Science.gov

Sample records for particle vortex transport

  1. Vortex Cores of Inertial Particles.

    PubMed

    Günther, Tobias; Theisel, Holger

    2014-12-01

    The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines.

  2. Particle-vortex symmetric liquid

    NASA Astrophysics Data System (ADS)

    Mulligan, Michael

    2017-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.

  3. Validations of Coupled CSD/CFD and Particle Vortex Transport Method for Rotorcraft Applications: Hover, Transition, and High Speed Flights

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.

  4. Validations of Coupled CSD/CFD and Particle Vortex Transport Method for Rotorcraft Applications: Hover, Transition, and High Speed Flights

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.

  5. Particle classification in Taylor vortex flow with an axial flow

    NASA Astrophysics Data System (ADS)

    Ohmura, N.; Suemasu, T.; Asamura, Y.

    2005-01-01

    Particle classification phenomenon in Taylor vortex flow with an axial flow was investigated experimentally and numerically. The flow-visualization experiment by a laser-induced fluorescence method clearly revealed that there existed two distinct mixing regions at low Reynolds numbers. The tracer near the vortex cell boundary was rapidly transported axially owing to the bypass flow effect. On the other hand, the fluid element was confined to the vortex core region without being exchanged with the outer flow region. In order to observe particle classification phenomenon, polymethyl methacrylate (PMMA) particles suspended in the same aqueous solution of glycerol as the working fluid were fed into the top of the apparatus. Particle size was initially ranging from 10 to 80 µm. The ratio of the particle density to the fluid density was 1.04-1.05, which means the density difference between particle and fluid is very small. The suspended solution was withdrawn using a hypodermic needle every a certain time period at 30 mm above the bottom of apparatus. The fluid was sampled both near the outer wall and in vortex core. The particles sampled at 42 min having the size of 20-50 µm were mainly observed in the vortex core region. On the other hand, a large population of particles having the size of about 50-80 µm could be seen in the outer region of vortex. It was found that large particles located near the outer edge of vortices were quickly transported axially owing to the bypass flow effect. Numerical simulation also revealed that the loci of particles depended on the particle size.

  6. What is the vortex ``transport entropy"?

    NASA Astrophysics Data System (ADS)

    Sergeev, Andrei; Reizer, Michael; Mitin, Vladimir

    2008-03-01

    Below the superconducting transition the large thermomagnetic effects in the type II superconductors are determined by magnetic vortices. These topological excitations are completely different from particle-hole exctitations in the Fermi liquid and, therefore, the thermomagnetic effects do not require particle-hole asymmetry. Thermomagnetic effects in the vortex state are widely described in terms of the ``transport entropy.'' Despite of intensive theoretical and experimental investigations, this mysterious quantity is still in conflict with either the Onsager principle or the third law of thermodynamics [1]. We resolve this forty years enigma taking into account the magnetization current in the presence of the temperature gradient. Then contributions of superconducting currents of vortices are canceled in the Nernst effect, and, therefore, in agreement with the Onsager relation, both the Nernst and Ettingshausen phenomena originate solely from vortex cores. Finally, the transport entropy turns out to be by a factor of 4 ln (λ/ ξ) smaller than that used in literature [1] (λ is the magnetic field penetration depth, ξ is the coherence length. For high-temperature cuprates this factor is ˜20. [1] R.P. Huebener, Magnetic flux structures in superconductors, Springer-Verlag, Berlin, (1979).

  7. Mechanisms of sediment transport over vortex ripples

    NASA Astrophysics Data System (ADS)

    Frank, D. P.; Penko, A.; Calantoni, J.

    2016-12-01

    Coastal hydrodynamics are intricately coupled with bedform generation and migration, which are important mechanisms for sediment transport and wave energy dissipation. We investigated the transport of sediment (coarse quartz sand, d50=0.7 mm) as bed and suspended load over vortex ripples in a small-oscillatory flow tunnel forced with both symmetric and asymmetric oscillatory flows. The hydrodynamics and resulting morphological evolution of the bedforms were measured with high spatial and temporal resolution using optical techniques. The high-resolution measurements were made with phase-separated stereoscopic Particle Image Velocimetry. The water was seeded with fluorescent tracer particles in order to observe fluid flow and sediment transport simultaneously using multiple cameras with varying optical filters. Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal (100 Hz) and spatial (0.8 mm) resolution in a 10 cm x 10 cm area. A Bed LAser Surface Tracking (BLAST) system measured the evolving bed elevation. The BLAST system consists of two continuous wave (CW) lasers and two Canon DSLR cameras. One CW laser scanned across the width of the tunnel to give the initial and final bed surface elevation every 0.5 mm. The second CW laser measured the bed elevation profile at the center of the test section at 24 Hz over several wave cycles to estimate bedform migration rates. Coherent structures were identified and determined to play a significant role in the transport of suspended sediment. Bedload transport driving ripple migration was quantified within individual oscillatory flow cycles using the BLAST system and particle tracking routines. During the symmetric flows, the grains were entrained in the water column and transported as suspended load over the ripple crest and deposited on the opposite slope. During the asymmetric flows, bedform migration was observed with a migration rate of 2.7 - 9.4 mm

  8. Particle-Vortex Interaction in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Barenghi, Carlo F.

    2008-11-01

    The application of the classical Particle Image Velocimetry (PIV) technique in liquid helium has opened the way to better visualization of superfluid turbulence. To interpret the data, it is necessary to understand the interaction between micron-size tracer particles and vortex lines. This talk summarizes current understanding of this interaction resulting from theoretical and numerical calculations. In collaboration with Yuri A. Sergeev, Newcastle University.

  9. Simulating marine propellers with vortex particle method

    NASA Astrophysics Data System (ADS)

    Wang, Youjiang; Abdel-Maksoud, Moustafa; Song, Baowei

    2017-01-01

    The vortex particle method is applied to compute the open water characteristics of marine propellers. It is based on the large-eddy simulation technique, and the Smagorinsky-Lilly sub-grid scale model is implemented for the eddy viscosity. The vortex particle method is combined with the boundary element method, in the sense that the body is modelled with boundary elements and the slipstream is modelled with vortex particles. Rotational periodic boundaries are adopted, which leads to a cylindrical sector domain for the slipstream. The particle redistribution scheme and the fast multipole method are modified to consider the rotational periodic boundaries. Open water characteristics of three propellers with different skew angles are calculated with the proposed method. The results are compared with the ones obtained with boundary element method and experiments. It is found that the proposed method predicts the open water characteristics more accurately than the boundary element method, especially for high loading condition and high skew propeller. The influence of the Smagorinsky constant is also studied, which shows the results have a low sensitivity to it.

  10. Inertial Particle Caustics around a vortex

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Ravichandran; Govindarajan, Rama

    2014-11-01

    Caustics are formed when particles with different velocities end up in the same location in space. Inertial particle caustics are thought to be responsible for the rapid onset of rainfall in vigorously convecting clouds. It is generally also believed that caustics are effective only at large Stokes numbers. We study inertial particles caustics in the canonical flow of a single vortex. We also show what kinds of vortices can have caustics around them. For point vortices, we show the existence of critical Stokes numbers below which there can be no caustics. We find that the value of the critical Stokes number depends on the initial conditions chosen for the particles. The existence of a critical Stokes number translates to the existence of definite regions around vortices where particles have to start in order to form caustics. We use this fact to perform simulations with many vortices in a periodic box. We use the lagrangian tracking technique of Osiptsov to track the densities associated with the particles. These simulations show that the effect of caustics on particle clustering is more complicated than is generally believed. While larger particle inertia leads to a larger number of very ``dense'' particles, we find that smaller inertia can lead to higher average densities.

  11. Model for particle balance in pumped divertors (pre-VORTEX)

    SciTech Connect

    Hogan, J.T.

    1990-08-01

    An internally consistent model for particle transport in an open divertor geometry has been developed. Embodied in a new code, pre-VORTEX, the model couples the particle balance in the plasma core, the scrape-off layer, the open divertor channels, and the vacuum'' regions. This mutual coupling is particularly important in determining the conditions required for high recycling in the divertor. The plasma core is considered to have a relatively quiescent core region and a less well confined edge-localized mode''(ELM) region. The scrape-off layer is modeled with one-dimensional parallel and perpendicular transport. A two-point divertor channel model is used; it is similar to previous models, but with the addition of new physical processes: hydrogen charge exchange, impurity thermal charge exchange, and flux-limited parallel transport. Wall recycling data are required to describe the differing recycling properties of the wall regions and the divertor plates. Given local plasma diffusivities and wall recycling properties, the model predicts the volume-averaged density and global particle confinement time. The input data are uncertain, and a major use for the model is to permit comparison with data. The final model, VORTEX, is intended for application to the analysis of divertor confinement experiments; it is coupled to a one-and-one-half--dimensional transport code and uses detailed geometric input from equilibrium fitting codes, experimentally measured core profiles, and such parameters as can be measured in the scrape-off layer. The pre-VORTEX model is compared as a stand-alone code with typical data from the DIII-D experiment and applied to the proposed DIII-D Advanced Divertor Project.

  12. Particle-Vortex Duality from 3D Bosonization

    NASA Astrophysics Data System (ADS)

    Karch, Andreas; Tong, David

    2016-07-01

    We show how particle-vortex duality in d =2 +1 dimensions arises as part of an intricate web of relationships between different field theories. The starting point is "bosonization," a conjectured duality that uses flux attachment to transmute the statistics of relativistic particles. From this seed, we derive many old and new dualities. These include particle-vortex duality for bosons as well as the recently discovered counterpart for fermions.

  13. Particle-vortex duality from 3D bosonization

    DOE PAGES

    Karch, Andreas; Tong, David

    2016-09-19

    We show how particle-vortex duality in d = 2+1 dimensions arises as part of an intricate web of relationships between different field theories. The starting point is “bosonization,” a conjectured duality that uses flux attachment to transmute the statistics of relativistic particles. From this seed, we derive many old and new dualities. Finally, these include particle-vortex duality for bosons as well as the recently discovered counterpart for fermions.

  14. Coupled particle dispersion by three-dimensional vortex structures

    SciTech Connect

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  15. Mass production of shaped particles through vortex ring freezing

    NASA Astrophysics Data System (ADS)

    An, Duo; Warning, Alex; Yancey, Kenneth G.; Chang, Chun-Ti; Kern, Vanessa R.; Datta, Ashim K.; Steen, Paul H.; Luo, Dan; Ma, Minglin

    2016-08-01

    A vortex ring is a torus-shaped fluidic vortex. During its formation, the fluid experiences a rich variety of intriguing geometrical intermediates from spherical to toroidal. Here we show that these constantly changing intermediates can be `frozen' at controlled time points into particles with various unusual and unprecedented shapes. These novel vortex ring-derived particles, are mass-produced by employing a simple and inexpensive electrospraying technique, with their sizes well controlled from hundreds of microns to millimetres. Guided further by theoretical analyses and a laminar multiphase fluid flow simulation, we show that this freezing approach is applicable to a broad range of materials from organic polysaccharides to inorganic nanoparticles. We demonstrate the unique advantages of these vortex ring-derived particles in several applications including cell encapsulation, three-dimensional cell culture, and cell-free protein production. Moreover, compartmentalization and ordered-structures composed of these novel particles are all achieved, creating opportunities to engineer more sophisticated hierarchical materials.

  16. Spin transport in tilted electron vortex beams

    SciTech Connect

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  17. Wake Vortex Transport in Proximity to the Ground

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2000-01-01

    A sensitivity study for aircraft wake vortex transport has been conducted using a validated large eddy simulation (LES) model. The study assumes neutrally stratified and nonturbulent environments and includes the consequences of the ground. The numerical results show that the nondimensional lateral transport is primarily influenced by the magnitude of the ambient crosswind and is insensitive to aircraft type. In most of the simulations, the ground effect extends the lateral position of the downwind vortex about one initial vortex spacing (b(sub o)) in the downstream direction. Further extension by as much as one b(sub o) occurs when the downwind vortex remains 'in ground effect' (IGE) for relatively long periods of time. Results also show that a layer-averaged ambient wind velocity can be used to bound the time for lateral transport of wake vortices to insure safe operations on a parallel runway.

  18. Mass production of shaped particles through vortex ring freezing

    PubMed Central

    An, Duo; Warning, Alex; Yancey, Kenneth G.; Chang, Chun-Ti; Kern, Vanessa R.; Datta, Ashim K.; Steen, Paul H.; Luo, Dan; Ma, Minglin

    2016-01-01

    A vortex ring is a torus-shaped fluidic vortex. During its formation, the fluid experiences a rich variety of intriguing geometrical intermediates from spherical to toroidal. Here we show that these constantly changing intermediates can be ‘frozen' at controlled time points into particles with various unusual and unprecedented shapes. These novel vortex ring-derived particles, are mass-produced by employing a simple and inexpensive electrospraying technique, with their sizes well controlled from hundreds of microns to millimetres. Guided further by theoretical analyses and a laminar multiphase fluid flow simulation, we show that this freezing approach is applicable to a broad range of materials from organic polysaccharides to inorganic nanoparticles. We demonstrate the unique advantages of these vortex ring-derived particles in several applications including cell encapsulation, three-dimensional cell culture, and cell-free protein production. Moreover, compartmentalization and ordered-structures composed of these novel particles are all achieved, creating opportunities to engineer more sophisticated hierarchical materials. PMID:27488831

  19. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    NASA Astrophysics Data System (ADS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles.

  20. Simulation of Marine Hydrokinetic Turbines in Unsteady Flow using Vortex Particle Method

    NASA Astrophysics Data System (ADS)

    Sale, Danny; Aliseda, Alberto

    2013-11-01

    A vortex particle method has been developed to study the performance and wake characteristics of Marine Hydrokinetic turbines. The goals are to understand mean flow and turbulent eddy effects on wake evolution, and the unsteady loading on the rotor and support structures. The vorticity-velocity formulation of the Navier-Stokes equations are solved using a hybrid Lagrangian-Eulerian method involving both vortex particle and spatial mesh discretizations. Particle strengths are modified by vortex stretching, diffusion, and body forces; these terms in the vorticity transport equation involve differential operators and are computed more efficiently on a Cartesian mesh using finite differences. High-order and moment-conserving interpolations allow the particles and mesh to exchange field quantities and particle strengths. An immersed boundary method which introduces a penalization term in the vorticity transport equations provides an efficient way to satisfy the no-slip boundary condition on solid boundaries. To provide further computational speedup, we investigate the use of multicore processors and graphics processing units using the OpenMP and OpenCL interfaces within the Parallel Particle-Mesh Library.

  1. A nonabelian particle-vortex duality in gauge theories

    NASA Astrophysics Data System (ADS)

    Murugan, Jeff; Nastase, Horatiu

    2016-08-01

    We define a nonabelian version of particle-vortex duality, by dimensionally extending usual (1+1)-dimensional nonabelian T-duality to (2+1) dimensions. While we will explicitly describe a global SU(2) symmetry, our methods can also be applied to a larger group G, by gauging an appropriate subgroup. We will exemplify our duality with matter in both adjoint and fundamental representations by considering a modification of {N} = 2 supersymmetric Yang-Mills theory (Seiberg-Witten theory reduced to (2+1) dimensions), and an SU(2) × U(1) color-flavor locked theory that exhibits nonabelian vortex solutions.

  2. Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Han, Jongil

    2000-01-01

    Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

  3. Noise-induced vortex reversal of self-propelled particles.

    PubMed

    Chen, Hanshuang; Hou, Zhonghuai

    2012-10-01

    We report an interesting phenomenon of noise-induced vortex reversal in a two-dimensional system of self-propelled particles (SPPs) with soft-core interactions. With the aid of forward flux sampling, we analyze the configurations along the reversal pathway and thus identify the mechanism of vortex reversal. We find that the reversal exhibits a hierarchical process: those particles at the periphery first change their motion directions, and then more inner layers of particles reverse later on. Furthermore, we calculate the dependence of the average reversal rate on noise intensity D and the number N of SPPs. We find that the rate decreases exponentially with the reciprocal of D. Interestingly, the rate varies nonmonotonically with N and a local minimal rate exists for an intermediate value of N.

  4. Transport of soluble and unsoluble contaminants in compound vortex

    NASA Astrophysics Data System (ADS)

    Stepanova, Eugenia

    2010-05-01

    Transport of solvable substances by separate vortices and vortex flows is studied regularly in environmental and laboratory conditions. The compound vortex is generated in the cylindrical container by the rotating disk. It is possible to observe strongly pronounced area - a vortex core by means of dye injection into the centre of surface trough. Inside the fluid the dye gathers in the central cylindrical area. On a free surface contaminants are located in separate compact areas - in bounded areas near the vertical axis of compound vortex and spiral arms. The separate tinted and clear water areas are observed for a long time in scales of activator rotation period. Parameters of flow patterns geometry are measured in wide range of basic flow conditions. Strong effect of unsoluble contaminant on general flow dynamics in the container is found. Registered flow patterns are compared with environmental observations.

  5. An immersed interface vortex particle-mesh solver

    NASA Astrophysics Data System (ADS)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire

    2014-11-01

    An immersed interface-enabled vortex particle-mesh (VPM) solver is presented for the simulation of 2-D incompressible viscous flows, in the framework of external aerodynamics. Considering the simulation of free vortical flows, such as wakes and jets, vortex particle-mesh methods already provide a valuable alternative to standard CFD methods, thanks to the interesting numerical properties arising from its Lagrangian nature. Yet, accounting for solid bodies remains challenging, despite the extensive research efforts that have been made for several decades. The present immersed interface approach aims at improving the consistency and the accuracy of one very common technique (based on Lighthill's model) for the enforcement of the no-slip condition at the wall in vortex methods. Targeting a sharp treatment of the wall calls for substantial modifications at all computational levels of the VPM solver. More specifically, the solution of the underlying Poisson equation, the computation of the diffusion term and the particle-mesh interpolation are adapted accordingly and the spatial accuracy is assessed. The immersed interface VPM solver is subsequently validated on the simulation of some challenging impulsively started flows, such as the flow past a cylinder and that past an airfoil. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.

  6. Transverse spinning of particles in highly focused vector vortex beams

    NASA Astrophysics Data System (ADS)

    Li, Manman; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli

    2017-05-01

    Transverse spin angular momentum, which appears locally in the structured optical fields, has attracted much attention, owing to its extraordinary properties and potential applications. We show theoretically that, by highly focusing a vector vortex beam with azimuthally varied polarization, it is possible to trap multiple particles simultaneously and manipulate the particles' spin along the azimuthal direction. Both the direction and the magnitude of the spin angular momentum, so the spin torque on the particle, can be varied by changing the state of the input beams. Moreover, the magnitude of the spin torque can be manipulated further by changing the characteristics of the particles. Such results may be exploited in practical optical manipulation, especially for optically induced rotations.

  7. The role of optimal vortex formation in biological fluid transport.

    PubMed

    Dabiri, John O; Gharib, Morteza

    2005-08-07

    Animal phyla that require macro-scale fluid transport for functioning have repeatedly and often independently converged on the use of jet flows. During flow initiation these jets form fluid vortex rings, which facilitate mass transfer by stationary pumps (e.g. cardiac chambers) and momentum transfer by mobile systems (e.g. jet-propelled swimmers). Previous research has shown that vortex rings generated in the laboratory can be optimized for efficiency or thrust, based on the jet length-to-diameter ratio (L/D), with peak performance occurring at 3.5vortex ring formation. This new approach identifies simple rules for effective fluid transport, facilitates comparative biological studies of jet flows across animal phyla irrespective of their specific functions and can be extended to unify theories of optimal jet-based and flapping-based vortex ring formation.

  8. The role of optimal vortex formation in biological fluid transport

    PubMed Central

    Dabiri, John O; Gharib, Morteza

    2005-01-01

    Animal phyla that require macro-scale fluid transport for functioning have repeatedly and often independently converged on the use of jet flows. During flow initiation these jets form fluid vortex rings, which facilitate mass transfer by stationary pumps (e.g. cardiac chambers) and momentum transfer by mobile systems (e.g. jet-propelled swimmers). Previous research has shown that vortex rings generated in the laboratory can be optimized for efficiency or thrust, based on the jet length-to-diameter ratio (L/D), with peak performance occurring at 3.5vortex ring formation. This new approach identifies simple rules for effective fluid transport, facilitates comparative biological studies of jet flows across animal phyla irrespective of their specific functions and can be extended to unify theories of optimal jet-based and flapping-based vortex ring formation. PMID:16048770

  9. Particle-vortex duality in topological insulators and superconductors

    NASA Astrophysics Data System (ADS)

    Murugan, Jeff; Nastase, Horatiu

    2017-05-01

    We investigate the origins and implications of the duality between topological insulators and topological superconductors in three and four spacetime dimensions. In the latter, the duality transformation can be made at the level of the path integral in the standard way, while in three dimensions, it takes the form of "self-duality in odd dimensions". In this sense, it is closely related to the particle-vortex duality of planar systems. In particular, we use this to elaborate on Son's conjecture that a three dimensional Dirac fermion that can be thought of as the surface mode of a four dimensional topological insulator is dual to a composite fermion.

  10. Transport into the south polar vortex in early spring

    NASA Technical Reports Server (NTRS)

    Hartmann, D. L.; Heidt, L. E.; Loewenstein, M.; Podolske, J. R.; Vedder, J.

    1989-01-01

    The effect of transport on the springtime decline in ozone in the southern polar vortex was investiated using data on long-lived gas tracers (N2O, CH4, CCl4, CH3CCl3, CO, CFC-11, CFC-12, and CFC-113) obtained by the ER-2 aircraft in the period between August 23 and September 22 during the Airborne Antarctic Ozone Experiment. It was found that, while the concentrations of long-lived trace gases remained relatively constant for fixed potential temperature and latitude, the ozone mixing ratio over the same period declined by more than 50 percent inside the polar vortex near 18-km altitude. These data indicate a substantial photochemical sink of ozone. The evidence of the zero or negative time tendencies for long-lived trace gases and the meridional and vertical gradients of ozone imply that transport is supplying ozone to the polar region during springtime.

  11. Passive scalar transport mediated by laminar vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Rodríguez, G.

    2017-04-01

    Numerical simulations were used to study the dynamics of a passive conserved scalar quantity entrained by a self-propelling viscous vortex ring. The transport and mixing process of the passive scalar variable were studied considering two initial scalar distributions: (i) The scalar substance was introduced into the ring during its formation, further focusing in the shedding into the wake of the ring; (ii) A disk-like scalar layer was placed in the ring’s path where the entrainment of the scalar substance into the ring bubble was studied as a function of the ring strength. In both cases, the scalar concentration inside the vortex bubble exhibits a steady decay with time. In the second case, it was shown that the entrained scalar mass grows with both the Reynolds number of the ring and the thickness of the scalar layer in the propagation direction. The ring can be viewed as a mechanism for scalar transportation along important distances.

  12. Computational Investigation of the Transport of Burning Particles

    NASA Astrophysics Data System (ADS)

    Matvienko, O. V.; Fil'kov, A. I.; Grishin, A. M.

    2016-09-01

    Computational modeling of the dynamics of the convective column formed by a low forest fire and of the transport of particles burning in it has been carried out. At the initial stage of formation of a thermal column, medium- and large-size particles move with the ascending air flow to its upper boundary; then they are entrained by the torroidal vortex and carried out of the combustion zone to the outer boundary of the circulation flow where they settle to the underlying surface. With increasing size of particles the maximum rise height of particles and the distance for which they are transported by the vortex flow decrease. The temperature of large particles at the moment of their landing is above the critical one, which can initiate ignition of the underlying surface and the formation of a secondary site of fire.

  13. Summary of Alpha Particle Transport

    SciTech Connect

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  14. An Iterative Brinkman penalization for particle vortex methods

    NASA Astrophysics Data System (ADS)

    Walther, J. H.; Hejlesen, M. M.; Leonard, A.; Koumoutsakos, P.

    2013-11-01

    We present an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in vortex particle methods. This is achieved by implementing a penalization of the velocity field using iteration of the penalized vorticity. We show that using the conventional Brinkman penalization method can result in an insufficient enforcement of solid boundaries. The specific problems of the conventional penalization method is discussed and three examples are presented by which the method in its current form has shown to be insufficient to consistently enforce the no-slip boundary condition. These are: the impulsively started flow past a cylinder, the impulsively started flow normal to a flat plate, and the uniformly accelerated flow normal to a flat plate. The iterative penalization algorithm is shown to give significantly improved results compared to the conventional penalization method for each of the presented flow cases.

  15. Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere

    SciTech Connect

    Popel, S. I.; Izvekova, Yu. N.; Shukla, P. K.

    2010-12-14

    Vortex motions in the atmosphere are shown to be closely connected with dynamics of the dust nano- and microscale particles. The mechanism by which nano- and microscale particles are transported from the troposphere into the lower stratosphere by synoptic-scale vortices, simulated by the soliton solutions to the Charney-Obukhov equations (Rossby vortices), is described. Redistribution of dust particles in the ionosphere as a result of vortical motions is discussed. It is shown that excitation of acoustic-gravitational vortices at altitudes of 110-130 km as a result of development of acoustic-gravitational wave instability, associated with nonzero balance of heat fluxes, owing to solar radiation, water vapors condensation, infrared emission of the atmosphere, and thermal conductivity, leads to a substantial transportation of dust particles and their mixing at altitudes of 110-120 km. One of the ways of transportation of dust particles in the ionosphere is shown to be vertical flows (streamers), which are generated by dust vortices as a result of development of parametric instability.

  16. Vortex bursting and tracer transport of a counter-rotating vortex pair

    NASA Astrophysics Data System (ADS)

    Misaka, T.; Holzäpfel, F.; Hennemann, I.; Gerz, T.; Manhart, M.; Schwertfirm, F.

    2012-02-01

    Large-eddy simulations of a coherent counter-rotating vortex pair in different environments are performed. The environmental background is characterized by varying turbulence intensities and stable temperature stratifications. Turbulent exchange processes between the vortices, the vortex oval, and the environment, as well as the material redistribution processes along the vortex tubes are investigated employing passive tracers that are superimposed to the initial vortex flow field. It is revealed that the vortex bursting phenomenon, known from photos of aircraft contrails or smoke visualization, is caused by collisions of secondary vortical structures traveling along the vortex tube which expel material from the vortex but do not result in a sudden decay of circulation or an abrupt change of vortex core structure. In neutrally stratified and weakly turbulent conditions, vortex reconnection triggers traveling helical vorticity structures which is followed by their collision. A long-lived vortex ring links once again establishing stable double rings. Key phenomena observed in the simulations are supported by photographs of contrails. The vertical and lateral extents of the detrained passive tracer strongly depend on environmental conditions where the sensitivity of detrainment rates on initial tracer distributions appears to be low.

  17. Backreaction of Tracer Particles on Vortex Tangle in Helium II Counterflow

    NASA Astrophysics Data System (ADS)

    Varga, E.; Barenghi, C. F.; Sergeev, Y. A.; Skrbek, L.

    2016-05-01

    We report computer simulations of the interaction of seeding particles with quantized vortices and with the normal fluid flow in thermal counterflow of superfluid ^4He. We show that if the number of particles is too large, the vortex tangle is significantly affected, posing problems in the interpretation of visualization experiments. The main effects are an increase in vortex line density and a change in polarization of the vortex tangle, caused by the action of the Stokes drag of the viscous normal fluid on the trapped particles. We argue that in the case of large particle number, typically used for the particle image velocimetry technique, the tangle properties might become significantly changed. On the contrary, the particle tracking velocimetry technique that uses smaller particle concentration should not be appreciably affected.

  18. Chaotic motion of light particles in an unsteady three-dimensional vortex: experiments and simulation.

    PubMed

    Vanyó, József; Vincze, Miklós; Jánosi, Imre M; Tél, Tamás

    2014-07-01

    We study the chaotic motion of a small rigid sphere, lighter than the fluid in a three-dimensional vortex of finite height. Based on the results of Eulerian and Lagrangian measurements, a sequence of models is set up. The time-independent model is a generalization of the Burgers vortex. In this case, there are two types of attractors for the particle: a fixed point on the vortex axis and a limit cycle around the vortex axis. Time dependence might combine these regular attractors into a single chaotic attractor, however its robustness is much weaker than what the experiments suggest. To construct an aperiodically time-dependent advection dynamics in a simple way, Gaussian noise is added to the particle velocity in the numerical simulation. With an appropriate choice of the noise properties, mimicking the effect of local turbulence, a reasonable agreement with the experimentally observed particle statistics is found.

  19. Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking

    NASA Technical Reports Server (NTRS)

    Waugh, D. W.; Plumb, R. A.; Atkinson, R. J.; Schoeberl, M. R.; Lait, L. R.; Newman, P. A.; Loewenstein, M.; Toohey, D. W.; Avallone, L. M.; Webster, C. R.

    1994-01-01

    The fine-scale structure in lower stratospheric tracer transport during the period of the two Arctic Airborne Stratospheric Expeditions (January and February 1989; December 1991 to March 1992) is investigated using contour advection with surgery calculations. These calculations show that Rossby wave breaking is an ongoing occurrence during these periods and that air is ejected from the polar vortex in the form of long filamentary structures. There is good qualitative agreement between these filaments and measurements of chemical tracers taken aboard the NASA ER-2 aircraft. The ejected air generally remains filamentary and is stretched and mixed with midlatitude air as it is wrapped around the vortex. This process transfers vortex air into midlatitudes and also produces a narrow region of fine-scale filaments surrounding the polar vortex. Among other things, this makes it difficult to define a vortex edge. The calculations also show that strong stirring can occur inside as well as outside the vortex.

  20. Euler-Lagrange Modeling of Vortex Interaction with a Particle-Laden Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Morales, Fernando

    Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than

  1. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou

    2016-09-01

    In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.

  2. Vortex particle-in-cell method for three-dimensional viscous unbounded flow computations

    NASA Astrophysics Data System (ADS)

    Liu, Chung Ho; Doorly, Denis J.

    2000-01-01

    A new vortex particle-in-cell (PIC) method is developed for the computation of three-dimensional unsteady, incompressible viscous flow in an unbounded domain. The method combines the advantages of the Lagrangian particle methods for convection and the use of an Eulerian grid to compute the diffusion and vortex stretching. The velocity boundary conditions used in the method are of Dirichlet-type, and can be calculated using the vorticity field on the grid by the Biot-Savart equation. The present results for the propagation speed of the single vortex ring are in good agreement with the Saffman's model. The applications of the method to the head-on and head-off collisions of the two vortex rings show good agreement with the experimental and numerical literature. Copyright

  3. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Weigel, Ralf; Kandler, Konrad; Günther, Gebhard; Molleker, Sergej; Grooß, Jens-Uwe; Vogel, Bärbel; Weinbruch, Stephan; Borrmann, Stephan

    2016-07-01

    Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate / carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ˜ 5 µm) taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  4. Optical forces induced behavior of a particle in a non-diffracting vortex beam.

    PubMed

    Šiler, Martin; Jákl, Petr; Brzobohatý, Oto; Zemánek, Pavel

    2012-10-22

    An interaction between a light field with complex field spatial distribution and a micro-particle leads to forces that drag the particle in space and may confine it in a stable position or a trajectory. The particle behavior is determined by its size with respect to the characteristic length of the spatially periodic or symmetric light field distribution. We study theoretically and experimentally the behavior of a microparticle near the center of an optical vortex beam in a plane perpendicular to the beam propagation. We show that such particle may be stably trapped either in a dark spot on the vortex beam axis, or in one of two points placed off the optical axis. It may also circulate along a trajectory having its radius smaller or equal to the radius of the first bright vortex ring.

  5. Vortex methods

    SciTech Connect

    Chorin, A.J. |

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  6. Vortex methods and vortex statistics

    SciTech Connect

    Chorin, A.J.

    1993-05-01

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (``blobs``) and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ``blob`` methods provide the most promising path to the understanding of these phenomena.

  7. Dynamic response and control of a jet-transport aircraft encountering a single-axis vortex

    NASA Technical Reports Server (NTRS)

    Spilman, Darin R.

    1993-01-01

    The dynamic responses of a jet-transport aircraft to two types of single-axis wind vortex encounters are studied. Aircraft attitude, flight path angle, and aerodynamic angle excursions are analyzed and dominating dynamic forcing effects are identified for each encounter. A simple departure-preventing LQR controller is designed to demonstrate the benefits of using automatic control to reduce the wind vortex hazard. A Proportional-Integral-Filter controller structure successfully regulates the critical parameters, roll angle, phi, and sideslip angle, beta, for the two different vortex encounters considered in this study.

  8. Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Lee, Jun-Hyeok; Suh, Jung-Chun

    2015-11-01

    This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of 2 × 106. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

  9. Flow Visualization and Particle Image Velocimetry Analysis of Rotor Vortex Wakes

    NASA Astrophysics Data System (ADS)

    Stack, James; Caradonna, Francis; Savas, Omer

    2004-11-01

    An experimental study is performed on a three-bladed rotor model in a stationary water tank, simulating a helicopter rotor operating in hover at Reynolds numbers of order 10^5. Flow visualization is done by injecting air bubbles and fluorescent dye tangentially from the blade tips to mark the vortices, showing the development of both short-wave (sinuous) and long-wave (leapfrogging) instabilities on the helical vortex filaments in the wake. The flow images show that as the instabilities develop, adjacent vortices merge and form thick vortex rings as quickly as half a rotor diameter downstream of the rotor disk. Particle image velocimetry data demonstrate the existence of the short-wave instability, evidenced by oscillations in the adjacent vortex core separation distance. At the same time, the long-wave instability is also apparent, as the vortices can be seen orbiting each other prior to merger. The circular axis and the moments of vorticity distribution are used to analyze the kinematics of vortex filament triads during formation, instability, and merger phases. Comparison of flow visualization and vorticity movies, however, shows interesting differences in the vortex merger process, possibly as a result of axial flow in the vortex cores.

  10. Numerical Analysis on the Vortex Pattern and Flux Particle Dispersion in KR Method Using MPS Method

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Xu, Y.; Anzai, K.

    2015-06-01

    The mechanically-stirring vessel is widely used in many fields, such as chemical reactor, bioreactor, and metallurgy, etc. The type of vortex mode that formed during impeller stirring has great effect on stirring efficiency, chemical reacting rate and air entrapment. Many efforts have been made to numerically simulate the fluid flow in the stirring vessel with classical Eulerian method. However, it is difficult to directly investigate the vortex mode and flux particle dispersion. Therefore, moving particle semi-implicit (MPS) method, which is based on Lagrangian method, is applied to simulate the fluid flow in a KR method in this practice. Top height and bottom heights of vortex surface in a steady state under several rotation speed was taken as key parameters to compare the results of numerical and published results. Flux particle dispersion behaviour under a rotation speed range from 80 to 480 rpm was also compared with the past study. The result shows that the numerical calculation has high consistency with experimental results. It is confirmed that the calculation using MPS method well reflected the vortex mode and flux particle dispersion in a mechanically-stirring vessel.

  11. Ordered transport and identification of particles

    DOEpatents

    Shera, E.B.

    1993-05-11

    A method and apparatus are provided for application of electrical field gradients to induce particle velocities to enable particle sequence and identification information to be obtained. Particle sequence is maintained by providing electroosmotic flow for an electrolytic solution in a particle transport tube. The transport tube and electrolytic solution are selected to provide an electroosmotic radius of >100 so that a plug flow profile is obtained for the electrolytic solution in the transport tube. Thus, particles are maintained in the same order in which they are introduced in the transport tube. When the particles also have known electrophoretic velocities, the field gradients introduce an electrophoretic velocity component onto the electroosmotic velocity. The time that the particles pass selected locations along the transport tube may then be detected and the electrophoretic velocity component calculated for particle identification. One particular application is the ordered transport and identification of labeled nucleotides sequentially cleaved from a strand of DNA.

  12. Ordered transport and identification of particles

    DOEpatents

    Shera, E. Brooks

    1993-01-01

    A method and apparatus are provided for application of electrical field gradients to induce particle velocities to enable particle sequence and identification information to be obtained. Particle sequence is maintained by providing electroosmotic flow for an electrolytic solution in a particle transport tube. The transport tube and electrolytic solution are selected to provide an electroosmotic radius of >100 so that a plug flow profile is obtained for the electrolytic solution in the transport tube. Thus, particles are maintained in the same order in which they are introduced in the transport tube. When the particles also have known electrophoretic velocities, the field gradients introduce an electrophoretic velocity component onto the electroosmotic velocity. The time that the particles pass selected locations along the transport tube may then be detected and the electrophoretic velocity component calculated for particle identification. One particular application is the ordered transport and identification of labeled nucleotides sequentially cleaved from a strand of DNA.

  13. Particle-fluid interactions in rotor-generated vortex flows

    NASA Astrophysics Data System (ADS)

    Rauleder, Jürgen; Leishman, J. Gordon

    2014-03-01

    An investigation was made into the particle-laden turbulent flow produced by a rotor hovering in ground effect over a mobile sediment bed. Measurements of the two-phase flow were made using time-resolved particle image velocimetry and particle tracking velocimetry as the rotor wake and its embedded vorticity approached and interacted with the sediment bed. Mobilized particles of 45-63 μm diameter (estimated to have a particle Reynolds number of <30 and a Stokes number of about 60) were individually identified and tracked in the resulting flow, with the objective of relating any changes in the vortical flow and turbulence characteristics of the carrier flow phase to the action of the dispersed particle phase. It was observed that, in general, a two-way coupling between the flow phases was produced near the ground, and in some cases, the coupling was very significant. Specifically, it was shown that the uplifted particles altered the carrier flow near the sediment bed, leading to an earlier distortion of the external flow induced by the blade tip vortices and to the accelerated diffusion of the vorticity they contained. The uplifted particles were also seen to modify the overall turbulence field, and when sufficient particle concentrations built up, the particles began to attenuate the turbulence levels. Even in regions with lower particle concentrations, turbulence was found to be attenuated by the indirect action of the particles because of the distortions made to the tip vortices, which were otherwise a significant source of turbulence production. After the tip vortices had diffused further downstream, the uplifted particles were also found to increase the anisotropy of turbulence in the flow.

  14. Trace Gas Transport in the Arctic Vortex Inferred from ATMOS ATLAS-2 Observations During April 1993

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Manney, G. L.; Gunson, M. R.; Abbas, M. M.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C, P,; Salawitch, R. J.; Stiller, G. P.; Zander, R.

    1996-01-01

    Measurements of the long-lived tracers CH4, N2O, and HF from the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Atmospheric Laboratory for Science and Applications-2 (ATLAS-2) Space Shuttle mission in April 1993 are used to infer average winter descent rates ranging from 0.8 km/month at 20 km to 3.2 km/month at 40 km in the Arctic polar vortex during the 1992-93 winter. Descent rates in the mid-stratosphere are similar to those deduced for the Antarctic vortex using ATMOS/ATLAS-3 measurements in November 1994, but the shorter time period of descent in the Arctic leads to smaller total distances of descent. Strong horizontal gradients observed along the vortex edge indicate that the Arctic vortex remains a significant barrier to transport at least until mid-April in the lower to middle stratosphere.

  15. Experimental Investigation of Transport Enhancement in Convective Air Flow by the Use of a Vortex Promoter

    NASA Astrophysics Data System (ADS)

    Jaluria, Yogesh; Gomes, Kevin

    2015-11-01

    This paper focuses on the effect of placing a passive vortex generator in a flow and the resulting increase in transport rates. The flow circumstance considered is that of a flat plate with protruding heat sources, placed in a uniform flow, with a vortex generator located upstream of the leading edge. The study consists of three parts. In the first part, the flow due to the vortex promoter by itself is considered. The periodic or chaotic behavior in the wake behind the promoter is investigated. By studying different sizes and shapes of vortex promoters, it is determined which configuration offers the largest disturbance in the flow and the frequency at which it occurs. In the second part of the study, the flow over a plate with isolated, finite-sized, protruding heat sources, without a vortex promoter, is considered. Again, the frequency of the disturbance downstream is investigated to determine the nature of the resulting flow and the disturbance frequency. The effect of varying the dimensions and locations of the heat sources on the flow downstream is investigated. It is found that a larger separation distance between two sources leads to higher transport rates. In the last part of the study, tests are done for the combination of vortex promoter and the plate, placing a vortex promoter in front of the plate. An effort is made to match the frequencies of the disturbances due to the vortex generator with those due to the plate in an attempt to achieve resonance. From these results, an optimal promoter is chosen that would lead to maximum heat transfer rate.

  16. Vortex transport in a channel with periodic constrictions

    NASA Astrophysics Data System (ADS)

    Kapra, A. V.; Y Vodolazov, D.; Misko, V. R.

    2013-09-01

    By numerically solving the time-dependent Ginzburg-Landau equations in a type-II superconductor, characterized by a critical temperature Tc1, and the coherence length ξ1, with a channel formed by overlapping rhombuses (diamond-like channel) made of another type-II superconductor, characterized, in general, by different Tc2 and ξ2, we investigate the dynamics of driven vortex matter for varying parameters of the channel: the width of the neck connecting the diamond cells, the cell geometry, and the ratio between the coherence lengths in the bank and the channel. We analyzed samples with periodic boundary conditions (which we call ‘infinite’ samples) and finite-size samples (with boundaries for vortex entry/exit), and we found that by tuning the channel parameters, one can manipulate the vortex dynamics, e.g., change the transition from flux-pinned to flux-flow regime and tune the slope of the IV-curves. In addition, we analyzed the effect of interstitial vortices on these characteristics. The critical current of this device was studied as a function of the applied magnetic field, jc(H). The function jc(H) reveals a striking commensurability peak, in agreement with recent experimental observations. The obtained results suggest that the diamond channel, which combines the properties of pinning arrays and flux-guiding channels, can be a promising candidate for potential use in devices controlling magnetic flux motion.

  17. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  18. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1998-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Penning-Malmberg trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Penning-Malmberg traps. (ATHENA Collaboration.)

  19. Calculating the torque of the optical vortex tweezer to the ellipsoidal micro-particles

    NASA Astrophysics Data System (ADS)

    Zhu, Lie; Guo, Zhongyi; Xu, Qiang; Zhang, Jingran; Zhang, Anjun; Wang, Wei; Liu, Yi; li, Yan; Wang, Xinshun; Qu, Shiliang

    2015-11-01

    In this paper, we have accurately computed the torque of the optical vortex tweezers to the ellipsoidal micro-particles with the method of finite-difference time-domain (FDTD). The transferred orbital angular momentum (OAM) from the vortex beam to the micro-particles can be obtained based on the scattering phase function (SPF) of the micro-particles. We have verified that the calculated SPF of a spherical particle by FDTD agrees well with that by Mie theory, which indicates that the SPF of micro-particles with any shapes can be calculated by FDTD accurately. In addition, with the method of FDTD, we have obtained the SPFs of the different-shape ellipsoidal micro-particles with same volume, including prolate ellipsoids and oblate ellipsoids. Meanwhile, the transferred OAM between the light and the ellipsoidal micro-particles have been deduced analytically by the relative formulas. And the rotating angular velocities of the trapped ellipsoidal micro-particles have been investigated and discussed in detail based on the obtained corresponding SPFs.

  20. Exploratory flight investigation of aircraft response to the wing vortex wake generated by jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, W. H.; Robinson, G. H.; Larson, R. R.

    1972-01-01

    The effect of intercepting wing tip vortices generated by large jet transports, including jumbo jets, over separation distances from 1 nautical mile to 15 nautical miles is evaluated on the basis of the response of a vortex probe airplane in the roil mode. The vortex probe test aircraft included a representative general aviation airplane, an executive jet, a fighter, and light and medium weight jet transports. The test conditions and airplane configurations were comparable to those normally used during takeoff, landing, or holding pattern operations. For flight safety the tests were performed at altitudes from 9500 feet to 12,500 feet. In addition to an evaluation of the probe airplane response, a flight test technique is suggested for determining minimum separation distance, using as variable the ratio of vortex-induced roll acceleration to maximum lateral control acceleration and the gross weight of the generating aircraft.

  1. Motion/visual cueing requirements for vortex encounters during simulated transport visual approach and landing

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Bowles, R. L.

    1983-01-01

    This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence.

  2. Plasmonic particles set into fast orbital motion by an optical vortex beam.

    PubMed

    Lehmuskero, Anni; Li, Yanming; Johansson, Peter; Käll, Mikael

    2014-02-24

    We optically trap plasmonic gold particles in two dimensions and set them into circular motion around the optical axis using a helically phased vortex laser beam. The orbiting frequency of the particles reaches 86 Hz, which corresponds to a particle velocity of the order 1 mm per second, for an incident laser power of a few tens of milliwatts. The experimentally determined orbiting frequencies are found to be well in line with the notion that the beam carries an orbital angular momentum of ħl per photon.

  3. Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.

    1995-01-01

    This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.

  4. Calculation of scalar structure functions from a vortex model of turbulent passive scalar transport

    NASA Astrophysics Data System (ADS)

    Higgins, Keith; Ooi, Andrew; Chong, M. S.

