Science.gov

Sample records for particulate emission arrester

  1. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  2. Modeling of Particulate Emissions

    DTIC Science & Technology

    2011-12-01

    coagulation oxidation.... carbonization 14 Modeling Particulate Emissions Soot Formation Kinetics 2 1016 1 ]HC[kdt dS = Inception: Dimerization of...simulated with peak size for surface growth Sectional Conservation Equation 16 Modeling Particulate Emissions Soot Kinetics Based on OH, O2 and...and empirical tuning to NOx, CO emissionsFuel-spray shear layer Recirculation zones Quench zones Burn-out zones Full set of reaction kinetics and

  3. Emission Standards for Particulates

    ERIC Educational Resources Information Center

    Walsh, George W.

    1974-01-01

    Promulgation of standards of performance under Section 111 and national emission standards for hazardous pollutants under Section 112 of the Clean Air Act is the responsibility of the Emission Standards and Engineering Division of the Environmental Protection Agency. The problems encountered and the bases used are examined. (Author/BT)

  4. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  5. Particulate Emissions from Gas Turbine Engines. Revision.

    DTIC Science & Technology

    1992-02-01

    with ferrocene additive) Particulate mass emissions from a J79-GE-IOB engine A-48 to A-64 Particulate mass emissions from a J52-P-6B engine A-65 to A...J79-CE-8D engine 4-9 1 with ferrocene additive (Summary of Files 34 through 45) 6 Particulate emissions from the ,J/7-G;E8f) engine 4 - 0l with... ferrocene additive (Summary of Files 46 and 47) 7 Particulate emissions from the J79-GE-8D engine 4-1i with ferrocene additive (Summary of Files 34 through

  6. Particulate emissions from construction activities.

    PubMed

    Muleski, Gregory E; Cowherd, Chatten; Kinsey, John S

    2005-06-01

    Although it has long been recognized that road and building construction activity constitutes an important source of particulate matter (PM) emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10 and PM2.5 (particles < or = 10 microm and < or = 2.5 microm in aerodynamic diameter, respectively) emission factor development from the onsite testing of component operations at actual construction sites during the period 1998-2001. Much of the testing effort was directed at earthmoving operations with scrapers, because earthmoving is the most important contributor of PM emissions across the construction industry. Other sources tested were truck loading and dumping of crushed rock and mud and dirt carryout from construction site access points onto adjacent public paved roads. Also tested were the effects of watering for control of scraper travel routes and the use of paved and graveled aprons at construction site access points for reducing mud and dirt carryout. The PM10 emissions from earthmoving were found to be up to an order of magnitude greater than predicted by AP-42 emission factors drawn from other industries. As expected, the observed PM2.5:PM10 emission factor ratios reflected the relative importance of the vehicle exhaust and the resuspended dust components of each type of construction activity. An unexpected finding was that PM2.5 emissions from mud and dirt carryout were much less than anticipated. Finally, the control efficiency of watering of scraper travel routes was found to closely follow a bilinear moisture model.

  7. Measurement of vehicle particulate emissions.

    PubMed Central

    Beltzer, M

    1975-01-01

    A constant volume sampler (CVS) compatible auto exhaust particulate sampling system has been built which samples exhaust isokinetically at constant temperature. This system yields internally consistent results and is capable of frequent and convenient operation. PMID:50931

  8. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  9. Diesel particulate emission control without engine modifications

    SciTech Connect

    Filowitz, M.S.; Vataru, M.

    1989-01-01

    This paper describes an ashless, fuel supplement which was found to typically reduce diesel particulate emissions by over 30% while significantly improving fuel economy and power output without any modifications to existing diesel engines or fuels. The treating cost is an order of magnitude less than the estimated cost of reducing aromatic content at the refinery to achieve particulate reductions. The particulate reduction is virtually all from the carbon (soot) fraction. The reduced soot formation translates into less abrasives and less soot-loading stress on the engine oil. Diesel tests conducted are also discussed.

  10. PARTICULATE EMISSIONS FROM CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    Although it has long been recognized that road and building construction activity constitutes an important source of PM emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10...

  11. Particulate Emission Abatement for Krakow Boilerhouses

    SciTech Connect

    1998-09-14

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are numerous uncontrolled boilers accounting for about half the total fuel use. the large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  12. Particulate Emission Abatement for Krakow Boiler Houses

    SciTech Connect

    1998-09-01

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which currently comprises over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low- capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  13. Particulate Emission Abatement for Krakow Boilerhouses

    SciTech Connect

    1998-09-14

    Environmental cleanup and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are numerous uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  14. Particulate emission abatement for Krakow boiler houses

    SciTech Connect

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  15. On-road particulate emission measurement

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM

  16. 40 CFR 86.1778-99 - Calculations; particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculations; particulate emissions. 86.1778-99 Section 86.1778-99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Vehicles and Light-Duty Trucks § 86.1778-99 Calculations; particulate emissions. The provisions of §...

  17. Particulate emissions from concentrated animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated animal feeding operations (CAFOs), including open beef cattle feedlots, swine facilities, and poultry facilities, can emit large amounts of particulate matter, including TSP (total suspended particulates), PM10 (particulate matter with equivalent aerodynamic diameter of 10 mm or less) a...

  18. Particulate Emission Abatement for Krakow Boilerhouses.

    SciTech Connect

    Hucko, R.E.

    1997-01-20

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy. It utilizes a highly efficient collector, which functions on the principle of inertial separation. The system is able to control fine particulate matter, as in the PMIO regulations, which limit the emission of dust particles below 10 microns in diameter. Its dust removal performance has been shown to be comparable to that of a medium-efficiency electrostatic precipitator (ESP). Yet, its cost is substantially lower than that of either an ESP or fabric filter. While the Core Separator achieves high efficiency, its power consumption is just slightly higher than that of a cyclone. It functions dry and without the aid of energy-consuming enhancements. It is simple, reliable, and unlike the ESP and fabric filter, easy to maintain. This combination of features make it ideal for the small boiler market in the City of Krakow. A highly qualified team has been assembled to execute this project. LSR Technologies, Inc., a technology-based company located in Acton, Massachusetts, is the developer of the Core Separator and holder of its patent rights. LSR has sold several of these

  19. Particulate Emission Abatement for Krakow Boilerhouses.

    SciTech Connect

    Hucko, R.E.

    1997-04-30

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy. It utilizes a highly efficient collector, which functions on the principle of inertial separation. The system is able to control fine particulate matter, as in the PMIO regulations, which limit the emission of dust particles below 10 microns in diameter. Its dust removal performance has been shown to be comparable to that of a medium-efficiency electrostatic precipitator (ESP). Yet, its cost is substantially lower than that of either an ESP or fabric filter. While the Core Separator achieves high efficiency, its power consumption is just slightly higher than that of a cyclone. It functions dry and without the aid of energy-consuming enhancements. It is simple, reliable, and unlike the ESP and fabric filter, easy to maintain. This combination of features make it ideal for the small boiler market in the City of Krakow. A highly qualified team has been assembled to execute this project. LSR Technologies, Inc., a technology-based company located in Acton, Massachusetts, is the developer of the Core Separator and holder of its patent rights. LSR has sold several of these

  20. Particulate Emissions Hazards Associated with Fueling Heat Engines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2010-01-01

    All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (<10 to 140 nm) contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft) and other HC-fueled power systems. CO2 emissions are tracked, and when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  1. PARTICULATE EMISSION ABATEMENT FOR KRAKOW BOILERHOUSES

    SciTech Connect

    Bruce H. Easom; Leo A, Smolensky; S. Ronald Wysk; Jan Surowka; Miroslaw Litke; Jacek Ginter

    1998-09-30

    A U.S./Polish Bilateral Steering Committee (BSC) and the Department of Energy (DOE) selected LSR Technologies, Inc. as a contractor to participate in the Krakow Clean Fuels and Energy Efficiency Program. The objective of this program was the formation of business ventures between U.S. and Polish firms to provide equipment and services to reduce air emissions in the city of Krakow. A cooperative agreement was entered into by DOE and LSR to begin work in April 1994 involving implementation of particulate control technology called a Core Separator{trademark} for coal-fueled boilerhouses in the city. The major work tasks included: (1) conducting a market analysis, (2) completion of a formal marketing plan, (3) obtaining patent protection within Poland, (4) selecting a manufacturing partner, and (5) completing a demonstration unit and commercial installations. In addition to work performed by LSR Technologies, key contributors to this project were (1) the Polish Foundation for Energy Efficiency (FEWE), a non-profit consulting organization specializing in energy and environmental-related technologies, and (2) EcoInstal, a privately held Polish company serving the air pollution control market. As the project concluded in late 1998, five (5) Core Separator{trademark} installations had been implemented in the city of Krakow, while about 40 others were completed in other regions of Poland.

  2. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  3. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  4. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  5. Emission abatement system utilizing particulate traps

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  6. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  7. Chemical tracers of particulate emissions from commercial shipping.

    PubMed

    Viana, Mar; Amato, Fulvio; Alastuey, Andrés; Querol, Xavier; Moreno, Teresa; Dos Santos, Saúl García; Herce, María Dolores; Fernández-Patier, Rosalía

    2009-10-01

    Despite the increase of commercial shipping around the world, data are yet relatively scarce on the contribution of these emissions to ambient air particulates. One of the reasons is the complexity in the detection and estimation of shipping contributions to ambient particulates in harbor and urban environments, given the similarity with tracers of other combustion sources. This study aimed to identify specific tracers of shipping emissions in a Mediterranean city with an important harbor (Melilla, Spain). Results showed that for 24 h PM10 and PM2.5 samples, valid tracers of commercial shipping emissions were ratios of V/Ni = 4-5 and V/EC < 2, whereas V/EC > 8 excluded the influence of shipping emissions. Other ratios (V/ S, La/Ce, Zn/Ni, Pb/Zn, OC/EC) and tracers (Pb, Zn) were also tested but did not correlate with this source. Due to the changing composition of diesel fuels, tracers in the Mediterranean Sea may not be representative in other regions of the world and vice versa. The contribution of shipping emissions to ambient particulate matter (PM) urban background levels was quantified by positive matrix factorization (PMF), resulting in 2% and 4% of mean annual PM10 levels (0.8 microg/m3 primary particles and 1.7 microg/m3 secondary particles, with 20% uncertainty) and 14% of mean annual PM2.5 levels (2.6 microg/m3).

  8. Optical properties of particulate emissions from on-road vehicles

    NASA Astrophysics Data System (ADS)

    Japar, Steven M.; Szkarlat, Ann Cuneo; Gorse, Robert A.

    The light absorbing and light scattering properties of on-road vehicle exhaust particulate were determined as a function of traffic composition at the Allegheny Tunnel on the Pennsylvania Turnpike during August-September 1979. This study was one part of a comprehensive experiment aimed at the chemical and physical characterization of vehicle exhaust particulate. Paniculate light absorption was determined by the integrating plate method, while light scattering was measured with an integrating nephelometer. Mass-specific optical coefficients (at 500.0 nm) have been derived from regressions of the optical and mass emissions data against traffic composition. For diesel vehicles (predominantly heavy-duty, but also including diesel passenger vehicles) the absorption coefficient, b' abs/ M', was found to be 5.13 ± 0.28 m2g-1, while the light scattering coefficient, b' scat/ M', was 1.99 ± 0.07 m2g-1. Diesel vehicle emissions were responsible for greater than 90% of the light extinction in the tunnel, although diesels accounted for only 23% of the vehicle miles travelled. Estimates for b' abs/ M' and b' scat/ M' for particulate from gasoline-powered vehicles were 8 ± 16 m2g-1and 6 ± 10 m2g-1, respectively, while the analogous values for ambient particulate were babs/ M< 1 m2g-1andbscat/ M = 5.0 ± 1.0 m2g-1.

  9. Gaseous and particulate emissions from prescribed burning in Georgia.

    PubMed

    Lee, Sangil; Baumann, Karsten; Schauer, James J; Sheesley, Rebecca J; Naeher, Luke P; Meinardi, Simone; Blake, Donald R; Edgerton, Eric S; Russell, Armistead G; Clements, Mark

    2005-12-01

    Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.

  10. The environmental cost of reducing agricultural fine particulate matter emissions.

    PubMed

    Funk, Paul A

    2010-06-01

    The U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate matter (PM2.5) levels; state environmental protection agencies in states with nonattainment areas are required to draft State Implementation Plans (SIPs) detailing measures to reduce regional PM2.5 levels by reducing PM2.5 and PM2.5 precursor emissions. These plans need to account for increases in emissions caused by operating control technologies. Potential PM2.5 emissions reductions realized by adding a second set of dust cyclones were estimated for the cotton ginning industry. Increases in energy consumption were calculated based on dust cyclone air pressure drop. Additional energy required was translated into increased emissions using published emission factors and state emissions inventories. Reductions in gin emissions were compared with increases in emissions at the power plant. Because of the electrical energy required, reducing one unit of agricultural PM2.5 emissions at a cotton gin results in emitting 0.11-2.67 units of direct PM2.5, 1.39-69.1 units of PM2.5 precursors, 1.70-76.8 units of criteria pollutants, and 692-15,400 units of greenhouse gases at the point where electricity is produced. If regulations designed to reduce rural PM2.5 emissions increase electrical power consumption, the unintended net effect may be more emissions, increased environmental damage, and a greater risk to public health.

  11. Modelisation des emissions de particules microniques et nanometriques en usinage

    NASA Astrophysics Data System (ADS)

    Khettabi, Riad

    La mise en forme des pieces par usinage emet des particules, de tailles microscopiques et nanometriques, qui peuvent etre dangereuses pour la sante. Le but de ce travail est d'etudier les emissions de ces particules pour fins de prevention et reduction a la source. L'approche retenue est experimentale et theorique, aux deux echelles microscopique et macroscopique. Le travail commence par des essais permettant de determiner les influences du materiau, de l'outil et des parametres d'usinage sur les emissions de particules. E nsuite un nouveau parametre caracterisant les emissions, nomme Dust unit , est developpe et un modele predictif est propose. Ce modele est base sur une nouvelle theorie hybride qui integre les approches energetiques, tribologiques et deformation plastique, et inclut la geometrie de l'outil, les proprietes du materiau, les conditions de coupe et la segmentation des copeaux. Il ete valide au tournage sur quatre materiaux: A16061-T6, AISI1018, AISI4140 et fonte grise.

  12. Trends in primary particulate matter emissions from Canadian agriculture.

    PubMed

    Pattey, Elizabeth; Qiu, Guowang

    2012-07-01

    Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981-2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summer fallow land.

  13. Gaseous and particulate emissions from a DC arc melter.

    PubMed

    Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M

    2003-01-01

    Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.

  14. Modeling particulate matter emissions during mineral loading process under weak wind simulation.

    PubMed

    Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen

    2013-04-01

    The quantification of particulate matter emissions from mineral handling is an important problem for the quantification of global emissions on industrial sites. Mineral particulate matter emissions could adversely impact environmental quality in mining regions, transport regions, and even on a global scale. Mineral loading is an important process contributing to mineral particulate matter emissions, especially under weak wind conditions. Mathematical models are effective ways to evaluate particulate matter emissions during the mineral loading process. The currently used empirical models based on the form of a power function do not predict particulate matter emissions accurately under weak wind conditions. At low particulate matter emissions, the models overestimated, and at high particulate matter emissions, the models underestimated emission factors. We conducted wind tunnel experiments to evaluate the particulate matter emission factors for the mineral loading process. A new approach based on the mathematical form of a logistical function was developed and tested. It provided a realistic depiction of the particulate matter emissions during the mineral loading process, accounting for fractions of fine mineral particles, dropping height, and wind velocity.

  15. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  16. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  17. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  18. Particulate Emissions from a Pre-Emissions Control Era Spark-Ignition Vehicle: A Historical Benchmark

    SciTech Connect

    John M.E. Storey; C. Scott Sluder; Douglas A. Blom; Erin Higinbotham

    2000-06-19

    This study examined the particulate emissions from a pre-emissions control era vehicle operated on both leaded and unleaded fuels for the purpose of establishing a historical benchmark. A pre-control vehicle was located that had been rebuilt with factory original parts to approximate an as-new vehicle prior to 1968. The vehicle had less than 20,000 miles on the rebuilt engine and exhaust. The vehicle underwent repeated FTP-75 tests to determine its regulated emissions, including particulate mass. Additionally, measurements of the particulate size distribution were made, as well as particulate lead concentration. These tests were conducted first with UTG96 certification fuel, followed by UTG96 doped with tetraethyl lead to approximate 1968 levels. Results of these tests, including transmission electron micrographs of individual particles from both the leaded and unleaded case are presented. The FTP composite PM emissions from this vehicle averaged 40.5 mg/mile using unleaded fuel. The results from the leaded fuel tests showed that the FTP composite PM emissions increased to an average of 139.5 mg/mile. Analysis of the particulate size distribution for both cases demonstrated that the mass-based size distribution of particles for this vehicle is heavily skewed towards the nano-particle range. The leaded-fuel tests showed a significant increase in mass concentration at the <0.1 micron size compared with the unleaded-fuel test case. The leaded-fuel tests produced lead emissions of nearly 0.04 g/mi, more than a 4-order-of-magnitude difference compared with unleaded-fuel results. Analysis of the size-fractionated PM samples showed that the lead PM emissions tended to be distributed in the 0.25 micron and smaller size range.

  19. Emissions of particulate matter from animal houses in the Netherlands

    NASA Astrophysics Data System (ADS)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  20. Development of emission factors for particulate matter in a school

    SciTech Connect

    Scheff, P.A.; Paulius, V.; Conroy, L.M.

    1999-07-01

    Schools have complex indoor environments which are influenced by many factors such as number of occupants, building design, office equipment, cleaning agents, and school activities. Like large office buildings, school environments may be adversely influenced by deficiencies in ventilation which may be due to improper operation of HVAC systems, attempts at energy efficiency that limit the supply of outdoor air, or remodeling of building components. Most importantly, children spend up to a third of their time in these structures, and thus it is desirable to better understand the environmental quality in these buildings. A middle school (grades 6 to 8) in a residential section of Springfield, IL was selected for this baseline indoor air quality survey. The school was characterized as having no health complaints, good maintenance schedules, and did not contain carpeting within the classrooms or hallways. The focus of this paper is on the measurements of air quality in the school. The development of emission factors for particulate matter is also discussed. Four indoor locations including the Cafeteria, a Science Classroom, an Art Classroom, and the Lobby outside of the main office, and one outdoor location were sampled for various environmental comfort and pollutant parameters for one week in February of 1997. Integrated samples (8 hour sampling time) for respirable and total particulate matter, and short-term measurements of bioaerosols (two minute samples, three times per day) on three consecutive days were collected at each of the indoor and outdoor sites. Continuous measurements of carbon dioxide, carbon monoxide, temperature and humidity were logged at all locations for five days. Continuous measurements of respirable particulate matter were also collected in the Lobby area. Detailed logs of occupant activity were also collected at each indoor monitoring location throughout the study. Total particle concentrations ranged from 29 to 177 {micro}g/m{sup 3} in the art

  1. Particulate-phase mercury emissions from biomass burning ...

    EPA Pesticide Factsheets

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improve

  2. Gaseous and particulate emission profiles during controlled rice straw burning

    NASA Astrophysics Data System (ADS)

    Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M.

    2014-12-01

    Burning of rice straw can emit considerable amounts of atmospheric pollutants. We evaluated the effect of rice straw moisture content (5%, 10%, and 20%) on the emission of carbon dioxide (CO2) and on the organic and inorganic constituents of released particulate matter (PM): dioxins, heavy metals, and polycyclic aromatic hydrocarbons (PAHs). Four burning tests were conducted per moisture treatment using the open chamber method. Additionally, combustion characteristics, including burning stages, durations, temperature, and relative humidity, were recorded. Burning tests showed flaming and smoldering stages were significantly longer in 20% moisture treatment (P < 0.05) compared with the rest. The amount of burned straw and ashes decreased with increasing straw moisture content (P < 0.001). Carbon dioxide was the main product obtained during combustion with emission values ranging from 692 g CO2 kg dry straw-1 (10% moisture content) to 835 g CO2 kg dry straw-1 (20% moisture content). Emission factors for PM were the highest in 20% moisture treatment (P < 0.005). Fine PM (PM2.5) accounted for more than 60% of total PM mass. Emission factors for dioxins increased with straw moisture content, being the highest in 20% moisture treatment, although showing a wide variability among burning tests (P > 0.05). Emissions factors for heavy metals were low and similar among moisture treatments (P > 0.05). Emission factors for individual PAHs were generally higher in 20% moisture treatment. Overall, emission factors of atmospheric pollutants measured in our study were higher in the 20% moisture content. This difference could be attributed to the incomplete combustion at higher levels of rice straw moisture content. According to our results, rice straw burning should be done after straw drying and under minimal moisture conditions to lower pollutant emission levels.

  3. Particulate emissions from commercial shipping: Chemical, physical, and optical properties

    NASA Astrophysics Data System (ADS)

    Lack, Daniel A.; Corbett, James J.; Onasch, Timothy; Lerner, Brian; Massoli, Paola; Quinn, Patricia K.; Bates, Timothy S.; Covert, David S.; Coffman, Derek; Sierau, Berko; Herndon, Scott; Allan, James; Baynard, Tahllee; Lovejoy, Edward; Ravishankara, A. R.; Williams, Eric

    2009-04-01

    We characterize particulate emissions on the basis of chemical, physical, and optical properties from commercial vessels. Observations during the Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study 2006 field campaign provide chemical and physical characteristics including sulfate (SO42-) mass, organic matter (OM) mass, black carbon (BC) mass, particulate matter (PM) mass, number concentrations (condensation nuclei (CN) > 5 nm), and cloud condensation nuclei (CCN). Optical characterization included multiple wavelength visible light absorption and extinction, extinction relative humidity dependence, and single scatter albedo (SSA). The global contribution of shipping PM was calculated to be 0.90 Tg a-1, in good agreement with previous inventories (0.91 and 1.13 Tg a-1 from Eyring et al. (2005a) and Wang et al. [2008]). Observed PM composition was 46% SO42-, 39% OM, and 15% BC and differs from inventories that used 81%, 14%, and 5% and 31%, 63%, and 6% SO42-, OM, and BC, respectively. SO42- and OM mass were found to be dependent on fuel sulfur content as were SSA, hygroscopicity, and CCN concentrations. BC mass was dependent on engine type and combustion efficiency. A plume evolution study conducted on one vessel showed conservation of particle light absorption, decrease in CN > 5 nm, increase in particle hygroscopicity, and an increase in average particle size with distance from emission. These results suggest emission of small nucleation mode particles that subsequently coagulate/condense onto larger BC and OM. This work contributes to an improved understanding of the impacts of ship emissions on climate and air quality and will also assist in determining potential effects of altering fuel standards.

  4. Discrimination of particulate matter emission sources using stochastic methods

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2016-12-01

    Particulate matter (PM) is one of the criteria pollutants which has been determined as harmful to public health and the environment. For this reason the ability to recognize its emission sources is very important. There are a number of measurement methods which allow to characterize PM in terms of concentration, particles size distribution, and chemical composition. All these information are useful to establish a link between the dust found in the air, its emission sources and influence on human as well as the environment. However, the methods are typically quite sophisticated and not applicable outside laboratories. In this work, we considered PM emission source discrimination method which is based on continuous measurements of PM concentration with a relatively cheap instrument and stochastic analysis of the obtained data. The stochastic analysis is focused on the temporal variation of PM concentration and it involves two steps: (1) recognition of the category of distribution for the data i.e. stable or the domain of attraction of stable distribution and (2) finding best matching distribution out of Gaussian, stable and normal-inverse Gaussian (NIG). We examined six PM emission sources. They were associated with material processing in industrial environment, namely machining and welding aluminum, forged carbon steel and plastic with various tools. As shown by the obtained results, PM emission sources may be distinguished based on statistical distribution of PM concentration variations. Major factor responsible for the differences detectable with our method was the type of material processing and the tool applied. In case different materials were processed by the same tool the distinction of emission sources was difficult. For successful discrimination it was crucial to consider size-segregated mass fraction concentrations. In our opinion the presented approach is very promising. It deserves further study and development.

  5. Evaluating the effectiveness of vegetative environmental buffers in mitigating particulate matter emissions from poultry houses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particulate Matter (PM) emissions from animal operations have been identified as a major air pollutant source with health and environmental impacts. Nearly 600 million broilers are produced annually on the Delmarva Peninsula, making it a hot spot for particulate matter emissions from poultry houses....

