of coarser particles, at a rate that is proportional to the granular shear rate. Comparison of experimental results to an existing continuum-granular flow model suggest that armoring in our bed-load exeriments is entirely consistent with shear-induced segregation in dry avalanches - but is slower. There is no size-selective transport at the surface in the experiments, as the annular flume is mass conserving and all particles move as bed load; this was confirmed by observation. To probe the granular physics of armor development further, we perform numerical simulations using a discrete element model (DEM) of granular flow, with and without damping. Simulations reproduce salient features of the experiments, and indicate that armoring is robust but that the rate of segregation is related to the degree of viscous damping. We posit that subsurface granular flow is an important and perhaps dominant contributor to surface armoring in rivers. More generally, this work shows how information is transferred from the surface to the subsurface and back

  9. Monte Carlo simulation of light reflection from cosmetic powder particles near the human skin surface.

    PubMed

    Okamoto, Takashi; Kumagawa, Tatsuya; Motoda, Masafumi; Igarashi, Takanori; Nakao, Keisuke

    2013-06-01

    The reflection and scattering properties of light incident on human skin covered with powder particles have been investigated. A three-layer skin structure with a pigmented area is modeled, and the propagation of light in the skin's layers and in a layer of particles near the skin's surface is simulated using the Monte Carlo method. Assuming that only single scattering of light occurs in the powder layer, the simulation results show that the reflection spectra of light from the skin change with the size of powder particles. The color difference between normal and discolored skin is found to decrease considerably when powder particles with a diameter of approximately 0.25 μm are present near the skin's surface. The effects of the medium surrounding the particles, and the influence of the distribution of particle size (polydispersity), are also examined. It is shown that a surrounding medium with a refractive index close to that of the skin substantially suppresses the extreme spectral changes caused by the powder particles covering the skin surface.

  10. Oxygen reduction reaction over silver particles with various morphologies and surface chemical states

    NASA Astrophysics Data System (ADS)

    Ohyama, Junya; Okata, Yui; Watabe, Noriyuki; Katagiri, Makoto; Nakamura, Ayaka; Arikawa, Hidekazu; Shimizu, Ken-ichi; Takeguchi, Tatsuya; Ueda, Wataru; Satsuma, Atsushi

    2014-01-01

    The oxygen reduction reaction (ORR) in an alkaline solution was carried out using Ag powders having various particle morphologies and surface chemical states (Size: ca. 40-110 nm in crystalline size. Shape: spherical, worm like, and angular. Surface: smooth with easily reduced AgOx, defective with AgOx, and Ag2CO3 surface layer). The various Ag powders were well characterized by X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption, scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and stripping voltammetry of underpotential-deposited lead. Defective and oxidized surfaces enhanced the Ag active surface area during the ORR. The ORR activity was affected by the morphology and surface chemical state: Ag particles with defective and angular surfaces showed smaller electron exchange number between three and four but showed higher specific activity compared to Ag particles with smooth surfaces.

  11. Ice nucleating particles in the Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Sierau, Berko; García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés; Linke, Claudia; Schnaiter, Martin; Kupiszewski, Piotr; Kanji, Zamin A.; Lohmann, Ulrike

    2016-07-01

    This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L-1 in the deposition mode and up to 2500 std L-1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43-0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient

  12. Carbon Surface Layers on a High-Rate LiFePO4

    SciTech Connect

    Gabrisch, Heike; Wilcox, James D.; Doeff, Marca M.

    2005-09-06

    Transmission electron microscopy (TEM) was used to image particles of a high-rate LiFePO4 sample containing a small amount of in situ carbon. The particle morphology is highly irregular, with a wide size distribution. Nevertheless, coatings, varying from about 5-10 nm in thickness, could readily be detected on surfaces of particles as well as on edges of agglomerates. Elemental mapping using Energy Filtered TEM (EFTEM) indicates that these very thin surface layers are composed of carbon. These observations have important implications for the design of high-rate LiFePO4 materials in which, ideally, a minimal amount of carbon coating is used.

  13. Surface plasma source with anode layer plasma accelerator

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  14. Continuous production of nanostructured particles using spatial atomic layer deposition

    SciTech Connect

    Ommen, J. Ruud van Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis

    2015-03-15

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ∼1 nm diameter are deposited onto titania (TiO{sub 2}) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31 wt. % of Pt) at a rate of about 1 g min{sup −1}. Tuning the precursor injection velocity (10–40 m s{sup −1}) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100 °C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications.

  15. Particle impact tests. [simulation of micrometeoroid damage to orbiter surface

    NASA Technical Reports Server (NTRS)

    Komatsu, G. K.

    1978-01-01

    Particle impact tests were performed on three types of orbiter surface with a micrometeoroid facility. The test equipment electrostatically accelerated micron sized particles to high velocities simulating micrometeoroid impacts. Test particles were titanium diboride with typical velocities in the range 1 to 2.3 km x sec/1 and equivalent particle diameters in the range 4 to 16 microns. Impact angles to the material surface were 90, 60 and 30 degrees. The particle impact sites were located on the sample surfaces and craters were photographed with a magnification of 400X.

  16. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  17. Contact mechanics for layered materials with randomly rough surfaces.

    PubMed

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  18. Surface Collisions Involving Particles and Moisture (SCIP'M)

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2005-01-01

    Experiments were performed on the collision of a solid sphere with a nearly horizontal flat surface covered with a thin layer of viscous liquid. High-speed collisions were obtained by dropping the ball onto the surface from various heights, using gravitational acceleration. Low-speed collisions were obtained using pendulums with long strings or by launching the balls at low velocities in the reduced-gravity environment of parabolic flight. The sphere bounces only when the impact velocity exceeds a critical value. The coefficient of restitution (ratio of rebound velocity to impact velocity) increases with increasing impact velocity above the critical value, indicating the increasing relative importance of elastic deformation to viscous dissipation. The critical impact velocity increases, and the coefficient of restitution decreases, with increasing viscosity or thickness of the liquid layer and with decreasing density or size of the sphere. The ratio of the wet and dry coefficients is expressed as a function of the Stokes number (ratio of particle inertia and viscous forces), showing good agreement between theory and experiment. Similar experiments were performed with the flat surface inclined at various angles to the approaching sphere. A modified Stokes number, which is a measure of the ratio of inertia of the sphere in the normal direction to the viscous forces exerted by the fluid layer, was used for the analysis of oblique collisions. Even for these oblique collisions, it was found that no rebound of the ball was observed below a certain critical Stokes number. The coefficient of normal restitution, defined as a ratio of normal rebound velocity to normal approach velocity, was found to increase beyond the critical Stokes number and even out as it approaches the value for dry restitution at high Stokes numbers. It was also found that, for smooth spheres like steel, the normal restitution at the same modified Stokes number is independent of the angle of impact

  19. Erosion of Galilean satellite surfaces by Jovian magnetosphere particles

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Lanzerotti, L. J.; Brown, W. L.; Armstrong, T. P.

    1981-01-01

    The effects on the surfaces of the Galilean satellites Europa, Ganymede and Callisto of impacts by particles of the Jupiter magnetosphere in which they are immersed are estimated. Differential ion fluxes measured by the Voyager low-energy magnetosphere particle analyzer as a function of ion energy were used to calculate ice erosion fluxes for the satellites under the assumption that each is 50% ice covered. Calculations were performed on the basis of laboratory data concerning the ice sputtering coefficients of protons and oxygen ions of various energies. A water erosion rate of greater than 10 to the 10th/sq cm per sec is obtained for Europa, which implies a total erosion over 1 billion years of an ice layer 100 m deep. Atmospheric column densities of the H2O molecules sputtered from the surface but not escaping the satellites are also calculated for the three satellites assuming a sputtered ion temperature of 2000 K, and are found to dominate those produced by sublimation. Finally, estimates are presented of the source and loss processes for an oxygen atmosphere around Ganymede created by sputtering or sublimation.

  20. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood

    NASA Astrophysics Data System (ADS)

    Lozhechnikova, Alina; Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo; Österberg, Monika

    2017-02-01

    Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering ability and some UV protection, all achieved using an environmentally friendly coating process, which is beneficial to retain the natural appearance of wood and improve indoor air quality and comfort.

  1. Particle reflection and ion-induced desorption from tungsten surfaces with chemisorbed nitrogen

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Kimura, H.

    1987-06-01

    Using the Monte Carlo simulation program ACAT, ion-induced desorption yields of nitrogen chemisorbed on tungsten surfaces and the associated particle reflection coefficients have been calculated for low-energy helium-ions. It is found that both the particle reflection coefficients and the energy distributions of the reflected particles depend strongly on the thickness of the adsorbate layer on the surface if the ion energy is in the threshold regime and that the collision sequence of the near-threshold mechanism includes at least two adsorbate atoms. The ACAT desorption yields are found to be in good agreement with experimental yields.

  2. Particle reflection and ion-induced desorption from tungsten surfaces with chemisorbed nitrogen

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Kimura, H.

    Using the Monte Carlo simulation program ACAT, ion-induced desorption yields of nitrogen chemisorbed on tungsten surfaces and the associated particle reflection coefficients have been calculated for low-energy helium-ions. It is found that both the particle reflection coefficients and the energy distributions of the reflected particles depend strongly on the thickness of the adsorbate layer on the surface if the ion energy is in the threshold regime and that the collision sequence of the near-threshold mechanism includes at least two adsorbate atoms. The ACAT desorption yields are found to be in good agreement with experimental yields.

  3. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  4. Tunable hybrid surface waves supported by a graphene layer

    NASA Astrophysics Data System (ADS)

    Iorsh, I. V.; Shadrivov, I. V.; Belov, P. A.; Kivshar, Yu. S.

    2013-05-01

    We study electromagnetic waves localized near the surface of a semi-infinite dielectric medium covered by a graphene layer in the presence of a strong external magnetic field. We demonstrate that a novel type of hybrid TE-TM polarized surface plasmons can propagate along the graphene layer. We analyze the effect of the Hall conductivity on the polarization properties of these hybrid surface waves and suggest a possibility to tune the graphene plasmons by the external magnetic field.

  5. Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Varney, Michael C. M.; Zhang, Qiaoxuan; Senyuk, Bohdan; Smalyukh, Ivan I.

    2016-10-01

    We study elastic interactions between colloidal particles and deformation landscapes of undulations in a cholesteric liquid crystal under an electric field applied normal to cholesteric layers. The onset of undulation instability is influenced by the presence of colloidal inclusions and, in turn, layers' undulations mediate the spatial patterning of particle locations. We find that the bending of cholesteric layers around a colloidal particle surface prompts the local nucleation of an undulations lattice at electric fields below the well-defined threshold known for liquid crystals without inclusions, and that the onset of the resulting lattice is locally influenced, both dimensionally and orientationally, by the initial arrangements of colloids defined using laser tweezers. Spherical particles tend to spatially localize in the regions of strong distortions of the cholesteric layers, while colloidal nanowires exhibit an additional preference for multistable alignment offset along various vectors of the undulations lattice. Magnetic rotation of superparamagnetic colloidal particles couples with the locally distorted helical axis and undulating cholesteric layers in a manner that allows for a controlled three-dimensional translation of these particles. These interaction modes lend insight into the physics of liquid crystal structure-colloid elastic interactions, as well as point the way towards guided self-assembly of reconfigurable colloidal composites with potential applications in diffraction optics and photonics.

  6. Simulation of Particle Coagulation in Temporally Developing Mixing Layers

    DTIC Science & Technology

    2001-08-01

    approach is advantageous in that there are no a priori assumptions re- garding the nature of the particle size distribution. We intend to use direct...a sectional method is used to represent the particle field as a function of space and time. This approach effectively divides the particle size...j=1 i=1 The source term, wk, represents the effects of particle-particle interactions: production of Qk due to collisions of smaller particles; the

  7. Adhesion Between Particles And Surfaces In A Vacuum

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack B.

    1990-01-01

    Report discusses experimental study of adhesion between several kinds of particles and solid surfaces. Purpose of investigation to extend available data on adhesion of contaminant particles and to contribute to understanding of ways in which acceleration redistributes contaminant particles, causing increases or decreases in contamination.

  8. Preservation of Archaeal Surface Layer Structure During Mineralization

    NASA Astrophysics Data System (ADS)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  9. Preservation of Archaeal Surface Layer Structure During Mineralization

    PubMed Central

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-01-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record. PMID:27221593

  10. Ameriflux data used for verification of surface layer parameterizations

    NASA Astrophysics Data System (ADS)

    Tassone, Caterina; Ek, Mike

    2015-04-01

    The atmospheric surface-layer parameterization is an important component in a coupled model, as its output, the surface exchange coefficients for momentum, heat and humidity, are used to determine the fluxes of these quantities between the land-surface and the atmosphere. An accurate prediction of these fluxes is therefore required in order to provide a correct forecast of the surface temperature, humidity and ultimately also the precipitation in a model. At the NOAA/NCEP Environmental Modeling Center, a one-dimensional Surface Layer Simulator (SLS) has been developed for simulating the surface layer and its interface. Two different configurations of the SLS exist, replicating in essence the way in which the surface layer is simulated in the GFS and the NAM, respectively. Input data for the SLS are the basic atmospheric quantities of winds, temperature, humidity and pressure evaluated at a specific height above the ground, surface values of temperature and humidity, and the momentum roughness length z0. The output values of the SLS are the surface exchange coefficients for heat and momentum. The exchange coefficients computed by the SLS are then compared with independent estimates derived from measured surface heat fluxes. The SLS is driven by a set of Ameriflux data acquired at 22 stations over a period of several years. This provides a large number of different vegetation characteristics and helps ensure statistical significance. Even though there are differences in the respective surface layer formulations between the GFS and the NAM, they are both based on similarity theory, and therefore lower boundary conditions, i.e. roughness lengths for momentum and heat, and profile functions are among the main components of the surface layer that need to be evaluated. The SLS is a very powerful tool for this type of evaluation. We present the results of the Ameriflux comparison and discuss the implications of our results for the surface layer parameterizations of the NAM

  11. Metastable states of plasma particles close to a charged surface

    SciTech Connect

    Shavlov, A. V.; Dzhumandzhi, V. A.

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  12. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Nesterov, A.; Löffler, F.; Cheng, Yun-Chien; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.

    2010-04-01

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  13. Surface heterogeneity of passively oxidized silicon carbide particles: vapor adsorption isotherms.

    PubMed

    Médout-Marère, V; Partyka, S; Dutartre, R; Chauveteau, G; Douillard, J M

    2003-06-15

    The surfaces of silicon carbide particles subjected to two different passive oxidation treatments have been characterized by immersion calorimetry and vapor adsorption techniques. Surface enthalpies and surface free energies have been computed using semiempirical models and are compared to theoretical estimations. The surface entropy term appears higher than in the case of other solids studied with the same analysis. The definition of the surface entropy term is discussed in order to explain the discrepancy between calculation and experiment. An explanation of results is proposed, which is related to the constitution of silicon oxide layers at the surface of silicon carbide, a fact demonstrated by previous XPS measurements.

  14. Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Libing; Fu, Li; Wang, Hong-Fei; Yang, Bin

    2017-03-01

    Significant questions remain in respect to cellulose’s structure and polymorphs, particularly the cellulose surface layers and the bulk crystalline core as well as the conformational differences. Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with conventional SFG-VS (non-TIR) enables selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose, revealing their differences for the first time. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous while the surface layers of Iβ cellulose are crystalline but with different structural and spectroscopic signatures compared with its crystalline core. The differences between hydrogen bonding networks of cellulose surface and crystalline core were also shown by the SFG signal. The discovery here represents yet another instance of the importance of spectroscopic observations in transformative advances to understand the structure of the cellulosic biomass.

  15. Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

    PubMed Central

    Zhang, Libing; Fu, Li; Wang, Hong-fei; Yang, Bin

    2017-01-01

    Significant questions remain in respect to cellulose’s structure and polymorphs, particularly the cellulose surface layers and the bulk crystalline core as well as the conformational differences. Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with conventional SFG-VS (non-TIR) enables selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose, revealing their differences for the first time. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous while the surface layers of Iβ cellulose are crystalline but with different structural and spectroscopic signatures compared with its crystalline core. The differences between hydrogen bonding networks of cellulose surface and crystalline core were also shown by the SFG signal. The discovery here represents yet another instance of the importance of spectroscopic observations in transformative advances to understand the structure of the cellulosic biomass. PMID:28290542

  16. Acoustic Tomography of the Atmospheric Surface Layer

    DTIC Science & Technology

    2014-11-28

    resolution of an ultrasonic anemometer , it was suggested that one consider it is as a small acoustic tomography array and apply appropriate inverse...Fairall, D. Keith Wilson, Ludovic Bariteau. Sonic Anemometer as a Small Acoustic Tomography Array, Boundary-Layer Meteorology, (08 2013): 0. doi...Received Paper 3.00 S. N. Vecherin, V. E. Ostashev, D. K. Wilson, A. Grached. Utilization of an acoustic tomography array as a large sonic anemometer

  17. Cryoclastic origin of particles on the surface of Enceladus

    NASA Astrophysics Data System (ADS)

    Degruyter, W.; Manga, M.

    2011-08-01

    Analogous to volcanic deposits on Earth, we can infer eruption characteristics on Enceladus from the relationship between particle size and distance from the vent. We develop a model in which ice particles feeding plumes are accelerated by the gas. We consider two cases: drag-limited and collision-limited acceleration, which link particle size to exit velocity. After being ejected at the vent, particles follow ballistic trajectories. We fit the model to observations of particle size on the surface inferred from modeled VIMS data collected by the Cassini spacecraft. We obtain a relationship between gas temperature and characteristic acceleration length, whereby lower gas temperatures require longer acceleration lengths. The model shows that the large size of particles on the surface is consistent with the size of particles observed with the CDA and VIMS instruments at heights of Cassini flybys, and the size of particles that reach escape velocity and are found in Saturn's E-ring.

  18. Alpha particle backscattering measurements used for chemical analysis of surfaces

    NASA Technical Reports Server (NTRS)

    Patterson, J. H.

    1967-01-01

    Alpha particle backscattering performs a chemical analysis of surfaces. The apparatus uses a curium source and a semiconductor detector to determine the energy spectrum of the particles. This in turn determines the chemical composition of the surface after calibration to known samples.

  19. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  20. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    PubMed Central

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  1. Anisotropy measurement of pyrolytic carbon layers of coated particles

    SciTech Connect

    Vesyolkin, Ju. A. Ivanov, A. S.; Trushkina, T. V.

    2015-12-15

    Equipment at the National Research Center Kurchatov Institute intended for the anisotropy determination of pyrolytic carbon layers in coated particles (CPs) of the GT-MGR reactor is tested and calibrated. The dependence of the anisotropy coefficient on the size of the measurement region is investigated. The results of measuring the optical anisotropy factor (OPTAF) for an aluminum mirror, rutile crystal, and available CP samples with the known characteristics measured previously using ORNL equipment (United States) are presented. In addition, measurements of CP samples prepared at VNIINM are performed. A strong dependence of the data on the preparation quality of metallographic sections is found. Our investigations allow us to make the conclusion on the working capacity of the existing equipment for measuring the anisotropy of pyrolytic carbon CP coatings using the equipment at the Kurchatov Institute with the relative error of about 1%. It is shown that the elimination of the errors caused by the stochastic fluctuations in a measuring path by mathematical processing of the signal allows us to decrease the relative error of OPTAF measurements to ∼0.3%.

  2. Anisotropy measurement of pyrolytic carbon layers of coated particles

    NASA Astrophysics Data System (ADS)

    Vesyolkin, Ju. A.; Ivanov, A. S.; Trushkina, T. V.

    2015-12-01

    Equipment at the National Research Center Kurchatov Institute intended for the anisotropy determination of pyrolytic carbon layers in coated particles (CPs) of the GT-MGR reactor is tested and calibrated. The dependence of the anisotropy coefficient on the size of the measurement region is investigated. The results of measuring the optical anisotropy factor (OPTAF) for an aluminum mirror, rutile crystal, and available CP samples with the known characteristics measured previously using ORNL equipment (United States) are presented. In addition, measurements of CP samples prepared at VNIINM are performed. A strong dependence of the data on the preparation quality of metallographic sections is found. Our investigations allow us to make the conclusion on the working capacity of the existing equipment for measuring the anisotropy of pyrolytic carbon CP coatings using the equipment at the Kurchatov Institute with the relative error of about 1%. It is shown that the elimination of the errors caused by the stochastic fluctuations in a measuring path by mathematical processing of the signal allows us to decrease the relative error of OPTAF measurements to ~0.3%.

  3. Particle resuspension and associated coherent structures in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Braaten, David Alan

    Fundamental properties of particle resuspension from a surface solely by turbulent fluid forces was examined experimentally by observing intermittent particle resuspension and associated turbulent flow properties. Experiments were conducted in an environmental wind tunnel, where sparse beds of monodisperse Lycopodium spores (Club Moss) were placed flush with the floor of the wind tunnel, and exposed to a steady, well developed turbulent boundary layer flow. Particle bed concentration was monitored in situ throughout each experimental trial using an optical system designed to detect forward scattering from a HeNe laser beam. Simultaneous measurements of streamwise and vertical velocity were made immediately downstream of the illuminated particles using hot film anemometry. Experimental trials were conducted at three free-stream velocities (6.0, 7.5, and 9.0 m s(-1)) for a duration of 35 minutes. A Monte-Carlo particle resuspension model was developed to simulate the resuspension process associated with coherent structures of varying magnitude. Simulations were compared with experimental results to identify a probability distribution of coherent structure magnitude.

  4. Bioactive macroporous titanium surface layer on titanium substrate.

    PubMed

    Kim, H M; Kokubo, T; Fujibayashi, S; Nishiguchi, S; Nakamura, T

    2000-12-05

    A macroporous titanium surface layer is often formed on titanium and titanium alloy implants for morphological fixation of the implants to bone via bony ingrowth into the porous structure. The surface of titanium metal was recently shown to become highly bioactive by being subjected to 5.0 M-NaOH treatment at 60 degrees C for 24 h and subsequent heat treatment at 600 degrees C for 1 h. In the present study, the NaOH and heat treatments were applied to a macroporous titanium surface layer formed on titanium substrate by a plasma spraying method. The NaOH and heat treatments produced an uniform amorphous sodium titanate layer on the surface of the porous titanium. The sodium titanate induced a bonelike apatite formation in simulated body fluid at an early soaking period, whereby the apatite layer grew uniformly along the surface and cross-sectional macrotextures of the porous titanium. This indicates that the NaOH and heat treatments lead to a bioactive macroporous titanium surface layer on titanium substrate. Such a bioactive macroporous layer on an implant is expected not only to enhance bony ingrowth into the porous structure, but also to provide a chemical integration with bone via apatite formation on its surface in the body.

  5. Removal of the organic surface layer in combined sewer sediment using a flushing gate.

    PubMed

    Laplace, D; Oms, C; Ahyerre, M; Chebbo, O; Lemasson, J; Felouzis, L

    2003-01-01

    Recent research identified the different sources of pollution of wet weather Combined Sewers Overflows (CSOs): it appeared that the deposits in sewers, and especially an organic layer situated at the water-sediment interface, may contribute 40-70% to the total pollution load of CSOs. Using the cyclic flush Hydrass gate, we generated increased water flows during dry weather. The effects of flushing the deposits have been analysed: the eroded particles sampled during the first flush wave show pollutant characteristics similar to characteristics measured in the organic layer. The organic layer that has formed on the surface of deposits can thus be washed off before rainstorms occur using the cyclic flushing technique.

  6. Nanoscale Surface Modification of Layered Materials

    NASA Astrophysics Data System (ADS)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  7. Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering

    NASA Astrophysics Data System (ADS)

    Saprykina, N. A.; Saprykin, A. A.; Ibragimov, E. A.; Arkhipova, D. A.

    2016-07-01

    The paper presents data on state of the art in selective laser sintering of products. Layer-by-layer sintering is shown to be a future-oriented technology, making it possible to synthesize products of metal powder materials. Factors, influencing the quality of a sintered product, are revealed in the paper. It presents outcomes of experiments, focused on the dependence of surface layer thickness of sintered aluminum powder PA-4 on laser processing conditions. Basic factors, influencing the quality of a sintered surface layer include laser power, speeds of scanning and moving the laser beam on the layer of powder. Thickness of the sintered layer varies from 0.74 to 1.55 mm, as the result of changing the laser processing conditions.

  8. Amplification of nonlinear surface waves in an inhomogeneous transition layer

    NASA Astrophysics Data System (ADS)

    Brodin, G.; Gradov, O. M.

    1991-12-01

    A plasma with a boundary transition layer of variable depth in the presence of a powerful electromagnetic field is considered. It is shown that a displacement of the boundary will grow, and will propagate as a nonlinear surface wave in the direction in which the depth of the transition layer decreases.

  9. Surface forces of colloidal particles from micrometer to nanometer

    NASA Astrophysics Data System (ADS)

    Cho, Jeong-Min

    2003-10-01

    Surface forces of colloidal particles play critical roles in the macroscopic behavior of particulate systems such as dispersion and coagulation, adhesion and coating, and the rheological behavior of ceramic slurries. As particle size is decreased from micrometer to nanometer range, surface forces are increasingly important. Polyelectrolytes are the chemical additives commonly used to efficiently control the stabilization of the colloidal system. Their conformations on the solid surfaces as well as the interactions between the adsorbed polyelectrolytes are important issues in colloidal processing. Most experimental and theoretical approaches to the surface forces are based on particle sizes in the micrometer range. However, nanoparticles at close proximity or high solids loading are expected to show different behavior than what can be estimated from conventional theories such as continuum or mean field theories. My study examined the effect of pH, ionic strength, and molecular weight of the polyelectrolytes on the surface forces of colloidal particles by the interplay with the adsorption, turbidity, and direct surface force measurement in terms of the conformation on the solid surfaces. The colloid probe technique based on atomic force microscopy (AFM) is well established for micron size particles; and could be extended for nanosize particles by using carbon nanotubes as proximal probes. Nanotubes with their high aspect ratio avoid the contribution from cone shapes that happens with AFM tips. The difference in particle size significantly influences surface forces for sterically dispersed colloidal systems.

  10. Particle current on flexible surfaces excited by harmonic waves.

    PubMed

    Verma, Neeta; DasGupta, Anirvan

    2013-11-01

    In this paper, a study on the directed particle current on flexible surfaces excited by a harmonic wave is reported. The proposed theory considers three different models for the kinematics of the surface, namely the Euler-Bernoulli, Timoshenko, and Rayleigh surface wave models. The particle-surface interaction terms in the theory incorporate Coulomb friction and inelastic collision between the particle and the surface. Three possible phases of motion, namely sticking, sliding, and jumping, are considered, and the phase transition boundaries are estimated analytically for a general surface model. The effect of various parameters on the particle current and certain statistical features of the particle motion are then studied numerically. Remarkably, the particle current spectra exhibit, in addition to resonance modes, antiresonance and secondary resonance modes and transversal zero crossings. These features have interesting implications for the particle dynamics in terms of dynamic jamming states and particle eddies, which are pointed out. Under certain restricted conditions, averaging calculations are also performed and compared with the corresponding numerical simulations.

  11. Turbulent Boundary Layer Flow over Superhydrophobic Surfaces

    DTIC Science & Technology

    2013-05-10

    determined by the user via variable -frequency drive units that control the pumps . The water tunnel is able to produce friction Reynolds numbers up to 4000 and...gradient flow. The test surface is affixed to the bottom wall. Water from the holding tank is pumped into the tunnel at a specific speed ...as a plane moving through the air, a car driving down the road (through air), and a ship traveling through water. Based on an object’s geometry and

  12. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers

    NASA Astrophysics Data System (ADS)

    Contreras-Aburto, Claudio; Báez, César A.; Méndez-Alcaraz, José M.; Castañeda-Priego, Ramón

    2014-06-01

    The long-time self-diffusion coefficient, DL, of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that DL is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the DL values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of DL. Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.

  13. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.

    PubMed

    Contreras-Aburto, Claudio; Báez, César A; Méndez-Alcaraz, José M; Castañeda-Priego, Ramón

    2014-06-28

    The long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the D(L) values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of D(L). Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.

  14. Turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.

  15. Boundary layer flow visualisation patterns on a riblet surface

    NASA Astrophysics Data System (ADS)

    Clark, D. G.

    Boundary layer flow visualization methods, developed at Queen Mary and Westfield College, have been applied to a riblet surface. The results reveal cellular crossflows developing in the grooves between the riblets. These local flor regimes appear to have little direct effect on the flow in the wall layers immediately adjacent to them. Qualitatively, the behavior of the wall layers appears to be that which would be expected if a virtual surface existed at a level slightly above the riblet tops, but a tendency for the origin of longitudinal eddy pairs to become anchored to the top of a riblet is noted.

  16. Molecular adsorption at particle surfaces: a PM toxicity mediation mechanism.

    PubMed

    Kendall, Michaela; Brown, Leslie; Trought, Katherine

    2004-01-01

    Fine atmospheric particles depositing in the lung present a large adsorbent surface for the adsorption of bronchoalveolar lining fluid (BALF) components, including lung surfactant and its associated proteins. Such adsorption at invading particle surfaces is known to be important in biological particle clearance, and the immunological and toxicological fate of these particles. In the experiments conducted here, it was hypothesized that this is also true for particles of nonbiological origin, and that fine particles with large surface areas would selectively adsorb the opsonizing components of BALF. This work quantifies the adsorption rates (adsorption of compound per unit surface area) of isolated BALF components. Elemental carbon (EC) is a ubiquitous component of fine urban particulate matter (PM2.5), and particular forms of EC are extremely surface active (e.g., activated carbon). EC originates largely from fossil fuel combustion, and vehicles in particular contribute a significant proportion of PM(2.5) EC mass in urban areas. Since the size distribution of EC is submicrometer, industrially produced carbon blacks in the 25-100 nm size range can be used as a surrogate for urban EC, in terms of surface area and chemistry. Three types of carbon black (CB) particles were used. Two were identical in size (25 nm) but different in surface treatment; R330, a CB with a nonoxidized surface, and R400, a CB produced with an oxidized surface. The third particle type, M120, was 75 nm, different in size from R330 and R400, but similar to R330 in surface chemistry, that is, nonoxidized. Particles were first washed and resuspended in phosphate-buffered-saline (PBS, pH 7.0) three times to remove surfactant coatings added during their manufacture. Colloidal suspensions of M120, R330, and R400 particles with decreasing surface areas were then generated and separated into reaction vials. BALF proteins were added spanning physiological concentrations while the dominant phospholipid in

  17. Formation of Al/B4C Surface Nano-composite Layers on 7075 Al Alloy Employing Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Kashani-Bozorg, S. F.; Jazayeri, K.

    2009-06-01

    Al/B4C surface nano-composite layers was achieved on commercial 7075 Al substrate employing friction stir processing technique. Agglomeration of B4C particles was occurred after a single pass. The dispersion of B4C particles was found to be affected by the number of FSP passes. A distribution of nano-size B4C particle was achieved after four passes. Moreover, the increasing in number of FSP passes causes a decreasing in matrix grain size of the surface nano-composite layer. The micro hardness of the surface nano-composite layer improves by almost two times as compared to that of the as-received substrate; this is attributed to the finer matrix grains and dispersion of nano-sized B4C particles.

  18. Roughness Characterization of and Turbulent Boundary Layer Flow over flat Snow Surfaces

    NASA Astrophysics Data System (ADS)

    Gromke, C.; Guala, M.; Manes, C.; Walter, B.; Lehning, M.