    2008-02-01

    A Saffman and Pullin [Phys. Fluids 8, 3072 (1996)] type vortex model for passive scalar structure functions is formulated. The intermittent turbulent fine-scale dynamics in the model is represented by numerical solutions of the advection-diffusion and Navier-Stokes equations in the form of axially strained vortex-scalar structures. The use of these structures is motivated by Pullin and Lundgren's [Phys. Fluids 13, 2553 (2001)] asymptotic strained spiral vortex model of turbulent passive scalar transport. Ensemble-averaged scalar structure functions, of even orders 2-10, are calculated from a range of vortex-scalar structures using Monte Carlo integration. For axisymmetric strained scalar fields, acceptable agreement of the second-order structure function with experimental data reported by Antonia and Van Atta [J. Fluid Mech. 84, 561 (1978)] is obtained. Structure functions are also calculated for a range of passive scalar spiral structures. These are generated by the winding of single and double scalar patches in single strained vortex patches and in merging strained vortices. Power-law scaling of the second- and higher-order structure functions is obtained from cases involving the winding of single scalar patches in an axisymmetric strained vortex patch. The second-order scaling exponents from these cases are in reasonable agreement with Kolmogorov-Oboukhov-Corrsin scaling and the experimental results of Antonia et al. [Phys. Rev. A 30, 2704 (1984)] and Gylfason and Warhaft [Phys. Fluids 16, 4012 (2004)]. However, the higher-order scaling exponents from these cases fall below theoretical predictions and experimental results. Higher-order moments are sensitive to the composition of the vortex-scalar structures, and various improvements are suggested that could enhance the performance of the model. The present approach is promising, and it is the first demonstration that a vortex model using simplified Navier-Stokes dynamics can produce some scalar structure

  5. Micromagnetic simulation of vortex-antivortex magnetization in permalloy nano particle

    NASA Astrophysics Data System (ADS)

    Purnama, B.; Muhammady, S.; Suharyana

    2017-02-01

    A process of vortex-antivortex magnetization reversal in a Permalloy nano particle with uniform polarity of magnetization has been investigated numerically. Micromagnetic simulation is performed using the Landau–Lifshitz–Gilbert equation. A short field pulse is applied in a film plane anti parallel to magnetization direction. Sequences of simulation of reversals mechanism are evaluated for thickness of nano particle. As the results in the case of thickness of 20 nm thin layer, magnetization reversal realizes through a creation-annihilation of Neel-Bloch wall pair. Contrarily, reversal mechanism via a creation-annihilation process of vortex-antivortex pair occurs for thickness of 60 nm thin layer. By analyzing barrier energy of the sample, we find that a maximum barrier energy reaches a threshold value (e.g., ∼ 2.6×106 erg/cm3 for Permalloy in this simulation).

  6. Quasi-Particle Spectrum around a Single Vortex in Superconductors --- s-Wave Case---

    NASA Astrophysics Data System (ADS)

    Kato, M.; Maki, K.

    2000-05-01

    Making use of the Bogoliubov-de Gennes equation, we study the quasi-particle spectrum and the vortex core structure of a single vortex in quasi 2D s-wave superconductors for small pFξ0, where pF is the Fermi momentum and ξ0=vF/ Δ0 is the coherence length (hbar=1). During our numerical calculation, the particle number is conserved for each pFξ0. In particular, we find that there are only 1 or 2 bound states for pFξ0=1. Also, for pFξ0=1, the Kramer-Pesch effect ceases to exist at around T/Tc =~ 0.3.

  7. Electric field induced by vortex transport in percolation superconductors

    NASA Astrophysics Data System (ADS)

    Kuz'min, Yu. I.

    2016-10-01

    The influence of fractal normal phase clusters on the electric field induced by the flow and creep of the magnetic flux in percolation superconductors has been considered. The current-voltage characteristics of such superconductors with allowance for the influence of the fractal dimension of cluster boundaries and the pinning barrier height have been obtained. The vortex dynamics in percolation superconductors with a fractal cluster structure in a viscous flow of the magnetic flux, the Anderson-Kim creep, and the collective flux creep has been analyzed. It has been discovered that the fractality of normal phase clusters reduces the electric field arising in the initial stage of the resistive transition.

  8. Numerical Simulation of Low Reynolds Number Particle-Laden Gas Jet by Vortex Method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Tomomi; Yagami, Hisanori

    An air jet, which remains laminar and axisymmetric in the single-phase flow condition, is simulated numerically in the particle-laden condition. The vortex method for particle-laden gas jet proposed by the authors is employed for the simulation. An air issues with velocity U0 from a round nozzle into the air co-flowing with velocity Ua. The Reynolds number based on U0 and the nozzle diameter is 1333, the velocity ratio Ua/U0 is 0.4. Spherical glass particles with diameter 65μm are loaded at the mass loading ratio 0.025. The particle velocity at the nozzle exit is 0.68U0. The particles impose disturbances on the air and induce the three-dimensional flow, resulting in the transition from the axisymmetric flow to the non-axisymmetric one. As the particles make the air velocity fluctuation increase, the air momentum diffuses more in the radial direction, and accordingly the spread of the jet becomes larger. The abovementioned results agree well with the trend of the existing experiments. The proposed vortex method can successfully capture the flow transition caused by the particles laden on an axisymmetric air jet.

  9. Single-Particle Motion and Vortex Stretching in Three-Dimensional Turbulent Flows.

    PubMed

    Pumir, Alain; Xu, Haitao; Bodenschatz, Eberhard; Grauer, Rainer

    2016-03-25

    Three-dimensional turbulent flows are characterized by a flux of energy from large to small scales, which breaks the time reversal symmetry. The motion of tracer particles, which tend to lose energy faster than they gain it, is also irreversible. Here, we connect the time irreversibility in the motion of single tracers with vortex stretching and thus with the generation of the smallest scales.

  10. Wake Vortex Prediction Models for Decay and Transport Within Stratified Environments

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2002-01-01

    This paper proposes two simple models to predict vortex transport and decay. The models are determined empirically from results of three-dimensional large eddy simulations, and are applicable to wake vortices out of ground effect and not subjected to environmental winds. The results, from the large eddy simulations assume a range of ambient turbulence and stratification levels. The models and the results from the large eddy simulations support the hypothesis that the decay of the vortex hazard is decoupled from its change in descent rate.

  11. Tip-Clearance Vortex Characterized With Three-Dimensional Digital Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    John, W. Trevor

    2002-01-01

    An optical measurement technique known as Three-Dimensional Digital Particle Image Velocimetry (3-D DPIV) was used to characterize the tip clearance flow in NASA Glenn Research Center's low-speed axial compressor. 3-D DPIV is a technique in which a stereoscopic imaging system consisting of two cross-correlation cameras is used to record particles entrained in a flow as a laser light sheet is pulsed at two instances in time. Although 3-D DPIV has been used elsewhere, this is the first time it has been used to measure compressor tip clearance flows. In-house modifications of the DPIV system include the use of effective seeding technology and a novel system to perform a priori calibrations at all five measurement planes, greatly reducing facility run time. Computational fluid dynamics predictions, which are used to guide design changes toward improving the efficiency and operating range of turbomachinery, can be verified and improved by comparison with 3-D DPIV measurements of the actual tip clearance flow. This measurement campaign dealt with the characterization of the tip clearance vortex in the first stage of a four-stage axial compressor. The tip clearance vortex is formed in compressors operating with a clearance gap between the moving rotor blade tips and the stationary casing when a leakage flow, forced from the pressure side of the blade over the blade tip, forms a vortical structure on the suction side of the blade. 3-D DPIV is ideally suited to measure the clearance vortex for two reasons: (1) this technique captures the entire blade passage flow at one instant in time, so that wandering of the vortex during the measurement does not smear out velocity gradients in the flow field, and (2) the spanwise component of velocity changes sign across the vortex core, providing a more accurate measurement of the vortex location than was available with previous two-dimensional measurement approaches. These two attributes of the data will enable computational fluid

  12. Dynamical systems analysis of fluid transport in time-periodic vortex ring flows

    NASA Astrophysics Data System (ADS)

    Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.

    2006-04-01

    It is known that the stable and unstable manifolds of dynamical systems theory provide a powerful tool for understanding Lagrangian aspects of time-periodic flows. In this work we consider two time-periodic vortex ring flows. The first is a vortex ring with an elliptical core. The manifolds provide information about entrainment and detrainment of irrotational fluid into and out of the volume transported with the ring. The likeness of the manifolds with features observed in flow visualization experiments of turbulent vortex rings suggests that a similar process might be at play. However, what precise modes of unsteadiness are responsible for stirring in a turbulent vortex ring is left as an open question. The second situation is that of two leapfrogging rings. The unstable manifold shows striking agreement with even the fine features of smoke visualization photographs, suggesting that fluid elements in the vicinity of the manifold are drawn out along it and begin to reveal its structure. We suggest that interpretations of these photographs that argue for complex vorticity dynamics ought to be reconsidered. Recently, theoretical and computational tools have been developed to locate structures analogous to stable and unstable manifolds in aperiodic, or finite-time systems. The usefulness of these analogs is demonstrated, using vortex ring flows as an example, in the paper by Shadden, Dabiri, and Marsden [Phys. Fluids 18, 047105 (2006)].

  13. Ratchet transport powered by chiral active particles

    PubMed Central

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  14. Measuring Vortex Breakdown Flows Within Open Cylindrical Bioreactors Using Stereoscopic Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Dusting, Jonathan; Sheridan, John; Hourigan, Kerry

    2004-11-01

    A low-shear model bioreactor has been developed to allow a more accurate definition of the external hydrodynamic conditions experienced by cells during large-scale aggregation. The particular flow being studied within the bioreactor is the vortex breakdown instability known to occur in open cylindrical vessels driven by a rotating lid. Flow conditions at an aspect ratio of 1.5 and a Reynolds number range of 500 to 3000 are characterized experimentally using Stereoscopic Particle Image Velocimetry. Flow measurements relevant to cell culture applications, such as local velocities and shear stresses, are confirmed to be highly dependent on Reynolds number and the spatial distribution of cells. Moderate time-dependency of local conditions is also observed, particularly in the breakdown bubble region. In addition, vortex breakdown is found to occur even with adherent-cell culture scaffolds submerged at various positions on the central axis of the bioreactor, although the shape and steadiness of the bubble is affected.

  15. Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1982-01-01

    A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.

  16. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.

    PubMed

    Ryzhov, Evgeny A; Koshel, Konstantin V

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  17. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow

    SciTech Connect

    Ryzhov, Evgeny A.; Koshel, Konstantin V.

    2015-10-15

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero–oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  18. Vortex transport and voltage noise in disordered superconductors

    NASA Astrophysics Data System (ADS)

    Das, Jayajit; Täuber, Uwe; Bullard, Tom

    2002-03-01

    We study the IV characteristics and voltage noise spectrum of driven magnetic flux lines interacting with randomly placed point or columnar defects at low temperatures. Our three-dimensional Monte Carlo algorithm allows us to compare with recent experiments [1]. In our simulations, the critical voltage noise power spectrum near the depinning current Jc universally follows an 1/f^α power law, with α ≈ 2. However, for currents J > Jc distinct peaks appear in the power spectrum, as also found experimentally in Bi_2Sr_2CaCu_2Oy samples [1]. These peaks, occuring at frequencies related to the mean vortex transit time between defects, are considerably more pronounced for extended as compared to point defects, and moreover reflect the spatial distribution of the pinning centers. Location and width of these 'narrow-band' noise features may thus serve as a novel diagnostic tool to characterize the disorder in superconducting samples. [1] A. Maeda et al., e-print cond-mat/0111128; Y. Togawa et al., Phys. Rev. Lett. 85, 3716 (2000).

  19. Discrete Elements Method of Neutral Particle Transport

    DTIC Science & Technology

    1983-10-01

    0 ,,S" . K A t - "’.* DISCRETE ELEMENTS METHOD NEUTRAL PARTICLE TRANSPORT ..- DISSERTATION AF. IT/DS/PH/83-5 Kirk A. Mathews LCDR USN D~ Approved for...DISCRETE ELEMENTS METHOD OF NEUTRAL PARTICLE TRANSPORT DISSERTATION Presented to the Faculty of the School of Engineering of the Air Force Institute...o .°. .• . r •.- - DS/PH/83-5 DISCRETE ELEMENTS METHOD OF NEUTRAL PARTICLE TRANSPORT 4 "by Kirk A. Mathews LCDR USN Approved: , Charles J

  20. Characterization and Quantification of Vortex Flow in the Human Left Ventricle by Contrast Echocardiography Using Vector Particle Image Velocimetry

    PubMed Central

    Hong, Geu-Ru; Pedrizzetti, Gianni; Tonti, Giovanni; Li, Peng; Wei, Zhao; Kim, Jin Kyung; Baweja, Abinav; Liu, Shizhen; Chung, Namsik; Houle, Helene; Narula, Jagat; Vannan, Mani A.

    2015-01-01

    OBJECTIVES The aims of this study were to: 1) assess the feasibility of left ventricular (LV) vortex flow analysis using contrast echocardiography (CE); and 2) characterize and quantify LV vortex flow in normal subjects and patients with LV systolic dysfunction. BACKGROUND Vortices that form during LV filling have specific geometry and anatomical locations that are critical determinants of directed blood flow during ejection. Therefore, it is clinically relevant to assess the vortex flow patterns to better understand the LV function. METHODS Twenty-five patients (10 normal and 15 patients with abnormal LV systolic function) underwent CE with intravenous contrast agent, Definity (Bristol-Myers Squibb Medical Imaging, Inc., North Billerica, Massachusetts). The velocity vector and vorticity were estimated by particle image velocimetry. Average vortex parameters including vortex depth, transverse position, length, width, and sphericity index were measured. Vortex pulsatility parameters including relative strength, vortex relative strength, and vortex pulsation correlation were also estimated. RESULTS Vortex depth and vortex length were significantly lower in the abnormal LV function group (0.443 ± 0.04 vs. 0.482 ± 0.06, p < 0.05; 0.366 ± 0.06 vs. 0.467 ± 0.05, p < 0.01, respectively). Vortex width was greater (0.209 ± 0.05 vs. 0.128 ± 0.06, p < 0.01) and sphericity index was lower (1.86 ± 0.5 vs. 3.66 ± 0.6, p < 0.001) in the abnormal LV function group. Relative strength (1.13 ± 0.4 vs. 2.10 ± 0.8, p < 0.001), vortex relative strength (0.57 ± 0.2 vs. 1.19 ± 0.5, p < 0.001), and vortex pulsation correlation (0.63 ± 0.2 vs. 1.31 ± 0.5, p < 0.001) were significantly lower in the abnormal LV function group. CONCLUSIONS It was feasible to quantify LV vorticity arrangement by CE using particle image velocimetry in normal subjects and those with LV systolic dysfunction, and the vorticity imaging by CE may serve as a novel approach to depict vortex, the principal

  1. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry.

    PubMed

    Hong, Geu-Ru; Pedrizzetti, Gianni; Tonti, Giovanni; Li, Peng; Wei, Zhao; Kim, Jin Kyung; Baweja, Abinav; Liu, Shizhen; Chung, Namsik; Houle, Helene; Narula, Jagat; Vannan, Mani A

    2008-11-01

    The aims of this study were to: 1) assess the feasibility of left ventricular (LV) vortex flow analysis using contrast echocardiography (CE); and 2) characterize and quantify LV vortex flow in normal subjects and patients with LV systolic dysfunction. Vortices that form during LV filling have specific geometry and anatomical locations that are critical determinants of directed blood flow during ejection. Therefore, it is clinically relevant to assess the vortex flow patterns to better understand the LV function. Twenty-five patients (10 normal and 15 patients with abnormal LV systolic function) underwent CE with intravenous contrast agent, Definity (Bristol-Myers Squibb Medical Imaging, Inc., North Billerica, Massachusetts). The velocity vector and vorticity were estimated by particle image velocimetry. Average vortex parameters including vortex depth, transverse position, length, width, and sphericity index were measured. Vortex pulsatility parameters including relative strength, vortex relative strength, and vortex pulsation correlation were also estimated. Vortex depth and vortex length were significantly lower in the abnormal LV function group (0.443 +/- 0.04 vs. 0.482 +/- 0.06, p < 0.05; 0.366 +/- 0.06 vs. 0.467 +/- 0.05, p < 0.01, respectively). Vortex width was greater (0.209 +/- 0.05 vs. 0.128 +/- 0.06, p < 0.01) and sphericity index was lower (1.86 +/- 0.5 vs. 3.66 +/- 0.6, p < 0.001) in the abnormal LV function group. Relative strength (1.13 +/- 0.4 vs. 2.10 +/- 0.8, p < 0.001), vortex relative strength (0.57 +/- 0.2 vs. 1.19 +/- 0.5, p < 0.001), and vortex pulsation correlation (0.63 +/- 0.2 vs. 1.31 +/- 0.5, p < 0.001) were significantly lower in the abnormal LV function group. It was feasible to quantify LV vorticity arrangement by CE using particle image velocimetry in normal subjects and those with LV systolic dysfunction, and the vorticity imaging by CE may serve as a novel approach to depict vortex, the principal quantity to assess the flow

  2. Particle transport in planetary magnetospheres

    SciTech Connect

    Birmingham, T.J.

    1984-11-01

    Particle energization in Earth's and Jupiter's magnetospheres is discussed. Understanding of the large scale magnetic and electric fields in which charged particles move is reviewed. Orbit theory in the adiabatic approximation is sketched. General conditions for adiabatic breakdown at each of three levels of periodicity are presented. High energy losses and lower energy sources argue for the existence of magnetospheric accelerations. Nonadiabatic acceleration processes are mentioned. Slow diffusive energization by particle interactions with electromagnetic fluctuations is outlined. This mechanism seems adequate at Earth but, operating alone, is unconvincing for Jupiter. Adding spatial diffusion in the radially distended Jovian magnetodisk may resolve the difficulty. (ESA)

  3. Particles in Surface Waters: Coagulation and Transport.

    NASA Astrophysics Data System (ADS)

    Culkin, Gerald William

    Conventional water quality assessment and simulation of particles in natural waters focus on bulk concentrations of the suspended solid phase. These analyses rely directly or indirectly on a linear, 'average particle' approach to describe processes that are nonlinear and highly size -dependent. Size-dependent transport and transformation mechanisms were simulated in this research to identify conditions in which coagulation is important. Explicit finite difference schemes for two-dimensional, laterally-averaged, unsteady particle transport were developed to approximate the size -dependent particle transport processes, which included advection, dispersion, and settling. Coupled exchange of discrete particles between the water column and sediment bed was modeled using size-dependent particle sedimentation and resuspension. Simultaneous particle-particle flocculation was integrated over time in parallel with transport. Model simulations of systems with idealized morphometry and forcing provided greater insight to competing processes that drive particle behavior in natural systems. Application of the model to a real system gave plausible results and suggested explanations for observed conditions.

  4. An accelerated stochastic vortex structure method for particle collision and agglomeration in homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Dizaji, Farzad F.; Marshall, Jeffrey S.

    2016-11-01

    Modeling the response of interacting particles, droplets, or bubbles to subgrid-scale fluctuations in turbulent flows is a long-standing challenge in multiphase flow simulations using the Reynolds-Averaged Navier-Stokes approach. The problem also arises for large-eddy simulation for sufficiently small values of the Kolmogorov-scale particle Stokes number. This paper expands on a recently proposed stochastic vortex structure (SVS) method for modeling of turbulence fluctuations for colliding or otherwise interacting particles. An accelerated version of the SVS method was developed using the fast multipole expansion and local Taylor expansion approach, which reduces computation speed by two orders of magnitude compared to the original SVS method. Detailed comparisons are presented showing close agreement of the energy spectrum and probability density functions of various fields between the SVS computational model, direct numerical simulation (DNS) results, and various theoretical and experimental results found in the literature. Results of the SVS method for particle collision rate and related measures of particle interaction exhibit excellent agreement with DNS predictions for homogeneous turbulent flows. The SVS method was also used with adhesive particles to simulate formation of particle agglomerates with different values of the particle Stokes and adhesion numbers, and various measures of the agglomerate structure are compared to the DNS results.

  5. Particle transport in asymmetrically modulated pores

    NASA Astrophysics Data System (ADS)

    Mathwig, Klaus; Müller, Frank; Gösele, Ulrich

    2011-03-01

    Brownian motion plays an important role in the separation of small particles and molecules, but generally leads to undirected motion or intermixing by diffusion. Matthias and Müller (2003 Nature 424 53-7) reported on the experimental realization of a drift ratchet, a microfluidic particle transport mechanism that utilizes random fluctuations instead, i.e. a Brownian motor. Here, we offer a new interpretation of this previously published work on the drift ratchet. New experiments, which allow us to distinguish between particles of different sizes, as well as a re-examination of the original work, lead to the conclusion that the measured particle transport does not result from a ratchet effect. We demonstrate that the transport is caused by convection instead. While our result challenges one specific type of experiment, we do not assess the feasibility of a drift ratchet in principle. Instead, we identify the experimental conditions that need to be fulfilled for the successful separation of particles.

  6. Particle Transport in Parallel-Plate Reactors

    SciTech Connect

    Rader, D.J.; Geller, A.S.

    1999-08-01

    A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle

  7. Comparison of dispersion and actuation properties of vortex and synthetic antiferromagnetic particles for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Leulmi, S.; Joisten, H.; Dietsch, T.; Iss, C.; Morcrette, M.; Auffret, S.; Sabon, P.; Dieny, B.

    2013-09-01

    Magnetic nanoparticles are receiving an increasing interest for various biotechnological applications due to the capability that they offer to exert actuation on biological species via external magnetic fields. In this study, two types of magnetic particles recently proposed for cancer cells treatment were compared. Both are prepared by top-down approaches and imitate the properties of superparamagnetic particles. One type is made of a single magnetic layer and has a magnetic vortex configuration. The second type has a multilayered structure called synthetic antiferromagnet. Once released in solution, the agglomeration/dispersion of these particles due to their magnetostatic interactions was compared as well as the mechanical torque that they can generate when submitted to an external magnetic field.

  8. Vortex Particle-Mesh methods for large scale LES of aircraft wakes

    NASA Astrophysics Data System (ADS)

    Chatelain, Philippe; Duponcheel, Matthieu; Marichal, Yves; Winckelmans, Grégoire

    2015-11-01

    Vortex methods solve the NS equations in vorticity-velocity formulation. The present Particle-Mesh variant exploits the advantages of a hybrid approach: advection is handled by the particles while the mesh allows the evaluation of the differential operators and the use of fast Poisson solvers (here a Fourier-based solver which allows for unbounded directions and inlet/outlet boundaries). A lifting line approach models the vorticity sources in the flow; its immersed treatment efficiently captures the development of vorticity from thin sheets into 3-D field. Large scale simulations of aircraft wakes (including ``encounter'' cases where a following aircraft flies into the wake) are presented, which also demonstrate the performance of the methodology: the adequate treatment of particle distortion, the high-order discretization, and the multiscale subgrid models allow to capture wake dynamics with minimal spurious dispersion and diffusion.

  9. Energetic particle transport in relativistic flows

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1992-01-01

    A discussion is given of pitch angle dependent and diffusive transport equations for cosmic rays applicable for both special relativistic and general relativistic flows, derived from the relativistic Boltzmann equation. As an example of particle transport in a curved spacetime we give a pitch angle dependent transport equation appropriate for radial accretion onto a Schwarzschild black hole. The roles of fluid shear, acceleration and compression on the energy changes of particles in the diffusive transport equations are emphasized. Also discussed are special flows (e.g. rigidly rotating flows) associated with a Killing vector for which a constant of the motion of the particles can be identified, and for which simplified transport equations can be constructed.

  10. Magnetotail particle dynamics and transport

    NASA Technical Reports Server (NTRS)

    Speiser, Theodore W.

    1995-01-01

    The main thrust of our research is to study the consequences of particle dynamics in the current sheet region of the magnetotail. The importance of understanding particle dynamics, in and near current sheets, cannot be over estimated, especially in light of NASA's recent interest in developing global circulation models to predict space weather. We have embarked on a long-term study to investigate the electrical resistance due to chaotic behavior, compare this resistance to inertial effects, and relate it to that resistance required in MHD modeling for reconnection to proceed. Using a single-particle model and observations, we have also found that a neutral line region can be remotely sensed. We plan to evaluate other cases of satellite observations near times of substorm onset to elucidate the relationship between the temporal development of a near-Earth neutral line and onset.

  11. Vortex motion in the ionosphere and nonlinear transport

    SciTech Connect

    Southwood, D.J.; Kivelson, M.G.

    1993-07-01

    The relation between vorticity and ionospheric flow patterns is investigated by using a fluid mechanics approach in place of the more customary electromagnetic approach. The focus on the fluid features is justified by the observation that in the incompressible limit appropriate to the ionosphere, vorticity can be regarded as the source of the flow field. The authors show how vorticity can be introduced into the flow by local ionospheric conditions. However, in the cases of greatest interest, the vorticity is imposed by external sources, which can be in the magnetosphere or in the solar wind. As an important application, they consider traveling ionospheric vortices propagating around the polar cap boundary. They show that such traveling disturbances transport both momentum and magnetic flux in the direction of their phase velocity, typically antisunward. Like other intermittent disturbances of small scale, such as flux transfer events, individual traveling ionospheric vortices transport relatively little flux, but multiple disturbances could conceivably transport an important fraction of the polar cap magnetic flux from the dayside to the tail. 29 refs., 2 figs.

  12. Particle transport and deposition: basic physics of particle kinetics.

    PubMed

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research.

  13. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  14. Transport anisotropy as a probe of the interstitial vortex state in superconductors with artificial pinning arrays

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We show using simulations that when interstitial vortices are present in superconductors with periodic pinning arrays, the transport in two perpendicular directions can be anisotropic. The degree of the anisotropy varies as a function of field due to the fact that the interstitial vortex lattice has distinct orderings at different matching fields. The anisotropy is most pronounced at the matching fields but persists at incommensurate fields, and it is most prominent for triangular, honeycomb, and kagome pinning arrays. Square pinning arrays can also show anisotropic transport at certain fields in spite of the fact that the perpendicular directions of the square pinning array are identical. We show that the anisotropy results from distinct vortex dynamical states and that although the critical depinning force may be lower in one direction, the vortex velocity above depinning may also be lower in the same direction for ranges of external drives where both directions are depinned. For honeycomb and kagome pinning arrays, the anisotropy can show multiple reversals as a function of field. We argue that when the pinning sites can be multiply occupied such that no interstitial vortices are present, the anisotropy is strongly reduced or absent.

  15. Vortex formation in a shock-accelerated gas induced by particle seeding.

    PubMed

    Vorobieff, Peter; Anderson, Michael; Conroy, Joseph; White, Ross; Truman, C Randall; Kumar, Sanjay

    2011-05-06

    An instability forms in gas of constant density (air) with an initial nonuniform seeding of small particles or droplets as a planar shock wave passes through the two-phase medium. The seeding nonuniformity is produced by vertical injection of a slow-moving jet of air premixed with glycol droplets or smoke particles into the test section of a shock tube, with the plane of the shock parallel to the axis of the jet. After the shock passage, two counterrotating vortices form in the plane normal to that axis. The physical mechanism of the instability we observe is peculiar to multiphase flow, where the shock acceleration causes the second (embedded) phase to move with respect to the embedding medium. With sufficient seeding concentration, this leads to entrainment of the embedding phase that acquires a relative velocity dependent on the initial seeding, resulting in vortex formation in the flow.

  16. Kinetic transport simulation of energetic particles

    NASA Astrophysics Data System (ADS)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  17. Transport of particles across continental shelves

    SciTech Connect

    Nittrouer, C.A. ); Wright, L.D. College of William and Mary, Gloucester Point, VA )

    1994-02-01

    Transport of particulate material across continental shelves is well demonstrated by the distributions on the seabed and in the water column of geological, chemical, or biological components, whose sources are found farther landward or farther seaward. This paper addresses passive (incapable of swimming) particles and their transport across (not necessarily off) continental shelves during high stands of sea level. Among the general factors that influence across-shelf transport are shelf geometry, latitudinal constraints, and the timescale of interest. Research studies have investigated the physical mechanisms of transport and have made quantitative estimates of mass flux across continental shelves. Important mechanisms include wind-driven flows, internal wave, wave-orbital flows, infragravity phenomena, buoyant plumes, and surf zone processes. Most particulate transport occurs in the portion of the water column closest to the seabed. Therefore physical processes are effective where and when they influence the bottom boundary layer, causing shear stresses sufficient to erode and transport particulate material. Biological and geological processes at the seabed play important roles within the boundary layer. The coupling of hydrodynamic forces from currents and surface gravity waves has a particularly strong influence on across-shelf transport; during storm events, the combined effect can transport particles tens of kilometers seaward. Several important mechanisms can cause bidirectional (seaward and landward) transport, and estimates of the net flux are difficult to obtain. Also, measurements of across-shelf transport are made difficult by the dominance of along-shelf transport. Geological parameters are often the best indicators of net across-shelf transport integrated over time scales longer than a month. For example, fluvially discharged particles with distinct composition commonly accumulate in the midshelf region. 47 refs., 16 figs.

  18. Characterization of the left atrial vortex flow by two-dimensional transesophageal contrast echocardiography using particle image velocimetry.

    PubMed

    Park, Kyu-Hwan; Son, Jang-Won; Park, Won-Jong; Lee, Sang-Hee; Kim, Ung; Park, Jong-Seon; Shin, Dong-Gu; Kim, Young-Jo; Choi, Jung-Hyun; Houle, Helene; Vannan, Mani A; Hong, Geu-Ru

    2013-01-01

    This article is the first clinical investigation of the quantitative left atrial (LA) vortex flow by two-dimensional (2-D) transesophageal contrast echocardiography (2-D-TECE) using vector particle image velocimetry (PIV). The aims of this study were to assess the feasibility of LA vortex flow analysis and to characterize and quantify the LA vortex flow in controls and in patients with atrial fibrillation (AF). Thirty-five controls and 30 patients with AF underwent transesophageal contrast echocardiography. The velocity vector was estimated by particle image velocimetry. The morphology and pulsatility of the LA vortex flow were compared between the control and AF groups. In all patients, quantitative LA vortex flow analysis was feasible. In the control group, multiple, pulsatile, compact and elliptical-shaped vortices were seen in the periphery of the LA. These vortices were persistently maintained and vectors were directed toward the atrioventricular inflow. In the AF group, a large, merged, lower pulsatile and round-shaped vortex was observed in the center of the LA. In comparisons of vortex parameters, the relative strength was significantly lower in the AF group (1.624 ± 0.501 vs. 2.105 ± 0.226, p < 0.001). It is feasible to characterize and quantify the LA vortex flow by transesophageal contrast echocardiography in patients with AF, which offers a new method to obtain additional information on LA hemodynamics. The approach has the potential for early detection of the LA dysfunction and in decisions regarding treatment strategy and guiding anticoagulation treatment in patients with AF. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Experiments on the enhancement of compressible mixing via streamwise vorticity. II - Vortex strength assessment and seed particle dynamics

    NASA Technical Reports Server (NTRS)

    Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.

    1993-01-01

    The effect of streamwise vorticity on compressible axisymmetric mixing layers is examined using vortex strength assessment and seed particle dynamics analysis. Experimental results indicate that the particles faithfully represent the dynamics of the turbulent swirling flow. A comparison of the previously determined mixing layer growth rates with the present vortex strength data reveals that the increase of turbulent mixing up to 60 percent scales with the degree of swirl. The mixing enhancement appears to be independent of the compressibility level of the mixing layer.

  20. Experiments on the enhancement of compressible mixing via streamwise vorticity. II - Vortex strength assessment and seed particle dynamics

    NASA Technical Reports Server (NTRS)

    Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.

    1993-01-01

    The effect of streamwise vorticity on compressible axisymmetric mixing layers is examined using vortex strength assessment and seed particle dynamics analysis. Experimental results indicate that the particles faithfully represent the dynamics of the turbulent swirling flow. A comparison of the previously determined mixing layer growth rates with the present vortex strength data reveals that the increase of turbulent mixing up to 60 percent scales with the degree of swirl. The mixing enhancement appears to be independent of the compressibility level of the mixing layer.

  1. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Shen, Shaohua

    1998-01-01

    In support of the wake vortex effect of the Terminal Area Productivity program, we have put forward four tasks to be accomplished in our proposal. The first task is validation of two-dimensional wake vortex-turbulence interaction. The second task is investigation of three-dimensional interaction between wake vortices and atmospheric boundary layer (ABL) turbulence. The third task is ABL studies. The, fourth task is addition of a Klemp-Durran condition at the top boundary for TASS model. The accomplishment of these tasks will increase our understanding of the dynamics of wake vortex and improve forecasting systems responsible for air safety and efficiency. The first two tasks include following three parts: (a) Determine significant length scale for vortex decay and transport, especially the length scales associated with the onset of Crow instability (Crow, 1970); (b) Study the effects of atmospheric turbulence on the decay of the wake vortices; and (c) Determine the relationships between decay rate, transport properties and atmospheric parameters based on large eddy simulation (LES) results and the observational data. These parameters may include turbulence kinetic energy, dissipation rate, wind shear and atmospheric stratification. The ABL studies cover LES modeling of turbulence structure within planetary boundary layer under transition and stable stratification conditions. Evidences have shown that the turbulence in the stable boundary layer can be highly intermittent and the length scales of eddies are very small compared to those in convective case. We proposed to develop a nesting grid mesh scheme and a modified Klemp-Durran conditions (Klemp and Wilhelmson, 1978) at the top boundary for TASS model to simulate planetary boundary layer under stable stratification conditions. During the past year, our group has made great efforts to carry out the above mentioned four tasks simultaneously. The work accomplished in the last year will be described in the next

  2. A Probabilistic Wake Vortex Lateral Transport Model Using Data from SFO and DEN

    NASA Technical Reports Server (NTRS)

    Mellman, George R.; Delisi, Donald P.

    2008-01-01

    In a previous report, we considered the behavior of the lateral position of vortices as a function of time after vortex formation for Out of Ground Effects (OGE) data for aircraft landing at San Francisco International Airport (SFO). We quantified the spread in lateral position as a function of time and examined how predictable lateral position is under a variety of assumptions. The combination of spread and predictability allowed us to derive probability distribution functions (PDFs) for lateral position given observed crosswind (CW) velocities. In this study, we examine the portability of these PDFs with respect to other landing sites. To this end, we consider OGE data obtained by the Federal Aviation Administration for landings at Denver International Airport (DEN) between 04/05/2006 and 06/03/2006. We consider vortices from both B733 (Boeing 737 models 200-500) and B757 (Boeing 757) aircraft. The data set contains 635 B733 landings and 506 B757 landings. The glide slope altitude for these measurements was 280 m, determined by the average initial vortex observation adjusted for a 3-second delay in the initial observation. The comparable SFO altitude was 158 m. We note that the principal mechanism for lateral transport in the OGE regime is advection by the ambient wind. This implies that a simple crosswind correction may be effective in explaining much of the variation in the lateral transport data. In this study, we again consider the use of ASOS data and average Lidar crosswind data over the vortex altitude range to predict vortex location as a function of time.

  3. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.

    PubMed

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Zhang, Peng

    2016-09-05

    Focusing fields of optical vortex (OV) beams with circular or radial polarizations carry both spin angular momentum (SAM) and orbital angular momentum (OAM), and can realize non-axial spinning and orbiting motion of absorptive particles. Using the T-matrix method, we evaluate the optical forces and torques exerted on micro-sized particles induced by the OV beams. Numerical results demonstrate that the particle is trapped on the circle of intensity maxima, and experiences a transverse spin torque along azimuthal direction, a longitudinal spin torque, and an orbital torque, respectively. The direction of spinning motion is not only related to the sign of topological charge of the OV beam, but also to the polarization state. However, the topological charge controls the direction of orbiting motion individually. Optically induced rotations of particles with varying sizes and absorptivity are investigated in OV beams with different topological charges and polarization states. These results may be exploited in practical optical manipulation, especially for optically induced rotations of micro-particles.

  4. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  5. The energetic alpha particle transport method EATM

    SciTech Connect

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets.

  6. Dephasing-controlled particle transport devices

    NASA Astrophysics Data System (ADS)

    Kapetanović, Edin; Rodríguez-Rosario, César A.; Frauenheim, Thomas

    2016-12-01

    We study the role of dephasing in transport through different structures. We show that interference effects invalidate Kirchhoff's circuit laws in quantum devices and illustrate the emergence of Ohmic conduction under strong dephasing. We present circuits where the particle transport and the direction of rectification can be controlled through the dephasing strength. This suggests the possibility of constructing molecular devices with new functionalities which use dephasing as a control parameter.

  7. Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

    1999-01-01

    An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

  8. Parameter Variations and Vorticity Transport in the Leading Edge Vortex of a Rotating Blade

    NASA Astrophysics Data System (ADS)

    Null, Jordan; Wojcik, Craig; Buchholz, James

    2013-11-01

    It is now well-known that a blade or wing rotating through a quiescent fluid at high angle of attack creates a leading-edge vortex (LEV) which, at the inboard spanwise positions, does not shed, but exists perpetually confined near the blade leading edge. Since the LEV is continuously fed with vorticity from the leading edge shear layer, it is necessary that sinks of vorticity exist to balance the shear layer source. It has been frequently hypothesized that spanwise flow in the vortex provides the necessary sink. In a recent study, Wojcik and Buchholz (BAPS.2012.DFD.G24.10) have conducted a vorticity transport analysis in selected chordwise planes on a rotating rectangular blade of aspect ratio 4, and demonstrated that spanwise convection of vorticity is often an insignificant sink of vorticity. Further, they showed that an interaction between the LEV and the secondary opposite-sign vortex between the LEV and the blade surface results in significant annihilation of the LEV, often substantially balancing the flux of vorticity from the leading edge shear layer. In the present work, we explore this phenomenon further through variation of blade aspect ratio and angle of attack to further elucidate mechanisms leading to the dynamics of the LEV. The authors gratefully acknowledge support from AFOSR grant number FA9550-11-1-0019 and NSF EPSCoR grant number EPS1101284.

  9. Unbounded Immersed Interface solver, also for use in Vortex Particle-Mesh methods

    NASA Astrophysics Data System (ADS)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire

    2012-11-01

    We present a new and efficient algorithm to solve the 2-D Poisson equation in unbounded domain and with complex inner boundaries. It is based on an efficient combination of two components: the Immersed Interface method to enforce the boundary condition on each inner boundary (here using solely 1-D stencil corrections) and the James-Lackner algorithm to compute the outer boundary condition consistent with the unbounded domain solution. The algorithm is here implemented using second order finite differences and is particularized to the computation of potential flow past solid bodies. It is validated, by means of grid convergence studies, on the flow past multiple bodies (some also with circulation). The results confirm the second order accuracy everywhere. The algorithm is self consistent as ``all is done on the grid'' (thus without using a Vortex Panel boundary element method in addition to the grid). The next aim of this work is then to integrate this algorithm in the Vortex Particle-Mesh (VPM) method for the computation of unsteady viscous flows, with boundary layers, detached shear layers and wakes. Preliminary results of the combined methods will also be presented. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.

  10. GPU accelerated simulations of bluff body flows using vortex particle methods

    NASA Astrophysics Data System (ADS)

    Rossinelli, Diego; Bergdorf, Michael; Cottet, Georges-Henri; Koumoutsakos, Petros

    2010-05-01

    We present a GPU accelerated solver for simulations of bluff body flows in 2D using a remeshed vortex particle method and the vorticity formulation of the Brinkman penalization technique to enforce boundary conditions. The efficiency of the method relies on fast and accurate particle-grid interpolations on GPUs for the remeshing of the particles and the computation of the field operators. The GPU implementation uses OpenGL so as to perform efficient particle-grid operations and a CUFFT-based solver for the Poisson equation with unbounded boundary conditions. The accuracy and performance of the GPU simulations and their relative advantages/drawbacks over CPU based computations are reported in simulations of flows past an impulsively started circular cylinder from Reynolds numbers between 40 and 9500. The results indicate up to two orders of magnitude speed up of the GPU implementation over the respective CPU implementations. The accuracy of the GPU computations depends on the Re number of the flow. For Re up to 1000 there is little difference between GPU and CPU calculations but this agreement deteriorates (albeit remaining to within 5% in drag calculations) for higher Re numbers as the single precision of the GPU adversely affects the accuracy of the simulations.

  11. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  12. Shear-Reduction of Collisional Transport in a 2D Point Vortex Gas/Plasma.

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    2002-11-01

    The two dimensional point vortex gas is a simple but useful paradigm for more complex fluid and plasma flows.(D. Dubin and D. Jin, Phys. Lett. A 284), 112 (2001). This poster presents the theory of the collisional diffusion and viscosity coefficients for a point vortex gas, in an applied shear flow. We show that the transport coefficients are reduced in the presence of shear, just as for the shear reduction of transport observed in fusion plasmas. Here however, fluctuations are collisional rather than turbulent, allowing a rigorous calculation of the transport. When there are several species of point vortices, we find that Onsager relations require that the diffusive flux conserves the total vorticity density ρ (r) (proportional to charge density in the plasma analogue). Surprisingly, the diffusive flux concentrates vortices with large positive (or negative) circulations at maxima (or minima) of ρ (r). On a slower timescale, the momentum flux due to viscosity drives the system to a global thermal equilibrium state.

  13. Scalable Domain Decomposed Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, Matthew Joseph

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  14. FLUKA: A Multi-Particle Transport Code

    SciTech Connect

    Ferrari, A.; Sala, P.R.; Fasso, A.; Ranft, J.; /Siegen U.

    2005-12-14

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  15. Drift due to viscous vortex rings

    NASA Astrophysics Data System (ADS)

    Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc

    2016-11-01

    Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.

  16. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  17. Particle Swarm Transport in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  18. Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

    1994-01-01

    The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be

  19. Comparing canal transportation and centering ability of endosequence and vortex rotary files by using micro-computed tomography.

    PubMed

    Yamamura, Brandon; Cox, Timothy C; Heddaya, Belal; Flake, Natasha M; Johnson, James D; Paranjpe, Avina

    2012-08-01

    EndoSequence and Vortex are 2 recently developed rotary file systems that are made with traditional nickel-titanium (NiTi) and M-Wire technology, respectively. Previous studies have demonstrated better fatigue resistance of M-Wire rotary files compared with the conventional NiTi file. However, no study has compared the effects of M-Wire and conventional NiTi on transportation and centering ability. Hence, the aim of this study was to evaluate the transportation and centering ability of EndoSequence and Vortex files in mesial roots of mandibular molars by using micro-computed tomography imaging. Sixteen extracted mandibular molars with mesiobuccal and mesiolingual canals with separate foramina were used. Preinstrumentation scans of all teeth were taken, and the teeth were divided into 2 groups. In group 1, the mesiobuccal canals were instrumented with Vortex files and the mesiolingual canals with EndoSequence files. In group 2, the mesiobuccal canals were instrumented with EndoSequence files and the mesiolingual canals with Vortex files. Two file sizes were compared, 30/.04 and 40/.04. Postinstrumentation scans were performed, and the 2 scans were compared to determine centering ability and transportation. The amount of transportation at 1, 3, and 5 mm was similar for both file types in both file sizes. Transportation toward the furcation area at 7 mm was greater with the 30/.04 Endosequence files compared with the Vortex 30/.04 files (P < .05), but there was no difference in size 40/.04 files. Overall, our study does not support the use of one rotary file system over the other (Vortex or EndoSequence) when comparing transportation and centering ability. Published by Elsevier Inc.

  20. Energetic particle induced inter-annual variability of ozone inside the Antarctic polar vortex observed in satellite data

    NASA Astrophysics Data System (ADS)

    Fytterer, T.; Mlynczak, M. G.; Nieder, H.; Pérot, K.; Sinnhuber, M.; Stiller, G.; Urban, J.

    2014-12-01

    Measurements from 2002-2011 by three independent satellite instruments, namely MIPAS, SABER, and SMR on board the ENVISAT, TIMED, and Odin satellites are used to investigate the inter-annual variability of stratospheric and mesospheric O3 volume mixing ratio (vmr) inside the Antarctic polar vortex due to solar and geomagnetic activity. In this study, we individually analysed the relative O3 vmr variations between maximum and minimum conditions of a number of solar and geomagnetic indices (F10.7 cm solar radio flux, Ap index, ≥ 2 MeV electron flux). The indices are 26 day averages centred at 1 April, 1 May, and 1 June while O3 is based on 26 day running means from 1 April-1 November at altitudes from 20-70 km. During solar quiet time from 2005-2010, the composite of all three instruments reveals an apparent negative O3 feedback associated to the geomagnetic activity (Ap index) around 1 April, on average reaching amplitudes between -5 and -10% of the respective O3 background. The O3 response exceeds the significance level of 95% and propagates downwards throughout the polar winter from the stratopause down to ∼ 25 km. These observed results are in good qualitative agreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes particle impact ionisation.

  1. Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data

    NASA Astrophysics Data System (ADS)

    Fytterer, T.; Mlynczak, M. G.; Nieder, H.; Pérot, K.; Sinnhuber, M.; Stiller, G.; Urban, J.