  6. Removal of Sulfur from Natural Gas to Reduce Particulate Matter Emission from a Turbine Engine

    NASA Astrophysics Data System (ADS)

    Spang, Brent Loren

    The present work investigates the effect of natural gas fuel sulfur on particulate emissions from stationary gas turbine engines used for electricity generation. Fuel sulfur from standard line gas was scrubbed using a system of fluidized reactor beds containing a specially designed activated carbon purpose built for sulfur absorption. A sulfur injection system using sonic orifices was designed and constructed to inject methyl mercaptan into the scrubbed gas stream at varying concentrations. Using these systems, particulate emissions created by various fuel sulfur levels between 0 and 8.3 ppmv were investigated. Particulate samples were collected from a Capstone C65 microturbine generator system using a Horiba MDLT-1302TA micro dilution tunnel and analyzed using a Horiba MEXA-1370PM particulate analyzer. In addition, ambient air samples were collected to determine incoming particulate levels in the combustion air. The Capstone C65 engine air filter was also tested for particulate removal efficiency by sampling downstream of the filter. To further differentiate the particulate entering the engine in the combustion air from particulate being emitted from the exhaust stack, two high efficiency HEPA filters were installed to eliminate a large portion of incoming particulate. Variable fuel sulfur testing showed that there was a strong correlation between total particulate emission factor and fuel sulfur concentration. Using eleven variable sulfur tests, it was determined that an increase of 1 ppmv fuel sulfur will produce an increase of approximately 3.2 microg/m3 total particulate. Also, the correlation also predicted that, for this particular engine, the total particulate emission factor for zero fuel sulfur was approximately 19.1 microg/m3. With the EC and OC data removed, the correlation became 3.1 microg/m3 of sulfur particulate produced for each ppmv of fuel sulfur. The correlation also predicted that with no fuel sulfur present, 6.6 microg/m3 of particulate will

  7. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  8. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    SciTech Connect

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  9. Characterization of the Particulate Emissions from the BP ...

    EPA Pesticide Factsheets

    Opportunistic particle samples were gathered from the sail of a tethered aerostat during at-sea plume sampling of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico. Particles were analyzed for polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). Emission factors were calculated using previous sampling values of background-adjusted CO2 and particulate matter (PM)-bound C. The mean of five thermal-optical analyses indicated that the burned crude oil particulate matter was 93% carbon (w/w) with the predominance being refractory elemental carbon (82% w/w) on average. PAHs accounted for roughly 60 ug/g of the PM mass or 4.5 mg/kg oil burned, at least an order of magnitude less than earlier laboratory based studies. Microscopy indicates that the soot from the in situ oil burns is distinct from more common soot by its aggregate size, primary particle size, and nanostructure within the primary particles. The PCDD/PCDF concentration of the PM was 1.5 to 3.3 ng toxic equivalency (TEQ)/kg PM sampled, about 10-fold lower than from a previous dedicated gas/solid sample, indicating loss of small particle-bound and more volatile PCDD/PCDF congeners through the aerostat sail. This work presents an analysis of smoke particles opportunistically caught during the in situ surface oil burns during the 2010 BP Deepwater Horizon di

  10. Particulate emissions from different types of biomass burning

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Obrist, Daniel; Zielinska, Barbara; Gertler, Alan

    2013-06-01

    Biomass burning is a significant emission source of PM2.5(i.e., particulate matter with an aerodynamic diameter less than 2.5 μm), but few studies addressed the chemical composition of PM2.5 emissions from various types of fires. Here, we present results from a sampling campaign to quantify PM2.5 emissions from various types of prescribed burning activities using analysis of carbon (elemental carbon: EC; organic carbon: OC; and total carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and particle-bound mercury (PHg). Emissions were characterized for a series of prescribed burns in the Lake Tahoe basin in the western United States, along with controlled biomass combustion in a wood stove. In the field, emissions were collected from: (i) landscape underburns, consisting of wooden tissues, foliage, branches, and surface duff; (ii) pile burns, consisting mainly of wooden tissues stacked up to piles; (iii) mixed underburn/pile burns which consisted of a mix of the above; in a wood stove, burns included different fuel types collected from the Lake Tahoe basin, specifically (iv) wooden logs mainly of pine; (v) green foliage and branches from two dominant shrubs (manzanita and bitterbrush); and (vi) surface duff, mostly consisting of pine needle litter.Our data showed higher ratios of organic to elemental carbon in green fuels (19.2 ± 4.2) compared to dry, wooden logs (7.3 ± 1.9) both in prescribed burns in the field and in controlled stove combustion, indicating that more moisture in green biomass resulted in more smoldering-phase combustion. Further, OC/EC ratios were lower in wood stove burns compared to prescribed burns in the field, which we attribute to higher combustion temperatures in wood stove burns. The suite of 12 select polar organic compounds showed that the most prevalent compounds emitted across all burns were levoglucosan, mannosan, and resin acids (dehydroabietic, pimaric, and

  11. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  12. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY General Federal Implementation Plan... amount of fugitive particulate matter that may be emitted from certain air pollution sources operating... dwelling units. (d) What are the requirements for sources of fugitive particulate matter emissions? (1)...

  13. Particle size distribution characteristics of cotton gin first stage lint cleaning system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2006, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  14. Combined mote system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  15. Master trash system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or ...

  16. Particle size distribution characteristics of cotton gin combined mote system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  17. Overflow system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than...

  18. First stage lint cleaning system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2006, Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or equal...

  19. Particle size distribution characteristics of cotton gin unloading system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  20. Particle size distribution characteristics of cotton gin second stage mote system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  1. Particle size distribution characteristics of cotton gin second stage lint cleaning system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  2. Combined lint cleaning system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  3. Particle size distribution characteristics of cotton gin mote trash system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  4. Second stage mote system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or equal...

  5. Second stage lint cleaning system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or equal...

  6. Mote cleaner system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or ...

  7. Mote trash system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than...

  8. Particle size distribution characteristics of cotton gin combined lint cleaning system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  9. Mote cyclone robber system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than...

  10. Particle size distribution characteristics of cotton gin overflow system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  11. Cyclone robber system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or ...

  12. Particle size distribution characteristics of cotton gin master trash system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  13. First stage mote system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  14. Particle size distribution characteristics of cotton gin mote cleaner system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  15. Unloading system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than...

  16. Particle size distribution characteristics of cotton gin first stage mote system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  17. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  18. Particle size distribution characteristics of cotton gin battery condenser system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  19. Particle size distribution characteristics of cotton gin mote cyclone robber system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  20. Particle size distribution characteristics of cotton gin cyclone robber system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  1. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  2. ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4

    EPA Science Inventory

    As part of an extensive program to study the small combustion sources of indoor fine particulate matter (PM), candles with lead-core wicks were burned in a 46-L glass flow- through chamber. The particulate emissions with aerodynamic diameters <10 micrometers (PM10) were captured ...

  3. Bioethanol-gasoline fuel blends: exhaust emissions and morphological characterization of particulate from a moped engine.

    PubMed

    Seggiani, Maurizia; Prati, M Vittoria; Costagliola, M Antonietta; Puccini, Monica; Vitolo, Sandra

    2012-08-01

    This study was aimed at evaluating the effects of gasoline-ethanol blends on the exhaust emissions in a catalyst-equipped four-stroke moped engine. The ethanol was blended with unleaded gasoline in at percentages (10, 15, and 20% v/v). The regulated pollutants and the particulate matter emissions were evaluated over the European ECE R47 driving cycle on the chassis dynamometer bench. Particulate matter was characterized in terms of total mass collected on filters and total number ofparticles in the range 7 nm-10 microm measured by electrical low-pressure impactor (ELPI). In addition, particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions were evaluated to assess the health impact of the emitted particulate. Finally, an accurate morphological analysis was performed on the particulate by high-resolution transmission electron microscope (TEM) equipped with a digital image-processing/data-acquisition system. In general, CO emission reductions of 60-70% were obtained with 15 and 20% v/v ethanol blends, while the ethanol use did not reduce hydrocarbon (HC) and NOx emissions. No evident effect of ethanol on the particulate mass emissions and associated PAHs emissions was observed. Twenty-one PAHs were quantified in the particulate phase with emissions ranging from 26 to 35 microg/km and benzo[a]pyrene equivalent (BaPeq) emission factors from 2.2 to 4.1 microg/km. Both particulate matter and associated PAHs with higher carcinogenic risk were mainly emitted in the submicrometer size range (<0.1 microm). On the basis of the TEM observations, no relevant effect of the ethanol use on the particulate morphology was evidenced, showing aggregates composed ofprimary particles with mean diameters in the range 17.5-32.5 nm.

  4. Air Emissions Inventory Guidance for Implementation of Ozone and Particulate Matter NAAQS and Regional Haze Regulations

    EPA Pesticide Factsheets

    Guidance document on how to develop emission inventories to meet State Implementation Plan requirements for complying with the 8-hour ozone national ambient air quality standards (NAAQS), the revised particulate matter (PM) NAAQS, and the regional haze reg

  5. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation. PM10 emissions from wood particle dryers must not exceed a total of 0.4 pounds per 1000 square... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources....

  6. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation. PM10 emissions from wood particle dryers must not exceed a total of 0.4 pounds per 1000 square... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources....

  7. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... PM10 emissions from wood particle dryers must not exceed a total of 0.4 pounds per 1000 square feet of... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Rule for limiting particulate matter emissions from wood products industry sources. (a) What is...

  8. Trace gas and particulate emissions from biomass burning in temperate ecosystems

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1991-01-01

    Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.

  9. Diagnosis of partial and total physeal arrest by bone single-photon emission computed tomography.

    PubMed

    Wioland, M; Bonnerot, V

    1993-09-01

    Bone single-photon emission computed tomography (SPECT), capable of creating maps of the distribution of osteoblastic activity in every spatial plane of a physis, should provide images of diagnostic value in the case of patients suffering from growth arrests (epiphysiodeses). Seventy-five bone SPECT scans were obtained in 64 children suspected to have developed physeal arrests. The transaxial slices of the physis, in the case of partial epiphysiodeses: (a) indicated the percentage of the remaining normal physis, (b) located the bony bridge within the physis and (c) showed the slowdown of the growth of the remaining normal physis induced by the bony bridge in some children. Misdiagnosis occurred in six patients. For total epiphysiodeses, the radionuclide diagnosis was confirmed in 20 of 21 patients. Radionuclide, x-ray and MRI examinations in the study of growth disturbances were found to be complementary.

  10. Characteristics of particulate carbon emissions from real-world Chinese coal combustion.

    PubMed

    Zhang, Yuanxun; Schauer, James Jay; Zhang, Yuanhang; Zeng, Limin; Wei, Yongjie; Liu, Yuan; Shao, Min

    2008-07-15

    Particulate matter emissions from a series of different Chinese coal combustion systems were collected and analyzed for elemental and organic carbon (EC, OC), and molecular markers. Emissions from both industrial boilers and residential stoves were investigated. The coal used in this study included anthracite, bituminite, and brown coal, as well as commonly used coal briquettes produced in China for residential coal combustion. Results show significant differences in the contribution of carbonaceous species to particulate mass emissions. Industrial boilers had much higher burn out of carbon yielding particulate matter emissions with much lower levels of OC, EC, and speciated organic compounds, while residential stoves had significantly higher emissions of carbonaceous particulate matter with emission rates of approximately 100 times higher than that of industrial boilers. Quantified organic compounds emitted from industrial boilers were dominated by oxygenated compounds, of which 46-68% were organic acids, whereas the dominate species quantified in the emissions from residential stoves were PAHs (38%) and n-alkanes (20%). An important observation was the fact that emission factors of PAHs and the distribution of hopanoids were different among the emissions from industrial and residential coal combustion even using the same coal for combustion. Although particulate matter emissions from industrial and residential combustion were different in many regards, picene was detected in all samples with detectable OC mass concentrations, which supports the use of this organic tracer for OC from all types of coal combustion. 17alpha(H),21beta(H)-29-norhopane was the predominant hopanoid in coal combustion emissions, which is different from mobile source emissions and may be used to distinguish emissions from these different fossil fuel sources.

  11. Characteristics of particulate carbon emissions from real-world Chinese coal combustion

    SciTech Connect

    Yuanxun Zhang; James Jay Schauer; Yuanhang Zhang; Limin Zeng; Yongjie Wei; Yuan Liu; Min Shao

    2008-07-15

    Particulate matter emissions from a series of different Chinese coal combustion systems were collected and analyzed for elemental and organic carbon (EC, OC), and molecular markers. Emissions from both industrial boilers and residential stoves were investigated. The coal used in this study included anthracite, bituminite, and brown coal, as well as commonly used coal briquettes produced in China for residential coal combustion. Results show significant differences in the contribution of carbonaceous species to particulate mass emissions. Industrial boilers had much higher burn out of carbon yielding particulate matter emissions with much lower levels of OC, EC, and speciated organic compounds, while residential stoves had significantly higher emissions of carbonaceous particulate matter with emission rates of approximately 100 times higher than that of industrial boilers. Quantified organic compounds emitted from industrial boilers were dominated by oxygenated compounds, of which 46-68% were organic acids, whereas the dominate species quantified in the emissions from residential stoves were PAHs (38%) and n-alkanes (20%). An important observation was the fact that emission factors of PAHs and the distribution of hopanoids were different among the emissions from industrial and residential coal combustion even using the same coal for combustion. Although particulate matter emissions from industrial and residential combustion were different in many regards, picene was detected in all samples with detectable OC mass concentrations, which supports the use of this organic tracer for OC from all types of coal combustion. 17{alpha}(H),21{beta}(H)-29-norhopane was the predominant hopanoid in coal combustion emissions, which is different from mobile source emissions and may be used to distinguish emissions from these different fossil fuel sources. 32 refs., 4 figs., 1 tab.

  12. Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil.

    PubMed

    Sánchez-Ccoyllo, Odón R; Ynoue, Rita Y; Martins, Leila D; Astolfo, Rosana; Miranda, Regina M; Freitas, Edmilson D; Borges, Alessandro S; Fornaro, Adalgiza; Freitas, Helber; Moreira, Andréa; Andrade, Maria F

    2009-02-01

    In the metropolitan area of São Paulo, Brazil, ozone and particulate matter (PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors (nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Jânio Quadros and Maria Maluf road tunnels, both located in São Paulo. The Jânio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Jânio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 microg km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in São Paulo tunnels are higher than those found in other cities of the world.

  13. Determination of particulate matter emissions from cattle feedlots using windtrax and flux-gradient technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large commercial cattle feedlots are significant sources of particulate matter (PM) emissions. This research compared WindTrax and the flux-gradient technique in estimating emissions of PM with aerodynamic diameter < 10 µm (PM10) from cattle feedlots. Meteorological conditions were measured and PM10...

  14. Estimation of dairy particulate matter emission rates by lidar and inverse modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particulate matter (PM) emissions from agricultural operations are an important issue for air quality and human health and a topic of interest to government regulators. PM emission rates from a dairy in the San Joaquin Valley of California were investigated during June 2008. The facility had 1,885 t...

  15. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  16. Control of NOx and particulate emissions from spreader-stokers fired with hogged wood

    SciTech Connect

    Munro, J.M.; Bradshaw, F.W.; Pershing, D.W.

    1987-06-01

    The formation and emission of nitrogen oxides and particulate carry-over were studied from spreader-stoker combustion of nogged Douglas-fir, with a focus on optimizing the combustion conditions in each of the two distinct combustion zones, the bed phase and the suspension phase. Local oxygen availability was the controlling parameter for nitric oxide formation. Minimum nitric oxide emissions were found when local air: fuel stoichiometric ratios were held at 0.70-0.85, with emissions reduced as much as 39%. Long first-stage residence times allowed intermediate nitrogenous species to decay to molecular nitrogen, if there was sufficient oxygen for first-stage formation of nitric oxide. Entrainment of large particulates was a function of furnace gas velocities in the bed zone. Operation of the furnace at low stoichiometric ratios (fuel rich) in the bed zone reduced these gas velocities and thus reduced particulate emissions. (Refs. 12).

  17. Characterization of cotton gin particulate matter emissions - project plan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation time line for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District has pro...

  18. Characterization of cotton gin particulate matter emissions – project plan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation timeline for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District, has pro...

  19. Gaseous and particulate emissions from rural vehicles in China

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Huo, Hong; Zhang, Qiang; Streets, David G.; He, Kebin

    2011-06-01

    Rural vehicles (RVs) could contribute significantly to air pollutant emissions throughout Asia due to their considerable population, extensive usage, and high emission rates, but their emissions have not been measured before and have become a major concern for the accuracy of regional and global emission inventories. In this study, we measured CO, HC, NO x and PM emissions of RVs using a combined on-board emission measurement system on real roads in China. We also compared the emission levels of the twenty RVs to those of nineteen Euro II light-duty diesel trucks (LDDTs) that we measured for previous studies. The results show that one-cylinder RVs have lower distance-based emission factors compared to LDDTs because of their smaller weight and engine power, but they have significantly higher fuel-based PM emission factors than LDDTs. Four-cylinder RVs have equivalent emission levels to LDDTs. Based on the emission factors and the activity data obtained, we estimate that the total emissions of RVs in China in 2006 were 1049 Gg of CO, 332 Gg of HC, 933 Gg of NO x, and 54 Gg of PM, contributing over 40% to national on-road diesel CO, NO x, and PM emissions. As RVs are a significant contributor to national emissions, further research work is needed to improve the accuracy of inventories at all levels, and the government should strengthen the management of RVs to facilitate both policy making and research work.

  20. Endocrine disrupting chemical emissions from combustion sources: diesel particulate emissions and domestic waste open burn emissions

    NASA Astrophysics Data System (ADS)

    Sidhu, Sukh; Gullett, Brian; Striebich, Richard; Klosterman, Joy; Contreras, Jesse; DeVito, Michael

    Emissions of endocrine disrupting chemicals (EDCs) from combustion sources are poorly characterized due to the large number of compounds present in the emissions, the complexity of the analytical separations required, and the uncertainty regarding identification of chemicals with endocrine effects. In this work, multidimensional gas chromatographic-mass spectrometry (MDGC-MS) was used to characterize emissions from both controlled (diesel engine) and uncontrolled (open burning of domestic waste) combustion sources. The results of this study suggest that, by using MDGC-MS, one can resolve a much greater percentage of the chromatogram and identify about 84% of these resolved compounds. This increase in resolution helped to identify and quantify various classes of polycyclic aromatic hydrocarbons (PAHs) in the combustion emissions that had not been identified previously. Significant emissions (when compared to industrial sources) of known EDCs, dioctyl phthalate (over ˜2,500,000 kg year -1) and bisphenol A (over ˜75,000 kg year -1) were estimated from uncontrolled domestic waste burning. Emissions of several suspected EDCs (oxygenated PAHs) were observed in both diesel soot and the uncontrolled domestic waste burn samples. The emission rates of known and suspected EDCs estimated in this study suggest that combustion emissions need to be characterized for EDCs to further assess its importance as a source of EDC exposure.

  1. Toxicological effects of particulate emissions - A comparison of oil and wood fuels in small- and medium-scale heating systems

    NASA Astrophysics Data System (ADS)

    Kasurinen, Stefanie; Jalava, Pasi I.; Tapanainen, Maija; Uski, Oskari; Happo, Mikko S.; Mäki-Paakkanen, Jorma; Lamberg, Heikki; Koponen, Hanna; Nuutinen, Ilpo; Kortelainen, Miika; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2015-02-01

    The use of wood instead of oil fuels in heating systems is strongly encouraged in many countries. Yet it is unknown to what extent such a large-scale change from oil to wood fuels in heating systems would contribute to any negative health effects from their emissions. We compared the toxicological properties of particulate matter (PM) emissions from wood and oil fuels from two small-scale and two medium-scale heating systems. To assess whether oil or wood combustion emissions cause adverse effects and which PM emissions' effects are more profound, we measured cell viability and proliferation, inflammatory markers, as well as DNA damage in RAW264.7 mouse macrophages. We found that the medium-scale oil-fueled heating system induced a dose-dependent increase of DNA damage, short-term cytotoxic effects, and a cell cycle arrest in the G2/M-phase. We did not detect an induction of DNA damage by the medium-scale wood-fired system. However, we detected significant short-term cytotoxicity. We found that both oil and wood combustion emission samples from the small-scale heating systems induced DNA damage. However, the short-term cytotoxic effects were greater for the PM emissions from the oil-fired heating system. PM mass emissions differed significantly between the tested heating systems. The lowest emissions, 0.1 mg/MJ, were produced by the small-scale oil-fired heating system; the highest emissions, 20.3 mg/MJ, by the medium-scale oil-fired heating system. The wood-fired heating systems' PM mass emissions were in between these concentrations, complicating the direct comparison of the emissions' health related toxic effects. Conclusively, our results indicate that the emissions from both the small- and the medium-scale wood-fueled heating systems cause overall less cytotoxicity and DNA damage in a cell model than the emissions from the corresponding oil-fueled heating systems. Hence, controlled wood-fueled heating systems may be good alternatives to heating systems fired

  2. Reductions in particulate and NO(x) emissions by diesel engine parameter adjustments with HVO fuel.

    PubMed

    Happonen, Matti; Heikkilä, Juha; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-06-05

    Hydrotreated vegetable oil (HVO) diesel fuel is a promising biofuel candidate that can complement or substitute traditional diesel fuel in engines. It has been already reported that by changing the fuel from conventional EN590 diesel to HVO decreases exhaust emissions. However, as the fuels have certain chemical and physical differences, it is clear that the full advantage of HVO cannot be realized unless the engine is optimized for the new fuel. In this article, we studied how much exhaust emissions can be reduced by adjusting engine parameters for HVO. The results indicate that, with all the studied loads (50%, 75%, and 100%), particulate mass and NO(x) can both be reduced over 25% by engine parameter adjustments. Further, the emission reduction was even higher when the target for adjusting engine parameters was to exclusively reduce either particulates or NO(x). In addition to particulate mass, different indicators of particulate emissions were also compared. These indicators included filter smoke number (FSN), total particle number, total particle surface area, and geometric mean diameter of the emitted particle size distribution. As a result of this comparison, a linear correlation between FSN and total particulate surface area at low FSN region was found.

  3. Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes.

    PubMed

    Liu, Ying; Chen, Yan-Yan; Cao, Ji-Yu; Tao, Fang-Biao; Zhu, Xiao-Xia; Yao, Ci-Jiang; Chen, Dao-Jun; Che, Zhen; Zhao, Qi-Hong; Wen, Long-Ping

    2015-07-01

    Epidemiological studies demonstrate a linkage between morbidity and mortality and particulate matter (PM), particularly fine particulate matter (PM2.5) that can readily penetrate into the lungs and are therefore more likely to increase the incidence of respiratory and cardiovascular diseases. The present study investigated the compositions of cooking oil fume (COF)-derived PM2.5, which is the major source of indoor pollution in China. Furthermore, oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest induced by COF-derived PM2.5 in primary fetal alveolar type II epithelial cells (AEC II cells) were also detected. N-acetyl-L-cysteine (NAC), a radical scavenger, was used to identify the role of oxidative stress in the abovementioned processes. Our results suggested that compositions of COF-derived PM2.5 are obviously different to PM2.5 derived from other sources, and COF-derived PM2.5 led to cell death, oxidative stress, apoptosis, and G0/G1 cell arrest in primary fetal AEC II cells. Furthermore, the results also showed that COF-derived PM2.5 induced apoptosis through the endoplasmic reticulum (ER) stress pathway, which is indicated by the increased expression of ER stress-related apoptotic markers, namely GRP78 and caspase-12. Besides, the induction of oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest was reversed by pretreatment with NAC. These findings strongly suggested that COF-derived PM2.5-induced toxicity in primary fetal AEC II cells is mediated by increased oxidative stress, accompanied by ER stress which results in apoptosis.

  4. Sensitivity analysis and evaluation of MicroFacPM: a microscale motor vehicle emission factor model for particulate matter emissions.

    PubMed

    Singh, Rakesh B; Huber, Alan H; Braddock, James N

    2007-04-01

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper titled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Real-Time Motor Vehicle Emissions". The emission rates discussed are in mass per unit distance with the model providing estimates of fine particulate matter (PM2.5) and coarse particulate matter. This paper complements the companion paper by presenting a sensitivity analysis of the model to input variables and evaluation model outputs using data from limited field studies. The sensitivity analysis has shown that MicroFacPM emission estimates are very sensitive to vehicle fleet composition, speed, and the percentage of high-emitting vehicles. The vehicle fleet composition can affect fleet emission rates from 8 mg/mi to 1215 mg/mi; an increase of 5% in the smoking (high-emitting) current average U.S. light-duty vehicle fleet (compared with 0%) increased PM2.5 emission rates by -272% for 2000; and for the current U.S. fleet, PM2.5 emission rates are reduced by a factor of -0.64 for speeds >50 miles per hour (mph) relative to a speed of 10 mph. MicroFacPM can also be applied to examine the contribution of emission rates per vehicle class, model year, and sources of PM. The model evaluation is presented for the Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA, and some limited evaluations at two locations: Sepulveda Tunnel, Los Angeles, CA, and Van Nuys Tunnel, Van Nuys, CA. In general, the performance of MicroFacPM has shown very encouraging results.

  5. Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst.

    PubMed

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin

    2014-02-15

    A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident.