    2009-12-01

    The surface roughness is essential for all turbulent exchange processes within the lower part of the atmospheric boundary layer. Consequently, a proper representation of the surfaces roughness is needed in every mathematical description of near surface mass-, energy- and momentum exchange processes. Considering the vertical mean velocity profile of turbulent boundary layer flow, this is done by assigning an aerodynamic roughness length z0 to the surface. We followed two procedures to describe the roughness of freshly fallen snow surfaces. First, photographs of snow surfaces have been taken and evaluated using digital image analysis giving snow surface contour line coordinates. Applying structure functions to the snow surface coordinates and statistical fitting procedures, resulted in classes of surface characteristic length scales and scaling exponents. These results allow to identify the deposition process of snow fall as scaling exponents corresponded to that of Ballistic Deposition. Moreover, the resulting characteristic length scales can be assigned to typical particle size and aggregation size length scales consistent with results found by Lowe et al. (2007) and Manes et al. (2008). Second, aerodynamic roughness lengths z0 have been estimated from log-law fitting of velocity profiles over the snow surfaces measured in the SLF cold atmospheric boundary layer wind tunnel. The aerodynamic roughness lengths found are in general agreement with available literature data and suggest the presence of aerodynamically rough regimes with flow independent z0. In the synthesis of both approaches, we found evidence for a linear relationship between one class of surface characteristic length scales, which is associated with typical snow particle sizes, and aerodynamic roughness lengths z0. The correlation with the aggregation length scale is weaker for the few (4) samples analyzed thus far. The relatively weak pronounced scale separation between particle and aggregation size

  19. Double Charged Surface Layers in Lead Halide Perovskite Crystals.

    PubMed

    Sarmah, Smritakshi P; Burlakov, Victor M; Yengel, Emre; Murali, Banavoth; Alarousu, Erkki; El-Zohry, Ahmed M; Yang, Chen; Alias, Mohd S; Zhumekenov, Ayan A; Saidaminov, Makhsud I; Cho, Namchul; Wehbe, Nimer; Mitra, Somak; Ajia, Idris; Dey, Sukumar; Mansour, Ahmed E; Abdelsamie, Maged; Amassian, Aram; Roqan, Iman S; Ooi, Boon S; Goriely, Alain; Bakr, Osman M; Mohammed, Omar F

    2017-03-08

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface's optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  20. Surface Mobility of Horizontally Vibrated Granular Layers as a Function of Depth

    NASA Astrophysics Data System (ADS)

    Puls, Conor; McElwaine, Jim

    2005-11-01

    Stimulated by studies of avalanches where the critical slope angle is a function of layer depth [1], we investigate horizontally vibrated layers of various thickness, using acceleration to simulate the effects of gravity. The rectangular cell is 20 cm long in the direction of motion, and 8 cm transverse to that direction, containing polydisperse polystyrene particles of diameter 0.7-1.2 mm, 1-20 particles deep. We measure the RMS velocity of the mobilized surface particles in the frame of reference of the oscillating box, as a function of non-dimensional acceleration and layer depth. We find a depth-dependent threshold acceleration for surface mobility. The mobility also varies with time, due possibly to structural re-arrangement of the particles. The observations are compared to numerical simulations of the same phenomena using soft particle forces with friction, and to earlier experimental studies [2]. [1] O. Pouliquen, Phys. Fluids 11, 542 (1999). [2] G. Metcalfe et al., Phys. Rev. E 61, 031302 (2002).

  1. Hyperbolic Spirals as Surface Structures in Thin Layers.

    PubMed

    Weh, Lothar

    2001-03-15

    When thin layers of 4-chloro-3-methylphenol and a copolymer of methyl(methacrylate) and maleic acid dissolved in acetone are dried by solvent evaporation, various surface structures appear. Besides linear surface deformations that can ramify like fractals, spirals of the hyperbolic type have been found. The surface structures are due to crystallization processes and flows caused by surface tension differences. The spirals are surface elevations with grooves on both sides as shown by surface profile measurements by means of a microscope interferometer. The addition of surfactants reduces the structure formation. A large surfactant concentration prevents the structure formation. Copyright 2001 Academic Press.

  2. Modeling cross-hatch surface morphology in growing mismatched layers

    NASA Astrophysics Data System (ADS)

    Andrews, A. M.; Speck, J. S.; Romanov, A. E.; Bobeth, M.; Pompe, W.

    2002-02-01

    We propose and investigate a model for the development of cross-hatch surface morphology in growing mismatched layers. The model incorporates two important elements: (i) strain relaxation due to dislocation glide in the layer (film) interior that is also associated with misfit dislocation formation at the film/substrate interface and (ii) lateral surface transport that eliminates surface steps that originated from dislocation glide. A combination of dislocation-assisted strain relaxation and surface step flow leads to the appearance of surface height undulations during layer growth. A Monte Carlo simulation technique was applied to model dislocation nucleation events in the course of strain relaxation. The simulation was used to model the influence of dislocations on film surface height profiles. The surface height displacement was calculated from the analytic elasticity solutions for edge dislocations near a free surface. The results of the modeling predict that the average amplitude of the surface undulations and their apparent wavelength both increase with increasing film relaxation and film thickness. The developed cross-hatch pattern is characterized by an atomically smooth but mesoscopically (lateral dimensions ˜0.1-10 μm) rough surface morphology. The conclusions of the model are in agreement with atomic force microscopy observations of cross-hatch surface relief in In0.25Ga0.75As/GaAs samples grown well beyond the critical thickness for misfit dislocation formation.

  3. Impact of small changes in particle surface chemistry for unentangled polymer nanocomposites.

    PubMed

    Ranka, Moulik; Varkey, Nihal; Ramakrishnan, Subramanian; Zukoski, Charles F

    2015-02-28

    We report microstructural and rheological consequences of altering silica particle surface chemistry when the particles are suspended in unentangled polyethylene glycol with a molecular weight of 400. The particle surfaces are altered by reacting them with isobutyltrimethyoxysilane. Levels of silanization are chosen so that the particles remain dispersed in the polymer at all volume fractions studied. Our studies indicate that at the levels studied, silanization does not alter the hydrodynamic thickness of the absorbed polymer layer thickness. Rheological properties are not sensitive to levels of silanization up to particle volume fractions where the average particle separation h ∼ 6Rg (4.8 nm). At these volume fractions, composite microstructure undergoes changes associated with jamming of soft particles (decorrelations in the first peak of the particle structure factor and the onset of a non-diffusive mechanism that dominates particle density fluctuations at short times.) In the region of volume fractions where h/Rg < 6, the zero-shear rate viscosity of the composites is extremely sensitive to level of silanization with a decrease in the zero-shear rate viscosity by four orders of magnitude observed for the highest levels of silanization studied in comparison to the bare particles.

  4. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  5. Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance

    NASA Astrophysics Data System (ADS)

    Chai, Jiale; Cheng, Qiang; Si, Mengting; Su, Yang; Zhou, Yifan; Song, Jinlin

    2017-03-01

    The spectral selective coating is becoming more and more popular against solar irradiation not only in keeping the coated objects stay cool but also retain the appearance of the objects by reducing the glare of reflected sunlight. In this work a numerical study is investigated to design the double-layer coating with different submicron particles to achieve better performance both in thermal and aesthetic aspects. By comparison, the performance of double-layer coating with TiO2 and ZnO particles is better than that with single particles. What's more, the particle diameter, volume fraction of particle as well as substrate condition is also investigated. The results show that an optimized double-layer coating with particles should be the one with an appropriate particle diameter, volume fraction and the black substrate.

  6. Dead layer on silicon p-i-n diode charged-particle detectors

    SciTech Connect

    Wall, B. L.; Amsbaugh, John F.; Beglarian, A.; Bergmann, T.; Bichsel, H. C.; Bodine, L. I.; Boyd, N. M.; Burritt, Tom H.; Chaoui, Z.; Corona, T. J.; Doe, Peter J.; Enomoto, S.; Harms, F.; Harper, Gregory; Howe, M. A.; Martin, E. L.; Parno, D. S.; Peterson, David; Petzold, Linda; Renschler, R.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Van Wechel, T. D.; VanDevender, Brent A.; Wustling, S.; Wierman, K. J.; Wilkerson, J. F.

    2014-04-21

    Abstract Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by discussion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.

  7. Certification of hardened surface layers by magnetic and electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Mitropol'skaya, S. Yu.

    2013-07-01

    The possibilities of certification of hardened surface layers by measurement of coercive force, eddy current inspection and analysis of the field dependence of differential magnetic permeability μ d ( H) are considered. The advantages of analysis of the pattern of peaks on the μ d ( H) dependence for estimating the state of surface-hardened steels subjected to subsequent force loading are shown.

  8. Surface modification of polypropylene based particle foams

    NASA Astrophysics Data System (ADS)

    Schreier, P.; Trassl, C.; Altstädt, V.

    2014-05-01

    This paper deals with the modification of the surface properties of expanded polypropylene (EPP). EPP is a semi-hard to soft elastic thermoplastic foam. The characteristic surface of EPP shows process-related steam nozzle imprints and gussets. Therefore EPP does not satisfy the quality requirements for visible automotive applications. In order to meet these demands, plastic surfaces are usually enhanced with functional or decorative coatings, e.g. textiles, plastic films or paint. The coating of plastics with low surface energies such as PP often leads to adhesion problems by reason of the missing polar and functional groups. This paper gives an evaluation of activation and pre-treatment methods of EPP, with the aim to identify the most suitable pre-treatment method. For this purpose five typical surface treatment methods - flame treatment, corona, fluorination, atmospheric and low-pressure plasma - were performed on EPP samples. As a comparison criterion the maximum increase in the adhesion force between a polyurethane-based coating and the modified EPP substrate was selected. Moreover the influence of the selected pre-treatment method on the increase in the total surface energy and its polar component was investigated by the drop shape analysis method. The results showed that the contact angle measurement is a suitable method to determine the polar and disperse fractions of the surface tension of EPP. Furthermore, all performed methods increased the adhesion of EPP.

  9. Multi-layer enhancement to polysilicon surface-micromachining technology

    SciTech Connect

    Sniegowski, J.J.; Rodgers, M.S.

    1997-10-01

    A multi-level polysilicon surface-micromachining technology consisting of 5 layers of polysilicon is presented. Surface topography and film mechanical stress are the major impediments encountered in the development of a multilayer surface-micromachining process. However, excellent mechanical film characteristics have been obtained through the use of chemical-mechanical polishing for planarization of topography and by proper sequencing of film deposition with thermal anneals. Examples of operating microactuators, geared power-transfer mechanisms, and optical elements demonstrate the mechanical advantages of construction with 5 polysilicon layers.

  10. Surface-stabilized nonferromagnetic ordering of a layered ferromagnetic manganite.

    PubMed

    Nascimento, V B; Freeland, J W; Saniz, R; Moore, R G; Mazur, D; Liu, H; Pan, M H; Rundgren, J; Gray, K E; Rosenberg, R A; Zheng, H; Mitchell, J F; Freeman, A J; Veltruska, K; Plummer, E W

    2009-11-27

    An outstanding question regarding the probing or possible device applications of correlated electronic materials (CEMs) with layered structure is the extent to which their bulk and surface properties differ or not. The broken translational symmetry at the surface can lead to distinct functionality due to the charge, lattice, orbital, and spin coupling. Here we report on the case of bilayered manganites with hole doping levels corresponding to bulk ferromagnetic order. We find that, although the hole doping level is measured to be the same as in the bulk, the surface layer is not ferromagnetic. Further, our low-energy electron diffraction and x-ray measurements show that there is a c-axis collapse in the outermost layer. Bulk theoretical calculations reveal that, even at fixed doping level, the relaxation of the Jahn-Teller distortion at the surface is consistent with the stabilization of an A-type antiferromagnetic state.

  11. Cubical Shape Enhances the Interaction of Layer-by-Layer Polymeric Particles with Breast Cancer Cells

    PubMed Central

    Chen, Jun; Kuncewicz, Thomas; Kharlampieva, Eugenia; Godin, Biana

    2015-01-01

    Blood-borne objects display a non-spherical shape with in-flow dimensions much larger than the vascular endothelial fenestrations, yet, at the diseased state, are able to traverse through these fenestrations owing to their elasticity. The role of physical parameters including shape and elasticity in the behavior of objects found in the tumor microenvironment needs to be understood to ultimately enhance chemotherapy and minimize its side-effects. In this study, sphere and cube-shaped biocompatible elastic microparticles (EM) made via layer-by-layer (LbL) assembly of hydrogen-bonded tannic acid/poly(N-vinylpyrrolidone)/ (TA/PVPON) as hollow polymer shells and their rigid core-shell precursors (RM) are explored. In contrast to rigid 5-bilayer (TA/PVPON) core-shells, hollow shells are unrecognized by J774A.1 macrophages yet interact with endothelial and breast cancer cells. Internalization of cubical shells by HMVEC (endothelial) is 5-fold more efficient and 6- and 2.5-fold more efficient for MDA-MB-231 and by SUM159 (breast cancer cells), respectively, compared to spherical shells. The interaction of cubical (TA/PVPON)5 shells with endothelial cells is similar under 10 s−1 (characteristic of tumor vasculature) and 100 s−1 shear rate (normal vasculature) while it is decreased at 100 s−1 shear rate for the spherical shells. Our data suggest that cubical geometry promotes interaction of particles with breast cancer cells, while elasticity prevents engulfment by phagocytic cells in the tumor microenvironment. PMID:26424126

  12. Spectrometers for particle measurements in space based on surface reflection

    NASA Astrophysics Data System (ADS)

    Barabash, S.; Wieser, M.; Wurz, P.

    2012-04-01

    This is a review talk on space particle spectrometers based on the surface reflection technique. We sum up the experience in development and operation of such instruments accumulated for the last 15 years at the Swedish Institute of space Physics, Kiruna, Sweden in close cooperation with University of Bern, Bern, Switzerland. The technique is relatively new and used in space for measurements of few eV - few keV particles. It was first introduced for neutral atom detection in the GAS instrument onboard the ESA/NASA Ulysses mission (Witte et al., 1992) and later for ion measurements (Barabash et al., 2007) onboard Indian Chandrayaan-1. When a particle hit a surface, secondary electrons release and the particle is either absorbed by the surface or get scattered or reflected. The charge state of the reflected particles normally does not depend on the initial charge state and is neutral but also includes a fraction of negative and positive ions. These charged particles can be analyzed by conventional ion optics. The secondary electrons can be used for triggering a time-of-flight system. The surface reflection technique is close to the usage of foils/ulta-thin foils for particle detections but has a number of advantages. First, it does not require high pre-acceleration potentials and thus allows making more compact and light weight instruments. Secondly, it permits detection of neutral atoms down to 10 eV. Despite the interaction with the surface modifies the original particle velocity, the proper design of the following analyzer section and ion optics can mitigate this effect. We shortly introduce main characteristics of the particle - surface interactions important for this application, describe designs of the instruments flown in space, and show performances of the surface reflection based ENA and ion spectrometers developed for Mars / Venus Express, Chandrayaan-1, BepiColombo, Phobos-Grunt, and Swedish PRISMA.

  13. Vapor layer evolution during drop impact on a heated surface

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyeon; Lee, Sangjun; Lee, Jisan; Fezzaa, Kamel; Je, Jung Ho

    2015-11-01

    When a liquid drop impacts on a sufficiently hot surface above the boiling point, a vapor layer is formed between the drop and the surface, preventing direct contact between them and as a result levitating the drop, known as the Leidenfrost effect. Understanding the evolution of the vapor layer is largely unexplored despite its importance in estimating heat transfer in cooling systems of thermal or nuclear power plants. The side-profile visualization of the vapor layer, as absolutely required for investigating its evolution, has been however unavailable by conventional optical microscopy. In this study, by employing ultrafast X-ray phase contrast imaging, we directly visualize the profiles of the vapor layers during liquid drop impact on a hot surface and elucidate the evolution of the vapor layers during spreading and retraction of the drop as functions of impact height and surface temperature. We reveal that the evolution is governed by the propagation of capillary waves generated in retraction and the wavelength of capillary waves λ is inversely proportional to the impact height h with a relation ~σ/ρh ~We-1 where We is weber number. Capillary waves that converge at the center of the vapor layers are linked to the bouncing behavior of the drop.

  14. Transport of inertial anisotropic particles under surface gravity waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas

    2016-11-01

    The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.

  15. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.; Pal, Uday B.

    1992-01-01

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro.sub.3 particles; (2) dispersing doped LaCrO.sub.3 particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then electrochemical vapor depositing a dense skeletal LaCrO.sub.3 structure, between and around the doped LaCrO.sub.3 particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell.

  16. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, V.L.; Singhal, S.C.; Pal, U.B.

    1992-07-21

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro[sub 3] particles; (2) dispersing doped LaCrO[sub 3] particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then a dense skeletal LaCrO[sub 3] structure is electrochemically vapor deposited between and around the doped LaCrO[sub 3] particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell. 4 figs.

  17. Nonlinear Surface Transport in the Thin Double-Layer Limit

    NASA Astrophysics Data System (ADS)

    Chu, Kevin; Bazant, Martin

    2006-03-01

    At high applied electric fields, ionic transport within the double layer plays a significant role in the overall response of electrokinetic systems. It is well-known that surface transport processes, including surface electromigration, surface diffusion and surface advection, may impact the strength of electrokinetic phenomena by affecting both the zeta-potential and the magnitude of the tangential electric field. Therefore, it is important to include these effects when formulating the effective boundary conditions for the equations that govern electrokinetic flow outside of the double layer. In this talk, we discuss the application of a general formulation of ``surface conservation laws'' for diffuse boundary layers to derive effective boundary conditions that capture the physics of electrokinetic surface transport. Previous analyses (e.g. Deryagin & Dukhin 1969) are only valid for weak applied fields and are based on a linearization of the concentration and potential about a reference solution, but our results are fully nonlinear and hold at large applied fields as long as the double layer is sufficiently thin. We compare our nonlinear surface transport theory with existing linear analogues and apply it to the canonical problem of induced-charge electro-osmosis around a metal sphere or cylinder in a strong DC field.

  18. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  19. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  20. Atomic and molecular layer deposition for surface modification

    SciTech Connect

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  1. Multi-layer surface profiling using gated wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Nordin, Nur Dalilla; Tik, Eddy Chow Mun; Tan, ChingSeong; Chew, Kuew Wai; Menoni, Carmen

    2015-01-01

    Recently, multi-layer surface profiling and inspection has been considered an emerging topic that can be used to solve various manufacturing inspection problems, such as graded index lenses, TSV (Thru-Silicon Via), and optical coating. In our study, we proposed a gated wavefront sensing approach to estimate the multi-layer surface profile. In this paper, we set up an experimental platform to validate our theoretical models and methods. Our test bed consists of pulse laser, collimator, prism, well-defined focusing lens, testing specimen, and gated wavefront sensing assembly (e.g., lenslet and gated camera). Typical wavefront measurement steps are carried out for the gated system, except the reflectance is timed against its time of flight as well as its intensity profile. By synchronizing the laser pulses to the camera gate time, it is possible to discriminate a multi-layer wavefront from its neighbouring discrete layer reflections.

  2. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  3. Patterning and pattern selection in a surface layer: Feedback between point defects population and surface layer temperature variations

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Bashtova, Anna I.; Lysenko, Irina O.

    2016-12-01

    We study dynamics of pattern formation in a prototype system of nonequilibrium point defects in thin foils under sustained nonequilibrium conditions. A reaction-diffusion model describing spatio-temporal behaviour of both vacancy population and local temperature of a surface layer is used. It is shown that pattern selection processes caused by coupling between defect population and local temperature of a surface are realized. Associated oscillatory dynamics of main statistical moments of both vacancy concentration field and surface layer temperature is analysed in detail. It is found that during the system evolution spatial distribution of local temperature variations of the surface layer relates to vacancy population distribution. It is shown that the mean size of vacancy clusters (from 30 nm up to 300 nm) evolves in oscillatory manner due to pattern selection processes. Morphology of defect complexes can be controlled by defects generation rate.

  4. Synthesis and characterization of macromolecular layers grafted to polymer surfaces

    NASA Astrophysics Data System (ADS)

    Burtovyy, Oleksandr

    The composition and behavior of surfaces and interfaces play a pivotal role in dictating the overall efficiency of the majority of polymeric materials and devices. Surface properties of the materials can be altered using surface modification techniques. It is necessary to highlight that successful methods of surface modification should affect only the upper layer of the polymer material without changing bulk properties. The processes must introduce new functionalities to the surface, optimize surface roughness, lubrication, hydrophobicity, hydrophilicity, adhesion, conductivity, and/or biocompatibility. Research presented in this dissertation is dedicated to the synthesis, characterization, and application of thin macromolecular layers anchored to polymer substrates. Specifically, attachment of functional polymers via a "grafting to" approach has been extensively studied using PET and nylon model substrates. First, poly(glycidyl methacrylate) was used to introduce permanent functionalities to the model substrates by anchoring it to model films. Then, three different functional polymers were grafted on top of the previous layer. As one part of this study, the temperature and time dependence of grafting functional layers were studied. The surface coverage by hydrophobic polymer was determined from experimental data and predicted by a model. In general, the model has a high degree of predictive capability. Next, surface modification of polymeric fibers and membranes is presented as an important application of the polymer thin layers targeted in the study. Specifically, the procedures developed for surface modification of model substrates was employed for modification of PET, nylon, and cotton fabrics as well as PET track-etched membranes. Since epoxy groups are highly reactive in various chemical reactions, the approach becomes virtually universal, allowing both various surfaces and end-functionalized macromolecules to be used in the grafted layer synthesis. PET

  5. Surface modes in sheared boundary layers over impedance linings

    NASA Astrophysics Data System (ADS)

    Brambley, E. J.

    2013-08-01

    Surface modes, being duct modes localized close to the duct wall, are analysed within a lined cylindrical duct with uniform flow apart from a thin boundary layer. As well as full numerical solutions of the Pridmore-Brown equation, simplified mathematical models are given where the duct lining and boundary layer are lumped together and modelled using a single boundary condition (a modification of the Myers boundary condition previously proposed by the author), from which a surface mode dispersion relation is derived. For a given frequency, up to six surface modes are shown to exist, rather than the maximum of four for uniform slipping flow. Not only is the different number and behaviour of surface modes important for frequency-domain mode-matching techniques, which depend on having found all relevant modes during matching, but the thin boundary layer is also shown to lead to different convective and absolute stability than for uniform slipping flow. Numerical examples are given comparing the predictions of the surface mode dispersion relation to full solutions of the Pridmore-Brown equation, and the accuracy with which surface modes are predicted is shown to be significantly increased compared with the uniform slipping flow assumption. The importance of not only the boundary layer thickness but also its profile (tanh or linear) is demonstrated. A Briggs-Bers stability analysis is also performed under the assumption of a mass-spring-damper or Helmholtz resonator impedance model.

  6. Surface stress of graphene layers supported on soft substrate

    PubMed Central

    Du, Feng; Huang, Jianyong; Duan, Huiling; Xiong, Chunyang; Wang, Jianxiang

    2016-01-01

    We obtain the surface stress of a single layer and multilayers of graphene supported on silicone substrates by measuring the deformation of the graphene-covered substrates induced by the surface tension of liquid droplets together with the Neumann’s triangle concept. We find that the surface stress of the graphene-covered substrate is significant larger than that of the bare substrate, and it increases with increasing graphene layers, and finally reaches a constant value of about 120 mN/m on three and more layers of graphene. This work demonstrates that the apparent surface stress of graphene-substrate systems can be tuned by the substrate and the graphene layers. The surface stress and the tuning effect of the substrate on it may have applications in design and characterization of graphene-based ultra-sensitive sensors and other devices. Moreover, the method may also be used to measure the surface stress of other ultrathin films supported on soft substrates. PMID:27166087

  7. Passive hypervelocity boundary layer control using an ultrasonically absorptive surface

    NASA Astrophysics Data System (ADS)

    Rasheed, Adam

    A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at Mach 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.

  8. Passive hypervelocity boundary layer control using an acoustically absortive surface

    NASA Astrophysics Data System (ADS)

    Rasheed, Adam

    A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at M = 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.

  9. Charge fluctuations for particles on a surface exposed to plasma

    SciTech Connect

    Sheridan, T. E.; Hayes, A.

    2011-02-28

    We develop a stochastic model for the charge fluctuations on a microscopic dust particle resting on a surface exposed to plasma. We find in steady state that the fluctuations are normally distributed with a standard deviation that is proportional to (CT{sub e}){sup 1/2}, where C is the particle-surface capacitance and T{sub e} is the plasma electron temperature. The time for an initially uncharged ensemble of particles to reach the steady state distribution is directly proportional to CT{sub e}.

  10. Experimental investigation of particle surface interactions for turbomachinery application

    NASA Astrophysics Data System (ADS)

    Hamed, A.; Tabakoff, W.

    This paper describes an experimental investigation to determine the particle restitution characteristics after impacting solid targets in a particulate flow wind tunnel. The tests simulate the two phase flow conditions encountered in turbomachinery operating in particle laden flow environments. Both incoming and rebounding velocities are measured using a three color Argon Ion laser in backward scattered mode through a window in the tunnel section containing the impact target. The experimental results are presented for ash particles impinging on RENE 41 targets at different impact conditions. The presented results are applicable to particle dynamics simulations in gas turbine engines and to the prediction of the associated blade surface erosion.

  11. Facing extremes: archaeal surface-layer (glyco)proteins.

    PubMed

    Eichler, Jerry

    2003-12-01

    Archaea are best known in their capacities as extremophiles, i.e. micro-organisms able to thrive in some of the most drastic environments on Earth. The protein-based surface layer that envelopes many archaeal strains must thus correctly assemble and maintain its structural integrity in the face of the physical challenges associated with, for instance, life in high salinity, at elevated temperatures or in acidic surroundings. Study of archaeal surface-layer (glyco)proteins has thus offered insight into the strategies employed by these proteins to survive direct contact with extreme environments, yet has also served to elucidate other aspects of archaeal protein biosynthesis, including glycosylation, lipid modification and protein export. In this mini-review, recent advances in the study of archaeal surface-layer (glyco)proteins are discussed.

  12. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  13. Adhering grains and surface features on two Itokawa particles

    NASA Astrophysics Data System (ADS)

    Dobrică, E.; Ogliore, R. C.

    2016-02-01

    We investigated the surface texture and chemical compositions of two ~40-μm particles returned from the surface regolith of asteroid Itokawa (RB-DQ04-0062 and RB-DQ04-0091) by the Japan Aerospace Exploration Agency's Hayabusa mission. We identified splash melts, surface blistering, and many small adhering particles. Seven focused ion beam sections were extracted from both Itokawa particles, targeting one splash melt and ten adhering particles to investigate their composition and provenance and the role of micrometeoroid impacts on Itokawa's surface. Based on the particle's structure, mineralogy, and interface between the adhering particle and host grain, we identified lithic fragments and particles deposited by impact. These have morphologies and compositions consistent with impact-generated deposits: two have morphologies and compositions that are consistent with impact-generated silica glass, and one was a Ni-free, metallic Fe, and S-rich assemblage that was likely generated by vapor recondensation during a micrometeoroid impact. This study shows that, even though its regolith is young, micrometeoroid impacts have altered the regolith of asteroid Itokawa.

  14. Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species

    NASA Astrophysics Data System (ADS)

    Frunza, Stefan; Frunza, Ligia; Ganea, Constantin Paul; Zgura, Irina; Brás, Ana Rita; Schönhals, Andreas

    2016-02-01

    Surface layers have already been observed by broadband dielectric spectroscopy for composite systems formed by adsorption of rod-like cyanophenyl derivates as probe molecules on the surface of oxide particles. In this work, features of the surface layer are reported; samples with different amounts of the probe molecules adsorbed onto oxide (nano) particles were prepared in order to study their interactions with the surface. Thermogravimetric analysis (TGA) was applied to analyze the amount of loaded probe molecules. The density of the surface species ns was introduced and its values were estimated from quantitative Fourier transform infrared spectroscopy (FTIR) coupled with TGA. This parameter allows discriminating the composites into several groups assuming a similar interaction of the probe molecules with the hosts of a given group. An influence factor H is further proposed as the ratio of the number of molecules in the surface layer showing a glassy dynamics and the number of molecules adsorbed tightly on the surface of the support: It was found for aerosil composites and used for calculating the maximum filling degree of partially filled silica MCM-41 composites showing only one dielectric process characteristic for glass-forming liquids and a bulk behavior for higher filling degrees.

  15. The impact of surface properties on particle-interface interactions

    NASA Astrophysics Data System (ADS)

    Wang, Anna; Kaz, David; McGorty, Ryan; Manoharan, Vinothan N.

    2013-03-01

    The propensity for particles to bind to oil-water interfaces was first noted by Ramsden and Pickering over a century ago, and has been attributed to the huge reduction in surface energy when a particle breaches an oil-water interface and straddles it at its equilibrium height. Since then materials on a variety of length scales have been fabricated using particles at interfaces, from Pickering emulsions to Janus particles. In these applications, it is simply assumed that the particle sits at its hugely energetically favourable equilibrium position. However, it was recently shown that the relaxation of particles towards their equilibrium position is logarithmic in time and could take months, much longer than typical experiments. Here we investigate how surface charge and particle 'hairiness' impact the interaction between micron-sized particles and oil-water interfaces, and explore a molecular kinetic theory model to help understand these results. We use digital holographic microscopy to track micron-sized particles as they approach an oil-water interface with a resolution of 2 nm in all three dimensions at up to thousands of frames per second.

  16. Utilization of surface-treated rubber particles from waste tires

    SciTech Connect

    Smith, F.G. |

    1994-12-01

    During a 12-month program, the author successfully demonstrated commercial applications for surface-treated rubber particles in two major markets: footwear (shoe soles and components) and urethane-foam carpet underlay (padding). In these markets, he has clearly demonstrated the ease of using R-4080 and R-4030 surface-treated rubber particles in existing manufacturing plants and processes and have shown that the material meets or exceeds existing standards for performance, quality, and cost-effectiveness. To produce R-4080 and R-4030, vulcanized rubber, whole-tire material is finely ground to particles of nominal 80 and mesh size respectively. Surface treatment is achieved by reacting these rubber particles with chlorine gas. In this report, the author describes the actual test and evaluations of the participant companies, and identifies other potential end uses.

  17. Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Mahanthesh, B.; Gorla, Rama Subba Reddy; Manjunatha, P. T.

    2016-04-01

    Theoretical study on hydromagnetic heat transfer in dusty viscous fluid on continuously stretching non-isothermal surface, with linear variation of surface temperature or heat flux has been carried out. Effects of Hall current, Darcy porous medium, thermal radiation and non-uniform heat source/sink are taken into the account. The sheet is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a linear. Two cases of the temperature boundary conditions were considered at the surface namely, PST and PHF cases. The governing partial differential equations are transferred to a system of non-linear ordinary differential equations by employing suitable similarity transformations and then they are solved numerically. Effects of various pertinent parameters on flow and heat transfer for both phases is analyzed and discussed through graphs in detail. The values of skin friction and Nusselt number for different governing parameters are also tabulated. Comparison of the present results with known numerical results is presented and an excellent agreement is found.

  18. Wetting layer of copper on the tantalum (001) surface

    NASA Astrophysics Data System (ADS)

    Dupraz, Maxime; Poloni, Roberta; Ratter, Kitti; Rodney, David; De Santis, Maurizio; Gilles, Bruno; Beutier, Guillaume; Verdier, Marc

    2016-12-01

    The heteroepitaxial interface formed by copper deposited onto the tantalum (001) surface is studied by surface x-ray diffraction and ab initio calculations. The analysis of the crystal truncation rods reveals the presence of a wetting layer of copper made of two atomic planes pseudomorphic to the tantalum substrate, with the upper most atomic planes significantly deformed. These findings are in total agreement with the results of density-functional-theory calculations. The presence of the wetting layer confirms a Stranski-Krastanov growth mode and is thought to explain the extremely fast atomic diffusion of copper during the dewetting process in the solid state at high temperature.

  19. Surface reactions on thin layers of silane coupling agents

    SciTech Connect

    Kurth, D.G.; Bein, T. )

    1993-11-01

    The reactivity of immobilized functional groups in thin layers of (3-aminopropyl)triethoxysilane (APS), (3-mercaptopropyl)trimethoxysilane, (3-bromopropyl)trimethoxysilane, and (8-bromooctyl)trimethoxysilane on oxidized aluminum substrates was studied with reflection-adsorption infrared spectroscopy (RAIR), optical ellipsometry and contact-angle measurements. Mass changes on the surface associated with the surface-confined reactions were measured with the quartz crystal microbalance (QCM). Single layers of (3-aminopropyl)triethoxysilane on oxidized aluminum react with chlorodimethylsilane to give [(-O)[sub 3]Si(CH[sub 2])[sub 3]NH[sub 2][sup +]SiMe[sub 2]H]Cl[sup [minus

  20. Eliminated Phototoxicity of TiO2 Particles by an Atomic-Layer-Deposited Al2 O3 Coating Layer for UV-Protection Applications.

    PubMed

    Jang, Eunyong; Sridharan, Kishore; Park, Young Min; Park, Tae Joo

    2016-08-16

    We demonstrate the conformal coating of an ultrathin Al2 O3 layer on TiO2 nanoparticles through atomic layer deposition by using a specifically designed rotary reactor to eliminate the phototoxicity of the particles for cosmetic use. The ALD reactor is modified to improve the coating efficiency as well as the agitation of the particles for conformal coating. Elemental and microstructural analyses show that ultrathin Al2 O3 layers are conformally deposited on the TiO2 nanoparticles with a controlled thickness. Rhodamine B dye molecules on Al2 O3 -coated TiO2 exhibited a long life time under UV irradiation, that is, more than 2 h, compared to that on bare TiO2 , that is, 8 min, indicating mitigation of photocatalytic activity by the coated layer. The effect of carbon impurities in the film resulting from various deposition temperatures and thicknesses of the Al2 O3 layer on the photocatalytic activity are also thoroughly investigated with controlled experimental condition by using dye molecules on the surface. Our results reveal that an increased carbon impurity resulting from a low processing temperature provides a charge conduction path and generates reactive oxygen species causing the degradation of dye molecule. A thin coated layer, that is, less than 3 nm, also induced the tunneling of electrons and holes to the surface, hence oxidizing dye molecules. Furthermore, the introduction of an Al2 O3 layer on TiO2 improves the light trapping thus, enhances the UV absorption.