    2015-03-01

    Measurements from 2002 to 2011 by three independent satellite instruments, namely MIPAS, SABER, and SMR on board the ENVISAT, TIMED, and Odin satellites are used to investigate the intra-seasonal variability of stratospheric and mesospheric O3 volume mixing ratio (vmr) inside the Antarctic polar vortex due to solar and geomagnetic activity. In this study, we individually analysed the relative O3 vmr variations between maximum and minimum conditions of a number of solar and geomagnetic indices (F10.7 cm solar radio flux, Ap index, ≥ 2 MeV electron flux). The indices are 26-day averages centred at 1 April, 1 May, and 1 June while O3 is based on 26-day running means from 1 April to 1 November at altitudes from 20 to 70 km. During solar quiet time from 2005 to 2010, the composite of all three instruments reveals an apparent negative O3 signal associated to the geomagnetic activity (Ap index) around 1 April, on average reaching amplitudes between -5 and -10% of the respective O3 background. The O3 response exceeds the significance level of 95% and propagates downwards throughout the polar winter from the stratopause down to ~ 25 km. These observed results are in good qualitative agreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes particle impact ionisation.

  2. Self-propelled particle transport in regular arrays of rigid asymmetric obstacles.

    PubMed

    Potiguar, Fabricio Q; Farias, G A; Ferreira, W P

    2014-07-01

    We report numerical results which show the achievement of net transport of self-propelled particles (SPPs) in the presence of a two-dimensional regular array of convex, either symmetric or asymmetric, rigid obstacles. The repulsive interparticle (soft disks) and particle-obstacle interactions present no alignment rule. We find that SPPs present a vortex-type motion around convex symmetric obstacles even in the absence of hydrodynamic effects. Such a motion is not observed for a single SPP, but is a consequence of the collective motion of SPPs around the obstacles. A steady particle current is spontaneously established in an array of nonsymmetric convex obstacles (which presents no cavity in which particles may be trapped), and in the absence of an external field. Our results are mainly a consequence of the tendency of the self-propelled particles to attach to solid surfaces.

  3. Electromagnetic scattering by multiple dielectric particles under the illumination of unpolarized high-order Bessel vortex beam

    NASA Astrophysics Data System (ADS)

    Yu, Mei Ping; Han, Yi Ping; Cui, Zhi Wei; Chen, An Tao

    2017-07-01

    This study investigates the electromagnetic scattering of a high-order Bessel vortex beam by multiple dielectric particles of arbitrary shape based on the surface integral equation (SIE) method. In Cartesian coordinates, the mathematical formulas are given for characterizing the electromagnetic field components of an arbitrarily incident high-order Bessel vortex beam. By using the SIE, a numerical scheme is formulated to find solutions for characterizing the electromagnetic scattering by multiple homogeneous particles of arbitrary shape and a home-made FORTRAN program is written. The presented theoretical derivations as well as the home-made program are validated by comparing to the scattering results of a Zero-Order Bessel Beam by the Generalized Lorenz-Mie theory. From our simulations, the beam's order, half-cone angles, and the ways of particles' arrangement have a great influence upon the differential scattering cross section (DSCS) for multiple particles. Furthermore, for a better understanding of the scattering characteristic in three dimension (3-D) space, the 3-D distribution of the DSCS for different cases is presented. It is anticipated that these results can be helpful to understand the scattering mechanisms of a high-order Bessel vortex beam on multiple dielectric particles of arbitrary shape.

  4. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.

    PubMed

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye

    2017-04-10

    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  5. Gyrokinetic particle simulation of neoclassical transport

    SciTech Connect

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-08-01

    A time varying weighting ({delta}{ital f} ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. Coupling of a 3-D vortex particle-mesh method with a finite volume near-wall solver

    NASA Astrophysics Data System (ADS)

    Marichal, Y.; Lonfils, T.; Duponcheel, M.; Chatelain, P.; Winckelmans, G.

    2011-11-01

    This coupling aims at improving the computational efficiency of high Reynolds number bluff body flow simulations by using two complementary methods and exploiting their respective advantages in distinct parts of the domain. Vortex particle methods are particularly well suited for free vortical flows such as wakes or jets (the computational domain -with non zero vorticity- is then compact and dispersion errors are negligible). Finite volume methods, however, can handle boundary layers much more easily due to anisotropic mesh refinement. In the present approach, the vortex method is used in the whole domain (overlapping domain technique) but its solution is highly underresolved in the vicinity of the wall. It thus has to be corrected by the near-wall finite volume solution at each time step. Conversely, the vortex method provides the outer boundary conditions for the near-wall solver. A parallel multi-resolution vortex particle-mesh approach is used here along with an Immersed Boundary method in order to take the walls into account. The near-wall flow is solved by OpenFOAM® using the PISO algorithm. We validate the methodology on the flow past a sphere at a moderate Reynolds number. F.R.S. - FNRS Research Fellow.

  7. Particle Transport in Pure Electron Plasmas.

    NASA Astrophysics Data System (ADS)

    Kriesel, J. M.; Driscoll, C. F.

    1998-10-01

    At UCSD we confine pure-electron plasmas in Penning-Malmberg traps, which consist of cylindrical electrodes in an axial magnetic field (B ~ 100G). The trap is under ultra-high vacuum (10-10 Torr) so that transport due to electron-neutral collisions is negligible. Instead, cross-field particle transport is due to electron-electron collsions or from interactions with external fields. A plasma in one of our traps is roughly cylindrical in shape and rotates about its own axis due to the E x B drift from the space-charge field. Electron-electron collisions bring the plasma to a thermal equilibrium state of rigid rotation and uniform temperature. We find that the transport is driven by shears in the rotation velocity, and measure a coefficient of viscosity which is as much as 10,000 times larger than classical theory. This transport is driven by long-range ``E × B drift Coulomb collisions'' with impact parameters on the order of a Debye length rather than a cyclotron radius, as in classical theory. In our plasmas λD >> r_c, and O'Neil and Dubin have developed theories(Daniel H.E. Dubin, Phys. Plasmas 5), 1688 (1998) of transport in this regime. In addition to this work, I will also present measurements on the transport due to externally applied fields. The scalings provide insight into the overall confinement properties of our traps.

  8. Solar energetic particle anisotropies and insights into particle transport

    SciTech Connect

    Leske, R. A. Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-25

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  9. ATMOS Profile Structure, Filamentation, and Transport Around the 1994 Arctic Proto-Vortex

    NASA Technical Reports Server (NTRS)

    Manney, G.; Michaelsen, H.; Irion, F.; Gunson, M.

    1999-01-01

    Many long-lived trace gas profiles observed by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument around the developing polar vortex (the proto-vortex) during early November 1994 show distinctive minimum/maximum pairs (laminae).

  10. Analysis of UARS data in the Southern Polar Vortex n September, 1992 Using a Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Chipperfield, M. P.; Santee, M. L.; Froidevaux, L.; Manney, G. L.; Read, W. G.; Waters, J. W.; Roche, A. E.; Russel, J. M.

    1996-01-01

    We have used a new, isentropic-coordinate three-dimensional chemical transport model to investigate the decay of C1O and evolution of other species in the Antarctic polar vortex during September, 1992. The model simulations cover the same southern hemisphere period studied in a companion data paper by Santee et al.

  11. Parallel and Portable Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.

    1997-08-01

    We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.

  12. Electrostatically Enhanced Vortex Separator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R.

    1993-01-01

    Proposed device removes fine particles from high-pressure exhaust gas of chemical reactor. Negatively charged sectors on rotating disks in vortex generator attracts positively charged particles from main stream of exhaust gas. Electrostatic charge enhances particle-separating action of vortex. Gas without particles released to atmosphere.

  13. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    NASA Astrophysics Data System (ADS)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  14. Measurements of condensation nuclei in the Airborne Arctic Stratospheric Expedition - Observations of particle production in the polar vortex

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Stolzenburg, M. R.; Clark, W. E.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1990-01-01

    The ER-2 Condensation Nucleus Counter (ER-2 CNC) was operated in the Airborne Arctic Stratospheric Expedition (AASE) in January and February 1989. The ER-2 CNC measures the mixing ratio of particles, CN, with diameters from approximately 0.02 to approximately 1 micron. The spatial distribution of CN in the Arctic polar vortex was found to resemble that measured in the Antarctic in the Spring of 1987. The vertical profile of CN in the vortex was lowered by subsidence. At altitudes above the minimum in the CN mixing ratio profile, CN mixing ratios correlated negatively with that of N2O, demonstrating new particle production. CN serve as nuclei in the formation of Polar Stratospheric Clouds (PSCs) and the concentration of CN can affect PSC properties.

  15. Measurements of condensation nuclei in the Airborne Arctic Stratospheric Expedition - Observations of particle production in the polar vortex

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Stolzenburg, M. R.; Clark, W. E.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1990-01-01

    The ER-2 Condensation Nucleus Counter (ER-2 CNC) was operated in the Airborne Arctic Stratospheric Expedition (AASE) in January and February 1989. The ER-2 CNC measures the mixing ratio of particles, CN, with diameters from approximately 0.02 to approximately 1 micron. The spatial distribution of CN in the Arctic polar vortex was found to resemble that measured in the Antarctic in the Spring of 1987. The vertical profile of CN in the vortex was lowered by subsidence. At altitudes above the minimum in the CN mixing ratio profile, CN mixing ratios correlated negatively with that of N2O, demonstrating new particle production. CN serve as nuclei in the formation of Polar Stratospheric Clouds (PSCs) and the concentration of CN can affect PSC properties.

  16. Particle Swarm Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Hoe, A.; Pyrak-Nolte, L. J.; Mitchell, C. A.

    2016-12-01

    Interest in particulate transport in the subsurface has increased with the increased use of micro-particulates in consumer products. Potential exists for contaminants to be released as a swarm, i.e. a drop-like collection of millions of micro-sized particles that exhibit a number of unique characteristics. The objective of this research is to identify key features of pore network topology and surface chemistry on swarm evolution in porous media. Synthetic translucent porous media were fabricated to image directly swarm transport along a layer of grain between an impermeable matrix. Two types of spherical grains ( 10 mm in diameter) were used: (1) hydrogel spheres that were hydrophilic and (2) 3D printed PMMA spheres that were hydrophobic. Swarms (5, 10 and 20 µL) were composed of 3 micron polystyrene beads (1-2% by weight) in either water or an aqueous KCL solution. During the experiments, the porous medium was fully submerged in the same solution used to compose the swarm. Swarms were either released into a pore or above a grain. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. As swarms fell under gravity, bifurcation cascades occurred around grains. More bifurcations resulted in an increase in the lateral extent of the swarm transport path. Swarms released in a pore exhibited fewer bifurcations than those released above a grain. Particle-grain interactions between the swarm and grains were strongly affected by the surface chemistry of the grains. Swarms in the PMMA medium exhibited transport paths with a consistent ( 12-15 mm) lateral extent and left deposits of particles on the top surfaces of grains. In the hydrogel medium, the swarm particles tended to slide along and split around the surface of the grains, losing particles until the swarms were too dilute to image. The potential spread of particulate contaminants by swarms may yield highly dispersed or highly localized concentrations depending on the

  17. Particle velocity distribution in saltation transport.

    PubMed

    Ho, T D; Dupont, P; Ould El Moctar, A; Valance, A

    2012-05-01

    We report on wind-tunnel measurements of particle velocity distribution in aeolian transport. By performing extended statistics, we show that for saltation occurring over an erodible bed the vertical lift-off velocity distributions deviate significantly from a Gaussian law and exhibit a long tail accurately described by a lognormal law. In contrast, saltation over a rigid bed produces Gaussian velocity distributions. These results strongly suggest that the deviation from Gaussian distributions is a consequence of the splash process which is exclusively present in saltation transport over an erodible bed. We further suggest that the non-Gaussian statistics is intimately related to the statistical properties of a single splash event which produces ejection of particles with lift-off velocities distributed according to a lognormal law. This lognormal behavior can be simply inferred from the propagation process of the impact energy through the granular bed which can be viewed as the analog of a fragmentation process. These findings emphasize the crucial role of the splash process in saltation transport.

  18. Turbulent particle transport in magnetized fusion plasma

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.

    2005-05-01

    Understanding the mechanisms responsible for particle transport is of the utmost importance for magnetized fusion plasmas. A peaked density profile is attractive to improve the fusion rate, which is proportional to the square of the density, and to self-generate a large fraction of non-inductive current required for continuous operation. Experiments in various tokamak devices (ASDEX Upgrade, DIII-D, JET, TCV, TEXT, TFTR) indicate the existence of a turbulent particle pinch. Recently, such a turbulent pinch has been unambiguously identified in Tore Supra very long discharges, in the absence of both collisional particle pinch and central particle source, for more than 4 min (Hoang et al 2003 Phys. Rev. Lett. 90 155002). This turbulent pinch is predicted by a quasilinear theory of particle transport (Weiland J et al 1989 Nucl. Fusion 29 1810), and confirmed by non-linear turbulence simulations (Garbet et al 2003 Phys. Rev. Lett. 91 035001) and general considerations based on the conservation of motion invariants (Baker et al 2004 Phys. Plasmas 11 992). Experimentally, the particle pinch is found to be sensitive to the magnetic field gradient in many cases (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Zabolotsky et al 2003 Plasma Phys. Control. Fusion 45 735, Weisen et al 2004 Plasma Phys. Control. Fusion 46 751, Baker et al 2000 Nucl. Fusion 40 1003), to the temperature profile (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Angioni et al 2004 Nucl. Fusion 44 827) and also to the collisionality that changes the nature of the microturbulence (Angioni et al 2003 Phys. Rev. Lett. 90 205003, Garzotti et al 2003 Nucl. Fusion 43 1829, Weisen et al 2004 31st EPS Conf. on Plasma Phys. (London) vol 28G (ECA) P-1.146, Lopes Cardozo N J 1995 Plasma Phys. Control. Fusion 37 799). The consistency of some of the observed dependences with the theoretical predictions gives us a clearer understanding of the particle pinch in tokamaks, allowing us to predict more accurately the density

  19. Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2015-12-01

    Francis turbines operating at part-load experience the development of a precessing cavitation vortex rope at the runner outlet, which acts as an excitation source for the hydraulic system. In case of resonance, the resulting pressure pulsations seriously compromise the stability of the machine and of the electrical grid to which it is connected. As such off-design conditions are increasingly required for the integration of unsteady renewable energy sources into the existing power system, an accurate assessment of the hydropower plant stability is crucial. However, the physical mechanisms driving this excitation source remain largely unclear. It is for instance essential to establish the link between the draft tube flow characteristics and the intensity of the excitation source. In this study, a two-component particle image velocimetry system is used to investigate the flow field at the runner outlet of a reduced-scale physical model of a Francis turbine. The discharge value is varied from 55 to 81 % of the value at the best efficiency point. A particular set-up is designed to guarantee a proper optical access across the complex geometry of the draft tube elbow. Based on phase-averaged velocity fields, the evolution of the vortex parameters with the discharge, such as the trajectory and the circulation, is determined for the first time. It is shown that the rise in the excitation source intensity is induced by an enlargement of the vortex trajectory and a simultaneous increase in the precession frequency, as well as the vortex circulation. Below a certain value of discharge, the structure of the vortex abruptly changes and loses its coherence, leading to a drastic reduction in the intensity of the induced excitation source.

  20. Vortex dynamics and correlated disorder in high-{Tc} superconductors

    SciTech Connect

    Vinokur, V.M.

    1993-08-01

    We develop a theory for the vortex motion in the presence of correlated disorder in the form of the twin boundaries and columnar defects. Mapping vortex trajectories onto boson world lines enables us to establish the duality of the vortex transport in the systems with correlated disorder and hopping conductivity of charged particles in 2D systems. A glassy-like dynamics of the vortex lines with zero linear-resistivity and strongly nonlinear current-voltage behavior as V {proportional_to} exp[{minus} const/J{sup {mu}}] in a Bose glass state is predicted.

  1. Quasi-Particle Spectrum around a Single Vortex in Superconductors ---dx2-y2- Wave Case ---

    NASA Astrophysics Data System (ADS)

    Kato, M.; Maki, K.

    2002-05-01

    Making use of the Bogoliubov-de Gennes equation for d-wave superconductors, we study the quasi-particle spectrum and the vortex core structure of a single vortex in quasi-2D d-wave superconductors for small pFξ0, where pF is the Fermi momentum and ξ0=vF/Δ0 is the coherence length (hbar=1). Unlike in previous analyses, the electron density conservation is strictly imposed on our self-consistent solution. The eigenstates are classified as bound states and extended states. The bound states play an important role in the Kramer-Pesch effect in d-wave superconductors. Further, they should be accessible through T1 and the Knight shift in NMR.

  2. PARTICLE TRANSPORT IN YOUNG PULSAR WIND NEBULAE

    SciTech Connect

    Tang Xiaping; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2012-06-20

    The model for pulsar wind nebulae (PWNe) as a result of the magnetohydrodynamic (MHD) downstream flow from a shocked, relativistic pulsar wind has been successful in reproducing many features of the nebulae observed close to central pulsars. However, observations of well-studied young nebulae like the Crab Nebula, 3C 58, and G21.5-0.9 do not show the toroidal magnetic field on a larger scale that might be expected in the MHD flow model; in addition, the radial variation of spectral index due to synchrotron losses is smoother than expected in the MHD flow model. We find that pure diffusion models can reproduce the basic data on nebular size and spectral index variation for the Crab, 3C 58, and G21.5-0.9. Most of our models use an energy-independent diffusion coefficient; power-law variations of the coefficient with energy are degenerate with variation in the input particle energy distribution index in the steady state, transmitting boundary case. Energy-dependent diffusion is a possible reason for the smaller diffusion coefficient inferred for the Crab. Monte Carlo simulations of the particle transport allowing for advection and diffusion of particles suggest that diffusion dominates over much of the total nebular volume of the Crab. Advection dominates close to the pulsar and is likely to play a role in the X-ray half-light radius. The source of diffusion and mixing of particles is uncertain, but may be related to the Rayleigh-Taylor instability at the outer boundary of a young PWN or to instabilities in the toroidal magnetic field structure.

  3. Dispersion of a plume of tracer particles by bedload transport

    NASA Astrophysics Data System (ADS)

    Lajeunesse, Eric; Devauchelle, Olivier; Houssais, Morgane; Seizilles, Grégoire

    2013-04-01

    Particles entrained by rivers tend to disperse as they move downstream. Understanding the mechanisms responsible for particle dispersion is therefore important to describe the transport of solid-phase contaminants in streams or the accumulation of cosmogenic radionuclides in sediment grains during transport. While the prediction of the sediment transport rate at a specific point has been the topic of a large number of investigations, particle dispersion has however received much less attention. Here, we use the erosion-deposition model proposed by Lajeunesse et al. [2010] to understand the transport of a plume of tracer particles. We restrict our analysis to the case of steady-state transport above a flat bed of uniform sediment. We show that, at equilibrium, the transport of a plume of tracer particles obeys an advection-exchange mechanism. After a transient dominated by initial conditions, the transport of the plume tends toward an advection-diffusion equation.

  4. Vortex nozzle for segmenting and transporting metal chips from turning operations

    DOEpatents

    Bieg, L.F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  5. Subscale Ship Airwake Studies Using Novel Vortex Flow Devices with Smoke, Laser-Vapor-Screen and Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Landman, Drew; Swift, Russell S.; Parikh, Paresh C.

    2007-01-01

    Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.

  6. The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex.

    PubMed

    Bomphrey, Richard J; Lawson, Nicholas J; Harding, Nicholas J; Taylor, Graham K; Thomas, Adrian L R

    2005-03-01

    Here we present the first digital particle image velocimetry (DPIV) analysis of the flow field around the wings of an insect (the tobacco hawkmoth Manduca sexta, tethered to a 6-component force-moment balance in a wind tunnel). A leading-edge vortex (LEV) is present above the wings towards the end of the downstroke, as the net upward force peaks. Our DPIV analyses and smoke visualisations match the results of previous flow visualisation experiments at midwing, and we extend the experiments to provide the first analysis of the flow field above the thorax. Detailed DPIV measurements show that towards the end of the downstroke, the LEV structure is consistent with that recently reported in free-flying butterflies and dragonflies: the LEV is continuous across the thorax and runs along each wing to the wingtip, where it inflects to form the wingtip trailing vortices. The LEV core is 2-3 mm in diameter (approximately 10% of local wing chord) both at the midwing position and over the centreline at 1.2 m s(-1) and at 3.5 m s(-1) flight speeds. At 1.2 m s(-1) the measured LEV circulation is 0.012+/-0.001 m(2) s(-1) (mean +/-S.D.) at the centreline and 0.011+/-0.001 m(2) s(-1) halfway along the wing. At 3.5 m s(-1) LEV circulation is 0.011+/-0.001 m(2) s(-1) at the centreline and 0.020+/-0.004 m(2) s(-1) at midwing. The DPIV measurements suggest that if there is any spanwise flow in the LEV towards the end of the downstroke its velocity is less than 1 m s(-1). Estimates of force production show that the LEV contributes significantly to supporting body weight during bouts of flight at both speeds (more than 10% of body weight at 1.2 m s(-1) and 35-65% of body weight at 3.5 m s(-1)).

  7. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  8. Peristaltic particle transport using the Lattice Boltzmann method

    SciTech Connect

    Connington, Kevin William; Kang, Qinjun; Viswanathan, Hari S; Abdel-fattah, Amr; Chen, Shiyi

    2009-01-01

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  9. Transport of active ellipsoidal particles in ratchet potentials

    SciTech Connect

    Ai, Bao-Quan Wu, Jian-Chun

    2014-03-07

    Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)

  10. Entropic Ratchet transport of interacting active Brownian particles

    SciTech Connect

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  11. Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry.

    PubMed

    Drucker; Lauder

    1999-01-01

    Quantifying the locomotor forces experienced by swimming fishes represents a significant challenge because direct measurements of force applied to the aquatic medium are not feasible. However, using the technique of digital particle image velocimetry (DPIV), it is possible to quantify the effect of fish fins on water movement and hence to estimate momentum transfer from the animal to the fluid. We used DPIV to visualize water flow in the wake of the pectoral fins of bluegill sunfish (Lepomis macrochirus) swimming at speeds of 0.5-1.5 L s(-)(1), where L is total body length. Velocity fields quantified in three perpendicular planes in the wake of the fins allowed three-dimensional reconstruction of downstream vortex structures. At low swimming speed (0.5 L s(-)(1)), vorticity is shed by each fin during the downstroke and stroke reversal to generate discrete, roughly symmetrical, vortex rings of near-uniform circulation with a central jet of high-velocity flow. At and above the maximum sustainable labriform swimming speed of 1.0 L s(-)(1), additional vorticity appears on the upstroke, indicating the production of linked pairs of rings by each fin. Fluid velocity measured in the vicinity of the fin indicates that substantial spanwise flow during the downstroke may occur as vortex rings are formed. The forces exerted by the fins on the water in three dimensions were calculated from vortex ring orientation and momentum. Mean wake-derived thrust (11.1 mN) and lift (3.2 mN) forces produced by both fins per stride at 0.5 L s(-)(1) were found to match closely empirically determined counter-forces of body drag and weight. Medially directed reaction forces were unexpectedly large, averaging 125 % of the thrust force for each fin. Such large inward forces and a deep body that isolates left- and right-side vortex rings are predicted to aid maneuverability. The observed force balance indicates that DPIV can be used to measure accurately large-scale vorticity in the wake of

  12. Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beams using MLFMA.

    PubMed

    Yang, Minglin; Wu, Yueqian; Ren, Kuan Fang; Sheng, Xinqing

    2016-11-28

    Due to special characteristics of nondiffraction and self reconstruction, the Bessel beams have attracted wide attention in optical trapping and appear to be a dramatic alternative to Gaussian beams. We present in this paper an efficient approach based on the surface integral equations (SIE) to compute the radiation pressure force (RPF) exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beam (HOBVB). The incident beam is described by vector expressions perfectly satisfy Maxwell's equations. The problem is formulated with the combined tangential formulation (CTF) and solved iteratively with the aid of the multilevel fast multipole algorithm (MLFMA). Then RPF is computed by vector flux of the Maxwell's stress tensor over a spherical surface tightly enclosing the particle and analytical expression for electromagnetic fields of incident beam in near region are used. The numerical predictions are compared with the results of the rigorous method for spherical particle to validate the accuracy of the approach. Some numerical results on relative large particles of complex shape, such as biconcave cell-like particles with different geometry parameters are given, showing powerful capability of our approach. These results are expected to provide useful insights into the RPF exerted on complex shaped particles by HOBVB.

  13. Chemical Processing and Transport in the Stratospheric Vortex and Subvortex from Satellite Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Santee, Michelle; Manney, Gloria; MacKenzie, Ian; Chipperfield, Martyn; Feng, Wuhu; Sander, Stanley; Froidevaux, Lucien; Livesey, Nathaniel; Bernath, Peter; Walker, Kaley; Boone, Chris

    A suite of atmospheric composition measurements from the Microwave Limb Sounder (MLS) on NASA's Aura satellite and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada's SCISAT-1 mission is used to study chemical processing in and dispersal of chemically-processed air from the lower stratospheric polar vortices. In particular, interannual and interhemispheric variability in chlorine activation and deactivation are investigated using measurements of ClO, HCl, and ClONO2. Theoretical understanding is assessed by comparing measurements to customized runs of the SLIMCAT 3D chemical transport model. Results are shown from a newly-updated version of the model that incorporates a sophisticated microphysical scheme as a fully-coupled module, allowing polar stratospheric cloud formation and sedimentation to be calculated interactively in full-chemistry simulations. The impact of recently-published ClOOCl absorption cross sections, which yield a stratospheric ClOOCl photolysis rate substantially lower than previous estimates, on the agreement between modelled and measured chlorine species is evaluated. In addition, measurements of HNO3 and O3 and SLIMCAT results are related to mixing diagnostics to track the springtime export of denitrified, ozone-depleted air from the "subvortex", the transition zone (potential temperatures of 350-450 K) between the region above of strong confinement inside the polar vortex and the region below of less restricted exchange with lower-latitude air. Particularly over Antarctica, such mixing of processed air out of the subvortex may significantly affect the composition of the midlatitude lowermost stratosphere and upper troposphere.

  14. Stochastic mechanics of loose boundary particle transport in turbulent flow

    NASA Astrophysics Data System (ADS)

    Dey, Subhasish; Ali, Sk Zeeshan

    2017-05-01

    In a turbulent wall shear flow, we explore, for the first time, the stochastic mechanics of loose boundary particle transport, having variable particle protrusions due to various cohesionless particle packing densities. The mean transport probabilities in contact and detachment modes are obtained. The mean transport probabilities in these modes as a function of Shields number (nondimensional fluid induced shear stress at the boundary) for different relative particle sizes (ratio of boundary roughness height to target particle diameter) and shear Reynolds numbers (ratio of fluid inertia to viscous damping) are presented. The transport probability in contact mode increases with an increase in Shields number attaining a peak and then decreases, while that in detachment mode increases monotonically. For the hydraulically transitional and rough flow regimes, the transport probability curves in contact mode for a given relative particle size of greater than or equal to unity attain their peaks corresponding to the averaged critical Shields numbers, from where the transport probability curves in detachment mode initiate. At an inception of particle transport, the mean probabilities in both the modes increase feebly with an increase in shear Reynolds number. Further, for a given particle size, the mean probability in contact mode increases with a decrease in critical Shields number attaining a critical value and then increases. However, the mean probability in detachment mode increases with a decrease in critical Shields number.

  15. Vortex simulation of reacting shear flow

    NASA Astrophysics Data System (ADS)

    Ghoniem, Ahmed F.

    Issues involved in the vortex simulation of reacting shear flow are discussed. It is shown that maintaining accuracy in the vortex methods requires the application of elaborate vorticity-updating schemes as vortex elements are moved along particle trajectories when shear or a strong strain field is represented. Solutions using 2D and 3D methods are discussed to illustrate some of the most common instabilities encountered in nonreacting and reacting shear flows and to reveal the mechanisms by which the maturation of these instabilities enhance mixing and hence burning in a reacting flow. The transport element method is developed and its application to compute scalar mixing in a shear layer is reviewed. The method is then combined with the vortex method to solve the problem of nonuniform-density shear flow. The results of incompressible reacting flow models are used to examine reaction extinction due to the formation of localized regions of strong strains as instabilities grow into their nonlinear range.

  16. Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  17. Energetic Particle Transport in Strong Compressive Wave Turbulence Near Shocks

    SciTech Connect

    Le Roux, J.A.; Zank, G.P.; Li, G.; Webb, G.M.

    2005-08-01

    Strong interplanetary coronal mass ejection driven shocks are often accompanied by high levels of low frequency compressive wave turbulence. This might require a non-linear kinetic theory approach to properly describe energetic particle transport in their vicinity. We present a non-linear diffusive kinetic theory for suprathermal particle transport and stochastic acceleration along the background magnetic field in strong compressive dynamic wave turbulence to which small-scale Alfven waves are coupled. Our theory shows that the standard cosmic-ray transport equation must be revised for low suprathermal particle energies to accommodate fundamental changes in spatial diffusion (standard diffusion becomes turbulent diffusion) as well as modifications to particle convection, and adiabatic energy changes. In addition, a momentum diffusion term, which generates accelerated suprathermal particle spectra with a hard power law, must be added. Such effective first stage acceleration possibly leads to efficient injection of particles into second stage diffusive shock acceleration as described by standard theory.

  18. The effects of realistic pancake solenoids on particle transport

    SciTech Connect

    Gu, X.; Okamura, M.; Pikin, A.; Fischer, W.; Luo, Y.

    2011-02-01

    Solenoids are widely used to transport or focus particle beams. Usually, they are assumed as being ideal solenoids with a high axial-symmetry magnetic field. Using the Vector Field Opera program, we modeled asymmetrical solenoids with realistic geometry defects, caused by finite conductor and current jumpers. Their multipole magnetic components were analyzed with the Fourier fit method; we present some possible optimized methods for them. We also discuss the effects of 'realistic' solenoids on low energy particle transport. The finding in this paper may be applicable to some lower energy particle transport system design.

  19. NONLINEAR EFFECTS IN PARTICLE TRANSPORT IN STOCHASTIC MAGNETIC FIELDS

    SciTech Connect

    Vlad, M.; Spineanu, F.; Croitoru, A.

    2015-12-10

    Collisional particle transport in stochastic magnetic fields is studied using a semi-analytical method. The aim is to determine the influence of the nonlinear effects that occur in the magnetic field line random walk on particle transport. We show that particle transport coefficients can be strongly influenced by the magnetic line trapping. The conditions that correspond to these nonlinear regimes are determined. We also analyze the effects produced by the space variation of the large-scale magnetic field. We show that an average drift is generated by the gradient of the magnetic field, which strongly increases and reverses its orientation in the nonlinear regime.

  20. Inferring transient particle transport dynamics in live cells.

    PubMed

    Monnier, Nilah; Barry, Zachary; Park, Hye Yoon; Su, Kuan-Chung; Katz, Zachary; English, Brian P; Dey, Arkajit; Pan, Keyao; Cheeseman, Iain M; Singer, Robert H; Bathe, Mark

    2015-09-01

    Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at http://hmm-bayes.org/.

  1. Particle Image Velocimetry Measurements to Evaluate the Effectiveness of Deck-Edge Columnar Vortex Generators on Aircraft Carriers

    NASA Technical Reports Server (NTRS)

    Landman, Drew; Lamar, John E.; Swift, Russell

    2005-01-01

    Candidate passive flow control devices were chosen from a NASA flow visualization study to investigate their effectiveness at improving flow quality over a flat-top carrier model. Flow over the deck was analyzed using a particle image velocimeter and a 1/120th scaled carrier model in a low-speed wind tunnel. Baseline (no devices) flow quality was compared to flow quality from combinations of bow and deck-edge devices at both zero and 20 degrees yaw. Devices included plain flaps and spiral cross-section columnar vortex generators attached in various combinations to the front and sides of the deck. Centerline and cross plane measurements were made with velocity and average turbulence measurements reported. Results show that the bow/deck-edge flap and bow/deck-edge columnar vortex generator pairs reduce flight deck turbulence both at zero yaw and at 20 degrees yaw by a factor of approximately 20. Of the devices tested, the most effective bow-only device appears to be the plain flap.

  2. Towards a Coupled Vortex Particle and Acoustic Boundary Element Solver to Predict the Noise Production of Bio-Inspired Propulsion

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2016-11-01

    The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid dynamics with the noise generation. Such a framework is developed where the fluid motion is modeled with a two-dimensional unsteady boundary element method that includes a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The use of the boundary element method for both the hydrodynamic and acoustic solvers permits dramatic computational acceleration by application of the fast multiple method. The reduced order of calculations due to the fast multipole method allows for greater spatial resolution of the vortical wake per unit of computational time. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. The capability of the coupled solver is demonstrated by analyzing the performance and noise production of an isolated bio-inspired swimmer and of tandem swimmers.

  3. Modulation of the polar vortex by energetic particle precipitation and Quasi-Biennial Oscillation via ozone loss

    NASA Astrophysics Data System (ADS)

    Salminen, Antti; Asikainen, Timo; Maliniemi, Ville; Mursula, Kalevi

    2017-04-01

    Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.

  4. Microstripes for transport and separation of magnetic particles

    PubMed Central

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled selective manipulation and separation of magnetically labelled species. PMID:22655020

  5. Aspect ratio effect on particle transport in turbulent duct flows

    NASA Astrophysics Data System (ADS)

    Noorani, A.; Vinuesa, R.; Brandt, L.; Schlatter, P.

    2016-11-01

    The dynamics of dilute micron-sized spherical inertial particles in turbulent duct flows is studied by means of direct numerical simulations of the carrier phase turbulence with one-way coupled Lagrangian particles. The geometries are a square and a rectangular duct with width-to-height aspect ratio AR of 3 operating at Reτ,c = 360 (based on the centerplane friction velocity and duct half-height). The present study is designed to determine the effect of turbulence-driven secondary motion on the particle dynamics. Our results show that a weak cross-flow secondary motion significantly changes the cross-sectional map of the particle concentration, mean velocity, and fluctuations. As the geometry of the duct is widened from AR = 1 to 3, the secondary vortex on the horizontal wall significantly expands in the spanwise direction, and although the kinetic energy of the secondary flow increases close to the corner, it decays towards the duct centreplane in the AR = 3 case so as the turbulent carrier phase approaches the behavior in spanwise-periodic channel flows, a fact that significantly affects the particle statistics. In the square duct the particle concentration in the viscous sublayer is maximum at the duct centreplane, whereas the maximum is found closer to the corner, at a distance of |z/h| ≈ 1.25 from the centreplane, in the AR = 3 case. Interestingly the centreplane concentration in the rectangular duct is around 3 times lower than that in the square duct. Moreover, a second peak in the accumulation distribution is found right at the corners for both ducts. At this location the concentration increases with particle inertia. The secondary motion changes also the cross-stream map of the particle velocities significantly in comparison to the fluid flow statistics. These directly affect the particle velocity fluctuations such that multiple peaks appear near the duct walls for the particle streamwise and wall-normal velocity fluctuations.

  6. Transport of inertial anisotropic particles under surface gravity waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas

    2016-11-01

    The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.

  7. Perturbation theory for charged-particle transport in one dimension

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Lamkin, S. L.

    1975-01-01

    Perturbation theory, when applied to charged-particle transport, generates a series solution that requires a double quadrature per term. The continuity of higher-order terms leads to numerical evaluation of the series. The high rate of convergence of the series makes the method a practical tool for charged-particle transport problems. The coupling of the neutron component in the case of proton transport in tissue does not greatly alter the rate of convergence. The method holds promise for a practical high-energy proton transport theory.

  8. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil

    2000-01-01

    The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.

  9. Moisture Transport in Silica Gel Particle Beds: I. Theoretical Study

    SciTech Connect

    Pesaran, A. A.; Mills, A. F.

    1986-08-01

    Diffusion mechanisms of moisture within silica gel particles are investigated. It is found that for microporous silica gel surface diffusion is the dominant mechanism of moisture transport, while for macroporous silica gel both Knudsen and surface diffusion are important.

  10. Electrokinetic transport of heterogeneous particles in suspensions

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1993-01-01

    The focus of research over the past nine months had been on a theory for the electrophoresis of slender particles and on trajectory analysis of colloidal doublets rotating in electric fields. Brief summaries of the research are given.

  11. Electrokinetic transport of heterogeneous particles in suspension

    NASA Technical Reports Server (NTRS)

    Velegol, D.; Garoff, Stephen; Anderson, John L.

    1994-01-01

    The Smoluchowski equation for electrophoresis predicts that the electrophoretic velocity of a particle is proportional to its zeta potential but not its size, shape, or orientation. Furthermore, the equation predicts that the rotation rate is identically zero. The Smoluchowski equation fails for heterogeneous particles (i.e., those with nonuniform zeta potentials). Recent theories and experiments show that particles with a dipole moment of zeta potential rotate into alignment with an externally applied electric field. For doublets (particles composed of two spheres) the rotation rate depends on (1) whether the spheres are rigidly rocked or freely rotating, and (2) the gap distance between the spheres. The relative configuration of two coagulated spheres is determined by the colloidal forces of the system. The goal of our research is to use measurements of electrophoretic rotation to determine the gap between two spheres of a colloidal doublet and also to determine whether or not the doublet is rigid.

  12. Heavy Particle Transport in the Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Richter, D. H.

    2016-12-01

    To describe the emission and transport of dust in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission and saltation process with the larger-scale atmospheric uptake and turbulent flux. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large particles can be described in a simplified Eulerian framework such as Monin-Obukhov similarity theory. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow.

  13. Modeling particle transport in downward and upward flows

    NASA Astrophysics Data System (ADS)

    Basha, H. A.; Culligan, P. J.

    2010-07-01

    Experimental data obtained for particle transport in downward and upward flows in smooth and rough porous media are analyzed at various flow rates. The data analysis and interpretation are aided through an analytical model with linear kinetics that assumes two sites for particle deposition within a medium, namely, reversible and irreversible, together with a dual mode of irreversible deposition. The bimodal particle transport model is obtained using the Green's function method and is capable of fitting, with reasonable accuracy, the observed transport and deposition behavior of particles. Approximations for advection-dominated flows are also obtained that could represent a simplified modeling tool. Expressions of the temporal moments are developed and algebraic equations are derived that express the model parameters in terms of the moments of the measured particle concentration distributions. The transport models helped define the relationship of the modeled parameters to flow velocity and media roughness. The fitting results show that the parameters for rough and smooth media vary in a systematic way with the pore fluid velocity. The results also reveal that flow direction has a significant influence on the mode and magnitude of irreversible particle deposition for the conditions investigated. For the same seepage velocity, the rate of particle deposition is greater for upward flows than for downward flows. Moreover, roughness effects increase the irreversible particle deposition in downward flows but have little effect in upward flows.

  14. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  15. Transport in a Trellised Agricultural Canopy: Turbulence and Particle Dispersion

    NASA Astrophysics Data System (ADS)

    Miller, Nathan E.

    Turbulent transport of momentum, scalars, and heavy particles within plant canopies is strongly impacted by the canopy's effect on the flow field in the canopy sub-layer (CSL). Although considerable research has been conducted on momentum and particle transport in and above dense homogeneous plant canopies, relatively little has been performed in perennial trellised canopies which have repetitive inhomogeneities at the scale of the canopy height. Particle transport in such canopies is of great interest due to the increasing use of training systems of this type by growers and due to the multitude of particle types regularly dispersed in these canopies, e.g., fungal spores and droplets sprayed by growers. The focus of this work is on the transport of momentum and fungal-spore-sized particles in a trellised vineyard canopy. Due to the discrete two-dimensional nature of the vineyard canopy, CSL flow characteristics differ from those seen in homogeneous canopies and change as a function of the above-canopy wind direction. To determine the specifics of how the trellised canopy geometry and local meteorological conditions combine to determine the characteristics of momentum and particle transport under all possible wind directions, multiple field campaigns were conducted in a vineyard in Oregon. During each of these campaigns, extensive meteorological data were collected while particles were released into the canopy and particle concentrations were sampled at downwind locations. The meteorological and plume data showed that the canopy exerted inhomogeneous nonisotropic drag, caused channeling of the flow along the aisles, and led to persistent coherent flow effects. The combination of these effects led to momentum statistics varying with wind direction, particle transport being biased to along the rows, and plume shapes being more complicated than those seen in homogeneous canopies or freestream flows.

  16. Human Cough as a Two-Stage Jet and Its Role in Particle Transport

    PubMed Central

    Li, Yuguo

    2017-01-01

    The human cough is a significant vector in the transmission of respiratory diseases in indoor environments. The cough flow is characterized as a two-stage jet; specifically, the starting jet (when the cough starts and flow is released) and interrupted jet (after the source supply is terminated). During the starting-jet stage, the flow rate is a function of time; three temporal profiles of the exit velocity (pulsation, sinusoidal and real-cough) were investigated in this study, and our results showed that the cough flow’s maximum penetration distance was in the range of a 50.6–85.5 opening diameter (D) under our experimental conditions. The real-cough and sinusoidal cases exhibited greater penetration ability than the pulsation cases under the same characteristic Reynolds number (Rec) and normalized cough expired volume (Q/AD, with Q as the cough expired volume and A as the opening area). However, the effects of Rec and Q/AD on the maximum penetration distances proved to be more significant; larger values of Rec and Q/AD reflected cough flows with greater penetration distances. A protocol was developed to scale the particle experiments between the prototype in air, and the model in water. The water tank experiments revealed that although medium and large particles deposit readily, their maximum spread distance is similar to that of small particles. Moreover, the leading vortex plays an important role in enhancing particle transport. PMID:28046084

  17. Transport of finite size particles in confined narrow channels: Diffusion, coherence, and particle separation

    NASA Astrophysics Data System (ADS)

    Ai, Bao-Quan; Wu, Jian-Chun

    2013-07-01

    Transport of the finite size spherical Brownian particles is investigated in confined narrow channels with varying cross-section width. Applying the Fick-Jacobs approximation, we obtain the expressions of the particle current, the effective diffusion coefficient, and the coherence level of Brownian transport (the Péclet number). For the case of the biased constant force, the dependencies of the nonlinear mobility, the effective diffusion coefficient, and the Péclet number on the particle size exhibit striking behaviors. The Péclet number decreases with increasing the radius of the particle which shows that the big sizes of the particles reduce the coherence level of Brownian transport. There exists an optimized value of the radius at which the effective diffusion coefficient is maximal. For the case of the asymmetric unbiased force, due to the competition between the spatial asymmetry and the temporal asymmetry, the transport directions of the particles depend very sensitively on the size of the particle. Particles larger than a given threshold radius move to the left, whereas particles smaller than that move to the right. Therefore, one can separate particles of different radii and make them move towards opposite directions.

  18. Parameterization of Submesoscale Particle Transport in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haza, A. C.; Ozgokmen, T. M.; Griffa, A.; Poje, A. C.; Hogan, P. J.; Jacobs, G. A.

    2014-12-01

    Submesoscale flows have a significant impact on the transport at their own scales, yet require extensive data sets and numerical computations, making them challenging to approach deterministically. A recent Lagrangian parametrization to correct particle transport at the submesoscales is implemented to an eddy permitting ocean model at 1/25 degree grid for the surface circulation of the Gulf of Mexico. It combines mesoscale transport from the deterministic Lagrangian Coherent Structures (LCS) and statistical Lagrangian subgridscale (LSGS) models over the submesoscale range. Comparison to a 1km submesoscale-permitting ocean model shows a significant improvement of the scale-dependent relative dispersion and particle distribution.

  19. Models of motor-assisted transport of intracellular particles.

    PubMed Central

    Smith, D A; Simmons, R M

    2001-01-01

    One-dimensional models are presented for the macroscopic intracellular transport of vesicles and organelles by molecular motors on a network of aligned intracellular filaments. A motor-coated vesicle or organelle is described as a diffusing particle binding intermittently to filaments, when it is transported at the motor velocity. Two models are treated in detail: 1) a unidirectional model, where only one kind of motor is operative and all filaments have the same polarity; and 2) a bidirectional model, in which filaments of both polarities exist (for example, a randomly polarized actin network for myosin motors) and/or particles have plus-end and minus-end motors operating on unipolar filaments (kinesin and dynein on microtubules). The unidirectional model provides net particle transport in the absence of a concentration gradient. A symmetric bidirectional model, with equal mixtures of filament polarities or plus-end and minus-end motors of the same characteristics, provides rapid transport down a concentration gradient and enhanced dispersion of particles from a point source by motor-assisted diffusion. Both models are studied in detail as a function of the diffusion constant and motor velocity of bound particles, and their rates of binding to and detachment from filaments. These models can form the basis of more realistic models for particle transport in axons, melanophores, and the dendritic arms of melanocytes, in which networks of actin filaments and microtubules coexist and motors for both types of filament are implicated. PMID:11159382

  20. Dissipative particle dynamics model for colloid transport in porous media

    SciTech Connect

    Pan, W.; Tartakovsky, A. M.

    2013-08-01

    We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.

  1. Isotope effects on particle transport in the Compact Helical System

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Okamura, S.; Minami, T.; Ida, K.; Mikkelsen, D. R.; Osakabe, M.; Yoshimura, Y.; Isobe, M.; Morita, S.; Matsuoka, K.