  6. Climate-relevant properties of diesel particulate emissions: results from a piggyback study in Bangkok, Thailand.

    PubMed

    Subramanian, R; Winijkul, Ekbordin; Bond, Tami C; Thiansathit, Worrarat; Oanh, Nguyen Thi Kim; Paw-armart, Ittipol; Duleep, K G

    2009-06-01

    A "piggyback" approach is used to characterize aerosol emissions to obtain input for large-scale models of atmospheric transport. Particulate and gaseous emissions from diesel trucks, light-duty vehicles, and buses were measured by the Bangkok Pollution Control Department as part of the Developing Integrated Emissions Strategies for Existing Land Transport (DIESEL) project. We added filter-based measurements of carbonaceous composition, particulate light absorption, and water uptake. For 88 "normal" diesel vehicles (PM emission rate < 4.7 g/kg), our best estimate of the average PM2.5 emission rate is 2.2 +/- 0.5 g/kg, whereas for 15 high emitters, it is 8.4 +/- 1.9 g/kg. The effect of Euro standards on PM emission rates was apparent for heavy-duty vehicles, but not for light-duty vehicles. Carbonaceous composition appears relatively consistent, with particulate (artifact-corrected) OC at 17 +/- 1% and EC at 40 +/- 8% of PM for 103 pickups, vans, heavy-duty trucks and buses. The median absorption cross-section for EC is 10.5 m2/g at 532 nm. The history of average emission rate and chemical composition during the project suggests that about 25 vehicles can provide a regional PM emission rate for normal vehicles. Other studies such as remote sensing measurements will be required to estimate the important contribution of high-emitting vehicles.

  7. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  8. Electrostatic precipitator for metal and particulate emission control

    SciTech Connect

    Yang, C.L.; Beltran, M.

    2000-03-01

    Improving air pollution control systems is crucial for incinerators to be an option for sewage sludge disposal. Combinations of venturi and tray tower scrubbers are the most popular air pollution control system for sewage sludge incinerators. Recently wet electrostatic precipitators have been installed downstream of the scrubbing system to ensure the compliance of new regulations. Performance and stack tests were conducted on sludge incinerators at Somerset Raritan Valley Sewage Authority and New England Treatment Company. Efficiencies in terms of heavy metal and particulate removals are presented. This paper also describes sewage sludge incinerators, existing air pollution control systems, design considerations of the wet electrostatic precipitator, as well as sampling and analysis methods.

  9. Diesel fuel containing wax oxidates to reduce particulate emissions

    SciTech Connect

    Sprague, H.G.; Sweeney, W.M.

    1980-09-16

    Addition of 0.1 to 1.5 percent by weight of wax oxidates to a diesel fuel is found to reduce the amount of soot and invisible particles produced when the fuel is used in a diesel engine. The wax oxidates act synergistically with fuel-soluble organometallic compounds such as alkyl cyclopentadienyl manganese tricarbonyl complex salts in reducing particulates. The wax oxidates used have a ratio of neutralization number to saponification number below about 0.40 and a saybolt universal viscosity at 210* F. Higher than 1600.

  10. Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning.

    PubMed

    Liu, Ying; Gao, Yi; Yu, Na; Zhang, Chenkai; Wang, Siyao; Ma, Limin; Zhao, Jianfu; Lohmann, Rainer

    2015-09-01

    Traffic vehicles are a main source of polycyclic aromatic hydrocarbon (PAH) emission in urban area. It is vital to understand PAH gas-particle partitioning in real traffic environment and assess PAH vehicular emission factors in developing China. Concentrations of particulate matter, carbonaceous products, gaseous and particulate PAHs were measured during 2011-2012 in a road tunnel of Shanghai, China. Time variation of them reflected basic traffic operation of the tunnel. PAHs approached equilibrium between gas and particle phases and the partitioning was predicted better by a dual sorption model combining absorption into organic matter and adsorption onto black carbon. The influence of black carbon adsorption on the partitioning behavior of PAHs was important. The difference in isomer ratios of gaseous and particulate PAHs was attributed to PAH contributions from different traffic-related PAHs sources. Real-world vehicle emission factors of gaseous and particulate PAHs were quantified based on fuel burned model and vehicle kilometer traveled model.

  11. Development of a particulate emission factor model for European motor vehicles

    SciTech Connect

    Singh, R.B.; Colls, J.

    1997-12-31

    A motor vehicle emission model for suspended particulate matter capable of collecting virtually all the existing knowledge on emissions from the European vehicle fleet, in particular for the United Kingdom, has been developed. It is written in FORTRAN90 and calculates exhaust, tire wear and brake wear particulate emission factors in gram per kilometer per vehicle from on-road vehicles. The model can be used to calculate the total suspended particulate matter and the concentration in four particle size ranges between 10 and 1 m (i.e., PM10, PM5, PM2.5 and PM1). It calculates the composite emission factors based on parameters such as vehicle fleet, speed, ambient temperature and driving cycle and also has the option to calculate detailed emission factors for all the vehicles individually. Emissions from a road can be calculated on a lane-by-lane basis and for available vehicle fleet structure data. The vehicle fleet data includes options based on observations, closed circuit television camera or average values for the country or region. The model can also be used near a signalized intersections and calculates emissions in user-defined element of the lane near a intersection. It takes into account the increased emissions from cold engines which are dependent on the ambient temperature and the driving cycle; and other particulate sources such as road dust, tire wears and brake wears. The modeled emission factors are very sensitive to speed and vehicular fleet composition. The model is validated on urban and rural roads of the United Kingdom.

  12. Real-world particulate matter and gaseous emissions from motor vehicles in a highway tunnel.

    PubMed

    Gertler, Alan W; Gillies, John A; Pierson, William R; Rogers, C Fred; Sagebiel, John C; Abu-Allaban, Mahmoud; Coulombe, William; Tarnay, Leland; Cahill, Thomas A

    2002-01-01

    Recent studies have linked atmospheric particulate matter with human health problems. In many urban areas, mobile sources are a major source of particulate matter (PM) and the dominant source of fine particles or PM2.5 (PM smaller than 2.5 pm in aerodynamic diameter). Dynamometer studies have implicated diesel engines as being a significant source of ultrafine particles (< 0.1 microm), which may also exhibit deleterious health impacts. In addition to direct tailpipe emissions, mobile sources contribute to ambient particulate levels by brake and tire wear and by resuspension of particles from pavement. Information about particle emission rates, size distributions, and chemical composition from in-use light-duty (LD) and heavy-duty (HD) vehicles is scarce, especially under real-world operating conditions. To characterize particulate emissions from a limited set of in-use vehicles, we studied on-road emissions from vehicles operating under hot-stabilized conditions, at relatively constant speed, in the Tuscarora Mountain Tunnel along the Pennsylvania Turnpike from May 18 through 23, 1999. There were five specific aims of the study. (1) obtain chemically speciated diesel profiles for the source apportionment of diesel versus other ambient constituents in the air and to determine the chemical species present in real-world diesel emissions; (2) measure particle number and size distribution of chemically speciated particles in the atmosphere; (3) identify, by reference to data in years past, how much change has occurred in diesel exhaust particulate mass; (4) measure particulate emissions from LD gasoline vehicles to determine their contribution to the observed particle levels compared to diesels; and (5) determine changes over time in gas phase emissions by comparing our results with those of previous studies. Comparing the results of this study with our 1992 results, we found that emissions of C8 to C20 hydrocarbons, carbon monoxide (CO), and carbon dioxide (CO2) from

  13. Gaseous and particulate emissions from thermal power plants operating on different technologies.

    PubMed

    Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain

    2010-07-01

    This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel.

  14. Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part II: Correlated emission rates

    NASA Astrophysics Data System (ADS)

    Roumeliotis, Taylor S.; Dixon, Brad J.; Van Heyst, Bill J.

    2010-10-01

    Emission rates of ammonia, acid gases, inorganic aerosols, methane, and size fractionated particulate matter were measured from a commercial broiler facility. This paper discusses the statistically influential parameters on numerous pollutants' emission from a broiler chicken facility and generates emission correlations to fill data gaps and develop averaged emission factors. Live mass of the birds was commonly a significant variable to each pollutant's emission. Some variables significantly impacted the pollutants' emissions, such as litter moisture content, but were measured discretely and cannot be used for filling in data gaps. House parameter correlations were, therefore, developed using parameters measured at the facility, such as indoor temperature, relative humidity, and the live mass of the birds, and relied on the mutual behaviour of discretely measured explanatory parameters and continuously monitored confounding variables. The live mass and the difference in the indoor temperature and the house set-point temperature were the most significant variables in each pollutant's correlation. The correlations predicted each pollutants emission to within 20% (total mass basis) over most broiler production cycles. Their validation on independent datasets also successfully estimated the flocks' emissions to within 3%. Emission factors (EFs) were developed for methane, ammonia, and size fractionated particulate matter using measured data and correlated emissions to fill in data gaps. PM 10 (particulate matter ≤10 microns) EFs were estimated to be 4.6 and 5.9 g d -1 [Animal Unit, AU] -1 for five and six week production cycles, respectively. PM 2.5 (PM ≤ 2.5 microns) EFs were 0.8 and 1.4 g d -1 AU -1 for five and six week cycles, respectively. Ammonia and methane emission factors were estimated at 120.8 and 197.0 g d -1 AU -1, respectively for a five week production cycle.

  15. Development and Preliminary Evaluation of a Particulate Matter Emission Factor Model for European Motor Vehicles.

    PubMed

    Singh, Rakesh B; Colls, Jeremy J

    2000-10-01

    Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 um, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM25, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict the

  16. Development and preliminary evaluation of a particulate matter emission factor model for European motor vehicles.

    PubMed

    Singh, R B; Colls, J J

    2000-10-01

    Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 microns, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM2.5, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict

  17. Laboratory Evaluation of Electrostatic Spray Wet Scrubber to Control Particulate Matter Emissions from Poultry Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  18. 40 CFR 86.137-96 - Dynamometer test run, gaseous and particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Dynamometer test run, gaseous and particulate emissions. 86.137-96 Section 86.137-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.137-96 Dynamometer test run,...

  19. 40 CFR 86.137-96 - Dynamometer test run, gaseous and particulate emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Dynamometer test run, gaseous and particulate emissions. 86.137-96 Section 86.137-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.137-96 Dynamometer test run,...

  20. Source sampling of particulate matter emissions from cotton harvesting - system design and evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    State and regional air pollution regulatory agencies are required by federal law to reduce ambient particulate matter concentrations in non-attainment areas to a level in compliance with National Ambient Air Quality Standards. All emission regulations, including reduction regulations, should be base...

  1. Particulate Matter Stack Emission Compliance Test Procedure for Fuel Burning Units.

    ERIC Educational Resources Information Center

    West Virginia Air Pollution Control Commission, Charleston.

    This publication details the particulate matter emissions test procedure that is applicable for conducting compliance tests for fuel burning units required to be tested under Sub-section 7 of Regulation II (1972) as established by the state of West Virginia Air Pollution Control Commission. The testing procedure is divided into five parts:…

  2. Novel Sampling Techniques for Measurement of Turbine Engine Total Particulate Matter Emissions

    EPA Science Inventory

    This is the first progress report of a study to evaluate two different condensation devices for the measurement of the total (volatile + non-volatile) particulate matter (PM) emissions from aircraft turbine engines by direct sampling at the engine exit. The characteristics of th...

  3. CHARACTERIZATION OF PARTICULATE EMISSIONS FROM CONTROLLED CONSTRUCTION ACTIVITIES: MUD/DIRT CARRYOUT

    EPA Science Inventory

    The report describes a field study of PM-2.5 and PM-10 (particulate matter with aerodynamic diameter less than 2.5 and 10 micrometers, respectively) emissions from a public paved road in Overland Park, Kansas, adjacent to a 200-acre construction site which will ultimately have 4 ...

  4. Emissions calculated from particulate matter and gaseous ammonia measurements from a commercial dairy in California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in California, USA in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and OPCs characterized aerodynamic an...

  5. 40 CFR 86.137-96 - Dynamometer test run, gaseous and particulate emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Dynamometer test run, gaseous and particulate emissions. 86.137-96 Section 86.137-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.137-96 Dynamometer test run,...

  6. 40 CFR 86.137-96 - Dynamometer test run, gaseous and particulate emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Dynamometer test run, gaseous and particulate emissions. 86.137-96 Section 86.137-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.137-96 Dynamometer test run,...

  7. Particulate emissions calculations from fall tillage operations using point and remote sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preparation of soil for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric loadings of particulate matter (PM). Efforts to reduce PM emissions from tillage operations through a variety of conservation management practices (CMP) have been made but the reduc...

  8. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry.

    PubMed

    Eriksson, A C; Nordin, E Z; Nyström, R; Pettersson, E; Swietlicki, E; Bergvall, C; Westerholm, R; Boman, C; Pagels, J H

    2014-06-17

    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions.

  9. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  10. Effect of oxygenated fuels on physicochemical and toxicological characteristics of diesel particulate emissions.

    PubMed

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-12-16

    A systematic study was conducted to make a comparative evaluation of the effects of blending five different oxygenates (diglyme (DGM), palm oil methyl ester (PME), dimethyl carbonate (DMC), diethyl adipate (DEA), and butanol (Bu)) with ultralow sulfur diesel (ULSD) at 2% and 4% oxygen levels on physicochemical and toxicological characteristics of particulate emissions from a nonroad diesel engine. All blended fuels led to an overall decrease in the particulate mass concentration and elemental carbon (EC) emissions, which was strongly associated with the oxygen content in fuels and the specific type of fuels used. In general, the proportion of particulate-bound organic carbon (OC) and water-soluble organic carbon (WSOC) increased while using oxygenated fuel blends. Compared to ULSD, all fuel blends showed different emission factors of particle-phase PAHs and n-alkanes, slight alterations in soot nanostructure, lower soot ignition temperature, and lower activation energy. The total counts of particles (≤ 560 nm diameter) emitted decreased gradually for ULSD blended with DMC, DEA, and Bu, while they increased significantly for other fuel blends. The in vitro toxicity of particulates significantly increased with ULSD blended with DMC and DEA, while it decreased when ULSD was blended with PME, DGM, and Bu.

  11. Gaseous and Particulate Matter Emissions of a Supercharged Spark Ignited Hydrogen Fueled Internal Combustion Engine

    NASA Astrophysics Data System (ADS)

    Kieran, Sean

    A spark ignited hydrogen fueled engine was operated at three equivalence ratios (0.4, 0.5, and 0.6) with a supercharger. During steady-state road load conditions, the engine produced exceptionally low unburned hydrocarbon, carbon monoxide, carbon dioxide, and particulate matter emissions. The oxides of nitrogen (NOx) emissions of the supercharged engine were 31.4, 149.5, and 787.0 mg*NOx/km for the equivalence ratios 0.4, 0.5, and 0.6 respectively. Given that the current EPA regulations are 99.4 mg*NOx/km, this engine configuration represents a possible replacement option for gasoline fueled engines without the need for exhaust after treatment. During engine start-up, some of the supercharged tests exhibited particulate matter emission spikes. These particulate matter spikes do not seem to be related to equivalence ratio, coolant temperature, testing order, or start-up acceleration. Currently, there is no explanation why some of the tests produced particulate matter during engine start-up and others did not.

  12. Particulate emission reductions from road paving in California oil fields

    SciTech Connect

    Cowherd, C.

    1982-06-01

    Calculation of road dust emissions before and after paving shows that paving is an effective measure for reducing road dust emissions in Kern County oil fields. Control efficiency values for particles smaller than 10 ..mu..m aerodynamic diameter averaged about 70 percent for paving with coldmix asphalt and 95 percent for paving with hot-mix asphalt. These control efficiencies are about the same for other particle size fractions up to 30 ..mu..m aerodynamic diameter. The higher efficiency associated with hot-mix asphalt reflects the substantially lower quantities of surface road dust found on hot-mix roads in comparison to cold-mix roads in Kern County. The emission reductions achievable by paving a given road depend on the VMT as well as the type of asphalt pavement used. VMT increases with increasing traffic count and length of the road segment. Emission reductions also depend on the texture (silt content) of the surface before paving and on the traffic characteristics, i.e., vehicle speed, vehicle weight and number of wheels per vehicle.

  13. Coarse particulate matter emissions from cattle feedlots in Australia.

    PubMed

    McGinn, S M; Flesch, T K; Chen, D; Crenna, B; Denmead, O T; Naylor, T; Rowell, D

    2010-01-01

    Open cattle feedlots are a source of air pollutants that include particular matter (PM). Over 24 h, exposure to ambient concentrations of 50 microg m(-3) of the coarse-sized fraction PM (aerodynamic diameter <10 microm [PM(10)]) is recognized as a health concern for humans. The objective of our study was to document PM(10) concentration and emissions at two cattle feedlots in Australia over several days in summer. Two automated samplers were used to monitor the background and in-feedlot PM(10) concentrations. At the in-feedlot location, the PM(10) emission was calculated using a dispersion model. Our measurements revealed that the 24-h PM(10) concentrations on some of the days approached or exceeded the health criteria threshold of 50 microg m(-3) used in Australia. A key factor responsible for the generation of PM(10) was the increased activity of cattle in the evening that coincided with peak concentrations of PM(10) (maximum, 792 microg m(-3)) between 1930 and 2000 h. Rain coincided with a severe decline in PM(10) concentration and emission. A dispersion model used in our study estimated the emission of PM(10) between 31 and 60 g animal(-1) d(-1). These data contribute to needed information on PM(10) associated with livestock to develop results-based environmental policy.

  14. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  15. CENTRAL CAROLINA VEHICLE PARTICULATE EMISSION STUDY (FINAL REPORT)

    EPA Science Inventory

    A study to characterize the exhaust emissions from a light-duty fleet of in-use vehicles representative of central North Carolina was conducted in 1999 during both a winter phase (February) and a summer phase (June - July). Summer temperatures averaged 78 F, while the winter te...

  16. The methodologies and instruments of vehicle particulate emission measurement for current and future legislative regulations

    NASA Astrophysics Data System (ADS)

    Otsuki, Yoshinori; Nakamura, Hiroshi; Arai, Masataka; Xu, Min

    2015-09-01

    Since the health risks associated with fine particles whose aerodynamic diameters are smaller than 2.5 μm was first proven, regulations restricting particulate matter (PM) mass emissions from internal combustion engines have become increasingly severe. Accordingly, the gravimetric method of PM mass measurement is facing its lower limit of detection as the emissions from vehicles are further reduced. For example, the variation in the adsorption of gaseous components such as hydrocarbons from unburned fuel and lubricant oil and the presence of agglomerated particles, which are not directly generated in engine combustion but re-entrainment particulates from walls of sampling pipes, can cause uncertainty in measurement. The PM mass measurement systems and methodologies have been continuously refined in order to improve measurement accuracy. As an alternative metric, the particle measurement programme (PMP) within the United Nations Economic Commission for Europe (UNECE) developed a solid particle number measurement method in order to improve the sensitivity of particulate emission measurement from vehicles. Consequently, particle number (PN) limits were implemented into the regulations in Europe from 2011. Recently, portable emission measurement systems (PEMS) for in-use vehicle emission measurements are also attracting attention, currently in North America and Europe, and real-time PM mass and PN instruments are under evaluation.

  17. Particulate matter emissions from combustion of wood in district heating applications

    SciTech Connect

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Melin, Staffan

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

  18. Comparison of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomasses.

    PubMed

    Brassard, Patrick; Palacios, Joahnn H; Godbout, Stéphane; Bussières, Denis; Lagacé, Robert; Larouche, Jean-Pierre; Pelletier, Frédéric

    2014-03-01

    The aim of this study was to compare gaseous and particulate matter (PM) emissions from the combustion of agricultural (switchgrass, fast-growing willow and the dried solid fraction of pig manure) and forest (wood mixture of Black Spruce and Jack Pine) biomasses in a small-scale unit (17.58kW). Concentrations of CO2, CO, CH4, NO2, NH3, N2O, SO2, HCl, and H2O were measured by Fourier transform infrared spectroscopy and converted into emission rates. Opacity was also evaluated and particulates were sampled. Results showed significantly higher emissions of SO2, NO2 and PM with the combustion of agricultural biomass compared to the forest biomass. However, further studies should be carried out so regulations can be adapted in order to permit the combustion of agricultural biomass in small-scale combustion units.

  19. The 1997 fires in Kalimantan and Sumatra, Indonesia: Gaseous and particulate emissions

    NASA Astrophysics Data System (ADS)

    Levine, Joel S.

    Extensive and widespread vegetation and peat fires swept throughout Kalimantan and Sumatra, Indonesia, from August 1997 through March 1998. The fires resulted from routine burning for land clearing and land-use change. However, the severe drought conditions resulting from El Nino caused small land-clearing fires to become large uncontrolled wildfires. Analysis of SPOT images indicate that a total of 45,600 km² burned between August and December 1997. In this paper, the gaseous and particulate emissions resulting from the 1997 fires are estimated. On a daily basis, the calculated emissions of CO2, CO, CH4, NOx, and particulates from the Kalimantan and Sumatra fires of 1997 significantly exceeded the emissions from the Kuwait oil fires of 1991.

  20. Particulate Matter Emissions for Dust From Unique Military Activities

    DTIC Science & Technology

    2007-12-31

    three towers is also instrumented with cup anemometers to measure the vertical wind speed profile and a wind vane to measure wind direction. The...magnitude of the dust emissions, SI-1399 also collected 3-dimensional wind speed data generated by the rotor-wash using a sonic anemometer deployed in...diameters from the position of the sonic anemometer . Four Irwin sensors (Irwin, 1980), which have been previously used to measure surface shear

  1. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  2. Effect of ceramic industrial particulate emission control on key components of ambient PM10.

    PubMed

    Minguillón, María Cruz; Monfort, Eliseo; Querol, Xavier; Alastuey, Andrés; Celades, Irina; Miró, José Vicente

    2009-06-01

    The relationship between specific particulate emission control and ambient levels of some PM(10) components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits are produced. The PM(10) emissions from the ceramic processes were calculated over the period 2000-2006, taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/EC, leading to a marked decrease in PM(10) emissions. By contrast, emissions from tile manufacture remained relatively constant because of the few changes in the implementation of corrective measures. On the other hand, ambient PM(10) levels and composition measurements were carried out from 2002 to 2006. A high correlation between PM(10) emissions from frit manufacture and ambient levels of Zn, As, Pb and Cs (R(2) from 0.61 to 0.98) was observed. On the basis of these results, the potential impact of the implementation of corrective measures to reduce emissions from tile manufacture was quantified, resulting in a possible decrease of 3-5 microg/m(3) and 2 microg/m(3) in ambient mineral PM(10) (on an annual basis) in urban and suburban areas, respectively. This relatively simple methodology allows us to estimate the direct effect of a reduction in primary particulate emissions on ambient levels of key particulate components, and to make a preliminary quantification of the possibilities of air quality improvement by means of further emission reduction. Therefore, it is a useful tool for developing future air quality plans in the study area and in other industrialised areas.

  3. Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part I: Observed trends in emissions

    NASA Astrophysics Data System (ADS)

    Roumeliotis, Taylor S.; Dixon, Brad J.; Van Heyst, Bill J.

    2010-10-01

    This paper characterizes the emission rates of size fractionated particulate matter, inorganic aerosols, acid gases, ammonia and methane measured over four flocks at a commercial broiler chicken facility. Mean emission rates of each pollutant, along with sampling notes, were reported in this paper, the first in a series of two. Sampling notes were needed because inherent gaps in data may bias the mean emission rates. The mean emission rates of PM 10 and PM 2.5 were 5.0 and 0.78 g day -1 [Animal Unit, AU] -1, respectively, while inorganic aerosols mean emission rates ranged from 0.15 to 0.46 g day -1 AU -1 depending on the season. The average total acid gas emission rate was 0.43 g day -1 AU -1 with the greatest contribution from nitrous and nitric acids and little contribution from sulfuric acid (as SO 2). Ammonia emissions were seasonally dependent, with a mean emission rate of 66.0 g day -1 AU -1 in the cooler seasons and 94.5 g day -1 AU -1 during the warmer seasons. Methane emissions were relatively consistent with a mean emission rate of 208 g day -1 AU -1. The diurnal pattern in each pollutant's emission rate was relatively consistent after normalizing the hourly emissions according to each daily mean emission rate. Over the duration of a production cycle, all the measured pollutants' emissions increased proportionally to the total live mass of birds in the house, with the exception of ammonia. Interrelationships between pollutants provide evidence of mutually dependent release mechanisms, which suggests that it may be possible to fill data gaps with minimal data requirements. In the second paper (Roumeliotis, T.S., Dixon, B.J., Van Heyst, B.J. Characterization of gaseous pollutants and particulate matter emission rates from a commercial broiler operation part II: correlated emission rates. Atmospheric Environment, 2010.), regression correlations are developed to estimate daily mean emission rates for data gaps and, using the normalized hourly diurnal

  4. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    PubMed Central

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-01-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms–the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs. PMID:27782159

  5. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-10-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms–the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

  6. Characterization of Particulate Ship Emissions during CalNex 2010 (Invited)

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Mellon, D.; Lack, D. A.; Williams, E. J.; Lerner, B. M.; Onasch, T. B.; Massoli, P.; Coffman, D. J.; Quinn, P.; Bates, T. S.; Nuaaman, I.; Li, S.; Hayden, K.; Gaston, C. J.; Prather, K. A.