  1. Particle concentrations and number size distributions in the planetary boundary layer derived from airship based measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Ralf; Zhao, Defeng; Ehn, Mikael; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Atmospheric particles play a key role for regional and global climate due to their direct and indirect radiative forcing effects. The concentration and size of the particles are important variables to these effects. Within the continental planetary boundary layer (PBL) the particle number size distribution is influenced by meteorological parameters, local sinks and sources resulting in variable spatial distributions. However, measurements of particle number size distributions over a broad vertical range of the PBL are rare. The airship ZEPPELIN NT is an ideal platform to measure atmospheric aerosols on a regional scale within an altitude range up to 1000 m. For campaigns in the Netherlands, Northern Italy and South Finland in 2012 and 2013 the airship was deployed with a wide range of instruments, including measurements of different trace gases, short lived radicals, solar radiation, aerosols and meteorological parameters. Flights were carried out at different times of the day to investigate the influence of the diurnal evolution of the PBL on atmospheric trace gases and aerosols. During night and early morning hours the concentration and size distribution of atmospheric particles were found to be strongly influenced by the layered structure of the PBL, i.e. the nocturnal boundary layer and the residual layer. Within the residual layer particle concentrations stay relatively constant as this layer is decoupled from ground sources. The particles persist in the accumulation mode as expected for an aged aerosol. In the nocturnal boundary layer particle concentrations and size are more dynamic with higher concentrations than in the residual layer. A few hours after sunrise, the layered structure of the PBL intermixes. During daytime the PBL is well mixed and a negative concentration gradient with increasing height is observed. Several height profiles at different times of the day and at different locations in Europe were measured. The aerosol measurements will be

  2. Adsorption-desorption kinetics of soft particles onto surfaces

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Gerland, Ulrich

    A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.

  3. Turbulent dusty boundary layer in an ANFO surface-burst explosion

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Ferguson, R. E.; Chien, K. Y.; Collins, J. P.

    1992-01-01

    This paper describes the results of numerical simulations of the dusty, turbulent boundary layer created by a surface burst explosion. The blast wave was generated by the detonation of a 600-T hemisphere of ANFO, similar to those used in large-scale field tests. The surface was assumed to be ideally noncratering but contained an initial loose layer of dust. The dust-air mixture in this fluidized bed was modeled as a dense gas (i.e., an equilibrium model, valid for very small-diameter dust particles). The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws. Shock interactions with dense layer generated vorticity near the wall, a result that is similar to viscous, no-slip effects found in clean flows. The resulting wall shear layer was unstable, and rolled up into large-scale rotational structures. These structures entrained dense material from the wall layer and created a chaotically striated flow. The boundary layer grew due to merging of the large-scale structures and due to local entrainment of the dense material from the fluidized bed. The chaotic flow was averaged along similarity lines (i.e., lines of constant values of x = r/Rs and y = z/Rs where R(sub s) = ct(exp alpha)) to establish the mean-flow profiles and the r.m.s. fluctuating-flow profiles of the boundary layer.

  4. Erosion of galilean satellite surfaces by jovian magnetosphere particles.

    PubMed

    Johnson, R E; Lanzerotti, L J; Brown, W L; Armstrong, T P

    1981-05-29

    The Galilean satellites of Jupiter-Io (J1), Europa (J2), Ganymede (J3), and Callisto (J4)-are embedded in the intense ion and electron fluxes of the Jovian magnetosphere. The effect of these particles on the icy surfaces of the outer three satellites depends on the fluxes and the efficiency of the sputtering of water ice by such particles. Recent laboratory measurements provided data on the erosion of water ice by energetic particles and showed that it occurs much faster than would be expected from normal sputtering theory. The Voyager spacecraft encounters with Jupiter provided the first measurements of ion fluxes (energies greater, similar 30 kiloelectron volts) in the vicinity of the Galilean satellites. Using the laboratory sputtering data together with particle measurements from the Voyager 1 low-energy charged particle experiment, the effects of erosion on the surfaces of J2 to J4 are estimated. It is shown that the surface of Europa could be eroded by as much as 100 meters over an eon (10(9) years). Column densities of water vapor that could be produced around the three satellites from particle bombardment of their surfaces are also calculated, and the sources and losses of oxygen in the gravitationally bound gas produced by sputtering or sublimation are estimated.

  5. Surface morphological evolution during annealing of epitaxial Cu(001) layers

    SciTech Connect

    Purswani, J. M.; Gall, D.

    2008-08-15

    Single crystal Cu(001) layers were grown on MgO(001) by ultrahigh vacuum magnetron sputtering at T{sub s}=100 deg. C. Quantitative surface morphological analyses by in situ scanning tunneling microscopy show that the surfaces exhibit self-affine mound structures with a scaling exponent of 0.82{+-}0.03 and a mound radius r{sub c} that increases from 31{+-}8 to 39{+-}6 nm for increasing layer thickness t=24-120 nm. In situ annealing at 200 and 300 deg. C leads to a thermodynamically driven mass transport that minimizes the surface step density, resulting in broader mounds and a smaller root mean square surface roughness {sigma}. This effect is most pronounced for t=24 nm, for which r{sub c} increases from 31{+-}8 to 70{+-}20 nm and {sigma} decreases from 1.3{+-}0.1 to 0.74{+-}0.08 nm, resulting in a decrease in the average surface slope from {chi}=7 deg. to 2 deg. and an increase in the average terrace width w{sub T} by more than a factor of 4. In contrast, w{sub T} increases by only 20% for t=120 nm. This remarkable difference between 'thin' and 'thick' layers is attributed to diverging surface morphological pathways during annealing: The strong smoothening for t=24 nm is due to a competitive coalescence process where some mounds grow laterally at the expense of their smaller neighbors, which die out. In contrast, the initially wider mounds of thicker layers (t=120 nm) combine to form a quasistable surface morphology that exhibits anisotropic mound structures, which limit mass transport and stabilize the surface step density.

  6. Detection of charged particles in thick hydrogenated amorphous silicon layers

    SciTech Connect

    Fujieda, I.; Cho, G.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1988-03-01

    We show our results in detecting particles of various linear energy transfer, including minimum ionizing electrons from a Sr-90 source with 5 to 12 micron thick n-i-p and p-i-n diodes. We measured W ( average energy to produce one electron-hole pair) using 17keV filtered xray pulses with a result W = 6.0 /+-/ 0.2eV. This is consistent with the expected value for a semiconductor with band gap of 1.7 to 1.9eV. With heavily ionizing particles such as 6 MeV alphas and 1 to 2 MeV protons, there was some loss of signal due to recombination in the particle track. The minimum ionizing electrons showed no sign of recombination. Applications to pixel and strip detectors for physics experiments and medical imaging will be discussed. 7 refs., 8 figs.

  7. Periodic nanotemplating by selective deposition of electroless gold island films on particle-lithographed dimethyldichlorosilane layers.

    PubMed

    Ahn, Wonmi; Roper, D Keith

    2010-07-27

    Uniform hexagonal arrays of diverse nanotemplated metal structures were formed via selective electroless gold plating on particle-lithographed dimethyldichlorosilane layers. Surface-associated water at silica bead interstices was shown to correlate with the formation of silane rings with outer ring diameters ranging from 522.5+/-29.7 to 1116.9+/-52.6 nm and/or spherical gold nanoparticles with diameters from 145.5+/-20.2 to 389.1+/-51.1 nm in the array. Reproducibility and millimeter-size scalability of the array were achieved without the need for expensive and sophisticated lithography or metal deposition equipment. The formation of each structure was explained on the basis of the silanization mechanism and microscopic characterization, as well as dimensional analysis of the nanostructures. This new, facile, and versatile method enables fine fabrication of regular metal nanoparticle array platforms to improve optical and plasmonic features in nanoelectronics and nanophotonic devices.

  8. Barrier coated drug layered particles for enhanced performance of amorphous solid dispersion dosage form.

    PubMed

    Puri, Vibha; Dantuluri, Ajay K; Bansal, Arvind K

    2012-01-01

    Amorphous solid dispersions (ASDs) may entail tailor-made dosage form design to exploit their solubility advantage. Surface phenomena dominated the performance of amorphous celecoxib solid dispersion (ACSD) comprising of amorphous celecoxib (A-CLB), polyvinylpyrrolidone, and meglumine (7:2:1, w/w). ACSD cohesive interfacial interactions hindered its capsule dosage form dissolution (Puri V, Dhantuluri AK, Bansal AK 2011. J Pharm Sci 100:2460-2468). Furthermore, ACSD underwent significant devitrification under environmental stress. In the present study, enthalpy relaxation studies revealed its free surface to contribute to molecular mobility. Based on all these observations, barrier coated amorphous CLB solid dispersion layered particles (ADLP) were developed by Wurster process, using microcrystalline cellulose as substrate and polyvinyl alcohol (PVA), inulin, and polyvinyl acetate phthalate (PVAP) as coating excipients. Capsule formulations of barrier coated-ADLP could achieve rapid dispersibility and high drug release. Evaluation under varying temperature and RH conditions suggested the crystallization inhibitory efficiency in order of inulin < PVA ≈ PVAP; however, under only temperature treatment, crystallization inhibition increased with increase in T(g) of the coating material. Simulated studies using DSC evidenced drug-polymer mixing at the interface as a potential mechanism for surface stabilization. In conclusion, surface modification yielded a fast dispersing robust high drug load ASD based dosage form.

  9. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes

    NASA Astrophysics Data System (ADS)

    Ogawa, Tasuku; Ding, Bin; Sone, Yuji; Shiratori, Seimei

    2007-04-01

    We have recently fabricated super-hydrophobic membrane surfaces based on the inspiration of self-cleaning silver ragwort leaves. This biomimetic super-hydrophobic surface was composed of fluoroalkylsilane (FAS)-modified layer-by-layer (LBL) structured film-coated electrospun nanofibrous membranes. The rough fibre surface caused by the electrostatic LBL coating of TiO2 nanoparticles and poly(acrylic acid) (PAA) was used to imitate the rough surface of nanosized grooves along the silver ragwort leaf fibre axis. The results showed that the FAS modification was the key process for increasing the surface hydrophobicity of the fibrous membranes. Additionally, the dependence of the hydrophobicity of the membrane surfaces upon the number of LBL coating bilayers was affected by the membrane surface roughness. Moreover, x-ray photoelectron spectroscopy (XPS) results further indicated that the surface of LBL film-coated fibres absorbed more fluoro groups than the fibre surface without the LBL coating. A (TiO2/PAA)10 film-coated cellulose acetate nanofibrous membrane with FAS surface modification showed the highest water contact angle of 162° and lowest water-roll angle of 2°.

  10. Correlating capacity and Li content in layered material for Li-ion battery using XRD and particle size distribution measurements

    NASA Astrophysics Data System (ADS)

    Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.

    2016-03-01

    A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.

  11. Reduction of surface charges during coalescence of elastomer particles.

    PubMed

    Gauer, Cornelius; Wu, Hua; Morbidelli, Massimo

    2010-07-15

    Reaction-limited aggregation of soft elastomer particles has been studied with specific attention to the fate of surface charges during coalescence. The employed system is an aqueous dispersion of fluoroelastomer particles, which are known to coalesce completely at 70 degrees C. In contrast to diffusion-limited conditions, under reaction-limited conditions the stability of the system is expected to change during aggregation because of surface reduction and charge accumulation resulting from coalescence. This allows investigating the mechanism of charge relocation during cluster coalescence. For particles stabilized by ionic surfactants, it has been found that the charges are mobile (i.e., they redistribute between aqueous solution and particle surface according to their adsorption equilibrium) (Gauer, C.; Jia, Z.; Wu, H.; Morbidelli, M. Langmuir 2009, 25, 9703). In this work, we consider the case of fixed charges, as those given by charged polymer end groups covalently bound to the particle surface. We demonstrate that a loss of fixed surface charges occurs during the coalescence and strongly affects the time evolution and the shape of the resulting cluster mass distribution.

  12. Surface modification of layered zirconium phosphate with PNIPAM.

    PubMed

    Wang, Xuezhen; Zhao, Di; Medina, Ilse B Nava; Diaz, Agustin; Wang, Huiliang; Clearfield, Abraham; Mannan, M Sam; Cheng, Zhengdong

    2016-04-04

    A new method was reported to modify layered zirconium phosphate (ZrP) with thermoresponsive polymer PNIPAM (poly N-isopropylacrylamide). PNIPAM was proved to be covalently grafted onto ZrP. (60)Co γ-rays irradiation produced peroxide groups on the surface which, upon heating, initiated free radical polymerization and subsequent attachment of PNIPAM.

  13. Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2001-01-01

    An investigation of the control of turbulent boundary layer flow over flexible and rigid surfaces downstream of a concave-convex geometry has been made. The concave-convex curvature induces centrifugal forces and a pressure gradient on the growth of the turbulent boundary layer. The favorable gradient is not sufficient to overcome the unfavorable; thus, the net effect is a destabilizing, of the flow into Gortler instabilities. This study shows that control of the turbulent boundary layer and structural loading can be successfully achieved by using localized surface heating because the subsequent cooling and geometrical shaping downstream over a favorable pressure gradient is effective in laminarization of the turbulence. Wires embedded in a thermally insulated substrate provide surface heating. The laminarized velocity profile adjusts to a lower Reynolds number, and the structure responds to a lower loading. In the laminarization, the turbulent energy is dissipated by molecular transport by both viscous and conductivity mechanisms. Laminarization reduces spanwise vorticity because of the longitudinal cooling gradient of the sublayer profile. The results demonstrate that the curvature-induced mean pressure gradient enhances the receptivity of the flow to localized surface heating, a potentially viable mechanism to laminarize turbulent boundary layer flow; thus, the flow reduces the response of the flexible structure and the resultant sound radiation.

  14. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  15. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

  16. [Particle dispersion by order motion in mixing layers

    SciTech Connect

    Troutt, T.R.

    1993-09-01

    Multiphase mixing in turbulent flows is a key element in many energy conversion and chemical processes. There is considerable need for improving the design and control of these processes. Free turbulent shear flows are the primary agents for particle mixing in these systems. Previous studies by this research group have shown that, if particle coupling effects are neglected, the organized vortex structures generated by these shear flows control the character of the particle mixing process. A coordinated experimental and numerical study is proposed to investigate the coupled effects of droplet mass and energy transfer on the turbulent multiphase mixing process in free shear flows. This study has important implications concerning the design of reacting flow systems. Experimental visualizations of the multiphase flow will be carried out using laser-sheet lighting and high speed photography. Local measurements of droplet size, velocity and concentration diagnostics, will be made with laser anemometry and phase Doppler diagnostics. Complementary analytical and numerical analyses will be carried out to assess the effect of coupling on vortex structure, stability and growth. The results of the proposed research will provide basic understanding concerning the coupled effects of particle concentration on the rate of multiphase mixing in turbulent flows. Information of this nature is essential to the improved designs of engineering systems with particulate or droplet flows.

  17. Numerical simulation of particle-wave interaction in boundary layers

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Danabasoglu, G.

    1990-01-01

    The effects of wall injection and particle motion on the spatial stability of two-dimensional plane channel flow are investigated. For this purpose, an accurate Navier-Stokes solver to simulate the space-time evolution of disturbances in three-dimensional flows has been developed. The code is operational on the NASA Langley CRAY2 and can be ported to any other supercomputer. The code has been tested extensively in tracking the spatial evolution of two-dimensional disturbances in plane channel flow and provided excellent agreement with the linear theory including at the inflow/outflow boundaries. Preliminary calculations have been performed to investigate the effects of stationary and moving sources of vortical disturbances simulating a particle traveling in the flow field. Results suggest that even at very low amplitudes, vortical disturbances act as amplifiers on the Tollmien-Schlichting waves promoting rapid instability. It is also found that slow moving particles are more dangerous than both stationary and fast moving particles for the same disturbance levels.

  18. Exoelectronic emission of particles of lunar surface material

    NASA Technical Reports Server (NTRS)

    Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Kunin, L. L.; Tarasov, L. S.

    1974-01-01

    A secondary electron multiplier was used to study the thermostimulated exoelectronic emission of particles of lunar surface material returned by the Soviet Luna 16 automatic station. The natural exoemission from fragments of slag, glass, anorthosite, and a metallic particle was recorded in the isochronic and isothermal thermostimulation regimes. The temperature of emission onset depended on the type of regolith fragment. For the first three particles the isothermal drop in emission is described by first-order kinetic equations. For the anorthosite fragment, exoemission at constant temperature is characterized by a symmetric curve with a maximum. These data indicate the presence of active surface defects, whose nature can be due to the prehistory of the particles.

  19. NEUTRON DIFFRACTION MEASUREMENT OF RESIDUAL STRESSES IN FRICTION STIR PROCESSED NANOCOMPOSITE SURFACE LAYER

    SciTech Connect

    Xu, Hanbing; Hubbard, Camden R; An, Ke; Wang, Xun-Li; Feng, Zhili; Qu, Jun

    2009-01-01

    Friction stir processing (FSP) was successfully used to stir and mix nano-sized Al2O3 particles into a Al6061-T6 aluminum plate to form a nanocomposite layer up to 3 mm thick. This nanocomposite surface has demonstrated significantly improved surface hardness, yield strength, and wear-resistance without sacrificing the substrate ductility and conductivity. Neutron diffraction analysis was conducted to determine the residual stress distribution in the nanocomposite surface layer. For comparison, the residual stress of the aluminum surface that was processed similarly but had no particle involved was also measured. Results showed that the macro-level residual stresses in the FSP zone without particles are low due to the annealing effect induced by the long heating time and large heat input. The macro-level residual stresses in the FSP-processed Al-Al2O3 nanocomposite zone are tensile up to 100 MPa in all three directions. The details of the results will be further discussed in the paper.

  20. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    PubMed

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.

  1. Modes of surface premelting in colloidal crystals composed of attractive particles

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong

    2016-03-01

    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface

  2. Modes of surface premelting in colloidal crystals composed of attractive particles.

    PubMed

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong

    2016-03-24

    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface

  3. Mechanisms of direct detonation initiation via thermal explosion of radiatively heated gas-particles layer

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    Conceptual approach of detonation wave direct initiation by external radiative heating of microparticles locally suspended in flammable gaseous mixture is proposed. Combustion waves and detonation initiation mechanisms in the congestion regions of microparticles heated by radiation are studied numerically. Necessary criteria on geometrical scales of gas-particles layer and spatial uniformity of particles distribution for successful detonation initiation are formulated.

  4. Tuning surface plasmons in graphene ribbons with liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Viktor Yu.; Bunning, Timothy J.; Evans, Dean R.

    2016-09-01

    Surface plasmons in graphene possess stronger mode confinement and lower propagation loss. One way to excite the surface plasmons is placing a periodic array of graphene nano-ribbons on top of a dielectric substrate. However once the system is fabricated it is not possible to change its optical properties. Liquid crystals (LC) are a uniaxial medium with an optical axis easily controlled by external stimuli. We suggest tuning the surface plasmons in an array of graphene ribbons by placing a LC slab on top of the ribbons. A voltage applied to the LC layer shifts the graphene ribbons plasmonic notch and changes its depth.

  5. Maturation of recombinant hepatitis B virus surface antigen particles.

    PubMed

    Zhao, Qinjian; Wang, Yang; Freed, Daniel; Fu, Tong-Ming; Gimenez, Juan A; Sitrin, Robert D; Washabaugh, Michael W

    2006-01-01

    The major surface antigen of Hepatitis B virus (HBsAg) is a cysteine-rich, lipid-bound protein with 226 amino acids. Recombinant HBsAg (rHBsAg) with associated lipids can self-assemble into 22-nm immunogenic spherical particles, which are used in licensed Hepatitis B vaccines. Little is known about the structural evolvement or maturation upon assembly beyond an elevated level of disulfide formation. In this paper, we further characterized the maturation of HBsAg particles with respect to their degree of cross-linking, morphological changes, and changes in conformational flexibility. The lipid-containing rHBsAg particles undergo KSCN- and heat-induced maturation by formation of additional intra- and inter-molecular disulfide bonds. Direct measurements with atomic force microscopy (AFM) revealed morphological changes upon maturation through KSCN-induced and heat-/storage-incurred oxidative refolding. Particle uniformity and regularity was greatly improved, and protrusions formed by the protein subunits were more prominent on the surface of the mature particles. Decreased conformational flexibility in the mature rHBsAg particles was demonstrated by millisecond-scale unfolding kinetics in the presence of an environment-sensitive conformation probe. Both the accessible hydrophobic cavities under native conditions and the changeable hydrophobic cavities upon denaturant-induced unfolding showed substantial decrease upon maturation of the rHBsAg particles. These changes in the structural properties may be critical for the antigenicity and immuno-genicity of this widely-used vaccine component.

  6. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.

    PubMed

    Ryzhov, Evgeny A; Koshel, Konstantin V

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  7. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow

    SciTech Connect

    Ryzhov, Evgeny A.; Koshel, Konstantin V.

    2015-10-15

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero–oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  8. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  9. Elemental analyses of hypervelocity micro-particle impact sites on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A

  10. Detection of charged particles in amorphous silicon layers

    SciTech Connect

    Kaplan, S.N.; Morel, J.R.; Mulera, T.A.; Perez-Mendez, V.; Schnurmacher, G.; Street, R.A.

    1985-10-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics. 4 refs., 7 figs.

  11. Particle simulation of auroral double layers. Doctoral thesis

    SciTech Connect

    Smith, B.L.

    1992-06-01

    Externally driven magnetic reconnection has been proposed as a possible mechanism for production of auroral electrons during magnetic substorms. Fluid simulations of magnetic reconnection lead to strong plasma flows towards the increasing magnetic field of the earth. These plasma flows must generate large scale potential drops to preserve global charge neutrality. We have examined currentless injection of plasma along a dipole magnetic field into a bounded region using both analytic techniques and particle simulation.

  12. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with

  13. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    PubMed

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected.

  14. Cellular interactions of surface modified nanoporous silicon particles

    NASA Astrophysics Data System (ADS)

    Bimbo, Luis M.; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B.; Hirvonen, Jouni; Airaksinen, Anu J.; Santos, Hélder A.

    2012-05-01

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi

  15. Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes

    SciTech Connect

    West, R.; Tsang, Leung; Winebrenner, D.P. )

    1993-03-01

    Dense medium radiative transfer theory is applied to a three-layer model consisting of two scattering layers overlying a homogeneous half space with a size distribution of particles in each layer. A model with a distribution of sizes gives quite different results than those obtained from a model with a single size. The size distribution is especially important in the low frequency limit when scattering is strongly dependent on particle size. The size distribution and absorption characteristics also affect the extinction behavior as a function of fractional volume. Theoretical results are also compared with experimental data. The sizes, permittivities, and densities used in the numerical illustrations are typical values for snow.

  16. Surface Structure of Nanometer-Sized Zinc Ferrite Particles by the Anomalous X-ray Scattering (AXS) Method

    NASA Astrophysics Data System (ADS)

    Matsubara, Eiichiro; Okuda, Kaneharu; Waseda, Yoshio; Saito, Toshihiko

    1992-10-01

    The atomic structure of nanometer-sized zinc ferrite particles has been studied with the anomalous x-ray scattering (AXS) method as well as the ordinary x-ray diffraction. The analysis of the peak broadening indicated that little microstrain exists in these nanometer-sized particles, and the average size of the particles is estimated to be 4 nm. Since the ratio of atoms located on the surface increases extremely in such fine particles, the contribution of these surface atoms to the x-ray scattering intensity was evaluated. The interference function Qi (Q) for the surface atoms appears to be similar to that of the zinc-ferrite glass. The experimental intensity is successfully explained by using a simple particle model consisting of the about 0.2 nm thick surface layer having a glass-like structure and the internal atoms having the ferrite crystalline structure.

  17. Particle engineering in pharmaceutical solids processing: surface energy considerations.

    PubMed

    Williams, Daryl R

    2015-01-01

    During the past 10 years particle engineering in the pharmaceutical industry has become a topic of increasing importance. Engineers and pharmacists need to understand and control a range of key unit manufacturing operations such as milling, granulation, crystallisation, powder mixing and dry powder inhaled drugs which can be very challenging. It has now become very clear that in many of these particle processing operations, the surface energy of the starting, intermediate or final products is a key factor in understanding the processing operation and or the final product performance. This review will consider the surface energy and surface energy heterogeneity of crystalline solids, methods for the measurement of surface energy, effects of milling on powder surface energy, adhesion and cohesion on powder mixtures, crystal habits and surface energy, surface energy and powder granulation processes, performance of DPI systems and finally crystallisation conditions and surface energy. This review will conclude that the importance of surface energy as a significant factor in understanding the performance of many particulate pharmaceutical products and processes has now been clearly established. It is still nevertheless, work in progress both in terms of development of methods and establishing the limits for when surface energy is the key variable of relevance.

  18. Adhesion between Silica Particle and Mica Surfaces in Water and Electrolyte Solutions.

    PubMed

    Vakarelski; Ishimura; Higashitani

    2000-07-01

    An atomic force microscope (AFM) is used to study the adhesion between a silica sphere and a mica plate in pure water and solutions of monovalent cations (LiCl, NaCl, KCl, and CsCl). It is found that the adhesive force depends not only on the electrolyte concentration but also on the hydration enthalpy of cations and the contact time of the particle on the surface. Possible mechanisms by which the observed phenomena can be explained consistently are discussed extensively. It is suggested that the adhesive force is closely related to the structure of the layer of cations and water molecules adsorbed on the surfaces: the strong adhesive force is obtained when highly hydrated cations (Li(+), Na(+)) are adsorbed to form a thick but weakly adsorbed layer, while the weak adhesive force is observed when poorly hydrated cations (Cs(+), K(+)) are adsorbed to form a thin but strongly adsorbed layer. Copyright 2000 Academic Press.

  19. Three-Dimensional Porous Particles Composed of Curved, Two-Dimensional, Nano-Sized Layers for Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Yushin, Gleb; Evanoff, Kara; Magasinski, Alexander

    2012-01-01

    Thin Si films coated on porous 3D particles composed of curved 2D graphene sheets have been synthesized utilizing techniques that allow for tunable properties. Since graphene exhibits specific surface area up to 100 times higher than carbon black or graphite, the deposition of the same mass of Si on graphene is much faster in comparison -- a factor which is important for practical applications. In addition, the distance between graphene layers is tunable and variation in the thickness of the deposited Si film is feasible. Both of these characteristics allow for optimization of the energy and power characteristics. Thicker films will allow higher capacity, but slower rate capabilities. Thinner films will allow more rapid charging, or higher power performance. In this innovation, uniform deposition of Si and C layers on high-surface area graphene produced granules with specific surface area (SSA) of 5 sq. m/g.

  20. Submicron particle dynamics for different surfaces under quiescent and turbulent conditions

    NASA Astrophysics Data System (ADS)

    Vohra, Karn; Ghosh, Kunal; Tripathi, S. N.; Thangamani, I.; Goyal, P.; Dutta, Anu; Verma, V.

    2017-03-01

    Experiments were conducted using CsI aerosols in a small scale test chamber to simulate behaviour of aerosols in the containment of a nuclear reactor. The primary focus of the study was on submicron particles (14.3 nm-697.8 nm) due to their hazardous effect on human health. Different wall surfaces, viz., plexiglass, concrete and sandpaper were chosen to study the effect of surface roughness on dry deposition velocity under both quiescent and turbulent conditions. An analytical approach to calculate dry deposition velocity of submicron particles for rough surfaces has been proposed with an improvement in the existing parameterization for shift in the velocity boundary layer. The predicted deposition velocity with the improved parameterization was found to have better agreement with published measured data of Lai and Nazaroff (2005) compared to the existing parameterizations (Wood, 1981; Zhao and Wu, 2006b). There was a significant reduction in root mean square error (RMSE) between predicted, using the improved parameterization and measured deposition velocity (upto 100%) compared to earlier ones. The new analytical deposition approach was coupled with volume conserving semi-implicit coagulation model. This aerosol dynamic model was evaluated against explicit particle size distribution for the first time for rough surfaces. Normalized RMSE between simulated and measured particle size distribution varied in the range of 2%-20% at different instances. The model seems to closely predict submicron particle behaviour in indoor environment.

  1. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    PubMed

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  2. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  3. The measurement of boundary layers on a compressor blade in cascade. II - Suction surface boundary layers

    NASA Technical Reports Server (NTRS)

    Deutsch, Steven; Zierke, William C.

    1987-01-01

    A one-component laser Doppler velocimeter (LDV) has been used to measure the two-dimensional, periodic flow field about a double circular arc, compressor blade in cascade. Eleven boundary layer profiles were taken on both the pressure and suction surfaces of the blade, and two were taken in the near wake. In this part of the study, the LDV system is described and the suction surface flow field is documented. The suction surface profiles appear to separate both at the leading edge and again somewhat beyond midchord; the leading edge separation apparently reattaches by 2.6 percent chord.

  4. Development of gold induced surface plasmon enhanced CIGS absorption layer on polyimide substrate

    NASA Astrophysics Data System (ADS)

    Park, Seong-Un; Sharma, Rahul; Sim, Jae-Kwan; Baek, Byung Joon; Ahn, Haeng-Kwun; Kim, Jin Soo; Lee, Cheul-Ro

    2013-09-01

    Localized surface plasmon resonance (LSPR) with metal nanoparticles is the promising phenomenon to increase light absorption by trapping light in thin film solar cells. In this study we demonstrate a successful LSPR effect with gold (Au) nanoparticles onto the Cu(In,Ga)Se2 (CIGS) absorption layer. First, the CIGS absorber layers is fabricated onto the Mo coated polyimide (PI) substrate by using two stage process as DC sputtering of CIG thin film followed by the selenization at 400 °C. Finally, the Au nanoparticles are deposited onto the CIGS layer with increasing particles size from 4-15 nm by using sputter coater for 10-120 s. The X-ray diffraction (XRD) patterns confirm the formation of CIGS/Au nanocomposite structure with prominent peak shift of CIGS reflections and increasing intensity for Au phase. The CIGS/Au nanocomposite morphologies with Au particle size distribution uniformity and surface coverage is examined under ultra-high resolution field effect scanning electron microscope (UHR-FESEM). A peak at 176 cm-1 in Raman spectra, associated with the “A1” mode of lattice vibration for the attributed to the pure chalcopyrite structure. The secondary ion mass spectroscopy (SIMS) showed ∼200 nm depth converge of Au nanoparticles into the CIGS absorption layer. The optical properties as transmittance, reflectance and absorbance of CIGS/Au layers were found to expand in the infrared region and the LSPR effect is the most prominent for Au particles (5-7 nm) deposited for 60 s. The absorption coefficient and band gap measurement also confirms that the LSPR effect for 5-7 nm Au particles with band gap improvement from 1.31 to 1.52 eV for CIGS/Au layer as the defect density decreases due to the deposition of Au nanoparticles onto the CIGS layer. Such LSPR effect in CIGS/Au nanocomposite absorption layer will be a key parameter to further improve performance of the solar cell.

  5. [Particle dispersion by ordered motion in mixing layers]. [Annual report

    SciTech Connect

    Troutt, T.R.

    1989-12-31

    Multiphase mixing in turbulent flows is a key element in many practical energy conversion, chemical mixing and pollutant dispersal problems. Numerous important technological and environmental processes could be better addressed with improvements in understanding in this area. Progress in developing understanding of this field, however, has traditionally been difficult because of the complexities involved with the turbulent flows employed to provide the mixing mechanisms. To address this problem from a new perspective several years ago this research group initiated an ongoing investigation concerning the potential connections between organized turbulent vortex structures and the particle dispersion process. This report details activities during this reporting period.

  6. Copolyimide Surface Modifying Agents for Particle Adhesion Mitigation

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Connell, John W.

    2011-01-01

    Marine biofouling, insect adhesion on aircraft surfaces, microbial contamination of sterile environments, and particle contamination all present unique challenges for which researchers have adopted an array of mitigation strategies. Particulate contamination is of interest to NASA regarding exploration of the Moon, Mars, asteroids, etc.1 Lunar dust compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern during the Apollo missions.2 Consequently, NASA has instituted a multi-faceted approach to address dust including use of sacrificial surfaces, active mitigation requiring the use of an external energy source, and passive mitigation utilizing materials with an intrinsic resistance to surface contamination. One passive mitigation strategy is modification of a material s surface energy either chemically or topographically. The focus of this paper is the synthesis and evaluation of novel copolyimide materials with surface modifying agents (SMA, oxetanes) enabling controlled variation of surface chemical composition.