    2016-05-01

    The hydrogen isotope effects of particle transport were studied in the hydrogen and deuterium dominant plasmas of the Compact Helical System (CHS). Longer decay time of electron density after the turning-off of the gas puffing was observed in the deuterium dominant plasma suggesting that the recycling was higher and/or the particle confinement was better in the deuterium dominant plasma. Density modulation experiments showed the quantitative difference of the particle transport coefficients. Density was scanned from 0.8  ×  1019 m-3 to 4  ×  1019 m-3 under the same magnetic field and almost the same heating power. In the low density regime (line averaged density  <  2.5  ×  1019 m-3), the lower particle diffusivity and the larger inwardly directed core convection velocity was observed in the deuterium dominant plasma, while in the high density regime (line averaged density  >2.5  ×  1019 m-3) no clear difference was observed. This result indicates that the isotope effects of particle transport exist only in the low density regime. Comparison with neoclassical transport coefficients showed that the difference of particle transport is likely to be due to the difference of turbulence driven anomalous transport. Linear character of the ion scale turbulence was studied. The smaller linear growth rate qualitatively agreed with the reduced particle transport in the deuterium dominant plasma of the low density regime.

  2. Electric vortex in MHD flow

    SciTech Connect

    Garcia, M.

    1995-05-01

    An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low {beta} flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion.

  3. Intrinsic particle-induced lateral transport in microchannels

    PubMed Central

    Amini, Hamed; Sollier, Elodie; Weaver, Westbrook M.; Di Carlo, Dino

    2012-01-01

    In microfluidic systems at low Reynolds number, the flow field around a particle is assumed to maintain fore-aft symmetry, with fluid diverted by the presence of a particle, returning to its original streamline downstream. This current model considers particles as passive components of the system. However, we demonstrate that at finite Reynolds number, when inertia is taken into consideration, particles are not passive elements in the flow but significantly disturb and modify it. In response to the flow field, particles translate downstream while rotating. The combined effect of the flow of fluid around particles, particle rotation, channel confinement (i.e., particle dimensions approaching those of the channel), and finite fluid inertia creates a net recirculating flow perpendicular to the primary flow direction within straight channels that resembles the well-known Dean flow in curved channels. Significantly, the particle generating this flow remains laterally fixed as it translates downstream and only the fluid is laterally transferred. Therefore, as the particles remain inertially focused, operations can be performed around the particles in a way that is compatible with downstream assays such as flow cytometry. We apply this particle-induced transfer to perform fluid switching and mixing around rigid microparticles as well as deformable cells. This transport phenomenon, requiring only a simple channel geometry with no external forces to operate, offers a practical approach for fluid transfer at high flow rates with a wide range of applications, including sample preparation, flow reaction, and heat transfer. PMID:22761309

  4. Toward a three-dimensional viscous vortex particle method for numerical investigations of bio-inspired locomotion

    NASA Astrophysics Data System (ADS)

    Eldredge, Jeff

    2008-11-01

    Biological mechanics of aerial and aquatic locomotion are characterized by the reaction force generated by the fluid against highly deforming structures and the resultant vortical wake produced by this interaction. These two features should be central to a high-fidelity computational tool devoted to exploration of bio-inspired mechanics. Motivated by such problems, we present the development of a viscous vortex particle method with coupled body dynamics. The previously developed and validated tool for two-dimensional problems is briefly reviewed. The interaction between vorticity generation, reaction force, and body dynamics, which constitutes the fluid-structure coupling in the method, is discussed, and the capabilities of the method are demonstrated on the passive propulsion of a fish-like system in the wake of an obstacle. The method is extended to three-dimensional problems, and the various components of the solver are highlighted. The core routines of the three-dimensional tool make use of the Parallel Particle-Mesh library, developed by Koumoutsakos and co-workers (J. Comput. Phys., 215, 2006). The new method is demonstrated with preliminary results of a simple model for a dolphin tail with flexible flukes.

  5. Vertical Axis Wind Turbine flows using a Vortex Particle-Mesh method: from near to very far wakes

    NASA Astrophysics Data System (ADS)

    Backaert, Stephane; Chatelain, Philippe; Winckelmans, Gregoire; Kern, Stefan; Maeder, Thierry; von Terzi, Dominic; van Rees, Wim; Koumoutsakos, Petros

    2012-11-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. The vorticity-velocity formulation of the NS equations is treated in a hybrid way: particles handle advection while the mesh is used to evaluate the differential operators and for the fast Poisson solvers (here a Fourier-based solver which simultaneously allows for unbounded directions and inlet/outlet boundaries). Both discretizations communicate through high order interpolation. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed, with a relatively fine resolution (128 and 160 grid points per blade) and for computational domains extending up to 6 D and 14 D downstream of the rotor. The wake complex development is captured in details, from the blades to the near wake coherent vortices, to the transitional ones, to the fully developed turbulent far wake. Mean flow statistics in planes (horizontal, vertical and cross) are also presented. A case with a realistic turbulent wind inflow is also considered. The physics are more complex than for HAWT flows. Computational resources provided by a PRACE award.

  6. Stochastic Simulation of Lagrangian Particle Transport in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Sun, Guangyuan

    This dissertation presents the development and validation of the One Dimensional Turbulence (ODT) multiphase model in the Lagrangian reference frame. ODT is a stochastic model that captures the full range of length and time scales and provides statistical information on fine-scale turbulent-particle mixing and transport at low computational cost. The flow evolution is governed by a deterministic solution of the viscous processes and a stochastic representation of advection through stochastic domain mapping processes. The three algorithms for Lagrangian particle transport are presented within the context of the ODT approach. The Type-I and -C models consider the particle-eddy interaction as instantaneous and continuous change of the particle position and velocity, respectively. The Type-IC model combines the features of the Type-I and -C models. The models are applied to the multi-phase flows in the homogeneous decaying turbulence and turbulent round jet. Particle dispersion, dispersion coefficients, and velocity statistics are predicted and compared with experimental data. The models accurately reproduces the experimental data sets and capture particle inertial effects and trajectory crossing effect. A new adjustable particle parameter is introduced into the ODT model, and sensitivity analysis is performed to facilitate parameter estimation and selection. A novel algorithm of the two-way momentum coupling between the particle and carrier phases is developed in the ODT multiphase model. Momentum exchange between the phases is accounted for through particle source terms in the viscous diffusion. The source term is implemented in eddy events through a new kernel transformation and an iterative procedure is required for eddy selection. This model is applied to a particle-laden turbulent jet flow, and simulation results are compared with experimental measurements. The effect of particle addition on the velocities of the gas phase is investigated. The development of

  7. Supersymmetries of the spin-1/2 particle in the field of magnetic vortex, and anyons

    SciTech Connect

    Correa, Francisco; Falomir, Horacio; Plyushchay, Mikhail S.

    2010-12-15

    The quantum non-relativistic spin-1/2 planar systems in the presence of a perpendicular magnetic field are known to possess the N = 2 supersymmetry. We consider such a system in the field of a magnetic vortex, and find that there are just two self-adjoint extensions of the Hamiltonian that are compatible with the standard N = 2 supersymmetry. We show that only in these two cases one of the subsystems coincides with the original spinless Aharonov-Bohm model and comes accompanied by the super-partner Hamiltonian which allows a singular behavior of the wave functions. We find a family of additional, nonlocal integrals of motion and treat them together with local supercharges in the unifying framework of the tri-supersymmetry. The inclusion of the dynamical conformal symmetries leads to an infinitely generated superalgebra, that contains several representations of the superconformal osp(2 vertical bar 2) symmetry. We present the application of the results in the framework of the two-body model of identical anyons. The nontrivial contact interaction and the emerging N = 2 linear and nonlinear supersymmetries of the anyons are discussed.

  8. Particle transport as a result of Resonant Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Mordijck, Saskia

    This thesis makes contributes to field of plasma physics with a particular focus on particle transport as a result of resonant magnetic perturbations (RPMs) in magnetic confinement devices (Tokamaks). RPMs have proven to be a useful technique to suppress edge localized modes (ELMs) that under certain conditions can damage the confinement device. In order to suppress ELMs, these magnetic perturbations are created to be be resonant at the edge of the plasma (i.e., by selecting an n = 3 spectrum and a q95 = 3.6). However, RMPs lead to a changes in the density profile, not only in the pedestal area, but also deeper in the plasma core, limiting plasma performance. As a first contribution in this thesis we carefully investigate density pump-out, and show that it is the result of a change in particle transport (as opposed to a change in neutral fueling). A second contribution of this work is the introduction of a weighted magnetic diffusion coefficient (DOFL) that allows us to make quantitative comparisons between experimental datasets from different Tokamak devices. By comparing DOFL for MAST L-modes and DIII-D H-modes, we find that both machines exhibit a very different density pump-out for similar DOFL values. Since turbulent particle transport is very different for L and H-modes, we investigate, as a third contribution of this work, the influence of RMPs on turbulent particle transport in both MAST and DIII-D. We find that while an increase in turbulent transport on MAST correlates well with density pump-out, no meaningful correlation was found for pedestal density changes in DIII-D. Therefore, as a final contribution in this thesis, we investigate how convective particle transport parallel to the magnetic field alters the density profiles. We compare the increase in convective parallel particle transport and find good agreement with experimental density profiles.

  9. Transport effects due to particle erosion mechanisms. [in planetary rings

    NASA Technical Reports Server (NTRS)

    Durisen, R. H.

    1984-01-01

    Various processes can erode the surfaces of planetary ring particles. Recent estimates for Saturn's rings suggest that a centimeter-thick surface layer could be eroded from an isolated ring particle in less than 1000 yr by meteoroid impacts alone. The atoms, molecules, and chips ejected from ring particles by erosion will arc across the rings along elliptical orbits. For moderate ring optical depths, ejecta will be absorbed or inelastically scattered upon reintersecting the ring plane. Continuous exchange of ejecta between different ring regions can lead to net radial transport of mass and angular momentum, to changes in particle sizes, and to the buildup of chip regoliths several centimeters deep on the surfaces of ring particles. Because most of the erosional ejecta are not lost but merely exchanged over short distances, the net erosion rate of the surfaces of these ring particles will be much less than that estimated for an isolated particle. Numerical solutions for time-dependent ballistic transport under various assumptions suggest pile-up and spillover effects especially near regions of preexisting high optical depth contrast, such as the inner edges of A and B rings. Global redistribution could be significant over billions of years. Other features in planetary ring systems may be influenced by ballistic transport.

  10. Airflow and Particle Transport in the Human Respiratory System

    NASA Astrophysics Data System (ADS)

    Kleinstreuer, C.; Zhang, Z.

    2010-01-01

    Airflows in the nasal cavities and oral airways are rather complex, possibly featuring a transition to turbulent jet-like flow, recirculating flow, Dean's flow, vortical flows, large pressure drops, prevailing secondary flows, and merging streams in the case of exhalation. Such complex flows propagate subsequently into the tracheobronchial airways. The underlying assumptions for particle transport and deposition are that the aerosols are spherical, noninteracting, and monodisperse and deposit upon contact with the airway surface. Such dilute particle suspensions are typically modeled with the Euler-Lagrange approach for micron particles and in the Euler-Euler framework for nanoparticles. Micron particles deposit nonuniformly with very high concentrations at some local sites (e.g., carinal ridges of large bronchial airways). In contrast, nanomaterial almost coats the airway surfaces, which has implications of detrimental health effects in the case of inhaled toxic nanoparticles. Geometric airway features, as well as histories of airflow fields and particle distributions, may significantly affect particle deposition.

  11. Turbulent transport of alpha particles in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.

    2017-03-01

    We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.

  12. Controlled particle transport in a plasma chamber with striped electrode

    NASA Astrophysics Data System (ADS)

    Jiang, Ke; Li, Yang-fang; Shimizu, T.; Konopka, U.; Thomas, H. M.; Morfill, G. E.

    2009-12-01

    The controlled transport of micrometer size dust particles in a parallel-plate radio frequency discharge has been investigated. The lower stainless steel electrode consisted of 100 independently controllable electrical metal stripes. The voltage signals on these stripes were modulated, causing traveling plasma sheath distortions. Because the particles trapped in local potential wells moved according to the direction of the distortion, the transport velocity could be actively controlled by adjusting frequencies and phase shifts of the applied periodic voltage signals. To investigate the detailed principle of this transport, molecular dynamic simulations was performed to reproduce the observations with the plasma background conditions calculated by separated particle-in-cell simulations for the experimental parameters. The findings will help develop novel technologies for investigating large-scale complex plasma systems and techniques for achieving clean environments in plasma processing reactors.

  13. Controlled particle transport in a plasma chamber with striped electrode

    SciTech Connect

    Jiang Ke; Li Yangfang; Shimizu, T.; Konopka, U.; Thomas, H. M.; Morfill, G. E.

    2009-12-15

    The controlled transport of micrometer size dust particles in a parallel-plate radio frequency discharge has been investigated. The lower stainless steel electrode consisted of 100 independently controllable electrical metal stripes. The voltage signals on these stripes were modulated, causing traveling plasma sheath distortions. Because the particles trapped in local potential wells moved according to the direction of the distortion, the transport velocity could be actively controlled by adjusting frequencies and phase shifts of the applied periodic voltage signals. To investigate the detailed principle of this transport, molecular dynamic simulations was performed to reproduce the observations with the plasma background conditions calculated by separated particle-in-cell simulations for the experimental parameters. The findings will help develop novel technologies for investigating large-scale complex plasma systems and techniques for achieving clean environments in plasma processing reactors.

  14. Drift Wave Test Particle Transport in Reversed Shear Profile

    SciTech Connect

    Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.

    1998-06-01

    Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated.

  15. Particle transport in unsaturated fractured chalk under arid conditions.

    PubMed

    Weisbrod, Noam; Dahan, Ofer; Adar, Eilon M

    2002-05-01

    A series of field and laboratory experiments were conducted to study the mechanisms of particle detachment and transport from fractures in vadose chalk. Experiments of intermittent flow events along fracture surfaces were carried out in the laboratory. In the field, water was percolated from land surface via a discrete fracture into a compartmental sampler installed inside a horizontal corehole located I m below the surface. The mass, size distribution, and composition of the particles drained from the fracture voids were examined along with flow rates and salt dissolution. Two boreholes penetrating the underlying saturated zone were sampled and analyzed for colloidal concentration and composition. Most of the particle and solute release at the drained effluents occurred during the first several hours of flow, but erratic pulses of particles were still observed after long periods of time. Most of the detached particles had a mean diameter of >2 microm, while the mobile colloidal phase in the groundwater had a mean diameter of approximately 1 microm. Mineralogical composition of the groundwater colloids and the particles detached from the upper vadose fracture were similar. Laboratory observations demonstrated the importance of the existence of a coating layer, made of weathered particles and salts, on particle detachment. The results of this study suggest that: (1) particle detachment causes flow-rate variability in the unsaturated fracture; (2) the mechanisms of particle detachment and salt dissolution within the fracture are linked: and (3) although most of the detached particles are large and likely to accumulate inside fractures, some colloidal particles also eroded from the fracture void and are likely to be transported to the groundwater.

  16. Vectorization of Monte Carlo particle transport

    SciTech Connect

    Burns, P.J.; Christon, M.; Schweitzer, R.; Lubeck, O.M.; Wasserman, H.J.; Simmons, M.L.; Pryor, D.V. . Computer Center; Los Alamos National Lab., NM; Supercomputing Research Center, Bowie, MD )

    1989-01-01

    Fully vectorized versions of the Los Alamos National Laboratory benchmark code Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber 205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance measurements of the vector and scalar implementations were modeled in a modified Amdahl's Law that accounts for additional data motion in the vector code. The performance and implementation strategy of the vector codes are related to architectural features of each machine. Speedups between fifteen and eighteen for Cyber 205/ETA-10 architectures, and about nine for CRAY X-MP/Y-MP architectures are observed. The best single processor execution time for the problem was 0.33 seconds on the ETA-10G, and 0.42 seconds on the CRAY Y-MP. 32 refs., 12 figs., 1 tab.

  17. Optimization of magnetic switches for single particle and cell transport

    SciTech Connect

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B.; Murdoch, David M.; Kim, CheolGi

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  18. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed.

  19. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination

    PubMed Central

    Ambrosio, Antonio; Marrucci, Lorenzo; Borbone, Fabio; Roviello, Antonio; Maddalena, Pasqualino

    2012-01-01

    When an azobenzene-containing polymer film is exposed to non-uniform illumination, a light-induced mass migration process may be induced, leading to the formation of relief patterns on the polymer-free surface. Despite many years of research effort, several aspects of this phenomenon remain poorly understood. Here we report the appearance of spiral-shaped relief patterns on the polymer film under the illumination of focused Laguerre–Gauss beams with helical wavefronts and an optical vortex at their axis. The induced spiral reliefs are sensitive to the vortex topological charge and to the wavefront handedness. These findings are unexpected because the doughnut-shaped intensity profile of Laguerre–Gauss beams contains no information about the wavefront handedness. We propose a model that explains the main features of this phenomenon through the surface-mediated interference of the longitudinal and transverse components of the optical field. These results may find applications in optical nanolithography and optical-field nanoimaging. PMID:22871808

  20. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination.

    PubMed

    Ambrosio, Antonio; Marrucci, Lorenzo; Borbone, Fabio; Roviello, Antonio; Maddalena, Pasqualino

    2012-01-01

    When an azobenzene-containing polymer film is exposed to non-uniform illumination, a light-induced mass migration process may be induced, leading to the formation of relief patterns on the polymer-free surface. Despite many years of research effort, several aspects of this phenomenon remain poorly understood. Here we report the appearance of spiral-shaped relief patterns on the polymer film under the illumination of focused Laguerre-Gauss beams with helical wavefronts and an optical vortex at their axis. The induced spiral reliefs are sensitive to the vortex topological charge and to the wavefront handedness. These findings are unexpected because the doughnut-shaped intensity profile of Laguerre-Gauss beams contains no information about the wavefront handedness. We propose a model that explains the main features of this phenomenon through the surface-mediated interference of the longitudinal and transverse components of the optical field. These results may find applications in optical nanolithography and optical-field nanoimaging.

  1. Interactive design environment transportation channel of relativistic charged particle beams

    NASA Astrophysics Data System (ADS)

    Osadchuk, I. O.; Averyanov, G. P.; Budkin, V. A.

    2017-01-01

    Considered a modern implementation of a computer environment for the design of channels of transportation of high-energy charged particle beams. The environment includes a software package for the simulation of the dynamics of charged particles in the channel, operating means for changing parameters of the channel, the elements channel optimization and processing of the output characteristics of the beam with the graphical output the main output parameters.

  2. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    NASA Astrophysics Data System (ADS)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  3. Transport coefficients of soft repulsive particle fluids

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.; Brańka, A. C.

    2008-03-01

    Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, D, and shear viscosity, ηs, of soft-sphere fluids, in which the particles interact through the soft-sphere pair potential, phi(r) = epsilon(σ/r)n, where n measures the steepness or stiffness of the potential, epsilon and σ are a characteristic energy and distance, respectively. The simulations were carried out on monodisperse systems for a range of n values from the hard-sphere (n\\to \\infty ) limit down to n = 4 over a range of densities. An ideal glass transition value was estimated from the limit where D and \\eta_{\\mathrm {s}}^{-1}\\to 0 for each value of n. Nucleation of the crystalline phase was found to intervene prior to the formation of the glass itself, as has been found previously for hard spheres (i.e. n\\to \\infty ). With increasing softness the glass transition moves further within the solid part of the phase diagram, as predicted by Cardenas and Tosi (2005 Phys. Lett. A 336 423), although the volume fractions at the glass transition estimated by the current procedure here are systematically lower than the predictions of that study.

  4. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2000-04-07

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone.

  5. Controlling the structure and dynamics of magnetoresponsive particle suspensions for enhanced transport phenomena

    NASA Astrophysics Data System (ADS)

    Solis, Kyle J.

    The work contained herein describes the use of various magnetic fields to control the structure and dynamics of magnetic particle suspensions, with the practical aim of enhancing momentum, heat, and mass transport. The magnetic fields are often multiaxial and can consist of up to three orthogonal components that may be either static (dc), time-dependent (ac), or some combination thereof. The magnetic particles are composed of a ferromagnetic material---such as iron, nickel, cobalt, or Permalloy---and can exist in a variety of shapes, including spheres, platelets, and rods. The shape of the particles is particularly important, as this can determine the type of behavior the suspension exhibits and can strongly affect the efficacy of various transport properties. The continuous phase can be almost any fluid so long as it possesses a viscosity that allows the particles to orient and aggregate in response to the applied field. Additionally, if the liquid is polymerizable (e.g., an epoxy system), then composite materials with particular, field-directed particle assemblies can be created. Given the many combinations of various particles, suspending fluids, and magnetic fields, a vast array of behavior is possible: the formation of anisotropic particle structures for directed heat transport for use as advanced thermal interface materials; the stimulation of emergent dynamics in platelet suspensions, which give rise to field-controllable flow lattices; and the creation of vortex fluids that possess a uniform torque density, enabling such strange behaviors as active wetting, a negative viscosity and striking biomimetic dynamics. Because the applied fields used to produce many of these phenomena are uniform and modest in strength, such adaptive fluids open up the possibility of tuning the degree of mixing or heat/mass transfer for specific operating conditions in a number of processes, ranging from the microscale to the industrial scale. Moreover, the very nature of magnetism

  6. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    PubMed

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.

  7. [alpha]-particle transport-driven current in tokamaks

    SciTech Connect

    Heikkinen, J.A. ); Sipilae, S.K. )

    1995-03-01

    It is shown that the radial transport of fusion-born energetic [alpha] particles, induced by electrostatic waves traveling in one poloidal direction, is directly connected to a net momentum of [alpha] particles in the toroidal direction in tokamaks. Because the momentum change is almost independent of toroidal velocity, the energy required for the momentum generation remains small on an [alpha]-particle population sustained by an isotropic time-independent source. By numerical toroidal Monte Carlo calculations it is shown that the current carried by [alpha] particles in the presence of intense well penetrated waves can reach several mega-amperes in reactor-sized tokamaks. The current obtained can greatly exceed the neoclassical bootstrap current of the [alpha] particles.

  8. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation.

    PubMed

    Bomphrey, Richard J; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-12-07

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.

  9. Coupling of a compressible vortex particle-mesh method with a near-body compressible discontinuous Galerkin solver

    NASA Astrophysics Data System (ADS)

    Parmentier, Philippe; Winckelmans, Gregoire; Chatelain, Philippe; Hillewaert, Koen

    2015-11-01

    A hybrid approach, coupling a compressible vortex particle-mesh method (CVPM, also with efficient Poisson solver) and a high order compressible discontinuous Galerkin Eulerian solver, is being developed in order to efficiently simulate flows past bodies; also in the transonic regime. The Eulerian solver is dedicated to capturing the anisotropic flow structures in the near-wall region whereas the CVPM solver is exploited away from the body and in the wake. An overlapping domain decomposition approach is used. The Eulerian solver, which captures the near-body region, also corrects the CVPM solution in that region at every time step. The CVPM solver, which captures the region away from the body and the wake, also provides the outer boundary conditions to the Eulerian solver. Because of the coupling, a boundary element method is also required for consistency. The approach is assessed on typical 2D benchmark cases. Supported by the Fund for Research Training in Industry and Agriculture (F.R.I.A.).

  10. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  11. Approximation of the transport equation by a weighted particle method

    SciTech Connect

    Mas-Gallic, S.; Poupaud, F.

    1988-08-01

    We study a particle method for numerically solving a model equation for the neutron transport. We present the method and develop the theoretical convergence analysis. We prove the stability and the convergence of the method in L/sup infinity/. Some computational test results are given.

  12. Probing cytoskeleton dynamics by intracellular particle transport analysis

    NASA Astrophysics Data System (ADS)

    Götz, M.; Hodeck, K. F.; Witzel, P.; Nandi, A.; Lindner, B.; Heinrich, D.

    2015-07-01

    All cellular functions arise from the transport of molecules through a heterogeneous, highly dynamic cell interior for intracellular signaling. Here, the impact of intracellular architecture and cytoskeleton dynamics on transport processes is revealed by high-resolution single particle tracking within living cells, in combination with time-resolved local mean squared displacement (I-MSD) analysis. We apply the I-MSD analysis to trajectories of 200 nm silica particles within living cells of Dictyostelium discoideum obtained by high resolution spinning disc confocal microscopy with a frame rate of 100 fps and imaging in one fixed focal plane. We investigate phases of motor-driven active transport and subdiffusion, normal diffusion, as well as superdiffusion with high spatial and temporal resolution. Active directed intracellular motion is attributed to microtubule associated molecular motor driven transport with average absolute velocities of 2.8 μm s-1 for 200 nm diameter particles. Diffusion processes of these particles within wild-type cells are found to exhibit diffusion constants ranging across two orders of magnitude from subdiffusive to superdiffusive behavior. This type of analysis might prove of ample importance for medical applications, like targeted drug treatment of cells by nano-sized carriers or innovative diagnostic assays.

  13. MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS

    EPA Science Inventory

    MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS. Jung-il Choi*, Center for Environmental Medicine, University of North Carolina, Chapel Hill, NC 27599; C. S. Kim, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711

    Partic...

  14. MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS

    EPA Science Inventory

    MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS. Jung-il Choi*, Center for Environmental Medicine, University of North Carolina, Chapel Hill, NC 27599; C. S. Kim, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711

    Partic...

  15. Modeling transport and aggregation of volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Costa, Antonio; Folch, Arnau; Macedonio, Giovanni; Durant, Adam

    2010-05-01

    A complete description of ash aggregation processes in volcanic clouds is an very arduous task and the full coupling of ash transport and ash aggregation models is still computationally prohibitive. A large fraction of fine ash injected in the atmosphere during explosive eruptions aggregate because of complex interactions of surface liquid layers, electrostatic forces, and differences in settling velocities. The formation of aggregates of size and density different from those of the primary particles dramatically changes the sedimentation dynamics and results in lower atmospheric residence times of ash particles and in the formation of secondary maxima of tephra deposit. Volcanic ash transport models should include a full aggregation model accounting for all particle class interaction. However this approach would require prohibitive computational times. Here we present a simplified model for wet aggregation that accounts for both atmospheric and volcanic water transport. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average efficiencies factors, and collision frequency functions accounting for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, such as the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. Moreover, understanding aggregation processes in volcanic clouds will contribute to mitigate the risks related with volcanic ash transport and sedimentation.

  16. Linear kinetic theory and particle transport in stochastic mixtures

    SciTech Connect

    Pomraning, G.C.

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  17. Particle transport and flow modification in planar temporally evolving laminar mixing layers. I. Particle transport under one-way coupling

    NASA Astrophysics Data System (ADS)

    Narayanan, Chidambaram; Lakehal, Djamel

    2006-09-01

    Simulations of two-dimensional, particle-laden mixing layers were performed for particles with Stokes numbers of 0.3, 0.6, 1, and 2 under the assumption of one-way coupling using the Eulerian-Lagrangian method; two-way coupling is addressed in Part II. Analysis of interphase momentum transfer was performed in the Eulerian frame of reference by looking at the balance of fluid-phase mean momentum, mean kinetic energy, modal kinetic energy, and particle-phase mean momentum. The differences in the dominant mechanisms of vertical transport of streamwise momentum between the fluid and particle phases is clearly brought out. In the fluid phase, growth of the mixing layer is due to energy transfer from the mean flow to the unstable Kelvin-Helmholtz modes, and transport of mean momentum by these modes. In contrast, in the particle phase, the primary mechanism of vertical transport of streamwise momentum is convection due to the mean vertical velocity induced by the centrifuging of particles by the spanwise Kelvin-Helmholtz vortices. Although the drag force and the particle-phase modal stress play an important role in the early stages of the evolution of the mixing layer, their role is shown to decrease during the pairing process. After pairing, the particle-phase mean streamwise momentum balance is accounted for by the convection and drag force term. The particle-phase modal stress term is shown to be strongly connected to the fluid phase modal stress with a Stokes-number-dependent time lag in its evolution.

  18. The Effect of Particle Density on Aeolian Transport

    NASA Technical Reports Server (NTRS)

    Williams, S. H.; Greeley, R.

    1985-01-01

    A set of experiments using a wide range of particle densities was performed in an open-circuit, terrestrial-atmospheric-pressure wind tunnel at Arizona State University. The results show that saltation flux equations derived for typical geologic material overpredict the flux of low-density particles. Walnut shells (approximately 1.1 g/cc) were used in the experiment and correspond to volcanic ash or ice. Less mass is transported by the wind in the case of low particle density because the style of transport is different. There is a direct, counter-intuitive relationship between particle density and transport height. Measurements of the vertical distribution of material show that the low-density walnut shells travel in a zone within 10 cm of the surface while high-density (approximately 4.5 g/cc) chromite particles travel as 50 cm. Furthermore, the overall saltation rate of the chromite is approximately four times greater than the walnut shells at the same freestream wind speed, even though the wind is much further above threshold for the walnut shells.

  19. Holographic particle velocimetry - A 3D measurement technique for vortex interactions, coherent structures and turbulence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hussain, Fazle

    1991-10-01

    To understand the topology and dynamics of coherent structures (CS), the interactions of CS with fine-scale turbulence, and the effects of CS on entrainment, mixing and combustion, experimental tools are needed that can measure velocity (preferably vorticity) vector fields in both 3D space and time. While traditional measurement techniques are not able to serve this purpose, holographic particle velocimetry (HPV) appears to be promising. In a demonstration experiment, the instantaneous 3D velocity vector fields in some simple vortical flows have been obtained using the HPV technique. In this preliminary report, the principles of the HPV technique are illustrated and the key issues in its implementation are discussed.

  20. Origin and transport of high energy particles in the galaxy

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1987-01-01

    The origin, confinement, and transport of cosmic ray nuclei in the galaxy was studied. The work involves interpretations of the existing cosmic ray physics database derived from both balloon and satellite measurements, combined with an effort directed towards defining the next generation of instruments for the study of cosmic radiation. The shape and the energy dependence of the cosmic ray pathlength distribution in the galaxy was studied, demonstrating that the leaky box model is not a good representation of the detailed particle transport over the energy range covered by the database. Alternative confinement methods were investigated, analyzing the confinement lifetime in these models based upon the available data for radioactive secondary isotopes. The source abundances of several isotopes were studied using compiled nuclear physics data and the detailed transport calculations. The effects of distributed particle acceleration on the secondary to primary ratios were investigated.

  1. Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models

    USGS Publications Warehouse

    Konikow, L.F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.

  2. Applying dispersive changes to Lagrangian particles in groundwater transport models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.

  3. Particle Dynamics in Asymmetry-Induced Transport: a Computational Study

    NASA Astrophysics Data System (ADS)

    Eggleston, D. L.

    2005-10-01

    We have developed a simple computer code as an aid to resolving the discrepanies between our experimentsootnotetextD.L. Eggleston and B. Carrillo, Phys. Plasmas 10, 1308 (2003). and the theoryootnotetextD.L. Eggleston and T.M. O'Neil, Phys. Plasmas 6, 2699 (1999). of asymmetry-induced transport. The code employs the fourth- order Runge-Kutta method to advance the particles in prescribed fields matching our experiment. For a single helical asymmety φ(r)(kz+lθ-φt), significant motion in the radial direction is restricted to those particles near the resonant velocity. Both the location and the width of this resonance are consistent with expectations. When a standing wave asymmetry is used (i.e., two counter-propagating helical waves), additional dynamical behaviors are observed. Stocastic motion occurs when the resonant regions of the two waves overlap, allowing a larger population of particles to undergo large radial excursions. There is also a class of particles with restricted axial motion, as in trapped particle modesootnotetextA.A. Kabantsev et al., Phys. Rev. Lett. 89, 245001 (2002).. These particles, which also make large radial excursions, are located near the radius where θ= φ/l. Further progress in understanding asymmetry-induced transport may require inclusion of these effects.

  4. Particle acceleration and transport in a chaotic magnetic field

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, G.; Dasgupta, B.

    2012-12-01

    Time-dependent chaotic magnetic field can arise from a simple asymmetric current wire-loop system (CWLS). Such simple CWLSs exist, for example, in solar flares. Indeed one can use an ensemble of such systems to model solar active region magnetic field [1,2]. Here we use test particle simulation to investigate particle transport and energization in such a time-dependent chaotic magnetic field, and through induction, a chaotic electric field. We first construct an ensemble of simple systems based on the estimated size and field strength of solar active region. By following the trajectories of single charged particles, we will examine how particle energy is changed. Diffusion coefficients in both real space and momentum space can be calculated as well as the average trapped time of the particles within chaotic field region. Particle energy spectrum as a function of time will be examined. [1] Dasgupta, B. and Abhay K. Ram, (2007) Chaotic magnetic fields due to asymmetric current configurations -application to cross field diffusion of particles in cosmic rays, (Presented at the 49th Annual Meeting of the DPP, APS, Abstract # BP8.00102) [2] G. Li, B. Dasgupta, G. Webb, and A. K. Ram, (2009) Particle Motion and Energization in a Chaotic Magnetic Field, AIP Conf. Proc. 1183, pp. 201-211; doi: http://dx.doi.org/10.1063/1.3266777

  5. Modeling reactive transport with particle tracking and kernel estimators

    NASA Astrophysics Data System (ADS)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  6. Superdiffusion and Viscoelastic Vortex Flows in a Two-Dimensional Complex Plasma

    SciTech Connect

    Ratynskaia, S.; Knapek, C.; Khrapak, S.; Ivlev, A.; Morfill, G.E.; Rypdal, K.; Milovanov, A.V.; Rasmussen, J.J.

    2006-03-17

    Viscoelastic vortical fluid motion in a strongly coupled particle system has been observed experimentally. Optical tracking of particle motion in a complex plasma monolayer reveals high grain mobility and large scale vortex flows coexistent with partial preservation of the global hexagonal lattice structure. The transport of particles is superdiffusive and ascribed to Levy statistics on short time scales and to memory effects on the longer scales influenced by cooperative motion. At these longer time scales, the transport is governed by vortex flows covering a wide spectrum of temporal and spatial scales.

  7. Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma.

    PubMed

    Ratynskaia, S; Rypdal, K; Knapek, C; Khrapak, S; Milovanov, A V; Ivlev, A; Rasmussen, J J; Morfill, G E

    2006-03-17

    Viscoelastic vortical fluid motion in a strongly coupled particle system has been observed experimentally. Optical tracking of particle motion in a complex plasma monolayer reveals high grain mobility and large scale vortex flows coexistent with partial preservation of the global hexagonal lattice structure. The transport of particles is superdiffusive and ascribed to Lévy statistics on short time scales and to memory effects on the longer scales influenced by cooperative motion. At these longer time scales, the transport is governed by vortex flows covering a wide spectrum of temporal and spatial scales.

  8. Stochastic transport of interacting particles in periodically driven ratchets

    NASA Astrophysics Data System (ADS)

    Savel'Ev, Sergey; Marchesoni, Fabio; Nori, Franco

    2004-12-01

    An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential U(x+l)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable when the distance a between particles is much less than the interaction length λ , i.e., a particle interacts with many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is applied to an ensemble of locally (a≪λ≪l) interacting (either repelling or attracting) particles placed in an asymmetric one-dimensional substrate potential, either with an oscillating temperature (temperature rachet) or driven by an ac force (rocked ratchet). In both cases we focus on the high-frequency limit. For the temperature ratchet, we find that the net current is typically suppressed (or can even be inverted) with increasing density of the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a critical value of the particle density, above which a finite fraction of the particles starts condensing in a liquidlike state near the substrate minima. The dependence of the net transport current on the particle density and the interparticle potential is analyzed in detail for different values of the ratchet parameters.

  9. Stochastic transport of interacting particles in periodically driven ratchets.

    PubMed

    Savel'ev, Sergey; Marchesoni, Fabio; Nori, Franco

    2004-12-01

    An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential U(x+l)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable when the distance a between particles is much less than the interaction length lambda , i.e., a particle interacts with many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is applied to an ensemble of locally (aparticles placed in an asymmetric one-dimensional substrate potential, either with an oscillating temperature (temperature rachet) or driven by an ac force (rocked ratchet). In both cases we focus on the high-frequency limit. For the temperature ratchet, we find that the net current is typically suppressed (or can even be inverted) with increasing density of the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a critical value of the particle density, above which a finite fraction of the particles starts condensing in a liquidlike state near the substrate minima. The dependence of the net transport current on the particle density and the interparticle potential is analyzed in detail for different values of the ratchet parameters.

  10. Dynamic signatures of driven vortex motion.

    SciTech Connect

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  11. Influence of the heart rate and atrioventricular delays on vortex evolution and blood transport inside the left ventricle

    NASA Astrophysics Data System (ADS)

    Hendabadi, Sahar; Martinez-Legazpi, Pablo; Benito, Yolanda; Bermejo, Javier; Del Alamo, Juan Carlos; Shadden, Shawn

    2013-11-01

    Cardiac resynchronization therapy (CRT) is used to help restore coordinated pumping of the ventricles by overcoming delays in electrical conduction due to cardiac disease. This is accomplished by a specialized cardiac pacemaker that is able to adjust the atrioventricular (AV) delay.A major clinical challenge is to adjust the pacing strategy to best coordinate the blood flow mechanics of ventricular filling and ejection. To this end, we have studied the difference in the vortex formation and its evolution inside the left ventricle (LV) for 4 different AV delays in a cohort of patients with implanted pacemakers. A reconstruction algorithm was used to obtain 2D velocity over the apical long-axis view of the LV from color Doppler and B-mode ultrasound data. To study blood transport, we have identified Lagrangian coherent structures to determine moving boundaries of the blood volumes injected to the LV in diastole and ejected to the aorta in systole. In all cases, we have analyzed the differences in filling and ejection patterns and the blood transport during the E-wave and A-wave formation.Finally we have assessed the influence of the AV delay on 2 indices of stasis, direct flow and residence time.The findings shed insight to the optimization of AV delays in patients undergoing CRT. NIH award 5R21HL108268 and grants PIS09/02603 and RD06/0010 from the Plan Nacional de Investigacion Cientifica, Spain.

  12. Refinements in the use of equivalent latitude for assimilating sporadic inhomogeneous stratospheric tracer observations, 1: Detecting transport of Pinatubo aerosol across a strong vortex edge

    NASA Astrophysics Data System (ADS)

    Good, P.; Pyle, J.

    2004-01-01

    The use of PV equivalent latitude for assimilating stratospheric tracer observations is discussed - with particular regard to the errors in the equivalent latitude coordinate, and to the assimilation of sparse data. Some example measurements are assimilated: they sample the stratosphere sporadically and inhomogeneously. The aim was to obtain precise information about the isentropic tracer distribution and evolution as a function of equivalent latitude. Precision is important, if transport across barriers like the vortex edge are to be detected directly. The main challenges addressed are the errors in modelled equivalent latitude, and the non-ideal observational sampling. The methods presented allow first some assessment of equivalent latitude errors and a picture of how good or poor the observational coverage is. This information determines choices in the approach for estimating as precisely as possible the true equivalent latitude distribution of the tracer, in periods of good and poor observational coverage. This is in practice an optimisation process, since better understanding of the equivalent latitude distribution of the tracer feeds back into a clearer picture of the errors in the modelled equivalent latitude coordinate. Error estimates constrain the reliability of using equivalent latitude to make statements like "this observation samples air poleward of the vortex edge'" or that of more general model-measurement comparisons. The approach is demonstrated for ground-based lidar soundings of the Mount Pinatubo aerosol cloud, focusing on the 1991-1992 arctic vortex edge between 475-520 K. Equivalent latitude is estimated at the observation times and locations from Eulerian model tracers initialised with PV and forced by UK Meteorological Office analyses. With the model formulation chosen, it is shown that tracer transport of a few days resulted in an error distribution that was much closer to Gaussian form, although the mean error was not significantly

  13. Refinements in the use of equivalent latitude for assimilating sporadic inhomogeneous stratospheric tracer observations, 1: Detecting transport of Pinatubo aerosol across a strong vortex edge

    NASA Astrophysics Data System (ADS)

    Good, P.; Pyle, J.

    2004-09-01

    The use of PV equivalent latitude for assimilating stratospheric tracer observations is discussed - with particular regard to the errors in the equivalent latitude coordinate, and to the assimilation of sparse data. Some example measurements are assimilated: they sample the stratosphere sporadically and inhomogeneously. The aim was to obtain precise information about the isentropic tracer distribution and evolution as a function of equivalent latitude. Precision is important, if transport across barriers like the vortex edge are to be detected directly. The main challenges addressed are the errors in modelled equivalent latitude, and the non-ideal observational sampling. The methods presented allow first some assessment of equivalent latitude errors and a picture of how good or poor the observational coverage is. This information determines choices in the approach for estimating as precisely as possible the true equivalent latitude distribution of the tracer, in periods of good and poor observational coverage. This is in practice an optimisation process, since better understanding of the equivalent latitude distribution of the tracer feeds back into a clearer picture of the errors in the modelled equivalent latitude coordinate. Error estimates constrain the reliability of using equivalent latitude to make statements like "this observation samples air poleward of the vortex edge" or that of more general model-measurement comparisons. The approach is demonstrated for ground-based lidar soundings of the Mount Pinatubo aerosol cloud, focusing on the 1991-92 arctic vortex edge between 475-520K. Equivalent latitude is estimated at the observation times and locations from Eulerian model tracers initialised with PV and forced by UK Meteorological Office analyses. With the model formulation chosen, it is shown that tracer transport of a few days resulted in an error distribution that was much closer to Gaussian form, although the mean error was not significantly affected

  14. Transport of sputtered particles in capacitive sputter sources

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Mussenbrock, Thomas

    2015-07-01

    The transport of sputtered aluminum inside a multi frequency capacitively coupled plasma chamber is simulated by means of a kinetic test multi-particle approach. A novel consistent set of scattering parameters obtained for a modified variable hard sphere collision model is presented for both argon and aluminum. An angular dependent Thompson energy distribution is fitted to results from Monte Carlo simulations and used for the kinetic simulation of the transport of sputtered aluminum. For the proposed configuration, the transport of sputtered particles is characterized under typical process conditions at a gas pressure of p = 0.5 Pa. It is found that—due to the peculiar geometric conditions—the transport can be understood in a one dimensional picture, governed by the interaction of the imposed and backscattered particle fluxes. It is shown that the precise geometric features play an important role only in proximity to the electrode edges, where the effect of backscattering from the outside chamber volume becomes the governing mechanism.

  15. Experimental study of periodic flow effects on spanwise vortex

    NASA Astrophysics Data System (ADS)

    Garcia Molina, Cruz Daniel; Lopez Sanchez, Erick Javier; Ruiz Chavarria, Gerardo; Medina Ovando, Abraham

    2014-11-01

    We present an experimental study about the spanwise vortex produced in a flow going out of a channel in shallow waters. This vortex travels in front of the dipole. The velocity field measurement was done using the PIV technique, and DPIVsoft (https://www.irphe.fr/ ~meunier/) was used for data processing. In this case the flow has a periodic forcing to simulate ocean tides. The experiment was conducted in a channel with variable width and the measurements were made using three different values of the aspect ratio width-depth. We present results of the position, circulation of this spanwise vortex and the flow inversion effect. The change of flow direction modify the intensity of the vortex, but it does not destroy it. The vertical components of the velocity field contributes particle transport. G. Ruiz Chavarria, E. J. Lopez Sanchez and C. D. Garcia Molina acknowledge DGAPA-UNAM by support under project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  16. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  17. Particle, momentum and thermal transport in the PTRANSP code

    NASA Astrophysics Data System (ADS)

    Bateman, G.; Halpern, F. D.; Kritz, A. H.; Pankin, A. Y.; Rafiq, T.; McCune, D. C.; Budny, R. V.; Indireshkumar, K.

    2008-11-01

    The combined effects of particle, momentum and thermal transport are investigated in tokamak discharges using a coupled system of transport equations implemented in the PTRANSP integrated modeling code. The magnetic diffusion equation is advanced separately, along with the evolution of the equilibrium. Simulations are carried out using theory-based models to compute transport, sources and sinks. Boundary conditions are either read from data or computed using a pedestal model for H-mode discharges. Different techniques are explored for controlling numerical problems [1] in time-dependent simulations that include sawtooth oscillations and other rapid changes in the profiles. Results for the density, temperature and toroidal angular velocity profiles are compared with experimental data. [1] S.C. Jardin et al, ``On 1D diffusion problems with a gradient-dependent diffusion coefficient''; G.V. Pereverzev and G. Corrigan, ``Stable numeric scheme for diffusion equation with a stiff transport''; both papers to appear in Comp. Phys. Comm. (2008).

  18. Full f gyrokinetic method for particle simulation of tokamak transport

    SciTech Connect

    Heikkinen, J.A. Janhunen, S.J.; Kiviniemi, T.P.; Ogando, F.

    2008-05-10

    A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear predictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a sufficiently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number (M{sub p}{approx}1) of the poloidal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels particularly strongly in a large aspect ratio tokamak at low plasma current.

  19. Time-dependent Perpendicular Transport of Energetic Particles for Different Turbulence Configurations and Parallel Transport Models

    NASA Astrophysics Data System (ADS)

    Lasuik, J.; Shalchi, A.