    2010-12-01

    An important and under-characterized source of particulate matter is emissions from ships, and in particular, ocean going vessels. For example, emissions from commercial shipping operations are thought to be ca. 8% of primary organic emissions from fossil and bio fuels and 2% of the global black carbon (BC) emissions. Although nominally a small contribution, ship emissions often occur in either pristine marine environments or concentrated near large population centers making the impacts potentially much more important than such numbers would tacitly suggest. During CalNex 2010, particulate emissions from numerous ships were directly characterized and quantified from measurements made on board the R/V Atlantis and the NOAA P3 aircraft. In this talk, first results from these measurements will be discussed, with a particular emphasis on emissions of black carbon (BC). On board the R/V Altlantis, BC emissions were characterized at high time resolution using a variety of methods and techniques: light absorption (via PAS and PSAP), SP2, SP-AMS and ATOFMS. On the NOAA P3, BC was characterized using an SP2 and PAS. In addition to these BC-focused techniques, a wide range of other techniques were employed to determine emissions factors of co-emitted pollutants. Specific discussion will focus on two case studies: emissions from a single ship operating at different engine loads and emissions from a single ship as it changed from a high sulfur to low sulfur fuel type. The results from this study have implications for impending US and global regulations that mandate lower sulfur fuel and an industry wide push to slow steaming which reduces fuel consumption.

  7. THE IMPACT OF PARTICULATE EMISSIONS CONTROL ON THE CONTROL OF OTHER MWC AIR EMISSIONS

    EPA Science Inventory

    On December 20, 1989, the Environmental Protection Agency (EPA) proposed revised new source performance standards for new municipal waste combustion (MWC) units and guidelines for existing sources. The proposed national regulations require tighter particulate matter control and a...

  8. Evaluation of particulate matter emissions from manganese alloy production using life-cycle assessment.

    PubMed

    Davourie, Julia; Westfall, Luke; Ali, Mohammed; McGough, Doreen

    2017-01-01

    Life-cycle assessments (LCAs) provide a wealth of industry data to assist in evaluating the environmental impacts of industrial processes and product supply chains. In this investigation, data from a recent LCA covering global manganese alloy production was used to evaluate sources of particulate matter (PM) emissions associated with the manganese alloy supply chain. The analysis is aimed at providing an empirical, industry-averaged breakdown of the contribution that processes and emissions controls have on total emissions, manganese releases and occupational exposure. The assessment shows that 66% of PM emissions associated with manganese production occur beyond manganese facilities. Direct or on-site emissions represent 34% of total PM and occur predominantly as disperse sources during mineral extraction and hauling, and as primary furnace emissions. The largest contribution of manganese-bearing PM at ground-level is associated with fugitive emissions from metal and slag tapping, casting, crushing and screening. The evaluation provides a high-level ranking of emissions by process area, to assist in identifying priority areas for industry-wide initiatives to reduce emissions and occupational exposure of manganese. The range of PM emission levels in industry indicate that further enhancements in PM emissions can be achieved by sharing of best practices in emissions controls, limiting furnace conditions which lead to by-passing of emissions controls and application of secondary emission controls to capture fugitive emissions during tapping and casting. The LCA approach to evaluating PM emissions underscores the important role that process optimization and resource efficiency have on reducing PM emissions throughout the manganese supply chain.

  9. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    SciTech Connect

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  10. Consumption-based Total Suspended Particulate Matter Emissions in Jing-Jin-Ji Area of China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Chen, S.; Chen, B.

    2014-12-01

    The highly-industrialized regions in China have been facing a serious problem of haze mainly consisted of total suspended particulate matter (TSPM), which has attracted great attention from the public since it directly impairs human health and clinically increases the risks of various respiratory and pulmonary diseases. In this paper, we set up a multi-regional input-output (MRIO) model to analyze the transferring routes of TSPM emissions between regions through trades. TSPM emission from particulate source regions and sectors are identified by analyzing the embodied TSPM flows through monetary flow and carbon footprint. The track of TSPM from origin to end via consumption activities are also revealed by tracing the product supply chain associated with the TSPM emissions. Beijing-Tianjin-Hebei (Jing-Jin-Ji) as the most industrialized area of China is selected for a case study. The result shows that over 70% of TSPM emissions associated with goods consumed in Beijing and Tianjin occurred outside of their own administrative boundaries, implying that Beijing and Tianjin are net embodied TSPM importers. Meanwhile, 63% of the total TSPM emissions in Hebei Province are resulted from the outside demand, indicating Hebei is a net exporter. In addition, nearly half of TSPM emissions are the by-products related to electricity and heating supply and non-metal mineral products in Jing-Jin-Ji Area. Based on the model results, we provided new insights into establishing systemic strategies and identifying mitigation priorities to stem TSPM emissions in China. Keywords: total suspended particulate matter (TSPM); urban ecosystem modeling; multi-regional input-output (MRIO); China

  11. Particle size distribution characteristics of cotton gin third stage seed-cotton cleaning system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  12. Second stage seed-cotton cleaning system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or equal...

  13. Third stage seed-cotton cleaning system particulate emission factors for cotton gins: Particle size distribution characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or equal...

  14. Particle size distribution characteristics of cotton gin second stage seed-cotton cleaning system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  15. Particle size distribution characteristics of cotton gin first stage seed-cotton cleaning system total particulate emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  16. [Calculating emissions of exhaust particulate matter from motor vehicles with PART5 model].

    PubMed

    Wu, Ye; Hao, Jiming; Li, Wei; Fu, Lixin

    2002-01-30

    PART5, a vehicle particulate emission factor model developed by USEPA, was modified and then used to obtain the emission factors of exhaust PM10 and PM2.5 from on-road automobiles, trucks and motorcycles in Beijing. The total exhaust PM10 and PM2.5 emissions from motor vehicles in 1995 and 1998 were calculated separately. The contribution ratios of different types of vehicles to the total vehicular emissions, and the share of different exhaust particulate components including Pb, direct SO4(2-), soluble organic fraction (SOF) and remaining carbon portion (RCP), were also estimated. It was shown that the emission factors of exhaust PM10 and PM2.5 from gasoline motor vehicles, motorcycles and heavy-duty diesel vehicles in Beijing were 1.7-8.6 times, 2.1-3.5 times and 1.3-1.5 times, respectively, of the USA average emission levels during the same period. The total exhaust PM10 and PM2.5 from vehicles were 2445 tons and 1890 tons in 1995 in Beijing, and increased to 3359 tons and 2694 tons in 1998, which increase by 37.4% and 42.5%, respectively.

  17. Tracking Petroleum Refinery Emission Events Using Lanthanum and Lanthanides as Elemental Markers for Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Chellam, S.; Fraser, M. P.

    2007-12-01

    This presentation reports the development and application of an analytical method to quantify the rare earth elements (REEs) in atmospheric particulate matter and emissions of catalyst material from the petroleum refining industry. Inductively coupled plasma - mass spectrometry following high temperature/high pressure microwave digestion has been used to study the REE composition of several fresh and spent catalysts used in fluidized-bed catalytic cracking (FCC) units in petroleum refineries as well as in ambient atmospheric fine particulate matter collected in Houston, TX. The results show that the routine emissions from local FCC units in Houston contribute a constant and low amount to ambient PM2.5 of ~0.1 micrograms per cubic meter. However, a significant (33 - 106 fold) increase in the contributions of FCC emissions to PM2.5 is quantified during an upset emission event compared with background levels associated with routine operation. The impact of emissions from the local refinery that reported the emission event was tracked to a site approximately 50 km downwind from the source, illustrating the potential exposure of humans over a large geographical area through the long-range transport of atmospheric fine particles as well as the power of elemental signatures to understand the sources of fine particles.

  18. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Moran, M. D.; Scholtz, M. T.; Taylor, A.

    2003-01-01

    A new classification scheme for the speciation of organic compound emissions for use in air quality models is described. The scheme uses 81 organic compound classes to preserve both net gas-phase reactivity and particulate matter (PM) formation potential. Chemical structure, vapor pressure, hydroxyl radical (OH) reactivity, freezing point/boiling point, and solubility data were used to create the 81 compound classes. Volatile, semivolatile, and nonvolatile organic compounds are included. The new classification scheme has been used in conjunction with the Canadian Emissions Processing System (CEPS) to process 1990 gas-phase and particle-phase organic compound emissions data for summer and winter conditions for a domain covering much of eastern North America. A simple postprocessing model was used to analyze the speciated organic emissions in terms of both gas-phase reactivity and potential to form organic PM. Previously unresolved compound classes that may have a significant impact on ozone formation include biogenic high-reactivity esters and internal C6-8 alkene-alcohols and anthropogenic ethanol and propanol. Organic radical production associated with anthropogenic organic compound emissions may be 1 or more orders of magnitude more important than biogenic-associated production in northern United States and Canadian cities, and a factor of 3 more important in southern U.S. cities. Previously unresolved organic compound classes such as low vapour pressure PAHs, anthropogenic diacids, dialkyl phthalates, and high carbon number alkanes may have a significant impact on organic particle formation. Primary organic particles (poorly characterized in national emissions databases) dominate total organic particle concentrations, followed by secondary formation and primary gas-particle partitioning. The influence of the assumed initial aerosol water concentration on subsequent thermodynamic calculations suggests that hydrophobic and hydrophilic compounds may form external

  19. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves

    NASA Astrophysics Data System (ADS)

    Roden, Christoph A.; Bond, Tami C.; Conway, Stuart; Osorto Pinel, Anibal Benjamin; MacCarty, Nordica; Still, Dean

    We implemented a program in which emission characterization is enabled through collaborations between academic, US and international non-governmental entities that focus on evaluation, dissemination, and in-use testing, of improved cookstoves. This effort resulted in a study of field and laboratory emissions from traditional and improved biofuel cookstoves. We found that field measured particulate emissions of actual cooking average three times those measured during simulated cooking in the laboratory. Emission factors are highly dependent on the care and skill of the operator and the resulting combustion; these do not appear to be accurately reproduced in laboratory settings. The single scattering albedo (SSA) of the emissions was very low in both lab and field measurements, averaging about 0.3 for lab tests and around 0.5 for field tests, indicating that the primary particles are climate warming. Over the course of three summers in Honduras, we measured field emissions from traditional cookstoves, relatively new improved cookstoves, and "broken-in" improved cookstoves. We found that well-designed improved cookstoves can significantly reduce PM and CO emission factors below traditional cookstoves. For improved stoves, the presence of a chimney generally resulted in lower emission factors but left the SSA unaffected. Traditional cookstoves had an average PM emission factor of 8.2 g kg -1 - significantly larger than previous studies. Particulate emission factors for improved cookstoves without and with chimneys averaged about 6.6 g kg -1 and 4.5 g kg -1, respectively. The elemental carbon (EC) fraction of PM varied significantly between individual tests, but averaged about 25% for each of the categories.

  20. Unregulated emissions from diesel engine with particulate filter using Fe-based fuel borne catalyst.

    PubMed

    Zhao, Hong; Ge, Yunshan; Zhang, Tiezhu; Zhang, Jipeng; Tan, Jianwei; Zhang, Hongxin

    2014-10-01

    The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound (VOC), carbonyl compound and particle-phase polycyclic aromatic hydrocarbon (PAH) emissions were tested at European Steady State Cycle (ESC) to study unregulated emissions from a diesel engine with a fuel-borne catalyst and diesel particulate filter (FBC-DPF). An Fe-based fuel-borne catalyst was used for this study. According to the results, brake specific emissions of total VOCs without and with DPF were 4.7 and 4.9mg/kWh, respectively, showing a 4.3% increase. Benzene and n-undecane emissions increased and toluene emission decreased, while other individual VOC emissions basically had no change. When retrofitted with the FBC-DPF, total carbonyl compound emission decreased 15.7%, from 25.8 to 21.8mg/kWh. The two highest carbonyls, formaldehyde and acetaldehyde, were reduced from 20.0 and 3.7 to 16.5 and 3.3mg/kWh respectively. The specific reactivity (SR) with DPF was reduced from 6.68 to 6.64mg/kWh. Total particle-phase PAH emissions decreased 66.4% with DPF compared to that without DPF. However, the Benzo[a]pyrene equivalent (BaPeq) with DPF had increased from 0.016 to 0.030mg/kWh. Fluoranthene and Pyrene had the greatest decrease, 91.1% and 88.4% respectively. The increase of two- and three-ring PAHs with DPF indicates that the fuel-borne catalyst caused some gas-phase PAHs to adsorb on particles. The results of this study expand the knowledge of the effects of using a particulate filter and a Fe-based fuel-borne catalyst on diesel engine unregulated emissions.

  1. From Contrails and Smoke Trails to Exhaust Particle Processes: A Brief History of Aircraft Particulate Emissions

    DTIC Science & Technology

    2011-12-01

    2,6- Dimethylnaphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Benz[ a ]anthracene Benzofluoranthenes Benzo [ a ] pyrene Indeno...1,2,3-c,d] pyrene Benzo [g,h,i]perylene Methane Ethane Propane Acetylene Propene n-Pentane n-Hexane Toluene n-Decane Dodecane Tridecane Formaldehyd e...Aerodyne Research, Inc. From Contrails and Smoke Trails to Exhaust Particle Processes: A brief history of aircraft particulate emissions Presented

  2. Particulate emissions from combustion of biomass in conventional combustion (air) and oxy-combustion conditions

    NASA Astrophysics Data System (ADS)

    Ruscio, Amanda Deanne

    Oxy-fuel combustion is a viable technology for new and existing coal-fired power plants, as it facilitates carbon capture and thereby, can reduce carbon dioxide emissions. The use of biomass as an energy source is another popular strategy to reduce carbon dioxide emissions as they are considered nearly carbon dioxide neutral. If the use of biomass is combined with oxy-fuel combustion, negative net emissions of carbon dioxide are possible. This work examined the particulate emissions from combustion of pulverized biomass residues burning in either conventional or oxy-fuel environments. Combustion of three biomasses (olive residue, corn residue, and torrefied pine sawdust) occurred in a laboratory-scale laminar-flow drop tube furnace (DTF) heated to 1400 K. The O2 mole fraction was increased from 20% to 60% in N2 environments while a range of 30% to 60% O2 mole fractions were used in CO2 environments to represent plausible dry oxy-fuel combustion conditions. Submicron particulate matter (PM1) emission yields of all three fuels were typically lower in O2/CO2 environments than in O2/N2 environments. When the oxygen mole fraction was increased, the PM1 yields typically increased. The mass fractions of submicron particulate matter (PM1/PM18) collected from biomass combustion were higher than those of coal combustion. PM 1 constituted approximately 50 wt% of the collected ash particles in PM18 in each environment, whereas the corresponding submicron emissions from coal constituted approximately 20 wt%. Changing the background gas had little effect on the chemical composition of the PM1 particles. Unlike the submicron particles collected from coal which contained high amounts of silicon and aluminum, high amounts of alkalis (potassium, calcium, and sodium) and chlorine were the major elements observed in PM1 from the biomasses. In addition, phosphorous and sulfur also existed in high amounts in PM1 of corn residue. Super-micron particles (PM1-18) yields exhibited no clear

  3. Ethanol, isobutanol, and biohydrocarbons as gasoline components in relation to gaseous emissions and particulate matter.

    PubMed

    Aakko-Saksa, Päivi T; Rantanen-Kolehmainen, Leena; Skyttä, Eija

    2014-09-02

    The exhaust emissions of three cars using different biofuels were explored at a temperature of -7 °C. The biofuels studied contained both low- and high-concentration ethanol blends, isobutanol, and biohydrocarbons. A multipoint fuel injection car (MPFI), direct-injection spark-ignition car (DISI), and flex-fuel car (FFV) represented three different spark-ignition-car technologies. At -7 °C, substantial emissions were observed for the three cars, and differences were found among ethanol, isobutanol, and biohydrocarbons as fuel components. For example, E85 resulted in high acetaldehyde, formaldehyde, ethanol, ethene, and acetylene emissions when compared to E30 or lower ethanol concentrations. Isobutanol-containing fuel showed elevated butyraldehyde, methacrolein, and isobutanol emissions. The highest particulate matter (PM) emissions, associated polyaromatic hydrocarbon (PAH) and indirect mutagenicity emissions were detected with the DISI car. Oxygenated fuels reduced PM emissions and associated priority PAH emissions in the DISI car. PM and PAH emissions from the MPFI and FFV cars were generally low. A combination of 10% ethanol and biohydrocarbon components did not change emissions significantly when compared to ethanol-only-containing E10 gasoline. Therefore, a combination of ethanol or isobutanol with biohydrocarbon components offers an option to reach high gasoline bioenergy content for E10-compatible cars.

  4. Measuring the Effect of Fuel Chemical Structure on Particulate and Gaseous Emissions using Isotope Tracing

    SciTech Connect

    Buchholz, B A; Mueller, C J; Martin, G C; Upatnicks, A; Dibble, R W; Cheng, S

    2003-09-11

    Using accelerator mass spectrometry (AMS), a technique initially developed for radiocarbon dating and recently applied to internal combustion engines, carbon atoms within specific fuel molecules can be labeled and followed in particulate or gaseous emissions. In addition to examining the effect of fuel chemical structure on emissions, the specific source of carbon for PM can be identified if an isotope label exists in the appropriate fuel source. Existing work has focused on diesel engines, but the samples (soot collected on quartz filters or combustion gases captured in bombs or bags) are readily collected from large industrial combustors as well.

  5. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-Duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  6. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  7. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles.

    PubMed

    Petry, Thomas; Vitale, Danielle; Joachim, Fred J; Smith, Ben; Cruse, Lynn; Mascarenhas, Reuben; Schneider, Scott; Singal, Madhuri

    2014-06-01

    Airborne compounds in the indoor environment arise from a wide variety of sources such as environmental tobacco smoke, heating and cooking, construction materials as well as outdoor sources. To understand the contribution of scented candles to the indoor load of airborne substances and particulate matter, candle emission testing was undertaken in environmentally controlled small and large emission chambers. Candle emission rates, calculated on the basis of measured chamber concentrations of volatile and semi-volatile organic compounds (VOC, SVOC) and particulate matter (PM), were used to predict their respective indoor air concentrations in a standard EU-based dwelling using 2 models: the widely accepted ConsExpo 1-box inhalation model and the recently developed RIFM 2-box indoor air dispersion model. The output from both models has been used to estimate more realistic consumer exposure concentrations of specific chemicals and PM in candle emissions. Potential consumer health risks associated with the candle emissions were characterized by comparing the exposure concentrations with existing indoor or ambient air quality guidelines or, where not existent, to established toxicity thresholds. On the basis of this investigation it was concluded that under normal conditions of use scented candles do not pose known health risks to the consumer.

  8. Fracto-emission from fiber-reinforced and particulate filled composites

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.; Jahan-Latibari, A.; Jensen, L. C.

    1985-01-01

    Fracto-emission (FE) in the emission of particles and photons during and following crack propagation. The types of particles observed include electrons (EE), positive ions (PIE), photons (phE), and excited and ground state neutral emission (NE). In this paper work is presented on the characterization of the various FE components and measurements relating FE to the fracture events and material properties involved. FE characteristics measured include total emission, time dependence relative to crack propagation, species of neutral and ionic components, energy of charged species, and time correlations between pairs of FE components. Experiments on fracture of epoxy, single fibers, fiber/epoxy strands, particulate filled epoxy, and multi-ply fiber/epoxy systems will be presented.

  9. Differential pressure as a measure of particulate matter emissions from diesel engines.

    PubMed

    Mischler, Steven E; Volkwein, Jon C

    2005-04-01

    A diesel particulate matter analyzer capable of direct, real-time measurement of engine exhaust particulate is necessary to effectively institute source control technology currently being used on diesel equipment and to ensure that the control measures are working. To investigate the potential of a differential pressure monitor to measure diesel particulate matter in undiluted exhaust, samples were collected from three different diesel engines--Kubota, Isuzu, and Deutz--running under 12 different RPM and load scenarios. These measurements were compared to elemental carbon concentrations in the sampled exhaust as determined by using the NIOSH 5040 analytical method. Elemental carbon is used as a surrogate measurement for diesel particulate matter. The results of the two data sets were then compared using a linear regression analysis. The coefficient of determination (or R2) was calculated to be 0.98, 0.94, and 0.74 for the Kubota, Deutz, and Isuzu engines, respectively. R2 values of this magnitude indicate that this method can be successful in estimating elemental carbon emissions in the engines tested. In addition, for replicate samples, the coefficient of variation ranged from 7.1% to 10.2% with an average of 8.5%. These data indicate that this method could prove useful to mechanics as they work to maintain engines and DPM control technologies.

  10. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  11. Temporalization of peak electric generation particulate matter emissions during high energy demand days.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Baker, Kirk R; Rodgers, Mark; Carlton, Annmarie G

    2015-04-07

    Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S. Environmental Protection Agency's community multiscale air quality (CMAQ) model routinely underpredicts peak ozone and fine particulate matter (PM2.5) concentrations. Temporal misallocation of electricity sector emissions contributes to this modeling deficiency. Hourly emissions are created for CMAQ by use of temporal profiles applied to annual emission totals unless a source is matched to a continuous emissions monitor (CEM) in the National Emissions Inventory (NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a United States heat wave with high electricity demand, peak electric sector emissions, and elevated ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM (approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state permits, electricity dispatch modeling and CEMs. Hourly emissions for individual facilities can differ up to 154% during the simulation when measurement data is used rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 51%, 75%, and 38% aloft (800 mb), respectively.

  12. High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study.

    PubMed

    He, Chao; Li, Jiaqiang; Ma, Zhilei; Tan, Jianwei; Zhao, Longqing

    2015-09-01

    Diesel vehicles are responsible for most of the traffic-related nitrogen oxide (NOx) emissions, including nitric oxide (NO) and nitrogen dioxide (NO2). The use of after-treatment devices increases the risk of high NO2/NOx emissions from diesel engines. In order to investigate the factors influencing NO2/NOx emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter (CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NOx ratios downstream of the CDPF range around 20%-83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NOx emissions. The maximum NO2/NOx emission appears at the exhaust temperature of 350°C. The space velocity, engine-out PM/NOx ratio (mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NOx emissions decreased with increasing space velocity and engine-out PM/NOx ratio. When the CO conversion ratios range from 80% to 90%, the NO2/NOx emissions remain at a high level.

  13. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    SciTech Connect

    Mazurek, M.A. ); Hildemann, L.M. . Dept. of Civil Engineering); Cass, G.R.; Rogge, W.F. . Dept. of Environmental Engineering Science); Simoneit, B.R.T. . Coll. of Oceanography)

    1990-04-01

    Extractable organic compounds having between 6 to 40 carbon atoms comprise an important mass fraction of the fine particulate matter samples from major urban emission sources. Depending on the emission source type, this solvent-soluble fraction accounts for <20% to 100% of the total organic aerosol mass, as measured by quantitative high-resolution has chromatography (HRGC) with flame ionization detection. In addition to total extract quantitation, HRGC can be applied to further analyses of the mass distributions of elutable organics present in the complex aerosol extract mixtures, thus generating profiles that serve as fingerprints'' for the sources of interest. This HRGC analytical method is applied to emission source samples that contain between 7 to 12,000 {mu}g/filter organic carbon. It is shown to be a sensitive technique for analysis of carbonaceous aerosol extract mixtures having diverse mass loadings and species distributions. This study describes the analytical chemical methods that have been applied to: the construction of chemical mass balances based on the mass of fine organic aerosol emitted for major urban sources of particulate carbon; and the generation of discrete emission source chemical profiles derived from chromatographic characteristics of the organic aerosol components. 21 refs., 1 fig., 2 tabs.

  14. Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars.

    PubMed

    Cheung, Ka Lam; Polidori, Andrea; Ntziachristos, Leonidas; Tzamkiozis, Theodoros; Samaras, Zissis; Cassee, Flemming R; Gerlofs, Miriam; Sioutas, Constantinos

    2009-08-15

    Three light-duty vehicles in five different configurations [a Honda Accord operating with diesel with a closed-coupled oxidation catalyst and an underfloor catalyst replaced in some tests with a diesel particle filter (DPF), a Toyota Corolla operating with gasoline, and a VW Golf alternatively operating with petrodiesel or biodiesel] were tested in a dynamometer facility to develop an improved understanding of the factors affecting the toxicity of particulate exhaust emissions. The vehicles were tested using a variety of real-world driving cycles, more than the certification test (New European Driving Cycle). Particle samples were collected and analyzed for elemental and organic carbon (EC and OC, respectively), water soluble and water insoluble organic carbon (WSOC and WISOC, respectively), and inorganic ions, and the emission rates (mg/km) for each vehicle/configuration were determined. A dithiothreitol (DTT) assay was used to assess the oxidative potential of the particulate matter (PM) samples. The DPF-equipped diesel and gasoline vehicles were characterized by the lowest overall PM mass emissions, while the diesel and biodiesel cars produced the most potent exhaust in terms of oxidative activity. When the DPF was fitted on the Honda Accord diesel vehicle, the mass emission rates and distance-based oxidative potential were both decreased by 98%, compared to the original configuration. Correlation analysis showed that the DTT consumption rate was highly associated with WSOC, WISOC, and OC (R = 0.98, 0.93, and 0.94, respectively), consistent with previous findings.

  15. Developing particulate thin filter using coconut fiber for motor vehicle emission

    NASA Astrophysics Data System (ADS)

    Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.

    2016-03-01

    Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.

  16. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  17. Experimental investigation on the performance, gaseous and particulate emissions of a methanol fumigated diesel engine.