  7. Capillary interception of floating particles by surface-piercing vegetation.

    PubMed

    Peruzzo, Paolo; Defina, Andrea; Nepf, Heidi M; Stocker, Roman

    2013-10-18

    Surface-piercing vegetation often captures particles that flow on the water surface, where surface tension forces contribute to capture. Yet the physics of capillary capture in flow has not been addressed. Here we model the capture of floating particles by surface-piercing collectors at moderately low Reynolds numbers (Re<10). We find a trade-off between the capillary force, which increases with the collector diameter, and the relative size of the meniscus, which decreases with the collector diameter, resulting in an optimal collector diameter of ~1-10 mm that corresponds to the regime in which many aquatic plant species operate. For this diameter range the angular distribution of capture events is nearly uniform and capture can be orders of magnitude more efficient than direct interception, showing that capillary forces can be major contributors to the capture of seeds and particulate matter by organisms.

  8. Behavior of hydrophobic micron particles impacting on droplet surface

    NASA Astrophysics Data System (ADS)

    Wang, Ao; Song, Qiang; Yao, Qiang

    2015-08-01

    The impact behavior of airborne particles directly affects their capture by droplets in the atmosphere and industrial pollution control processes. This process was simulated by a dynamic model and analyzed for hydrophobic micron particles. Based on the analysis of energy conversion, the criteria were developed and verified by dynamic simulation to ascertain three impaction modes by the submergence/rebound critical velocity (US /R) and the rebound/oscillation critical velocity (UR /O). The criteria indicated that surface tension coefficient, contact angle, and particle diameter are the key parameters to affect the critical velocities, between which exists the rebound velocity range. As the surface tension coefficient and the advancing angle increased, US /R and UR /O increased, the rebound velocity range widened. As the receding angle increased, US /R remained unchanged, while UR /O decreased, the rebound velocity range widened. As the particle size increased, US /R and UR /O decreased, the rebound velocity range narrowed. The values of the above-mentioned key parameters considered in the simulation covered the usual parameter ranges of the wet deposition or wet scrubbing process. The simulation results showed the non-negligible possibility of particle rebound in such processes. The attachment efficiency of airborne particles can be determined by the proposed criteria combined with the incidence velocity distribution.

  9. Surface impacts and collisions of particle-laden nanodrops

    NASA Astrophysics Data System (ADS)

    Koplik, Joel

    2015-08-01

    The surface impact and collisions of particle-laden nanodrops are studied using molecular dynamics computer simulations. The drops are composed of Lennard-Jones dimers and the particles are rigid spherical sections of a cubic lattice, with radii about 11 nm and 0.6 nm, respectively. Uniform suspensions of 21% and 42% particle concentrations and particle-coated drops are studied, and their behavior is compared to that of pure fluid drops of the same size. The relative velocities studied span the transition to splashing, and both wetting/miscible and non-wetting/immiscible cases are considered. Impacts normal to the surface and head-on collisions are studied and compared. In surface impact, the behavior of low-density suspensions and liquid marble drops is qualitatively similar to that of pure liquid, while the concentrated drops are solid-like on impact. Collisions produce a splash only at velocities significantly higher than in impact, but the resulting drop morphology shows a similar dependence on solid concentration as in impact. In all cases, the collision or impact produces a strong local enhancement in the kinetic energy density and temperature but not in the particle or potential energy densities. Mixing of the two colliding species is not enhanced by collisions, unless the velocity is so high as to cause drop disintegration.

  10. Lag model for turbulent boundary layers over rough bleed surfaces

    NASA Astrophysics Data System (ADS)

    Lee, J.; Sloan, M. L.; Paynter, G. C.

    1994-07-01

    Boundary-layer mass removal (bleed) through spanwise bands of holes on a surface is used to prevent or control separation and to stabilize the normal shock in supersonic inlets. The addition of a transport equation lag relationship for eddy viscosity to the rough wall algebraic turbulence model of Cebeci and Chang was found to improve agreement between predicted and measured mean velocity distributions downstream of a bleed band. The model was demonstrated for a range of bleed configurations, bleed rates, and local freestream Mach numbers. In addition, the model was applied to the boundary-layer development over acoustic lining materials for the inlets and nozzles of commercial aircraft. The model was found to yield accurate results for integral boundary-layer properties unless there was a strong adverse pressure gradient.

  11. Surface morphological evolution of epitaxial CrN(001) layers

    SciTech Connect

    Frederick, J.R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at T{sub s}=600-800 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N{sub 2} discharges from an oblique deposition angle {alpha}=80 deg. . Layers grown at 600 deg. C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 deg. C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 deg. C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as T{sub s} is raised from 600 to 700 to 800 deg. C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 deg. C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent {beta}>0.5. In contrast, kinetic roughening controls the surface morphology for T{sub s}=800 deg. C, as well as the epitaxial fraction of the layers grown at 600 and 700 deg. C, yielding relatively smooth surfaces and {beta}{<=}0.27.

  12. Air-sea fluxes and surface layer turbulence around a sea surface temperature front

    NASA Technical Reports Server (NTRS)

    Friehe, C. A.; Shaw, W. J.; Davidson, K. L.; Rogers, D. P.; Large, W. G.; Stage, S. A.; Crescenti, G. H.; Khalsa, S. J. S.; Greenhut, G. K.; Li, F.

    1991-01-01

    The observed effects of sharp changes in sea surface temperature (SST) on the air-sea fluxes, surface roughness, and the turbulence structure in the surface layer and the marine atmospheric boundary layer are discussed. In situ flux and turbulence observations were carried out from three aircraft and two ships within the FASINEX framework. Three other aircraft used remote sensors to measure waves, microwave backscatter, and lidar signatures of cloud tops. Descriptions of the techniques, intercomparison of aircraft and ship flux data, and use of different methods for analyzing the fluxes from the aircraft data are described. Changing synoptic weather on three successive days yielded cases of wind direction both approximately parallel and perpendicular to a surface temperature front. For the wind perpendicular to the front, wind over both cold-to-warm and warm-to-cold surface temperatures occurred. Model results consistent with the observations suggest that an internal boundary layer forms at the SST.

  13. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    1998-04-01

    This is the third semi-annual, technical progress report for this project. The following items are covered in the report: (1) Progress on the development of an instrument to perform ultraviolet photoelectron spectroscopy, UPS, on surfaces in air. (2) Further development plans for the video particle image analyzer. (3) Calculations on the effect of space charge on the electric field inside a separator. (4) Outreach education involving two Arkansas high school students in the project. (5) Additional data on the effects of processing atmosphere on beneficiation. Included in the last section is a description of planned experiments using charged, fluorescent, polystyrene micro-particles to map the charge distribution on the larger coal particles and on polished coal surfaces.

  14. Development of surfaces repelling negatively buoyant solid particles

    NASA Astrophysics Data System (ADS)

    Semmler, Carina; Alexeev, Alexander

    2011-03-01

    Using a hybrid computational method that integrates the lattice Boltzmann model for fluid dynamics and the lattice spring model for solids, we examine the motion of negatively buoyant solid microparticles in shear flow near a solid wall decorated with regularly distributed rigid posts. The posts are arranged in a square pattern and tilted relative to the flow direction. We show that when rigid posts are tilted against flow, secondary flows emerge that prevent the deposition of suspended particles on the solid surface. We probe the effect of post geometry on the development of secondary flows and identify the optimal post architecture in terms of the mass of levitated solid particles. Our results are useful for designing anti-fouling surfaces that repel colloidal particles carried by fluid.

  15. Arctic Cloud-driven Mixed Layers and Surface Coupling State

    NASA Astrophysics Data System (ADS)

    Shupe, M.; Persson, O. P.; Solomon, A.; de Boer, G.

    2013-12-01

    Arctic low-level clouds interact with the atmosphere and underlying surface via many inter-related processes. The balance of cloud radiative warming and cooling effects imparts a strong control on the net surface energy budget. Cloud-driven atmospheric circulations can impact surface turbulent heat fluxes and influence the vertical mixing of atmospheric state parameters and aerosols. Large-scale advection of heat and moisture provides the background context within which these local interactions unfold. Importantly, these radiative, dynamical, and advective processes also contribute to a complex web of self-sustaining cloud processes that can promote cloud maintenance over long periods of time. We examine many of these processes, with a specific focus on the dynamical linkages between Arctic clouds and the surface that influence low-level atmospheric structure and mixing. Comprehensive, ground-based observations from meteorological towers, remote-sensors, and radiosondes are used to simultaneously characterize surface fluxes, atmospheric structure, cloud properties, in-cloud motions, and the depth of the cloud-driven mixed layer in multiple Arctic environments. Relationships among these parameters are explored to elucidate the properties of the system that determine the degree of vertical atmospheric mixing and the coupling state between cloud and surface. The influence of temperature and moisture inversions on this system is also explored. Transitions in the coupling state are utilized to illustrate the relative roles of different processes. Cases from a coastal Arctic site at Barrow, Alaska and a station embedded in the Arctic sea-ice pack are used to contrast conditional influences related to season and surface type. It is found that over sea-ice, where surface turbulent fluxes are weak, the coupling of cloud-level processes to the surface layer is largely due to proximity of the cloud-driven mixed layer to the surface, which appears to be primarily influenced by

  16. Stabilisation of liquid-air surfaces by particles of low surface energy.

    PubMed

    Binks, Bernard P; Rocher, Anaïs

    2010-08-28

    We describe the stabilisation of liquid-air surfaces by microparticles of a low surface energy solid. By varying the surface tension of the liquid, various particle-stabilised materials from oil dispersions to air-in-oil foams to dry water can be prepared.

  17. Leaching of cement: Study of the surface layer

    SciTech Connect

    Faucon, P.; Le Bescop, P.; Adenot, F.; Bonville, P.; Jacquinot, J.F.; Pineau, F.; Felix, B.

    1996-11-01

    Short-lived, and possibly long-lived, radioactive waste is, or will be, stored in concrete containers (casks, disposal structures, etc.). To predict the safety of these containers, the composition and structure of the material when degraded must be known. Leaching of cement pastes shows that the properties of the surface layer are similar whether or not the cement paste contains slag. Substantial amounts of calcium, and smaller amounts of silicon, are leached out. Iron and magnesium are not released, but their content in the surface layer increases, with respect to an internal reference. Magnesium precipitates in the form of hydrotalcite, whereas the calcium of calcium silicate hydrates (CSH) is replaced by iron and dissolves out. Hydrogarnets undergo little, or no, leaching.

  18. Microfluidic particle manipulation using high frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Collins, David J.

    2016-11-01

    Precise manipulation of particles and biological cells remains a very active research area in microfluidics. Among various force fields applied for microfluidic manipulations, acoustic waves have superior propagating properties in solids and fluids, which can readily enable non-contact cell manipulation in long operating distances. Exploiting acoustic waves for fluid and cell manipulation in microfluidics has led to a newly emerging research area, acoustofluidics. In this work, I will present particle and cell manipulation in microfluidics using high frequency surface acoustic waves (SAW). In particular, I will discuss a unique design of a focused IDT (FIDT) structure, which is able to generate a highly localized SAW field on the order of 20 µm wide. This highly focused acoustic beam has an effective manipulation area size that is comparable to individual micron-sized particles. Here, I demonstrate the use of this highly localized SAW field for single particle level sorting with sub-millisecond pulses and selective capture of particles. Based on the presented studies on acoustic particle manipulation, I envision that the merging of acoustics and microfluidics could enable various particle and cell manipulations needed in microfluidic applications. We acknowledge the support received from Singapore University of Technology and Design (SUTD)-Massachusetts Institute of Technology (MIT) International Design Center (IDG11300101) and SUTD Startup Research Grant (SREP13053) awarded to Y.A.

  19. Magnetic Or Optical Surface Layer Would Indicate Strain

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1995-01-01

    In proposed method of obtaining information on strain at surface of material specimen, magnetic coat (like that on magnetic tape) or optical coat (like that on compact disk) applied to all or part of surface monitored. Coating layer and associated measuring equipment, taken together, constitute system called "material strain monitor" (MSM). MSM important in research in materials and mechanics; in particular, expected to compete strongly with systems based on image-analysis and laser techniques now being developed to obtain information on strain fields.

  20. Layer-like Structure of Radio-Frequency Discharge with Dust Particles

    SciTech Connect

    Kravchenko, O. Y.; Vakulenko, A. V.; Lisitchenko, T. Y.; Levada, G. I.

    2008-09-07

    In this paper we are carried out the computer simulation of the dust particles dynamics in the radio frequency discharges at the microgravity conditions using PIC/MCC method for electrons and ions and hydrodynamics model for dust particles. The moving of dust particles is governed by the electrostatic force, ion and neutral drag forces, which are averaged over period of RF discharge. The obtained results show that dust particles form layers with sharp boundaries in the discharge chamber that is response on the instability of the radio-frequency discharge.

  1. Magnetic fine particles of Fe and Co encapsulated by carbon layers

    NASA Astrophysics Data System (ADS)

    Tokoro, Hisato; Fujii, Shigeo; Oku, Takeo

    2005-04-01

    Fine particles of Fe and Co encapsulated by carbon (C) nanolayers were synthesized through reduction of the metal oxides by C. They were ∼400 nm in diameter, and the shell of the C layers was ∼5 nm in thickness. The Fe particles were composed of mixture of body-centered cubic (BCC), α , and face-centered cubic (FCC), γ -phase, and the Co particles were composed of a FCC, α -phase. Maximum saturation magnetization of the Fe was 101 Am2/kg and that of the Co was 136 Am2/kg. Those C-encapsulated particles showed excellent soft magnetic properties and oxidation resistance in air.

  2. Particle Interactions in Mixed Solvents and Rough Surfaces Formed by Sedimenting Particles

    NASA Astrophysics Data System (ADS)

    Kurnaz, Mehmet Levent

    The quasi-two-dimensional sedimentation of silica particles in a viscous fluid results in quasi-one-dimensional rough surfaces. These surfaces are rough on all length -scales between the particle size and the cell size, but different roughness exponents are observed in two well defined length-scale regimes. The range of hydrodynamic forces should play an important role in determining which, if either, length-scale regime shows universal properties. The strong similarity between the height-height correlations of the surface and the density-density correlations inside the flow at longer lengthscales suggests that the roughness at longer lengthscales is very closely tied to the hydrodynamic interactions in the fluid. Measurements have been performed at three different cell-aspect-ratios and at three different fluid viscosities and in no case is there an observable change in the cross-over length-scales of the system. In another work we have measured the interactions of charged colloidal particles in near critical mixtures of 2.6 lutidine and water (LW). An earlier survey has found a temperature dependent flocculation of particles in the one phase region of the liquid mixture. We have now measured static light scattering as a function of number density of colloidal particles and system temperature at two solvent-mixture compositions on the aggregation side of the coexistence curve of one choice of particles. Using a Zimm analysis in the non-aggregating region where the structure factor does not change rapidly with scattering angle, we have extracted values of the 2nd viral coefficient of the colloidal particles. It is possible to extend this measurement to temperatures close enough to the aggregation temperature to establish the temperature at which the virial coefficient falls through zero as the net particle interaction becomes attractive.

  3. Transport of Optically Active Particles from the Surface Mixed Layer

    DTIC Science & Technology

    2005-09-30

    labile backscattering of these samples also was measured. The loss of backscattering following seawater acidification (to a pH of 5.8), was well...Paull CK, Balch WM (1994) Oxygen isotopic disequilibrium in coccolith carbonate from phytoplankton blooms. Deep-Sea Res. 41: 223-228 PUBLICATIONS

  4. Damage Free Particle Removal from Extreme Ultraviolet Lithography Mask Layers by High Energy Laser Shock Wave Cleaning

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Gon; Yoo, Young-Sam; Kim, Tae-Geun; Ahn, Jinho; Lee, Jong-Myoung; Choi, Jae-Sung; Busnaina, Ahmed A.; Park, Jin-Goo

    2008-06-01

    Plasma shock waves induced by focusing a Q-switched Nd:YAG laser at a maximum energy of 1.8 J in air were characterized by a laser beam deflection method and were applied to 50 nm silica particle removal from a Al2O3/TaN/Ru/MoSi 40 pairs as the extreme ultraviolet lithography (EUVL) mask layers on silicon wafer. A high energy laser induced shock wave effectively removed 50 nm silica particles from the EUVL mask layers. The change of sample topography before and after laser shock cleaning was measured by an atomic force microscope. Surface damage was observed at a gap distance of 1.5 mm. The dimensions of the plasma plume were characterized as a function of the laser energy and focus-to-surface gap distance. The plasma plume was the main source for damaging the surface. A high energy laser induced shock wave with a gap distance of over 3 mm achieved damage-free sub-100 nm particle removal.

  5. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet

    NASA Astrophysics Data System (ADS)

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  6. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  7. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  8. Turbulence-particle interactions under surface gravity waves

    NASA Astrophysics Data System (ADS)

    Paskyabi, Mostafa Bakhoday

    2016-11-01

    The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ɛ turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.

  9. Large-eddy simulation of particle-laden atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ilie, Marcel; Smith, Stefan Llewellyn

    2008-11-01

    Pollen dispersion in the atmospheric boundary layer (ABL) is numerically investigated using a hybrid large-eddy simulation (LES) Lagrangian approach. Interest in prediction of pollen dispersion stems from two reasons, the allergens in the pollen grains and increasing genetic manipulation of plants leading to the problem of cross pollination. An efficient Eulerian-Lagrangian particle dispersion algorithm for the prediction of pollen dispersion in the atmospheric boundary layer is outlined. The volume fraction of the dispersed phase is assumed to be small enough such that particle-particle collisions are negligible and properties of the carrier flow are not modified. Only the effect of turbulence on particle motion has to be taken into account (one-way coupling). Hence the continuous phase can be treated separate from the particulate phase. The continuous phase is determined by LES in the Eulerian frame of reference whereas the dispersed phase is simulated in a Lagrangian frame of reference. Numerical investigations are conducted for the convective, neutral and stable boundary layer as well different topographies. The results of the present study indicate that particles with small diameter size follow the flow streamlines, behaving as tracers, while particles with large diameter size tend to follow trajectories which are independent of the flow streamlines. Particles of ellipsoidal shape travel faster than the ones of spherical shape.

  10. Influence of Surface-Based Stable Layer Development on Asian Dust Behaviour Over Tokyo

    NASA Astrophysics Data System (ADS)

    Tsunematsu, Nobumitsu; Iwai, Hironori; Ishii, Shoken; Yasui, Motoaki; Murayama, Yasuhiro; Mizutani, Kohei

    2009-05-01

    The relationship between local meteorological fields and the behaviour of airborne Asian dust that arrived in the Tokyo metropolitan area on 1 April 2007 with the passage of a synoptic-scale cold front has been investigated through Doppler lidar observations, experiments using a regional atmospheric numerical model, and analyses of surface and upper-air meteorological observations. Results of the Doppler lidar observations showed that the Asian dust passed above the metropolitan area with strong south-westerly winds with speeds of 15-26 m s-1. Meteorological fields reproduced by the numerical experiments showed the development of a surface-based stable layer in the metropolitan area caused by nocturnal radiational cooling near the ground surface and south-westerly warm air advection at upper levels. The blocking effect of the mountainous region located to the west of the metropolitan area induced an area of stagnant air inside the metropolitan area and promoted the stable layer development. Although strong downdrafts prevailed in the upper air, the airborne Asian dust did not spread to the ground when the stable layer was formed. These results strongly indicate that the developed stable layer prevented strong downdrafts from spreading to the ground, acting as an obstacle to the transport of the Asian dust particles from the upper air towards the ground. This is considered to be one of the main causes of the low appearance frequency of Asian dust phenomena near the ground in the Tokyo metropolitan area and eastern Japan.

  11. Shape-selective sieving layers on an oxide catalyst surface

    NASA Astrophysics Data System (ADS)

    Canlas, Christian P.; Lu, Junling; Ray, Natalie A.; Grosso-Giordano, Nicolas A.; Lee, Sungsik; Elam, Jeffrey W.; Winans, Randall E.; van Duyne, Richard P.; Stair, Peter C.; Notestein, Justin M.

    2012-12-01

    New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al2O3 (thickness, 0.4-0.7 nm) with ‘nanocavities’ (<2 nm in diameter) on a TiO2 photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.

  12. Explosive particle soil surface dispersion model for detonated military munitions.

    PubMed

    Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2015-07-01

    The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.

  13. Light diffraction by a particle on an optically smooth surface.

    PubMed

    Johnson, B R

    1997-01-01

    The differential cross section for radiation scattered by a particle that is large compared to the wavelength, and resting on an optically smooth surface, is characterized by an intense, narrow peak in the direction of the reflected beam. This peak is shown to be due mainly to Fraunhofer diffraction by the overlapping projections of the particle and its image on a plane perpendicular to the reflected beam. Results calculated with this simple diffraction theory are compared with accurate results calculated by the multipole expansion method. Simple analytic formulas are derived that characterize the width and height of the central diffraction peak.

  14. Electron density modification in ionospheric E layer by inserting fine dust particles

    SciTech Connect

    Misra, Shikha; Mishra, S. K.

    2015-02-15

    In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at different altitude in E-layer has been critically examined and presented graphically.

  15. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  16. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    NASA Astrophysics Data System (ADS)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  17. Turbulence effects on concentration statistics in the atmospheric surface layer

    SciTech Connect

    Biltoft, C.; Bowers, J.; Yee, E.; Klewicki, J.; Metzger, M.

    1996-12-31

    The dispersion of windborne material released near the earth`s surface is strongly influenced by this impenetrable boundary, which inhibits downward mixing and creates sharp vertical gradients in wind, temperature, turbulence. These strong gradients and the continuous creation of turbulence at the surface cause a rapid evolution of the vertical concentration structure for material released into the atmospheric surface layer (ASL). Recent developments in fast-response instrumentation and an increased realization of potential hazards from the release of common industrial chemicals into the ASL have led to a series of tripartite (US, UK, Canada) field experiments at the US Army Dugway Proving Ground, Utah. This paper contains a preliminary analysis of the data from the most recent follow-on experiments, which included measurements of the vertical profiles of mean and peak concentrations.

  18. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    PubMed

    Sobel, Nicolas; Hess, Christian

    2015-12-07

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy.

  19. Detecting surface roughness effects on the atmospheric boundary layer via AIRSAR data: A field experiment in Death Valley, California

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1992-01-01

    The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.

  20. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.

    PubMed

    Liu, Changsheng; Chen, Chien-Wen; Ducheyne, Paul

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 degrees C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO(4) and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 microm and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  1. Turbulent boundary layer measurements over high-porosity surfaces

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christoph; Luhar, Mitul

    2016-11-01

    Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.

  2. Multi-layer topological transmissions of spoof surface plasmon polaritons

    PubMed Central

    Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than −0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above −1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits. PMID:26939995

  3. NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor

    NASA Astrophysics Data System (ADS)

    Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

    2013-11-01

    The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

  4. Particle-layering effect in wall-bounded dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Litvinov, Sergey; Ellero, Marco; Hu, Xiangyu; Adams, Nikolaus A.

    2010-12-01

    Dissipative particle dynamics (DPD) is a mesoscopic simulation method that describes “clusters” of molecules as a single numerical particle. DPD is a very effective method but it introduces numerical artifacts through the coarse-graining procedure, such as particle ordering in the near-wall region. These artifacts can result in nonphysical phenomena during a simulation of a polymer tethered to the wall undergoing shear flow: polymer sticking and overextension for higher shear rates. In this paper we report that a version of DPD with a so-called solidification boundary formulation and conservative-force interactions based on the equation of state allows to reduce number density fluctuations in near-wall region significantly.

  5. pH-dependent control of particle motion through surface interactions with patterned polymer brush surfaces.

    PubMed

    Dunderdale, Gary; Howse, Jonathan; Fairclough, Patrick

    2012-09-11

    In this Article, we show that inclined silicon surfaces patterned with poly(methacrylic acid) brushes are able to control the position and movement of 20 μm silica particles, which are propelled across the patterned surface by sedimentation forces. Three different types of behavior were observed depending on the angle between the direction in which a particle sedimented and the orientation of the polymer-brush silicon interface. At small angles, particles were found to sediment to the brush interface and then sediment following the direction of the brush interface. At larger angles, particles sedimented to the interface and then followed the direction of the brush interface, but then after a certain distance changed direction to pass over the interface. At the largest angles where the brush interface was approximately perpendicular to the motion of the particle, particles were found to travel over the interface unperturbed. This behavior was also found to be pH dependent, allowing the formation of pH responsive "gates", which allow particles to pass at low pH but not at high pH. It was also found that if patterned polymer brush surfaces were oriented in the correct way, they were able to control the number of particles present at specific locations.

  6. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.

    2016-07-05

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  7. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    SciTech Connect

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  8. Erosion processes due to energetic particle-surface interaction

    SciTech Connect

    Schmid, K.; Roth, J.

    2010-05-20

    The interaction of the fast particles from the hot plasma of a magnetic confinement fusion experiment with the first wall is one of the most challenging problems toward the realization of a fusion power plant. The erosion of the first wall by the fast particles leads to life time limitations and the radiative cooling of the plasma by the eroded impurity species lowers the energy confinement. Apart from these obvious consequences also the trapping of large quantities of the fuelling species (deuterium and tritium) in re-deposited layers of the eroded species poses a problem due to accumulation of large radiative inventories and plasma fuelling inefficiency. The source of all these challenges is the erosion of first wall components due to physical sputtering, chemical erosion and radiation enhanced sublimation. This paper will give an overview about the physical principles behind these erosion channels.

  9. Energy losses of charged particles in a finite layer of substance

    NASA Astrophysics Data System (ADS)

    Chechin, V. A.

    1985-04-01

    The energy lost by a charged particle as it crosses a plane-parallel plate with dielectric permittivity in a vacuum is calculated theoretically, applying the intermediate transition to the Heaviside transformation and considering various combinations of particle Lorentz factor and plate thickness. The problems encountered in comparing the theoretical predictions with experimental data are examined, and the application of the model of energy loss in very thin layers of Ermilova et al. (1974) is found to explain the observed anomalies.

  10. Atomic-layer electroless deposition: a scalable approach to surface-modified metal powders.

    PubMed

    Cappillino, Patrick J; Sugar, Joshua D; El Gabaly, Farid; Cai, Trevor Y; Liu, Zhi; Stickney, John L; Robinson, David B

    2014-04-29

    Palladium has a number of important applications in energy and catalysis in which there is evidence that surface modification leads to enhanced properties. A strategy for preparing such materials is needed that combines the properties of (i) scalability (especially on high-surface-area substrates, e.g. powders); (ii) uniform deposition, even on substrates with complex, three-dimensional features; and (iii) low-temperature processing conditions that preserve nanopores and other nanostructures. Presented herein is a method that exhibits these properties and makes use of benign reagents without the use of specialized equipment. By exposing Pd powder to dilute hydrogen in nitrogen gas, sacrificial surface PdH is formed along with a controlled amount of dilute interstitial hydride. The lattice expansion that occurs in Pd under higher H2 partial pressures is avoided. Once the flow of reagent gas is terminated, addition of metal salts facilitates controlled, electroless deposition of an overlayer of subnanometer thickness. This process can be cycled to create thicker layers. The approach is carried out under ambient processing conditions, which is an advantage over some forms of atomic layer deposition. The hydride-mediated reaction is electroless in that it has no need for connection to an external source of electrical current and is thus amenable to deposition on high-surface-area substrates having rich, nanoscale topography as well as on insulator-supported catalyst particles. STEM-EDS measurements show that conformal Rh and Pt surface layers can be formed on Pd powder with this method. A growth model based on energy-resolved XPS depth profiling of Rh-modified Pd powder is in general agreement. After two cycles, deposits are consistent with 70-80% coverage and a surface layer with a thickness from 4 to 8 Å.

  11. Transition Induced by Fixed and Freely Convecting Spherical Particles in Laminar Boundary Layers

    DTIC Science & Technology

    1993-08-01

    91-J-1646 Sperical Particles in Laminar Boundary Layers " .AUTW0WS) H. L. Petrie, P. J. Morris, A. R. Bajwa, D. C. Vincent 7. PIMowG onuOaxnZ.ON NAWIS ...92 3.5.3 Method of Solution ......................... 94 3.5.4 Results and Discussion ....................... 94 3.5.4.1 Wake...laminar to turbulent flow is an important aspect of fluid dynamics in numerous engineering applications. Natural transition in laminar boundary layers

  12. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y. H.

    2015-12-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and HOBE sites are

  13. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  14. Preparation and antifrictional properties of surface modified hybrid fluorine-containing silica particles

    NASA Astrophysics Data System (ADS)

    Gorbunova, T. I.; Zapevalov, A. Ya.; Beketov, I. V.; Demina, T. M.; Timoshenkova, O. R.; Murzakaev, A. M.; Gaviko, V. S.; Safronov, A. P.; Saloutin, V. I.

    2015-01-01

    Modified SiO2 particles were successfully prepared via [(perfluorobutyl)methyl]oxirane and [(perfluorobutyl)methyl]thiirane in sol-gel conditions using basic catalysis. As a result of acid catalysis non-modified nano-sized SiO2 particles were formed. Chemically modified SiO2 particles were characterized by means of FT-IR, BET, TEM, XRD- and XPS-analyses. Friction coefficients were determined at steel surface for base oil with modified SiO2 additives (5, 10 and 15 wt.%) at 10, 20, 30 and 60 N loads. Friction was reduced most strongly in the oil mix with the lowest content of the additive. A possible mechanism of antifrictional improvement is the formation of boundary lubrication layers containing iron salts.

  15. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    1998-12-01

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburgh #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material

  16. Atmospheric surface and boundary layers of the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1987-01-01

    Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.

  17. Discovering sub-micron ice particles across Dione' surface

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Schenk, Pual; Tosi, Federico; Clark, Roger; Dalle Ore, Cristina; Combe, Jean-Philippe

    2015-11-01

    Water ice is the most abundant component of Saturn’s mid-sized moons. However, these moons show an albedo asymmetry - their leading sides are bright while their trailing side exhibits dark terrains. Such differences arise from two surface alteration processes: (i) the bombardment of charged particles from the interplanetary medium and driven by Saturn’s magnetosphere on the trailing side, and (ii) the impact of E-ring water ice particles on the satellites’ leading side. As a result, the trailing hemisphere appears to be darker than the leading side. This effect is particularly evident on Dione's surface. A consequence of these surface alteration processes is the formation or the implantation of sub-micron sized ice particles.The presence of such particles influences and modifies the surfaces' spectrum because of Rayleigh scattering by the particles. In the near infrared range of the spectrum, the main sub-micron ice grains spectral indicators are: (i) asymmetry and (ii) long ward minimum shift of the absorption band at 2.02 μm (iii) a decrease in the ratio between the band depths at 1.50 and 2.02 μm (iv) a decrease in the height of the spectral peak at 2.6 μm (v) the suppression of the Fresnel reflection peak at 3.1 μm and (vi) the decrease of the reflection peak at 5 μm relative to those at 3.6 μm.We present results from our ongoing work mapping the variation of sub-micron ice grains spectral indicators across Dione' surface using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). To characterize the global variations of spectral indicators across Dione' surface, we divided it into a 1°x1° grid and then averaged the band depths and peak values inside each square cell.We will investigate if there exist a correspondence with water ice abundance variations by producing water ice' absorption band depths at 1.25, 1.52 and 2.02 μm, and with surface morphology by comparing the results with ISS color maps in the ultraviolet, visible and infrared

  18. Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics

    PubMed Central

    2015-01-01

    Antisense oligonucleotides can be employed as a potential approach to effectively treat cancer. However, the inherent instability and inefficient systemic delivery methods for antisense therapeutics remain major challenges to their clinical application. Here, we present a polymerized oligonucleotides (ODNs) that self-assemble during their formation through an enzymatic elongation method (rolling circle replication) to generate a composite nucleic acid/magnesium pyrophosphate sponge-like microstructure, or DNA microsponge, yielding high molecular weight nucleic acid product. In addition, this densely packed ODN microsponge structure can be further condensed to generate polyelectrolyte complexes with a favorable size for cellular uptake by displacing magnesium pyrophosphate crystals from the microsponge structure. Additional layers are applied to generate a blood-stable and multifunctional nanoparticle via the layer-by-layer (LbL) assembly technique. By taking advantage of DNA nanotechnology and LbL assembly, functionalized DNA nanostructures were utilized to provide extremely high numbers of repeated ODN copies for efficient antisense therapy. Moreover, we show that this formulation significantly improves nucleic acid drug/carrier stability during in vivo biodistribution. These polymeric ODN systems can be designed to serve as a potent means of delivering stable and large quantities of ODN therapeutics systemically for cancer treatment to tumor cells at significantly lower toxicity than traditional synthetic vectors, thus enabling a therapeutic window suitable for clinical translation. PMID:25198246

  19. Liquid drops and surface tension with smoothed particle applied mechanics

    NASA Astrophysics Data System (ADS)

    Nugent, S.; Posch, H. A.