    2017-09-01

    Recently, a new theory for the transport of energetic particles across a mean magnetic field was presented. Compared to other nonlinear theories the new approach has the advantage that it provides a full time-dependent description of the transport. Furthermore, a diffusion approximation is no longer part of that theory. The purpose of this paper is to combine this new approach with a time-dependent model for parallel transport and different turbulence configurations in order to explore the parameter regimes for which we get ballistic transport, compound subdiffusion, and normal Markovian diffusion.

  20. Parameter estimation for fractional transport: A particle-tracking approach

    NASA Astrophysics Data System (ADS)

    Chakraborty, Paramita; Meerschaert, Mark M.; Lim, Chae Young

    2009-10-01

    Space-fractional advection-dispersion models provide attractive alternatives to the classical advection-dispersion equation for model applications that exhibit early arrivals and plume skewness. This paper develops a flexible method for estimating the parameters of the fractional transport model on the basis of spatial plume snapshots or temporal breakthrough curve data. A particle-tracking approach provides error bars for the parameter estimates and a general method for model fitting and comparison via optimal weighted least squares. A simple model of concentration variance, based on the particle-tracking approach, identifies the optimal weights.

  1. How entropy and hydrodynamics cooperate in rectifying particle transport

    NASA Astrophysics Data System (ADS)

    Martens, S.; Schmid, G.; Straube, A. V.; Schimansky-Geier, L.; Hänggi, P.

    2013-10-01

    Using the analytical Fick-Jacobs approximation formalism and extensive Brownian dynamics simulations we study particle transport through two-dimensional periodic channels with triangularly shaped walls. Directed motion is caused by the interplay of constant bias acting along the channel axis and a pressure-driven flow. In particular, we analyze the particle mobility and the effective diffusion coefficient. The mechanisms of entropic rectification is revealed in channels with a broken spatial reflection symmetry in presence of hydrodynamically enforced entropic trapping. Due to the combined action of the forcing and the pressure-driven flow field, efficient rectification with a drastically reduced diffusivity is achieved.

  2. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  3. Comparing addition of ZrO II particles in micron and nano scale on microstructure and mechanical behavior of aluminum-matrix composites produced by vortex route

    NASA Astrophysics Data System (ADS)

    Baghchesara, M. A.; Karimi, M.; Abdizadeh, H.; Baharvandi, H. R.

    2007-07-01

    Aluminum matrix composites are important engineering materials in automotive, aerospace and other applications because of their low weight, high specific strength and better physical and mechanical properties compared to pure aluminum. ZrO II particles as reinforcement were selected to add aluminum with micron and nano size. Al/ZrO II composites were produced by direct incorporation (vortex method) in different temperatures and 5 volume percents of ZrO II particles. Microstructure of the samples was studied by scanning electron microscopy (SEM). Chemical composition of the phases was studied by XRD. Hardness, and density of these composites were also measured. The microstructure and mechanical properties tests of composites and study the effect of particle size, resulted the better properties compared to matrix aluminum. Homogeneous dispersion of the reinforcement particles in the matrix aluminum was observed. The results show enhancing the composites properties for all samples compared to the monolithic alloy. However there are some differences in results because of particle size of ceramics and therefore differences between particles surface area. Maximum volume percent that can be added to A356 aluminum alloy is 5 vol.%, for nano ZrO II particles, but it seems that is more than 5 vol.% for micron particles. Increasing of viscosity, porosities and much more defects are caused by increasing volume percents and using smaller particles. The casting processing is difficult in these conditions. Furthermore, optimum temperatures of casting for micron and nano zirconia particles are not the same.

  4. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  5. Momentum and particle transport in a nonhomogenous canopy

    NASA Astrophysics Data System (ADS)

    Gould, Andrew W.

    Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.

  6. Dust particle diffusion in ion beam transport region

    SciTech Connect

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M.

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  7. Recent advances in neutral particle transport methods and codes

    NASA Astrophysics Data System (ADS)

    Azmy, Yousry Y.

    1997-02-01

    An overview of Oak Ridge National Laboratory's (ORNL) 3D neural particle transport code, TORT, is presented. Special features of the code that make it invaluable for large applications are summarized for the prospective user. Advanced capabilities currently under development and installation in the production release of TORT are discussed in some detail. These include: multitasking on Cray platforms running the UNICOS operating system; adjacent-cell preconditioning acceleration scheme; and graphics codes for displaying computed quantities such as the flux. Further developments for TORT and its companion codes to enhance its present capabilities, as well as expand its range of applications will be discussed. Speculation on the next generation of neutral particle transport codes at ORNL, especially regarding unstructured grids and high order spatial approximations, will also be mentioned.

  8. Particle Swarm Transport across the Fracture-Matrix Interface

    NASA Astrophysics Data System (ADS)

    Malenda, M. G.; Pyrak-Nolte, L. J.

    2016-12-01

    A fundamental understanding of particle transport is required for many diverse applications such as effective proppant injection, for deployment of subsurface imaging micro-particles, and for removal of particulate contaminants from subsurface water systems. One method of particulate transport is the use of particle swarms that act as coherent entities. Previous work found that particle swarms travel farther and faster in single fractures than individual particles when compared to dispersions and emulsions. In this study, gravity-driven experiments were performed to characterize swarm transport across the fracture-matrix interface. Synthetic porous media with a horizontal fracture were created from layers of square-packed 3D printed (PMMA) spherical grains (12 mm diameter). The minimum fracture aperture ranged from 0 - 10 mm. Swarms (5 and 25 µL) were composed of 3.2 micron diameter fluorescent polystryene beads (1-2% by mass). Swarms were released into a fractured porous medium that was submerged in water and was illuminated with a green (528 nm) LED array. Descending swarms were imaged with a CCD camera (2 fps). Whether an intact swarm was transported across a fracture depended on the volume of the swarm, the aperture of the fracture, and the alignment of pores on the two fracture walls. Large aperture fractures caused significant deceleration of a swarm because the swarm was free to expand laterally in the fracture. Swarms tended to remain intact when the pores on the two fracture walls were vertically aligned and traveled in the lower porous medium with speeds that were 30%-50% of their original speed in the upper matrix. When the pores on opposing walls were no longer aligned, swarms were observed to bifurcate around the grain into two smaller slower-moving swarms. Understanding the physics of particle swarms in fractured porous media has important implications for enhancing target particulate injection into the subsurface as well as for contaminant

  9. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    SciTech Connect

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  10. Investigation of Vortex Flaps and Other Flow Control Devices on Generic High-Speed Civil Transport Planforms

    NASA Technical Reports Server (NTRS)

    Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.

    1999-01-01

    A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.

  11. Particle Transport by Rapid Vaporization of Superheated Liquid.

    NASA Astrophysics Data System (ADS)

    Sugioka, Ichiro

    Superheated liquid vaporizing explosively in a particle bed inside a cylindrical test cell has been studied using a rapid depressurization apparatus. The experiments provide insights into the explosive vaporization phenomenon and the multiphase flow which is generated by the rapid production of vapor. Inside the sealed test cell, spherical glass particles are immersed in a volatile liquid, Refrigerant 12 or 114 at 300K. When the diaphragm at the upper end of the test cell is ruptured, the liquid pressure is reduced to a predetermined pressure within milliseconds. Since the liquid temperature is higher than the boiling temperature at reduced pressure, the liquid achieves a superheated state and nucleate boiling begins among the particles. The particle-liquid-vapor flow produced by the rapid release of vapor has been found to differ depending on whether the pressure is reduced below a critical level, which is 55% of the vapor pressure in the experiments conducted. When the final pressure is greater than critical, vapor pockets continue to grow throughout the particle bed and displace a liquid-particles mixture out from the test cell. When the final pressure is below critical, the particles are dispersed by a wave -like phenomenon (disruption front) where explosive vaporization appears to be localized in a narrow region. A disruption front in R12 travels at about 380 cm/s, and at about 200 cm/s in R114. Experiments have been performed at various conditions to study the vaporization and transport process. High -speed cinematography and fast-response pressure gauges have provided data on the particle acceleration process. The inertial effect on particle acceleration has been studied by conducting similar experiments in a centrifuge. Using this data, the transport process associated with the disruption front has been examined in detail. An empirical relationship between the particle weight and viscous drag is presented for this particular case. This study concludes with

  12. Particle transport by rapid vaporization of superheated liquid

    NASA Astrophysics Data System (ADS)

    Sugioka, Ichiro

    Superheated liquid vaporizing explosively in a particle bed inside a cylindrical test cell has been studied using a rapid depressurization apparatus. The experiments provide insights into the explosive vaporization phenomenon and the multiphase flow which is generated by the rapid production of vapor.Inside the sealed test cell, spherical glass particles are immersed in a volatile liquid, Refrigerant 12 or 114 at 300K. When the diaphragm at the upper end of the test cell is ruptured, the liquid pressure is reduced to a predetermined pressure within milliseconds. Since the liquid temperature is higher than the boiling temperature at reduced pressure, the liquid achieves a superheated state and nucleate boiling begins among the particles. The particle-liquid-vapor flow produced by the rapid release of vapor has been found to differ depending on whether the pressure is reduced below a critical level, which is 55% of the vapor pressure in the experiments conducted. When the final pressure is greater than critical, vapor pockets continue to grow throughout the particle bed and displace a liquid-particles mixture out from the test cell. When the final pressure is below critical, the particles are dispersed by a wave-like phenomenon (disruption front) where explosive vaporization appears to be localized in a narrow region. A disruption front in R12 travels at about 380 cm/s, and at about 200 cm/s in R114.Experiments have been performed at various conditions to study the vaporization and transport process. High-speed cinematography and fast response pressure gauges have provided data on the particle acceleration process. The inertial effect on particle acceleration has been studied by conducting similar experiments in a centrifuge. Using this data, the transport process associated with the disruption front has been examined in detail. An empirical relationship between the particle weight and viscous drag is presented for this particular case. This study concludes with

  13. Particle transport in pellet fueled JET (Jet European Torus) plasmas

    SciTech Connect

    Baylor, L.R.

    1990-01-01

    Pellet fueling experiments have been carried out on the Joint European Torus (JET) tokamak with a multi-pellet injector. The pellets are injected at speeds approaching 1400 m/s and penetrate deep into the JET plasma. Highly peaked electron density profiles are achieved when penetration of the pellets approaches or goes beyond the magnetic axis, and these peaked profiles persist for more than two seconds in ohmic discharges and over one second in ICRF heated discharges. In this dissertation, analysis of electron particle transport in multi-pellet fueled JET limiter plasmas under a variety of heating conditions is described. The analysis is carried out with a one and one-half dimensional radial particle transport code to model the experimental density evolution with various particle transport coefficients. These analyses are carried out in plasmas with ohmic heating, ICRF heating, and neural beam heating, in limiter configurations. Peaked density profile cases are generally characterized by diffusion coefficients with a central (r/a < 0.5) diffusivity {approximately}0.1 m{sup 2}/s that increases rapidly to {approximately}0.3 m{sup 2}/s at r/a = 0.6 and then increases out to the plasma edge as (r/a){sup 2}. These discharges can be satisfactorily modeled without any anomalous convective (pinch) flux. 79 refs., 60 figs.

  14. Chemically generated convective transport of micron sized particles

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    2015-11-01

    A variety of chemical and biological applications require manipulation of micron sized objects like cells, viruses, and large molecules. Increasing the size of particles up to a micron reduces performance of techniques based on diffusive transport. Directional transport of cargo toward detecting elements reduces the delivery time and improves performance of sensing devices. We demonstrate how chemical reactions can be used to organize fluid flows carrying particles toward the assigned destinations. Convection is driven by density variations caused by a chemical reaction occurring at a catalyst or enzyme-covered target site. If the reaction causes a reduction in fluid density, as in the case of catalytic decomposition of hydrogen peroxide, then fluid and suspended cargo is drawn toward the target along the bottom surface. The intensity of the fluid flow and the time of cargo delivery are controlled by the amount of reagent in the system. After the reagent has been consumed, the fluid pump stops and particles are found aggregated on and around the enzyme-coated patch. The pumps are reusable, being reactivated upon injection of additional reagent. The developed technique can be implemented in lab-on-a-chip devices for transportation of micro-scale object immersed in solution.

  15. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  16. Adaptive Multilevel Splitting for Monte Carlo particle transport

    NASA Astrophysics Data System (ADS)

    Louvin, Henri; Dumonteil, Eric; Lelièvre, Tony; Rousset, Mathias; Diop, Cheikh M.

    2017-09-01

    In the Monte Carlo simulation of particle transport, and especially for shielding applications, variance reduction techniques are widely used to help simulate realisations of rare events and reduce the relative errors on the estimated scores for a given computation time. Adaptive Multilevel Splitting is one of these variance reduction techniques that has recently appeared in the literature. In the present paper, we propose an alternative version of the AMS algortihm, adapted for the first time to the field of particle tranport. Within this context, it can be used to build an unbiased estimator of any quantity associated with particle tracks, such as flux, reaction rates or even non-Boltzmann tallies. Furthermore, the effciency of the AMS algorithm is shown not to be very sensitive to variations of its input parameters, which makes it capable of significant variance reduction without requiring extended user effort.

  17. Quasilinear Line Broadened Model for Energetic Particle Transport

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  18. Simulation of Cell Adhesion using a Particle Transport Model

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  19. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  20. Transport of Particle Swarms Through Variable Aperture Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  1. Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.

    2002-01-01

    Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.

  2. Particle Simulations of DARHT-II Transport System

    SciTech Connect

    Poole, B; Chen, Y J

    2001-06-11

    The DARHT-II beam line utilizes a fast stripline kicker to temporally chop a high current electron beam from a single induction LINAC and deliver multiple temporal electron beam pulses to an x-ray converter target. High beam quality needs to be maintained throughout the transport line from the end of the accelerator through the final focus lens to the x-ray converter target to produce a high quality radiographic image. Issues that will affect beam quality such as spot size and emittance at the converter target include dynamic effects associated with the stripline kicker as well as emittance growth due to the nonlinear forces associated with the kicker and various focusing elements in the transport line. In addition, dynamic effects associated with transverse resistive wall instability as well as gas focusing will affect the beam transport. A particle-in-cell code is utilized to evaluate beam transport in the downstream transport line in DARHT-II. External focusing forces are included utilizing either analytic expressions or field maps. Models for wakefields from the beam kicker, transverse resistive wall instability, and gas focusing are included in the simulation to provide a more complete picture of beam transport in DARHT-II. From these simulations, for various initial beam loads based on expected accelerator performance the temporally integrated target spot size and emittance can be estimated.

  3. Characterization of molecule and particle transport through nanoscale conduits

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad Amin

    Nanofluidic devices have been of great interest due to their applications in variety of fields, including energy conversion and storage, water desalination, biological and chemical separations, and lab-on-a-chip devices. Although these applications cross the boundaries of many different disciplines, they all share the demand for understanding transport in nanoscale conduits. In this thesis, different elusive aspects of molecule and particle transport through nanofluidic conduits are investigated, including liquid and ion transport in nanochannels, diffusion- and reaction-governed enzyme transport in nanofluidic channels, and finally translocation of nanobeads through nanopores. Liquid or solvent transport through nanoconfinements is an essential yet barely characterized component of any nanofluidic systems. In the first chapter, water transport through single hydrophilic nanochannels with heights down to 7 nm is experimentally investigated using a new measurement technique. This technique has been developed based on the capillary flow and a novel hybrid nanochannel design and is capable of characterizing flow in both single nanoconduits as well as nanoporous media. The presence of a 0.7 nm thick hydration layer on hydrophilic surfaces and its effect on increasing the hydraulic resistance of the nanochannels is verified. Next, ion transport in a new class of nanofluidic rectifiers is theoretically and experimentally investigated. These so called nanofluidic diodes are nanochannels with asymmetric geometries which preferentially allow ion transport in one direction. A nondimensional number as a function of electrolyte concentration, nanochannel dimensions, and surface charge is derived that summarizes the rectification behavior of this system. In the fourth chapter, diffusion- and reaction-governed enzyme transport in nanofluidic channels is studied and the theoretical background necessary for understanding enzymatic activity in nanofluidic channels is presented. A

  4. PAHs loadings of particles as tracer for origin and transport dynamics of particles in river networks

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Hermann, Rügner; Bennett, Jeremy-Paul; Grathwohl, Peter

    2015-04-01

    Transport of many urban pollutants in rivers is coupled to transport of suspended particles, potentially dominated by storm water overflows and mobilization of legacy contamination of sediments. Concentration of these pollutants depends on the mixture of "polluted" urban and "clean" background particles. In the current study, the total concentration of polycyclic aromatic hydrocarbons (PAHs) and the amount of total suspended solids (TSS) were meaured in the course of pronounced flood events in 3 catchments with contrast¬ing land use in Southwest Germany. Average PAHs loadings were calculated based on linear regressions of total PAHs concentrations versus TSS. For single samples PAHs loadings were estimated based on PAHs/TSS quotients. Average loadings are characteristic for each catchment and represent the number of inhabitants within the catchment per load of suspended sediment. The absence of significant long-term trends or pronounced changes of the catchment-specific loadings indicate that either input and output of PAHs into the stream networks are largely at steady state or that storage of PAHs in the sediments within the stream network are sufficient to smooth out larger fluctuations. Sampling at high temporal resolution during flood events revealed that loadings do show some short-term fluctuations and, additionally, that loadings show generally slightly decreasing trends during flood events. This is attributed to temporally and spatially varying contributions of particle inputs from sewer overflows and subcatchments which causes a changing proportion of urban and background particles. The decreasing trend is interpreted as the existence of a PAHs storage within the stream network and a slowly depletion therof in PAHs by the inputs of fresh particles in the course of the events. To better understand origin, transport and storage of contaminated particles, also metals, total organic carbon and carbonate content were measured for suspended particles

  5. Measurement of particle transport coefficients on Alcator C-Mod

    SciTech Connect

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  6. Charged Particle Energization and Transport in the Magnetotail during Substorms

    NASA Astrophysics Data System (ADS)

    Pan, Qingjiang

    This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical. The simulation results validated by the observations show that electrons following a power law distribution at high energies are generated earthward of the reconnection site, and that the majority of the energetic electrons observed in the inner magnetosphere are caused by adiabatic acceleration in association with magnetic dipolarizations and fast flows during earthward transport. We extend the global MHD+LSK simulations to examine ion energization and compare it with electron energization. The simulations demonstrate that ions in the magnetotail are first nonadiabatically accelerated in the weak

  7. Particle transport in 3 He-rich events: wave-particle interactions and particle anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Tsurutani, B. T.; Zhang, L. D.; Mason, G. L.; Lakhina, G. S.; Hada, T.; Arballo, J. K.; Zwickl, R. D.

    2002-04-01

    Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths l

  8. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, M. J.; Brantley, P. S.

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  9. Conformal Vortex Crystals.

    PubMed

    Menezes, Raí M; Silva, Clécio C de Souza

    2017-10-06

    We investigate theoretically globally nonuniform configurations of quantized-flux vortices in clean superconductors trapped by an external force field that induces a nonuniform vortex density profile. Using an extensive series of numerical simulations, we demonstrate that, for suitable choices of the force field, and bellow a certain transition temperature, the vortex system self-organizes into highly inhomogeneous conformal crystals in a way as to minimize the total energy. These nonuniform structures are topologically ordered and can be mathematically mapped into a triangular Abrikosov lattice via a conformal transformation. Above the crystallization temperature, the conformal vortex crystal becomes unstable and gives place to a nonuniform polycrystalline structure. We propose a simple method to engineer the potential energy profile necessary for the observation of conformal crystals of vortices, which can also be applied to other 2D particle systems, and suggest possible experiments in which conformal or quasi-conformal vortex crystals could be observed in bulk superconductors and in thin films.

  10. A concurrent vector-based steering framework for particle transport

    NASA Astrophysics Data System (ADS)

    Apostolakis, John; Brun, René; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-06-01

    High Energy Physics has traditionally been a technology-limited science that has pushed the boundaries of both the detectors collecting the information about the particles and the computing infrastructure processing this information. However, since a few years the increase in computing power comes in the form of increased parallelism at all levels, and High Energy Physics has now to optimise its code to take advantage of the new architectures, including GPUs and hybrid systems. One of the primary targets for optimisation is the particle transport code used to simulate the detector response, as it is largely experiment independent and one of the most demanding applications in terms of CPU resources. The Geant Vector Prototype project aims to explore innovative designs in particle transport aimed at obtaining maximal performance on the new architectures. This paper describes the current status of the project and its future perspectives. In particular we describe how the present design tries to expose the parallelism of the problem at all possible levels, in a design that is aimed at minimising contentions and maximising concurrency, both at the coarse granularity level (threads) and at the micro granularity one (vectorisation, instruction pipelining, multiple instructions per cycle). The future plans and perspectives will also be mentioned.

  11. Parallelization of a Monte Carlo particle transport simulation code

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  12. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  13. Production and global transport of Titan's sand particles

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  14. Dust-Particle Transport in Tokamak Edge Plasmas

    SciTech Connect

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K; Rognlien, T D

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.

  15. NASA wake vortex research

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

    1993-01-01

    NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

  16. A single Abrikosov vortex trapped in a mesoscopic superconducting cylindrical surface.

    PubMed

    Carapella, G; Sabatino, P; Costabile, G

    2011-11-02

    We investigate the behaviour of a single Abrikosov vortex trapped in a mesoscopic superconducting cylindrical surface with a magnetic field applied transverse to its axis. In the framework of the time-dependent Ginzburg-Landau formalism we show that, provided the transport current and the magnetic field are not large, the vortex behaves as an overdamped quasi-particle in a tilted washboard potential. The cylindrical thin strip with the trapped vortex exhibits E(J) curves and time-dependent electric fields very similar to the ones exhibited by a resistively shunted Josephson weak link.

  17. Evaluation of Baltic Sea transport properties using particle tracking

    NASA Astrophysics Data System (ADS)

    Dargahi, Bijan; Cvetkovic, Vladimir

    2014-05-01

    Particle tracking model (PTM) is an effective tool for quantifying transport properties of large water bodies such as the Baltic Sea. We have applied PTM to our fully calibrated and validated Baltic Sea 3D hydrodynamic model for a 10-years period (2000-9). One hundred particles were released at a constant rate during an initial 10-days period from all the Baltic Sea sub-basins, the major rivers, and the open boundary in the Arkona Basin. In each basin, the particles were released at two different depths corresponding to the deep water and middle water layers. The objectives of the PTM simulations were to analyse the intra-exchange processes between the Baltic Sea basins and to estimate the arrival times and the paths of particles released from the rivers. The novel contribution of this study is determining the paths and arrival times of deeper water masses rather than the surface masses. Advective and diffusive transport processes in the Bornholm and Arkona basins are both driven by the interacting flows of the northern basins of the Baltic Sea and the North Sea. Particles released from Arkona basin flows northwards along the Stople Channel. The Gotland basins are the major contributors to the exchange process in the Baltic Sea. We find high values of the advection ratio, indicative of a forced advective transport process. The Bay of Gdansk is probably the most vulnerable region in the Baltic Sea. This is despite the fact that the main exchanging basins are the Bornholm Sea and the Easter Gotland Basin. The main reason is the intensive supply of the particles from the northern basins that normally take about 3000 days to reach the Bay of Gdansk. The process maintains a high level of particle concentration (90%) along its coastlines even after the 10-years period. Comparing the particle paths in the Western and Eastern Gotland basins two interesting features were found. Particles travelled in all four directions in the former basin and the middle layer particles

  18. Size segregation in bedload sediment transport at the particle scale

    NASA Astrophysics Data System (ADS)

    Frey, P.; Martin, T.

    2011-12-01

    Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles

  19. Thermally activated transport and vortex-glass phase transition of {{\\rm{K}}}_{0.78}Fe{}_{1.70}Se2 single crystals

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Wang, Chunchang; Li, Qiuju; Wang, Hong; Zhang, Changjin

    2017-08-01

    The transport property (ρ -T) and flux motion together with the superconductivity of {{{K}}}0.78 Fe{}1.70 Se2 single crystals are studied. In the transport measurement, contrasting behavior is observed under two different magnetic field orientations, i.e., {{{H}}}//c-{{axis}} and {{{H}}}\\perp c-{{axis}}, which is ascribed to different vortex configurations. In the flux motion study, the tail of the ρ -T well fits the description of the vortex-glass (VG) critical behavior, which is confirmed by VG scaling. The strong pinning nature of {{{K}}}0.78Fe{}1.70Se2 implies great sustainability under high magnetic fields and the potential for practical application of the system. The ρ -T relation under T c follows Arrhenius thermally activated flux flow (TAFF) behavior. The existence of a crossover behavior in a magnetic field is discovered via the magnetic dependence of the effective pinning barrier, which is related to the change in pinning strength of the point defects and the entanglements of the flux lines. Finally, a vortex phase diagram is proposed based on the evolution of upper critical field and other dynamic characteristics.

  20. Three-particle correlations in a multiphase transport model

    DOE PAGES

    Sun, Yifeng; Ko, Che Ming

    2017-03-31

    Here, we study three-particle mixed harmonic correlations in relativistic heavy ion collisions by considering the observable Cm,n,m+n= cos(mφ1+nφ2-(m +n)φ3), where φ1,2,3 are azimuthal angles of all particle triplets, using a multiphase transport model. We find that except for C123, these results on the centrality dependence of C112, C224 and C235 as well as the relative pseudorapidity dependence of C123 and C224 in Au+Au collisions at √s=200 GeV agree reasonable well with the experimental data from the STAR Collaboration. We also discuss the implications of our results.

  1. Field-aligned Transport and Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I.; Tenishev, V.; Gombosi, T. I.

    2015-12-01

    Solar Energetic Particle (SEP) phenomena represent one of the major components of space weather. Often, but not exclusively associated with Coronal Mass Ejections (CMEs), they pose a significant scientific as well as practical interest. As these particles originate at such explosive events, they have energies up to several GeV. SEP may cause disruptions in operations of space instruments and spacecrafts and are dangerous to astronauts. For this reason, studies of SEP events and predictions of their impact are of great importance. The motion and acceleration of SEP, though kinetic in nature, is governed by Interplanetary Magnetic Field (IMF) and its disturbances. Therefore, a consistent and accurate simulation and predictive tool must include a realistic MHD model of IMF. At the same time, transport of SEP is essentially one-dimensional as at high energies particles are tied to magnetic field lines. This allows building a model that can effectively map active regions on the solar surface onto various regions of the Solar System thus predicting the affected regions of the at any distance from the Sun. We present the first attempt to construct a model that employs coupling of MHD and kinetic models. The former describes the evolution of IMF disturbed by CME, while the latter simulates particles moving along the field lines extracted from MHD model. The first results are provided.

  2. Transport coefficients of solid particles immersed in a viscous gas.

    PubMed

    Garzó, Vicente; Fullmer, William D; Hrenya, Christine M; Yin, Xiaolong

    2016-01-01

    Transport properties of a suspension of solid particles in a viscous gas are studied. The dissipation in such systems arises from two sources: inelasticity in particle collisions and viscous dissipation due to the effect of the gas phase on the particles. Here we consider a simplified case in which the mean relative velocity between the gas and solid phases is taken to be zero, such that "thermal drag" is the only remaining gas-solid interaction. Unlike the previous, more general, treatment of the drag force [Garzó et al., J. Fluid Mech. 712, 129 (2012)]JFLSA70022-112010.1017/jfm.2012.404, here we take into account contributions to the (scaled) transport coefficients η^{*} (shear viscosity), κ^{*} (thermal conductivity), and μ^{*} (Dufour-like coefficient) coming from the temperature dependence of the (dimensionless) friction coefficient γ^{*} characterizing the amplitude of the drag force. At moderate densities, the thermal drag model (which is based on the Enskog kinetic equation) is solved by means of the Chapman-Enskog method and the Navier-Stokes transport coefficients are determined in terms of the coefficient of restitution, the solid volume fraction, and the friction coefficient. The results indicate that the effect of the gas phase on η^{*} and μ^{*} is non-negligible (especially in the case of relatively dilute systems) while the form of κ^{*} is the same as the one obtained in the dry granular limit. Finally, as an application of these results, a linear stability analysis of the hydrodynamic equations is carried out to analyze the conditions for stability of the homogeneous cooling state. A comparison with direct numerical simulations shows a good agreement for conditions of practical interest.

  3. Vortex Formation and Particle Transport in a Cross-Field Plasma Sheath.

    DTIC Science & Technology

    1988-03-20

    appearance of a given kind of nonlinear structure from arbitrary imtial conditions (as can be done, say, in the case of the Korteweg - deVries equation ...rd. _ -. surface charge, which in turn is a boundary source in Poisson’s equation . In solving Poisson’s equation , the program also automatically...coefficients are given, respectively, in Eqs.(89) and (76), and then solve the diffusion equation (72), with appropriate boundary conditions (n(x = 0

  4. Experimental Test Results of the Energy Efficient Transport (EET) Flap-Edge Vortex Model in the Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.

    2002-01-01

    This report presents the results of a test conducted in the Langley Low-Turbulence Pressure Tunnel to measure the flow field properties of a flap-edge vortex. The model was the EET (Energy Efficient Transport) Flap-Edge Vortex Model, which consists of a main element and a part-span, single-slotted trailing-edge flap. The model surface was instrumented with several chordwise and spanwise rows of pressure taps on each element. The off-body flow field velocities were to be measured in several planes perpendicular to the flap edge with a laser velocimetry system capable of measuring all three components in coincidence. However, due to seeding difficulties, the preliminary laser data did not have sufficient accuracy to be suitable for presentation; therefore, this report presents only the tabulated and plotted surface pressure data. In addition, the report contains a detail description of the model which can be used to generate accurate CFD grid structures.

  5. Modeling Single Particle Transport in Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Hudson, Ben; Fiksel, Gennady; Prager, Stewart

    2001-10-01

    Single particle transport in a stochastic magnetic field is simulated via code ION and RIO. Developed in collaboration with a group in Novosibirsk, Russia, they simulate both single ion and multiple ion trajectories in a stochastic magnetic field. A sharp decrease in the relative diffusion of ions to magnetic field lines is seen in two gyro-radii regimes. One is explainable from the unbroken flux surfaces near the edge of the plasma. The other is thought to be due to a "gyro-averaging" effect that occurs when the gyro-radius exceeds the radial correlation length of the field lines. The simulations indicate a decrease in expected transport, most strongly as a function of gyro-radius, which will be tested experimentally with the MST neutral beam injector.

  6. From flow and particle transport modeling to vibration isolation

    NASA Astrophysics Data System (ADS)

    Ellison, Joseph Fabian

    2001-08-01

    This thesis is composed of two parts. Part I is devoted to the analysis of particle transport and deposition. In this part, flow and particle transport and deposition in a furnace and under microgravity conditions are analyzed. In the first study of Part I, fluid flow, combustion, heat and mass transfer involved in a methane/air furnace were studied. The purpose of this study was to investigate variations in the flow field and thermal conditions in the furnace and to develop methods for improving its efficiency. The analysis of the combustor model was performed using an unstructured grid model developed with the Gambit grid generator of FLUENT version 5. In the second study of Part I, particle dispersion in a liquid filled box under orbital g-jitter excitation is analyzed. The study investigated particle motion experiments that were performed aboard the orbiting shuttle. The experiments have provided confusing data as to the nature of particle dispersion in the orbital environment. To obtain a better understanding of the dynamics involved, a series of numerical simulations are performed to study the dispersion of suspended particles subject to g-jitter excitations. Part II of the thesis is devoted to the analysis of vibration and vibration isolation problems. Following along the lines of vibration effecting system performance, a study of vibration isolation used to protect avionics equipment from adverse aircraft vibration environments was conducted. Passive isolation is the simplest means to achieve this goal. The system used here consisted of a circular steel ring with a lump mass on top and exposed to base excitation. Sinusoidal and filtered zero-mean Gaussian white noise were used to excite the structure and the acceleration response spectra at the top of the ring were computed. An experiment was performed to identify the natural frequencies and modal damping of the circular ring. The polished homogeneity measurement of large optics mounted in a vertical ring

  7. Gyrokinetic Particle Simulation of Microturbulence in Transport Time Scale

    NASA Astrophysics Data System (ADS)

    Lee, W. W.

    2003-10-01

    Recent investigations on Alfven waves in gyrokinetic plasmas and their relationship with those in the MHD theory have enabled us to extend the gyrokinetic particle simulation techniques into the kinetic-MHD regime when the finite-Larmor radius effects are important and the time step restrictions imposed by compressional Alfven waves are not desirable.[1,2] Some of the numerical schemes have already been devised based on their thermodynamic properties.[1,2] Here, we propose to use gyrokinetic particle simulation to study microturbulence in transport time scale. The procedures involve the use of finite-β microturbulence simulation as well as the use of transport coefficients in the steady state for predicting density,temperature and parallel current profile changes, along with the use of perpendicular current information for the establishment of equilibrium magnetic structure. Details will be given. [1] W. W. Lee and H. Qin, Phys. Plasmas, to appear (August 2003). [2] W. W. Lee, J. L. V. Lewandowski, T. S. Hahm, and Z. Lin, Phys. Plasmas 8, 4435 (2001).

  8. Exposure visualisation of ultrafine particle counts in a transport microenvironment

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Clark, R. D. R.; Walsh, P. T.; Arnold, S. J.; Colvile, R. N.; Nieuwenhuijsen, M. J.

    An increasing number of studies indicate that short-term peak exposures, such as those seen in the transport microenvironment, pose particular health threats. Short-term exposure can only be sufficiently characterised using portable, fast-response monitoring instrumentation with detailed summaries of individual activity. In this paper, we present an exposure visualisation system that addresses this issue—it allows the simultaneous presentation of mobile video imagery synchronised with measured real-time ultrafine particle count exposure of an individual. The combined data can be examined in detail for the contribution of the surrounding environment and the individual's activities to their peak and overall exposure. The exposure visualisation system is demonstrated and evaluated around the DAPPLE study site in Central London using different modes of transport (walking, cycling, bus, car and taxi). The video images, synchronised with the exposure profile, highlight the extent to which ultrafine particle exposure is associated with traffic density and proximity to pollutant source. The extremely rapid decline in concentration with increasing distance away from the pollutant source, such as from the main street to the backstreets, is clearly evident. The visualisation technique allows these data to be presented to both technical audiences and laypersons thus making it an effective environmental risk communication tool. Some exposure peaks however are not obviously associated with any event recorded on video—in these cases it will be necessary to use advanced dispersion modelling techniques to investigate meteorological conditions and other variables influencing in-street conditions to identify their possible causes.

  9. Vulcanized vortex

    SciTech Connect

    Cho, Inyong; Lee, Youngone

    2009-01-15

    We investigate vortex configurations with the 'vulcanization' term inspired by the renormalization of {phi}{sub *}{sup 4} theory in the canonical {theta}-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  10. Modeling of the recycling particle flux and electron particle transport in the DIII-D tokamak

    SciTech Connect

    Baker, D.R.; Jackson, G.L.; Maingi, R.; Owen, L.W.; Porter, G.D.

    1996-10-01

    One of the most difficult aspects of performing an equilibrium particle transport analysis in a diverted tokamak is the determination of the particle flux which enters the plasma after recycling from the divertor plasma, the divertor target plates or the vessel wall. An approach which has been utilized in the past is to model the edge, scrape-off layer (SOL), and divertor plasma to match measured plasma parameters and then use a neutral transport code to obtain an edge recycling flux while trying to match the measured divertor D(x emissivity. Previous simulations were constrained by electron density (n{sub e}) and temperature (T{sub e}), ion temperature (T{sub i}) data at the outer midplane, divertor heat flux from infrared television cameras, and n{sub e}, T{sub e} and particle flux at the target from fixed Langmuir probes, along with the divertor D{sub {alpha}} emissivity. In this paper, we present results of core fueling calculations from the 2-D modeling for ELM-free discharges, constrained by data from the new divertor diagnostics. In addition, we present a simple technique for estimating the recycling flux just after the L-H transition and demonstrate how this technique is supported by the detailed modeling. We will show the effect which inaccuracies in the recycling flux have on the calculated particle flux in the plasma core. For some specific density profiles, it is possible to separate the convective flux from the conductive flux. The diffusion coefficients obtained show a sharp decrease near a normalized radius of 0.9 indicating the presence of a transport barrier.

  11. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  12. High energy electromagnetic particle transportation on the GPU

    SciTech Connect

    Canal, P.; Elvira, D.; Jun, S. Y.; Kowalkowski, J.; Paterno, M.; Apostolakis, J.

    2014-01-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  13. Particle transport model sensitivity on wave-induced processes

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  14. High energy electromagnetic particle transportation on the GPU

    NASA Astrophysics Data System (ADS)

    Canal, P.; Elvira, D.; Jun, S. Y.; Kowalkowski, J.; Paterno, M.; Apostolakis, J.

    2014-06-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  15. Charged Particle Energization and Transport in Reservoirs throughout the Heliosphere: 1. Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2015-09-01

    “Reservoirs” of energetic charged particles are regions where the particle population is quasi-trapped in large-scale (relative to the gyroradii) magnetic field structures. Reservoirs are found throughout the heliosphere: the huge heliosheath (90particles within these reservoirs is produced by the interaction when the particle magnetic drifts have a component along the large-scale electric fields produced by plasma convection. The appropriate description of this transport is “weak scattering”, in which the particle's first adiabatic invariant (magnetic moment) is approximately conserved while the particle itself moves rather freely along magnetic field lines. Considerable insight into the observed properties of energization processes can be gained from a remarkably simple equation that describes the particle's fractional time-rate-of-change of momentum (dlnp/dt) which depends only upon its pitch angle, the divergence of the plasma velocity (V⊥) transverse to the magnetic field), and the inner product of (V⊥) with the curvature vector of the field lines. The possibilities encompassed in this simple (but general) equation are quite rich, so we restrict our application of it in this paper to the compressive acceleration of SEPs within CMEs.

  16. Simulating the transport of heavy charged particles through trabecular spongiosa

    NASA Astrophysics Data System (ADS)

    Gersh, Jacob A.

    As planning continues for manned missions far beyond Low Earth Orbit, a paramount concern remains the flight crew's exposure to galactic cosmic radiation. When humans exit the protective magnetic field of Earth, they become subject to bombardment by highly-reactive heavy charged (HZE) particles. A possible consequence of this two- to three-year-long mission is the onset of radiation-induced leukemia, a disorder with a latency period as short as two to three years. Because data on risk to humans from exposure to HZE particles is non-existent, studies of leukemia in animals are now underway to investigate the relative effectiveness of HZE exposures. Leukemogenesis can result from energy depositions occurring within marrow contained in the trabecular spongiosa. Trabecular spongiosa is found in flat bones and within the ends of long bones, and is characterized by an intricate matrix of interconnected bone tissue forming cavities that house marrow. The microscopic internal dimensions of spongiosa vary between species. As radiation traverses this region, interface-induced dose perturbations that occur at the interfaces between bone and marrow affect the patterns of energy deposition within the region. An aim of this project is to determine the extent by which tissue heterogeneity and microscopic dimensions have on patterns of energy deposition within the trabecular spongiosa. This leads to the development of PATHFIT, a computer code capable of generating simple quadric-based geometric models of trabecular spongiosa for both humans and mice based on actual experimentally-determined internal dimensions of trabecular spongiosa. Following the creation of spongiosa models, focus is placed on the development of HITSPAP, a hybrid Monte Carlo (MC) radiation transport code system that combines capabilities of the MC code PENELOPE and MC code PARTRAC. This code is capable of simulating the transport of HZE particles through accurate models of trabecular spongiosa. The final and

  17. Evidence for particle transport between alveolar macrophages in vivo

    SciTech Connect

    Benson, J.M.; Nikula, K.J.; Guilmette, R.A.

    1995-12-01

    Recent studies at this Institute have focused on determining the role of alveolar macrophages (AMs) in the transport of particles within and form the lung. For those studies, AMs previously labeled using the nuclear stain Hoechst 33342 and polychromatic Fluoresbrite microspheres (1 {mu}m diameter, Polysciences, Inc., Warrington, PA) were instilled into lungs of recipient F344 rats. The fate of the donor particles and the doubly labeled AMs within recipient lungs was followed for 32 d. Within 2-4 d after instillation, the polychromatic microspheres were found in both donor and resident AMs, suggesting that particle transfer occurred between the donor and resident AMs. However, this may also have been an artifact resulting from phagocytosis of the microspheres form dead donor cells or from the fading or degradation of Hoechst 33342 within the donor cells leading to their misidentification as resident AMs. The results support the earlier findings that microspheres in donor AMs can be transferred to resident AMs within 2 d after instillation.

  18. Investigations of Particle Transport in the Texas Helimak

    NASA Astrophysics Data System (ADS)

    Taylor, E. I.; Rowan, W. L.; Gentle, K. W.; Huang, H.; Williams, C. B.

    2016-10-01

    The correlation between electrostatic turbulence and particle flux is investigated in a simple magnetic torus, the Helimak. The Helimak is an experimental realization of a sheared cylindrical slab that generates and heats a plasma with microwaves at 2.45 GHz and confines it in a helical magnetic field. Although it is MHD stable, the plasma is always in a nonlinearly saturated state of microturbulence. The causes of this turbulence are diverse and it is thought that it is either due to drift wave instabilities or interchange instabilites. The local particle flux is estimated over most of the plasma cross section by measuring the particle source using filtered cameras. Plasma flow along the field lines is physically similar to SOL flows in tokamaks. It is significant and can be measured directly as well as inferred from asymmetries in the electron density. The cross field transport due to electrostatic turbulence is measured as the cross correlation of radial electric field fluctuations with electron density fluctuations with the data acquired using Langmuir probes. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-04ER54766.

  19. Transport of large particles in flow through porous media

    NASA Astrophysics Data System (ADS)

    Imdakm, A. O.; Sahimi, Muhammad

    1987-12-01

    There is considerable evidence indicating that significant reduction in the efficiency of many processes in porous media, such as enhancing oil recovery, heterogeneous chemical reactions, deep-bed filtration, gel permeation, and liquid chromatography, is due to the reduction in the permeability of the pore space. This reduction is due to the transport of particles, whose sizes are comparable with those of the pores, and the subsequent blocking of the pores by various mechanisms. In this paper we develop a novel Monte Carlo method for theoretical modeling of this phenomenon. Particles of various sizes are injected into the medium, and their migration in the flow field is modeled by a random walk whose transition porbability is proportional to the local pore fluxes. Pores are blocked and their flow capacity is reduced (or vanished) when large particles pass through them (and reduce their flow) or totally block them. The permeability of the medium can ultimately vanish and, therefore, this phenomenon is a percolation process. Various quantities of interest such as the variations of the permeability with process time and the distribution of pore-plugging times are computed. The critical exponent characterizing the vanishing of the permeability near the percolation threshold appears to be different from that of percolation conductivity. The agreement between our results and the available experimental data is excellent.

  20. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  1. Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Houston, Douglas; Wu, Jun; Yang, Dongwoo; Jaimes, Guillermo

    2013-06-01

    This study is one of the first case studies to characterize the exposure of urban residents to traffic-related air pollution across locations and transportation microenvironments during everyday activities. Twenty-four adult residents of Boyle Heights, a neighborhood near downtown Los Angeles, carried a portable air pollution monitor and a Global Positioning Systems (GPS) tracking device for a total of 96 days. We found significant spatial and temporal variation in the particle-bound polycyclic aromatic hydrocarbon (pPAH) concentrations in transportation microenvironments. Average pPAH concentrations were higher while walking outdoors (190 ng m-3) compared to traveling in private passenger vehicles (138-155 ng m-3) or traveling in public transportation (61-124 ng m-3). Although travel comprised 5% of participant days, it was associated with 27% of overall daily pPAH exposure. Regression models explained 40-55% of the variation in daily average pPAH concentrations, and 40-44% of the variation in 1-min interval concentrations. Important factors included time spent traveling, travel speed, meteorological and nearby land use factors, time of day, and proximity to roadways. Although future research is needed to develop stronger predictive models, our study demonstrates portable tracking devices can provide a more complete, diurnal characterization of air pollution exposures for urban populations.

  2. The importance of gradients in particle activity during sediment transport: Insights from a probabilistic description of particle motions

    NASA Astrophysics Data System (ADS)

    Furbish, D. J.

    2009-04-01

    Sediment particles transported by rainsplash, by bioturbation, and as bedload in turbulent flows, undergo motions that are quasi-random in magnitude and direction. Moreover, these motions characteristically are intermittent, in that particles are mostly at rest most of the time, and heterogeneous, in that the volumetric or areal concentration of particles in motion at any instant is spatially patchy. These particle motions can be formulated as a stochastic processes involving both advective and dispersive parts. By taking into account the intermittent activity of particles, and separating this activity from the physics of motion in the parametric description of transport, the formulation indicates that gradients in particle activity can have a key role in transport. The formulation illustrates, for example, how the growth of soil mounds beneath desert shrubs involves differential rainsplash that initially causes more grains to be splashed inward beneath protective shrub canopies than outward. This ‘harvesting' of nearby soil material, including nutrients, means that shrubs locally participate in regulating the rate sediment transport down a hillslope. With soil bioturbation, spatial variations in the disturbance frequency strongly influence the mixing of soil constituents, including distinct particle fractions (such as specific size or mineral fractions, seeds, or debitage), or elements and compounds adsorbed to particles. The formulation also provides a probabilistic version of the Exner equation. During bedload transport, gradients in particle activity, through both advective and dispersive effects, may contribute importantly to the local divergence of the particle flux, thereby influencing initial bedform growth.