    PubMed

    Cheng, C H; Cheung, C S; Chan, T L; Lee, S C; Yao, C D

    2008-01-15

    Experiments were conducted on a 4-cylinder direct-injection diesel engine with fumigation methanol injected into the air intake of each cylinder. The fumigation methanol was injected to top up 10%, 20% and 30% of the power output under different engine operating conditions. The effects of fumigation methanol on engine performance, gaseous emissions and particulate emission were investigated. The experimental results show that there is a decrease in the brake thermal efficiency when fumigation methanol is applied, except at the highest load of 0.67 MPa. At low loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions. The concentration of nitrogen oxides (NOx) is significantly reduced except at close to full load condition. There is also a reduction in the smoke opacity and the particulate matter (PM) mass concentration. For the submicron particles, the total number of particles decreases at low and medium loads but increases at high loads. In all cases, there is a shift of the particles towards smaller geometrical mean diameter, especially at high loads. The increase in nano-sized particles and the increase in NO(2) emission could have serious impact on human health.

  18. Physicochemical characterization of particulate emissions from a compression ignition engine: the influence of biodiesel feedstock.

    PubMed

    Surawski, N C; Miljevic, B; Ayoko, G A; Elbagir, S; Stevanovic, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-12-15

    This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.

  19. Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion

    PubMed Central

    2009-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contrast with the pattern of radical intensities in the source coals. The strong correlation between intensities of free radical and elemental carbon in PM emissions suggests that the radical species may be carbon-centered. The increased g-factors, 2.0029−2.0039, over that of purely carbon-centered radicals may indicate the presence of vicinal oxygen heteroatom. The redox and biology activities of these carbon-centered radicals are worthy of evaluation. PMID:19551161

  20. Effects of Changing Emissions on Ozone and Particulates in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Frost, G. J.; McKeen, S.; Trainer, M.; Ryerson, T.; Holloway, J.; Brock, C.; Middlebrook, A.; Wollny, A.; Matthew, B.; Williams, E.; Lerner, B.; Fortin, T.; Sueper, D.; Parrish, D.; Fehsenfeld, F.; Peckham, S.; Grell, G.; Peltier, R.; Weber, R.; Quinn, P.; Bates, T.

    2004-12-01

    Emissions of nitrogen oxides (NOx) from electric power generation have decreased in recent years due to changes in burner technology and fuels used. Mobile NOx emissions assessments are less certain, since they must account for increases in vehicle miles traveled, changes in the proportion of diesel and gasoline vehicles, and more stringent controls on engines and fuels. The impact of these complicated emission changes on a particular region's air quality must be diagnosed by a combination of observation and model simulation. The New England Air Quality Study - Intercontinental Transport and Chemical Transformation 2004 (NEAQS-ITCT 2004) program provides an opportunity to test the effects of changes in emissions of NOx and other precursors on air quality in the northeastern United States. An array of ground, marine, and airborne observation platforms deployed during the study offer checks on emission inventories and air quality model simulations, like those of the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Retrospective WRF-Chem runs are carried out with two EPA inventories, one compiled for base year 1999 and an update for 2004 incorporating projected and known changes in emissions during the past 5 years. Differences in model predictions of ozone, particulates, and other tracers using the two inventories are investigated. The inventories themselves and the model simulations are compared with the extensive observations available during NEAQS-ITCT 2004. Preliminary insights regarding the sensitivity of the model to NOx emission changes are discussed.

  1. Particulate matter emission rates from beef cattle feedlots in Kansas-reverse dispersion modeling.

    PubMed

    Bonifacio, Henry F; Maghirang, Ronaldo G; Auvermann, Brent W; Razote, Edna B; Murphy, James P; Harner, Joseph P

    2012-03-01

    Open beef cattle feedlots emit various air pollutants, including particulate matter (PM) with equivalent aerodynamic diameter of 10 microm or less (PM10); however limited research has quantified PM10 emission rates from feedlots. This research was conducted to determine emission rates of PM10 from large cattle feedlots in Kansas. Concentrations of PM10 at the downwind and upwind edges of two large cattle feedlots (KS1 and KS2) in Kansas were measured with tapered element oscillating microbalance (TEOM) PM10 monitors from January 2007 to December 2008. Weather conditions at the feedlots were also monitored. From measured PM10 concentrations and weather conditions, PM10 emission rates were determined using reverse modeling with the American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model (AERMOD). The two feedlots differed significantly in median PM10 emission flux (1.60 g/m2-day for KS1 vs. 1.10 g/m2-day for KS2) but not in PM10 emission factor (27 kg/1000 head-day for KS1 and 30 kg/1000 head-day KS2). These emission factors were smaller than published U.S. Environmental Protection Agency (EPA) emission factor for cattle feedlots.

  2. Relating summer ambient particulate sulfur, sulfur dioxide, and light scattering to gaseous tracer emissions from the MOHAVE Power Project.

    PubMed

    Mirabella, V A; Farber, R J

    2000-05-01

    Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-north-east of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data. Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to particulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission "signals" to particulate sulfur or light scattering.

  3. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than

  4. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2013-06-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84

  5. Impacts of a nanosized ceria additive on diesel engine emissions of particulate and gaseous pollutants.

    PubMed

    Zhang, Junfeng; Nazarenko, Yevgen; Zhang, Lin; Calderon, Leonardo; Lee, Ki-Bum; Garfunkel, Eric; Schwander, Stephan; Tetley, Teresa D; Chung, Kian Fan; Porter, Alexandra E; Ryan, Mary; Kipen, Howard; Lioy, Paul J; Mainelis, Gediminas

    2013-11-19

    Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NO(x) (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NO(x), our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions.

  6. Particulate emission abatement for Krakow boiler houses. Quarterly technical report, October 1, 1996--December 31, 1996

    SciTech Connect

    Wysk, S.R.

    1997-01-01

    This project involves the implementation of a new particulate control technology called a ``Core Separator`` for low emission sources (LES) in Krakow. With several hundred boiler sites in the city burning low grade coal, existing pollution control equipment consists primarily of low efficiency cyclones. Such equipment cannot meet the emission standards of most industrial nations. More importantly, these conditions have been the cause of low ambient air quality in Krakow from suspended particles. The Core Separator can be retrofitted onto these boiler houses to substantially reduce particulate emissions, particularly those consisting of the fraction classified as PM10. In this project, Core Separator technology will be demonstrated for boiler house applications in the Krakow region. Phase I entailed business planning and infrastructure studies to determine the market for this equipment. In the second phase, the technology is to be demonstrated in several boilers of different capacity and firing various grades of coal. Later, a joint venture company was to be established with capability of manufacturing and supplying this equipment in Krakow and throughout Poland.

  7. Study of the control of particulate emissions from turbine engine test cells

    SciTech Connect

    Stevens, J.E. Jr.

    1984-01-01

    The United States Air Force has been cited in California for violation of visible opacity standards by the test cell buildings used for aircraft engine run-up during major engine overhaul. Recommendations to control emissions by conventional means, such as electrostatic precipitation or high-energy scrubbers with demisters, were deemed non-cost-effective (130 test cells at more than 1 million dollars per cell). As an alternative control measure, EPA Method 5 particulate sampling was used to characterize stack emissions during the incremental addition of cooling water to the engine exhaust/augmentor air discharge. Six water increments, from 230 (baseline) to 1200 gallons per minute, were tested, and the results evaluated by a mixture of statistical techniques. Increasing water injection rates to 801 gallons per minute significantly reduced engine-contributed test cell emissions for the J75-17 engine to 0.05 pounds particulate per million Btu. The literature review and test results indicate that sonic agglomeration of particles may account for the significant removal noted in this low volume water injection.

  8. Measurement of emissions of fine particulate organic matter from Chinese cooking

    NASA Astrophysics Data System (ADS)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  9. Particulate characteristics and emission rates during the injection of class B biosolids into an agricultural field.

    PubMed

    Bhat, Abhishek; Kumar, Ashok

    2012-01-01

    A field study was conducted during the summer of 2009 to collect airborne particulate matter emitted during the agricultural activities. The activities surrounding the injection application of class B biosolids were targeted for the sampling. The sampling was carried out before (pre-application), during (application), and after (post-application) the application. This study characterized the particulate emissions deposited on the aerosols spectrometer. The effect of different biosolids related activities was significant on the mass concentration, the number concentration, and the size distribution. The mass concentration of fine (PM(2.5)) and ultrafine (PM(1.0)) was highest during the pre-application. The mass concentration of thoracic fraction (PM(2.5-10)) increased significantly during the application. A bimodal size distribution was observed throughout the sampling. Nuclei mode formation was predominant during the pre-application and the post-application, whereas the accumulation mode was distinctive during the application. The number concentration of ultrafine particles was highest during the entire sampling period. The application of biosolids resulted into a higher number of coarse particle emission. It was also observed that the ultrafine and fine particles traveled longer downwind distances. The emission rates were determined for pre-application, application, and post-application activities.

  10. Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants

    PubMed Central

    Zhang, Junfeng; Nazarenko, Yevgen; Zhang, Lin; Calderon, Leonardo; Lee, Ki-Bum; Garfunkel, Eric; Schwander, Stephan; Tetley, Teresa D.; Chung, Kian Fan; Porter, Alexandra E.; Ryan, Mary; Kipen, Howard; Lioy, Paul J.; Mainelis, Gediminas

    2014-01-01

    Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NOx (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NOx, our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions. PMID:24144266

  11. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    NASA Astrophysics Data System (ADS)

    George, I. J.; Black, R.; Walker, J. T.; Hays, M. D.; Tabor, D.; Gullett, B.

    2013-12-01

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared to burning of other types of biomass. However, few studies have characterized the gas and particulate emissions from peat burning. To assess the atmospheric impact of peat fires, particulate matter (PM) and volatile organic compounds (VOCs) were quantified from controlled small-scale peat fire experiments. Major carbon emissions (i.e. CO2, CO, methane and total hydrocarbons) were measured during the peat burn experiments. Speciated PM mass was also determined from the peat burns from filter and polyurethane foam samples. Whole air samples were taken in SUMMA canisters and analyzed by gas chromatography-mass spectrometry to measure 82 trace VOCs. Additional gaseous carbonyl species were measured by sampling with dinitrophenylhydrazine-coated cartridges and analyzed with high performance liquid chromatography. VOCs with highest observed concentrations measured from the peat burns were propylene, benzene, chloromethane and toluene. Gas-phase carbonyls with highest observed concentrations included acetaldehyde, formaldehyde and acetone. Emission factors of major pollutants will be compared with recommended values for peat and other biomass burning.

  12. Uncontrolled combustion of shredded tires in a landfill - Part 1: Characterization of gaseous and particulate emissions.

    PubMed

    Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika; Simmons, Donald L; Wels, Brian R; Spak, Scott N; Peters, Thomas; Beardsley, Douglas; Stanier, Charles; Stone, Elizabeth A

    2015-03-01

    In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies' findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg(-1)), particle number (3.5×10(16) kg(-1)), PM2.5 (5.3 g kg(-1)), EC (2.37 g kg(-1)), and 19 individual PAH (totaling 56 mg kg(-1)). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85-0.98. Recommendations for future research on this under-characterized source are also provided.

  13. Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Wang, Siyao; Lohmann, Rainer; Yu, Na; Zhang, Chenkai; Gao, Yi; Zhao, Jianfu; Ma, Limin

    2015-04-01

    Understanding sources and contributions of gaseous and particulate PAHs from traffic-related pollution can provide valuable information for alleviating air contamination from traffic in urban areas. On-road sampling campaigns were comprehensively conducted during 2011-2012 in an urban tunnel of Shanghai, China. 2-3 rings PAHs were abundant in the tunnel's gas and particle phases. Diagnostic ratios of PAHs were statistically described; several were significantly different between the gas and particle phases. Principal component analysis (PCA), positive matrix factorization (PMF), bivariate correlation analysis and multiple linear regression analysis (MLRA) were applied to apportion sources of gaseous and particulate PAHs in the tunnel. Main sources of the gaseous PAHs included evaporative emission of fuel, high-temperature and low-temperature combustion of fuel, accounting for 50-51%, 30-36% and 13-20%, respectively. Unburned fuel particles (56.4-78.3%), high-temperature combustion of fuel (9.5-26.1%) and gas-to-particle condensation (12.2-17.5%) were major contributors to the particulate PAHs. The result reflected, to a large extent, PAH emissions from the urban traffic of Shanghai. Improving fuel efficiency of local vehicles will greatly reduce contribution of traffic emission to atmospheric PAHs in urban areas. Source apportionment of PM10 mass was also performed based on the organic component data. The results showed that high-temperature combustion of fuel and gas-to-particle condensation contributed to 15-18% and 7-8% of PM10 mass, respectively, but 55-57% of the particle mass was left unexplained. Although the results from the PCA and PMF models were comparable, the PMF method is recommended for source apportionment of PAHs in real traffic conditions. In addition, the combination of multivariate statistical method and bivariate correlation analysis is a useful tool to comprehensively assess sources of PAHs.

  14. Uncontrolled combustion of shredded tires in a landfill - Part 1: Characterization of gaseous and particulate emissions

    NASA Astrophysics Data System (ADS)

    Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika M.; Simmons, Donald L.; Wels, Brian R.; Spak, Scott N.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles O.; Stone, Elizabeth A.

    2015-03-01

    In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies' findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg-1), particle number (3.5 × 1016 kg-1), PM2.5 (5.3 g kg-1), EC (2.37 g kg-1), and 19 individual PAH (totaling 56 mg kg-1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85 to 0.98. Recommendations for future research on this under-characterized source are also provided.

  15. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    SciTech Connect

    Mazurek, M.A. ); Hildemann, L.M. . Dept. of Civil Engineering); Cass, G.R.; Rogge, W.F. ); Simoneit, B.R.T. . Coll. of Oceanography)

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs.

  16. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  17. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  18. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  19. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  20. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  1. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  2. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  3. Total suspended particulate (TSP), polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF) emissions from medical waste incinerators in Antioquia, Colombia.

    PubMed

    Hoyos, A; Cobo, M; Aristizábal, B; Córdoba, F; Montes de Correa, C

    2008-08-01

    Results of a preliminary survey of particulate and dioxin emissions in combustion gases from hospital waste incinerators in Antioquia-Colombia are presented. Base line data of total suspended particulate (TSP) and polychlorinated dibenzodioxin and dibenzofuran (PCDD/PCDF) emissions in incinerators from health care institutions in Antioquia-Colombia will be used to improve the management of medical waste in the local context. All monitored incinerators are batch operated. TSP exceeds 80 mg Nm(-3) in 8 out of 12 incinerators. Dioxin emissions are in the range from about 7 to 700 I-TEQ (ng Nm(-3)). Such a significant amount of dioxin emissions did correlate with entrained particulate matter, mainly as a consequence of poor control of operation parameters. Several suggestions are made to improve medical waste management practices in Colombia.

  4. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  5. Emission characteristics of particulate matter and volatile organic compounds in cow dung combustion.

    PubMed

    Park, Duckshin; Barabad, Mona L; Lee, Gwangjae; Kwon, Soon-Bark; Cho, Youngmin; Lee, Duckhee; Cho, Kichul; Lee, Kiyoung

    2013-11-19

    Biomass fuel is used for cooking and heating, especially in developing countries. Combustion of biomass fuel can generate high levels of indoor air pollutants, including particulate matter (PM) and volatile organic compounds (VOCs). This study characterized PM and VOC emissions from cow dung combustion in a controlled experiment. Dung from grass-fed cows was dried and combusted using a dual-cone calorimeter. Heat fluxes of 10, 25, and 50 kW/m(2) were applied. The concentrations of PM and VOCs were determined using a dust spectrometer and gas chromatography/mass spectrometry, respectively. PM and VOC emission factors were much higher for the lower heat flux, implying a fire ignition stage. When the heat flux was 50 kW/m(2), the CO2 emission factor was highest and the PM and VOC emission factors were lowest. Particle concentrations were highest in the 0.23-0.3 μm size range at heat fluxes of 25 and 50 kW/m(2). Various toxic VOCs, including acetone, methyl ethyl ketone, benzene, and toluene, were detected at high concentrations. Although PM and VOC emission factors at 50 kW/m(2) were lower, they were high enough to cause extremely high indoor air pollution. The characteristics of PM and VOC emissions from cow dung combustion indicated potential health effects of indoor air pollution in developing countries.

  6. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-09-01

    There has been an increasing concern about the emissions of airborne particulate matter (PM) from diesel engines because of their close association with adverse health and environmental impacts. Among the alternative fuels being considered, biodiesel made by the transesterification of waste cooking oil has received wide attention in recent years because of its low cost and the added advantage of reducing waste oil disposal. This study was conducted to make a comparative evaluation of the particulate-bound elements emitted from ultra low sulphur diesel (ULSD) and waste cooking oil-derived biodiesel (B100) and a blend of both the fuels (B50). It was observed that the PM mass concentrations were reduced by about 36% when B100 was used. Crustal elements such as Mg, K and Al were found to be in higher concentrations compared to other elements emitted from both B100 and ULSD. Zn, Cr, Cu, Fe, Ni, Mg, Ba, K were found to be higher in the biodiesel exhaust while Co, Pb, Mn, Cd, Sr, and As were found to be higher in the ULSD exhaust. To evaluate the potential health risk due to inhalation of PM emitted from diesel engines running on ULSD and B100, health risk estimates based on exposure and dose-response assessments of particulate-bound elements were calculated assuming exposure for 24 h. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to ULSD.

  7. Emission of particulate matter from a desktop three-dimensional (3D) printer.

    PubMed

    Yi, Jinghai; LeBouf, Ryan F; Duling, Matthew G; Nurkiewicz, Timothy; Chen, Bean T; Schwegler-Berry, Diane; Virji, M Abbas; Stefaniak, Aleksandr B

    2016-01-01

    Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m(3) chamber and in a small room (32.7 m(3)) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color.

  8. Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars

    NASA Astrophysics Data System (ADS)

    Brandenberger, Sandro; Mohr, Martin; Grob, Koni; Neukom, Hans Peter

    In this study we determined particle-bound paraffins in the exhaust of six light-duty diesel vehicles on a chassis dynamometer for different driving cycles and ambient temperatures. The filters containing particulate matter were extracted with dichloromethane in a Soxhlet apparatus, and the paraffin analysis was performed using two-dimensional normal phase high-pressure liquid chromatography (HPLC) coupled on-line to gas chromatography-flame ionization detection (GC-FID). The different molecular mass of lubricant and diesel paraffins facilitated the distinction between diesel and lubricant contribution to the emission. Although all vehicles were certified according to the same emission class, there were considerable variations between vehicles. The study showed that under cold-start conditions the organic mass fraction ranged from 10% to 30% with respect to particle mass and the paraffins from 30% to 60% with respect to the organic mass. With cold engine, falling ambient temperature increased the emission of unburned diesel fuel, whereas that from unburned lubricating oil was less affected. Under warm-start conditions, the ambient temperature had less impact on the emission of paraffins. The emissions were also affected by the operating conditions of the engine: driving cycles with higher mean load tend towards higher emissions of lubricant. The operating conditions also affected the distribution of paraffins: the emission of light paraffins seemed to be lower with higher load in the driving cycle. With an urban and a highway cycle, roughly 40% and 80% w/w, respectively, of unburned paraffins were contributed by the lubricant. Measurements of polycyclic aromatic hydrocarbons (PAH) in lubricating oil showed lubricant to be a sink for PAHs. As lubricant significantly contributes to the organic emission, as shown in this study, it can be assumed that it is also a significant source of PAH emissions.

  9. Emission of particulate matter from a desktop three-dimensional (3D) printer

    PubMed Central

    Yi, Jinghai; LeBouf, Ryan F.; Duling, Matthew G.; Nurkiewicz, Timothy; Chen, Bean T.; Schwegler-Berry, Diane; Virji, M. Abbas; Stefaniak, Aleksandr B.

    2016-01-01

    ABSTRACT Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m3 chamber and in a small room (32.7 m3) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color. PMID:27196745

  10. Source sampling of particulate matter emissions from cotton harvesting - System field testing and emission factor development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emission factors are used in the air pollution regulatory process to quantify the mass of pollutants emitted from a source. Accurate emission factors must be used in the air pollution regulatory process to ensure fair and appropriate regulation for all sources. Agricultural sources, including cotton...

  11. Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove

    NASA Astrophysics Data System (ADS)

    Vicente, E. D.; Duarte, M. A.; Tarelho, L. A. C.; Nunes, T. F.; Amato, F.; Querol, X.; Colombi, C.; Gianelle, V.; Alves, C. A.

    2015-11-01

    Seven fuels (four types of wood pellets and three agro-fuels) were tested in an automatic pellet stove (9.5 kWth) in order to determine emission factors (EFs) of gaseous compounds, such as carbon monoxide (CO), methane (CH4), formaldehyde (HCHO), and total organic carbon (TOC). Particulate matter (PM10) EFs and the corresponding chemical compositions for each fuel were also obtained. Samples were analysed for organic carbon (OC) and elemental carbon (EC), anhydrosugars and 57 chemical elements. The fuel type clearly affected the gaseous and particulate emissions. The CO EFs ranged from 90.9 ± 19.3 (pellets type IV) to 1480 ± 125 mg MJ-1 (olive pit). Wood pellets presented the lowest TOC emission factor among all fuels. HCHO and CH4 EFs ranged from 1.01 ± 0.11 to 36.9 ± 6.3 mg MJ-1 and from 0.23 ± 0.03 to 28.7 ± 5.7 mg MJ-1, respectively. Olive pit was the fuel with highest emissions of these volatile organic compounds. The PM10 EFs ranged from 26.6 ± 3.14 to 169 ± 23.6 mg MJ-1. The lowest PM10 emission factor was found for wood pellets type I (fuel with low ash content), whist the highest was observed during the combustion of an agricultural fuel (olive pit). The OC content of PM10 ranged from 8 wt.% (pellets type III) to 29 wt.% (olive pit). Variable EC particle mass fractions, ranging from 3 wt.% (olive pit) to 47 wt.% (shell of pine nuts), were also observed. The carbonaceous content of particulate matter was lower than that reported previously during the combustion of several wood fuels in traditional woodstoves and fireplaces. Levoglucosan was the most abundant anhydrosugar, comprising 0.02-3.03 wt.% of the particle mass. Mannosan and galactosan were not detected in almost all samples. Elements represented 11-32 wt.% of the PM10 mass emitted, showing great variability depending on the type of biofuel used.

  12. Characterisation of particulate matter emissions from the Zimbabwe Mining and Smelting Company (ZIMASCO) Kwekwe Division (Zimbabwe): a ferrochrome smelter.

    PubMed

    Pumure, I; Sithole, S D; Kahwai, S G T

    2003-09-01

    Particulate matter emissions from stack number 2 of a major ferrochrome smelter, Zimbabwe Mining and Smelting Company (ZIMASCO) were characterized and the rates at which the elements Cr, Fe, Cu and Zn and total ferrochrome dust are emitted into the atmosphere were determined. The extent of soil contamination by the dust deposited around the smelter in the generally prevailing southeasterly wind direction around the smelter was carried out. The highest concentrations of Cr and Fe occurred in the fine particulates of sizes less than 59 microm whilst that of Cu and Zn occurred in the coarse particulates of size range 70-100 microm. The emission rates from stack 2 were; total ferrochrome particulates 62.17 kg h(-1), Cr 6.217 kg h(-1), Fe 2.423 kg h(-1), Zn 42 mg h(-1) and 6 mg h(-1) for Cu. Particulate matter was emitted at a rate of 289 mg m(-3) from stack number 2. This value exceeds the legal limit of 200 mg m(-3). Chromium and iron are the metals in the largest amounts. The particles that constitute the largest proportion of the dust were in the range of 58-107.5 microm. This is a characteristic feature of the particulate matter emissions from ZIMASCO. Soils in the downwind direction from the smelter were polluted with Cr up to a distance of about 700 m outward from the perimeter of the boundary of the smelter.

  13. Fire environment effects on particulate matter emission factors in southeastern U.S. pine-grasslands

    NASA Astrophysics Data System (ADS)

    Robertson, Kevin M.; Hsieh, Yuch P.; Bugna, Glynnis C.

    2014-12-01

    Particulate matter (PM) emission factors (EFPM), which predict particulate emissions per biomass consumed, have a strong influence on event-based and regional PM emission estimates and inventories. PM < 2.5 μm aerodynamic diameter (PM2.5), regulated for its impacts to human health and visibility, is of special concern. Although wildland fires vary widely in their fuel conditions, meteorology, and fire behavior which might influence combustion reactions, the EFPM2.5 component of emission estimates is typically a constant for the region or general fuel type being assessed. The goal of this study was to use structural equation modeling (SEM) to identify and measure effects of fire environment variables on EFPM2.5 in U.S. pine-grasslands, which contribute disproportionately to total U.S. PM2.5 emissions. A hypothetical model was developed from past literature and tested using 41 prescribed burns in northern Florida and southern Georgia, USA with varying years since previous fire, season of burn, and fire direction of spread. Measurements focused on EFPM2.5 from flaming combustion, although a subset of data considered MCE and smoldering combustion. The final SEM after adjustment showed EFPM2.5 to be higher in burns conducted at higher ambient temperatures, corresponding to later dates during the period from winter to summer and increases in live herbaceous vegetation and ambient humidity, but not total fine fuel moisture content. Percentage of fine fuel composed of pine needles had the strongest positive effect on EFPM2.5, suggesting that pine timber stand volume may significantly influence PM2.5 emissions. Also, percentage of fine fuel composed of grass showed a negative effect on EFPM2.5, consistent with past studies. Results of the study suggest that timber thinning and frequent prescribed fire minimize EFPM2.5 and total PM2.5 emissions on a per burn basis, and that further development of PM emission models should consider adjusting EFPM2.5 as a function of common

  14. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker

    2016-05-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was

  15. Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China.