    2000-10-01

    Smoothed particle applied mechanics (SPAM), also referred to as smoothed particle hydrodynamics, is a Lagrangian particle method for the simulation of continuous flows. Here we apply it to the formation of a liquid drop, surrounded by its vapor, for a van der Waals (vdW) fluid in two dimensions. The cohesive pressure of the vdW equation of state gives rise to an attractive, central force between the particles with an interaction range which is assumed to exceed the interaction range of all the other smoothed forces in the SPAM equations of motion. With this assumption, stable drops are formed, and the vdW phase diagram is well reproduced by the simulations. Below the critical temperature, the surface tension for equilibrated drops may be computed from the pressure excess in their centers. It agrees very well with the surface tension independently determined from the vibrational frequency of weakly excited drops. We also study strongly deformed drops performing large-amplitude oscillations, which are reminiscent of the oscillations of a large ball of water under microgravity conditions. In an appendix we comment on the limitations of SPAM by studying the violation of angular momentum conservation, which is a consequence of noncentral forces contributed by the full Newtonian viscous stress tensor.

  20. Synthesis, characterization, and evaluation of a superficially porous particle with unique, elongated pore channels normal to the surface.

    PubMed

    Wei, Ta-Chen; Mack, Anne; Chen, Wu; Liu, Jia; Dittmann, Monika; Wang, Xiaoli; Barber, William E

    2016-04-01

    In recent years, superficially porous particles (SPPs) have drawn great interest because of their special particle characteristics and improvement in separation efficiency. Superficially porous particles are currently manufactured by adding silica nanoparticles onto solid cores using either a multistep multilayer process or one-step coacervation process. The pore size is mainly controlled by the size of the silica nanoparticles and the tortuous pore channel geometry is determined by how those nanoparticles randomly aggregate. Such tortuous pore structure is also similar to that of all totally porous particles used in HPLC today. In this article, we report on the development of a next generation superficially porous particle with a unique pore structure that includes a thinner shell thickness and ordered pore channels oriented normal to the particle surface. The method of making the new superficially porous particles is a process called pseudomorphic transformation (PMT), which is a form of micelle templating. Porosity is no longer controlled by randomly aggregated nanoparticles but rather by micelles that have an ordered liquid crystal structure. The new particle possesses many advantages such as a narrower particle size distribution, thinner porous layer with high surface area and, most importantly, highly ordered, non-tortuous pore channels oriented normal to the particle surface. This PMT process has been applied to make 1.8-5.1μm SPPs with pore size controlled around 75Å and surface area around 100m(2)/g. All particles with different sizes show the same unique pore structure with tunable pore size and shell thickness. The impact of the novel pore structure on the performance of these particles is characterized by measuring van Deemter curves and constructing kinetic plots. Reduced plate heights as low as 1.0 have been achieved on conventional LC instruments. This indicates higher efficiency of such particles compared to conventional totally porous and

  1. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  2. Corrosion of Metal Films with Defective Surface Protection Layers.

    DTIC Science & Technology

    1980-07-01

    Evaporation 5 x I0- 100-150 25-35 S-Gun Sputtering 2 x 10-3 (argon) 6 35 was applied and patterned. Aqua regia was used to remove the platinum down to...Dielectric Layers Electrochemical Measurements Aluminum Thin Films Surface pH Measurements Gold Thin Films TRACT (Contfne o- reverse aide Hf nec.eary...between lines and line resis- tance were monitored at intervals. In one case, the potential was reversed after a certain time. Cathodic corrosion was

  3. Development of the camshaft with surface remelted chilled layer

    SciTech Connect

    Nonoyama, H.; Morita, A.; Fukuizumi, T.; Nakakobara, T.

    1986-01-01

    A camshaft for an automobile engine is generally made of chilled case iron. But, because of increased demand for higher performance engines, a camshaft with many cam-faces has been expected. The cam intervals were necessarily narrow. So it was difficult to manufacture the conventional chilled cast iron camshaft at a moderate price. In the case of a rocker-arm type valve mechanism, higher wear resistance was necessary. After due consideration to solve these problems, development of surface remelted chilled layer camshafts by Toyota's unique manufacturing method has been accomplished. In this paper, the excellent wear resistance, the low manufacturing cost and the characteristic manufacturing method are described.

  4. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    PubMed

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum.

  5. Surface potentials and layer charge distributions in few-layer graphene films.

    PubMed

    Datta, Sujit S; Strachan, Douglas R; Mele, E J; Johnson, A T Charlie

    2009-01-01

    Graphene-derived nanomaterials are emerging as ideal candidates for postsilicon electronics. Elucidating the electronic interaction between an insulating substrate and few-layer graphene (FLG) films is crucial for device applications. Here, we report electrostatic force microscopy (EFM) measurements revealing that the FLG surface potential increases with film thickness, approaching a "bulk" value for samples with five or more graphene layers. This behavior is in sharp contrast with that expected for conventional conducting or semiconducting films, and derives from unique aspects of charge screening by graphene's relativistic low energy carriers. EFM measurements resolve previously unseen electronic perturbations extended along crystallographic directions of structurally disordered FLGs, likely resulting from long-range atomic defects. These results have important implications for graphene nanoelectronics and provide a powerful framework by which key properties can be further investigated.

  6. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices

    NASA Astrophysics Data System (ADS)

    Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.

    2016-12-01

    A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.

  7. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices

    PubMed Central

    Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.

    2016-01-01

    A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius. PMID:28008987

  8. Aqueous oxidation reaction enabled layer-by-layer corrosion of semiconductor nanoplates into single-crystalline 2D nanocrystals with single layer accuracy and ionic surface capping.

    PubMed

    Ji, Muwei; Xu, Meng; Zhang, Jun; Liu, Jiajia; Zhang, Jiatao

    2016-02-25

    A controllable aqueous oxidation reaction enabled layer-by-layer corrosion has been proposed to prepare high-quality two-dimensional (2D) semiconductor nanocrystals with single layer accuracy and well-retained hexagonal shapes. The appropriate oxidizing agent, such as H2O2, Fe(NO3)3, and HNO3, could not only corrode the layered-crystalline-structured Bi2Te3 nanoplates layer-by-layer to be a single quintuple layer, but also replace the organic barriers to be ionic ligands on the surface synergistically. AFM analysis was used to confirm the layer-by-layer exfoliation from the side to the center. Together with precise XRD, LRTEM and HRTEM characterizations, the controllable oxidation reaction enabled aqueous layer-by-layer corrosion mechanism has been studied.

  9. Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario

    NASA Astrophysics Data System (ADS)

    Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita

    2016-04-01

    A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.

  10. Impact of particle shape on the laser-contaminant interaction induced damage on the protective capping layer of 1ω high reflector mirror coatings

    NASA Astrophysics Data System (ADS)

    Qiu, S. R.; Norton, M. A.; Honig, J.; Rubenchik, A. M.; Boley, C. D.; Rigatti, A.; Stolz, C. J.; Matthews, M. J.

    2015-12-01

    We report an investigation on the response to laser exposure of a protective capping layer of 1ω (1053 nm) high-reflector mirror coatings, in the presence of differently shaped Ti particles. We consider two candidate capping layer materials, namely SiO2 and Al2O3. They are coated over multiple silica-hafnia multilayer coatings. Each sample is exposed to a single oblique (45°) shot of a 1053 nm laser beam (p polarization, fluence ~ 10 J/cm2, pulse length 14 ns), in the presence of spherically or irregularly shaped Ti particles on the surface. We observe that the two capping layers show markedly different responses. For spherically shaped particles, the Al2O3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. In contrast, the SiO2 capping layer is only mildly modified by a shallow depression, likely due to plasma erosion. For irregularly shaped Ti filings, the Al2O3 capping layer displays minimal to no damage while the SiO2 capping layer is significantly damaged. In the case of the spherical particles, we attribute the different response of the capping layer to the large difference in thermal expansion coefficient of the materials, with that of the Al2O3 about 15 times greater than that of the SiO2 layer. For the irregularly shaped filings, we attribute the difference in damage response to the large difference in mechanical toughness between the two materials, with that of the Al2O3 being about 10 times stronger than that of the SiO2.

  11. Multi-layer relaxations of Li surfaces from First Principles

    NASA Astrophysics Data System (ADS)

    Fei, Weiben; Staikov, Pavlin; Kara, Abdelkader; Rahman, Talat. S.

    1996-03-01

    We have undertaken a systematic study of the multi-layer relaxations of low Miller indices Li surfaces for both bcc and fcc structures. These calculations are done using ab initio, norm-conserving, non-local and soft pseudopotentials with partial core correction, and a plane wave basis. A preconditioned steepest descent method (N. Chetty, M. Weinert, T. S. Rahman, and J. W. Davenport, Phys. Rev. B 52) (1995) 6313. is used to solve iteratively Kohn-Sham equations for a given set of atomic positions. The different relaxation patterns are interpreted in terms of the surface electronic environments. The charge density profiles for these fully relaxed systems are examined and contrasted with the unrelaxed counterparts.

  12. Thermodynamics of elastic strength of the metal surface layer

    NASA Astrophysics Data System (ADS)

    Andreev, Yu. Ya.; Kiselev, D. A.

    2013-07-01

    This paper presents a physicochemical model that establishes a connection between the elastic strength of the surface layer (SL) of metal and its surface Gibbs energy. The elastic limit of SL along the low-index face of the metal single crystal under stress during the transition from elastic to plastic deformation was calculated. Calculation shows that the elastic limit of metal SL with fcc and bcc structures is approximately three orders of magnitude higher than the yield strength of these metals in bulk and close to nanohardness of the metals, in particular; for Cu(111) и Al(111), it is 5.3 and 2.8 GPa, respectively. In the light of the proposed model, the effect of lowering the elastic strength of metal SL due to adsorption of surfactant is formulated.

  13. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOEpatents

    Caputo, Anthony J.; Costanzo, Dante A.; Lackey, Jr., Walter J.; Layton, Frank L.; Stinton, David P.

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  14. Characteristics of aerosol and cloud particle size distributions in the tropical tropopause layer measured with optical particle counter and lidar

    NASA Astrophysics Data System (ADS)

    Iwasaki, S.; Maruyama, K.; Hayashi, M.; Ogino, S.-Y.; Ishimoto, H.; Tachibana, Y.; Shimizu, A.; Matsui, I.; Sugimoto, N.; Yamashita, K.; Saga, K.; Iwamoto, K.; Kamiakito, Y.; Chabangborn, A.; Thana, B.; Hashizume, M.; Koike, T.; Oki, T.

    2007-07-01

    An optical particle counter (OPC) is used in conjunction with lidar measurements to examine the characteristics of the particle size distribution in cirrus cloud in the tropical tropopause layer (TTL) over Thailand where the TTL is defined as the height at which temperature is lower than -75°C in this paper. Of 11 OPC launches, cirrus cloud was detected at 10-15 km high on 7 occasions, cirrus was detected in the TTL in 6 cases, and simultaneous OPC and lidar measurements were made on two occasions. Comparison of lidar and OPC measurements reveal that the cloud heights of cirrus in the TTL varies by several hundred meters over distances of tens kilometers; hence the height is not always horizontally uniform. The mode radii of particles constituting the clouds are estimated by lidar and OPC measurements to be less than approximately 10 μm. The regression lines of the particle size distribution with and without cirrus cloud exhibit similar features at equivalent radii of <0.8 μm. Enhancement in the integrated number concentration at radii greater than 0.8 μm indicates that liquid particles tend to be frozen at a radius of 0.8 μm, with cirrus clouds above 10 km exhibiting similar features. On the other hand, enhancement in the particle size distribution at radii greater than 0.9 μm and a peak at around 0.8 μm in the ratio of the standard deviation of count values to that of the Poisson distribution of the averaged count values are common features of cirrus clouds in the TTL, where the ratio shows the vertical homogeneity of the particle number. These typical features suggest that the transition from liquid, sulfuric acid aerosol, to ice is more observable in the TTL and the timing of freezing may vary with height in the TTL.

  15. Plasma-enhanced deposition of antifouling layers on silicone rubber surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan

    In food processing and medical environments, biofilms serve as potential sources of contamination, and lead to food spoilage, transmission of diseases or infections. Because of its ubiquitous and recalcitrant nature, Listeria monocytogenes biofilm is especially hard to control. Generating antimicrobial surfaces provide a method to control the bacterial attachment. The difficulty of silver deposition on polymeric surfaces has been overcome by using a unique two-step plasma-mediated method. First silicone rubber surfaces were plasma-functionalized to generate aldehyde groups. Then thin silver layers were deposited onto the functionalized surfaces according to Tollen's reaction. X-ray photoelectron spectroscopy (XPS), atomic force spectroscopy (AFM) and scanning electron microscopy (SEM) showed that silver particles were deposited. By exposing the silver coated surfaces to L. monocytogenes, it was demonstrated that they were bactericidal to L. monocytogenes. No viable bacteria were detected after 12 to 18 h on silver-coated silicone rubber surfaces. Another antifouling approach is to generate polyethylene glycol (PEG) thin layer instead of silver on polymer surfaces. Covalent bond of PEG structures of various molecular weights to cold-plasma-functionalized polymer surfaces, such as silicone rubber, opens up a novel way for the generation of PEG brush-like or PEG branch-like anti-fouling layers. In this study, plasma-generated surface free radicals can react efficiently with dichlorosilane right after plasma treatment. With the generation of halo-silane groups, this enables PEG molecules to be grafted onto the modified surfaces. XPS data clearly demonstrated the presence of PEG molecules on plasma-functionalized silicone rubber surfaces. AFM images showed the changed surface morphologies as a result of covalent attachment to the surface of PEG molecules. Biofilm experiment results suggest that the PEG brush-like films have the potential ability to be the next

  16. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    NASA Astrophysics Data System (ADS)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of

  17. High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh

    2012-01-01

    A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger

  18. Shear-Layer Interactions Between Surface-Mounted Obstacles at Varying Streamwise Spacings

    NASA Astrophysics Data System (ADS)

    Kim, T.; Best, J. L.; Christensen, K. T.

    2012-11-01

    Surface obstacles occur in a variety of flows, such as roughness elements in engineering flows and barchan dunes in natural eolian environments on both the Earth and Mars. Depending upon the arrangement and spacing between such obstacles, the flow over one obstacle can significantly alter the flow over those positioned downstream. Such flow interactions occur in fields of barchan dunes that are closely spaced and aligned in the flow direction, and where flow sheltering may play a significant role. To better understand these flow interactions, experiments were conducted for a pair of identical, upright cylinders extending into the log layer and aligned at various spacings in the streamwise direction of a turbulent channel flow at Reτ ~ 1200 . Particle-image velocimetry measurements of the flow around the cylinders reveal strong interactions between the shear layers generated downstream of the cylinders, and particularly a weakening of the downstream-most shear layer for small cylinder spacings (< 4 - 6 D). Modifications of the vortex-shedding processes at the downstream cylinder are under investigation, as these interactions are thought to play a critical role in the formation and evolution of surface obstacles when the surface is cohesionless and mobile.

  19. Water-soluble sacrificial layers for surface micromachining.

    PubMed

    Linder, Vincent; Gates, Byron D; Ryan, Declan; Parviz, Babak A; Whitesides, George M

    2005-07-01

    This manuscript describes the use of water-soluble polymers for use as sacrificial layers in surface micromachining. Water-soluble polymers have two attractive characteristics for this application: 1) They can be deposited conveniently by spin-coating, and the solvent removed at a low temperature (95-150 degrees C), and 2) the resulting layer can be dissolved in water; no corrosive reagents or organic solvents are required. This technique is therefore compatible with a number of fragile materials, such as organic polymers, metal oxides and metals-materials that might be damaged during typical surface micromachining processes. The carboxylic acid groups of one polymer-poly(acrylic acid) (PAA)-can be transformed by reversible ion-exchange from water-soluble (Na+ counterion) to water-insoluble (Ca2+ counterion) forms. The use of PAA and dextran polymers as sacrificial materials is a useful technique for the fabrication of microstructures: Examples include metallic structures formed by the electrodeposition of nickel, and freestanding, polymeric structures formed by photolithography.

  20. Imaging Layers Based on Surface-Initiated Polymers

    NASA Astrophysics Data System (ADS)

    Montague, Martha; Edwards, Erik; Nealey, Paul

    2002-03-01

    Photoresist structures at the 70 nm and 50 nm technology nodes are of molecular dimensions, and allowable tolerances and margins are of atomic dimensions. It is unclear whether current resist processing based on preferential solubility of protected or deprotected polymer molecules in aqueous base will afford the necessary process latitude at this scale. We are developing thin film imaging materials (100 to 200 nm thick) composed of polymer chains that are grafted (polymerized) directly on the surface of the substrate. These brushes have been grown from silicon wafers using "living" free radical initiators that are tethered to the surface of the wafer. We pattern this system by taking advantage of chemical amplification. An acid-labile linkage was incorporated into the tether of the polymer brush, and by using a photo acid generator we can create acid in exposed regions of our imaging layer. This strategy allows us to decouple the imaging process from the chemistry of the polymer. The resist then can be designed to optimize properties such as transparency and etch resistance. We will evaluate the imaging layers for process latitude and resolution.

  1. Possible Albedo Proton Signature of Hydrated Lunar Surface Layer

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Wilson, J. K.; Looper, M. D.; Jordan, A.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J. E.; Petro, N. E.; Pieters, C. M.; Robinson, M. S.; Smith, S. S.; Townsend, L. W.; Zeitlin, C. J.

    2015-12-01

    We find evidence for a surface layer of hydrated material in the lunar regolith using "albedo protons" measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high-energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and cannot be accounted for by either heavy element enrichment (e.g., enhanced Fe abundance), or by deeply buried (> 50 cm) hydrogenous material. The latitudinal distribution of albedo protons does not correlate with that of epithermal or high-energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in a thin (~ 1-10 cm) layer of hydrated regolith near the surface that is more prevalent near the poles. The CRaTER instrument thus provides critical measurements of volatile distributions within lunar regolith and potentially, with similar sensors and observations, at other bodies within the Solar System.

  2. Particle deposition on superhydrophobic surfaces by sessile droplet evaporation

    NASA Astrophysics Data System (ADS)

    Dicuangco, Mercy Grace

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hydrophilic surfaces. It is therefore of interest to understand particle deposition during droplet evaporation on superhydrophobic surfaces to enable accurate prediction and tunable control of localized deposits on such surfaces. The purpose of the present work is to explore the morphology of particles deposited on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex spheres. Droplet evaporation experiments are performed on non-wetting, textured surfaces with varying geometric parameters. The temporal evolution of the droplet contact radius and contact angle throughout the evaporation process are tracked by visualizing the transient droplet shape and wetting behavior. The droplets are observed to exhibit a combination of the following modes of evaporation: the constant contact radius mode, the constant contact angle mode, and the mixed mode in which the contact angle and the contact radius change simultaneously. After complete dry-out, the remaining particulate deposits are qualitatively and quantitatively characterized to describe their spatial distribution. In the first part of the study, the test surfaces are maintained at different temperatures. Experiments are conducted at ambient conditions and at elevated substrate temperatures of approximately 40°C, 50°C, and 60°C. The results show that droplet evaporation on superhydrophobic surfaces, driven by either mass diffusion at ambient conditions or by substrate heating, suppresses

  3. In situ observation of oxidation of liquid droplets of tin and melting behavior of a tin particle covered with a tin oxide layer.

    PubMed

    Mima, Takayuki; Takeuchi, Hironori; Arai, Shigeo; Kishita, Keisuke; Kuroda, Kotaro; Saka, Hiroyasu

    2009-03-01

    Oxidation of a liquid droplet of tin (Sn) was observed using an in situ specimen heating holder in an oxygen environment. The surface of the Sn liquid droplet was covered with a tin oxide layer, Sn(3)O(4), the thickness of which depended on the oxygen pressure and temperature. Subsequent cooling of the droplet resulted in the formation of a solid Sn particle covered with a Sn(3)O(4) layer. The solid Sn particle was then heated above the melting temperature of Sn, and the melting behavior of Sn was observed.

  4. Atomic layer deposition of ultrathin platinum films on tungsten atomic layer deposition adhesion layers: Application to high surface area substrates

    SciTech Connect

    Clancey, Joel W.; Cavanagh, Andrew S.; Kukreja, Ratandeep S.; Kongkanand, Anusorn; George, Steven M.

    2015-01-15

    Platinum (Pt) atomic layer deposition (ALD) usually yields Pt nanoparticles during initial film growth. In contrast, deposition of continuous and ultrathin Pt films is needed for many important applications, such as the oxygen reduction reaction in polymer electrolyte membrane (PEM) fuel cells. A continuous and high radius of curvature Pt film is more stable and has a higher area-specific activity than the Pt nanoparticles commonly used in PEM fuel cells. However, the Pt film must be ultrathin and have a large surface area to be cost effective. In this paper, a review of earlier Pt ALD studies on flat substrates is presented that demonstrates that tungsten, with a higher surface energy than platinum, can serve as an adhesion layer to achieve Pt ALD films that are continuous at ultrathin thicknesses of ∼1.5 nm. This work utilized MeCpPtMe{sub 3} and H{sub 2} plasma as the Pt ALD reactants. The deposition of continuous and ultrathin Pt ALD films using MeCpPtMe{sub 3} and H{sub 2} plasma as the reactants is then studied on two high surface area substrate materials: TiO{sub 2} nanoparticles and 3M nanostructured thin film (NSTF). Transmission electron microscopy (TEM) showed uniform and continuous Pt films with thicknesses of ∼4 nm on the TiO{sub 2} nanoparticles. TEM with electron energy loss spectroscopy analysis revealed W ALD and Pt ALD films with thicknesses of ∼3 nm that were continuous and conformal on the high aspect ratio NSTF substrates. These results demonstrate that cost effective use of Pt ALD on high surface area substrates is possible for PEM fuel cells.

  5. Evolution of vortex-surface fields in transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Zhao, Yaomin; Xiong, Shiying

    2016-11-01

    We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.

  6. Effects of surface barrier layer in AlGaAs/GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Urabe, Hiroyuki; Kuramoto, Makoto; Nakano, Tomohiro; Kawaharazuka, Atsushi; Makimoto, Toshiki; Horikoshi, Yoshiji

    2015-09-01

    In this paper, we report the effects of surface barrier layers on the characteristics of AlGaAs/GaAs solar cells. The external quantum efficiency (EQE) spectra for AlGaAs barrier samples with different barrier layer AlAs fractions and thickness of the surface barrier layer were measured to increase the solar cell efficiency. The results show that the surface barrier layer is effective to block diffusing photoexcited electrons to the surface while the thicker barrier layer absorbs higher energy photons to generate carriers which recombine at the surface. The optimal surface barrier structure is a 50 nm thick Al0.7Ga0.3As.

  7. The Point of Departure of a Particle Sliding on a Curved Surface

    ERIC Educational Resources Information Center

    Aghamohammadi, Amir

    2012-01-01

    A particle is thrown tangentially on a surface. It is shown that for some surfaces and for special initial velocities the thrown particle immediately leaves the surface, and for special conditions it never leaves the surface. The conditions for leaving the surface are investigated. The problem is studied for a surface with the cross-section y =…

  8. Real-time assessment of surface interactions with titanium passivation layer by surface plasmon resonance

    PubMed Central

    Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki

    2011-01-01

    The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862

  9. Crystalline Bacterial Surface Layer (S-Layer) Opens Golden Opportunities for Nanobiotechnology in Textiles.

    PubMed

    Asadi, Narges; Chand, Nima; Rassa, Mehdi

    2015-12-01

    This study focuses on the successful recrystallization of bacterial S-layer arrays of the Lactobacillus acidophilus ATCC 4356 at textile surfaces to create a novel method and material. Optimum bacterial growth was obtained at approximately 45 °C, pH 5.0, and 14 h pi. The cells were resuspended in guanidine hydrochloride and the 43 kDa S-protein was dialyzed and purified. The optimum reassembly on the polypropylene fabric surface in terms of scanning electron microscopy (SEM), reflectance, and uniformity (spectrophotometry) was obtained at 30 °C, pH 5.0 for 30 minutes in the presence of 2 gr/l (liquor ratio; 1:40) of the S-protein. Overall, our data showed that the functional aspects and specialty applications of the fabric would be very attractive for the textile and related sciences, and result in advanced technical textiles.

  10. Interplay between Depletion and Double-Layer Forces Acting between Charged Particles in Solutions of Like-Charged Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Moazzami-Gudarzi, Mohsen; Kremer, Tomislav; Valmacco, Valentina; Maroni, Plinio; Borkovec, Michal; Trefalt, Gregor

    2016-08-01

    Direct force measurements between negatively charged silica particles in the presence of a like-charged strong polyelectrolyte were carried out with an atomic force microscope. The force profiles can be quantitatively interpreted as a superposition of depletion and double-layer forces. The depletion forces are modeled with a damped oscillatory profile, while the double-layer forces with the mean-field Poisson-Boltzmann theory for a strongly asymmetric electrolyte, whereby an effective valence must be assigned to the polyelectrolyte. This effective valence is substantially smaller than the bare valence due to ion condensation effects. The unusual aspect of the electrical double layer in these systems is the exclusion of the like-charged polyelectrolyte from the vicinity of the surface, leading to a strongly nonexponential diffuse ionic layer that is dominated by counterions and has a well-defined thickness. As the oscillatory depletion force sets in right after this layer, this condition can be used to predict the phase of the oscillatory depletion force.

  11. Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives.

    PubMed

    Niu, Jia; Liu, Zhihua; Fu, Long; Shi, Feng; Ma, Hongwei; Ozaki, Yukihiro; Zhang, Xi

    2008-10-21

    In this article we report the introduction of the cooperativity of various specific interactions combined with photo-cross-linking of the interlayers to yield binding sites that can realize better selectivity and imprinting efficiency of a surface molecularly imprinted LbL film (SMILbL), thus providing a new approach toward fabrication of nanostructured molecularly imprinted thin films. It involves preassembly of poly(acrylic acid) (PAA) conjugated of the theophylline residue template via a disulfide bridge, denoted as PAAtheo 15, in solution, and layer-by-layer (LbL) assembly of PAAtheo 15 and a positively charged photoreactive diazo resin (DAR) to form multilayer thin film with designed architecture. After photo-cross-linking of the film and template removal, binding sites specific to 7-(beta-hydroxyethyl)theophylline (Theo-ol) molecules are introduced within the film. Binding assay demonstrates that the SMILbL has a high selectivity of SMILbL to Theo-ol over caffeine. A control experiment demonstrates that the selectivity of SMILbL derives from nanostructured recognition sites among the layers. The imprinting amount per unit mass of the film can be 1 order of magnitude larger than that of the conventional bulk molecular imprinting systems. As this concept of construction SMILbL can be easily extended to the other molecules by the following similar protocol: its applications in building many other different molecular recognition systems are greatly anticipated.

  12. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    PubMed

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  13. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  14. Role of the endothelial surface layer in neutrophil recruitment.

    PubMed

    Marki, Alex; Esko, Jeffrey D; Pries, Axel R; Ley, Klaus

    2015-10-01

    Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤ 38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥ 500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed.

  15. Euler-Lagrange Simulations of Particle Interactions with Coherent Vortices in Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Morales, Fernando; Naqvi, Iftekhar; Squires, Kyle; Piomelli, Ugo

    2009-11-01

    The overarching interest of the current investigations is numerical modeling of particle entrainment and deposition near sandy beds as relevant to the problem of rotorcraft brownout. Numerical simulations are being performed using an Euler-Lagrange method. Solution of the incompressible gas-phase flow field is accomplished using a fractional-step numerical method; the particulate phase is advanced using Discrete Particle Simulation. The particular flow field of interest models a rotor wake and is comprised of coherent vortices embedded in a turbulent boundary layer. The particles, once suspended, interact with the coherent wake vortices characterizing the rotor flow, and with the finer scale turbulence generated near the ground. The primary objectives are two-flow. First, to gain insight into the particle-vortex dynamics that influence transport near the bed and, second, to advance understanding of the mesoscopic particle velocity field. The latter objective requires very large particle ensembles in order to recover an Eulerian description of the particle field, important to advancing other simulation strategies for two-phase flows. Predictions of the flows for a range of particle and flow parameters will be presented.

  16. Particle scale modeling of material removal and surface roughness in chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Yeruva, Suresh Babu

    2005-11-01

    Chemical mechanical polishing (CMP) is widely adopted in producing excellent local and global planarization of microelectronic devices. It has been demonstrated experimentally that the polishing performance is a result of the synergistic effect of both the chemicals and the particles involved in CMP. However, the fundamental mechanisms of material removal and the interactions of the chemical and mechanical effects are not well understood. A comprehensive model for CMP was developed taking into account both the chemical and mechanical effects for slurries with a given particle size distribution. The model developed (PERC II) is based on a previously developed model (PERC I). The chemical aspect is attributed to the chemical modification of the surface layer due to slurry chemistry, whereas the mechanical aspect is incorporated by indentation of particles into the modified layer and the substrate depending on the operating conditions. In this study, the effects of particle size and pad asperity distributions are included in the model. The contact area of pad with wafer was measured in dry and wet conditions in different pH solutions using optical microscopy and Fourier transform infrared spectroscopy respectively. Pad surface mechanical properties in dry and wet states were also investigated using atomic force microscopy. The contact area results obtained were utilized in modeling to estimate the pad modulus leading to pad-wafer contact stress distribution. The predictions of the model show a reasonable agreement with the experimental data. The model is validated for oxide and metal CMP systems. The PERC II model not only predicts the overall removal rate, but also the surface roughness of the polished wafer in selected systems. The developed model can be used to optimize the current CMP systems and provide insights into future CMP endeavors.

  17. A Sweeping based Kinematic Simulation for the Stably Stratified Surface Layer

    NASA Astrophysics Data System (ADS)

    Ghate, Aditya; Lele, Sanjiva

    2014-11-01

    A Kinematic Simulation (KS) for a statistically stationary and stably stratified surface layer is proposed. The Fourier coefficients are obtained by numerically solving the linearized NS equations with Boussinesq approximation in spectral space, under the assumption of ``rapid'' deformation (RDT) due to combined shear and stratification. The linearization of RDT, which is unrealistic for the surface layer, is rectified using Mann's (JFM, 1994) idea of wavenumber dependent eddy lifetime. The input parameters required by the KS are estimated using either Monin-Obukhov theory, or an appropriate Second Moment Closure. In order to overcome the frozen turbulence hypothesis made in the Mann model, we incorporate inter-scale ``sweeping'' of eddies following the ideas of Fung et al. (JFM, 1992), along with temporal decorrelation associated with the natural eddy time scale. The solenoidal velocity field generated by the KS allows inclusion of a wide range of scales with correct space-time correlations, making it ideal to investigate particle dispersion in a stably stratified environment, and can also serve as inflow for the study of Wind Farm-PBL interactions. The effect of varying Obukhov length will be discussed by analyzing the frozen Eulerian spectra and Lagrangian particle dispersion.

  18. Generic nitric oxide (NO) generating surface by immobilizing organoselenium species via layer-by-layer assembly.

    PubMed

    Yang, Jun; Welby, Jenna L; Meyerhoff, Mark E

    2008-09-16

    A universal nitric oxide (NO) generating surface is assembled via Layer-by-Layer (LbL) deposition of sodium alginate (Alg) and organoselenium modified polyethyleneimine (SePEI) on quartz and polymeric substrates. The immobilized SePEI species is capable of catalytically decomposing S-nitrosothiol species (RSNO) to NO in the presence of thiol reducing agents (e.g., glutathione, cysteine, etc.). The stepwise buildup of the multilayer films is monitored by UV-vis spectroscopy, SEM and surface contact angle measurements. X-ray photoelectron spectroscopy is used to study the stoichiometry between the polyanion and polycation, and also the presence of Se in the catalytic LbL film. A reductive annealing process is necessary to improve the stability of freshly coated multilayer films via chain rearrangement. Chemiluminescence measurements illustrate the ability of the LbL films to generate NO from S-nitrosoglutathione (GSNO) in the presence of glutathione (GSH). Enhanced NO fluxes can be achieved by increasing the number of catalytic (SePEI/Alg) bilayers coated on the substrates. Nitric oxide generation is observed even after prolonged contact with sheep whole blood. Preliminary applications of this LbL on silicone rubber tubings and polyurethane catheters reveal similar NO generation behavior from these biomedical grade polymeric substrates.

  19. Remote sensing of Arctic boundary layer clouds above snow surfaces

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Wendisch, Manfred

    2015-04-01

    In the Arctic remote sensing of clouds using reflected solar radiation is mostly related to high uncertainties as the contrast between the bright sea ice and snow surface and the clouds is low. Additionally, uncertainties result from variation of the snow grain size which changes the absorption of solar radiation similarly to the size of cloud particles. This is a major issue for understanding the response of Arctic clouds to climate warming as the quantification of cloud properties in this remote region mostly relies on satellite observations. We used spectral radiation measurements of the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) to improve common used cloud remote sensing algorithms in case of snow surfaces. The measurements were collected during the airborne research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) above the Canadian Beaufort where both sea ice covered and ice free ocean areas were present during the observation period. Based on the spectral absorption characteristics of snow and clouds (assuming to be dominated by the liquid fraction) a combination of wavelengths was found which allows to separate the impact of clouds and snow surface on the reflected radiation measured above the clouds. While snow grain size dominates the absorption at a wavelength of 1.0 μm, information on cloud optical thickness and cloud particle effective radius can be extracted at wavelengths of 1.7 μm and 2.1 μm, respectively. Based on radiative transfer simulations lookup tables for the retrieval algorithm were calculated and used to estimate the theoretical uncertainties of the retrieval. It was found that using ratios instead of absolute radiances reduces the uncertainties significantly. The new algorithm was applied to a specific case observed during the VERDI campaign where a stratocumulus clouds was located above an ice edge. It could be shown that the method works also over water

  20. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    DOE PAGES

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  1. Method and apparatus for measuring surface density of explosive and inert dust in stratified layers

    DOEpatents

    Sapko, Michael J.; Perlee, Henry E.