  3. Center for Gyrokinetic Particle Simulations of Turbulent Transport. Final report

    SciTech Connect

    Parker, Scott; Chen, Yang

    2011-05-02

    This is the Final Technical Report for University of Colorado's portion of the SciDAC project 'Center for Gyrokinetic Particle Simulation of Turbulent Transport.' This is funded as a multi-institutional SciDAC Center and W.W. Lee at the Princeton Plasma Physics Laboratory is the lead Principal Investigator. Scott Parker is the local Principal Investigator for University of Colorado and Yang Chen is a Co-Principal Investigator. This is Cooperative Agreement DE-FC02-05ER54816. Research personnel include Yang Chen (Senior Research Associate), Jianying Lang (Graduate Research Associate, Ph.D. Physics Student) and Scott Parker (Associate Professor). Research includes core microturbulence studies of NSTX, simulation of trapped electron modes, development of efficient particle-continuum hybrid methods and particle convergence studies of electron temperature gradient driven turbulence simulations. Recently, the particle-continuum method has been extended to five-dimensions in GEM. We find that actually a simple method works quite well for the Cyclone base case with either fully kinetic or adiabatic electrons. Particles are deposited on a 5D phase-space grid using nearest-grid-point interpolation. Then, the value of delta-f is reset, but not the particle's trajectory. This has the effect of occasionally averaging delta-f of nearby (in the phase space) particles. We are currently trying to estimate the dissipation (or effective collision operator). We have been using GEM to study turbulence and transport in NSTX with realistic equilibrium density and temperature profiles, including impurities, magnetic geometry and ExB shear flow. Greg Rewoldt, PPPL, has developed a TRANSP interface for GEM that specifies the equilibrium profiles and parameters needed to run realistic NSTX cases. Results were reported at the American Physical Society - Division of Plasma Physics, and we are currently running convergence studies to ensure physical results. We are also studying the effect of

  4. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    DOE R&D Accomplishments Database

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  5. Effects of hydrodynamic interactions on rectified transport of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Ai, Bao-quan; He, Ya-feng; Zhong, Wei-rong

    2017-01-01

    Directed transport of self-propelled particles is numerically investigated in a three-dimensional asymmetric potential. Beside the steric repulsive forces, hydrodynamic interactions between particles have been taken into account in an approximate way. From numerical simulations, we find that hydrodynamic interactions can strongly affect the rectified transport of self-propelled particles. Hydrodynamic interactions enhance the performance of the rectified transport when particles can easily pass across the barrier of the potential, and reduce the rectified transport when particles are mainly trapped in the potential well.

  6. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Kopp, Andreas; Wiengarten, Tobias; Fichtner, Horst; Effenberger, Frederic; Kühl, Patrick; Heber, Bernd; Raath, Jan-Louis; Potgieter, Marius S.

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  7. Leading-edge vortex burst on a low-aspect-ratio rotating flat plate

    NASA Astrophysics Data System (ADS)

    Medina, Albert; Jones, Anya R.

    2016-08-01

    This study experimentally investigates the phenomenon of leading-edge-vortex burst on rotating flat plate wings. An aspect-ratio-2 wing was driven in pure rotation at a Reynolds number of Re=2500 . Of primary interest is the evolution of the leading-edge vortex along the wing span over a single-revolution wing stroke. Direct force measurements of the lift produced by the wing revealed a single global lift maximum relatively early in the wing stroke. Stereoscopic particle image velocimetry was applied to several chordwise planes to quantify the structure and strength of the leading-edge vortex and its effect on lift production. This analysis revealed opposite-sign vorticity entrainment into the core of the leading-edge vortex, originating from a layer of secondary vorticity along the wing surface. Coincident with the lift peak, there emerged both a concentration of opposite vorticity in the leading-edge-vortex core, as well as axial flow stagnation within the leading-edge-vortex core. Planar control volume analysis was performed at the midspan to quantify the contributions of vorticity transport mechanisms to the leading-edge-vortex circulation. The rate of circulation annihilation by opposite-signed vorticity entrainment was found to be minimal during peak lift production, where convection balanced the flux of vorticity resulting in stagnation and eventually reversal of axial flow. Finally, vortex burst was found to be correlated with swirl number, where bursting occurs at a swirl threshold of Sw<0.6 .

  8. Directed transport of active particles over asymmetric energy barriers.

    PubMed

    Koumakis, N; Maggi, C; Di Leonardo, R

    2014-08-21

    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transition rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions.

  9. Particle model for nonlocal heat transport in fusion plasmas.

    PubMed

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  10. Anisometric transport of ions and particles in anisotropic tissue spaces.

    PubMed

    Grover, N B

    1966-01-01

    The results of time-lapse measurements and electron microscopic observations on the diffusion of histological dyes, colloidal particles, and heavy metal salts in excised chicken breast tendon are reported. In all cases, the transport was found to be anisometric, the extent of the spreading being much greater parallel than perpendicular to the collagen fibers. The diffusion of colloidal gold was shown to be governed by a random diffusion process, with coefficients of 3 to 5 x 10(-7) and 1 to 2 x 10(-7) cm(2)/sec for the parallel and perpendicular directions, respectively; the anisotropy was attributed to steric hindrance. In the diffusion of uranyl nitrate, a sharp boundary appeared at the leading edge of the diffusate and advanced at a rate proportional to the square root of time. Electron micrographs showed uranyl nitrate clusters localized in space on the surface of the collagen fibrils and tightly bound to the polar amino acid regions of the macromolecule. A model was proposed involving diffusion with attrition, and predicted a sharp boundary advancing proportionally to the square root of time and to the 0.65 power of the initial diffusate concentration. Application of the model to the experimental results for uranyl nitrate gave a diffusion coefficient of 10 x 10(-7) and 4 x 10(-7) cm(2)/sec for the parallel and perpendicular directions, respectively, and a possible explanation of this large difference was advanced. The importance of anisometric transport in anisotropic tissues was indicated.

  11. Gyrokinetic simulations of particle transport in pellet fuelled JET discharges

    NASA Astrophysics Data System (ADS)

    Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.; Garzotti, L.; Lupelli, I.; Roach, C. M.; Romanelli, M.; Valovič, M.; Contributors, JET

    2017-10-01

    Pellet injection is a likely fuelling method of reactor grade plasmas. When the pellet ablates, it will transiently perturb the density and temperature profiles of the plasma. This will in turn change dimensionless parameters such as a/{L}n,a/{L}T and plasma β. The microstability properties of the plasma then changes which influences the transport of heat and particles. In this paper, gyrokinetic simulations of a JET L-mode pellet fuelled discharge are performed. The ion temperature gradient/trapped electron mode turbulence is compared at the time point when the effect from the pellet is the most pronounced with a hollow density profile and when the profiles have relaxed again. Linear and nonlinear simulations are performed using the gyrokinetic code GENE including electromagnetic effects and collisions in a realistic geometry in local mode. Furthermore, global nonlinear simulations are performed in order to assess any nonlocal effects. It is found that the positive density gradient has a stabilizing effect that is partly counteracted by the increased temperature gradient in the this region. The effective diffusion coefficients are reduced in the positive density region region compared to the intra pellet time point. No major effect on the turbulent transport due to nonlocal effects are observed.

  12. A moment-preserving nonanalog method for charged particle transport.

    SciTech Connect

    Prinja, Anil K.; Franke, Brian Claude; Fichtl, Erin; Harding, Lee T.

    2004-09-01

    Extremely short collision mean free paths and near-singular elastic and inelastic differential cross sections (DCS) make analog Monte Carlo simulation an impractical tool for charged particle transport. The widely used alternative, the condensed history method, while efficient, also suffers from several limitations arising from the use of precomputed smooth distributions for sampling. There is much interest in developing computationally efficient algorithms that implement the correct transport mechanics. Here we present a nonanalog transport-based method that incorporates the correct transport mechanics and is computationally efficient for implementation in single event Monte Carlo codes. Our method systematically preserves important physics and is mathematically rigorous. It builds on higher order Fokker-Planck and Boltzmann Fokker-Planck representations of the scattering and energy-loss process, and we accordingly refer to it as a Generalized Boltzmann Fokker-Planck (GBFP) approach. We postulate the existence of nonanalog single collision scattering and energy-loss distributions (differential cross sections) and impose the constraint that the first few momentum transfer and energy loss moments be identical to corresponding analog values. This is effected through a decomposition or hybridizing scheme wherein the singular forward peaked, small energy-transfer collisions are isolated and de-singularized using different moment-preserving strategies, while the large angle, large energy-transfer collisions are described by the exact (analog) DCS or approximated to a high degree of accuracy. The inclusion of the latter component allows the higher angle and energy-loss moments to be accurately captured. This procedure yields a regularized transport model characterized by longer mean free paths and smoother scattering and energy transfer kernels than analog. In practice, acceptable accuracy is achieved with two rigorously preserved moments, but accuracy can be

  13. Particle Transport and Accumulation in Norfolk and Baltimore Canyons

    NASA Astrophysics Data System (ADS)

    Robertson, C.; Mienis, F.; Duineveld, G.; Prouty, N.; Davies, A. J.; Ross, S. W.; Demopoulos, A. W.

    2016-02-01

    The Mid-Atlantic Bight is incised by several large canyons two of which were studied as part of a multi-disciplinary project initiated by the Bureau of Ocean Energy Management (BOEM, USA) and jointly funded by BOEM, NOAA and USGS. The heads of the canyons, which are situated 140 km apart, both lie at a distance of 90 km off shore on the same shelf margin and lack direct input from rivers. Two hypotheses were formulated at the start of the study: i) canyons incising the MAB shelf, including Norfolk and Baltimore, capture sediment and organic carbon. This transport ultimately enriches the canyon floor sediment, resulting in higher concentration and quality of carbon than the adjacent slope, and ii) given Baltimore and Norfolk canyons have a very different morphology and orientation from each other, and previous reports indicated differences in sediment grain size and transport properties, the canyons have different sedimentation patterns and accumulation rates, which explains the differing faunal communities between the two canyons. Core samples collected along the canyon axis and for comparison on the adjacent open slope were analyzed for their sediment composition, organic matter content and accumulation rates. Additionally water column properties, including turbidity were measured with CTD. In contrast to our expectations, sediment distribution, sedimentation rates and organic matter content differed strongly between both canyons. Although accumulation rates in both canyons were higher than accumulation rates on the open slope, Norfolk canyon showed an even distribution of sediment and organic matter along the canyon axis. While two distinct zones were observed in Baltimore Canyon; coarse grained sediments with low organic matter in the upper canyon and finer grained sediments with high organic matter content in the lower canyon. Differences are attributed to canyon morphology, physical processes and active particle transport.

  14. Analysis of the operating parameters of a vortex electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Lu, Congxiang; Yi, Chengwu; Yi, Rongjie; Liu, Shiwen

    2017-02-01

    A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.

  15. Analysis of the operating parameters of a vortex electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Congxiang, Lu; Chengwu, Yi; Rongjie, Yi; Shiwen, Liu

    2017-02-01

    A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.

  16. Numerical simulation of vortex-wedge interaction

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ho; Lee, Duck-Joo

    1994-06-01

    Interactions between vortical flows and a solid surface cause one of the primary sources of noise and unsteady loading. The mechanism of the interaction is studied numerically for a single Rankine vortex impinging upon a wedge. An Euler-Lagrangian method is employed to calculate the unsteady, viscous, incompressible flows in two dimensions. A random vortex method is used to describe the vorticity dominant field. A fast vortex method is used to reduce the computational time in the calculation of the convection velocity of each vortex particle. A Schwarz-Christoffel transformation is used to map the numerical domain onto the physical domain. Vortex partical plots, velocity vectors, and streamlines are presented at selected times for both inviscid and viscous interactions. It is observed that the incident rankine vortex distorts and is split by the wedge as it nears and passes the wedge, and the vortices generated from the leading edge toward the underside of the wedge form into a single vortex. The vorticity orientation of the shed vortex is opposite to that of the incident vortex. It is found that the convection velocity of the shed vortex is changed wheen it comes off the leading edge of the wedge, and the strength of the shed vortex varies with the time during the vortex-wedge interaction. This strength variation is presumed to influence the shed vortex convection velocity. The overall features for the interaction agree well with the experimental results of Ziada and Rockwell.

  17. Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Proffitt, M. H.; Powell, J. A.; Tuck, A. F.; Fahey, D. W.; Kelly, K. K.; Loewenstein, M.; Podolske, J. R.; Chan, K. Roland

    1988-01-01

    During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident.

  18. Discrete particle model for sheet flow sediment transport in the nearshore

    NASA Astrophysics Data System (ADS)

    Drake, Thomas G.; Calantoni, Joseph

    2001-09-01

    Fully three-dimensional discrete particle computer simulations of high-concentration sheet flow transport in oscillatory flows quantify the effect of fluid acceleration on bed load transport in highly unsteady flows typical of nearshore marine environments. A simple impulse-momentum approach explains simulation results and forms the basis for adding an acceleration-related term to widely used energetics sediment transport formulae. Transport predicted by the acceleration term becomes increasingly significant as wave shape approaches the sawtooth profile characteristic of surf zone bores. Simulations integrate F = ma and a corresponding set of equations for the torques for each sphere. Normal and tangential forces between contacting particles are linear functions of the distance between sphere centers and the relative tangential displacement at the contact point, respectively; particle interactions are both inelastic and frictional. Pressure gradient forces generated by the passage of surface gravity waves drive fluid and particle motion in a stack of thin horizontal fluid layers that exchange momentum and exert fluid drag, added mass, and buoyancy forces on particles. Transport properties of the simulated granular-fluid assemblage are robust to large variations in material properties of the particles. Simulated transport rates agree with available experimental data for unsteady transport of coarse sands; the mode of bed load motion, dispersion of bed load particles, and particle segregation by size and density are qualitatively consistent with available particle-scale observations of bed load transport of natural particles.

  19. Vortex dynamics and scalar transport in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2012-09-01

    The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.

  20. Vortex core deformation and stepper-motor ratchet behavior in a superconducting aluminum film containing an array of holes.

    PubMed

    Van de Vondel, J; Gladilin, V N; Silhanek, A V; Gillijns, W; Tempere, J; Devreese, J T; Moshchalkov, V V

    2011-04-01

    We investigated experimentally the frequency dependence of a superconducting vortex ratchet effect by means of electrical transport measurements and modeled it theoretically using the time-dependent Ginzburg-Landau formalism. We demonstrate that the high frequency vortex behavior can be described as a discrete motion of a particle in a periodic potential, i.e., the so-called stepper-motor behavior. Strikingly, in the more conventional low frequency response a transition takes place from an Abrikosov vortex rectifier to a phase slip line rectifier. This transition is characterized by a strong increase in the rectified voltage and the appearance of a pronounced hysteretic behavior.

  1. Aircraft vortex marking program

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1979-01-01

    A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

  2. Altered transport of lindane caused by the retention of natural particles in saturated porous media

    NASA Astrophysics Data System (ADS)

    Ngueleu, Stéphane K.; Grathwohl, Peter; Cirpka, Olaf A.

    2014-07-01

    Attachment and straining of colloidal particles in porous media result in their reversible and irreversible retention. The retained particles may either increase the retention of hydrophobic pollutants by sorption onto the particles, or enhance pollutant transport when particles, loaded with the pollutants, are remobilized. The present study examines the effects of retained particles on the transport of the hydrophobic pesticide lindane (gamma-hexachlorocyclohexane) in saturated porous media. The lignite particles used have median diameters of about 3 μm, 1 μm, 0.8 μm, and 0.2 μm, respectively. Laboratory column experiments were analyzed by numerical modeling in order to identify and understand the processes involved in the transport of the particles and of lindane. Four scenarios were considered in which the solution containing lindane is injected either during or after the elution of the particles. The results show that lignite particles retained in a sandy porous medium alter the transport of the invading lindane. Particle retention was high in all scenarios and increased with increasing particle size. Remobilization of particles occurred due to a change in solution chemistry, and continuous particle detachment was observed over time. Numerical modeling of particle transport suggests that both reversible attachment and irreversible straining affected the transport of the particles. Lindane was retarded in all scenarios due to the strong particle retention in conjunction with the sorption of lindane onto the sand and onto retained particles, and the limited number of mobile particles carrying lindane. Moreover, it was found that intra-particle diffusion limited adsorption/desorption of lindane onto/from both limestone fragments of the sand and lignite particles. We assume that retention of lindane is reversible even though lindane recovery was incomplete over the duration of the experiments. The analysis of the effluent concentration suggests that retained

  3. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    SciTech Connect

    Meng, Jianxin; Mei, Deqing Yang, Keji; Fan, Zongwei

    2014-08-14

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.

  4. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect

    Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Breslau, J. A.; Wang, Feng

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  5. Coherent pulses in the diffusive transport of charged particles`

    NASA Technical Reports Server (NTRS)

    Kota, J.

    1994-01-01

    We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.

  6. Kinetic simulation of neutral particle transport in sputtering processes

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Gallian, Sara; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter

    2013-09-01

    For many physical vapor deposition applications using sputtering processes, knowledge about the detailed spatial and temporal evolution of the involved gas species is of great importance. Modeling of the involved gas dynamic and plasma processes is however challenging, because the operating pressure is typically below 1 Pa. In consequence, only kinetic descriptions are appropriate. In order to approach this problem, the dynamics of sputtered particle transport through a neutral gas background is simulated. For this study, a modified version of the three-dimensional Direct Simulation Monte Carlo (DSMC) code dsmcFoam is utilized. The impact of a transient sputtering wind is investigated in a generic reactor geometry, which may be used for dc Magnetron Sputtering (dcMS), High Power Impulse Magnetron Sputtering (HiPIMS), as well as sputtering in capacitively coupled discharges. In the present work a rarefaction of the background gas is observed. Moreover in pulsed mode the temporal dynamics of the rarefaction and subsequent recovery of the background gas is investigated. This work is supported by the German Research Foundation in the frame of TRR 87.

  7. An SN Application of Homotopy Continuation in Neutral Particle Transport

    NASA Astrophysics Data System (ADS)

    Myers, Nicholas T.

    The objective of this dissertation is to investigate the usefulness of homotopy continuation applied in the context of neutral particle transport where traditional methods of acceleration degrade. This occurs in higher dimensional heterogeneous problems. We focus on utilizing homotopy continuation as a means of providing a better initial guess for difficult problems. We investigate various homotopy formulations for two primary difficult problems: a thick-diffusive fixed internal source, and a k-eigenvalue problem with high dominance ratio. We also investigate the usefulness of homotopy continuation for computationally intensive problems with 30-energy groups. We find that homotopy continuation exhibits usefulness in specific problem formulations. In the thick-diffusive problem it shows benefit when there is a strong internal source in thin materials. In the k-eigenvalue problem, homotopy continuation provides an improvement in convergence speed for fixed point iteration methods in high dominance ratio problems. We also show that one of our imbeddings successfully stabilizes the nonlinear formulation of the k-eigenvalue problem with a high dominance ratio.

  8. The Vortex of Burgers in Protoplanetary Disc

    NASA Astrophysics Data System (ADS)

    Abrahamyan, M. G.

    2017-07-01

    The effect of a Burgers vortex on formation of planetesimals in a protoplanetary disc in local approach is considered. It is shown that there is not any circular orbit for rigid particles in centrifugal balance; only stable position in Burgers vortex under the influence of centrifugal, Coriolis, pressure gradient and Stokes drag forces is the center of vortex. The two-dimensional anticyclonic Burgers vortex with homogeneously rotating kernel and a converging radial stream of substance can effectively accumulate in its nuclear area the meter- sized rigid particles of total mass ˜1028g for characteristic time ˜106yr.

  9. Majorana vortex-bound states in three-dimensional nodal noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Chang, Po-Yao; Matsuura, Shunji; Schnyder, Andreas P.; Ryu, Shinsei

    2014-11-01

    Noncentrosymmetric superconductors (NCSs), characterized by antisymmetric spin-orbit coupling and a mixture of spin-singlet and spin-triplet pairing components, are promising candidate materials for topological superconductivity. An important hallmark of topological superconductors is the existence of protected zero-energy states at surfaces or in vortex cores. Here we investigate Majorana vortex-bound states in three-dimensional nodal and fully gapped NCSs by combining analytical solutions of Bogoliubov-de Gennes (BdG) equations in the continuum with exact diagonalization of BdG Hamiltonians. We show that depending on the crystal point-group symmetries and the topological properties of the bulk Bogoliubov-quasiparticle wave functions, different types of zero-energy Majorana modes can appear inside the vortex core. We find that for nodal NCSs with tetragonal point group C4 v the vortex states are dispersionless along the vortex line, forming one-dimensional Majorana flat bands, while for NCSs with D4 point-group symmetry the vortex modes are helical Majorana states with a linear dispersion along the vortex line. NCSs with monoclinic point group C2, on the other hand, do not exhibit any zero-energy vortex-bound states. We show that in the case of the C4 v (D4) point group the stability of these Majorana zero modes is guaranteed by a combination of reflection (π rotation), time-reversal, and particle-hole symmetry. Considering continuous deformations of the quasiparticle spectrum in the presence of vortices, we show that the flat-band vortex-bound states of C4 v point-group NCSs can be adiabatically connected to the dispersionless vortex-bound states of time-reversal symmetric Weyl superconductors. Experimental implications of our results for thermal transport and tunneling measurements are discussed.

  10. Flow and particle dispersion in a pulmonary alveolus--part II: effect of gravity on particle transport.

    PubMed

    Chhabra, Sudhaker; Prasad, Ajay K

    2010-05-01

    The acinar region of the human lung comprises about 300x10(6) alveoli, which are responsible for gas exchange between the lung and the blood. As discussed in Part I (Chhabra and Prasad, "Flow and Particle Dispersion in a Pulmonary Alveolus-Part I: Velocity Measurements and Convective Particle Transport," ASME J. Biomech. Eng., 132, p. 051009), the deposition of aerosols in the acinar region can either be detrimental to gas exchange (as in the case of harmful particulate matter) or beneficial (as in the case of inhalable pharmaceuticals). We measured the flow field inside an in-vitro model of a single alveolus mounted on a bronchiole and calculated the transport and deposition of massless particles in Part I. This paper focuses on the transport and deposition of finite-sized particles ranging from 0.25 microm to 4 microm under the combined influence of flow-induced advection (computed from velocity maps obtained by particle image velocimetry) and gravitational settling. Particles were introduced during the first inhalation cycle and their trajectories and deposition statistics were calculated for subsequent cycles for three different particle sizes (0.25 microm, 1 microm, and 4 microm) and three alveolar orientations. The key outcome of the study is that particles particles (d(p)=1 microm) deviate to some extent from streamlines and exhibit complex trajectories. The motion of large particles >or=4 microm is dominated by gravitational settling and shows little effect of fluid advection. Additionally, small and midsize particles deposit at about two-thirds height in the alveolus irrespective of the gravitational orientation whereas the deposition of large particles is governed primarily by the orientation of the gravity vector.

  11. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-12-31

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He{sup 2{plus}} and Fe{sup 24{plus}} transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He{sup 2{plus}} studies. By examining the electron and He{sup 2{plus}} responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed.

  12. The vortex wake of blackcaps (Sylvia atricapilla L.) measured using high-speed digital particle image velocimetry (DPIV).

    PubMed

    Johansson, L C; Hedenström, A

    2009-10-01

    Reconstructing the vortex wake of freely flying birds is challenging, but in the past few years, direct measurements of the wake circulation have become available for a number of species. Streamwise circulation has been measured at different positions along the span of the birds, but no measurements have been performed in the transverse plane. Recent findings from studies of bat wakes have pointed to the importance of transverse plane data for reconstructing the wake topology because important structures may be missed otherwise. We present results of high-speed DPIV measurements in the transverse plane behind freely flying blackcaps. We found novel wake structures previously not shown in birds, including wing root vortices of opposite as well as the same sign as the wing tip vortices. This suggests a more complex wake structure in birds than previously assumed and calls for more detailed studies of the flow over the wings and body, respectively. Based on measurements on birds with and without a tail we also tested hypotheses regarding the function of the tail during steady flight. We were unable to detect any differences in the wake pattern between birds with and without a tail. We conclude that the birds do not use their tail to exploit vortices shed at the wing root during the downstroke. Neither did we find support for the hypothesis that the tail should reduce the drag of the bird. The function of the tail during steady flight thus remains unclear and calls for further investigation in future studies.

  13. The persistence, transport and health effects of regional ultrafine particles

    NASA Astrophysics Data System (ADS)

    Spada, Nicholas James

    Due to the multitude of health studies that have shown the ability of ultrafine particles (UFPs, DP < 100 nm) to penetrate deep into lung tissue, diffuse into the bloodstream, and eventually cause heart and lung disease, my thesis will focus on these effectively unmonitored airborne pollutants. UFPs are commonly detected near busy roadways and other high-temperature combustion sources in the form of heavy metals (copper, lead, zinc, iron) and toxic organics (benzo{a}pyrene, coronene). Studies of UFPs during the 1970s expressed a nucleic propensity for coagulation and growth. Because many of the UFPs studied were generated from heavy-duty diesel engines operating with ≥0.3 wt % sulfur, the resulting sulfur-containing UFPs were hydrophilic and water vapor readily condensed on the generated nuclei. Due to their increased size, UFPs tend to settle out of air streams quickly; thus, limiting their impact regime to near-roadway influence and labeling them as local pollutants. By using highly size- and time-resolved impactors with TeflonRTM ultrafine after-filters (targeting DP < 90 nm), new evidence suggests the persistence of UFPs for greater periods of time and transport than previously predicted. Techniques developed during the Roseville rail yard study, refined during the Watt Ave/Arden Way study and applied across California's central valley have shown low levels of UFPs in a regional background. For cities in constrictive topography and meteorology (such as Bakersfield, Fresno and Los Angeles), winter inversions and stagnant weather can saturate the region with ultrafine heavy metals and carcinogenic organics, similar to the disasters during the middle of the last century.

  14. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-01-01

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He[sup 2[plus

  15. Vortex-vortex control in exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Ma, Xuekai; Schumacher, Stefan

    2017-06-01

    Vortices are widely studied in fields ranging from nonlinear optics to magnetic systems and superconductors. A vortex carries binary information corresponding to its topological charge, "plus" or "minus", that can be used for information storage and processing. In spatially extended optical and condensed many-particle systems, achieving full control over vortex formation and its charge is particularly difficult and is not easily extended to systems of multiple vortices. Here we demonstrate the optical creation of multiplets of phase-locked vortices in polariton condensates using off-resonant excitation with ring-shaped pump beams. We find that the vorticity of one vortex can be controlled solely using the phase locking with other nearby vortices. Using this mechanism, we demonstrate how an existing vortex with a specific topological charge can be inverted to the oppositely charged state and how the charge state of one reference vortex can be copied to a neighboring vortex. This way we can optically encode any set of binary information onto a chain of vortices. We further show that this information can be modified later by using the possibility to address and manipulate each vortex in the chain individually.

  16. Continuous Nano-Particle Transport in a Standing Wave Optical Line Trap

    NASA Astrophysics Data System (ADS)

    Demergis, Vassili; Florin, Ernst-Ludwig

    2011-03-01

    Since the introduction of the single beam optical trap (SBT) by Ashkin et. al. in 1986, trapping and manipulation of micron-sized particles by optical forces has become instrumental in many areas of research. However, controlled transport of large numbers of particles is difficult using a SBT. Here we introduce a technique for controlled transport that we call an Optical Capillary (OC), named for its ability to strongly confine and continuously transport nanometer-sized particles. The OC, generated by an optical standing wave pattern, is especially strong along the optical axis due to the compensation of the axial scattering force. We utilize the lateral scattering forces to control the transport of particles along a line perpendicular to the optical axis. The measured velocity profiles of single particles in the OC agree with our model predictions.

  17. Turbulent transport of alpha particles in reactor plasmas

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R. E.

    2006-11-15

    A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)

  18. Entrainment, motion, and deposition of coarse particles transported by water over a sloping mobile bed

    NASA Astrophysics Data System (ADS)

    Heyman, J.; Bohorquez, P.; Ancey, C.

    2016-10-01

    In gravel bed rivers, bed load transport exhibits considerable variability in time and space. Recently, stochastic bed load transport theories have been developed to address the mechanisms and effects of bed load transport fluctuations. Stochastic models involve parameters such as particle diffusivity, entrainment, and deposition rates. The lack of hard information on how these parameters vary with flow conditions is a clear impediment to their application to real-world scenarios. In this paper, we determined the closure equations for the above parameters from laboratory experiments. We focused on shallow supercritical flow on a sloping mobile bed in straight channels, a setting that was representative of flow conditions in mountain rivers. Experiments were run at low sediment transport rates under steady nonuniform flow conditions (i.e., the water discharge was kept constant, but bed forms developed and migrated upstream, making flow nonuniform). Using image processing, we reconstructed particle paths to deduce the particle velocity and its probability distribution, particle diffusivity, and rates of deposition and entrainment. We found that on average, particle acceleration, velocity, and deposition rate were responsive to local flow conditions, whereas entrainment rate depended strongly on local bed activity. Particle diffusivity varied linearly with the depth-averaged flow velocity. The empirical probability distribution of particle velocity was well approximated by a Gaussian distribution when all particle positions were considered together. In contrast, the particles located in close vicinity to the bed had exponentially distributed velocities. Our experimental results provide closure equations for stochastic or deterministic bed load transport models.

  19. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    NASA Astrophysics Data System (ADS)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  20. Particle Transport and Energization Associated with Disturbed Magnetospheric Events

    SciTech Connect

    C.Z. Cheng; J.R. Johnson; S. Zaharia

    1999-11-01

    Energetic particle flux enhancement events observed by satellites during strongly disturbed events in the magnetosphere (e.g., substorms, storm sudden commencements, etc.) are studied by considering interaction of particles with Earthward propagating electromagnetic pulses of westward electric field and consistent magnetic field of localized radial and azimuthal extent in a background magnetic field. The energetic particle flux enhancement is mainly due to the betatron acceleration process: particles are swept by the Earthward propagating electric field pulses via the EXB drift toward the Earth to higher magnetic field locations and are energized because of magnetic moment conservation. The most energized particles are those which stay in the pulse for the longest time and are swept the longest radial distance toward the Earth. Assuming a constant propagating velocity of the pulse we obtain analytical solutions of particle orbits. We examine substorm energetic particle injection by computing the particle flux and comparing with geosynchronous satellite observations. Our results show that for pulse parameters leading to consistency with observed flux values, the bulk of the injected particles arrive from distances less than 9 R(subscript E), which is closer to the Earth than the values obtained by the previous model and is also closer to the distances obtained by the injection boundary model.

  1. Flow and particle dispersion in a pulmonary alveolus--part I: velocity measurements and convective particle transport.

    PubMed

    Chhabra, Sudhaker; Prasad, Ajay K

    2010-05-01

    The alveoli are the smallest units of the lung that participate in gas exchange. Although gas transport is governed primarily by diffusion due to the small length scales associated with the acinar region (approximately 500 microm), the transport and deposition of inhaled aerosol particles are influenced by convective airflow patterns. Therefore, understanding alveolar fluid flow and mixing is a necessary first step toward predicting aerosol transport and deposition in the human acinar region. In this study, flow patterns and particle transport have been measured using a simplified in-vitro alveolar model consisting of a single alveolus located on a bronchiole. The model comprises a transparent elastic 5/6 spherical cap (representing the alveolus) mounted over a circular hole on the side of a rigid circular tube (representing the bronchiole). The alveolus is capable of expanding and contracting in phase with the oscillatory flow through the tube. Realistic breathing conditions were achieved by exercising the model at physiologically relevant Reynolds and Womersley numbers. Particle image velocimetry was used to measure the resulting flow patterns in the alveolus. Data were acquired for five cases obtained as combinations of the alveolar-wall motion (nondeforming/oscillating) and the bronchiole flow (none/steady/oscillating). Detailed vector maps at discrete points within a given cycle revealed flow patterns, and transport and mixing of bronchiole fluid into the alveolar cavity. The time-dependent velocity vector fields were integrated over multiple cycles to estimate particle transport into the alveolar cavity and deposition on the alveolar wall. The key outcome of the study is that alveolar-wall motion enhances mixing between the bronchiole and the alveolar fluid. Particle transport and deposition into the alveolar cavity are maximized when the alveolar wall oscillates in tandem with the bronchiole fluid, which is the operating case in the human lung.

  2. Modification of vortex dynamics and transport properties of transitional axisymmetric jets using zero-net-mass-flux actuation

    SciTech Connect

    Önder, Asim; Meyers, Johan

    2014-07-15

    We study the near field of a zero-net-mass-flux (ZNMF) actuated round jet using direct numerical simulations. The Reynolds number of the jet Re{sub D} = 2000 and three ZNMF actuators are used, evenly distributed over a circle, and directed towards the main jet. The actuators are triggered in phase, and have a relatively low momentum coefficient of C{sub μ} = 0.0049 each. We study four different control frequencies with Strouhal numbers ranging from St{sub D} = 0.165 to St{sub D} = 1.32; next to that, also two uncontrolled baseline cases are included in the study. We find that this type of ZNMF actuation leads to strong deformations of the near-field jet region that are very similar to those observed for non-circular jets. At the end of the jet's potential core (x/D = 5), the jet-column cross section is deformed into a hexagram-like geometry that results from strong modifications of the vortex structures. Two mechanisms lead to these modifications, i.e., (i) self-deformation of the jet's primary vortex rings started by distortions in their azimuthal curvature by the actuation, and (ii) production of side jets by the development and subsequent detachment of secondary streamwise vortex pairs. Further downstream (x/D = 10), the jet transforms into a triangular pattern, as the sharp corner regions of the hexagram entrain fluid and spread. We further investigate the global characteristics of the actuated jets. In particular when using the jet preferred frequency, i.e., St{sub D} = 0.33, parameters such as entrainment, centerline decay rate, and mean turbulent kinetic energy are significantly increased. Furthermore, high frequency actuation, i.e., St{sub D} = 1.32, is found to suppress the mechanisms leading to large scale structure growth and turbulent kinetic energy production. The simulations further include a passive scalar equation, and passive scalar mixing is also quantified and visualized.

  3. The effect of inelastic collisions on the transport of alpha particles in ITER-like plasmas

    NASA Astrophysics Data System (ADS)

    Clauser, C. F.; Farengo, R.

    2017-04-01

    The effect of charge changes on the transport of alpha particles in ITER-like plasmas is studied with a numerical code that follows the exact particle trajectories and includes the effect of elastic and inelastic collisions. It is shown that charge changing processes can produce significant changes in the transport of alpha particles in the edge-SOL region. The addition of inelastic collisions actually reduces the alpha particle loss rate below the level obtained when only elastic (Coulomb) collisions are included. This is due to the inward flux produced by the neutral density gradient. Power losses, on the other hand, remain at approximately the same level because the average energy of the lost particles is higher when inelastic collisions are included. Finally, the spatial distribution of the lost particles changes significantly when inelastic collisions are added, with a larger fraction of the lost particles reaching the wall.

  4. Nano iron particles transport in fractured rocks: laboratory and field scale

    NASA Astrophysics Data System (ADS)

    Cohen, Meirav; Weisbrod, Noam

    2017-04-01

    Our study deals with the transport potential of nano iron particles (NIPs) in fractured media. Two different systemswere used to investigate transport on two scales: (1 )a laboratory flow system of a naturally discrete fractured chalk core, 0.43 and 0.18 m in length and diamater, respectively; and (2) a field system of hydraulically connected boreholes located 47 m apart which penetrate a fractured chalk aquifer. We started by testing the transport potential of various NIPs under different conditions. Particle stability experiments were conducted using various NIPs and different stabilizersat two ionic strengths. Overall, four different NIPs and three stabilizers were tested. Particles and solution properties (stability, aggregate/particle size, viscosity and density) were tested in batch experiments, and transport experiments (breakthrough curves (BTCs) and recovery) were conduted in the fractured chalk core. We have learned that the key parameters controlling particle transport are the particle/aggregate size and stability, which govern NIP settling rates and ultimately their migration distance. The governing mechanism controlling NIP transport was found to be sedimentation, and to a much lesser extent, processes such as diffusion, straining or interception. On the basis of these experiments, Carbo-Iron® particles ( 800 nm activated carbon particles doped with nano zero valent iron particles) and Carboxymethyl cellulose (CMC) stabilizer were selected for the field test injection. In the field, Carbo-Iron particles were initially injected into the fractured aquifer using an excess of stabilizer in order to ensure maximum recovery. This resulted in high particle recovery and fast arrival time, similar to the ideal tracer (iodide). The high recovery of the stable particle solution emphasized the importance of particle stability for transport in fractures. To test mobility manipulation potential of the particles and simulate more realistic scenarios, a second field

  5. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations.

    PubMed

    Tabony, James; Rigotti, Nathalie; Glade, Nicolas; Cortès, Sandra

    2007-05-01

    Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.

  6. Instability of cyclonic convective vortex

    NASA Astrophysics Data System (ADS)

    Sukhanovskii, A.; Evgrafova, A.; Popova, E.

    2017-06-01

    Localized heating in the rotating layer of fluid leads to the formation of intensive cyclonic vortex. Cyclonic vortex becomes unstable at low values of viscosity and fast rotation of the experimental model. The instability of the vortex is tightly connected with a structure of the radial inflow. For moderate values of rotational Reynolds number Re the radial flows consist of several branches which transport angular momentum to the center of the model. When Re exceeds critical value (about 23) radial inflow changes its structure and appears as one wide branch which does not reach the center. As a result of strong anisotropy of radial inflow the cyclonic vortex is formed at some distance from the center. Further increase of Re leads to chaotic state with several vortices which appears at different locations near the periphery of the heating area. The map of regimes with stable and unstable vortices is presented.

  7. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.

    PubMed

    Schiperski, Ferry; Zirlewagen, Johannes; Scheytt, Traugott

    2016-08-02

    Although karst aquifers are far more susceptible to contamination than porous aquifers, with the transport of particulate matter being an important factor, little is known about the attenuation of solutes within karst aquifers and even less about the attenuation of particulate matter. These in situ investigations have therefore aimed to systematically identify the processes that influence the transport and attenuation of particles within a karst aquifer through multitracer testing, using four different types of 1 μm fluorescent particles and the fluorescent dye uranine. Each of the types of particles used were detected at the observed spring, which drains the investigated aquifer. However, the transport behavior varied significantly between the various particles and the uranine dye, with the breakthrough of particles occurring slightly earlier than that of uranine. Attenuation was determined from the tracer recovery and attributed to filtration processes. These processes were affected by the hydrophobicity and surface charge of the particles. Carboxylated polystyrene particles with a density and surface charge comparable to pathogenic microorganisms were found to be mobile in groundwater over a distance of about 3 km. No attenuation was observed for plain silica particles. Particles with these characteristics thus pose a major threat to karst spring water as they might occur as contaminants themselves or facilitate the transport of other contaminants.

  8. Investigating the role of particle shape on colloid transport and retention in saturated porous media (Invited)

    NASA Astrophysics Data System (ADS)

    Li, Y.; Seymour, M.; Chen, G.; Su, C.

    2011-12-01

    Mechanistic understanding of the transport and retention of nanoparticles in porous media is essential both for environmental applications of nanotechnology and assessing the potential environmental impacts of engineered nanomaterials. Engineered and naturally occurring nanoparticles can be found in various shapes including rod-shape carbon nanotubes that have high aspect ratios. Although it is expected that nonspherical shape could play an important role on their transport and retention behaviors, current theoretical models for particle transport in porous media, however, are mostly based on spherical particle shape. In this work, the effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-L-lysine coated silica sensor) surface under favorable conditions. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Under favorable conditions, the spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change

  9. Investigating the role of particle shape on colloid transport and retention in saturated porous media (Invited)

    NASA Astrophysics Data System (ADS)

    Li, Y.; Seymour, M.; Chen, G.; Su, C.

    2013-12-01

    Mechanistic understanding of the transport and retention of nanoparticles in porous media is essential both for environmental applications of nanotechnology and assessing the potential environmental impacts of engineered nanomaterials. Engineered and naturally occurring nanoparticles can be found in various shapes including rod-shape carbon nanotubes that have high aspect ratios. Although it is expected that nonspherical shape could play an important role on their transport and retention behaviors, current theoretical models for particle transport in porous media, however, are mostly based on spherical particle shape. In this work, the effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-L-lysine coated silica sensor) surface under favorable conditions. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Under favorable conditions, the spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change

  10. Vortex motion rectification in Josephson junction arrays with a ratchet potential.

    PubMed

    Shalóm, D E; Pastoriza, H

    2005-05-06

    By means of electrical transport measurements we have studied the rectified motion of vortices in ratchet potentials engineered on overdamped Josephson junction arrays. The rectified voltage as a function of the vortex density shows a maximum efficiency close a matching condition to the period of the ratchet potential indicating a collective vortex motion. Vortex current reversals were detected varying the driving force and vortex density revealing the influence of vortex-vortex interaction in the ratchet effect.

  11. Devices that Alter the Tip Vortex of a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Tung, Chee; Heineck, James T.

    2001-01-01

    Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.

  12. Single particle tracking reveals biphasic transport during nanorod magnetophoresis through extracellular matrix.

    PubMed

    Mair, L O; Superfine, R

    2014-06-21

    Magnetic drug targeting has been proposed as a means of efficiently targeting drugs to tumors. However, the extracellular matrix (ECM) remains a significant barrier to long-range magnetophoretic transport through the tumor volume. While ensemble measurements of nanoparticle magnetophoresis have been reported, a single particle level understanding of magnetophoretic transport remains at large. We quantify nanorod magnetophoresis through ECM based on single particle observations. We find that smaller diameter particles achieve larger velocities through ECM despite experiencing smaller magnetic forces. Additionally, two interesting dynamics are elucidated. First, 18 nm diameter nanorods experience bimodal stick-slip motion through ECM during static field magnetophoresis, while similar bimodal transport is not observed for 55 nm nor 200 nm diameter nanorods. Second, smaller particles experience larger deviations in their orientation angle with respect to the magnetic field. This work elucidates important dynamics of nanoparticle transport through complex, porous biomaterials that may go unnoticed during ensemble measurements.

  13. Single Particle Tracking Reveals Biphasic Transport During Nanorod Magnetophoresis Through Extracellular Matrix

    PubMed Central

    Mair, L.O.; Superfine, R.

    2014-01-01

    Magnetic drug targeting has been proposed as a means of efficiently targeting drugs to tumors. However, the extracellular matrix (ECM) remains a significant barrier to long-range magnetophoretic transport through the tumor volume. While ensemble measurements of nanoparticle magnetophoresis have been reported, a single particle level understanding of magnetophoretic transport remains at large. We quantify nanorod magnetophoresis through ECM based on single particle observations. We find that smaller diameter particles achieve larger velocities through ECM despite experiencing smaller magnetic forces. Additionally, two interesting dynamics are elucidated. First, 18 nm diameter nanorods experience bimodal stick-slip motion through ECM during static field magnetophoresis, while similar bimodal transport is not observed for 55 nm nor 200 nm diameter nanorods. Second, smaller particles experience larger deviations in their orientation angle with respect to the magnetic field. This work elucidates important dynamics of nanoparticle transport through complex, porous biomaterials that may go unnoticed during ensemble measurements. PMID:24744160

  14. Review of the facile (F/sub N/) method in particle transport theory

    SciTech Connect

    Garcia, R.D.M.

    1985-10-01

    The facile (F/sub N/) method for solving particle transport problems is reviewed. The fundamentals of the method are summarized, recent developments are discussed and several applications of the method are described in detail.

  15. Changes in particle transport as a result of resonant magnetic perturbations in DIII-D

    SciTech Connect

    Mordijck, S.; Doyle, E. J.; Rhodes, T. L.; Zeng, L.; Wang, G.; McKee, G. R.; Moyer, R. A.; Commaux, N.; Fenstermacher, M. E.; Gentle, K. W.; Reimerdes, H.; Schmitz, O.; Solomon, W. M.; Staebler, G. M.

    2012-05-15

    In this paper, we introduce the first direct perturbed particle transport measurements in resonant magnetic perturbation (RMP) H-mode plasmas. The perturbed particle transport increases as a result of application of RMP deep into the core. In the core, a large reduction in E Multiplication-Sign B shear to a value below the linear growth rate, in conjunction with increasing density fluctuations, is consistent with an increase in turbulent particle transport. In the edge, the changes in turbulent particle transport are less obvious. There is a clear correlation between the linear growth rates and the density fluctuations measured at different scales, but it is uncertain which is the cause and which is the consequence.

  16. Changes in particle transport as a result of resonant magnetic perturbations in DIII-D

    SciTech Connect

    Mordijck, S.; Doyle, E. J.; McKee, G. R.; Moyer, R.A.; Rhodes, T. L.; Zeng, L.; Commaux, Nicolas JC; Fenstermacher, M. E.; Gentle, T. K.; Reimerdes, H.; Schmitz, O.; Solomon, W. M.; Staebler, G. M.; Wang, G. Y.