    PubMed

    Deng, Wei; Hu, Qihou; Liu, Tengyu; Wang, Xinming; Zhang, Yanli; Song, Wei; Sun, Yele; Bi, Xinhui; Yu, Jianzhen; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; Mellouki, Abdelwahid; George, Christian

    2017-03-26

    In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m(3) Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel(-1), respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel(-1) and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×10(15)particleskg-fuel(-1), and particles with diameters less than 50nm dominated in total particle numbers. Traditional C2-C12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation.

  16. Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions.

    PubMed

    Paulot, Fabien; Jacob, Daniel J

    2014-01-21

    We use a model of agricultural sources of ammonia (NH3) coupled to a chemical transport model to estimate the impact of U.S. food export on particulate matter concentrations (PM2.5). We find that food export accounts for 11% of total U.S. NH3 emissions (13% of agricultural emissions) and that it increases the population-weighted exposure of the U.S. population to PM2.5 by 0.36 μg m(-3) on average. Our estimate is sensitive to the proper representation of the impact of NH3 on ammonium nitrate, which reflects the interplay between agricultural (NH3) and combustion emissions (NO, SO2). Eliminating NH3 emissions from food export would achieve greater health benefits than the reduction of the National Ambient Air Quality Standards for PM2.5 from 15 to 12 μg m(-3). Valuation of the increased premature mortality associated with PM2.5 from food export (36 billion US$ (2006) per year) amounts to 50% of the gross food export value. Livestock operations in densely populated areas have particularly large health costs. Decreasing SO2 and NOx emissions will indirectly reduce health impact of food export as an ancillary benefit.

  17. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    PubMed

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-07

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device.

  18. Total suspended particulate matter emissions at high friction velocities from desert landforms

    NASA Astrophysics Data System (ADS)

    Bacon, Steven N.; McDonald, Eric V.; Amit, Rivka; Enzel, Yehouda; Crouvi, Onn

    2011-09-01

    Most wind erosion studies that characterize dust emission potential measure particulate matter smaller than 10 μm (PM10) for air quality purposes or atmospheric modeling. Because the PM10 size fraction is only a portion of the total range of fine-grained particles potentially emitted from desert landforms, we modified the miniature Portable In Situ Wind Erosion Lab (PI-SWERL) by adding a new instrument to measure total suspended particulate matter (TSP). The modified PI-SWERL is capable of measuring TSP with diameters <500 μm emitted from highly erodible surfaces at friction velocities up to 1.28 m s-1. Undisturbed and artificially disturbed surfaces of six common landforms in the Negev Desert of Israel were studied to evaluate the utility of TSP measurements. These landforms include alluvial fans and plains armored by desert pavements, loessial soils with silt-rich surficial crusts, fluvial loess with biological crusts, and active sand dunes. The landforms differ in character and surface age, thereby exhibiting a wide range of surface covers, soil properties, and soil strengths. Our results indicate that the magnitude of TSP emission is primarily controlled by geomorphic setting and surface characteristics. TSP and PM10 concentrations measured from dust-rich loessial soils were significantly correlated, and TSP emission was best predicted at all sites using PM10 content and bearing capacity. Our results demonstrate that further research is needed to determine correction factors for friction velocities related to erodible, anisotropic surface roughness elements and that the modified PI-SWERL is a promising tool to quantify total potential emission flux from desert landforms.

  19. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  20. Characterization of particulate matter and gaseous emissions of a C-130H aircraft.

    PubMed

    Corporan, Edwin; Quick, Adam; DeWitt, Matthew J

    2008-04-01

    The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter

  1. Integration of remote lidar and in-situ measured data to estimate particulate flux and emission from tillage operations

    NASA Astrophysics Data System (ADS)

    Zavyalov, Vladimir V.; Bingham, Gail E.; Wojcik, Michael; Hatfield, Jerry L.; Wilkerson, Thomas D.; Martin, Randal S.; Marchant, Christian; Moore, Kori; Bradford, Bill

    2010-10-01

    Agriculture, through wind erosion, tillage and harvest operations, burning, diesel-powered machinery and animal production operations, is a source of particulate matter emissions. Agricultural sources vary both temporally and spatially due to daily and seasonal activities and inhomogeneous area sources. Conventional point sampling methods originally designed for regional, well mixed aerosols are challenged by the disrupted wind flow and by the small mobile source of the emission encountered in this study. Atmospheric lidar (LIght Detection And Ranging) technology provides a means to derive quantitative information of particulate spatial and temporal distribution. In situ point measurements of particulate physical and chemical properties are used to characterize aerosol physical parameters and calibrate lidar data for unambiguous lidar data processing. Atmospheric profiling with scanning lidar allows estimation of temporal and 2D/3D spatial variations of mass concentration fields for different particulate fractions (PM1, PM2.5, PM10, and TSP) applicable for USEPA regulations. This study used this advanced measurement technology to map PM emissions at high spatial and temporal resolutions, allowing for accurate comparisons of the Conservation Management Practice (CMP) under test. The purpose of this field study was to determine whether and how much particulate emission differs from the conventional method of agricultural fall tillage and combined CMP operations.

  2. Size and composition distributions of particulate matter emissions: part 1--light-duty gasoline vehicles.

    PubMed

    Robert, Michael A; VanBergen, Saskia; Kleeman, Michael J; Jakober, Christopher A

    2007-12-01

    Size-resolved particulate matter (PM) emitted from light-duty gasoline vehicles (LDGVs) was characterized using filter-based samplers, cascade impactors, and scanning mobility particle size measurements in the summer 2002. Thirty LDGVs, with different engine and emissions control technologies (model years 1965-2003; odometer readings 1264-207,104 mi), were tested on a chassis dynamometer using the federal test procedure (FTP), the unified cycle (UC), and the correction cycle (CC). LDGV PM emissions were strongly correlated with vehicle age and emissions control technology. The oldest models had average ultrafine PM0.1 (0.056- to 0.1-microm aerodynamic diameter) and fine PM1.8 (< or =1.8-microm aerodynamic diameter) emission rates of 9.6 mg/km and 213 mg/km, respectively. The newest vehicles had PM0.1 and PM1.8 emissions of 51 microg/km and 371 microg/km, respectively. Light duty trucks and sport utility vehicles had PM0.1 and PM1.8 emissions nearly double the corresponding emission rates from passenger cars. Higher PM emissions were associated with cold starts and hard accelerations. The FTP driving cycle produced the lowest emissions, followed by the UC and the CC. PM mass distributions peaked between 0.1- and 0.18-microm particle diameter for all vehicles except those emitting visible smoke, which peaked between 0.18 and 0.32 microm. The majority of the PM was composed of carbonaceous material, with only trace amounts of water-soluble ions. Elemental carbon (EC) and organic matter (OM) had similar size distributions, but the EC/OM ratio in LDGV exhaust particles was a strong function of the adopted emissions control technology and of vehicle maintenance. Exhaust from LDGV classes with lower PM emissions generally had higher EC/OM ratios. LDGVs adopting newer technologies were characterized by the highest EC/OM ratios, whereas OM dominated PM emissions from older vehicles. Driving cycles with cold starts and hard accelerations produced higher EC/OM ratios in

  3. Organic particulate emissions from field burning of garden and agriculture residues

    NASA Astrophysics Data System (ADS)

    Gonçalves, Cátia; Evtyugina, Margarita; Alves, Célia; Monteiro, Cristina; Pio, Casimiro; Tomé, Mário

    2011-08-01

    To assess the particulate matter (PM) composition, the smoke from three different agriculture and garden residues, commonly subjected to open field burning in Northern Portugal (potato haulm (A), arable weed vegetation (B) and collard greens stalks/pruned green leafy-twigs (C)) have been sampled into 3 different size fractions (PM 2.5, PM 2.5-10 and PM > 10 ). To replicate another frequent practise of reducing or dispose agriculture/garden debris, residue C was complementarily burned in a metal container with addition of used lubricant oil. The size-segregated aerosol samples were analysed for elemental (EC) and organic (OC) carbon by a thermal-optical transmission technique. The organosoluble OC was fractionated by vacuum flash chromatography and analysed by gas chromatography-mass spectrometry (GC-MS). Burning of residue C produced the highest PM emissions. OC was the dominant carbonaceous component in all aerosol samples, contributing to about 98% of total carbon (TC). The detailed chemical profiles of particulate emissions, including organic tracer compounds, have been assessed. The contribution of phenolics (0.2-39% OC, w/w) and organic acids (1.5-13% OC, w/w) to OC was always predominant over other organic compounds, whose distribution patterns were found to vary from one residue to another. The polyphenols, as the guaiacyl derivatives, were particularly abundant in PM from the residue C burning, but anthropogenic constituents completely superimposed the emission profiles after addition of used lubricant oil. It was shown that the prevailing ambient conditions (such as high humidity) likely contributed to atmospheric processes (e.g. coagulation and hygroscopic growth), which influenced the particle size characteristics of the smoke tracers, shifting their distribution to larger diameters. Since it was shown that the relative contribution of different carbon forms and organic compounds may strongly depend on the size of the particulate matter, the barely

  4. Particulate emissions from the combustion of birch, beech, and spruce logs cause different cytotoxic responses in A549 cells.

    PubMed

    Kasurinen, Stefanie; Jalava, Pasi I; Happo, Mikko S; Sippula, Olli; Uski, Oskari; Koponen, Hanna; Orasche, Jürgen; Zimmermann, Ralf; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2016-09-28

    According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets. We determined the chemical composition (elements, ions, and carbonaceous compounds) of the particulate emissions with a diameter of less than 1 µm and tested their cytotoxicity, genotoxicity, inflammatory potential, and ability to induce oxidative stress in a human lung epithelial cell line. The chemical composition of the samples differed significantly, especially with regard to the carbonaceous and metal contents. Also the toxic effects in our tested endpoints varied considerably between each of the three log wood combustion samples, as well as between the log wood combustion samples and the pellet combustion sample. The difference in the toxicological potential of the samples in the various endpoints indicates the involvement of different pathways of toxicity depending on the chemical composition. All three emission samples from the log wood combustions were considerably more toxic in all endpoints than the emissions from the pellet combustion. © 2016 Wiley Periodicals, Inc. Environ Toxicol, 2016.

  5. Radiative Forcing associated with Particulate Carbon Emissions resulting from the Use of Mercury Control Technology

    NASA Astrophysics Data System (ADS)

    Clack, H.; Penner, J. E.; Lin, G.

    2013-12-01

    Mercury is a persistent, toxic metal that bio-accumulates within the food web and causes neurological damage and fetal defects in humans. The U.S. was the first country to regulate the leading anthropogenic source of mercury into the atmosphere: coal combustion for electric power generation. The U.S. EPA's 2005 Clean Air Mercury Rule (CAMR) was replaced and further tightened in 2012 by the Mercury and Air Toxics Standard (MATS), which required existing coal-fired utilities to reduce their mercury emissions by approximately 90% by 2015. Outside the U.S., the Governing Council of the United Nations Environment Programme (UNEP) has passed the legally binding Minamata global mercury treaty that compels its signatory countries to prevent and reduce the emission and release of mercury. The most mature technology for controlling mercury emissions from coal combustion is the injection into the flue gas of powdered activated carbon (PAC) adsorbents having chemically treated surfaces designed to rapidly oxidize and adsorb mercury. However, such PAC is known to have electrical properties that make it difficult to remove from flue gas via electrostatic precipitation, by far the most common particulate control technology used in countries such as the U.S., India, and China which rely heavily on coal for power generation. As a result, PAC used to control mercury emissions can be emitted into the atmosphere, the sub-micron fraction of which may result in unintended radiative forcing similar to black carbon (BC). Here, we estimate the potential increases in secondary BC emissions, those not produced from combustion but arising instead from the use of injected PAC for mercury emission reduction. We also calculate the radiative forcing associated with these secondary BC emissions by using a global atmospheric chemical transport model coupled with a radiative transfer model.

  6. Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines.

    PubMed

    Shah, Sandip D; Cocker, David R; Miller, J Wayne; Norbeck, Joseph M

    2004-05-01

    Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.

  7. Black carbon particulate matter emission factors for buoyancy-driven associated gas flares.

    PubMed

    McEwen, James D N; Johnson, Matthew R

    2012-03-01

    Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however, flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emissionfactors for flares were reviewed and found to be questionably accurate, or based on measurements not directly relevant to open-atmosphere flares. In addition, most previous studies of soot emissions from turbulent diffusion flames considered alkene or alkyne based gaseous fuels, and few considered mixed fuels in detail and/or lower sooting propensity fuels such as methane, which is the predominant constituent of gas flared in the upstream oil and gas industry. Quantitative emission measurements were performed on laboratory-scale flares for a range of burner diameters, exit velocities, and fuel compositions. Drawing from established standards, a sampling protocol was developed that employed both gravimetric analysis of filter samples and real-time measurements of soot volume fraction using a laser-induced incandescence (LII) system. For the full range of conditions tested (burner inner diameter [ID] of 12.7-76.2 mm, exit velocity 0.1-2.2 m/sec, 4- and 6-component methane-based fuel mixtures representative of associated gas in the upstream oil industry), measured soot emission factors were less than 0.84 kg soot/10(3) m3 fuel. A simple empirical relationship is presented to estimate the PM emission factor as a function of the fuel heating value for a range of conditions, which, although still limited, is an improvement over currently available emission factors.

  8. Real-Time Characterization of Particle and Gas Phase Diesel Emissions - Understanding the Influence of a Diesel Particulate Filter

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Sappok, A.; Carrasquillo, A. J.; Onasch, T. B.; Fortner, E.; Jayne, J.; Wong, V.; Worsnop, D. R.; Kroll, J. H.

    2010-12-01

    Diesel engine emissions constitute an important source of particulate black carbon (BC) and gas phase organics in the atmosphere. Particles composed of black carbon absorb incoming solar radiation having a net positive radiative forcing effect on the climate. Black carbon also has major air quality implications as BC particles from combustion sources are often coated with poly-aromatic hydrocarbons (PAHs), and are generally emitted in higher concentrations close to population centers. Regulations of diesel emissions target the mass of particulate matter (PM) and concentration of volatile gas phase organic compounds (VOC) produced. A third, potentially important component of diesel exhaust, is low volatility organic compounds (LVOC). Both the VOCs and LVOCs can lead to the formation of ultrafine particles (via homogeneous nucleation) and secondary organic aerosols (via oxidation). Recent development of mass spectrometric techniques to measure particulate black carbon and gas phase organics provide the opportunity to quantify and chemically characterize diesel emissions in real-time. Measurements of both the particulate and gas phase emissions from a medium-duty diesel engine will be presented. The experimental apparatus includes a diesel particulate filter (DPF) integrated in the exhaust line, which is a requirement for all 2007 and newer on-road diesel engines in the U.S. Measurements taken over the regeneration cycle of the DPF provide insight into how this after-treatment technology influences the gas phase and particle phase composition of the emissions. Gas phase measurements were made with a newly developed Total Gas-Phase Organic (TGO) instrument. Particulate species were characterized with a Soot Particle Aerosol Mass Spectrometer (SP-AMS). The combined utility of the TGO and SP-AMS instruments for emissions characterization studies will be demonstrated.

  9. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  10. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations

    NASA Astrophysics Data System (ADS)

    Reddington, Carly L.; Spracklen, Dominick V.; Artaxo, Paulo; Ridley, David A.; Rizzo, Luciana V.; Arana, Andrea

    2016-09-01

    We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol over the period 2003 to 2011. Previous studies report a large underestimation of AOD over regions impacted by tropical biomass burning, scaling particulate emissions from fire by up to a factor of 6 to enable the models to simulate observed AOD. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1). In these datasets the tropics account for 66-84 % of global particulate emissions from fire. With all emission datasets GLOMAP underestimates dry season PM2.5 concentrations in regions of high fire activity in South America and underestimates AOD over South America, Africa and Southeast Asia. When we assume an upper estimate of aerosol hygroscopicity, underestimation of AOD over tropical regions impacted by biomass burning is reduced relative to previous studies. Where coincident observations of surface PM2.5 and AOD are available we find a greater model underestimation of AOD than PM2.5, even when we assume an upper estimate of aerosol hygroscopicity. Increasing particulate emissions to improve simulation of AOD can therefore lead to overestimation of surface PM2.5 concentrations. We find that scaling FINN1 emissions by a factor of 1.5 prevents underestimation of AOD and surface PM2.5 in most tropical locations except Africa. GFAS1 requires emission scaling factor of 3.4 in most locations with the exception of equatorial Asia where a scaling factor of 1.5 is adequate. Scaling GFED3 emissions by a factor of 1.5 is sufficient in active deforestation regions of South America and equatorial Asia, but a larger scaling factor is required elsewhere. The model with GFED3 emissions poorly simulates observed seasonal variability in surface PM2.5 and AOD in regions where small fires dominate, providing

  11. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Pesticide Factsheets

    This dataset provides all data used to generate the figures and tables in the article entitled Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States published in the Journal of Geophysical Research: AtmospheresThis dataset is associated with the following publication:Holder , A., G. Hagler , J. Aurell, M. Hays , and B. Gullett. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 121(7): 3465-3483, (2016).

  12. In-use gaseous and particulate matter emissions from a modern ocean going container vessel

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Malloy, Quentin G. J.; Welch, William A.; Wayne Miller, J.; Cocker, David R.

    Ocean going vessels are one of the largest uncontrolled sources of pollutants and the emissions data from these sources are scarce. This paper provides the emission measurements of gases, particulate matter (PM), metals, ions, elemental and organic carbon, conducted from the main engine of an ocean going PanaMax class container vessel, at certification cycle and at vessel speed reduction mode, during actual operation at sea. The weighted emission factor (g kW -1 h -1) of PM and NO x were 1.64 and 18.2, respectively, for the main engine operating on a 2.05 wt% sulfur heavy fuel oil (HFO). The NO x emissions at the vessel speed reduction mode (8% of full load) are 30% higher than at 52% engine power, the normal cruise speed. The composition of PM, from main engine is dominated by sulfate and water bound with sulfate (about 80% of total PM) and organic carbon constitutes about 15% of the PM. Sulfur, vanadium and nickel are the significant elements in the exhaust from the engine running on the HFO. At the point of sampling 3.7-5.0% of the fuel sulfur was converted to sulfate.

  13. Emissions of ammonia, carbon dioxide and particulate matter from cage-free layer houses in California

    NASA Astrophysics Data System (ADS)

    Lin, Xingjun; Zhang, Ruihong; Jiang, Shumei; El-Mashad, Hamed; Xin, Hongwei

    2017-03-01

    Cage-free housing systems have attracted considerable attention in the United States recently as they provide more space and other resources (such as litter area, perches, and nest boxes) for hens and are considered to be more favorable from the standpoint of hen welfare. This study was carried out to quantify emissions of aerial ammonia (NH3), carbon dioxide (CO2) and particulate matter (PM10 and PM2.5) from cage-free layer houses in California and compare the values with those for other types of layer houses. Two commercial cage-free houses with 38,000 hens each were monitored from March 1, 2012 to April 1, 2013. Results show that NH3 and CO2 concentrations in the houses were affected by ventilation rate, which was largely influenced by ambient air temperature. The PM10 and PM2.5 concentrations in the houses depended on the activity of birds, ventilation rate and relative humidity of the ambient air. The average emission rates of NH3, CO2, PM10 and PM2.5 were 0.29, 89.9, 0.163 and 0.020 g d-1 hen-1, respectively. The NH3 emission rate determined in this study was higher than those of aviary houses. The PM10 and PM2.5 emission rates were higher than those reported for high-rise layer houses.

  14. Particulate emissions from residential wood combustion in Europe - revised estimates and an evaluation

    NASA Astrophysics Data System (ADS)

    Denier van der Gon, H. A. C.; Bergström, R.; Fountoukis, C.; Johansson, C.; Pandis, S. N.; Simpson, D.; Visschedijk, A.

    2014-12-01

    Currently residential wood combustion (RWC) is increasing in Europe because of rising fossil fuel prices but also due to climate change mitigation policies. However, especially in small-scale applications, RWC may cause high emissions of particulate matter (PM). Recently we have developed a new high-resolution (7 km × 7 km) anthropogenic carbonaceous aerosol emission inventory for Europe. The inventory indicated that about half of the total PM2.5 emission in Europe is carbonaceous aerosol and identified RWC as the largest organic aerosol (OA) source in Europe. The inventory was partly based on national reported PM emissions. Use of this OA inventory as input for two Chemical Transport Models (CTMs), PMCAMx and EMEP MSC-W, revealed major underestimations of OA in winter time, especially for regions dominated by RWC. Interestingly, this was not universal but appeared to differ by country. In the present study we constructed a new bottom-up emission inventory for RWC accounting for the semi-volatile components of the emissions. The new RWC emissions are higher than those in the previous inventory by a factor of 2-3 but with substantial inter-country variation. The new emission inventory served as input for the CTMs and a substantially improved agreement between measured and predicted organic aerosol was found. The new RWC inventory improves the model calculated OA significantly. Comparisons to Scandinavian source apportionment studies also indicate substantial improvements in the modeled wood-burning component of OA. This suggests that primary organic aerosol emission inventories need to be revised to include the semi-volatile OA that is formed almost instantaneously due to cooling of the flue gas or exhaust. Since RWC is a key source of fine PM in Europe, a major revision of the emission estimates as proposed here is likely to influence source-receptor matrices and modelled source apportionment. Since usage of biofuels, such as wood, in small combustion units is a

  15. [Emission of Particulate Matter, Organic and Elemental Carbon from Burning of Fallen Leaves].

    PubMed

    Yang, Wei-zong; Liu, Gang; Li, Jiu-hai; Xu, Hui; Wu, Dan

    2015-04-01

    The two kinds of burning conditions, i. e., flaming and smoldering, were selected to investigate the particulate matter (PM), organic carbon (OC), and elemental carbon ( EC) from burning of ten kinds of fallen leaves. In the experiment, the emission smoke was sampled from the fallen leaves burning, in which the OC and EC loadings were measured by the Thermal Optical Carbon Analyzer. The results showed that the emission factors of PM, OC, and EC were 7.9-31.9, 0.9-9.7, and 3.6-13.9 g x kg(-1), with the average values of 19.7, 5.2, and 6.8 g x kg(-1), respectively, under the flaming condition. The emission factors of PM, OC, and EC were 61.3-128.9, 31.7-60.4, and 1.9-6.0 g x kg(-1), with the average values of 91.0, 43.0, and 4.0 g x kg(-1), respectively, under the smoldering condition. The OC/EC ratio ranged from 0.21 to 1.82 and from 8.16 to 16.84 under the flaming and smoldering condition, respectively. The OC/PM and EC/PM ratios ranged from 0.11 to 0.41 and from 0.18 to 0.56, respectively under the flaming condition. The OC/PM and EC/PM ratios, however, ranged from 0.43 to 0.53 and from 0.03 to 0.06, respectively, under the smoldering condition. The OC emission factor was well correlated with the PM emission factor in the two burning conditions. Those results indicated that rather different emission factors occurred in all kind of components in different burning emission. In addition, the OC emission factor was higher under the smoldering condition than that under the flaming condition. However, the EC emission factor was higher under flaming condition, compared with that under smoldering condition. Analysis of the PM, OC, and EC emission factor and their ratios was beneficial for building the emission list from the biomass burning and the sources apportionment.

  16. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors

  17. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    PubMed

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  18. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    PubMed

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).

  19. Physical properties of particulate matter from animal houses-empirical studies to improve emission modelling.

    PubMed

    Mostafa, Ehab; Nannen, Christoph; Henseler, Jessica; Diekmann, Bernd; Gates, Richard; Buescher, Wolfgang

    2016-06-01

    Maintaining and preserving the environment from pollutants are of utmost importance. Particulate matter (PM) is considered one of the main air pollutants. In addition to the harmful effects of PM in the environment, it has also a negative indoor impact on human and animal health. The specific forms of damage of particulate emission from livestock buildings depend on its physical properties. The physical properties of particulates from livestock facilities are largely unknown. Most studies assume the livestock particles to be spherical with a constant density which can result in biased estimations, leading to inaccurate results and errors in the calculation of particle mass concentration in livestock buildings. The physical properties of PM, including difference in density as a function of particle size and shape, can have a significant impact on the predictions of particles' behaviour. The aim of this research was to characterize the physical properties of PM from different animal houses and consequently determine PM mass concentration. The mean densities of collected PM from laying hens, dairy cows and pig barns were 1450, 1520 and 2030 kg m(-3), respectively, whilst the mass factors were 2.17 × 10(-3), 2.18 × 10(-3) and 5.36 × 10(-3) μm, respectively. The highest mass concentration was observed in pig barns generally followed by laying hen barns, and the lowest concentration was in dairy cow buildings. Results are presented in such a way that they can be used in subsequent research for simulation purposes and to form the basis for a data set of PM physical properties.