    1988-01-01

    A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.

  2. Surface waves on a soft viscoelastic layer produced by an oscillating microbubble

    PubMed Central

    Tinguely, Marc; Hennessy, Matthew G.; Pommella, Angelo; Matar, Omar K.

    2016-01-01

    Ultrasound-driven bubbles can cause significant deformation of soft viscoelastic layers, for instance in surface cleaning and biomedical applications. The effect of the viscoelastic properties of a boundary on the bubble–boundary interaction has been explored only qualitatively, and remains poorly understood. We investigate the dynamic deformation of a viscoelastic layer induced by the volumetric oscillations of an ultrasound-driven microbubble. High-speed video microscopy is used to observe the deformation produced by a bubble oscillating at 17–20 kHz in contact with the surface of a hydrogel. The localised oscillating pressure applied by the bubble generates surface elastic (Rayleigh) waves on the gel, characterised by elliptical particle trajectories. The tilt angle of the elliptical trajectories varies with increasing distance from the bubble. Unexpectedly, the direction of rotation of the surface elements on the elliptical trajectories shifts from prograde to retrograde at a distance from the bubble that depends on the viscoelastic properties of the gel. To explain these behaviours, we develop a simple three-dimensional model for the deformation of a viscoelastic solid by a localised oscillating force. By using as input for the model the values of the shear modulus obtained from the propagation velocity of the Rayleigh waves, we find good qualitative agreement with the experimental observations. PMID:27071851

  3. Analysis of Nb{sub 3}Sn surface layers for superconducting radio frequency cavity applications

    SciTech Connect

    Becker, Chaoyue; Posen, Sam; Hall, Daniel Leslie; Groll, Nickolas; Proslier, Thomas; Cook, Russell; Schlepütz, Christian M.; Liepe, Matthias; Pellin, Michael; Zasadzinski, John

    2015-02-23

    We present an analysis of Nb{sub 3}Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb{sub 3}Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T{sub c}) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb{sub 3}Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb{sub 3}Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T{sub c} regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb{sub 3}Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  4. Surface-charging behavior of Zn-Cr layered double hydroxide.

    PubMed

    Rojas Delgado, R; Arandigoyen Vidaurre, M; De Pauli, C P; Ulibarri, M A; Avena, M J

    2004-12-15

    A Zn-Cr layered double hydroxide (LDH) having the formula Zn(2)Cr(OH)(6)Cl(0.7)(CO(3))(0.15)2.1H(2)O was synthesized and characterized by powder X-ray diffraction, infrared spectroscopy, acid-base potentiometric titration, mass titration, electrophoretic mobility, and modeling of the electrical double layer. Adsorption of alizarin was also performed in order to show some particular features of the HDL. Net hydroxyl adsorption, which increases with increasing pH and decreasing supporting electrolyte concentration, takes place above pH 5. The electrophoretic mobility of the particles was always positive and it decreased when the pH was higher than 9. An isoelectric point of 12 could be estimated by extrapolating the data. The modified MUSIC model was used to estimate deprotonation constants of surface groups and different adsorption models were compared. Good fit of hydroxyl adsorption and electrophoresis could be achieved by considering both OH(-)/Cl(-) exchange at structural sites and proton desorption from surface hydroxyl groups. The modeling, in agreement with alizarin adsorption, indicates that most of the structural positive charge of the LDH is screened at the surface by exchanged anions and negatively charged surface groups. It also suggests that only structural charge sites initially neutralized by chloride ions are active for anion exchange. The remaining sites are blocked by carbonate and do not participate in the exchange.

  5. Modelling boundary layer flow over barnacle-fouled surfaces

    NASA Astrophysics Data System (ADS)

    Sadique, Jasim; Yang, Xiang; Meneveau, Charles; Mittal, Rajat

    2014-11-01

    Macro-biofouling is a critical concern for the marine industry. However, there is little data on flow and drag over such surfaces. Accurate modelling of such multi-scale flows remains a big challenge. Such simulations are vital in providing insights into the fundamental flow physics, and they can be used to estimate the timing, need and effectiveness of measures used to counteract bio-fouling. This talk focuses on the use of a sharp-interface immersed boundary method coupled with a wall model and large-eddy simulations to carry out accurate simulations of a turbulent boundary layer flow over macro-fouled surfaces. For the current study, high resolution scans of barnacles were used to create simple geometrical representations. Simulations were then carried out to test how well these simpler geometric models mimic the flow over actual barnacles. Simulations of array of modeled barnacles, with different barnacle densities have also been carried out and we present results on the effect distribution density on the flow physics and drag on the surfaces. This work is funded by ONR Grant N00014-12-1-0582.

  6. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  7. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  8. Interaction of compliant surfaces with transitional and turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, M.; Riley, J. J.; Blackwelder, R. F.

    The interaction of plastisol gel coatings of different thicknesses and shear moduli with transitional and turbulent boundary layers was investigated over a range of velocities. Whenever the free-stream velocity within the fluid was comparable to the transverse wave speed within the solid, large-amplitude static-divergence waves appeared on the surface of the solid. The amplitude of the waves was always of the order of the coating thickness. As the free-stream velocity increased, the waves became less two-dimensional and developed larger variations in their amplitude along the crests. This disturbance led to the formation of additional waves downstream having a shorter span. Ways of reducing or eliminating the static-divergence waves are briefly discussed.

  9. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean

    2016-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  10. Charged Particle Alterations of Surfaces in the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1995-01-01

    The surfaces of 'airless' bodies in the solar system are exposed to the ambient plasma, micrometeorites, and the solar UV. The effects of these space weathering agents on surfaces in the solar system has been studied in this project. In the last three years work was carried out on volatile depletion at Mars, on sputtering of the lunar surface, on absorption by implanted S in vapor-deposited H2O and its relevance to observations of Europa's surface in the UV, and on the spectral changes produced on irradiating SO2 and its possible relevance to Io. In addition, the role of plasma-induced charging of E-ring grains was evaluated because of its relevance to E-ring particle source and the lifetime of the E-ring. Finally, the detection of sputtered material from Dione by the CAPS instrument on CASSINI was evaluated as a tool for analysis of satellite surface composition, and the role of sputtering on the ambient OH in the vicinity of the ice satellites and the E-ring was evaluated.

  11. Particle image velocimetry for the surface tension driven convection experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  12. Particle image velocimetry for the Surface Tension Driven Convection Experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  13. Morphological features of the copper surface layer under sliding with high density electric current

    SciTech Connect

    Fadin, V. V.; Aleutdinova, M. I.; Rubtsov, V. Ye.; Aleutdinova, V. A.

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  14. Surface Layer Turbulence Measurements during a Frontal Passage.

    NASA Astrophysics Data System (ADS)

    Piper, M.; Lundquist, Julie K.

    2004-07-01

    Very little is known about the nature of turbulence in the transition zone of a synoptic-scale cold front, especially at the dissipative scales. Lacking this knowledge, accurate models of surface frontogenesis are compromised. To address this problem, high-frequency measurements from sonic and hot-wire anemometers are used to analyze the finescale turbulence in the atmospheric surface layer (ASL) within a cold front observed in the MICROFRONTS field experiment. To quantify the turbulence in the front, velocity spectra and dissipation rates are calculated as functions of time and stability in the ASL. The normalized first and second moments of the one-dimensional velocity spectrum conform to the scaling suggested by Kolmogorov's equilibrium hypotheses, even during the intense turbulence associated with the frontal passage. The spectra compare well with other data collected at high Reλ in the ASL, but not as well with a recent model of the dissipative range of turbulence. Dissipation rate is calculated with one direct and two indirect techniques. The calculations from the different techniques compare well with one another and, when nondimensionalized, with a historical expression for dissipation rate as a function of ASL stability. The magnitude of the dissipation rate increases by an order of magnitude to a maximum value of 1.2 m2 s-3 during the frontal passage compared to prefrontal values of 0.05 m2 s-3; the latter is typical for a slightly stable nighttime boundary layer over land. These results can be used in assessing the effects of turbulence in traditional semigeostrophic models of frontal collapse. The dissipation rate calculations may be of particular use to modelers.


  15. Modification of Turbulent Boundary Layer Flows by Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Gose, James W.; Golovin, Kevin; Barros, Julio; Schultz, Michael P.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.

    2016-11-01

    Measurements of near zero pressure gradient turbulent boundary layer (TBL) flow over several superhydrophobic surfaces (SHSs) are presented and compared to those for a hydraulically smooth baseline. The surfaces were developed at the University of Michigan as part of an ongoing research thrust to investigate the feasibility of SHSs for skin-friction drag reduction in turbulent flow. The SHSs were previously evaluated in fully-developed turbulent channel flow and have been shown to provide meaningful drag reduction. The TBL experiments were conducted at the USNA in a water tunnel with a test section 2.0 m (L) x 0.2 m (W) x 0.2 m (H). The free-stream speed was set to 1.26 m/s which corresponded to a friction Reynolds number of 1,500. The TBL was tripped at the test section inlet with a 0.8 mm diameter wire. The upper and side walls provided optical access, while the lower wall was either the smooth baseline or a spray coated SHS. The velocity measurements were obtained with a TSI FSA3500 two-component Laser-Doppler Velocimeter (LDV) and custom-designed beam displacer operated in coincidence mode. The LDV probe volume diameter was 45 μm (approx. one wall-unit). The measurements were recorded 1.5 m downstream of the trip. When the measured quantities were normalized using the inner variables, the results indicated a significant reduction in the near wall viscous and total stresses with little effect on the flow outside the inner layer.

  16. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    PubMed

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF).

  17. Simple solution route to uniform MoS{sub 2} particles with randomly stacked layers

    SciTech Connect

    Li Qing; Li Ming; Chen Zhiqian; Li Chunmei

    2004-06-08

    MoS{sub 2} particles of uniform size (ca. 70 nm) consisting of random and loosely stacked layers have been synthesized from hydrazine solution with (NH{sub 4}){sub 2}Mo{sub 3}S{sub 13} as the precursor at 180 deg. C for 16 h under hydrothermal conditions. The particles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HREM). The influences of reaction conditions are discussed while a mechanism is proposed to explain the formation of this peculiar morphology.

  18. Producing Nanocomposite Layer on the Surface of As-Cast AZ91 Magnesium Alloy by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Asadi, P.; Besharati Givi, M. K.; Faraji, G.

    Friction stir processing (FSP) is an effective tool to produce a surface composite layer with enhanced mechanical properties and modified microstructure of as-cast and sheet metals. In the present work, the mechanical and microstructural properties of as-cast AZ91 magnesium alloy were enhanced by FSP and an AZ91/SiC surface nanocomposite layer has been produced using 30 nm SiC particles. Effect of the FSP pass number on the microstructure, grain size, microhardness, and powder distributing pattern of the surface developed has been investigated. The developed surface nanocomposite layer presents a higher hardness, an ultra fine grain size and a better homogeneity. Results show that, increasing the number of FSP passes enhances distribution of nano-sized SiC particles in the AZ91 matrix, decreases the grain size, and increases the hardness significantly. Also, changing of the tool rotating direction results much uniform distribution of the SiC particles, finer grains, and a little higher hardness.

  19. Retrieving the aerosol particle distribution in Titan's detached layer from ISS limb observations

    NASA Astrophysics Data System (ADS)

    Seignovert, B.; Rannou, P.; Lavvas, P.; Cours, T.; West, R. A.

    2015-10-01

    The study of the detached haze layer above Titan's thick atmosphere is one of the key elements to understand the growth of the aerosols in the upper atmosphere of Titan. In this work we will present the results of a radiative transfer inversion of the vertical profile distribution of aerosols in the detached haze layer (from 300 to 600 km) by using the I/F ratio ob- served by Cassini ISS camera. The analyses will focus on the derivation of the particle size distribution.

  20. Multi-disclinational description of pentagonal particles with subsurface layer free of twin boundaries

    NASA Astrophysics Data System (ADS)

    Yasnikov, I. S.; Kolesnikova, A. L.; Romanov, A. E.

    2015-09-01

    We present the results on the modelling of structural changes in pentagonal small particles (PSPs) during their growth. We prove that after a certain critical size it becomes energetically favourable for a PSP to form a subsurface layer free of twin boundaries (TBs), which are only typical structural elements for smaller size PSPs. In this layer, the low-angle dislocation boundaries (DBs) are formed. Our calculations of the energy stored in the transformed PSP are based on the disclination model of a PSP, in which the TB junctions, as well as TB-DB junctions are treated as wedge disclinations.

  1. Mass loading of soil particles on plant surfaces

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W. )

    1989-12-01

    Radionuclide-bearing soil particles on plant surfaces can be ingested and contribute to human dose, but evaluating the potential dose is limited by the relatively few data available on the masses of soil particles present on plant surfaces. This report summarizes mass loading data (i.e., mass of soil per unit of vegetation) for crops in the southeastern United States and compares these data to (1) those from other regions and (2) the mass loadings used in radionuclide transfer models to predict soil contamination of plant surfaces. Mass loadings were estimated using the 238Pu content of crops as an indicator of soil on plant surfaces. Crops were grown in two soils: a sandy clay loam soil and a loamy sand soil. Concentrations of soil on southeastern crops (i.e., mg soil g-1 plant) differed by more than a factor of 100 due to differences in crop growth form and biomass. Mean concentrations ranged from 1.7 mg g-1 for corn to 260 mg g-1 for lettuce. Differences in mass loadings between soils were less than those among crops. Concentrations differed by less than a factor of two between the two soil types. Because of (1) the differences among crops and (2) the limited data available from other systems, it is difficult to draw conclusions regarding regional or climatic variation in mass loadings. There is, however, little evidence to suggest large differences among regions. The mass loadings used to predict soil contamination in current radionuclide transfer models appear to be less than those observed for most crops.

  2. Water Surface Ripples Generated by the Turbulent Boundary Layer of a Surface-Piercing Moving Wall

    NASA Astrophysics Data System (ADS)

    Washuta, N.; Masnadi, N.; Duncan, J. H.

    2014-11-01

    Free surface ripples created by subsurface turbulence along a surface-piercing moving wall are studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and the water level is adjusted so that the top of the belt pierces the water free surface. The belt is launched from rest with a 3 g acceleration in order to quickly reach a steady state velocity. This belt motion creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along the side of a ship hull moving at the belt velocity, with a length equivalent to the length of belt that has passed the measurement region. The water surface ripples generated by the subsurface turbulence are measured in a plane normal to the belt using a cinematic LIF technique. It is found that the overall RMS surface fluctuations increase linearly with belt speed and that the spatial distributions of the fluctuations show a sharp increase near the wall. The support of the Office of Naval Research is gratefully acknowledged.

  3. Optical detector having a plurality of matrix layers with cobalt disilicide particles embedded therein

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Schowalter, Leo (Inventor)

    1994-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow particles of metal silicide embedded in a matrix of single crystal epitaxially grown silicon. The particles interact with incident photons by resonant optical absorption at the surface plasmon resonance frequency. Controlling the substrate temperature and deposition rate and time allows the aspect ratio of the particles to be tailored to desired wavelength photons and polarizations. The plasmon energy may decay as excited charge carriers of phonons, either of which can be monitored to indicate the amount of incident radiation at the selected frequency and polarization.

  4. Analytic expressions for atomic layer deposition: Coverage, throughput, and materials utilization in cross-flow, particle coating, and spatial atomic layer deposition

    SciTech Connect

    Yanguas-Gil, Angel; Elam, Jeffrey W.

    2014-05-15

    In this work, the authors present analytic models for atomic layer deposition (ALD) in three common experimental configurations: cross-flow, particle coating, and spatial ALD. These models, based on the plug-flow and well-mixed approximations, allow us to determine the minimum dose times and materials utilization for all three configurations. A comparison between the three models shows that throughput and precursor utilization can each be expressed by universal equations, in which the particularity of the experimental system is contained in a single parameter related to the residence time of the precursor in the reactor. For the case of cross-flow reactors, the authors show how simple analytic expressions for the reactor saturation profiles agree well with experimental results. Consequently, the analytic model can be used to extract information about the ALD surface chemistry (e.g., the reaction probability) by comparing the analytic and experimental saturation profiles, providing a useful tool for characterizing new and existing ALD processes.

  5. Mass transport of deposited particles by surface-to-surface contact.

    PubMed

    McDonagh, A; Sextro, R G; Byrne, M A

    2012-08-15

    The spread of particle-borne contamination by surface-to-surface contact and its implications for exposures within the indoor environment have been observed - largely qualitatively. The present study was conducted with the aim of quantifying the mass transfer efficiency (TE) of deposited aerosol particles when selected soft and hard surfaces come in contact. The surfaces used were 100% cotton, synthetic fleece, plastic laminate and brass. Contact transfer efficiencies ranging from 2 to 45% were observed; these are very significant numbers in terms of hazardous aerosol transport in the environment. Other observations include an increase in the mass transferred with increased surface roughness. An increase in the applied pressure between the two surfaces in contact leads to a step change in transfer efficiency, so that two pressure regimes can be identified, with a transition pressure between them that depends on surface type. Time of contact appears to have little to no effect on the mass transfer efficiency for the surfaces studied, while contaminant loading has some effect that is not systematic.

  6. Observations of the sensitivity of beam attenuation to particle size in a coastal bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Hill, P. S.; Boss, E.; Newgard, J. P.; Law, B. A.; Milligan, T. G.

    2011-02-01

    The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (cp) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 μm to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured cp from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of cp to SPM, was 0.22 g m-2. Individual estimates of cp:SPM were between 0.2 and 0.4 g m-2 for volumetric median particle diameters ranging from 10 to 150 μm. The wide range of values in cp:SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.

  7. Effect of surface oxidation layer on tensile strength of Cu-Ni alloy in friction stir welding

    NASA Astrophysics Data System (ADS)

    Yoon, Taejin; Park, Sangwon; Chung, Sungwook; Noh, Joongsuk; Kim, Kwangho; Kang, Chungyun

    2016-05-01

    Friction stir welding (FSW) of thick Cu-Ni plate was successfully completed. The fracture position after tensile testing was located at the weld nugget zone (WNZ), where surface oxidation occurred. The oxidation morphologies on the surface of the base metal were analyzed by SEM, EPMA and XRD, with the oxide layer being obtained by simple and useful way to analyze the oxide products, namely, collecting oxide powders after immersing of the oxidized specimen into HNO3 solution. The results highlighted that an oxide layer of 30 μm thickness consists of a mixture of two phases, Cu2O and NiO, on the surface of the base metal. After FSW, the thickness of the oxide layer on the surface was decreased to approximately 5 μm, and broken oxide particles, which is NiO, penetrated into the WNZ by the rotating tool. NiO was preferentially formed at the surface after FSW because it has a lower Gibbs free energy value at 950 °C, which is the peak temperature measured during FSW. Oxide layer of Cu-Ni plate was clearly only removed by mechanical method grinding with 1200-grit SiC paper. The removal of oxide layer results in improved mechanical strength.

  8. Split-screen single-camera stereoscopic PIV application to a turbulent confined swirling layer with free surface

    NASA Astrophysics Data System (ADS)

    Bardet, Philippe M.; Peterson, Per F.; Savaş, Ömer

    2010-08-01

    An annular liquid wall jet, or vortex tube, generated by helical injection inside a tube is studied experimentally as a possible means of fusion reactor shielding. The hollow confined vortex/swirling layer exhibits simultaneously all the complexities of swirling turbulence, free surface, droplet formation, bubble entrapment; all posing challenging diagnostic issues. The construction of flow apparatus and the choice of working liquid and seeding particles facilitate unimpeded optical access to the flow field. A split-screen, single-camera stereoscopic particle image velocimetry (SPIV) scheme is employed for flow field characterization. Image calibration and free surface identification issues are discussed. The interference in measurements of laser beam reflection at the interface are identified and discussed. Selected velocity measurements and turbulence statistics are presented at Re_{\\uplambda}=70 (Re = 3500 based on mean layer thickness).

  9. Formating double layer mechanism by electric charged particle stream in plasma

    NASA Astrophysics Data System (ADS)

    Shan-jun, Ma; Qian-li, Yang; Xiao-qing, Li

    1998-08-01

    In this paper, two-fluid equations have been solved after having considered magnetic field generated by charged particle stream. Finally, the distribution of electric field Ez(z, r) and its growth rate γ in plasma have been obtained. From the expression of Ez(z, r) it can be known that the double layer has been formed. With the increase of disturbance γ will be larger, and finally this will result in the interruption of electric current and occurrence of burst.

  10. Viscous dissipation effects on thermophoretically augmented aerosol particle transport across laminar boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1985-01-01

    The effect of viscous dissipation on mass transport across nonisothermal low-mass-loading laminar boundary layers of dusty gas is investigated theoretically by means of numerical simulations. The derivation of the model is outlined, and numerical results are presented in extensive graphs and characterized in detail. The dissipation effects are found to be significant, increasing total particle-deposition rates; the intensity of the effects depends on the ratio of wall temperature to mainstream static temperature.

  11. Facile synthesis of methotrexate intercalated layered double hydroxides: particle control, structure and bioassay explore.

    PubMed

    Tian, De-Ying; Liu, Zhen-Lei; Li, Shu-Ping; Li, Xiao-Dong

    2014-12-01

    To study the influence of particle size on drug efficacy and other properties, a series of methotrexate intercalated layered double hydroxides (MTX/LDHs) were synthesized through the traditional coprecipitation method, using a mixture of water and polyethylene glycol (PEG-400) as the solvent. To adjust the particle size of MTX/LDHs, the dropping way, the volume ratio of water to PEG-400 and different hydrothermal treatment time changed accordingly, and the results indicate that the particle size can be controlled between 90 and 140 nm. Elemental C/H/N and inductive coupled plasma (ICP) analysis indicated that different synthesis conditions almost have no effect on the compositions of the nanohybrids. X-ray diffraction (XRD) patterns manifested the successful intercalation of MTX anions into the LDH interlayers, and it's also found out that different volume ratios of water to PEG-400 and variable dropping way can affect the crystallinity of the final samples, i.e., the volume ratio of 3:1 and pH decreasing are proved to be optimum conditions. Furthermore, both antiparallel monolayer and bilayers adopting different orientations are suggested for four samples from XRD results. Fourier transform infrared spectroscopy (FTIR) investigations proved the coexistence of CO3(2-) and MTX anions in the interlayer of the nanohybrids. MTX/LDH particles exhibited hexagonal platelet morphology with round corner and different dropping ways can affect the morphology greatly. Moreover, a DSC study indicated that longer time treatment can weaken the bond between the MTX anions and LDH layers. The kinetic release profiles told us that larger MTX/LDH particles have enhanced the ability of LDH layers to protect interlayer molecules. At last, the bioassay study indicated that the nanohybrids with larger diameters have higher tumor suppression efficiency.

  12. Genetic particle filter application to land surface temperature downscaling

    NASA Astrophysics Data System (ADS)

    Mechri, Rihab; Ottlé, Catherine; Pannekoucke, Olivier; Kallel, Abdelaziz

    2014-03-01

    Thermal infrared data are widely used for surface flux estimation giving the possibility to assess water and energy budgets through land surface temperature (LST). Many applications require both high spatial resolution (HSR) and high temporal resolution (HTR), which are not presently available from space. It is therefore necessary to develop methodologies to use the coarse spatial/high temporal resolutions LST remote-sensing products for a better monitoring of fluxes at appropriate scales. For that purpose, a data assimilation method was developed to downscale LST based on particle filtering. The basic tenet of our approach is to constrain LST dynamics simulated at both HSR and HTR, through the optimization of aggregated temperatures at the coarse observation scale. Thus, a genetic particle filter (GPF) data assimilation scheme was implemented and applied to a land surface model which simulates prior subpixel temperatures. First, the GPF downscaling scheme was tested on pseudoobservations generated in the framework of the study area landscape (Crau-Camargue, France) and climate for the year 2006. The GPF performances were evaluated against observation errors and temporal sampling. Results show that GPF outperforms prior model estimations. Finally, the GPF method was applied on Spinning Enhanced Visible and InfraRed Imager time series and evaluated against HSR data provided by an Advanced Spaceborne Thermal Emission and Reflection Radiometer image acquired on 26 July 2006. The temperatures of seven land cover classes present in the study area were estimated with root-mean-square errors less than 2.4 K which is a very promising result for downscaling LST satellite products.

  13. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    SciTech Connect

    Kazil, J.; Feingold, G.; Wang, Hailong; Yamaguchi, T.

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have

  14. Surface force measurements at the basal planes of ordered kaolinite particles.

    PubMed

    Gupta, Vishal; Miller, Jan D

    2010-04-15

    An experimental procedure is presented to order kaolinite particles on substrates for interrogation of the two basal plane surfaces by atomic force microscopy. Surface force measurements were performed between a silicon nitride tip and each of the two faces (silica tetrahedral face and alumina octahedral face) of kaolinite in 1 mM KCl solution at pH 4, 5, 6, 8 and 10, using atomic force microscopy. The colloidal force measurements reveal that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH<6, and negatively charged at pH>8. Such measurements have not been reported previously and the results suggest that the iso-electric point of the silica tetrahedral face is at pH<4, and that the iso-electric point of the alumina octahedral face lies between pH 6 and 8. These results contradict the generally accepted view that basal plane surfaces of kaolinite carry a permanent negative charge due to minor substitution of Al(3+) for Si(4+) in the silica tetrahedral layer, and suggest some surface charge dependency of the two faces with respect to solution pH. With this new information it may be possible to further explain the electrokinetic behavior of kaolinite particles, and their interactions in aqueous suspensions.

  15. Effect of mechanical vibration on platinum particle agglomeration and growth in proton exchange membrane fuel cell catalyst layer

    NASA Astrophysics Data System (ADS)

    Diloyan, Georgiy

    monitored and recorded. It was observed that the mean diameter of Pt particles tested under mechanical vibration is 10% smaller than the ones that were tested under no vibration conditions. The Pt particles in the order of 2 to 2.5 nm in the pristine state have grown to 6.14 nm (after 300 hour accelerated test at no vibration condition), to 5.64 nm (after 300 hours accelerated test under 4g 20 Hz vibration condition) and to 5.55 nm (after 300 hours accelerated test under 1g 20 Hz vibration condition). The mean Pt particle diameters, after 300 hour accelerated test under 1g 40 Hz and 4g 40 Hz vibration conditions, were 5.89 nm. With an increase of the mean Pt particle diameter, the active surface area of the catalyst layer of the MEA decreases and as a result, performance of MEA and PEM fuel also decreases. It was observed that performance of the MEA tested under no vibration condition is about 10% lower than the one tested under 1g 20 Hz. The VI curve showed that the lowest performance of the MEA after 300 hour accelerated test corresponded to no vibration conditions and equaled to 7.85 Watts at 0.5 V (Pt particle size ˜ 6.14 nm) and highest performance, corresponded to the MEA tested under 1g 20 Hz, and equaled to 8.66 Watts at 0.5 V (Pt particle size ˜ 5.55 nm).

  16. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    SciTech Connect

    Jin, C.; Potts, I.; Reeks, M. W.

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  17. Enhanced erythrocyte suspension layer stability achieved by surface tension lowering additives

    NASA Technical Reports Server (NTRS)

    Omenyi, S. N.; Snyder, R. S.; Absolom, D. R.; Van Oss, C. J.; Neumann, A. W.

    1982-01-01

    In connection with a fractionation procedure involving the separation of particles, a dilute suspension of these particles in a liquid is carefully layered on a dense liquid. Under ideal conditions, the suspension forms a zone of finite thickness with a 'sharp' interface between the suspension layer and the supporting liquid. Under an applied field, e.g., gravitational or electrical, the particles in the suspension layer migrate to form different layers according to their size and/or density or according to their electrophoretic mobilities. However, in many cases the ideal conditions necessary for the fractionation process are not obtained. Many studies have been conducted to explore the reasons for suspension layer 'instability'. The present investigation represents an extension of a study conducted by Omenyi et al. (1981). An electrostatic repulsion-van der Waals mechanism was used to study the stability of fixed erythrocyte suspensions layered on a D2O cushion.

  18. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  19. Method and system for treating an interior surface of a workpiece using a charged particle beam

    DOEpatents

    Swenson, David Richard

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  20. Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R.; Pöschl, U.

    2009-04-01

    Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux

  1. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  2. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  3. Statistical evaluation of potential damage to the Al(OH)3 layer on nTiO2 particles in the presence of swimming pool and seawater

    NASA Astrophysics Data System (ADS)

    Virkutyte, Jurate; Al-Abed, Souhail R.

    2012-03-01

    Nanosized TiO2 particles (nTiO2) are usually coated with an Al(OH)3 layer when used in sunscreen to shield against the harmful effects of free radicals that are generated when these particles are exposed to UV radiation. Therefore, it is vital to insure the structural stability of these particles in the environment where the protective layer may be damaged and adverse health and environmental effects can occur. This study utilized X-ray analysis (SEM-EDS) to provide a qualitative and semi-quantitative assessment of the chemical and physical characteristics of Al(OH)3-coated original and damaged nTiO2 particles (used in sunscreen lotion formulations) in the presence of both swimming pool and seawater. Also, by utilizing statistical tools, a distribution of Al/Ti (%) on the particle surface was determined and evaluated. It was found that 45 min of treatment with swimming pool and seawater significantly induced the redistribution of Al/Ti (%), which changed the surface characteristics of particles and, therefore, may have induced undesired photo-activity and the consequent formation of free radicals.

  4. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2013-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes a plurality M of doped layers, where M is an integer greater than 1. The dopant sheet densities in the M doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. M-1 interleaved layers provided between the M doped layers are not deliberately doped (also referred to as "undoped layers"). Structures with M=2, M=3 and M=4 have been demonstrated and exhibit improved passivation.

  5. Evaporation of particle-laden droplets on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Bigdeli, Masoud; Tsai, Peichun Amy

    2016-11-01

    We experimentally investigated the evaporation dynamics of water droplets suspended with minute particles of varying concentrations on a superhydrophobic surface. The contact angle, diameter, and height of the droplets decreased during the evaporation process. For pure water, the droplet went through a wetting transition from a partial wetting (Cassie-Baxter), with a large contact angle (>140°), to completely wetting (Wenzel) state, with a small contact angle. Unlike pure water, the nanofluid droplets maintain high contact angles (>100°) during evaporation. We found that the contact line was pinned, and an increase (10 %) in the weight fraction of nanoparticles led to a remarkable 40 % decrease in the total drying time. The nanofluid droplets left donut-shaped drying patterns. In these final drying structures, a shrinkage of the droplet height and base diameter was observed for nanofluids with lower concentrations. The results show that droplet evaporation rate and deposit pattern depend on the concentration of nanoparticles, implying the crucial influences of water evaporation and particle migration dynamics and time-scales.

  6. High-speed Particle Image Velocimetry Near Surfaces

    PubMed Central

    Lu, Louise; Sick, Volker

    2013-01-01

    Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (> 1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included. PMID:23851899

  7. Leonid's Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces

    NASA Technical Reports Server (NTRS)

    Noever, David; Phillips, Tony; Horack, John; Porter, Linda; Myszka, Ed

    1999-01-01

    Recovered from a stratospheric balloon above 20 km on 17-18 November 1998, at least eight candidate microparticles were collected and analyzed from low-density silica xerogel collection plates. Capture time at Leonids' storm peak was validated locally along the balloon trajectory by direct video imaging of meteor fluence up to 24/hr above 98% of the Earth's atmosphere. At least one 30 micron particle agrees morphologically to a smooth, unmelted spherule and compares most closely in non-volatile elemental ratios (Mg/Si, Al/Si, and Fe/Si) to compositional data in surface/ocean meteorite collections. A Euclidean tree diagram based on composition makes a most probable identification as a non-porous stratospherically collected particle and a least probable identification as terrestrial matter or an ordinary chondrite. If of extraterrestrial origin, the mineralogical class would be consistent with a stony (S) type of silicate, olivine [(Mg,Fe)2SiO4] and pyroxene [(Mg, Fe)Si!O3)--or oxides, herecynite [(Fe,Mg) Al2O4].