    2012-01-01

    In this paper, we introduce the first direct perturbed particle transport measurements in resonant magnetic perturbation (RMP) H-mode plasmas. The perturbed particle transport increases as a result of application of RMP deep into the core. In the core, a large reduction in E x B shear to a value below the linear growth rate, in conjunction with increasing density fluctuations, is consistent with an increase in turbulent particle transport. In the edge, the changes in turbulent particle transport are less obvious. There is a clear correlation between the linear growth rates and the density fluctuations measured at different scales, but it is uncertain which is the cause and which is the consequence.

  17. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction

  18. Small particle transport across turbulent nonisothermal boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  19. The role of particle collisions in pneumatic transport

    NASA Technical Reports Server (NTRS)

    Mastorakos, E.; Louge, M.; Jenkins, J. T.

    1989-01-01

    A model of dilute gas-solid flow in vertical risers is developed in which the particle phase is treated as a granular material, the balance equations for rapid granular flow are modified to incorporate the drag force from the gas, and boundary conditions, based on collisional exchanges of momentum and energy at the wall, are employed. In this model, it is assumed that the particle fluctuations are determined by inter-particle collisions only and that the turbulence of the gas is unaffected by the presence of the particles. The model is developed in the context of, but not limited to, steady, fully developed flow. A numerical solution of the resulting governing equations provides concentration profiles generally observed in dilute pneumatic flow, velocity profiles in good agreement with the measurements of Tsuji, et al. (1984), and an explanation for the enhancement of turbulence that they observed.

  20. The role of particle collisions in pneumatic transport

    NASA Astrophysics Data System (ADS)

    Mastorakos, E.; Louge, M.; Jenkins, J. T.

    1989-09-01

    A model of dilute gas-solid flow in vertical risers is developed in which the particle phase is treated as a granular material, the balance equations for rapid granular flow are modified to incorporate the drag force from the gas, and boundary conditions, based on collisional exchanges of momentum and energy at the wall, are employed. In this model, it is assumed that the particle fluctuations are determined by inter-particle collisions only and that the turbulence of the gas is unaffected by the presence of the particles. The model is developed in the context of, but not limited to, steady, fully developed flow. A numerical solution of the resulting governing equations provides concentration profiles generally observed in dilute pneumatic flow, velocity profiles in good agreement with the measurements of Tsuji, et al. (1984), and an explanation for the enhancement of turbulence that they observed.

  1. Steady State Chaotic Magnetic Fields and Particle Dynamics Cross-field Transport of Particles in Chaotic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Dasgupta, B.; Ram, A.

    2009-12-01

    The observed propagation of cosmic rays in the interplanetary space cannot be explained unless there is diffusion of the energetic particles across the interplanetary magnetic field. The cross-field diffusion of cosmic rays is assumed to be due to the chaotic nature of the interplanetary/intergalactic magnetic fields. Among the classic works on this subject have been those of Parker [1] and Jokipii [2]. Parker considered the passage of cosmic ray particles and energetic solar particles in a large scale magnetic field containing small scale irregularities. In the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added on to a uniform magnetic field, to study the spatial transport of particles. We consider asymmetric, steady-state magnetic fields, in three spatial dimensions, generated by currents flowing in circular loops and straight lines [3]. We find that under very special circumstances can one generate large scale coherent magnetic fields. In general, even simple asymmetric current configurations generate spatially chaotic magnetic fields in three-dimensions. The motion of charged particles in these chaotic magnetic fields is quite coherent. This is a surprising result as one generally assumes that spatially chaotic magnetic fields will give rise to chaotic particle motion. So chaotic magnetic fields by themselves do not lead to cross-field transport. However, if we consider a current system, e.g., a current loop, embedded in a uniform magnetic field then a particle can undergo cross-field transport. For cross-field diffusion of charged particles it is necessary that the magnetic field lines be three dimensional. [1] E.N. Parker, Planet. Space Sci. 13, 9, (1965) [2] J.R. Jokipii, Astrophys. J. 146, 480, (1966). [3] A.K. Ram and B. Dasgupta, in 35th EPS Conference on Plasma Phys. Hersonissos, ECA Vol.32D, O-4.059 (2008); and Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract NG21B-0522 (2007).

  2. Simulation of charged particle transport on the MPP

    NASA Technical Reports Server (NTRS)

    Earl, James A.

    1987-01-01

    Computations of cosmic ray transport based upon finite difference methods are afflicted by instabilities, inaccuracies, and artifacts. To avoid these problems, a Monte Carlo formulation was developed which is closely related not only to the finite difference formulation, but also to the underlying physics of transport phenomena. Implementations of this approach are currently running on the Massively Parallel Processor at Goddard, whose enormous computing power overwhelms the poor statistical accuracy that usually limits the use of stochastic methods. In a Monte Carlo simulation of rectilinear transport, the coherent and diffusive effects that appeared are in good quantitative agreement with both finite difference and analytical calculations.

  3. Monte Carlo Particle Transport: Algorithm and Performance Overview

    SciTech Connect

    Gentile, N; Procassini, R; Scott, H

    2005-06-02

    Monte Carlo methods are frequently used for neutron and radiation transport. These methods have several advantages, such as relative ease of programming and dealing with complex meshes. Disadvantages include long run times and statistical noise. Monte Carlo photon transport calculations also often suffer from inaccuracies in matter temperature due to the lack of implicitness. In this paper we discuss the Monte Carlo algorithm as it is applied to neutron and photon transport, detail the differences between neutron and photon Monte Carlo, and give an overview of the ways the numerical method has been modified to deal with issues that arise in photon Monte Carlo simulations.

  4. Collisional and chaotic transport of energetic particles in toroidal plasma. [Annual] progress report

    SciTech Connect

    Cary, J.R.; Shasharina, S.G.

    1993-03-01

    Progress is reported in three general areas of confinement plasma physics: (1) An accurate theory was developed for the trapping/detrapping process in tokamaks with ripple and stellarators. (2) The alpha particle distribution was determined for the situation where both collisions and collisionless chaotic (ripple) transport are present. Transport of the toroidally trapped particles in rippled tokamaks with up-down asymmetry was studied.

  5. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    PubMed

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  6. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    PubMed

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  7. Simulations of vortex generators

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.

    1995-01-01

    We are interested in the study, via direct numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the stream direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators at NASA Ames and Stanford University (Saddoughi, 1994, and Jacobson and Reynolds, 1993). Jacobson and Reynolds (1993) used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and he observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. Our task is to simulate the flows generated by these devices and to conduct a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. The results of the present simulations would help us assess some of the effects of three-dimensionality in experiments and investigate the role

  8. Vortex tube reconnection at Re = 104

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Hussain, Fazle; Koumoutsakos, Petros

    2012-07-01

    We present simulations of the long-time dynamics of two anti-parallel vortex tubes with and without initial axial flow, at Reynolds number Re = Γ/ν = 104. Simulations were performed in a periodic domain with a remeshed vortex method using 785 × 106 particles. We quantify the vortex dynamics of the primary vortex reconnection that leads to the formation of elliptical rings with axial flow and report for the first time a subsequent collision of these rings. In the absence of initial axial flow, a -5/3 slope of the energy spectrum is observed during the first reconnection of the tubes. The resulting elliptical vortex rings experience a coiling of their vortex lines imparting an axial flow inside their cores. These rings eventually collide, exhibiting a -7/3 slope of the energy spectrum. Studies of vortex reconnection with an initial axial flow exhibit also the -7/3 slope during the initial collision as well as in the subsequent collision of the ensuing elliptical vortex rings. We quantify the detailed vortex dynamics of these collisions and examine the role of axial flow in the breakup of vortex structures.

  9. DANTSYS: A diffusion accelerated neutral particle transport code system

    SciTech Connect

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  10. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  11. Topology of Vortex-Wing Interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  12. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  13. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  14. Particle Acceleration and Transport in 3D Reconnection: Implications for the Heliosheath

    NASA Astrophysics Data System (ADS)

    Dahlin, J.; Drake, J. F.; Swisdak, M. M.

    2012-12-01

    We present results from 3D kinetic simulations of magnetic reconnection aimed at addressing the problem of particle transport and acceleration in the heliosheath. It has recently been suggested that sectored field in the heliosheath reconnects, generating magnetic islands which would accelerate and trap energetic particles. A kinetic treatment is necessary to capture vital aspects of this system, as feedback from particle heating significantly impacts the reconnection dynamics. Our 3D approach is also capable of producing the complex island structures and stochastic fields which are not captured in 2D. In our new simulations, we find that particles may be trapped inside 3D magnetic islands for a significant amount of time. We calculate diffusion coefficients over the full range of particle rigidity and find that transport in the transverse heliographic direction is greatly suppressed. We also examine particle acceleration during 3D reconnection, presenting energy spectra and evaluating the relative importance of different acceleration mechanisms.

  15. Interacting particles in a periodically moving potential: traveling wave and transport.

    PubMed

    Chatterjee, Rakesh; Chatterjee, Sakuntala; Pradhan, Punyabrata; Manna, S S

    2014-02-01

    We study a system of interacting particles in a periodically moving external potential, within the simplest possible description of paradigmatic symmetric exclusion process on a ring. The model describes diffusion of hardcore particles where the diffusion dynamics is locally modified at a uniformly moving defect site, mimicking the effect of the periodically moving external potential. The model, though simple, exhibits remarkably rich features in particle transport, such as polarity reversal and double peaks in particle current upon variation of defect velocity and particle density. By tuning these variables, the most efficient transport can be achieved in either direction along the ring. These features can be understood in terms of a traveling density wave propagating in the system. Our results could be experimentally tested, e.g., in a system of colloidal particles driven by a moving optical tweezer.

  16. Interplanetary pitch angle scattering and coronal transport of solar energetic particles - New information from Helios

    NASA Technical Reports Server (NTRS)

    Bieber, J. W.; Earl, J. A.; Green, G.; Kunow, H.; Mueller-Mellin, R.; Wibberenz, G.

    1980-01-01

    In the present paper, solar particle data from the Kiel experiment on Helios 2 at 0.5 AU are compared with the predictions of a model describing the coherent interplanetary transport of neutral particles. Good agreement is established for an event in March 1978 involving 0.5 MeV electrons and 5 MeV protons.

  17. FACTORS IN GEOTROPOSPHERIC PARTICLE-GAS TRANSPORT OF SEMIVOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Semivolatile organic compounds (SVOCs) can exist in solid, liquid, or gas phases under ambient environmental conditions. The geotropospheric transport of SVOCs varies according to the particle type. Two classes of SVOCs and two types of particles were analyzed to determine possib...

  18. NANO-PARTICLE TRANSPORT AND DEPOSITION IN BIFURCATING TUBES WITH DIFFERENT INLET CONDITIONS

    EPA Science Inventory

    Transport and deposition of ultrafine particles in straight, bend and bifurcating tubes are considered for different inlet Reynolds numbers, velocity profiles, and particle sizes i.e., 1 nm= =150 nm. A commercial finite-volume code with user-supplied programs was validated with a...

  19. NANO-PARTICLE TRANSPORT AND DEPOSITION IN BIFURCATING TUBES WITH DIFFERENT INLET CONDITIONS

    EPA Science Inventory

    Transport and deposition of ultrafine particles in straight, bend and bifurcating tubes are considered for different inlet Reynolds numbers, velocity profiles, and particle sizes i.e., 1 nm= =150 nm. A commercial finite-volume code with user-supplied programs was validated with a...

  20. FACTORS IN GEOTROPOSPHERIC PARTICLE-GAS TRANSPORT OF SEMIVOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Semivolatile organic compounds (SVOCs) can exist in solid, liquid, or gas phases under ambient environmental conditions. The geotropospheric transport of SVOCs varies according to the particle type. Two classes of SVOCs and two types of particles were analyzed to determine possib...

  1. Simulation of Neutral Particle Transport During HiPIMS

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Gallian, Sara; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2014-10-01

    In this work the importance of the knowledge of the spatial distribution, its temporal evolution as well as their energy distribution of heavy particles within sputtering processes is discussed. To describe these discharges - typically operated at very low pressures below 1 Pa - specific modeling approaches are required. Our approach comprises a three-dimensional kinetic Lagrangian description of neutral particles. A modified version of the direct simulation Monte Carlo (DSMC) code dsmcFoam is used, with the aim to describe the evolution of background and sputtered particles of a High Power Impulse Magnetron Sputtering (HiPIMS) process in a research reactor. Emphasize is put on the influence of the initial angular distribution of sputtered particles, as well as their energy distribution and its angular dependence. Based on the work of Stepanova and Dew a modified Thompson energy distribution is used. Differently distributed sputtered particles provide densities and fluxes concerning the corresponding film formation. This work is supported by the German Research Foundation in the frame of the Collaborative Research Centre TRR 87.

  2. Radiation Transport Through a Particle Laden Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Torres, Hilario; Iaccarino, Gianluca

    2016-11-01

    Direct numerical simulations of a turbulent duct flow laden with small particles was performed at several Reynolds and Stokes numbers. After the flow reached a statistically stationary state the instantaneous particle positions were saved at several time steps. Separate radiative heat transfer calculations were performed to study the amount of absorbed radiation and the local heat flux. The radiative source was considered outside of the duct, and one wall contained a window from which thermal radiation streamed through. The fluid was treated as transparent and the instantaneous particle positions obtained from the DNS where used to build Eulerian absorption and scattering fields. A Monte Carlo ray tracing code has been developed and used to solve for the radiative intensity, incident radiation, and heat flux inside of the domain. The qualitative behavior of the radiation fields as the particle positions change due to the turbulence are discussed. The effects of changes in the resolution of the Eulerian mesh used to convert the Lagrangian particles into absorption and scattering fields are also presented. The sensitivity of the amount of total absorbed radiation in the domain is also discussed in both of the previously mentioned cases.

  3. Strouhal-Reynolds number relationship for vortex streets.

    PubMed

    Ponta, Fernando L; Aref, Hassan

    2004-08-20

    A rationale for the empirically observed Strouhal-Reynolds number relation for vortex shedding in the wake of a cylinder is provided. This rationale derives from a mechanism of vortex formation observed in numerical simulations of two-dimensional vortex shedding coupled with an order of magnitude estimate of the terms in the vorticity transport equation based on this mechanism.

  4. Vortex transmutation.

    PubMed

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  5. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    SciTech Connect

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.

  6. Energetic Particle Transport in Compact Quasi-axisymmetric Stellarators

    SciTech Connect

    Redi, M.H.; Mynick, H.E.; Suewattana, M.; White, R.B.; Zarnstorff, M.C.; Isaev, M.Yu.; Mikhailov, M.I.; Subbotin, A.A.

    1999-03-01

    Hamiltonian coordinate, guiding-center code calculations of the confinement of suprathermal ions in quasi-axisymmetric stellarator (QAS) designs have been carried out to evaluate the attractiveness of compact configurations which are optimized for ballooning stability. A new stellarator particle-following code is used to predict ion loss rates and particle confinement for thermal and neutral beam ions in a small experiment with R = 145 cm, B = 1-2 T and for alpha particles in a reactor-size device. In contrast to tokamaks, it is found that high edge poloidal flux has limited value in improving ion confinement in QAS, since collisional pitch-angle scattering drives ions into ripple wells and stochastic field regions, where they are quickly lost. The necessity for reduced stellarator ripple fields is emphasized. The high neutral beam ion loss predicted for these configurations suggests that more interesting physics could be explored with an experiment of less constrained size and magnetic field geometry.

  7. Characterization of quantum vortex dynamics in superfluid helium

    NASA Astrophysics Data System (ADS)

    Meichle, David P.

    Liquid helium obtains superfluid properties when cooled below the Lambda transition temperature of 2.17 K. A superfluid, which is a partial Bose Einstein condensate, has many exotic properties including free flow without friction, and ballistic instead of diffusive heat transport. A superfluid is also uniquely characterized by the presence of quantized vortices, dynamical line-like topological phase defects around which all circulation in the flow is constrained. Two vortices can undergo a violent process called reconnection when they approach, cross, and retract having exchanged tails. With a numerical examination of a local, linearized solution near reconnection we discovered a dynamically unstable stationary solution to the Gross-Pitaevskii equation, which was relaxed to a fully non-linear solution using imaginary time propagation. This investigation explored vortex reconnection in the context of the changing topology of the order parameter, a complex field governing the superfluid dynamics at zero temperature. The dynamics of the vortices can be studied experimentally by dispersing tracer particles into a superfluid flow and recording their motions with movie cameras. The pioneering work of Bewley et al. provided the first visualization technique using frozen gases to create tracer particles. Using this technique, we experimentally observed for the first time the excitation of helical traveling waves on a vortex core called Kelvin waves. Kelvin waves are thought to be a central mechanism for dissipation in this inviscid fluid, as they provide an efficient cascade mechanism for transferring energy from large to microscopic length scales. We examined the Kelvin waves in detail, and compared their dynamics in fully self-similar non-dimensional coordinates to theoretical predictions. Additionally, two experimental advances are presented. A newly invented technique for reliably dispersing robust, nanometer-scale fluorescent tracer particles directly into the

  8. A baker's dozen of new particle flows for nonlinear filters, Bayesian decisions and transport

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2015-05-01

    We describe a baker's dozen of new particle flows to compute Bayes' rule for nonlinear filters, Bayesian decisions and learning as well as transport. Several of these new flows were inspired by transport theory, but others were inspired by physics or statistics or Markov chain Monte Carlo methods.

  9. Charged-particle transport in turbulent astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Newman, C. E., Jr.

    1972-01-01

    The effect of electromagnetic fluctuations, or plasma turbulence, on the motion of the individual particles in a plasma is investigated. Two alternative methods are used to find a general equation governing the time-evolution of a distribution of charged particles subject to both an external force field and the random fields of the fluctuations. It is found that, for the high-temperature, low-density plasmas frequently encountered in the study of astrophysics, the presence of even a small amount of turbulence can have a very important effect on the behavior of the plasma. Two problems in which turbulence plays an important role are treated.

  10. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  11. Vortex motion on surfaces of small curvature

    SciTech Connect

    Dorigoni, Daniele Dunajski, Maciej Manton, Nicholas S.

    2013-12-15

    We consider a single Abelian Higgs vortex on a surface Σ whose Gaussian curvature K is small relative to the size of the vortex, and analyse vortex motion by using geodesics on the moduli space of static solutions. The moduli space is Σ with a modified metric, and we propose that this metric has a universal expansion, in terms of K and its derivatives, around the initial metric on Σ. Using an integral expression for the Kähler potential on the moduli space, we calculate the leading coefficients of this expansion numerically, and find some evidence for their universality. The expansion agrees to first order with the metric resulting from the Ricci flow starting from the initial metric on Σ, but differs at higher order. We compare the vortex motion with the motion of a point particle along geodesics of Σ. Relative to a particle geodesic, the vortex experiences an additional force, which to leading order is proportional to the gradient of K. This force is analogous to the self-force on bodies of finite size that occurs in gravitational motion. -- Highlights: •We study an Abelian Higgs vortex on a surface with small curvature. •A universal expansion for the moduli space metric is proposed. •We numerically check the universality at low orders. •Vortex motion differs from point particle motion because a vortex has a finite size. •Moduli space geometry has similarities with the geometry arising from Ricci flow.

  12. Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates

    SciTech Connect

    Middelkamp, S.; Schmelcher, P.; Torres, P. J.; Kevrekidis, P. G.; Frantzeskakis, D. J.; Carretero-Gonzalez, R.; Freilich, D. V.; Hall, D. S.

    2011-07-15

    A quantized vortex dipole is the simplest vortex molecule, comprising two countercirculating vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids, the precise details of their dynamics have remained largely unexplored. We present here several striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a vortex-particle model that generates vortex line trajectories that are in good agreement with the experimental data. Interestingly, these diverse trajectories exhibit essentially identical quasiperiodic behavior, in which the vortex lines undergo stable epicyclic orbits.

  13. The absorption of trapped particles by the inner satellites of Jupiter and the radial diffusion coefficient of particle transport

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.; Fillius, W.

    1976-01-01

    The process of trapped particle absorption by the inner Jovian satellites is considered in detail taking into account both the particle and satellite motions in a magnetic dipole field which is displaced from the center of the planet and tilted with respect to the planetary rotation axis. An expression is derived for computing the sweeping time at a given satellite, defined as the time required for the satellite to sweep up a given fraction of the trapped particles within its sweeping region. By making use of the sweeping time and the radial diffusion equation of particle transport approximate expressions for the diffusion coefficient are derived. Measurements obtained by Pioneer 10 are then used to obtain estimates of the diffusion coefficient at the orbits of Io and Europa. We find that the diffusion coefficient is a function of energy and magnetic latitude for electrons in the energy range 0.7-14 MeV.

  14. Test particle study of ion transport in drift type turbulence

    SciTech Connect

    Vlad, M.; Spineanu, F.

    2013-12-15

    Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.

  15. The Random Ray Method for neutral particle transport

    NASA Astrophysics Data System (ADS)

    Tramm, John R.; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2017-08-01

    A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.

  16. Observation of a Spontaneous Particle-Transport Barrier in the HL-2A Tokamak

    SciTech Connect

    Xiao, W. W.; Ding, X. T.; Yao, L. H.; Feng, B. B.; Song, X. M.; Zhou, Y.; Liu, Z. T.; Yuan, B. S.; Sun, H. J.; Ji, X. Q.; Gao, Y. D.; Li, Y. G.; Yan, L. W.; Yang, Q. W.; Liu, Yi; Dong, J. Q.; Duan, X. R.; Liu, Yong; Pan, C. H.; Zou, X. L.

    2010-05-28

    Using the profile analysis, the density perturbation transport analysis, and the Doppler reflectometry measurement, for the first time a spontaneous and steady-state particle-transport barrier has been evidenced in the Ohmic plasmas in the HL-2A tokamak with no externally applied momentum or particle input except the gas puffing. A threshold in density has been found for the observation of the barrier. The particle diffusivity is well-like, and the convection is found to be inward outside the well and outward inside the well. The formation of the barrier coincides with the transition between the trapped electron mode and the ion temperature gradient driven mode.

  17. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  18. Particle acceleration and transport in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Kontar, Eduard

    2016-07-01

    During periods of sporadic flare activity, the Sun releases energy stored in the magnetic field into the plasma of the solar atmosphere. This is an extremely efficient process, with a large fraction of the magnetic energy going into plasma particles. The solar flares are accompanied by prompt electromagnetic emission virtually over the entire electromagnetic spectrum from gamma-rays down to radio frequencies. The Sun, through its activity, also plays a driving role in the Sun-Earth system that substantially influences geophysical space. Solar flare energetic particles from the Sun are detected in interplanetary space by in-situ measurements making them a vital component of the single Sun-Earth system. Although a qualitative picture is generally agreed upon, many processes solar flare processes are poorly understood. Specifically, the processes of acceleration and propagation of energetic particles interacting on various physical scales remain major challenges in solar physics and basic plasma physics. In the talk, I will review the current understanding of solar flare energetic particles focusing on recent observational progress, which became possible due to the numerous spacecraft and ground-based observations.

  19. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Ma, Kwan-Liu

    2011-12-21

    In this project, we have developed techniques for visualizing large-scale time-varying multivariate particle and field data produced by the GPS_TTBP team. Our basic approach to particle data visualization is to provide the user with an intuitive interactive interface for exploring the data. We have designed a multivariate filtering interface for scientists to effortlessly isolate those particles of interest for revealing structures in densely packed particles as well as the temporal behaviors of selected particles. With such a visualization system, scientists on the GPS-TTBP project can validate known relationships and temporal trends, and possibly gain new insights in their simulations. We have tested the system using over several millions of particles on a single PC. We will also need to address the scalability of the system to handle billions of particles using a cluster of PCs. To visualize the field data, we choose to use direct volume rendering. Because the data provided by PPPL is on a curvilinear mesh, several processing steps have to be taken. The mesh is curvilinear in nature, following the shape of a deformed torus. Additionally, in order to properly interpolate between the given slices we cannot use simple linear interpolation in Cartesian space but instead have to interpolate along the magnetic field lines given to us by the scientists. With these limitations, building a system that can provide an accurate visualization of the dataset is quite a challenge to overcome. In the end we use a combination of deformation methods such as deformation textures in order to fit a normal torus into their deformed torus, allowing us to store the data in toroidal coordinates in order to take advantage of modern GPUs to perform the interpolation along the field lines for us. The resulting new rendering capability produces visualizations at a quality and detail level previously not available to the scientists at the PPPL. In summary, in this project we have

  20. Vertical Transport of Aerosol Particles across Mountain Topography near the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Schill, S.; Freeman, S.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Transport of aerosol particles is known to affect air quality and is largely dependent on the characteristic topography of the surrounding region. To characterize this transport, aerosol number distributions were collected with an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS, DMT) during the 2015 NASA Student Airborne Research Program (SARP) in and around the Los Angeles Basin in Southern California. Increases in particle number concentration and size were observed over mountainous terrain north of Los Angeles County. Chemical analysis and meteorological lagrangian trajectories suggest orographic lifting processes, known as the "chimney effect". Implications for spatial transport and distribution will be discussed.

  1. The fluctuation energy balance in non-suspended fluid-mediated particle transport

    SciTech Connect

    Pähtz, Thomas; Durán, Orencio; Ho, Tuan-Duc; Valance, Alexandre; Kok, Jasper F.

    2015-01-15

    Here, we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids (“saltation” and “bedload,” respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts (“splash”) in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to particle tracking velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small.

  2. PTV measurements of Lagrangian particle transport by surface gravity wave groups

    NASA Astrophysics Data System (ADS)

    van den Bremer, Ton; Whittaker, Colin; Raby, Alison; Taylor, Paul

    2015-11-01

    We present detailed PTV (particle tracking velocimetry) measurements of the Lagrangian transport and trajectories of neutrally buoyant particles underneath two-dimensional surface gravity wave groups in a laboratory flume. By focussing our attention on wave groups of moderate steepness, we confirm the predictions of standard second-order multi-chromatic wave theory, in which the body of fluid satisfies the potential flow equations. Particles near the surface are transported forwards and their motion is dominated by Stokes drift. Particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for surface wave groups ensuring the (irrotational) mass balance holds. Finally, we provide experimental validation of a simple scaling relationship, derived based under the assumption of separation of scales, for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current. We present results for a range of effective water depths.

  3. Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models

    NASA Astrophysics Data System (ADS)

    Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.

    2016-08-01

    We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.

  4. Focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Lee, M. A.; Klecker, B.; Ipavich, F. M.

    1992-01-01

    Evidence is presented for focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection. This evidence was obtained with the University of Maryland/Max-Planck-Institute experiment on the ISEE-3 spacecraft during the decay phase of the June 6, 1979, solar particle event. During the early portion of the decay phase of this event, interplanetary magnetic field lines were apparently draped around a coronal mass ejection, leading to a small focusing length on the western flank where ISEE 3 was located. A period of very slow decrease of particle intensity was observed, along with large sunward anisotropy in the solar wind frame, which is inconsistent with predictions of the standard Fokker-Planck equation models for diffusive transport. It was found possible to fit the observations, assuming that focused transport dominates and that the particle pitch angle scattering is isotropic.

  5. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components.

    PubMed

    Cai, Zhengqing; Fu, Jie; Liu, Wen; Fu, Kunming; O'Reilly, S E; Zhao, Dongye

    2017-01-15

    This work investigated effects of three model oil dispersants (Corexit EC9527A, Corexit EC9500A and SPC1000) on settling of fine sediment particles and particle-facilitated distribution and transport of oil components in sediment-seawater systems. All three dispersants enhanced settling of sediment particles. The nonionic surfactants (Tween 80 and Tween 85) play key roles in promoting particle aggregation. Yet, the effects varied with environmental factors (pH, salinity, DOM, and temperature). Strongest dispersant effect was observed at neutral or alkaline pH and in salinity range of 0-3.5wt%. The presence of water accommodated oil and dispersed oil accelerated settling of the particles. Total petroleum hydrocarbons in the sediment phase were increased from 6.9% to 90.1% in the presence of Corexit EC9527A, and from 11.4% to 86.7% for PAHs. The information is useful for understanding roles of oil dispersants in formation of oil-sediment aggregates and in sediment-facilitated transport of oil and PAHs in marine eco-systems.

  6. Formation of vortex dipoles

    NASA Astrophysics Data System (ADS)

    Afanasyev, Y. D.

    2006-03-01

    Evolution of a two-dimensional flow induced by a jet ejected from a nozzle of finite size is studied experimentally. Vortex dipole forms at the front of the developing flow while a trailing jet establishes behind the dipole. The dynamics of the flow is discussed on the basis of detailed measurements of vorticity and velocity fields which are obtained using particle image velocimetry. It is found that dipoles do not separate (pinch-off) from the trailing jet for values of the stroke ratio up to 15, which fact can be contrasted with the behavior of vortex rings reported previously by other authors. A characteristic time scale that is defined differently from the formation time of vortex rings can be introduced. This time scale (startup time) indicates the moment when the dipole starts translating after an initial period when it mainly grows absorbing the jet from the nozzle. A simple model that considers the competing effects of expansion and translation is developed to obtain an estimate of the dimensionless startup time. The dynamics of a dipole after the formation is characterized by a reduced flux of vorticity from the jet. The dipole moves forward with constant speed such that a value of the ratio of the speed of propagation of the dipole to the mean velocity of the jet is found to be 0.5. A universality of this ratio is explained in the framework of a model based on conservation of mass and momentum for the moving dipole.

  7. A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.

    2015-03-01

    The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method

  8. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  9. Particle transport and heat loads in NIO1

    SciTech Connect

    Fonnesu, N. Serianni, G.; Veltri, P.; Cavenago, M.

    2016-02-15

    NIO1 is a compact radio frequency ion source designed to generate a 60 kV-135 mA hydrogen negative ion beam and it aims at continuous operation, which implies a detailed thermo-mechanical analysis of the beam-facing components, in particular, the accelerator grids. A 3D analysis of the entire NIO1 beam has been performed for the first time with a fully 3D version of EAMCC, a relativistic particle tracking code for the calculation of the grid power deposition induced by particle impacts. According to the results presented in this paper, secondary and co-extracted electrons cause a non-negligible heat load on the grids, where different high-power density regions, within reasonable sustainable standard limits, are calculated.

  10. Airflow and Particle Transport Through Human Airways: A Systematic Review

    NASA Astrophysics Data System (ADS)

    Kharat, S. B.; Deoghare, A. B.; Pandey, K. M.

    2017-08-01

    This paper describes review of the relevant literature about two phase analysis of air and particle flow through human airways. An emphasis of the review is placed on elaborating the steps involved in two phase analysis, which are Geometric modelling methods and Mathematical models. The first two parts describes various approaches that are followed for constructing an Airway model upon which analysis are conducted. Broad two categories of geometric modelling viz. Simplified modelling and Accurate modelling using medical scans are discussed briefly. Ease and limitations of simplified models, then examples of CT based models are discussed. In later part of the review different mathematical models implemented by researchers for analysis are briefed. Mathematical models used for Air and Particle phases are elaborated separately.

  11. Analysis of Particle Transport Using a Particulate Tracer Modeling

    NASA Astrophysics Data System (ADS)

    Wang, P.; Linker, L. C.; Lung, W.; Batiuk, R. A.

    2002-05-01

    Understanding the transport of dissolved and particulate materials in the Chesapeake Bay estuary is critical to allocating nutrient and sediment load reduction goals to the seven watershed states. A computer simulation of a particulate conservative tracer was conducted to help determine the transport mechanism. Tracers were loaded daily at the fall-line of Potomac River (a middle Bay's tributary). The settling rate is set at 0.1 m/day, with the assumption of neither scour nor re-suspension of tracer from the bed to allow continuous accumulation of tracers on bed. The low settling rate was used to allow tracer to transport widely in the estuary to provide information on the transport of fine particulates such as dead algae. After the tracers reach the mouth of Potomac River, most of them are further transported into the lower main-stem Bay. Flood tide is the main force for tracers transported north to the upper main-stem Bay and to the upstream of non-source rivers. In the main stem of the Bay, there exist concentration gradients from the Potomac River mouth to the opposite shore (the Maryland and Virginia eastern shore), to the lower Bay, and to the upper Bay. Concentration gradients also exist from the fall-line to the mouth in the source river, and from the mouth to the upstream in non-source rivers. These gradients are usually disturbed across trenches, due to a so-called "trench effect". A trench either deposits more or less tracers than its shallower sides, depending on the trench to be hydrologically landward from the source (i.e., the Potomac fall line) or the sub-source (e.g., the Rappahannock River mouth for the trench in the upstream of Rappahannock River), or hydrologically seaward from the source or the sub-source. Depending on the layer (saline water-rich or fresh water-rich) in which tracers reside and the direction (landward or seaward) along which tracers transport, the transport/deposit of tracer may be favored along trench over its shallower sides

  12. Random walk particle tracking simulations of non-Fickian transport in heterogeneous media

    SciTech Connect

    Srinivasan, G. Tartakovsky, D.M. Dentz, M. Viswanathan, H.; Berkowitz, B.; Robinson, B.A.

    2010-06-01

    Derivations of continuum nonlocal models of non-Fickian (anomalous) transport require assumptions that might limit their applicability. We present a particle-based algorithm, which obviates the need for many of these assumptions by allowing stochastic processes that represent spatial and temporal random increments to be correlated in space and time, be stationary or non-stationary, and to have arbitrary distributions. The approach treats a particle trajectory as a subordinated stochastic process that is described by a set of Langevin equations, which represent a continuous time random walk (CTRW). Convolution-based particle tracking (CBPT) is used to increase the computational efficiency and accuracy of these particle-based simulations. The combined CTRW-CBPT approach enables one to convert any particle tracking legacy code into a simulator capable of handling non-Fickian transport.

  13. Proper orthogonal decomposition methods for noise reduction in particle-based transport calculations

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Spong, D. A.; Hirshman, S. P.

    2008-09-01

    Proper orthogonal decomposition techniques to reduce noise in the reconstruction of the distribution function in particle-based transport calculations are explored. For two-dimensional steady-state problems, the method is based on low rank truncations of the singular value decomposition of a coarse-grained representation of the particle distribution function. For time-dependent two-dimensional problems or three-dimensional time-independent problems, the use of a generalized low-rank approximation of matrices technique is proposed. The methods are illustrated and tested with Monte Carlo particle simulation data of plasma collisional relaxation and guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. It is observed that the proposed noise reduction methods achieve high levels of smoothness in the particle distribution function by using significantly fewer particles in the computations.

  14. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  15. MCNPX Monte Carlo simulations of particle transport in SiC semiconductor detectors of fast neutrons

    NASA Astrophysics Data System (ADS)

    Sedlačková, K.; Zat'ko, B.; Šagátová, A.; Pavlovič, M.; Nečas, V.; Stacho, M.

    2014-05-01

    The aim of this paper was to investigate particle transport properties of a fast neutron detector based on silicon carbide. MCNPX (Monte Carlo N-Particle eXtended) code was used in our study because it allows seamless particle transport, thus not only interacting neutrons can be inspected but also secondary particles can be banked for subsequent transport. Modelling of the fast-neutron response of a SiC detector was carried out for fast neutrons produced by 239Pu-Be source with the mean energy of about 4.3 MeV. Using the MCNPX code, the following quantities have been calculated: secondary particle flux densities, reaction rates of elastic/inelastic scattering and other nuclear reactions, distribution of residual ions, deposited energy and energy distribution of pulses. The values of reaction rates calculated for different types of reactions and resulting energy deposition values showed that the incident neutrons transfer part of the carried energy predominantly via elastic scattering on silicon and carbon atoms. Other fast-neutron induced reactions include inelastic scattering and nuclear reactions followed by production of α-particles and protons. Silicon and carbon recoil atoms, α-particles and protons are charged particles which contribute to the detector response. It was demonstrated that although the bare SiC material can register fast neutrons directly, its detection efficiency can be enlarged if it is covered by an appropriate conversion layer. Comparison of the simulation results with experimental data was successfully accomplished.

  16. Suspended particle transport through constriction channel with Brownian motion

    NASA Astrophysics Data System (ADS)

    Hanasaki, Itsuo; Walther, Jens H.

    2017-08-01

    It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the deviation from the dynamics of the surrounding fluid. We show by numerical analysis that the particle injection into the narrower part of the channel is affected by thermal fluctuation, where the particles have spherical symmetry and are smaller than the height of the constriction. The Péclet number (Pe) is the order parameter that governs the phenomena, which clarifies the spatio-temporal significance of Brownian motion compared to hydrodynamics. Furthermore, we find that there exists an optimal condition of Pe to attain the highest flow rate of particles relative to the dispersant fluid flow. Our finding is important in science and technology from nanopore DNA sequencers and lab-on-a-chip devices to filtration by porous materials and chromatography.

  17. Transport and fate of microplastic particles in wastewater treatment plants.

    PubMed

    Carr, Steve A; Liu, Jin; Tesoro, Arnold G

    2016-03-15

    Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs.

  18. Vortex line in the unitary Fermi gas

    SciTech Connect

    Madeira, Lucas; Vitiello, Silvio A.; Gandolfi, Stefano; Schmidt, Kevin E.

    2016-04-06

    Here, we report diffusion Monte Carlo results for the ground state of unpolarized spin-1/2 fermions in a cylindrical container and properties of the system with a vortex-line excitation. The density profile of the system with a vortex line presents a nonzero density at the core. We also calculate the ground-state energy per particle, the superfluid pairing gap, and the excitation energy per particle. Finally, these simulations can be extended to calculate the properties of vortex excitations in other strongly interacting systems such as superfluid neutron matter using realistic nuclear Hamiltonians.

  19. Transport equations for subdiffusion with nonlinear particle interaction.

    PubMed

    Straka, P; Fedotov, S

    2015-02-07

    We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent.

  20. Charged Particle Transport in High-Energy-Density Matter

    NASA Astrophysics Data System (ADS)

    Stanton, Liam; Murillo, Michael

    2016-10-01

    Transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. We have developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. Our results have been validated with molecular dynamics simulations for self-diffusion, interdiffusion, viscosity, thermal conductivity and stopping power. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. Using a velocity-dependent screening model, we examine the role of dynamical screening in transport as well. Implications of these results for Coulomb logarithm approaches are discussed. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  2. Development of a particle injection system for impurity transport study in KSTAR.

    PubMed

    Lee, H Y; Hong, Suk-Ho; Hong, Joohwan; Lee, Seung Hun; Jang, Siwon; Jang, Juhyeok; Jeon, Taemin; Park, Jae Sun; Choe, Wonho

    2014-11-01

    A solid particle injection system is developed for KSTAR. The system has a compact size, compatibility with a strong magnetic field and high vacuum environment, and the capability to inject a small amount of solid particles with a narrow injection angle. The target flight-distance of 10 cm has been achieved with a particle loss rate of less than 10%. Solid impurity particles such as tungsten and carbon will be injected by this system at the midplane in KSTAR. The impurity transport feature will be studied with a soft X-ray array, a vacuum ultra-violet diagnostic, and Stand Alone Non-Corona code.

  3. Development of a particle injection system for impurity transport study in KSTAR

    SciTech Connect

    Lee, H. Y.; Hong, Joohwan; Lee, Seung Hun; Jang, Siwon; Jang, Juhyeok; Jeon, Taemin; Park, Jae Sun; Choe, Wonho; Hong, Suk-Ho

    2014-11-15

    A solid particle injection system is developed for KSTAR. The system has a compact size, compatibility with a strong magnetic field and high vacuum environment, and the capability to inject a small amount of solid particles with a narrow injection angle. The target flight-distance of 10 cm has been achieved with a particle loss rate of less than 10%. Solid impurity particles such as tungsten and carbon will be injected by this system at the midplane in KSTAR. The impurity transport feature will be studied with a soft X-ray array, a vacuum ultra-violet diagnostic, and Stand Alone Non-Corona code.

  4. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  5. Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows

    NASA Astrophysics Data System (ADS)

    Liu, Caixi; Tang, Shuai; Shen, Lian; Dong, Yuhong

    2017-03-01

    The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties.

  6. GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS

    SciTech Connect

    Horton, Claude Wendell

    2014-06-10

    The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).

  7. Impact of particle nanotopology on water transport through hydrophobic soils.

    PubMed

    Truong, Vi Khanh; Owuor, Elizabeth A; Murugaraj, Pandiyan; Crawford, Russell J; Mainwaring, David E

    2015-12-15

    The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities. Atomic force microscopy (AFM), contact angle and Raman micro-spectroscopy measurements on model planar and particulate SOM-containing surfaces demonstrated the role of the hierarchical surface structure on the wetting dynamics of packed particulate beds. It was found that a nanoscale surface topology is superimposed over the microscale roughness of the packed particles, and this controls the extent of water ingress into particulate packed beds of these particles. Using two of the dominant component organic species found in the SOM of the two soils used in this study, it was found that the specific interactions taking place between the SOM components, rather than their absolute quantities, dictated the formation of highly hydrophobic surface nanotopologies. This hydrophobicity was demonstrated, using micro-Raman imaging, to arise from the surface being in a composite Cassie-Baxter wetting state. Raman imaging demonstrated that the particle surface nanotopography influenced the degree of air entrapment in the interstices within the particle bed. The influence of a conventional surfactant on the wetting kinetics of both the model planar surfaces and packed particulate beds was quantified in terms of their respective advancing contact angles and the capillary wetting force vector. The information obtained for all of the planar and particulate surfaces, together with that obtained for the two soils, allowed linear relationships to be obtained in plots of the contact angle

  8. Analysis of non-spherical particle transport in complex internal shear flows

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kleinstreuer, C.

    2013-09-01

    Focusing on ellipsoidal particles of different aspect ratios, the motion characteristics, including critical angle and stable vs. unstable rotational periods, are computationally analyzed in developing and fully developed tubular flows. As an application of particle transport and deposition, the one-way coupled Euler-Lagrange method enhanced by Euler's rotation equations is then employed to simulate laminar-turbulent flow in a subject-specific lung-airway model. First, to gain some basic insight into the dynamics of non-spherical particles, tubular flow is considered where the trajectories of ellipsoidal fibers with randomly initialized incidence angles were released at different inlet-plane positions, computed and visualized. Local and overall particle deposition results are compared between spheres, ellipsoidal fibers, and sphere-equivalent particles for which a revised Stokes diameter was developed. Concerning non-spherical particle transport and deposition in a subject-specific respiratory system, the validated computer simulation model provides realistic and accurate particle-deposition results. Specifically, slender non-spherical particles (i.e., those with higher aspect ratios) are potentially more harmful than thicker ones due to their ability to penetrate into deeper lung regions when somewhat aligned with the major flow field. Furthermore, non-spherical particle deposition is enhanced as the breathing rate increases.

  9. Understanding Particle Defect Transport in an Ultra-Clean Sputter Coating Process

    SciTech Connect

    Walton, C; Kearney, P; Folta, J; Sweeney, D; Mirkarimi, P

    2003-03-24

    Low-defect mask blanks remain a key technical challenge to Extreme Ultraviolet Lithography (EUVL). The mask blank is ion-beam sputter-coated with an 81-layer Mo/Si multilayer stack for high reflectance at {lambda} = 13.4nm. The current mask coating process can achieve a median added defect level of 0.05 defects/cm{sup 2} (12 added defects 90nm or larger on a 200mm Si-wafer test substrate), but this must be reduced by about a factor of 10 to meet mask cost requirements for EUVL. To further reduce the particle defect level, we have studied pathways for particle transport, using test particles and particles native to the coating process, and combined the results into a computational model of particle transport in an ion-beam sputter system. At process pressure, gas drag is negligible for particles above 100nm, so particles travel ballistically until they hit a surface. Bounce from chamber walls allows particles to reach all surfaces in the chamber if they have initial velocities above {approx}100m/s. The ion beam has sufficient momentum to entrain slower particles and accelerate them toward the sputter target, where some can bounce to the substrate. The model shows preliminary agreement with experimental defect distributions on witness wafers at various positions within the coating chamber.

  10. The role of unsteady forces for sediment particles in bedload transport

    NASA Astrophysics Data System (ADS)

    Liu, Detian; Liu, Xiaofeng; Fu, Xudong

    2016-04-01

    In engineering, bedload transport is usually predicted by a variety of formulas, and huge uncertainty is found from case to case. One of the fundamental reasons is the lack of fully understanding the dynamic behavior of bedload particles. We explore the dynamic characteristics of sediment particles transported in turbulent open-channel flows. A numerical model of sediment transport is built by combining the large eddy simulation (LES) with discrete element model (DEM) using a fully four-way coupling method. Particular attention is paid to the hydrodynamic forces acting on bedload particles. The result shows that, in addition to drag force, the unsteady forces (i.e. Basset history force and added mass force) are important (40%~60% in the summation of all the time-averaged magnitude of forces) for fine sediment particles (with a diameter of 0.5 mm), which are usually ignored for computational complexity. While the lift force has been found to be significant for gravel particles (with a diameter of 31 mm)[1], it is not relatively dominant for such fine particles (less than 3% in the summation). This helps explaining why the prediction of the same formula change greatly from case to case. The comparison with experimental data also shows great potential of the current LES-DEM model for fundamental research in bedload transport. Reference: [1] Nino, Y., & Garcia, M. (1994). Gravel saltation 2. Modeling. Water Resources Research, 30(6), 1915-1924.