  20. Lubricating oil and fuel contributions to particulate matter emissions from light-duty gasoline and heavy-duty diesel vehicles.

    PubMed

    Kleeman, Michael J; Riddle, Sarah G; Robert, Michael A; Jakober, Chris A

    2008-01-01

    Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane and sterane size distributions did not match the total carbon size distribution in most cases, suggesting that lubricating oil was not the dominant source of particulate carbon in the vehicle exhaust. A regression analysis using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and benzo[ghi/perylene as a tracer for gasoline showed that gasoline fuel and lubricating oil both make significant contributions to particulate EC and OC emissions from LDGVs. A similar regression analysis performed using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and flouranthene as a tracerfor diesel fuel was able to explain the size distribution of particulate EC and OC emissions from HDDVs. The analysis showed that EC emitted from all HDDVs operated under relatively high load conditions was dominated by diesel fuel contributions with little EC attributed to lubricating oil. Particulate OC emitted from HDDVs was more evenly apportioned between fuel and oil contributions. EC emitted from LDGVs operated underfuel-rich conditions was dominated by gasoline fuel contributions. OC emitted from visibly smoking LDGVs was mostly associated with lubricating oil, but OC emitted from all other categories of LDGVs was dominated by gasoline fuel. The current study clearly illustrates that fuel and lubricating oil make separate and distinct contributions to particulate matter emissions from motor vehicles. These particles should be tracked separately during ambient source apportionment studies since the atmospheric evolution and ultimate health effects of these particles may be different. The source profiles for fuel and lubricating oil contributions to EC and OC

  1. Particulate emissions from residential wood combustion in Europe - revised estimates and an evaluation

    NASA Astrophysics Data System (ADS)

    Denier van der Gon, H. A. C.; Bergström, R.; Fountoukis, C.; Johansson, C.; Pandis, S. N.; Simpson, D.; Visschedijk, A. J. H.

    2015-06-01

    Currently residential wood combustion (RWC) is increasing in Europe because of rising fossil fuel prices but also due to climate change mitigation policies. However, especially in small-scale applications, RWC may cause high emissions of particulate matter (PM). Recently we have developed a new high-resolution (7 × 7 km) anthropogenic carbonaceous aerosol emission inventory for Europe. The inventory indicated that about half of the total PM2.5 emission in Europe is carbonaceous aerosol and identified RWC as the largest organic aerosol source in Europe. The inventory was partly based on national reported PM emissions. Use of this organic aerosol inventory as input for two chemical transport models (CTMs), PMCAMx and EMEP MSC-W, revealed major underestimations of organic aerosol in winter time, especially for regions dominated by RWC. Interestingly, this was not universal but appeared to differ by country. In the present study we constructed a revised bottom-up emission inventory for RWC accounting for the semivolatile components of the emissions. The revised RWC emissions are higher than those in the previous inventory by a factor of 2-3 but with substantial inter-country variation. The new emission inventory served as input for the CTMs and a substantially improved agreement between measured and predicted organic aerosol was found. The revised RWC inventory improves the model-calculated organic aerosol significantly. Comparisons to Scandinavian source apportionment studies also indicate substantial improvements in the modelled wood-burning component of organic aerosol. This suggests that primary organic aerosol emission inventories need to be revised to include the semivolatile organic aerosol that is formed almost instantaneously due to dilution and cooling of the flue gas or exhaust. Since RWC is a key source of fine PM in Europe, a major revision of the emission estimates as proposed here is likely to influence source-receptor matrices and modelled source

  2. Temporal and Spatial Variations of Particulate Emissions on Major Highways in Southern California: Lagrangian Approach Using Mobile Monitoring System.

    NASA Astrophysics Data System (ADS)

    Jung, H.; Grady, M.; Pham, L.

    2014-12-01

    In 2010 CARB reported 9,000 people in California die prematurely each year as a result of exposure to particulate emissions. Public's exposure to particulate emissions is known to be highest on highway during daily commute. Total particle concentrations vary temporarily and spatially due to many reasons including particle nucleation, traffic, and meteorological conditions. The stationary ambient monitoring sites are too sparsely located to measure these variations on highway. Also, emissions from highways can be included in the emission inventory which can improve modeler capability to predict at much finer scale. Emissions from highways are vary temporally and spatially. This study used a mobile platform to measure total particle number, total particle surface area and average particle diameter in Lagrangian approach. The study will report occurrence and frequency of hot spots for particle nucleation on highway and temporal/ spatial variations of particle concentrations on highway. This will enable better assessment of public's exposure to particulate emissions on highway by transportation and propose a methodology how to obtain emission inventory for major highways.

  3. CRADA final report for CRADA number Y1294-0296: Optical particulate emission monitor

    SciTech Connect

    Miller, A.C. Jr.; Bernacki, E.; Nuspliger, R.J.

    1995-10-15

    The Oak Ridge Centers for Manufacturing Technology (ORCMT) and Environmental Systems Corporation (ESC) have collaborated on an effort to develop the optical system for an enhanced particulate emission monitor. The purpose of this effort was to assist a small East Tennessee company in perfecting an instrument that would meet or exceed the performance of competing foreign instruments and provide measurement capabilities necessary to assure compliance of Department of Energy facilities and other industrial facilities with expected EPA regulations. The two parties collaborated on design, assembly, and bench testing of the prototype instrument. The prototype system was targeted to have the capability for measuring micron size particles in concentrations as low as 10 micrograms per cubic meter and to have the added benefit of improving sampling statistics (i.e. measurements will be made over larger regions of the stack) over current instruments. Project deliverables were a prototype optical system and characterization data.

  4. Quantifying the Contribution of Lubrication Oil Carbon to Particulate Emissions from a Diesel Engine

    SciTech Connect

    Buchholz, B A; Dibble, R W; Rich, D; Cheng, A S

    2003-01-31

    The contribution of lubrication oil to particulate matter (PM) emissions from a Cummins B5.9 Diesel engine was measured using accelerator mass spectrometry to trace carbon isotope concentrations. The engine operated at fixed medium load (285 N-m (210 ft.lbs.) at 1600 rpm) used 100% biodiesel fuel (8100) with a contemporary carbon-14 ({sup 14}C) concentration of 103 amol {sup 14}C mg C. The {sup 14}C concentration of the exhaust CO{sub 2} and PM were 102 and 99 amol {sup 14}C/mg C, respectively. The decrease in {sup 14}C content in the CO, and PM are due to the consumption of lubrication oil which is {sup 14}C-free. Approximately 4% of the carbon in PM came from lubrication oil under these operating conditions.

  5. The Level of Particulate Matter on Foliage Depends on the Distance from the Source of Emission.

    PubMed

    Popek, Robert; Gawrońska, Helena; Gawroński, Stanislaw W

    2015-01-01

    One of the most dangerous inhaled pollutants is particulate matter (PM). PM in inhaled air have a negative impact on human wellbeing and health, and may even cause deaths. Where pollutants have been emitted into the outdoor atmosphere, the only possible method for cleaning the air is through phytoremediation, a form of environmental biotechnology, where plants act as biological filters for pollutants. This study compared PM levels on the leaves of Tilia cordata Mill. trees growing in locations at increasing distances from the source of the PM emission. Significant differences between individual trees growing at a distance of between 3 m and 500 m from the road edge were found in: (i) the mass of PM that accumulated on leaves (total, surface, in-wax and the three determined size fractions) and (ii) the amount of waxes deposited on leaves.

  6. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2014-01-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg-1 for JP-8 to 1.2 mg kg-1 for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg-1 (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the

  7. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine.

    PubMed

    Miller, Arthur L; Stipe, Christopher B; Habjan, Matthew C; Ahlstrand, Gilbert G

    2007-10-01

    Recent studies suggest that trace metals emitted by internal combustion engines are derived mainly from combustion of lubrication oil. This hypothesis was examined by investigation of the formation of particulate matter emitted from an internal combustion engine in the absence of fuel-derived soot. Emissions from a modified CAT 3304 diesel engine fueled with hydrogen gas were characterized. The role of organic carbon and metals from lubrication oil on particle formation was investigated under selected engine conditions. The engine produced exhaust aerosol with log normal-size distributions and particle concentrations between 10(5) and 10(7) cm(-3) with geometric mean diameters from 18 to 31 nm. The particles contained organic carbon, little or no elemental carbon, and a much larger percentage of metals than particles from diesel engines. The maximum total carbon emission rate was estimated at 1.08 g h(-1), which is much lower than the emission rate of the original diesel engine. There was also evidence that less volatile elements, such as iron, self-nucleated to form nanoparticles, some of which survive the coagulation process.

  8. Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Xue, Miao; Chen, Yuanchen; Yang, Chunli; Li, Wei; Shen, Huizhong; Huang, Ye; Zhang, Yanyan; Chen, Han; Zhu, Ying; Wu, Haisuo; Ding, Aijun; Tao, Shu

    2014-06-01

    Uncertainty in the emission factor (EF) usually contributes largely to the overall uncertainty in the emission inventory. In the present study, the locally measured EFs of particulate matter (PM), organic carbon (OC), and elemental carbon (EC) for solid fuels burned in the residential sector are compiled and compared. These fuels are classified into seven sub-groups of anthracite briquette, anthracite chunk, bituminous briquette, bituminous chunk, crop residue, fuel wood log, and brushwood/branches. The EFs of carbonaceous particles for these fuels vary significantly, generally in the order of anthracite (briquette and chunk) < wood log < brushwood/branches < crop residue < bituminous (briquette and chunk), with an exception that the brushwood/branches have a relatively high EF of EC. The ratio of EC/OC varies significantly among different fuels, and is generally higher for biomass fuel than that for coal because of the intense flaming conditions formed during the biomass burning process in improved stoves. Distinct ratios calls for a future study on the potential health and climate impacts of carbonaceous PM from the residential combustions of different fuels. A narrow classification of these fuels significantly reduces the variations in the EFs of PM, OC, and EC, and the temporal and geographical distributions of the emissions could be better characterized.

  9. Evaluation of methods for measuring particulate matter emissions from gas turbines.

    PubMed

    Petzold, Andreas; Marsh, Richard; Johnson, Mark; Miller, Michael; Sevcenco, Yura; Delhaye, David; Ibrahim, Amir; Williams, Paul; Bauer, Heidi; Crayford, Andrew; Bachalo, William D; Raper, David

    2011-04-15

    The project SAMPLE evaluated methods for measuring particle properties in the exhaust of aircraft engines with respect to the development of standardized operation procedures for particulate matter measurement in aviation industry. Filter-based off-line mass methods included gravimetry and chemical analysis of carbonaceous species by combustion methods. Online mass methods were based on light absorption measurement or used size distribution measurements obtained from an electrical mobility analyzer approach. Number concentrations were determined using different condensation particle counters (CPC). Total mass from filter-based methods balanced gravimetric mass within 8% error. Carbonaceous matter accounted for 70% of gravimetric mass while the remaining 30% were attributed to hydrated sulfate and noncarbonaceous organic matter fractions. Online methods were closely correlated over the entire range of emission levels studied in the tests. Elemental carbon from combustion methods and black carbon from optical methods deviated by maximum 5% with respect to mass for low to medium emission levels, whereas for high emission levels a systematic deviation between online methods and filter based methods was found which is attributed to sampling effects. CPC based instruments proved highly reproducible for number concentration measurements with a maximum interinstrument standard deviation of 7.5%.

  10. Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India

    NASA Astrophysics Data System (ADS)

    Vreeland, Heidi; Schauer, James J.; Russell, Armistead G.; Marshall, Julian D.; Fushimi, Akihiro; Jain, Grishma; Sethuraman, Karthik; Verma, Vishal; Tripathi, Sachi N.; Bergin, Michael H.

    2016-12-01

    Roadside trash burning is largely unexamined as a factor that influences air quality, radiative forcing, and human health even though it is ubiquitously practiced across many global regions, including throughout India. The objective of this research is to examine characteristics and redox activity of fine particulate matter (PM2.5) associated with roadside trash burning in Bangalore, India. Emissions from smoldering and flaming roadside trash piles (n = 24) were analyzed for organic and elemental carbon (OC/EC), brown carbon (BrC), and toxicity (i.e. redox activity, measured via the dithiothreitol "DTT" assay). A subset of samples (n = 8) were further assessed for toxicity by a cellular assay (macrophage assay) and also analyzed for trace organic compounds. Results show high variability of chemical composition and toxicity between trash-burning emissions, and characteristic differences from ambient samples. OC/EC ratios for trash-burning emissions range from 0.8 to 1500, while ambient OC/EC ratios were observed at 5.4 ± 1.8. Trace organic compound analyses indicate that emissions from trash-burning piles were frequently composed of aromatic di-acids (likely from burning plastics) and levoglucosan (an indicator of biomass burning), while the ambient sample showed high response from alkanes indicating notable representation from vehicular exhaust. Volume-normalized DTT results (i.e., redox activity normalized by the volume of air pulled through the filter during sampling) were, unsurprisingly, extremely elevated in all trash-burning samples. Interestingly, DTT results suggest that on a per-mass basis, fresh trash-burning emissions are an order of magnitude less redox-active than ambient air (13.4 ± 14.8 pmol/min/μgOC for trash burning; 107 ± 25 pmol/min/μgOC for ambient). However, overall results indicate that near trash-burning sources, exposure to redox-active PM can be extremely high.

  11. Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks

    NASA Astrophysics Data System (ADS)

    Slezakova, Klara; Castro, Dionísia; Delerue–Matos, Cristina; Alvim–Ferraz, Maria da Conceição; Morais, Simone; Pereira, Maria do Carmo

    2013-06-01

    Considering vehicular transport as one of the most health-relevant emission sources of urban air, and with aim to further understand its negative impact on human health, the objective of this work was to study its influence on levels of particulate-bound PAHs and to evaluate associated health risks. The 16 PAHs considered by USEPA as priority pollutants, and dibenzo[a,l]pyrene associated with fine (PM2.5) and coarse (PM2.5-10) particles were determined. The samples were collected at one urban site, as well as at a reference place for comparison. The results showed that the air of the urban site was more seriously polluted than at the reference one, with total concentrations of 17 PAHs being 2240% and 640% higher for PM2.5 and PM2.5-10, respectively; vehicular traffic was the major emission source at the urban site. PAHs were predominantly associated with PM2.5 (83% to 94% of ΣPAHs at urban and reference site, respectively) with 5 rings PAHs being the most abundant groups of compounds at both sites. The risks associated with exposure to particulate PAHs were evaluated using the TEF approach. The estimated value of lifetime lung cancer risks exceeded the health-based guideline levels, thus demonstrating that exposure to PM2.5-bound PAHs at levels found at urban site might cause potential health risks. Furthermore, the results showed that evaluation of benzo[a]pyrene (regarded as a marker of the genotoxic and carcinogenic PAHs) alone would probably underestimate the carcinogenic potential of the studied PAH mixtures.

  12. Quality-assured measurements of animal building emissions: particulate matter concentrations.

    PubMed

    Heber, Albert J; Lim, Teng-Teeh; Ni, Ji-Qin; Tao, Pei-Chun; Schmidt, Amy M; Koziel, Jacek A; Hoff, Steven J; Jacobson, Larry D; Zhang, Yuanhui; Baughman, Gerald B

    2006-12-01

    Federally funded, multistate field studies were initiated in 2002 to measure emissions of particulate matter (PM) < 10 microm (PM10) and total suspended particulate (TSP), ammonia, hydrogen sulfide, carbon dioxide, methane, nonmethane hydrocarbons, and odor from swine and poultry production buildings in the United States. This paper describes the use of a continuous PM analyzer based on the tapered element oscillating microbalance (TEOM). In these studies, the TEOM was used to measure PM emissions at identical locations in paired barns. Measuring PM concentrations in swine and poultry barns, compared with measuring PM in ambient air, required more frequent maintenance of the TEOM. External screens were used to prevent rapid plugging of the insect screen in the PM10 preseparator inlet. Minute means of mass concentrations exhibited a sinusoidal pattern that followed the variation of relative humidity, indicating that mass concentration measurements were affected by water vapor condensation onto and evaporation of moisture from the TEOM filter. Filter loading increased the humidity effect, most likely because of increased water vapor adsorption capacity of added PM. In a single layer barn study, collocated TEOMs, equipped with TSP and PM10 inlets, corresponded well when placed near the inlets of exhaust fans in a layer barn. Initial data showed that average daily mean concentrations of TSP, PM10, and PM2.5 concentrations at a layer barn were 1440 +/- 182 microg/m3 (n = 2), 553 +/- 79 microg/m3 (n = 4), and 33 +/- 75 microg/m3 (n = 1), respectively. The daily mean TSP concentration (n = 1) of a swine barn sprinkled with soybean oil was 67% lower than an untreated swine barn, which had a daily mean TSP concentration of 1143 +/- 619 microg/m3. The daily mean ambient TSP concentration (n = 1) near the swine barns was 25 +/- 8 microg/m3. Concentrations of PM inside the swine barns were correlated to pig activity.

  13. Cytotoxic and genotoxic effects of extract of particulate emission from a gasoline-powered engine

    SciTech Connect

    Hadnagy, W.; Seemayer, N.H.

    1988-01-01

    Extract of particulate matter (EPM) from gasoline engine exhaust has been investigated for cytotoxic and genotoxic effects in the concentration range 0.16-10 micrograms/ml by means of short-term bioassays using mammalian cell culture systems. Cytotoxicity is demonstrated by a strong dose-dependent reduction of cloning efficiency after treatment of V79 cells with EPM. Employing the dye exclusion test with erythrosin B, no considerable loss of cell viability was observed. Using the same cell system, EPM revealed a highly increased number of aberrant mitoses, whereby the occurrence of C mitoses and metaphases with chromosome clusters was especially pronounced. This effect led to mitotic arrest as shown by a highly increased mitotic index at 5 and 10 micrograms/ml EPM. The results indicate disturbances of the mitotic spindle in a way similar to the known spindle poison colcemid. As a consequence of spindle disturbances, EPM produced numerical chromosome alterations such as aneuploidy and polyploidy. Cytogenetic analyses using human lymphocyte cultures treated with EPM revealed a slight increase of chromosomal aberrations at 10 micrograms/ml and a dose-dependent induction of sister chromatid exchanges in the range 2.5-10 micrograms/ml. At least, EPM showed a dose-dependent increase in the cell transformation assay using SV 40-infected Syrian hamster kidney cultures. The great variety of cytotoxic and genotoxic effects found with EPM suggests a potential health hazard to human populations exposed to gasoline engine exhaust. The possible contribution to cytotoxic and genotoxic activity by organolead compounds derived from antiknock additives is discussed.

  14. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  15. EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER (EPM) ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. L.B. Wichers1, J.P. Nolan2, W.H. Rowan2, M.J. Campen3, T.P. Jenkins4, D.L. Costa2, and W.P. Watkinson2. 1UNC SPH, Chap...

  16. COMPARISON OF PULMONARY RESPONSES TO AUTOMOBILE-GENERATED AND NIST STANDARD REFERENCE MATERIAL DIESEL PARTICULATE EMISSIONS IN MICE

    EPA Science Inventory

    COMPARISON OF PULMONARY RESPONSES TO AUTOMOBILE-GENERATED AND NIST STANDARD REFERENCE MATERIAL DIESEL PARTICULATE EMISSIONS IN MICE. P. Singh1, C.A.J. Dick2, J. Richards3, M.J. Daniels3, and M.I. Gilmour3. 1NCSU, Raleigh, NC, 2UNC, Chapel Hill, NC and 3 USEPA, ORD, NHEERL, (ETD,...

  17. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta.

    PubMed

    Galvis, Boris; Bergin, Mike; Russell, Armistead

    2013-06-01

    Railyards have the potential to influence localfine particulate matter (aerodynamic diameter < or = 2.5 microm; PM2.5) concentrations through emissions from diesel locomotives and supporting activities. This is of concern in urban regions where railyards are in proximity to residential areas. Northwest of Atlanta, Georgia, Inman and Tilford railyards are located beside residential neighborhoods, industries, and schools. The PM2.5 concentrations near the railyards is the highest measured amongst the state-run monitoring sites (Georgia Environmental Protection Division, 2012; http://www.georgiaair.org/amp/report.php). The authors estimated fuel-based black carbon (BC) and PM2.5 emission factors for these railyards in order to help determine the impact of railyard activities on PM2.5 concentrations, and for assessing the potential benefits of replacing current locomotive engines with cleaner technologies. High-time-resolution measurements of BC, PM2.5, CO2, and wind speed and direction were made at two locations, north and south of the railyards. Emissions factors (i.e., the mass of BC or PM2.5 per gallon of fuel burned) were estimated by using the downwind/upwind difference in concentrations, wavelet analysis, and an event-based approach. By the authors' estimates, diesel-electric engines used in the railyards have average emission factors of 2.8 +/- 0.2 g of BC and 6.0 +/- 0.5 g of PM2.5 per gallon of diesel fuel burned. A broader mix of railyard supporting activities appear to lead to average emission factors of 0.7 +/- 0.03 g of BC and 1.5 +/- 0.1 g of PM2.5 per gallon of diesel fuel burned. Railyard emissions appear to lead to average enhancements of approximately 1.7 +/- 0.1 microg/m3 of PM2.5 and approximately 0.8 +/- 0.01 microg/m3 of BC in neighboring areas on an annual average basis. Uncertainty not quantified in these results could arise mainly from variability in downwind/upwind differences, differences in emissions of the diverse zones within the

  18. Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence.

    PubMed

    Grahame, Thomas J; Schlesinger, Richard B

    2010-03-01

    consequences of such emissions, it may be desirable to promulgate a black carbon (BC) PM(2.5) standard under the National Ambient Air Quality Standards, which would apply to both on and off-road diesels. Two specific critical research needs are identified. One is to continue research on health effects of vehicular emissions, gaseous as well as particulate. The second is to utilize identical or nearly identical research designs in studies using accurate exposure metrics to determine whether other major PM pollutant sources and types may also underlie the specific health effects found in this evaluation for vehicular emissions.

  19. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine.

    PubMed

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei

    2015-01-01

    To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.

  20. An automatic isokinetic sampler for particulate emissions from aircraft gas turbine engines. Final report Feb 75-Jun 78

    SciTech Connect

    Dehne, H.

    1980-01-01

    An automated isokinetic sampler for evaluating particulate emissions from aircraft gas turbine engines was designed, constructed and tested. The sampler is capable of collecting the particulate mass emitted by an aircraft gas turbine at the exit plane (non-afterburner operation) for gravimetric measurements and permits simultaneous on-line particle size distribution measurements to be performed. The particulate is collected on a fiber glass filter for gravimetric measurement. The size distribution is determined by conditioning the gas turbine exhaust gases and passing them through a mobility particulate size distribution analyzer. The sampler has two-axis traverse capability and a maximum sampling capability of 226 1/min (8 scfm). Test data are automatically recorded. Control of the sampler is by means of 12-bit microprocessor. Preliminary tests were performed at the Naval Air Rework Facility, Alameda, California, at various construction stages of the sampler to evaluate its performance and to measure the effects of fuel additives on particulate emissions on a TF41 gas turbine engine.

  1. Characterisation of particulate matter and gaseous emissions from a large ship diesel engine

    NASA Astrophysics Data System (ADS)

    Moldanová, Jana; Fridell, Erik; Popovicheva, Olga; Demirdjian, Benjamin; Tishkova, Victoria; Faccinetto, Alessandro; Focsa, Cristian

    Composition of exhaust from a ship diesel engine using heavy fuel oil (HFO) was investigated onboard a large cargo vessel. The emitted particulate matter (PM) properties related to environmental and health impacts were investigated along with composition of the gas-phase emissions. Mass, size distribution, chemical composition and microphysical structure of the PM were investigated. The emission factor for PM was 5.3 g (kg fuel) -1. The mass size distribution showed a bimodal shape with two maxima: one in the accumulation mode with mean particle diameter DP around 0.5 μm and one in the coarse mode at DP around 7 μm. The PM composition was dominated by organic carbon (OC), ash and sulphate while the elemental carbon (EC) composed only a few percent of the total PM. Increase of the PM in exhaust upon cooling was associated with increase of OC and sulphate. Laser analysis of the adsorbed phase in the cooled exhaust showed presence of a rich mixture of polycyclic aromatic hydrocarbon (PAH) species with molecular mass 178-300 amu while PM collected in the hot exhaust showed only four PAH masses. Microstructure and elemental analysis of ship combustion residuals indicate three distinct morphological structures with different chemical composition: soot aggregates, significantly metal polluted; char particles, clean or containing minerals; mineral and/or ash particles. Additionally, organic carbon particles of unburned fuel or/and lubricating oil origin were observed. Hazardous constituents from the combustion of heavy fuel oil such as transitional and alkali earth metals (V, Ni, Ca, Fe) were observed in the PM samples. Measurements of gaseous composition in the exhaust of this particular ship showed emission factors that are on the low side of the interval of global emission factors published in literature for NO x, hydrocarbons (HC) and CO.