  8. Particle-hole asymmetry in gapped topological insulator surface states

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2015-06-01

    We consider the combined effect of a gap and the Zeeman interaction on the helical Dirac fermions that exist on the surface of a topological insulator. Magneto-optical properties, the magnetization, Hall effect, and the density of states are considered with emphasis on the particle-hole asymmetry, which arises when a subdominant Schrödinger piece is included along with the dominant Dirac part of the Hamiltonian. When appropriate, we compare our results with those of a single-valley gapped graphene system for which Zeeman splitting behaves differently. We provide a derivation of the phase offset in the magnetic oscillations brought about by the combined effect of the gap and Schrödinger term without requiring the semiclassical Onsager quantization condition. Our results agree with previous discussions based on semiclassical arguments.

  9. Evaluation of filter media for particle number, surface area and mass penetrations.

    PubMed

    Li, Lin; Zuo, Zhili; Japuntich, Daniel A; Pui, David Y H

    2012-07-01

    The National Institute for Occupational Safety and Health (NIOSH) developed a standard for respirator certification under 42 CFR Part 84, using a TSI 8130 automated filter tester with photometers. A recent study showed that photometric detection methods may not be sensitive for measuring engineered nanoparticles. Present NIOSH standards for penetration measurement are mass-based; however, the threshold limit value/permissible exposure limit for an engineered nanoparticle worker exposure is not yet clear. There is lack of standardized filter test development for engineered nanoparticles, and development of a simple nanoparticle filter test is indicated. To better understand the filter performance against engineered nanoparticles and correlations among different tests, initial penetration levels of one fiberglass and two electret filter media were measured using a series of polydisperse and monodisperse aerosol test methods at two different laboratories (University of Minnesota Particle Technology Laboratory and 3M Company). Monodisperse aerosol penetrations were measured by a TSI 8160 using NaCl particles from 20 to 300 nm. Particle penetration curves and overall penetrations were measured by scanning mobility particle sizer (SMPS), condensation particle counter (CPC), nanoparticle surface area monitor (NSAM), and TSI 8130 at two face velocities and three layer thicknesses. Results showed that reproducible, comparable filtration data were achieved between two laboratories, with proper control of test conditions and calibration procedures. For particle penetration curves, the experimental results of monodisperse testing agreed well with polydisperse SMPS measurements. The most penetrating particle sizes (MPPSs) of electret and fiberglass filter media were ~50 and 160 nm, respectively. For overall penetrations, the CPC and NSAM results of polydisperse aerosols were close to the penetration at the corresponding median particle sizes. For each filter type, power

  10. Van de Hulst Essay: The DDA, the RTE, and the computation of scattering by plane parallel layers of particles

    NASA Astrophysics Data System (ADS)

    Mackowski, Daniel

    2017-03-01

    A formulation and computational algorithm, based on the discrete dipole approximation (DDA), is presented for directly simulating the electromagnetic wave reflection, transmission, and absorption properties of plane parallel layers of random particulate media. The method is intended for situations in which the characteristic size of the particles is comparable to the radiation wavelength, yet no restriction is made regarding the concentration of the particles. In particular, the application is specifically intended for high particle concentrations characteristic of regolith, pigment layers, functional thin films, and so on. Strategies for reducing the memory and time requirements of the computations are developed. Test calculations show that the method can reproduce direct simulation predictions of hemispherical reflectance from layers of spherical particles as calculated by multiple sphere superposition solution. The method also correctly asymptotes to the radiative transport regime in the limit of small particle volume fraction. The connection of the formulation to those for discrete particle scattering, and the radiative transport equation (RTE), is discussed.

  11. Surface pressure fluctuations in hypersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Raman, K. R.

    1974-01-01

    The surface pressure fluctuations on a flat plate model at hypersonic Mach numbers of 5.2, 7.4 and 10.4 with an attached turbulent boundary layer were measured using flush mounted small piezoelectric sensors. A high frequency resolution of the pressure field was achieved using specially designed small piezoelectric sensors that had a good frequency response well above 300 KHz. The RMS pressures and non-dimensional energy spectra for all above Mach numbers are presented. The convective velocities, obtained from space time correlation considerations are equal to 0.7 U sub infinity. The results indicate the RMS pressures vary from 5 to 25 percent of the mean static pressures. The ratios of RMS pressure to dynamic pressure are less than the universally accepted subsonic value of 6 x 10/3. The ratio decreases in value as the Mach number or the dynamic pressure is increased. The ratio of RMS pressure to wall shear for Mach number 7.4 satisfies one smaller than or equal to p/tau sub w smaller than or equal to three.

  12. Ammonia Surface-Atmosphere Exchange in the Arctic Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Murphy, J. G.; Wentworth, G.; Tremblay, J. E.; Gagnon, J.; Côté, J. S.; Courchesne, I.

    2014-12-01

    The net flux of ammonia between the ocean and the atmosphere is poorly known on global and regional scales. Data from high-latitude research cruises suggest that deposition from the atmosphere to the surface dominates, but the magnitude and drivers of this flux are not well understood. In the polar marine boundary layer, the surface may be composed of not only open ocean, but also first-year or multi-year sea ice which may be covered with meltponds. To characterize the air-sea exchange of ammonia in the polar marine boundary layer, data were collected aboard the Canadian Coast Guard Ship Amundsen between July 10 and Aug 14, 2014 in the Eastern Canadian Arctic. The Ambient Ion Monitor Ion Chromatograph was used to make hourly measurements of the mixing ratio of gas phase ammonia, and the water-soluble constituents of fine particle matter (PM2.5). Fluorometry was used to measure dissolved ammonium concentrations in the ocean between 0 and 20 m, and in low-salinity melt ponds encountered in regions of extensive sea ice. Observations indicate that the atmosphere contains higher levels of ammonia than are calculated to be in equilibrium with surface reservoirs, implying net deposition of ammonia from the atmosphere. While ammonium levels tended to be higher in melt ponds, the lower water temperatures still mean that these are unlikely to be sources of NH3 to the atmosphere. The disequilibrium between atmospheric and surface reservoirs of ammonia imply relatively large sources to the atmosphere (possibly nearby bird colonies) or high consumption rates in surface waters.

  13. When do pyroclastic particles move? Wind tunnel experiments on saltation threshold and surface roughness.

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Rasmussen, K. R.; Kueppers, U.; Merrison, J.; Dingwell, D. B.

    2012-04-01

    Our understanding of the dynamics of pyroclastic density currents (PDCs) is largely based on the study of their deposits. Pyroclasts have strongly deviating properties in density and angularity compared to the wind blown and fluvial sand usually studied in clastic sedimentology. In order to test whether these specificities have an impact on the sedimentation processes and dynamic behavior of dilute PDCs, wind tunnel experiments were carried out in order to characterize the onset of saltation and surface roughness induced by pyroclastic material. Saltation is the major transport process occurring at the boundary between a flow and the sediment, and corresponds to alternate, sub-planar jumps and landing of particles on the ground. The surface roughness is a measure of how rough a bed is seen by a wind, and is a property of the bed depending on grains' size and shape. The static saltation threshold corresponds to the minimum shearing necessary for particles to be lifted off the ground and begin to bounce. The dynamic saltation threshold corresponds to the minimum shearing necessary to maintain an already saltating bed in that state. Experiments were done in a 6 m long, inclinable, wind tunnel in Aarhus (Denmark). Two sample types (pumices and scoriaceous particles) were investigated individually at 1 Phi grain-size intervals between 0.125 and 16 mm. The surface roughness was measured over a quiescent bed of particles. The static saltation threshold was derived from wind profiles reaching the onset of particle transport and was measured for bed slopes between -20° and 25° (every 5°). The surface roughness measured are of the order expected for rounded particles of similar grain sizes (c.a. 1/30th of the grain diameter). However, a slight deviation to smaller surface roughness is observed for particles < 1 mm, possibly due to the occurrence of a laminar sub-layer near the bed, and a deviation to higher surface roughness values for particles > 1 mm, possibly showing

  14. Effect of suspended particles upon drying process of volatile droplet sitting on solid surface

    NASA Astrophysics Data System (ADS)

    Ueno, I.; Kochiya, K.

    Particle motion in volatile droplet on the solid surface especially the behavior of particles depositing in the vicinity of solid-liquid-gas boundary line contact line is focused This phenomenon is called as coffee stain problem Particle motion in the droplet is analyzed by reconstruction of spatio-temporal particle motion by applying three-dimensional particle tracking velocimetry 3-D PTV We discuss the effect of the suspended particles upon the drying process of the droplet Morphological discussion on the particles stuck on the solid surface after the dryout the droplet is also conducted

  15. On a relation between particle size distribution and mixing layer height

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Emeis, Stefan; Höß, Markus; Cyrys, Josef; Pitz, Mike; Münkel, Christoph; Suppan, Peter

    2011-11-01

    Ceilometers are applied to detect layering of the lower atmosphere continuously. This is necessary because not only wind speeds and directions but also atmospheric layering and especially the mixing layer height (MLH) influence exchange processes of ground level emissions. It will be discussed how the ceilometer monitoring information can be used to determine the MLH influence upon the particle size distribution (PSD) which is detected near the ground. The information about atmospheric layering is continuously monitored by uninterrupted remote sensing measurements with the Vaisala ceilometers LD40 and CL31 which are eye-safe commercial lidar systems. Special software for these ceilometers provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. The meteorological data are collected by the air pollution monitoring station of the Bavarian State Agency of Environment (LfU) at the southern edge of Augsburg and at the airport at the northern edge of Augsburg by the German National Meteorological Service (DWD). PSD are measured at the aerosol measurement station in the centre of Augsburg by the Cooperative Health Research in the Region of Augsburg (KORA). The two intensive measurement periods during the winter 2006/2007 and 2007/2008 are studied. The weather situations are characterized, the meteorological influences upon air pollutant concentrations like wind speed and wind direction are studied and the correlations of ceilometer backscatter densities and MLH with PSD are determined.

  16. TASTRAK spectroscopy of polonium-210 alpha-particle activity at bone surfaces: Evidence for a concentrated surface deposit less than 3 {mu}m deep

    SciTech Connect

    Salmon, P.L.; Henshaw, D.L.; Keitch, P.A.; Allen, J.E.; Fews, A.P.

    1994-10-01

    The technique of {alpha}-particle spectroscopy by CR-39 type TASTRAK plastic has been used to study the depth distribution of natural {alpha}-particle emitters at the surface of human bone. The predominant component of this {alpha}-particle activity was {sup 210}Po supported by {sup 210}Pb, although a smaller activity of {sup 226}Ra was also detected. Autopsy samples of human femur and cranium were obtained from subjects age 63 to 86. Both cortical and trabecular surfaces were analyzed. The results indicate that {sup 210}Pb-supported {sup 210}Po is concentrated at the surfaces of human bone from elderly subjects, in a narrow band 3 {mu}m deep or less, by a factor of about four. As a result, the {alpha}-particle dose to the nuclei of cells lining bone surfaces is around 1.8 times greater than that calculated for a uniform volume distribution. Polonium-210 activity indicates the distribution of {sup 210}Pb, and of stable lead, received by continuous intake throughout life at a very low level. A persistent bone surface concentration of lead and other osteotropic metals may be associated with the hypermineralized layer about 1 {mu}m thick which occurs at the surface of resting bone mineral. 31 refs., 9 figs., 3 tabs.

  17. Adsorption of cellulose derivatives on flat gold surfaces and on spherical gold particles.

    PubMed

    Amirkhani, Masoud; Volden, Sondre; Zhu, Kaizheng; Glomm, Wilhelm R; Nyström, Bo

    2008-12-01

    The adsorption of hydroxyethylcellulose (HEC), ethyl(hydroxyethyl)cellulose (EHEC), and their hydrophobically modified counterparts HM-HEC and HM-EHEC has been studied on planar gold and citrate-covered gold surfaces by means of quartz crystal microbalance with dissipation monitoring (QCM-D), and on citrate-covered gold particles with the aid of dynamic light scattering (DLS). The QCM-D results indicate that larger amounts of polymer are adsorbed from aqueous solutions of HM-HEC and HM-EHEC on both substrates than from solutions of their unmodified analogues. The adsorption affinity for all the polymers, except EHEC, is higher on the citrate-covered surfaces than on the bare gold substrate. This indicates that more adsorption sites are activated in the presence of the citrate layer. The experimental adsorption data for all the polymers can be described fairly well by the Langmuir adsorption isotherm. However, at very low polymer concentrations significant deviations from the model are observed. The value of the hydrodynamic thickness of the adsorbed polymer layer (delta h), determined from DLS, rises with increasing polymer concentration for all the cellulose derivatives; a Langmuir type of isotherm can be used to roughly describe the adsorption behavior. Because of good solvent conditions for HEC the chains extend far out in the bulk at higher concentrations and the value of delta h is much higher than that of HM-HEC. The adsorption of EHEC and HM-EHEC onto gold particles discloses that the values of delta h are considerably higher for the hydrophobically modified cellulose derivative, and this finding is compatible with the trend in layer thickness estimated from the QCM-D measurements.

  18. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    SciTech Connect

    Zakharov, A. M. Dvoichenkova, O. A.; Evsin, A. E.

    2015-12-15

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  19. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    NASA Astrophysics Data System (ADS)

    Zakharov, A. M.; Dvoichenkova, O. A.; Evsin, A. E.

    2015-12-01

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  20. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  1. Influence of land-surface and turbulent parameterization schemes on regional-scale boundary layer characteristics over northern India

    NASA Astrophysics Data System (ADS)

    Panda, Jagabandhu; Sharan, Maithili

    2012-08-01

    The influence of turbulent and land-surface parameterizations on regional scale boundary layer features over north India is analyzed using the Weather Research and Forecasting (WRF) modeling system during two contrasting cases of summer and winter. The model predicted surface temperatures, wind speeds, potential temperature profiles and wind speed profiles are compared with the observations from India Meteorological Department and Wyoming Weather Web data archive. The qualitative and quantitative analyses indicate that the model predictions are relatively better over three north Indian cities namely Delhi, Ahmedabad and Jodhpur when the Mellor-Yamada-Janjic boundary layer scheme along with Noah land-surface model is used. The near surface flow features during both summer and winter cases indicate the major role of land surface models (LSMs) as compared to the boundary layer parameterizations in governing the regional scale flow fields. The role of the LSMs and boundary layer parameterizations in the regional scale transport of dust particles from Thar region toward Delhi and its neighborhood depends upon their point of origin during summer. However, the flow trajectories travel in the opposite direction during the winter case because of the contrasting nature of the flow patterns and consequently, the formation of haze-like conditions over Delhi due to Thar dusts is not expected.

  2. Uptake of gas phase nitrous acid onto boundary layer soil surfaces.

    PubMed

    Donaldson, Melissa A; Berke, Andrew E; Raff, Jonathan D

    2014-01-01

    Nitrous acid (HONO) is an important OH radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Large uncertainties remain in quantifying HONO sinks and determining the mechanism of HONO uptake onto surfaces. We report here the first laboratory determination of HONO uptake coefficients onto actual soil under atmospheric conditions using a coated-wall flow tube coupled to a highly sensitive chemical ionization mass spectrometer (CIMS). Uptake coefficients for HONO decrease with increasing RH from (2.5 ± 0.4) × 10(-4) at 0% RH to (1.1 ± 0.4) × 10(-5) at 80% RH. A kinetics model of competitive adsorption of HONO and water onto the particle surfaces fits the dependence of the HONO uptake coefficients on the initial HONO concentration and relative humidity. However, a multiphase resistor model based on the physical and chemical processes affecting HONO uptake is more flexible as it accounts for the pH dependence of HONO uptake and bulk diffusion in the soil matrix. Fourier transform infrared (FTIR) spectrometry and cavity-enhanced absorption spectroscopy (CEAS) studies indicate that NO and N2O (16% and 13% yield, respectively) rather than NO2 are the predominant gas phase products, while NO2(-) and NO3(-) were detected on the surface post-exposure. Results are compared to uptake coefficients inferred from models and field measurements, and the atmospheric implications are discussed.

  3. One-dimensional particle simulations of Knudsen-layer effects on D-T fusion

    SciTech Connect

    Cohen, Bruce I.; Dimits, Andris M.; Zimmerman, George B.; Wilks, Scott C.

    2014-12-15

    Particle simulations are used to solve the fully nonlinear, collisional kinetic equation describing the interaction of a high-temperature, high-density, deuterium-tritium plasma with absorbing boundaries, a plasma source, and the influence of kinetic effects on fusion reaction rates. Both hydrodynamic and kinetic effects influence the end losses, and the simulations show departures of the ion velocity distributions from Maxwellian due to the reduction of the population of the highest energy ions (Knudsen-layer effects). The particle simulations show that the interplay between sources, plasma dynamics, and end losses results in temperature anisotropy, plasma cooling, and concomitant reductions in the fusion reaction rates. However, for the model problems and parameters considered, particle simulations show that Knudsen-layer modifications do not significantly affect the velocity distribution function for velocities most important in determining the fusion reaction rates, i.e., the thermal fusion reaction rates using the local densities and bulk temperatures give good estimates of the kinetic fusion reaction rates.

  4. Low loss Sendust powder cores comprised of particles coated by sodium salt insulating layer

    NASA Astrophysics Data System (ADS)

    Wei, Ding; Wang, Xian; Nie, Yan; Feng, Zekun; Gong, Rongzhou; Chen, Yajie; Harris, V. G.

    2015-05-01

    Toroid-shaped Sendust powder cores were prepared from cold pressing mechanically pulverized Fe-Si-Al powder that had been coated using an inorganic insulating layer. The present work focuses on the effect of the sodium salt-coated Sendust particles upon the high frequency magnetic properties. Sendust powders, having a particle size range of ˜125 μm, exhibit a high saturation magnetization of 118.9 A.m2/kg and a low coercivity of 56 A/m. The experiments indicate that the sodium-based glass insulating layer synthesized from sodium metaphosphate and sodium metaborate can effectively reduce the change in permeability with frequency or DC bias field, yielding high effective permeability (μe) of ˜113 over a wide frequency range from 10 kHz-1 MHz. Furthermore, the effective permeability is measured at ˜27 at H = 7854 A/m, indicating stable and high effective permeability under a DC bias field. The measurements of permeability under DC bias field indicate a peak in the quality factor (Q) values corresponding to a DC-bias field of 1.5-6 (kA/m) at frequencies from 50 to 200 kHz: The effective permeability remains at ˜74. The sodium salt-coated granular cores demonstrate a core loss of 68 mW/cm3 at Bm = 50 mT and f = 50 kHz: These values compare favorably to those of silicone coated Sendust particles.

  5. Influence of emulsification process on the properties of Pickering emulsions stabilized by layered double hydroxide particles.

    PubMed

    Zhang, Nana; Zhang, Li; Sun, Dejun

    2015-04-28

    This paper reports the influence of emulsification process on the packing of layered double hydroxide (LDH) particles at the aqueous/oil phase interface and the properties of the resulting Pickering emulsions. Emulsions prepared by ultrasonication display superior long-term stability and gel-like characteristics at the dispersed phase volume fraction well below the random close packing limit, whereas emulsions with same compositions prepared by vortex mixing show some extent of sedimentation and liquid-like behaviors. Rheological measurements demonstrate that the zero-shear elastic modulus and yield stress of gel-like emulsions exhibit power-law dependences on particle concentration and independence on aqueous/oil phase ratio. The microstructural origin of this behavior is investigated by optical microscopy, revealing the droplets become strongly adhesive and a heterogeneous percolating network is formed among neighboring droplets. Fluorescent confocal microscopy measurements further confirm that the droplet adhesion is due to particle layers bridging opposite interfaces. In contrast, homogeneous, isolated, and densely packed droplets are present in emulsions prepared by vortex mixing, which results in these systems being dominantly viscous like the suspending fluid. This study shows that the emulsification process can be used as a trigger to modify long-term stability and rheology of solid-stabilized multiphase mixtures, which greatly expands their potential technological applications.

  6. Relationship between lead levels on painted surfaces and percent lead in the particles aerosolized during lead abatement.

    PubMed

    Choe, Kyoo T; Trunov, Mikhaylo; Menrath, William; Succop, Paul; Grinshpun, Sergey A

    2002-08-01

    Quantifying airborne lead on lead abatement work sites is critical in assessing worker lead exposures. Airborne lead levels depend on both the concentration of aerosolized particles and the percent lead in those particles. The lead level on the painted surface being abated may affect the percent lead in aerosolized particles. Experiments were performed in the University of Cincinnati Environmental Test Chamber (volume approximately 24.3 m3) using wood doors painted with lead-based paint. Three methods were used for paint removal: dry scraping, wet scraping, and dry machine sanding. Particles aerosolized during lead abatement activities were collected on filters using the Button Personal Inhalable Aerosol Samplers (SKC Inc., Eighty Four, PA) mounted in the workers' breathing zone. The filters were subsequently analyzed for percent lead in the particles. A portable X-ray fluorescence (XRF) instrument (NITON-700, NITON Inc., Bedford, MA) was used to measure surface lead levels of the doors. The accuracy of the XRF instrument was verified by testing standard reference materials prepared by the National Institute of Standards and Technology (NIST) and by Princeton Gamma Tech Inc. It was also verified by relating XRF results from painted door surfaces to laboratory lead analysis data obtained from paint chip samples taken from the same painted surfaces (r2 = 0.81, p < 0.001). A highly significant relationship (r2 = 0.83, p < 0.001) was found between the XRF readings and the percent lead in the particles aerosolized during dry scraping. No significant relationship was found for wet scraping (r2 = 0.09, p = 0.56) or dry machine sanding (r2 = 0.002, p = 0.92). The relationship between surface lead levels and percent lead in particles was found to be dependent on the paint removal method. This variation was attributed to the difference in water absorption property of the paint layers and the different particle aerosolization mechanisms inherent in each paint removal method.

  7. Measurements of turbulent boundary layer flow and surface fluxes over roughness and temperature transitions

    NASA Astrophysics Data System (ADS)

    Markfort, Corey; Zhang, Wei; Porte-Agel, Fernando

    2016-11-01

    Often natural and engineered surfaces have spatially heterogeneous properties at a variety of scales that affect the structure of the turbulent boundary layer, which is no longer in equilibrium with the local surface. Predicting the spatial distributions of surface momentum and scalar fluxes over heterogeneous surfaces remains a challenge. We present measurements made in a thermally stratified boundary layer wind tunnel to characterize the turbulent flow and surface fluxes for abrupt transitions in surface temperature and roughness. We compare the development of internal boundary layers for momentum and heat, and associated mean surface flux for two cases. The first is a smooth boundary layer with an abrupt change in surface temperature and the second also involves a change from a fully rough to a smooth wall. The effects of roughness change on surface heat flux and implications for prediction are examined. The data will be compared to typical models that utilize Monin-Obukhov similarity theory.

  8. The mechanics of active matter: Broken-symmetry hydrodynamics of motile particles and granular layers

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram; Simha, R. Aditi

    2006-09-01

    This articles reviews briefly our recent theoretical results on order, fluctuations and flow in collections of self-driven particles, in suspension or on a solid surface. The theoretical approach we have developed applies not only to collections of organisms such as schools of fish or collectively swimming bacteria, but also to motor-microtubule extracts with ATP and, most surprisingly, to agitated monolayers of orientable granular particles. We contrast the behaviour of these active systems with that of thermal equilibrium systems with the same symmetry. As an illustration of the role of activity we show that active smectics in three dimensions show true long-range order, unlike their thermal equilibrium counterparts.

  9. Modeling hydrodynamic flows in plasma fluxes when depositing metal layer on the surface of catalyst converters

    NASA Astrophysics Data System (ADS)

    Chinakhov, D. A.; Sarychev, V. D.; Granovsky, A. Yu; Solodsky, S. A.; Nevsky, S. A.; Konovalov, S. V.

    2017-01-01

    Air pollution with harmful substances resulting from combustion of liquid hydrocarbons and emitted into atmosphere became one of the global environmental problems in the late 20th century. The systems of neutralization capable to reduce toxicity of exhaust gases several times are very important for making environmentally safer combustion products discharged into the atmosphere. As revealed in the literature review, one of the most promising purification procedures is neutralization of burnt gases by catalyst converter systems. The principal working element in the converter is a catalytic layer of metals deposited on ceramics, with thickness 20-60 micron and a well-developed micro-relief. The paper presents a thoroughly substantiated new procedure of deposing a nano-scale surface layer of metal-catalyst particles, furthering the utilization of catalysts on a new level. The paper provides description of mathematical models and computational researches into plasma fluxes under high-frequency impulse input delivered to electrode material, explorations of developing Kelvin-Helmholtz, Marangoni and magnetic hydrodynamic instabilities on the surface of liquid electrode metal droplet in the nano-scale range of wavelengths to obtain a flow of nano-meter particles of cathode material. The authors have outlined a physical and mathematical model of magnetic and hydrodynamic instability for the case of melt flowing on the boundary with the molten metal with the purpose to predict the interphase shape and mutual effect of formed plasma jet and liquid metal droplet on the electrode in the nano-scale range of wavelengths at high-frequency impact on the boundary “electrode-liquid layer”.

  10. Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Birge, Brian

    2013-01-01

    The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.

  11. Layer-by-layer construction of the heparin/fibronectin coatings on titanium surface:stability and functionality

    NASA Astrophysics Data System (ADS)

    Li, Guicai; Yang, Ping; Huang, Nan

    Layer-by-layer assembly as a versatile bottom-up nanofabrication technique has been widely used in the development of biomimetic materials with superior mechanical and biological properties. In this study, layer-by-layer assembled heparin/fibronectin biofunctional films were fabricated on titanium (Ti) surface to enhance the blood anticoagulation and accelerate the endothelialization simultaneously. The wettability and chemical changes of the assembled films were investigated by static water contact angle measurement and fourier transform infrared spectroscopy (FTIR). The morphology of modified Ti surfaces were observed using scanning electron microscopy (SEM). The real time assembly process was in-situ monitored by quartz crystal microbalance with dissipation (QCM-D). The stability of the films was evaluated by measuring the changes in wettability and the quantity of heparin and fibronectin on the surfaces. The anticoagulation properties of the films were quantitatively rated using Activated partial thromboplastin time (APTT) analysis. New peaks of hydroxyl and amino group were observed on the assembled Ti srufaces by FTIR. The contact angles varied among the films with different bilayer numbers, indicating the successful graft of the heparin and fibronectin layer-by-layer. QCM-D results showed that the frequency shift increased with the bilayer numbers, and the heparin and fibronectin could form multilayers. The assembly films were stable after incubation in PBS for 24 h based on the results of the contact angle measurement and the quantity of heparin and fibronectin analysis. APTT results suggested that the assembled films kept excellent antithrombotic properties. All these results revealed that the assembled heparin/fibronectin films with stabiltiy and anticoagulation property could be firmly formed on titanium surfaces. Our study further demonstrates that layer-by-layer assembly of heparin and fibronectin will provide a potential and effective tool for

  12. Heat budget of the surface mixed layer south of Africa

    NASA Astrophysics Data System (ADS)

    Faure, Vincent; Arhan, Michel; Speich, Sabrina; Gladyshev, Sergey

    2011-10-01

    ARGO hydrographic profiles, two hydrographic transects and satellite measurements of air-sea exchange parameters were used to characterize the properties and seasonal heat budget variations of the Surface Mixed Layer (SML) south of Africa. The analysis distinguishes the Subtropical domain (STZ) and the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ) and Antarctic Zone (AZ) of the Antarctic Circumpolar Current. While no Subantarctic Mode Water forms in that region, occurrences of deep SML (up to ˜450 m) are observed in the SAZ in anticyclones detached from the Agulhas Current retroflection or Agulhas Return Current. These are present latitudinally throughout the SAZ, but preferentially at longitudes 10-20° E where, according to previous results, the Subtropical Front is interrupted. Likely owing to this exchange window and to transfers at the Subantarctic Front also enhanced by the anticyclones, the SAZ shows a wide range of properties largely encroaching upon those of the neighbouring domains. Heat budget computations in each zone reveal significant meridional changes of regime. While air-sea heat fluxes dictate the heat budget seasonal variability everywhere, heat is mostly brought through lateral geostrophic advection by the Agulhas Current in the STZ, through lateral diffusion in the SAZ and through air-sea fluxes in the PFZ and AZ. The cooling contributions are by Ekman advection everywhere, lateral diffusion in the STZ (also favoured by the ˜10° breach in the Subtropical Front) and geostrophic advection in the SAZ. The latter likely reflects an eastward draining of water warmed through mixing of the subtropical eddies.

  13. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  14. Monte Carlo simulations of light scattering by composite particles in a planetary surface

    NASA Technical Reports Server (NTRS)

    Hillier, J.; Buratti, B.

    2001-01-01

    Composite particles containing internal scatterers have been proposed as an explanation for the fact that most photometric studies of planetary surfaces based on Hapke's bidirectional reflectance model have found the planetary particles to exhibit moderately backscattering phase functions.

  15. In situ mass analysis of particles by surface ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Lassiter, W. S.; Moen, A. L.

    1974-01-01

    A qualitative study of the application of surface ionization and mass spectrometry to the in situ detection and constituent analysis of atmospheric particles was conducted. The technique consists of mass analysis of ions formed as a result of impingement of a stream of particles on a hot filament where, it is presumed, surface ionization takes place. Laboratory air particles containing K, Ca, and possibly hydrocarbons were detected. Other known particles such as Al2O3, Pb(NO3)2, and Cr2O3 were analyzed by detecting the respective metal atoms making up the particles. In some cases, mass numbers indicative of compounds making up the particles were detected showing surface ionization of particles sometimes leads to chemical analysis as well as to elemental analysis. Individual particles were detected, and it was shown that the technique is sensitive to Al2O3 particles with a mass of a few nanograms.

  16. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil.

    PubMed

    Xu, Lirong; Zhou, Xin; Tian, Wei Quan; Gao, Teng; Zhang, Yan Feng; Lei, Shengbin; Liu, Zhong Fan

    2014-09-01

    The integration of 2D covalent organic frameworks (COFs) with atomic thickness with graphene will lead to intriguing two-dimensional materials. A surface-confined covalently bonded Schiff base network was prepared on single-layer graphene grown on copper foil and the dynamic reaction process was investigated with scanning tunneling microscopy. DFT simulations provide an understanding of the electronic structures and the interactions between the surface COF and graphene. Strong coupling between the surface COF and graphene was confirmed by the dispersive bands of the surface COF after interaction with graphene, and also by the experimental observation of tunneling condition dependent contrast of the surface COF.

  17. Effect of particle structure and surface chemistry on PMMA adsorption to silica nanoparticles.

    PubMed

    Madathingal, Rajesh Raman; Wunder, Stephanie L

    2010-04-06

    The interphase layer of polymers adsorbed to silica surfaces can be affected by the surface silanol density as well as the relative size of the polymer compared with the size of the adsorbing substrate. Here, the nonequilibrium adsorption of PMMA onto individual colloidal Stober silica (SiO(2)) particles, where R(particle) (100 nm) > R(PMMA) (approximately 6.5 nm) was compared with the adsorption onto fumed silica, where R(particle) (7 nm) approximately R(PMMA) (6.5 nm) < R(aggregate) (approximately 1000 nm), as a function of both silanol density [SiOH] and hydrophobility. In the former case, TEM images showed that the PMMA adsorbed onto individual nanoparticles, so that the number of PMMA chains/bead could be calculated, whereas in the latter case bridging of PMMA between aggregates occurred. The anchoring point densities were comparable to the silanol densities, suggesting that PMMA adsorbed as trains rather than loops. For hydrophilic SiO(2), T(g) increased with [SiOH], as more carbonyl groups hydrogen bonded to the silanols, and was independent of particle morphology. For methylated silica, (CH(3))(3)SiO(2), the adsorption isotherms were identical for colloidal and fumed silica, but T(g) was depressed for the former, and comparable to the bulk value for the latter. The increased T(g) of PMMA adsorbed onto fumed (CH(3))(3)SiO(2) was attributed to the larger loops formed by the bridging PMMA chains between the silica aggregates.

  18. Experimental investigation of the interaction between turbulent boundary layers and near-surface wave-induced forcing

    NASA Astrophysics Data System (ADS)

    Williams, Owen

    2016-11-01

    Free-surface waves can have a significant impact on sub-surface turbulent boundary layers that are present on undersea vehicles or on the bottom of flowing bodies of water such as estuaries. This problem has a wide parameter space and resultant changes to boundary layer structure due to wave forcing still require investigation. Here, preliminary experimental measurements within the newly commissioned wave channel at the University of Washington are detailed. Particle image velocimetry (PIV) is used to examine velocity statistics across the water column. In an effort to more readily identify changes in underlying boundary layer structure, a range of flow decompositions, such as snapshot partial orthogonal decomposition (POD) are evaluated in an effort to separate turbulent motions from the forcing, which to first order is a traveling wave. The effect of the relative difference between water depth and boundary layer thickness will be examined, as well as the Froude number of the surface waves. Ongoing efforts to examine the full parameter space will be discussed, as dimensional analysis and linear wave theory suggest there are up to seven parameters relevant to either inner or outer layers.