  11. Transport coefficients for relativistic gas mixtures of hard-sphere particles

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.; Moratto, Valdemar

    2017-04-01

    In the present work, we calculate the transport coefficients for a relativistic binary mixture of diluted gases of hard-sphere particles. The gas mixture under consideration is studied within the relativistic Boltzmann equation in the presence of a gravitational field described by the isotropic Schwarzschild metric. We obtain the linear constitutive equations for the thermodynamic fluxes. The driving forces for the fluxes of particles and heat will appear with terms proportional to the gradient of gravitational potential. We discuss the consequences of the gravitational dependence on the driving forces. We obtain general integral expressions for the transport coefficients and evaluate them by assuming a hard-sphere interaction amongst the particles when they collide and not very disparate masses and diameters of the particles of each species. The obtained results are expressed in terms of their temperature dependence through the relativistic parameter which gives the ratio of the rest energy of the particles and the thermal energy of the gas mixture. Plots are given to analyze the behavior of the transport coefficients with respect to the temperature when small variations in masses and diameters of the particles of the species are present. We also analyze for each coefficient the corresponding limits to a single gas so the non-relativistic and ultra-relativistic limiting cases are recovered as well. Furthermore, we show that the transport coefficients have a dependence on the gravitational field.

  12. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    PubMed

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  13. Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons

    NASA Astrophysics Data System (ADS)

    Sedlačková, Katarína; Zaťko, Bohumír; Šagátová, Andrea; Nečas, Vladimír

    2013-05-01

    Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239Pu-Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm.

  14. A Pipeline Transport Correlation for Slurries with Small but Dense Particles

    SciTech Connect

    Poloski, Adam P; Etchells, Arthur W; Chun, Jaehun; Adkins, Harold E; Casella, Andrew M; Minette, Michael J; Yokuda, Satoru T

    2010-04-01

    Most correlations/models for minimum transport or critical velocity of slurry were developed for slurries composed of particles greater than ~100-200 µm diameter with narrow particle-size distributions which is typical of the minerals industry. Many other process industries handle smaller particles. In particular waste slurries at the U.S. Department of Energy's Hanford Site have broad size distributions and significant fractions of smaller particles. Despite the size of these wastes, recent PNNL studies indicate that the small particles might be of sufficient density to pose a significant risk for pipeline deposition and plugging. To allow predictive assessment of deposition of fine dense particles for waste slurry transport at the U.S. DOE Hanford site, a pipeline-transport correlation for critical velocity was developed using a simple power-law between two dimensionless numbers important for slurry transport, the deposition Froude and Archimedes numbers. The correlation accords well with experimental data for slurries with Archimedes numbers <80 and is an adequate pipeline design guide for processing Hanford waste slurry.

  15. Angular Momentum Transport and Particle Acceleration During Magnetorotational Instability in a Kinetic Accretion Disk

    NASA Astrophysics Data System (ADS)

    Hoshino, Masahiro

    2015-02-01

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p∥>p⊥ induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p⊥>p∥ due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  16. Modeling nitrogen transport and transformation in aquifers using a particle-tracking approach

    NASA Astrophysics Data System (ADS)

    Cui, Zhengtao; Welty, Claire; Maxwell, Reed M.

    2014-09-01

    We have integrated multispecies biodegradation and geochemical reactions into an existing particle-tracking code to simulate reactive transport in three-dimensional variably saturated media, with a focus on nitrification and denitrification processes. This new numerical model includes reactive air-phase transport so that gases such as N2 and CO2 can be tracked. Although nitrogen biodegradation is the primary problem addressed here, the method presented is also applicable to other reactive multispecies transport problems. We verified the model by comparison with (1) analytical solutions for saturated one- and two-dimensional cases; (2) a finite element model for a one-dimensional unsaturated case; and (3) laboratory observations for a one-dimensional saturated case. Good agreement between the new code and the verification problems is demonstrated. The new model can simulate nitrogen transport and transformation in a heterogeneous permeability field where sharp concentration gradients are present. An example application to nitrogen species biodegradation and transport of a plume emanating from a leaking sewer in a heterogeneous, variably saturated aquifer is presented to illustrate this capability. This example is a novel application of coupling unsaturated/saturated zone transport with nitrogen species biodegradation. The code has the computational advantages of particle-tracking algorithms, including local and global mass conservation and minimal numerical dispersion. We also present new methods for improving particle code efficiency by implementing the concept of tracking surplus/deficit particles and particle recycling in order to control the growth of particle numbers. The new model retains the advantages of the particle tracking approach such as allowing relatively low spatial and temporal resolutions to be used, while incorporating the robustness of grid-based Monod kinetics to simulate biogeochemical reactions.

  17. Subsonic Investigation of Leading-Edge Flaps Designed for Vortex- and Attached-Flow on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Kemmerly, Guy T.; Kjerstad, Kevin J.; Lessard, Victor R.

    1999-01-01

    A wind tunnel investigation of two separate leading-edge flaps, designed for vortex and attached-flow, respectively, were conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.12 to 0.27, with corresponding chord Reynolds numbers of 2.50 x 10 (sup 6) to 5.50 x 10 (sup 6). Variations of the leading-edge flap deflection angle were tested with outboard leading-edge flaps deflected 0 deg. and 26.4 deg. Trailing-edge flaps were deflected 0 deg., 10 deg., 12.9 deg., and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein. The data associated with each deflected leading-edge flap indicate L/D improvements over the undeflected configuration. These improvements may be instrumental in providing the necessary lift augmentation required by an actual HSCT during the climb-out and landing phases of the flight envelope. However, further tests will have to be done to assess their full potential.

  18. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.

    2011-09-21

    The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.

  19. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2017-02-01

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1-800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  20. Hydrodynamic controls on particle transport through heterogeneous porous media

    SciTech Connect

    Silliman, S.E.

    1992-09-30

    The initial stages of this project have been focused on equipment development and preliminary experimental efforts. Among the accomplishments to date are the development of a successful flow cell design, proof of the utility of the UV resin, adjustment of the Laser Particle Counter to produce reliable readings, installation of a low particle content water supply, installation of a microscope for viewing discharge samples, development of a fiber/rod optic system for freezing the UV resin in situ and performance of initial experiments on layered and complex heterogeneities. The work is currently following very closely the original schedule for research efforts. Continuing efforts in year one will include continued efforts in simple and complex heterogeneity in two-dimensions, extension into three-dimensions, consideration of the most appropriate methods for creating geologically realistic structures in the laboratory, interaction with other SSP research programs and organization of the spring meeting on intermediate-scale experimentation to be held at Notre Dame. Efforts in year two will be focused on three-dimensional experiments in saturated media, extension of results into unsaturated media, development of techniques for unsaturated media characterization, and development of research ties with outside research interests.

  1. Time-Dependent, Parallel Neutral Particle Transport Code System.

    SciTech Connect

    BAKER, RANDAL S.

    2009-09-10

    Version 00 PARTISN (PARallel, TIme-Dependent SN) is the evolutionary successor to CCC-547/DANTSYS. The PARTISN code package is a modular computer program package designed to solve the time-independent or dependent multigroup discrete ordinates form of the Boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, the Solver Module, and the Edit Module, respectively. PARTISN is the evolutionary successor to the DANTSYSTM code system package. The Input and Edit Modules in PARTISN are very similar to those in DANTSYS. However, unlike DANTSYS, the Solver Module in PARTISN contains one, two, and three-dimensional solvers in a single module. In addition to the diamond-differencing method, the Solver Module also has Adaptive Weighted Diamond-Differencing (AWDD), Linear Discontinuous (LD), and Exponential Discontinuous (ED) spatial differencing methods. The spatial mesh may consist of either a standard orthogonal mesh or a block adaptive orthogonal mesh. The Solver Module may be run in parallel for two and three dimensional problems. One can now run 1-D problems in parallel using Energy Domain Decomposition (triggered by Block 5 input keyword npeg>0). EDD can also be used in 2-D/3-D with or without our standard Spatial Domain Decomposition. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. In addition, PARTISN now has a probabilistic mode for Probability of Initiation (static) and Probability of Survival (dynamic) calculations. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D (slab, two

  2. Hydrodynamic controls on particle transport through heterogeneous porous media. Technical progress report

    SciTech Connect

    Silliman, S.E.; Babic, M.

    1993-09-28

    Sophisticated models of the movement of particles, particularly bacteria and viruses, through porous media have been developed, but have met with limited success when compared to field observations some argue that the poor predictive capabilities of the models are due in part to the fact that most of the sophisticated models are tied to an assumptions of homogeneity within the flow field. In previous work, the structure of random percolation fields has been investigated and suggests application of percolation theory to heterogeneous porous media. One conclusion from this study as applied to particle transport is that as the distribution of pore throat sizes takes on variation in the third dimension, the probability of finding a continuous flow path with large throat size increases. One interpretation of this work, within the current context, leads to an argument that a saturated medium will become more open to transport of particles as the medium takes on three dimensional structure. The central hypothesis of the current project is therefore be stated: Particles which are suspended within the pore fluids of media demonstrating three-dimensional heterogeneities will be transported at higher average velocities and with less trapping than particles which are suspended in the pore fluids of media demonstrating one- or two-dimensional heterogeneities. This dependence on dimension is a function of the dimensional character of the heterogeneity, the length scales of the heterogeneity, the size of the particles, the hydrodynamics of the flow field, the degree of saturation of the medium, and the medium/particle interaction.

  3. Modeling and Simulation of Cardiogenic Embolic Particle Transport to the Brain

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Jani, Neel; Shadden, Shawn C.

    2015-11-01

    Emboli are aggregates of cells, proteins, or fatty material, which travel along arteries distal to the point of their origin, and can potentially block blood flow to the brain, causing stroke. This is a prominent mechanism of stroke, accounting for about a third of all cases, with the heart being a prominent source of these emboli. This work presents our investigations towards developing numerical simulation frameworks for modeling the transport of embolic particles originating from the heart along the major arteries supplying the brain. The simulations are based on combining discrete particle method with image based computational fluid dynamics. Simulations of unsteady, pulsatile hemodynamics, and embolic particle transport within patient-specific geometries, with physiological boundary conditions, are presented. The analysis is focused on elucidating the distribution of particles, transport of particles in the head across the major cerebral arteries connected at the Circle of Willis, the role of hemodynamic variables on the particle trajectories, and the effect of considering one-way vs. two-way coupling methods for the particle-fluid momentum exchange. These investigations are aimed at advancing our understanding of embolic stroke using computational fluid dynamics techniques. This research was supported by the American Heart Association grant titled ``Embolic Stroke: Anatomic and Physiologic Insights from Image-Based CFD.''

  4. Plutonium isotopes in settling particles: transport and scavenging of Pu in the western Northwest Pacific.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2006-07-01

    We examined the vertical distributions of 239+240Pu activity and 240Pu/239Pu atom ratio in settling particles and quantified the particulate 239+240Pu fluxes in the water column in the western Northwest Pacific. Settling particle samples were collected using sediment traps. Plutonium isotopes were analyzed using a sector field high-resolution ICP-MS. To the best of our knowledge, this is the first time that both Pu activity and Pu isotope ratio data have been obtained for settling particles in the Pacific Ocean. The high (>0.18) 240Pu/239Pu atom ratios in settling particles indicate that plutonium from the Pacific Proving Grounds (PPG) source in the central Pacific is transported toward the western Northwest Pacific. Evidence indicates that Pu scavenging onto the settling particles is strongly dependent upon the bulk mass flux. The results suggest that advective lateral transport of dissolved Pu from the open ocean to the ocean margin and removal of Pu into the margin sediments by particle scavenging is a common phenomenon in the Pacific Ocean. Plutonium can be considered as a useful tracer to study the transport and fate of other contaminants that readily adsorb to particles in marine environments.

  5. Commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi.

    PubMed

    Kumar, Pramod; Gupta, N C

    2016-01-15

    A public health concern is to understand the linkages between specific pollution sources and adverse health impacts. Commuting can be viewed as one of the significant-exposure activity in high-vehicle density areas. This paper investigates the commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi, India. Air pollution levels are significantly contributed by automobile exhaust and also in-vehicle exposure can be higher sometime than ambient levels. Motorcycle, auto rickshaw, car and bus were selected to study particles concentration along two routes in Delhi between Kashmere Gate and Dwarka. The bus and auto rickshaw were running on compressed natural gas (CNG) while the car and motorcycle were operated on gasoline fuel. Aerosol spectrometer was employed to measure inhalable, thoracic and alveolic particles during morning and evening rush hours for five weekdays. From the study, we observed that the concentration levels of these particles were greatly influenced by transportation modes. Concentrations of inhalable particles were found higher during morning in auto rickshaw (332.81 ± 90.97 μg/m(3)) while the commuter of bus exhibited higher exposure of thoracic particles (292.23 ± 110.45 μg/m(3)) and car commuters were exposed to maximum concentrations of alveolic particles (222.37 ± 26.56 μg/m(3)). We observed that in evening car commuters experienced maximum concentrations of all sizes of particles among the four commuting modes. Interestingly, motorcycle commuters were exposed to lower levels of inhalable and thoracic particles during morning and evening hours as compared to other modes of transport. The mean values were found greater than the median values for all the modes of transport suggesting that positive skewed distributions are characteristics of naturally occurring phenomenon.

  6. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.

    PubMed

    Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq

    2017-03-01

    The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.

  7. Particle trapping and beam transport issues in laser driven accelerators

    NASA Astrophysics Data System (ADS)

    Gwenael, Fubiani; Wim, Leemans; Eric, Esarey

    2000-10-01

    The LWFA and colliding pulses [1][2] sheme are capable of producing very compact electron bunches where the longitudinal size is much smaller than the transverse size. In this case, even if the electrons are relativistic, space charge force can affect the longitudinal and transverse bunch properties [3][4]. In the Self-modulated regime and the colliding pulse sheme, electrons are trapped from the background plasma and rapidly accelerated. We present theoretical studies of the generation and transport of electron bunches in LWFAs. The space charge effect induced in the bunch is modelled assuming the bunch is ellipsoid like. Beam transport in vacuum, comparison between gaussian and waterbag distribution, comparison between envelope model and PIC simulation will be discussed. This work is supported by the Director, Office of Science, Office of High Energy & Nuclear Physics, High Energy Physics Division, of the U.S Department of Energy, under Contract No. DE-AC03-76SF00098 [1]E.Esarey et al.,IEEE Trans. Plasma Sci. PS-24,252 (1996); W.P. Leemans et al, ibidem, 331. [2]D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B Schroeder et al., Phys. Rev. E59, 6037 (1999) [3]DESY M87-161 (1987); DESY M88-013 (1988) [4] R.W. Garnett and T.P Wangler, IEEE Part. Acce. Conf. (1991)

  8. Colloidal particle transport in unsaturated porous media: Influence of flow velocity and ionic strength on colloidal particle retention

    NASA Astrophysics Data System (ADS)

    Predelus, Dieuseul; Coutinho, Paiva Artur; Lassabatere, Laurent; Winiarsky, Thierry; Angulo Jaramillo, Rafael

    2014-05-01

    Recently, anthropogenic colloidal particles are increasingly present into the environment. They can carry contaminants or constitute themselves a risk for the environment. Several factors can influence the fate of colloidal particles in soils. This work presents the investigation of effects of flow velocity and ionic strength on colloidal particles retention in unsaturated porous media. Experiments were carried out in laboratory column (D = 10 cm, L = 30 cm) with compacted mixture sand-gravel from a fluvioglacial basin of Lyon, France. Fluorescents nanoparticles (D = 50 to 60 nm) of silica doped with fluorescent organic molecules (fluorescein) have been used to simulate colloid particle transport. A solution of a non-reactive tracer, Br-, was used to determine the water flow behavior. Three different unsaturated water flow velocities (i.e. V = 0.025, 0.064 and 0.127 cm/min) and five ionic strengths (i.e. IS = 1, 5, 50, 100 and 200 mM at pH=8.5) have been tested for the case of a pulse injection of a colloidal particle solution at a concentration of 2 mg/L. Breakthrough curves are modeled by the non-equilibrium transfer model MIM (mobile and immobile water fraction), taking into account a sink term to reflect the colloidal particles adsorption. Results show that, when the flow velocity increases, the colloidal particle retention decreases. The decrease in flow velocity allows a better homogenization of the flow. In addition, colloidal entrapment is favored by the fact that their pore velocity is reduced. The retention of colloidal particle is function of ionic strength as well. Indeed, when the ionic strength increases, the retention increases. However for ionic strength higher than 50 mM, the retention decreases suggesting that there is a threshold value for the ionic strength with respect to the retention of colloidal particles. The retention profiles at the end of experiments indicate that the colloidal particles are retained at the inlet of the columns

  9. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta approximately 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range Transport of theta is estimated to have been dehydrated in this event.

  10. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; hide

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta approximately 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range Transport of theta is estimated to have been dehydrated in this event.

  11. Comprehensive computer model for magnetron sputtering. II. Charged particle transport

    SciTech Connect

    Jimenez, Francisco J. Dew, Steven K.; Field, David J.

    2014-11-01

    Discharges for magnetron sputter thin film deposition systems involve complex plasmas that are sensitively dependent on magnetic field configuration and strength, working gas species and pressure, chamber geometry, and discharge power. The authors present a numerical formulation for the general solution of these plasmas as a component of a comprehensive simulation capability for planar magnetron sputtering. This is an extensible, fully three-dimensional model supporting realistic magnetic fields and is self-consistently solvable on a desktop computer. The plasma model features a hybrid approach involving a Monte Carlo treatment of energetic electrons and ions, along with a coupled fluid model for thermalized particles. Validation against a well-known one-dimensional system is presented. Various strategies for improving numerical stability are investigated as is the sensitivity of the solution to various model and process parameters. In particular, the effect of magnetic field, argon gas pressure, and discharge power are studied.

  12. Applications to particle transport in the Earth`s aurora

    SciTech Connect

    Jasperse, J.R.

    1994-12-31

    The visual display of light called the aurora borealis occurs when energetic (1 to 100-keV) electrons, protons, and hydrogen atoms from the Earth`s magnetosphere enter the Earth`s upper atmosphere and collide with the ambient neutral particles. Two kinds of auroras occur in nature: those excited by incident electrons and those excited by incident protons and hydrogen atoms. In this paper, we consider only the latter. The proton-hydrogen aurora may be divided into two altitude regions: high altitudes ({approximately}250 to {approximately}600 km) where charge-changing collisions dominate and energy-loss collisions may be neglected and low altitudes ({approximately}100 to {approximately}250 km) where energy-loss collisions also become important and cause rapid energy degradation. The focus of this review is on the high-altitude region where the one-group approximation is valid.

  13. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  14. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  15. CHARGED-PARTICLE TRANSPORT IN MAGNETIC TURBULENCE. I. A GLOBALLY ANISOTROPIC FIELD

    SciTech Connect

    Sun, P.; Jokipii, J. R.

    2015-12-10

    Collisionless magnetohydrodynamic Turbulence is common in large scale astrophysical environments. The determination of the transport of charged particles both parallel and perpendicular in such a system is of considerable interest. Quasi-linear analysis or direct numerical simulation can be used to find the effects of the turbulent magnetic field on the transport of charged particles. A number of different magnetic turbulence models have been proposed in the last several decades. We present here the results of studying particle transport in synthesized, anisotropic turbulence and compare the results with those obtained using the standard isotropic turbulence model in a series of papers. In this paper we consider the magnetic field turbulence model with global anisotropy.

  16. Non-Markovian Model for Transport and Reactions of Particles in Spiny Dendrites

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Méndez, Vicenç

    2008-11-01

    Motivated by the experiments [Santamaria , Neuron 52, 635 (2006)NERNET0896-627310.1016/j.neuron.2006.10.025] that indicated the possibility of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communication between spines and a parent dendrite is described by a non-Markovian random process and, as a result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is derived for the particles densities in dendrites and spines. This system involves the spine-dendrite interaction term which describes the memory effects and nonlocality in space. We consider the impact of power-law waiting time distributions on the transport of biochemical signals and mechanism of the accumulation of plasticity-inducing signals inside spines.

  17. Physical considerations relevant to HZE-particle transport in matter

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.

    1988-01-01

    High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.

  18. Physical considerations relevant to HZE-particle transport in matter.

    PubMed

    Schimmerling, W

    1988-06-01

    High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.

  19. Resolving Rapid Variation in Energy for Particle Transport

    SciTech Connect

    Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra; Till, Andrew Thomas; Lowrie, Robert Byron

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracy and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.

  20. Physical considerations relevant to HZE-particle transport in matter

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.

    1988-01-01

    High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.

  1. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  2. Evaluation of travelling vortex speed by means of vortex tracking and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-06-01

    The article deals with the analysis of unsteady periodic flow field related to synthetic jet creation. The analyses are based on the data obtained using ANSYS Fluent solver. Numerical results are validated by hot wire anemometry data measured along the jet centerline. The speed of travelling vortex ring is evaluated by using vortex tracking method and by using dynamic mode decomposition method. Vortex identification is based on residual vorticity which allows identifying regions in the flow field where fluid particles perform the rotational motion. The regime of the synthetic jet with Re = 329 and S = 19.7 is chosen. Both the vortex tracking and the dynamic mode decomposition based vortex speed evaluation indicate an increase in the vortex speed close to the orifice and then decrease with maximum reaching almost one and half of orifice centerline velocity. The article contains extended version the article presented at the conference AEaNMiFMaE 2016.

  3. Alpha particle transport in the presence of ballooning type electrostatic driftwaves

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Huang, B.; Cheng, C. Z.

    2015-07-01

    Employing Hamiltonian mechanics, the transport of fusion born alpha particles in the presence of driftwave turbulence is investigated. An analytical turbulence model based on the toroidal drift eigenmode is employed for guiding center orbit-following calculations. It is shown that high energy particles are less susceptible to driftwave turbulence. The passing particle transport is due to overlapping of guiding center electric islands whose widths are inversely proportional to the square root of the parallel velocity. For trapped particles, through a coordinate transformation from the poloidal angle and the parallel velocity to the action-angle variables, the resonance between the bounce motion and the toroidal precession motion, which can cause secondary island formation in the phase space, is demonstrated.

  4. Martian global dust storms - Zonally symmetric numerical simulations including size-dependent particle transport

    NASA Astrophysics Data System (ADS)

    Murphy, J. R.; Haberle, R. M.; Toon, O. B.; Pollack, J. B.

    1993-02-01

    A zonally symmetric primitive-equation grid-point model of the Martian atmosphere is coupled with an aerosol transport/microphysical model in order to numerically investigate the size-dependent transport of dust particles in the Martian atmosphere. The coupled model accounts for diabatic heating due to a radiatively active evolving dust field, but neglects feedbacks between atmosphere-surface interactions and surface dust lifting. The differing suspension lifetimes of dust particles of various sizes (radius = 1-80 microns), in conjunction with spatially varying atmospheric dynamics, result in latitudinal differences in several measurements of the column integrated particle concentration. This work indicates the importance of considering the full range of particle sizes (and shapes) of the suspended dust during Martian global dust storms and their impact upon the spatial extent and wavelength-dependent radiative influence of such storms.

  5. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-10-15

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport.

  6. Electron-tomographic analysis of intraflagellar transport particle trains in situ.

    PubMed

    Pigino, Gaia; Geimer, Stefan; Lanzavecchia, Salvatore; Paccagnini, Eugenio; Cantele, Francesca; Diener, Dennis R; Rosenbaum, Joel L; Lupetti, Pietro

    2009-10-05

    Intraflagellar transport (IFT) is the bidirectional movement of multipolypeptide particles between the ciliary membrane and the axonemal microtubules, and is required for the assembly, maintenance, and sensory function of cilia and flagella. In this paper, we present the first high-resolution ultrastructural analysis of trains of flagellar IFT particles, using transmission electron microscopy and electron-tomographic analysis of sections from flat-embedded Chlamydomonas reinhardtii cells. Using wild-type and mutant cells with defects in IFT, we identified two different types of IFT trains: long, narrow trains responsible for anterograde transport; and short, compact trains underlying retrograde IFT. Both types of trains have characteristic repeats and patterns that vary as one sections longitudinally through the trains of particles. The individual IFT particles are highly complex, bridged to each other and to the outer doublet microtubules, and are closely apposed to the inner surface of the flagellar membrane.

  7. PARTICLE TRANSPORT AND DEPOSITION IN THE HOT-GAS FILTER AT WILSONVILLE

    SciTech Connect

    Goodarz Ahmadi

    1999-06-24

    Particle transport and deposition in the Wilsonville hot-gas filter vessel is studied. The filter vessel contains a total of 72 filters, which are arranged in two tiers. These are modeled by six upper and one lower cylindrical effective filters. An unstructured grid of 312,797 cells generated by GAMBIT is used in the simulations. The Reynolds stress model of FLUENT{trademark} (version 5.0) code is used for evaluating the gas mean velocities and root mean-square fluctuation velocities in the vessel. The particle equation of motion includes the drag, the gravitational and the lift forces. The turbulent instantaneous fluctuation velocity is simulated by a filtered Gaussian white-noise model provided by the FLUENT code. The particle deposition patterns are evaluated, and the effect of particle size is studied. The effect of turbulent dispersion, the lift force and the gravitational force are analyzed. The results show that the deposition pattern depends on particle size. Turbulent dispersion plays an important role in transport and deposition of particles. Lift and gravitational forces affect the motion of large particles, but has no effect on small particles.

  8. Validating a universal model of particle transport lengths with laboratory measurements of suspended grain motions

    NASA Astrophysics Data System (ADS)

    Naqshband, Suleyman; McElroy, Brandon; Mahon, Robert C.

    2017-05-01

    The mechanics of sediment transport are of fundamental importance for fluvio-deltaic morphodynamics. The present study focuses on quantifying particle motions and trajectories across a wide range of flow conditions. In particular, a continuous model is presented that predicts particle travel distances for saltation and suspension based on Rouse number and relative grain roughness. By utilizing a series of eight video cameras in a plexiglass flume direct measurements of the distributions of particle travel distances (excursion lengths) were obtained. To this end, experiments were carried out in dark under black lights with fluorescent painted plastic and quartz sand particles. For relatively high Rouse numbers indicating bed load dominant transport regime (P≥2.5), particle motion is governed by the effect of gravitational forces (settling velocities) and measured excursion lengths closely follow a Gaussian distribution. For P=2.5, particle motion is equally subjected to both gravitational and turbulent forces. Consequently, measured excursion lengths exhibit a bimodal distribution with two distinct peaks. As turbulent fluctuations increase and dominate particle motion over gravity (P<2.5), distributions of excursion lengths become unimodal and negative-skewed with mean values deviating from the modes. The predicted trend of linearly increasing excursion lengths with decreasing Rouse numbers is consistent with measured excursion lengths across a wide range of Rouse numbers >(P=1.8-8.9). Furthermore, measured excursion lengths are observed to fit within the predicted range of excursion lengths with no significant difference between measured excursion lengths of plastic and quartz sand particles.

  9. Fluctuation-Induced Particle Transport and Density Relaxation in a Stochastic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Brower, David L.

    2009-11-01

    Particle transport and density relaxation associated with electromagnetic fluctuations is an unresolved problem of long standing in plasma physics and magnetic fusion research. In toroidal fusion plasmas, magnetic field fluctuations can arise spontaneously from global MHD instabilities, e.g., tearing fluctuations associated with sawtooth oscillations. Resonant magnetic perturbations (RMP) have also been externally imposed to mitigate the effect of edge localized modes (ELMs) by locally enhancing edge transport in Tokamaks. Understanding stochastic-field-driven transport processes is thus not only of basic science interest but possibly critical to ELM control in ITER. We report on the first direct measurement of magnetic fluctuation-induced particle transport in the core of a high-temperature plasma, the MST reversed field pinch. Measurements focus on the sawtooth crash, when the stochastic field resulting from tearing reconnection is strongest, and are accomplished using newly developed, laser-based, differential interferometry and Faraday rotation techniques. The measured electron particle flux, resulting from the correlated product of electron density (δn) and radial magnetic fluctuations (δbr), accounts for density profile relaxation during these magnetic reconnection events. Surprisingly, the electron diffusion is 30 times larger than estimates of ambipolarity-constrained transport in a stochastic magnetic field. A significant ion flux associated with parallel ion flow velocity fluctuations (δvi,//) correlated with δbr appears responsible for transport larger than predictions from the quasi-linear test particle model. These results indicate the need for improved understanding of particle transport in a stochastic magnetic field. Work performed in collaboration with W.X. Ding, W.F. Bergerson, T.F. Yates, UCLA; D.J. Den Hartog, G. Fiksel, S.C. Prager, J.S. Sarff and the MST Group, University of Wisconsin-Madison.

  10. Particle transport after pellet injection in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Velasco, J. L.; McCarthy, K. J.; Panadero, N.; Satake, S.; López-Bruna, D.; Alonso, A.; Calvo, I.; Dinklage, A.; Estrada, T.; Fontdecaba, J. M.; Hernández, J.; García, R.; Medina, F.; Ochando, M.; Pastor, I.; Perfilov, S.; Sánchez, E.; Soleto, A.; Van Milligen, B. Ph; Zhezhera, A.; the TJ-II Team

    2016-08-01

    We study radial particle transport in stellarator plasmas using cryogenic pellet injection. By means of perturbative experiments, we estimate the experimental particle flux and compare it with neoclassical simulations. Experimental evidence is obtained of the fact that core depletion in helical devices can be slowed-down even by pellets that do not reach the core region. This phenomenon is well captured by neoclassical predictions with DKES and FORTEC-3D.

  11. Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes

    NASA Astrophysics Data System (ADS)

    Ragettli, Martina S.; Corradi, Elisabetta; Braun-Fahrländer, Charlotte; Schindler, Christian; de Nazelle, Audrey; Jerrett, Michael; Ducret-Stich, Regina E.; Künzli, Nino; Phuleria, Harish C.

    2013-10-01

    A better understanding of ultrafine particle (UFP) exposure in different urban transport microenvironments is important for epidemiological exposure assessments and for policy making. Three sub-studies were performed to characterize personal exposure to UFP concentration and average particle size distribution diameters in frequently traveled commuter microenvironments in the city of Basel, Switzerland. First, the spatial variation of sidewalk UFP exposures within urban areas and transport-specific microenvironments was explored. Second, exposure to UFP concentration and average particle size were quantified for five modes of transportation (walking, bicycle, bus, tram, car) during different times of the day and week, along the same route. Finally, the contribution of bicycle commuting along two different routes (along main roads, away from main roads) to total daily exposures was assessed by 24-h personal measurements. In general, smaller average particle sizes and higher UFP levels were measured at places and for travel modes in close proximity to traffic. Average trip UFP concentrations were higher in car (31,784 particles cm-³) and on bicycle (22,660 particles cm-³) compared to walking (19,481 particles cm-³) and public transportation (14,055-18,818 particles cm-³). Concentrations were highest for all travel modes during weekday morning rush hours, compared to other time periods. UFP concentration was lowest in bus, regardless of time period. Bicycle travel along main streets between home and work place (24 min on average) contributed 21% and 5% to total daily UFP exposure in winter and summer, respectively. Contribution of bicycle commutes to total daily UFP exposure could be reduced by half if main roads are avoided. Our results show the importance of considering commuter behavior and route choice in exposure assessment studies.

  12. Transport equations for low-energy solar particles in evolving interplanetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1988-01-01

    Two new forms of a simplified Fokker-Planck equation are derived for the transport of low-energy solar energetic particles in an evolving interplanetary magnetic field, carried by a variable radial solar wind. An idealized solution suggests that the 'invariant' anisotropy direction reported by Allum et al. (1974) may be explained within the conventional theoretical framework. The equations may be used to relate studies of solar particle propagation to solar wind transients, and vice versa.

  13. Transport equations for low-energy solar particles in evolving interplanetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1988-01-01

    Two new forms of a simplified Fokker-Planck equation are derived for the transport of low-energy solar energetic particles in an evolving interplanetary magnetic field, carried by a variable radial solar wind. An idealized solution suggests that the 'invariant' anisotropy direction reported by Allum et al. (1974) may be explained within the conventional theoretical framework. The equations may be used to relate studies of solar particle propagation to solar wind transients, and vice versa.

  14. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    PubMed

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  15. Modeling of Particle Transport on Channels and Gaps Exposed to Plasma Fluxes

    SciTech Connect

    Nieto-Perez, Martin

    2008-04-07

    Many problems in particle transport in fusion devices involve the transport of plasma or eroded particles through channels or gaps, such as in the case of trying to assess damage to delicate optical diagnostics collecting light through a slit or determining the deposition and codeposition on the gaps between tiles of plasma-facing components. A dynamic-composition Monte Carlo code in the spirit of TRIDYN, previously developed to study composition changes on optical mirrors subject to ion bombardment, has been upgraded to include motion of particles through a volume defined by sets of plane surfaces. Particles sputtered or reflected from the walls of the channel/gap can be tracked as well, allowing the calculation of wall impurity transport, either back to the plasma (for the case of a gap) or to components separated from the plasma by a channel/slit (for the case of optical diagnostics). Two examples of the code application to particle transport in fusion devices will be presented in this work: one will evaluate the erosion/impurity deposition rate on a mirror separated from a plasma source by a slit; the other case will look at the enhanced emission of tile material in the region of the gap between two tiles.

  16. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage

    PubMed Central

    Baylis, James R.; Yeon, Ju Hun; Thomson, Max H.; Kazerooni, Amir; Wang, Xu; St. John, Alex E.; Lim, Esther B.; Chien, Diana; Lee, Anna; Zhang, Jesse Q.; Piret, James M.; Machan, Lindsay S.; Burke, Thomas F.; White, Nathan J.; Kastrup, Christian J.

    2015-01-01

    Delivering therapeutics deep into damaged tissue during bleeding is challenging because of the outward flow of blood. When coagulants cannot reach and clot blood at its source, uncontrolled bleeding can occur and increase surgical complications and fatalities. Self-propelling particles have been proposed as a strategy for transporting agents upstream through blood. Many nanoparticle and microparticle systems exhibiting autonomous or collective movement have been developed, but propulsion has not been used successfully in blood or used in vivo to transport therapeutics. We show that simple gas-generating microparticles consisting of carbonate and tranexamic acid traveled through aqueous solutions at velocities of up to 1.5 cm/s and delivered therapeutics millimeters into the vasculature of wounds. The particles transported themselves through a combination of lateral propulsion, buoyant rise, and convection. When loaded with active thrombin, these particles worked effectively as a hemostatic agent and halted severe hemorrhage in multiple animal models of intraoperative and traumatic bleeding. Many medical applications have been suggested for self-propelling particles, and the findings of this study show that the active self-fueled transport of particles can function in vivo to enhance drug delivery. PMID:26601282

  17. Transport and Removal experiment of Dust (TReD) for the Dust Particle Controls

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Cho, Soon-Gook; Chung, Kyu-Sun; Park, Eun-Kyung; Park, Sang-Joon; Hong, Suk-Ho

    2011-10-01

    The tokamak dust might be hazardous based on the radioactive from tritium or activated metals (e.g. tritium retention), toxic and/or explosive (or chemically reactive) in steam and air conditions. Therefore, controls of dust particle inventory can be treated a critical issue for safe operation of ITER and next step fusion devices. Although the dust removal experiments for fusion reactor had been tried in 1990s, it cannot directly applied to ITER and next step fusion reactors since scale issues does not solved. In this work, one developed the dedicated plasma device for the dust particle transport and removal tests to the level required in ITER or next step fusion reactors (~1 m dust particle transportation), which is called TReD (Transport and Removal experiments of Dust). The TReD also plan to test the dust particle detectors, such as electrostatic dust detector and capacitance diaphragm microbalance (CDM) used (or will be used) in fusion plasmas. The first experimental results of dust particle transport and removal will be explained along with the design concepts, assembly structure, also collaboration plans, etc.

  18. Two-dimensional transport model of coupled Brownian particles driven by biharmonic forces and constant forces

    NASA Astrophysics Data System (ADS)

    Wu, Weixia; Meng, Tao

    2017-01-01

    A directed transport model of coupled Brownian particles in a two-dimensional potential is established. In this model, the system of Brownian particles is driven by biharmonic forces and constant forces. By numerical simulation, the cooperative transport behaviours of the system are investigated. The results show that the average velocity of the system is significantly independent of the frequencies and intensities of the harmonic forces, the barrier height of the ratchet potential, coupling strength and noise intensity. The average velocity increases monotonically with increasing the intensities of the harmonic forces, and can reach some maximum values when the two frequencies are equal. In addition, the average velocity presents stochastic resonance and generalized resonance for noise intensity, coupling strength and the barrier height of the ratchet potential. Moreover, when a constant force is exerted on the ratchet potential direction, it will promote the directed transport of the system. But, when on the non-ratchet potential direction, the transport will not be affected.

  19. Role of electron temperature in the particle transport in the pedestal during pedestal evolution

    NASA Astrophysics Data System (ADS)

    Willensdorfer, M.; Fable, E.; Wolfrum, E.; Aumayr, F.; Fischer, R.; Reimold, F.; Ryter, F.

    2015-08-01

    The effect of the electron temperature (Te) on the edge particle transport in the pedestal is analyzed during the density build-up after the L-H transition. Electron cyclotron resonance heating was used to vary the pedestal temperature during the density evolution between subsequent H-mode phases. Although the pedestal Te and its gradients could be varied by a factor of 2, almost no change in the edge density evolution is observed within the measurement uncertainties. ASTRA was used to interpret the measurements and to analyze the dependence of the pedestal particle transport on the Te profile. Thermo-diffusion seems to play a minor role in the pedestal.

  20. Gyrokinetic simulations of mesoscale energetic particle-driven Alfvenic turbulent transport embedded in microturbulence

    SciTech Connect

    Bass, E. M.; Waltz, R. E.

    2010-11-15

    Energetic particle (EP) transport from local high-n toroidal Alfven eigenmodes (TAEs) and energetic particle modes (EPMs) is simulated with a gyrokinetic code. Linear and nonlinear simulations have identified a parameter range where the longwave TAE and EPM are unstable alongside the well-known ion-temperature-gradient (ITG) and trapped-electron-mode (TEM) instabilities. A new eigenvalue solver in GYRO facilitates this mode identification. States of nonlinearly saturated local TAE/EPM turbulent intensity are identified, showing a 'soft' transport threshold for enhanced energetic particle transport against the TAE/EPM drive from the EP pressure gradient. The very long-wavelength (mesoscale) TAE/EPM transport is saturated partially by nonlinear interaction with microturbulent ITG/TEM-driven zonal flows. Fixed-gradient-length, nonlinearly saturated states are accessible over a relatively narrow range of EP pressure gradient. Within this range, and in the local limit employed, TAE/EPM-driven transport more closely resembles drift-wave microturbulent transport than 'stiff' ideal MHD transport with a clamped critical total pressure gradient. At a higher, critical EP pressure gradient, fixed-gradient nonlinear saturation fails: EP transport increases without limit and background transport decreases. Presumably saturation is then obtained by relaxation of the EP pressure gradient to near this critical EP pressure gradient. If the background plasma gradients driving the ITG/TEM turbulence and zonal flows are weakened, the critical gradient collapses to the TAE/EPM linear stability threshold. Even at the critical EP pressure gradient there is no evidence that TAE/EPM instability significantly increases transport in the background plasma channels.

  1. Investigating coarse sediment particles transport using PTV and "smart-pebbles" instrumented with inertial sensors

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Farhadi, Hamed

    2017-04-01

    This study, reports on the analysis of appropriately designed fluvial experiments investigating the transport of coarse bed material using two approaches: particle tracking velocimetry (PTV) to extract bulk transport parameters and inertia sensor data (via the use of "smart-pebbles") to obtain refined statistics for the transport of the particle. The purpose of this study is to provide further insight on the use of technologies (optical techniques and inertial sensors) that are complementary one to another, towards producing improved estimates of bedload transport in natural rivers. The experiments are conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 90 cm width. Ten different discharges have been implemented in this study. A couple of fake beds, made of well-packed beads of three different sizes have been set up in the flume. The particle motion is captured by two high-speed commercial cameras, responsible for recording the top view covering the full length of the fake beds over which the "smart-pebble" is allowed to be transported. "Smart-pebbles" of four different densities are initially located at the upstream end of the configuration, fully exposed to the instream flow. These are instrumented with appropriate inertial sensors that allow recording the particle's motion, in the Langrangian frame, in high resolution. Specifically, the "smart-pebble" employ a tri-axial gyroscope, magnetometer and accelerometer, which are utilized to obtain minute linear and angular displacements in high frequency (up to 200Hz). However, these are not enough to accurately reconstruct the full trajectory of the particles rolling downstream. To that goal optical methods are used. In particular, by using particle tracking velocimetry data and image processing techniques, the location, orientation and velocities of the "smart-pebble" are derived. Specific consideration is given to appropriately preprocess the obtained video, as

  2. Modeling the solute transport by particle-tracing method with variable weights

    NASA Astrophysics Data System (ADS)

    Jiang, J.

    2016-12-01

    Particle-tracing method is usually used to simulate the solute transport in fracture media. In this method, the concentration at one point is proportional to number of particles visiting this point. However, this method is rather inefficient at the points with small concentration. Few particles visit these points, which leads to violent oscillation or gives zero value of concentration. In this paper, we proposed a particle-tracing method with variable weights. The concentration at one point is proportional to the sum of the weights of the particles visiting it. It adjusts the weight factors during simulations according to the estimated probabilities of corresponding walks. If the weight W of a tracking particle is larger than the relative concentration C at the corresponding site, the tracking particle will be splitted into Int(W/C) copies and each copy will be simulated independently with the weight W/Int(W/C) . If the weight W of a tracking particle is less than the relative concentration C at the corresponding site, the tracking particle will be continually tracked with a probability W/C and the weight will be adjusted to be C. By adjusting weights, the number of visiting particles distributes evenly in the whole range. Through this variable weights scheme, we can eliminate the violent oscillation and increase the accuracy of orders of magnitudes.

  3. Energetic particle transport in the presence of magnetic turbulence: influence of spectral extension and intermittency

    NASA Astrophysics Data System (ADS)

    Pucci, F.; Malara, F.; Perri, S.; Zimbardo, G.; Sorriso-Valvo, L.; Valentini, F.

    2016-07-01

    The transport of energetic particles in the presence of magnetic turbulence is an important but unsolved problem of space physics and astrophysics. Here, we aim at advancing the understanding of energetic particle transport by means of a new numerical model of synthetic magnetic turbulence. The model builds up a turbulent magnetic field as a superposition of space-localized fluctuations at different spatial scales. The resulting spectrum is isotropic with an adjustable spectral index. The model allows us to reproduce a spectrum broader than four decades, and to regulate the level of intermittency through a technique based on the p-model. Adjusting the simulation parameters close to solar wind conditions at 1 au, we inject ˜1 MeV protons in the turbulence realization and compute the parallel and perpendicular diffusion coefficients as a function of spectral extension, turbulence level, and intermittency. While a number of previous results are recovered in the appropriate limits, including anomalous transport regimes for low turbulence levels, we find that long spectral extensions tend to reduce the diffusion coefficients. Furthermore, we find for the first time that intermittency has an influence on parallel transport but not on perpendicular transport, with the parallel diffusion coefficient increasing with the level of intermittency. We also obtain the distribution of particle inversion times for parallel velocity, a power law for more than one decade, and compare it with the pitch angle scattering times observed in the solar wind. This parametric study can be useful to interpret particle propagation properties in astrophysical systems.

  4. Vortex Formation in Shallow Flows

    NASA Astrophysics Data System (ADS)

    Rockwell, Donald

    2006-11-01

    Vortical structures having a scale much larger than the depth of the flow, which arise in bluff body wakes, jets, and mixing layers generated in shallow layers, show distinctive features due to the influence of bed friction. Cinema techniques of high-image-density particle image velocimetry are employed to characterize quasi-two-dimensional and three-dimensional aspects of the vortex development in terms of: patterns of vorticity; flow topology involving definition of critical points; and global spectral and cross-spectral analyses, based on simultaneous time records at thousands of grid points of the cinema imaging. Taken together, these representations lead to an understanding of the relationship between coherent vortex development and unsteadiness along the bed and, furthermore, provide a basis for exploration of concepts generic to separated shear layers in shallow flows. These concepts include: suppression of a primary mode of vortex formation due to bed friction and emergence of another mode; resonant coupling between a gravity wave of the shallow layer and vortex formation, leading to large-scale vortices; and passive and active (open loop) control, which can either retard or enhance the onset of vortex formation. These studies suggest opportunities for further investigation on both experimental and numerical fronts. Collaboration with Haojun Fu, Alis Ekmekci, Jung-Chang Lin, and Muammer Ozgoren is gratefully acknowledged.

  5. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; ...

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  6. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    SciTech Connect

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; Yoder, Richard; Wheeler, Elizabeth K.; Farquar, George R.

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The use of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.

  7. Separation of Particle and Energy Transport in the H- and QH-mode Pedestal

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Chang, C. S.; Diallo, A.; Grierson, B. A.; Burrell, K. H.; Groebner, R. J.

    2014-10-01

    Net particle transport through the H-mode pedestal is dictated by anomalous transport mechanisms; however, a significant fraction of the energy transport is governed by enhanced