  19. Computed and experimental interactions between eddy structure and dispersed particles in developing free shear layers

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.; Keller, J.O.; Ellzey, J.; Hubbard, G.; Daily, J.W.

    1982-05-20

    We are investigating the interactive process between turbulent flow and dispersed phase particles. We are focusing on the mechanisms that appear to result in a reduction of local turbulent intensity and a corresponding reduction in wall heat transfer and subsequent wall erosion in turbulent solid propellant combustion flow. We apply computational simulations and physical experiments specialized to a developing free shear layer over a rearward facing step and over a parallel splitter plate. The flow configuration evolves in a two-dimensional, steady, combustion and non-combustion turbulent free shear mixing region, with and without particle additives. The computational simulations combine three basic components: gas phase Navier-Stokes solutions, Lagrange particle field solutions and a Monte Carlo technique for the random encounters, forces and accelerations between the two fields. We concentrate here on relatively large sized additive particles (of the order of tens of microns to 100 microns mean diameter). We examine their apparent influence in breaking up the larger, energy bearing eddy structures into smaller structures which are more readily dissipated.

  20. Large-eddy simulation of zero-pressure-gradient turbulent boundary layer with solid particle suspension

    NASA Astrophysics Data System (ADS)

    Rahman, Mustafa; Samtaney, Ravi

    2015-11-01

    We present results of solid particles suspension and transport in a fully-developed turbulent boundary layer flow using large-eddy simulation of the incompressible Navier-Stokes equations. We adopt the Eulerian-Eulerian approach to simulating particle laden flow with a large number of particles, in which the particles are characterized by statistical descriptors. For the particulate phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The underlying approach in modeling the turbulence of fluid phase utilizes the stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work proposed by Inoue & Pullin (J. Fluid Mech. 2011). The solver is verified against simple analytical solutions and the computational results are found to be in a good agreement with these. The capability of the new numerical solver will be exercised to investigate turbulent transport of sand in sandstorms. Finally, the adequacy and limitations of the solver will be discussed. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1704-01.

  1. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm.

    PubMed

    Wang, Yanchao; Miao, Maosheng; Lv, Jian; Zhu, Li; Yin, Ketao; Liu, Hanyu; Ma, Yanming

    2012-12-14

    A structure prediction method for layered materials based on two-dimensional (2D) particle swarm optimization algorithm is developed. The relaxation of atoms in the perpendicular direction within a given range is allowed. Additional techniques including structural similarity determination, symmetry constraint enforcement, and discretization of structure constructions based on space gridding are implemented and demonstrated to significantly improve the global structural search efficiency. Our method is successful in predicting the structures of known 2D materials, including single layer and multi-layer graphene, 2D boron nitride (BN) compounds, and some quasi-2D group 6 metals(VIB) chalcogenides. Furthermore, by use of this method, we predict a new family of mono-layered boron nitride structures with different chemical compositions. The first-principles electronic structure calculations reveal that the band gap of these N-rich BN systems can be tuned from 5.40 eV to 2.20 eV by adjusting the composition.

  2. Trace Detection of Metalloporphyrin-Based Coordination Polymer Particles via Modified Surface-Enhanced Raman Scattering Assisted by Surface Metallization

    PubMed Central

    Caravella, Alessio

    2016-01-01

    This study proposed a facile method to detect metalloporphyrin-based coordination polymer particles (Z-CPPs) in aqueous solution by modified surface-enhanced Raman scattering (SERS). The SERS-active particles are photodeposited on the surface of Z-CPPs, offering an enhanced Raman signal for the trace detection of Z-CPPs. PMID:28115934

  3. Surface electrical properties of coal particles on interaction with polyelectrolytes

    SciTech Connect

    Evmenova, G.L.

    2006-07-15

    The paper presents experimental data obtained in determining an electrokinetic potential of coal particles during their interaction with coagulation and flocculation agents. It is established that flocculation agents allow decreasing electrokinetic potential of mineral particles up to the values that promote aggregation of the particles thereby enabling the control over the stability of coal dispersions.

  4. Shock Surface Undulation and Particle Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Krauss-Varban, D.; Li, Y.; Luhmann, J. G.

    2006-12-01

    Considering the average Parker spiral magnetic field configuration, CME-driven interplanetary (IP) shocks within 1 AU should have oblique portions over much of their domain. Indeed, CME-driven shocks observed close to Earth are often oblique. However, it is well known that the standard diffusive shock acceleration mechanism, which relies on self-consistent wave generation via upstream propagating ions and their scattering, becomes increasingly inefficient with greater shock normal angle. Not only is a higher threshold energy required for the ions to leave the shock upstream, but also, approximately-parallel propagating waves are more quickly convected back into the shock, and the growth rate for waves propagating normal to the shock (the ones with the largest convective growth) decreases. As a result, typical, small-scale hybrid simulations of oblique shocks only show a dilute upstream beam, similar to what is often observed at the oblique Earth's bow shock - and no scattered, highly-energized ions. On the other hand, there are many "energetic storm particle" (ESP) events associated with oblique shocks that have significant fluxes of energetic ions. Recently, we have found that when run for a long time, our hybrid simulations (kinetic ions, electron fluid) show that the initial, weak beam is sufficient to generate compressive, steepening upstream waves. These waves are capable of disturbing the shock surface, resulting in an undulation that is propagating along the surface and growing in amplitude over time. The process is akin to that of the well-known reformation occurring at sufficiently strong quasi-parallel shocks. However, here the perturbations require at least two dimensions, show a strong spatial correlation, and travel along the shock surface. This process not only leads to enhanced ion acceleration, but also means that the shock characteristics are difficult to pinpoint, observationally: both the local jumps and the shock normal angle are highly variable

  5. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates.

    PubMed

    Li, Hui; Peng, Lincai

    2015-06-25

    To confer cellulose fibers antimicrobial and antioxidant activities, chitosan (CS)/lignosulfonates (LS) multilayers were constructed on fibers surfaces through layer-by-layer deposition technique. The formation of CS/LS multilayers on cellulose fibers surfaces was verified by X-ray photoelectron spectroscopy (XPS) and zeta potential measurement. The surface morphologies of CS/LS multilayers on fibers surfaces were observed by atomic force microscopy (AFM). The results showed that characteristic element (i.e. N and S element) content increased with increasing bilayers number, the surface LS content increased linearly as a function of bilayers. Zeta potential of modified fibers was inversed after deposition of each layer. AFM phase images indicated that the cellulose microfibrils on fibers surfaces were gradually covered by granular LS aggregate. The antimicrobial testing results demonstrated that CS/LS multilayers modified fibers with CS in the outermost layer exhibited higher antimicrobial activity against Escherichia coli. The antioxidant testing results showed that antioxidant activity of CS/LS multilayers modified fibers was better than that of original fibers under the same oxidation conditions.

  6. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Wang, Chuji; Muñoz, Olga; Videen, Gorden; Santarpia, Joshua L.; Pan, Yong-Le

    2017-01-01

    We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of θ=167.7-180° (including at 180° exactly) and ϕ=0-360° in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back-scattering intensity at 180° is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications.

  7. Insights Into Sill Formation Processes From Particle Image Velocimetry (PIV) Analysis of Layered Elastic Media Experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. L.; Boutelier, D. A.; Cruden, A. R.

    2012-12-01

    A key issue in magma intrusion mechanics is constraining the conditions required to initiate sill formation from feeder dykes. To investigate these processes, we present a series of layered gelatine analogue experiments monitored with a Particle Image Velocimetry (PIV) system to document the fluid dynamics in the magma and small-scale deformation processes in the host material as a sill is formed along a weak contact beneath a more rigid layer. Gelatine is a good crustal analogue material to study the dynamics of dyke and sill propagation in the crust. Although gelatine is viscoelastic, tests carried out using a rheometer show that at experimental conditions the gelatine behaves as an almost ideal elastic material at 5-10 °C. Forty litres of hot liquid gelatine is poured into a clear-perspex tank and left to solidify in a fridge at ~5 °C. Experiments are prepared comprising multiple layers, with small strength contrasts (comparable to those between crustal strata) created by varying the gelatine concentration and allowing sufficient time for it to reach the plateau Young's modulus. Both strong and weak interface strengths are investigated by varying the extent of welding between the layers. Injection of dyed water (the magma analogue) into the solid gelatine from below causes a penny-shaped experimental dyke to form. With a constant driving pressure, the propagating experimental dyke becomes arrested beneath a more rigid layer if the Young's modulus contrast is greater than 12%. In the case of a weak interface, a sill is formed by intrusion along the contact between the layers; if the interface is strong a blade-like dyke forms. To monitor displacements within the gelatine using the PIV technique, neutrally buoyant polyamide reflective particles are added to the gelatine during experiment preparation. Two high-speed cameras are positioned outside the tank in a plane perpendicular to the strike of the experimental feeder dyke, and parallel to a high-power laser

  8. Effects of SiC Particle Size and Process Parameters on the Microstructure and Hardness of AZ91/SiC Composite Layer Fabricated by FSP

    NASA Astrophysics Data System (ADS)

    Asadi, P.; Givi, M. K. Besharati; Abrinia, K.; Taherishargh, M.; Salekrostam, R.

    2011-12-01

    In this study, friction stir processing (FSP) was employed to develop a composite layer on the surface of as-cast AZ91 magnesium alloy using SiC particles (5 μm and 30 nm). The effects of the rotational and traverse speeds and the FSP pass number on the microstructure and microhardness of the friction stir processed (FSPed) layer with and without SiC particles were investigated. Optical microscopy and scanning electron microscopy (SEM) were employed for microstructural analysis. FSP produces a homogeneous microstructure by eliminating the precipitates near the grain boundaries. The analyses showed that the effects of the rotational and traverse speeds on the microstructure of specimens produced without nano-sized SiC particles are considerable; however, they are negligible in the specimens with particles. While the second FSP pass enhances the microstructure and microhardness of the samples with SiC particles, it has no significant effect on such properties in the samples without SiC particles.

  9. Surface coating for flame retardant behavior of cotton fabric by layer-by-layer processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant behavior has been prepared by the layer-by layer assemblies of branched polyethylenimine (BPEI), kaolin, urea, diammonium phosphate (dibasic) on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared wi...

  10. Synthesis and sonication-induced assembly of Si-DDR particles for close-packed oriented layers.

    PubMed

    Kim, Eunjoo; Cai, Wanxi; Baik, Hionsuck; Nam, Jaewook; Choi, Jungkyu

    2013-08-28

    Here, we report a seeded growth protocol for synthesizing monodisperse Si-DDR particles of ~1.3-10 μm by varying the seed amount. These Si-DDR particles were deposited onto porous α-Al2O3 discs via sonication-induced assembly, constituting close-packed h0h-oriented layers.

  11. Turbulent structure of scalars in the eddy surface layer over land and sea

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2015-04-01

    Turbulent structure of scalars in the 'eddy surface layer' over land and sea. In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer (eddy surface layer), especially the shape of the spectra of the wind components and corresponding fluxes. However, the structure of temperature and humidity fluctuations in the eddy surface layer shows quite different behaviour. In particular the efficiency of turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with standard similarity theory. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the height of the eddy surface layer and not the height above the surface. All these features are found to be similar in measurements at a marine site, a flat land site and during hurricane conditions (hurricane Fabian and Isabel). Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694.. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  12. Particle-Surface Interaction Databases in ALADDIN Format

    DOE Data Explorer

    These databases are listed as recommended resources by CFADC. They represent older data and are not necessarily DOE-originated or funded. However, they are cited in the DOE Data Explorer because of their availability through a DOE Data Center. The citations for these databases are: 1) Energy Dependence of Ion-Induced Sputtering Yields of Monatomic Solids in the Low Energy Region. N. Matsunami, Y. Yamamura, N. Itoh, H. Tawara, T. Kawamura. Report IPPJ-AM-52, Institute of Plasma Physics (National Institute for Fusion Science), Nagoya, Japan (1987); 2) Energy Dependence of the Yields of Ion-Induced Sputtering of Monatomic Solids. N. Maksunami, Y. Yamaura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawer, K. Morita, R. Strimizu, H. Tawara. Report IPPJ-AM-32, Institute of Plasma Physics (National Institute for Fusion Science), Nagoya, Japan (1988); 3) Particle Reflection from Surfaces - A Recommended Data Base. E. W. Thomas, R. K. Janev and J. J. Smith. Report IAEA INDC(NDS)-249, July 1991; 4) Sputtering Data. W. Eckstein, C. Garcia-Rosales, J. Roth and W. Ottenberger. Max-Plank-Institute fur Plasmaphysik Report IPP9/82 (1993); 5) An Evaluated Database for Sputtering. E. W. Thomas, R. K. Janev, J. Botero, J. J. Smith and Y. Qiu. Report IAEA INDC(NDS)-287 (1993).

  13. Metal ceramic alloy structure and surface layer modification during electron-ion-plasma irradiation of its surface

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, Yu. F.; Shilko, E. V.; Mokhovikov, A. A.; Baohai, Yu; Tianyng, Xiong; Hua, Xu Yun; Lisheng, Zhong

    2016-11-01

    The paper presents research findings on the problems of electron-beam irradiation in noble gases plasma with different indexes of ionizing energy and atomic weight, and a surface layer structure modification versus a surface layer microhardness, wear and bending resistances and corrosion stability of 50% TiC/50% (Ni + 20% Cr) metal ceramic alloy samples. Discussions on the issues of the ways impulse electron-beam irradiation in the conditions of various types of noble gas plasma influences the mechanism of a metal ceramic alloy surface layer structure-phase state modification has been also presented.

  14. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  15. Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2006-01-17

    The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.

  16. Orientation of diamagnetic layered transition metal oxide particles in 1-tesla magnetic fields.

    PubMed

    Sklute, Elizabeth C; Eguchi, Miharu; Henderson, Camden N; Angelone, Mark S; Yennawar, Hemant P; Mallouk, Thomas E

    2011-02-16

    The magnetic field-driven orientation of microcrystals of six diamagnetic layered transition metal oxides (HLaNb(2)O(7), HCa(2)Nb(3)O(10)·0.5H(2)O, KNaCa(2)Nb(4)O(13), KTiTaO(5), KTiNbO(5), and H(2.2)K(1.8)Nb(6)O(17)·nH(2)O) suspended in epoxy resins was studied by X-ray diffraction using permanent magnets producing a 0.8 T field. Although the degree of orientation, quantified as the Hermans order parameter, was strongly affected by the particle size distribution, in all cases microcrystals with ∼1-2 μm lateral dimensions were found to orient with the magnetic field vector in the layer plane. Control of the orientation of ionically conducting layered oxides is of interest for practical applications in batteries and fuel cells. The consistent direction of orientation of the lamellar oxides studied can be rationalized in the framework of a quantitative bond anisotropy model developed by Uyeda (Phys. Chem. Miner.1993, 20, 77-80). The asymmetry of metal-oxygen bonding at the faces of the octahedral layers results in long and short M-O bonds perpendicular to the plane of the sheets. This distortion of the M-O octahedra, which is a structural feature of almost all layered materials that contain octahedral bonding frameworks, gives rise to the diamagnetic anisotropy and results in an easy axis or plane of magnetization in the plane of the sheets.

  17. Surface layer clamping as origin for size-dependent downshift of Curie temperature in PbTiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ma, Wenhui

    2013-07-01

    Size dependent Curie temperature in ferroelectric nanoparticles has been shown to originate from mechanical clamping of phase transition in particle core by a cubic surface layer. Based on a phenomenological model, the widely observed empirical relation between downshift of Curie point and particle size has been deduced by introducing an extra term of core-shell boundary energy into the free energy expression. Theoretical calculations of size dependent Curie temperature in PbTiO3 nanoparticles are in well agreement with the literature-reported experimental data. The positive boundary free energy of nano-sized PbTiO3 particles becomes increasingly large with size reduction, leading to a sharp drop of Curie temperature as compared to bulk single crystal.

  18. Solid particles adsorbed on capillary-bridge-shaped fluid polystyrene surfaces.

    PubMed

    McEnnis, Kathleen; Dinsmore, Anthony D; Russell, Thomas P

    2015-05-19

    Particles adsorbed on microscopic polystyrene (PS) capillary bridge surfaces were observed to investigate their motion under capillary forces arising from a nonuniform shape. Capillary bridges were created by placing thin PS films, heated above the glass transition temperature (Tg), between two electrodes with an air gap between the surface of the PS and the upper electrode. Silica particles, 100 nm in diameter, were placed on the surface of the PS capillary bridges, and the sample was heated above the Tg of PS to enable particle motion. Samples were cooled to below Tg, and the locations of the particles were observed using scanning electron microscopy. The particles did not preferentially locate around the center of the capillary bridge, as predicted by others, but instead segregated to the edges. These results indicate that the forces driving particles to the three-phase contact line (air/PS/electrode surface) are greater than those locating particles around the center.

  19. Experimental studies of the streaming flow due to the adsorption of particles at a liquid surface

    NASA Astrophysics Data System (ADS)

    Singh, Pushpendra; Musunuri, Naga; Fischer, Ian

    2016-11-01

    The particle image velocimetry (PIV) technique is used to study the streaming flow that is induced when particles are adsorbed at a liquid surface. The flow develops within a fraction of second after the adsorption of the particle and persists for several seconds. The fluid directly below the particle rises upward, and near the surface, it moves away from the particle. The flow causes powders sprinkled on a liquid surface to disperse on the surface. The flow strength, and the volume over which it extends, decreases with decreasing particle size. The streaming flow induced by the adsorption of two or more particles is a combination of the flows which they induce individually. The work was supported by National Science Foundation.

  20. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Sun, S. L.; Cheng, Y. L.; Chen, G. S.; Chin, T. S.

    2016-02-01

    The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO4. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  1. Turbulent boundary layer over solid and porous surfaces with small roughness

    NASA Technical Reports Server (NTRS)

    Kong, F. Y.; Schetz, J. A.; Collier, F.

    1982-01-01

    Skin friction and profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary layer were measured directly on a large diameter, axisymmetric body with: (1) a smooth, solid surface; (2) a sandpaper-roughened, solid surface; (3) a sintered metal, porous surface; (4) a smooth, perforated titanium surface; (5) a rough solid surface made of fine, diffusion bonded screening, and (6) a rough, porous surface of the same screening. Results obtained for each of these surfaces are discussed. It is shown that a rough, porous wall simply does not influence the boundary layer in the same way as a rough solid wall. Therefore, turbulent transport models for boundary layers over porous surfaces either with or without injection or suction, must include both surface roughness and porosity effects.

  2. Surface chemical-bonds analysis of silicon particles from diamond-wire cutting of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Benayad, Anass; Hajjaji, Hamza; Coustier, Fabrice; Benmansour, Malek; Chabli, Amal

    2016-12-01

    The recycling of the Si powder resulting from the kerf loss during silicon ingot cutting into wafers for photovoltaic application shows both significant and achievable economic and environmental benefits. A combined x-ray photoelectron spectroscopy (XPS), attenuated total reflection (ATR)-Fourier transform infrared (FTIR) and micro-Raman spectral analyses were applied to kerf-loss Si powders reclaimed from the diamond wire cutting using different cutting fluids. These spectroscopies performed in suitable configurations for the analysis of particles, yield detailed insights on the surface chemical properties of the powders demonstrating the key role of the cutting fluid nature. A combined XPS core peak, plasmon loss, and valence band study allow assessing a qualitative and quantitative chemical, structural change of the kerf-loss Si powders. The relative contribution of the LO and TO stretching modes to the Si-O-Si absorption band in the ATR-FTIR spectra provide a consistent estimation of the effective oxidation level of the Si powders. The change in the cutting media from deionized water to city water, induces a different silicon oxide layer thickness at the surface of the final kerf-loss Si, depending on the powder reactivity to the media. The surfactant addition induces an enhanced carbon contamination in the form of grafted carbonated species on the surface of the particles. The thickness of the modified surface, depending on the cutting media, was estimated based on a simple model derived from the combined XPS core level and plasmon peak intensities. The effective nature of these carbonated species, sensitive to the water quality, was evidenced based on coupled XPS core peak and valence band study. The present work paves the way to a controlled process to reclaim the kerf-loss Si powder without heavy chemical etching steps.

  3. Overlap region in turbulent boundary layer over a rough surface

    NASA Astrophysics Data System (ADS)

    Afzal, Noor

    2010-11-01

    The one term non-linear outer layer in George & Castillo (1997, AMR 50, 689), based on their AIP argument, was matched with inner wall layer leading to power law velocity, which denied very existence of traditional log law, while Clauser (1956) patched same outer layer with inner wall log law. Jones, Nickles & Marusic (2008, JFM 616, 195) proposal that free stream velocity (in GC97) and friction velocity (in Coles 1956) are potentially valid scalings according to their theoretical criterion in the outer layer, is misleading, being not correct. Further, in Nishioka (2010, FDR 42, 45502-5) and Prandtl (1935, AT) the additive constant in power law velocity is singular at large Reynolds numbers is also not correct, and this constant is shown to be zero. In the present work, two terms outer layer expansion is considered where leading term scales with free steam velocity and first order with friction velocity. The leading term turns out to be a non-linear wake type equation through application of Izakson-Millikan- Kolmogorov hypothesis. The first order terms lead to alternate functional equations, arising from ratios of two successive derivatives of the functional equations, each of which admits two functional solutions, the power law velocity profile in addition to log law velocity profile. The comparison with extensive data on rough & smooth walls also provide strong support to present work.

  4. Rough SERS substrate based on gold coated porous silicon layer prepared on the silicon backside surface

    NASA Astrophysics Data System (ADS)

    Dridi, H.; Haji, L.; Moadhen, A.

    2017-04-01

    We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.

  5. Effect of Surface Layer on Electromechanical Stability of Tweezers and Cantilevers Fabricated from Conductive Cylindrical Nanowires

    NASA Astrophysics Data System (ADS)

    Keivani, Maryam; Koochi, Ali; Sedighi, Hamid M.; Abadyan, Mohamadreza; Farrokhabadi, Amin; Shahedin, Abed Moheb

    2016-12-01

    Herein, the impact of surface layer on the stability of nanoscale tweezers and cantilevers fabricated from nanowires with cylindrical cross section is studied. A modified continuum based on the Gurtin-Murdoch surface elasticity is applied for incorporating the presence of surface layer. Considering the cylindrical geometry of the nanowire, the presence of the Coulomb attraction and dispersion forces are incorporated in the derived formulations. Three different approaches, i.e. numerical differential quadrature method (DQM), an approximated homotopy perturbation method (HPM) and developing lumped parameter model (LPM) have been employed to solve the governing equations. The impact of surface layer on the instability of the system is demonstrated.

  6. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  7. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-05-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  8. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  9. Surface charge accumulation of particles containing radionuclides in open air

    SciTech Connect

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  10. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  11. Numerical analysis of the influence of surface-active substance in the melt on the distribution of modifying particles and crystallization at the treatment of metal surface by a laser pulse

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Popov, V. N.

    2014-06-01

    A mathematical model is proposed for the process of modifying the metal surface layer by refractory nano-size particles with the aid of the pulse laser radiation, which accounts for the surface tension dependence on the presence of surface-active substance in the melt. Numerical modeling has been carried out, from the results of which the influence of the surface -active admixture on the character of forming flows, distribution of particles of the modifying substance in the metal, and the melt crystallization process have been estimated.

  12. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2015-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.

  13. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-01

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle.

  14. Turbulent boundary layer on perforated surfaces with vector injection

    NASA Astrophysics Data System (ADS)

    Eroshenko, V. M.; Zaichik, L. I.; Klimov, A. A.; Ianovskii, L. S.; Kondratev, V. I.

    1980-10-01

    The paper presents an experimental investigation of a turbulent boundary layer on perforated plates with uniform vector injection at various angles to gas flow. It was shown that with strong injection at angles oriented in the flow direction the intensity of turbulent pulsation is decreased, while injection at angles in the opposite direction increase the intensity. A relationship was established between the critical parameters of the boundary layer injection angles; it was concluded that the asymptotic theory of Kutateladze and Leontiev can be used for determining the coefficient of friction of vector injection.

  15. Expansible apparatus for removing the surface layer from a concrete object

    DOEpatents

    Allen, Charles H.

    1979-01-01

    A method and apparatus for removing the surface layer from a concrete object. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer from an object. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end, the wall of the remainder of the body containing a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section, the outer end of the expandable section having an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated.

  16. Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms

    NASA Astrophysics Data System (ADS)

    Aksamit, Nikolas O.; Pomeroy, John W.

    2016-12-01

    Many blowing snow conceptual and predictive models have been based on simplified two-phase flow dynamics derived from time-averaged observations of bulk flow conditions in blowing snow storms. Measurements from the first outdoor application of particle tracking velocimetry (PTV) of near-surface blowing snow yield new information on mechanisms for blowing snow initiation, entrainment, and rebound, whilst also confirming some findings from wind tunnel observations. Blowing snow particle movement is influenced by complex surface flow dynamics, including saltation development from creep that has not previously been measured for snow. Comparisons with 3-D atmospheric turbulence measurements show that blowing snow particle motion immediately above the snow surface responds strongly to high-frequency turbulent motions. Momentum exchange from wind to the dense near-surface particle-laden flow appears significant and makes an important contribution to blowing snow mass flux and saltation initiation dynamics. The more complete and accurate description of near-surface snow particle motions observable using PTV may prove useful for improving blowing snow model realism and accuracy.

  17. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    NASA Astrophysics Data System (ADS)

    Uğur, Şule S.; Sarıışık, Merih; Aktaş, A. Hakan; Uçar, M. Çiğdem; Erden, Emre

    2010-07-01

    ZnO nanoparticle-based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties.

  18. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    PubMed Central

    2010-01-01

    ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties. PMID:20596450

  19. Surface area and volume measurements of volcanic ash particles by SEM stereoscopic imaging

    NASA Astrophysics Data System (ADS)

    Ersoy, Orkun

    2010-05-01

    Surface area of volcanic ash particles is of great importance to research including plume dynamics, particle chemical and water reactions in the plume, modelling (i.e. plume shape, particle interactions , dispersion etc.), remote sensing of transport and SO2, HCl, H2O, CO2 levels, forecasting plume location, and transportation and deposition of ash particles. The implemented method presented in this study offer new insights for surface characterization of volcanic ash particles on macro-pore regions. Surface area and volumes of volcanic ash particles were measured using digital elevation models (DEM) reconstructed from stereoscopic images acquired from different angles by scanning electron microscope (SEM). The method was tested using glycidyl methacrylate (GMA) micro-spheres which exhibit low spherical imperfections. The differences between measured and geometrically calculated surface areas were introduced for both micro-spheres and volcanic ash particles in order to highlight the probable errors in modelling on volcanic ash behaviour. The specific surface areas of volcanic ash particles using this method are reduced by half (from mean values of 0.045 m2/g to 0.021 m2/g) for the size increment 63 μm to 125 μm. Ash particles mostly have higher specific surface area values than the geometric forms irrespective of particle size. The specific surface area trends of spheres and ash particles resemble for finer particles (63 μm). Approximation to sphere and ellipsoid have similar margin of error for coarser particles (125 μm) but both seem to be inadequate for representation of real ash surfaces.

  20. Surface area and volume measurements of volcanic ash particles by SEM stereoscopic imaging

    NASA Astrophysics Data System (ADS)

    Ersoy, Orkun

    2010-02-01

    Surface area of volcanic ash particles is of great importance to research including plume dynamics, particle chemical and water reactions in the plume, modelling (i.e. plume shape, particle interactions, dispersion etc.), remote sensing of transport and SO 2, HCl, H 2O, CO 2 levels, forecasting plume location, and transportation and deposition of ash particles. The implemented method presented in this study offers new insights for surface characterization of volcanic ash particles on macro-pore regions. Surface area and volumes of volcanic ash particles were measured using digital elevation models (DEM) reconstructed from stereoscopic images acquired from different angles by scanning electron microscope (SEM). The method was tested using glycidyl methacrylate (GMA) micro-spheres which exhibit low spherical imperfections. The differences between measured and geometrically calculated surface areas were introduced for both micro-spheres and volcanic ash particles in order to highlight the probable errors in modelling on volcanic ash behaviour. The specific surface areas of volcanic ash particles using this method are reduced by half (from mean values of 0.045 m 2/g to 0.021 m 2/g) for the size increment 63 µm to 125 µm. Ash particles mostly have higher specific surface area values than the geometric forms irrespective of particle size. The specific surface area trends of spheres and ash particles resemble for finer particles (63 µm). Approximation to sphere and ellipsoid have similar margin of error for coarser particles (125 µm) but both seem to be inadequate for representation of real ash surfaces.

  1. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-01-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the

  2. Ionic Referencing in Surface Plasmon Microscopy: Visualization of the Difference in Surface Properties of Patterned Monomolecular Layers.

    PubMed

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M

    2017-04-04

    An approach for visualization of patterned monomolecular layers in surface plasmon microscopy (SPM) is suggested. The development of hidden image in SPM is achieved by referencing of images obtained in the presence of electrolytes with a high molar refraction of either anions or cations. A formation of diffuse layer near the charged surface areas leads to the redistribution of ions. The ratio of SPM images allows one to visualize this redistribution and to distinguish surface areas with different properties. The approach is unobtrusive and robust; it can be used with most surface plasmon resonance (SPR) imaging instruments.

  3. Dusty Plasma Technology of DCM with Nanostructure Surface Layer Production

    SciTech Connect

    Gavrikov, A. V.; Ivanov, A. S.; Petrov, O. F.; Shulga, Yu. M.; Starostin, A. N.; Fortov, V. E.

    2008-09-07

    The technique of disperse composite material (DCM) production was developed. The technique based on using special dusty plasma trap in RF plasma, in which fine particles levitate and are exposed by the atomic beam. The two types of covering were obtained: ''cauliflower'' or smooth, depending on process condition.

  4. Boundary layer new particle formation over East Antarctic sea ice - possible Hg-driven nucleation?

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Schofield, R.; Keywood, M. D.; Ward, J.; Pierce, J. R.; Gionfriddo, C. M.; Tate, M. T.; Krabbenhoft, D. P.; Galbally, I. E.; Molloy, S. B.; Klekociuk, A. R.; Johnston, P. V.; Kreher, K.; Thomas, A. J.; Robinson, A. D.; Harris, N. R. P.; Johnson, R.; Wilson, S. R.

    2015-12-01

    Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m-2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3) reached almost 7700 cm-3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h-1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2-1.1 ± 0.1 cm-3 s-1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM) were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m-3 and ≥ 600 W m-2, respectively), such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.

  5. Boundary layer new particle formation over East Antarctic sea ice - possible Hg driven nucleation?

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Schofield, R.; Keywood, M.; Ward, J.; Pierce, J. R.; Gionfriddo, C. M.; Tate, M.; Krabbenhoft, D.; Galbally, I. E.; Molloy, S. B.; Klekociuk, A.; Johnston, P. V.; Kreher, K.; Thomas, A. J.; Robinson, A. D.; Harris, N. R. P.; Johnson, R.; Wilson, S. R.

    2015-07-01

    Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on-board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m-2. Within the single air-mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3) reached almost 7700 cm-3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h-1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2-1.1 ± 0.1 cm-3 s-1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with Total Gaseous Mercury (TGM) were found that, together with other data, suggest a mercury driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (~ 1.5 ng m-3 and ≥ 600 W m-2, respectively), such as those observed in the Antarctic sea ice boundary layer in this study or in the global free-troposphere, particularly in the Northern Hemisphere.

  6. Dynamical phases of attractive particles sliding on a structured surface

    NASA Astrophysics Data System (ADS)

    Hasnain, J.; Jungblut, S.; Dellago, C.

    2015-05-01

    Inspired by experiments on quartz crystal microbalance setups, we study the mobility of a monolayer of Lennard-Jones particles driven over a hexagonal external potential. We pay special attention to the changes in the dynamical phases that arise when the lattice constant of the external substrate potential and the Lennard-Jones interaction are mismatched. We find that if the average particle separation is such that the particles repel each other, or interact harmonically, the qualitative behavior of the system is akin to that of a monolayer of purely repulsive Yukawa particles. On the other hand, if the particles typically attract each other, the ensuing dynamical states are determined entirely by the relative strength of the Lennard-Jones interaction with respect to that of the external potential.

  7. Method for removing surface-damaged layers from nickel alloys

    NASA Technical Reports Server (NTRS)

    Fawley, R. W.

    1968-01-01

    Electrical discharge machining /EDM/ damaged layer can be effectively removed from Rene 41, Inconel 625, Inconel 718, and Monel K-500 by abrasive-grit blasting or electropolishing /at room temperature/ at a current density of 5A/inches squared in a water solution of phosphoric and sulfuric acids.

  8. Surface structure of thin pseudomorphous GeSi layers

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. I.; Timofeev, V. F.; Pchelyakov, O. P.

    2015-11-01

    Reflection high-energy electron diffraction (RHEED) was used to study the evolution of thin GexSi1-x film surface superstructures s i