  2. CHARACTERIZATION OF PARTICULATE MATTER EMISSION FROM OPEN BURNING OF RICE STRAW.

    PubMed

    Oanh, Nguyen Thi Kim; Bich, Thuy Ly; Tipayarom, Danutawat; Manadhar, Bhai R; Prapat, Pongkiatkul; Simpson, Christopher D; Liu, L-J Sally

    2011-01-01

    Emission from field burning of crop residue, a common practice in many parts of the world today, has potential effects on air quality, atmosphere and climate. This study provides a comprehensive size and compositional characterization of particulate matter (PM) emission from rice straw (RS) burning using both in situ experiments (11 spread field burning) and laboratory hood experiments (3 pile and 6 spread burning) that were conducted during 2003-2006 in Thailand. The carbon balance and emission ratio method was used to determine PM emission factors (EF) in the field experiments. The obtained EFs varied from field to hood experiments reflecting multiple factors affecting combustion and emission. In the hood experiments, EFs were found to be depending on the burning types (spread or pile), moisture content and the combustion efficiency. In addition, in the field experiments, burning rate and EF were also influenced by weather conditions, i.e. wind. Hood pile burning produced significantly higher EF (20±8 g kg(-1) RS) than hood spread burning (4.7±2.2 g kg(-1) RS). The majority of PM emitted from the field burning was PM(2.5) with EF of 5.1±0.7 g m(-2) or 8.3±2.7 g kg(-1) RS burned. The coarse PM fraction (PM(10-2.5)) was mainly generated by fire attention activities and was relatively small, hence the resulting EF of PM(10) (9.4±3.5 g kg(-1) RS) was not significantly higher than PM(2.5). PM size distribution was measured across 8 size ranges (from <0.4 μm to >9.0 μm). The largest fractions of PM, EC and OC were associated with PM(1.1). The most significant components in PM(2.5) and PM(10) include OC, water soluble ions and levoglucosan. Relative abundance of some methoxyphenols (e.g., acetylsyringone), PAHs (e.g., fluoranthene and pyrene), organochlorine pesticides and PCBs may also serve as additional signatures for the PM emission. Presence of these toxic compounds in PM of burning smoke increases the potential toxic effects of the emission. For

  3. Characterization of particulate matter emission from open burning of rice straw

    NASA Astrophysics Data System (ADS)

    Kim Oanh, Nguyen Thi; Ly, Bich Thuy; Tipayarom, Danutawat; Manandhar, Bhai Raja; Prapat, Pongkiatkul; Simpson, Christopher D.; Sally Liu, L.-J.

    2011-01-01

    Emission from field burning of crop residue, a common practice in many parts of the world today, has potential effects on air quality, atmosphere and climate. This study provides a comprehensive size and compositional characterization of particulate matter (PM) emission from rice straw (RS) burning using both in situ experiments (11 spread field burning) and laboratory hood experiments (3 pile and 6 spread burning) that were conducted during 2003-2006 in Thailand. The carbon balance and emission ratio method was used to determine PM emission factors (EF) in the field experiments. The obtained EF varied from field to hood experiments reflecting multiple factors affecting combustion and emission. In the hood experiments, EF were found to be depending on the burning types (spread or pile), moisture content and the combustion efficiency. In addition, in the field experiments, burning rate and EF were also influenced by weather conditions, i.e. wind. Hood pile burning produced significantly higher EF (20 ± 8 g kg -1 RS) than hood spread burning (4.7 ± 2.2 g kg -1 RS). The majority of PM emitted from the field burning was PM 2.5 with EF of 5.1 ± 0.7 g m -2 or 8.3 ± 2.7 g kg -1 RS burned. The coarse PM fraction (PM 10-2.5) was mainly generated by fire attention activities and was relatively small, hence the resulting EF of PM 10 (9.4 ± 3.5 g kg -1 RS) was not significantly higher than PM 2.5. PM size distribution was measured across 8 size ranges (from <0.4 μm to >9.0 μm). The largest fractions of PM, EC and OC were associated with PM 1.1. The most significant components in PM 2.5 and PM 10 include OC, water soluble ions and levoglucosan. Relative abundance of some methoxyphenols (e.g., acetylsyringone), PAHs (e.g., fluoranthene and pyrene), organochlorine pesticides and PCBs may also serve as additional signatures for the PM emission. Presence of these toxic compounds in PM of burning smoke increases the potential toxic effects of the emission. For illustration

  4. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China.

    PubMed

    Guofeng, Shen; Siye, Wei; Wen, Wei; Yanyan, Zhang; Yujia, Min; Bin, Wang; Rong, Wang; Wei, Li; Huizhong, Shen; Ye, Huang; Yifeng, Yang; Wei, Wang; Xilong, Wang; Xuejun, Wang; Shu, Tao

    2012-04-03

    Published emission factors (EFs) often vary significantly, leading to high uncertainties in emission estimations. There are few reliable EFs from field measurements of residential wood combustion in China. In this study, 17 wood fuels and one bamboo were combusted in a typical residential stove in rural China to measure realistic EFs of particulate matter (PM), organic carbon (OC), and elemental carbon (EC), as well as to investigate the influence of fuel properties and combustion conditions on the EFs. Measured EFs of PM, OC, and EC (EF(PM), EF(OC), and EF(EC), respectively) were in the range of 0.38-6.4, 0.024-3.0, and 0.039-3.9 g/kg (dry basis), with means and standard derivation of 2.2 ± 1.2, 0.62 ± 0.64, and 0.83 ± 0.69 g/kg, respectively. Shrubby biomass combustion produced higher EFs than tree woods, and both species had lower EFs than those of indoor crop residue burning (p < 0.05). Significant correlations between EF(PM), EF(OC), and EF(EC) were expected. By using a nine-stage cascade impactor, it was shown that size distributions of PM emitted from tree biomass combustions were unimodal with peaks at a diameter less than 0.4 μm (PM(0.4)), much finer than the PM from indoor crop residue burning. Approximately 79.4% of the total PM from tree wood combustion was PM with a diameter less than 2.1 μm (PM(2.1)). PM size distributions for shrubby biomasses were slightly different from those for tree fuels. On the basis of the measured EFs, total emissions of PM, OC, and EC from residential wood combustion in rural China in 2007 were estimated at about 303, 75.7, and 92.0 Gg.

  5. Emission Factors, Size Distributions and Emission Inventories of Carbonaceous Particulate Matter from Residential Wood Combustion in Rural China

    PubMed Central

    Shen, Guofeng; Wei, Siye; Wei, Wen; Zhang, Yanyan; Min, Yujia; Wang, Bin; Wang, Rong; Li, Wei; Shen, Huizhong; Huang, Ye; Huang, Ye; Yang, Yifeng; Wang, Wei; Wang, Xilong; Wang, Xuejun; Tao, Shu

    2012-01-01

    Published emission factors (EFs) often vary significantly, leading to high uncertainties in emission estimations. There are few reliable EFs from field measurements of residential wood combustion in China. In this study, 17 wood fuels and one bamboo were combusted in a typical residential stove in rural China to measure realistic EFs of particulate matter (PM), organic carbon (OC) and elemental carbon (EC), as well as to investigate the influence of fuel properties and combustion conditions on the EFs. Measured EFs of PM, OC, and EC (EFPM, EFOC, and EFEC, respectively) were in the range of 0.38~6.4, 0.024~3.0 and 0.039~3.9 g/kg (dry basis), with means and standard derivation of 2.2±1.2, 0.62±0.64 and 0.83±0.69 g/kg, respectively. Shrubby biomass combustion produced higher EFs than tree woods, and both species had lower EFs than those of indoor crop residue burning (p<0.05). Significant correlations between EFPM, EFOC and EFEC were expected. By using a nine-stage cascade impactor, it was shown that size distributions of PM emitted from tree biomass combustions were unimodal with peaks at a diameter less than 0.4 µm (PM0.4), much finer than the PM from indoor crop residue burning. Approximately 79.4% of the total PM from tree wood combustion was PM with a diameter less than 2.1µm (PM2.1). PM size distributions for shrubby biomasses were slightly different from those for tree fuels. Based on the measured EFs, total emissions of PM, OC, and EC from residential wood combustion in rural China in 2007 were estimated at about 303, 75.7, and 92.0 Gg. PMID:22380753

  6. Greenhouse Gas and Particulate Emissions and Impacts from Cooking Technologies in Africa

    NASA Astrophysics Data System (ADS)

    Kammen, D. M.; Bailis, R.; Kituyi, E.; Ezzati, M.

    2003-12-01

    In much of Africa, the largest fraction of energy consumption occurs within the residential sector and is derived primarily from woodfuels burned in simple stoves with poor combustion characteristics. Many of the products of incomplete combustion (PICs) are damaging to human health, particularly when they are concentrated in poorly ventilated indoor environments. Incomplete combustion also has potentially harmful impacts on the climate. Prevalent PICs include methane, a potent greenhouse gas (GHG) that is among the pollutants subject to controls under the Kyoto Protocol as well as carbon monoxide (CO), non-methane hydrocarbons (NMHCs) and particulate matter (PM), which can all have an effect on climate, but are not subject to controls under Kyoto. In addition, when woodfuels are used at a rate that reduces standing stocks of trees over the medium or long term, the CO2 released by combustion also has an impact. The choice of stove and fuel technology can have a significant impact on the emission of GHGs as well as on human exposure to health damaging pollutants. In this paper we analyze the emissions of different household energy technologies on a life-cycle basis. We use emission factors to estimate the emissions associated with production, distribution and end-use of common household fuels and assess the likely impacts of these emissions on public health and the global environment. We focus largely on charcoal, a popular fuel in many sub-Saharan African countries. Charcoal is produced by heating wood in the absence of sufficient air for complete combustion to occur. This process removes moisture and most of the volatile compounds. The compounds driven off in the process consist of condensable tars as well as many gaseous hydrocarbons, including ~40 g CH4 per kg of charcoal produced. Combining upstream and end-use emissions, every meal cooked with charcoal has 2-10 times the global warming effect of cooking the same meal with firewood and 5-12 times the effect of

  7. Measuring Particulate Emissions of Light Duty Passenger Vehicles Using Integrated Particle Size Distribution (IPSD).

    PubMed

    Quiros, David C; Zhang, Sherry; Sardar, Satya; Kamboures, Michael A; Eiges, David; Zhang, Mang; Jung, Heejung S; Mccarthy, Michael J; Chang, M-C Oliver; Ayala, Alberto; Zhu, Yifang; Huai, Tao; Hu, Shaohua

    2015-05-05

    The California Air Resources Board (ARB) adopted the low emission vehicle (LEV) III particulate matter (PM) standards in January 2012, which require, among other limits, vehicles to meet 1 mg/mi over the federal test procedure (FTP). One possible alternative measurement approach evaluated to support the implementation of the LEV III standards is integrated particle size distribution (IPSD), which reports real-time PM mass using size distribution and effective density. The IPSD method was evaluated using TSI's engine exhaust particle sizer (EEPS, 5.6-560 nm) and gravimetric filter data from more than 250 tests and 34 vehicles at ARB's Haagen-Smit Laboratory (HSL). IPSD mass was persistently lower than gravimetric mass by 56-75% over the FTP tests and by 81-84% over the supplemental FTP (US06) tests. Strong covariance between the methods suggests test-to-test variability originates from actual vehicle emission differences rather than measurement accuracy, where IPSD offered no statistical improvement over gravimetric measurement variability.

  8. Emission, Dispersion, Transformation, and Deposition of Asian Particulates Over the Western Pacific Ocean

    SciTech Connect

    Turco, Richard P.

    2005-02-28

    In this project we developed and applied a coupled three-dimensional meteorology/chemistry/microphysics model to study the patterns of aerosol dispersion and deposition in the western Pacific area; carried out a series of detailed regional aerosol simulations to test the ability of models to treat emission, dispersion and removal processes prior to long-range transport; calculated and analyzed trajectories that originate in Asian dust source regions and reach the Pacific Basin; performed detailed simulations of regional and trans-Pacific transport, as well as the microphysical and chemical properties, of aerosols in the Asia-Pacific region to quantify processes that control the emission, dispersion and removal of particles; and assessed the contributions of regional-scale Asian particulate sources to the deposition of pollutants onto surface waters. The transport and deposition of aerosols and vapors were found to be strongly controlled by large and synoptic scale meteorology, convection, turbulence, and precipitation, as well as strong interactions between surface conditions and topographical features. The present analysis suggests that accurate representations of aerosol sources, transport and deposition can be obtained using a comprehensive modeling approach.

  9. Emission Factors of Greenhouse Gases and Particulates from Australian Savanna Fires

    NASA Astrophysics Data System (ADS)

    Desservettaz, M.; Paton-Walsh, C.; Griffith, D. W. T.; Kettlewell, G.; Wilson, S. R.; Keywood, M. D.; van der Schoot, M. V.; Selleck, P. W.; Ward, J.; Harnwell, J.; Reisen, F.; Lawson, S. J.; Ristovski, Z.; Mallet, M.; Miljevic, B.; Atkinson, B.; Milic, A.

    2015-12-01

    In June 2014 a measurement campaign took place at Gunn Point in the Northern Territory, Australia, aimed at characterising the emissions from early dry season savanna fires. The campaign was especially focused on understanding aerosol composition and size distribution. Equipment deployed to measure aerosol properties included a multi-angle absorption photometer, a nephelometer, a cloud condensation nuclei counter, a condensation particle counter, two scanning mobility particle sizer, two aerosol mass spectrometers (one a time of flight instrument) , a multi-axis differential optical absorption spectrometer, a volatility-humidity tandem differential mobility analyser and two high volume aerosol samplers (one PM10 and one MOUDI). In addition there were measurements of mercury in both gas and aerosol phase. Complementary measurements of trace gases were provided by a proton transfer reaction mass spectrometer, a volatile organic compounds sequencer, a Fourier transform spectrometer, an ozone analyser and a nitrogen oxides monitor. This presentation will present results from the Fourier transform spectrometer, the scanning mobility particulate sizer, the beta attenuation monitor and the aerosol mass spectrometer. In particular individual fire events have been identified and emission factors calculated for CO2, CO, CH4 N2O and aerosols (PM1, PM10, Aitken and Accumulation mode).

  10. Semi-Volatile and Particulate Polycyclic Aromatic Hydrocarbons inEnvironmental Tobacco Smoke: Cleanup, Speciation and EmissionsFactors

    SciTech Connect

    Gundel, L.A.; Mahanama, K.R.R.; Daisey, J.M.

    1995-02-01

    Studies of phase distributions and emission factors for polycyclic aromatic hydrocarbons (PAH) in environmental tobacco smoke (ETS) require collection and analysis of very small samples. To achieve the necessary selectivity and sensitivity, a method has been devised and tested for extraction and cleanup of gas- and particulate-phase ETS samples. Gas-phase species were trapped by polymeric sorbents, and particles were trapped on filters. The samples were extracted with hot cyclohexane, concentrated and passed through silica solid-phase extraction columns for cleanup. After solvent change, the PAH were determined by high performance liquid chromatography with two programmed fluorescence detectors. PAH concentrations in 15-mg aliquots of National Institute of Standards and Technology Standard Reference Material SRM 1649 (Urban DustIOrganics) agreed well with published values. Relative precision at the 95% confidence level was 8% for SRM 1649 and 20% for replicate samples (5 mg) of ETS particles. Emission factors have been measured for a range of gas- and particulate-phase polycyclic aromatic hydrocarbons in ETS. The emission factors per cigarette were 13.0{+-}0.5 mg particulate matter, 11.2{+-}0.9 pg for gas-phase naphthalene and 74{+-}10 {micro}g for particulate benzo(a)pyrene.

  11. Positron emission tomography in the quantification of cellular and biochemical responses to intrapulmonary particulates

    SciTech Connect

    Jones, Hazel A. . E-mail: hazel.jones@imperial.ac.uk; Hamacher, Kurt; Clark, John C.; Schofield, John B.; Krausz, Thomas; Haslett, Christopher; Boobis, Alan R.

    2005-09-01

    Inhaled mineral dusts and fibres can cause chronic pulmonary inflammation, often leading to permanent scarring with loss of function, but the mechanisms involved remain obscure. There are currently no good methods for monitoring inflammatory processes in situ. Positron emission tomography (PET) of suitable intravenously injected radiolabelled markers provides non-invasive and repeatable methods of quantifying biochemical and cellular responses. We have developed animal models of fibrotic and non-fibrotic pulmonary response to particulate instillation and characterised these by histology. Different components of the inflammatory response have been investigated by PET: (1) [{sup 18}F]-labelled fluoro-deoxyglucose, a positron emitting glucose analogue, accumulates in cells in proportion to their glucose uptake; ex vivo microautoradiography indicates that neutrophils are the cells responsible for an increased signal during pulmonary inflammation; a persistently high uptake is associated with lung scarring. (2) The radioligand [{sup 11}C]-R-PK11195 binds to benzodiazepine-like receptors abundant in macrophages; following particulate instillation, the [{sup 11}C]-R-PK11195 PET signal tracks with lung macrophage accumulation and also localises to regions consistent with macrophage clearance; poor macrophage clearance is associated with fibrosis. (3) [{sup 18}F]-fluoroproline is likely a substrate for extracellular matrix production, especially proline-rich collagen; during active scarring, the rate of lung uptake of fluoroproline is elevated. Localisation of radioactivity in the lung has been validated ex vivo by microautoradiography of tritium analogues of each of the positron emitting tracers. The use of PET to monitor different inflammatory processes by repeated scanning of the same animal or individual is helping to identify key events in the fibrotic process.

  12. Abatement of particulate matter emission from experimental aviary housings for laying hens by spraying rapeseed oil.

    PubMed

    Winkel, A; van Riel, J W; van Emous, R A; Aarnink, A J A; Groot Koerkamp, P W G; Ogink, N W M

    2016-12-01

    In alternative systems for laying hens, concentrations and emission rates of particulate matter (PM) give reason for concern with regard to working conditions, bird health and productivity, and health of residents living near farms. Previously, we found that spraying a film of rapeseed oil onto the litter of broilers could substantially reduce PM concentrations and emissions. The objective of this study was to establish dose-response effects of oil spraying in aviaries on concentrations and emission rates of PM with aerodynamic diameters less than 10 μm (PM10) and 2.5 μm (PM2.5), on stockmen's exposure to PM10, on egg production, exterior quality and behavior of the hens, and on the litter. An experiment was carried out with 4 treatments: 0 (control), 15, 30, and 45 mL/m(2) per d (oil treatments). Each treatment was applied in 2 rooms with different aviary systems (8 rooms in total). The experiment was repeated during a second period, both lasting 35 days. From d 11 to d 35, oil was applied daily using a spraying gun. Applying 15, 30, or 45 mL/m(2) per d significantly reduced emission rates of PM10 by 27, 62, and 82%, and emission rates of PM2.5 by 71, 83, and 94%, respectively. No significant effects of oil spraying were found on mortality, egg production, dust bathing behavior, scratching behavior, plumage soiling, DM content of the litter, or friability of the litter. A significant worsening of the plumage condition was found only for the body spot back/wings/tail (not for: throat/neck, chest/breast, or legs) in the 45 mL/m(2) per d treatment. Egg quality shifted significantly towards more second-class eggs in the oil treatments (1.9% versus 1.4%; P = 0.004). Remarkably, foot soiling decreased with increasing oil application. In conclusion, PM concentrations and emission rates in aviaries can be effectively reduced by spraying 15 to 30 mL/m(2) per d with minor side effects within a 25 d application period.

  13. Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States

    NASA Astrophysics Data System (ADS)

    Greco, Susan L.; Wilson, Andrew M.; Spengler, John D.; Levy, Jonathan I.

    Assessing the public health benefits from air pollution control measures is assisted by understanding the relationship between mobile source emissions and subsequent fine particulate matter (PM 2.5) exposure. Since this relationship varies by location, we characterized its magnitude and geographic distribution using the intake fraction (iF) concept. We considered emissions of primary PM 2.5 as well as particle precursors SO 2 and NO x from each of 3080 counties in the US. We modeled the relationship between these emissions and total US population exposure to PM 2.5, making use of a source-receptor matrix developed for health risk assessment. For primary PM 2.5, we found a median iF of 1.2 per million, with a range of 0.12-25. Half of the total exposure was reached by a median distance of 150 km from the county where mobile source emissions originated, though this spatial extent varied across counties from within the county borders to 1800 km away. For secondary ammonium sulfate from SO 2 emissions, the median iF was 0.41 per million (range: 0.050-10), versus 0.068 per million for secondary ammonium nitrate from NO x emissions (range: 0.00092-1.3). The median distance to half of the total exposure was greater for secondary PM 2.5 (450 km for sulfate, 390 km for nitrate). Regression analyses using exhaustive population predictors explained much of the variation in primary PM 2.5 iF ( R2=0.83) as well as secondary sulfate and nitrate iF ( R2=0.74 and 0.60), with greater near-source contribution for primary than for secondary PM 2.5. We conclude that long-range dispersion models with coarse geographic resolution are appropriate for risk assessments of secondary PM 2.5 or primary PM 2.5 emitted from mobile sources in rural areas, but that more resolved dispersion models are warranted for primary PM 2.5 in urban areas due to the substantial contribution of near-source populations.

  14. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the

  15. Flux estimation of fugitive particulate matter emissions from loose Calcisols at construction sites

    NASA Astrophysics Data System (ADS)

    Hassan, Hala A.; Kumar, Prashant; Kakosimos, Konstantinos E.

    2016-09-01

    A major source of airborne pollution in arid and semi-arid environments (i.e. North Africa, Middle East, Central Asia, and Australia) is the fugitive particulate matter (fPM), which is a frequent product of wind erosion. However, accurate determination of fPM is an ongoing scientific challenge. The objective of this study is to examine fPM emissions from the loose Calcisols (i.e. soils with a substantial accumulation of secondary carbonates), owing to construction activities that can be frequently seen nowadays in arid urbanizing regions such as the Middle East. A two months field campaign was conducted at a construction site, at rest, within the city of Doha (Qatar) to measure number concentrations of PM over a size range of 0.25-32 μm using light scattering based monitoring stations. The fPM emission fluxes were calculated using the Fugitive Dust Model (FDM) in an iterative manner and were fitted to a power function, which expresses the wind velocity dependence. The power factors were estimated as 1.87, 1.65, 2.70 and 2.06 for the four different size classes of particles ≤2.5, 2.5-6, 6-10 and ≤10 μm, respectively. Fitted power function was considered acceptable given that adjusted R2 values varied from 0.13 for the smaller particles and up to 0.69 for the larger ones. These power factors are in the same range of those reported in the literature for similar sources. The outcome of this study is expected to contribute to the improvement of PM emission inventories by focusing on an overlooked but significant pollution source, especially in dry and arid regions, and often located very close to residential areas and sensitive population groups. Further campaigns are recommended to reduce the uncertainty and include more fPM sources (e.g. earthworks) and other types of soil.

  16. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    NASA Astrophysics Data System (ADS)

    De Simone, Francesco; Artaxo, Paulo; Bencardino, Mariantonia; Cinnirella, Sergio; Carbone, Francesco; D'Amore, Francesco; Dommergue, Aurélien; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Landis, Matthew S.; Sprovieri, Francesca; Suzuki, Noriuki; Wängberg, Ingvar; Pirrone, Nicola

    2017-02-01

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improvement when considering a fraction of HgP from BB. The set of sensitivity runs also showed how the quantity and geographical distribution of HgP emitted from BB has a limited impact on a global scale, although the inclusion of increasing fractions HgP does limit Hg0(g) availability to the global atmospheric pool. This reduces the fraction of Hg from BB which deposits to the world's oceans from 71 to 62 %. The impact locally is, however, significant on northern boreal and tropical forests, where fires are

  17. Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel

    NASA Astrophysics Data System (ADS)

    Alves, Célia A.; Gomes, Joana; Nunes, Teresa; Duarte, Márcio; Calvo, Ana; Custódio, Danilo; Pio, Casimiro; Karanasiou, Angeliki; Querol, Xavier

    2015-02-01

    In order to address road traffic emissions, studies need to be performed under realistic driving conditions where the input from other sources is minimised. Measurements in traffic tunnels have been used for quantifying emissions, but so far no study has established emission factors (EFs) for Southern Europe. To fill this gap, a sampling campaign was carried out for one week in the Liberdade Avenue tunnel (Braga, Portugal). The campaign included the monitoring of gaseous pollutants (CO2, CO, NOx) and suspended particulate matter (PM) at two sites, one in the tunnel and another in an urban background location. Organic and elemental carbon (OC and EC) in size-segregated particles (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) were determined by a thermal-optical system, whereas major and trace elements were analysed by ICP-MS and ICP-AES. PM0.5 accounted for 56% of the PM10 mass, while PM2.5-10 represented only 12%. The carbonaceous fraction was concentrated in PM0.5, encompassing 88% of the EC and 67% of the OC present in PM10. Elements attributable to non-exhaust emissions could be divided into two groups. Fe, Ba, Cu, Sb, Sn and Zn, from tyre and brake wear, were more abundant in particles between 1 and 2 μm. Ca, Al, K, Sr and Ti, associated with soil resuspension, were mainly present in particles > 2 μm. The average EFs of CO, CO2 and NOx were 212, 4.02 and 1.22 g veh- 1 km- 1, respectively, while values of 152 mg PM10 veh- 1 km- 1 and 133 mg PM2.5 veh- 1 km- 1 were obtained for the particles. OC and EC emission factor was 39 mg veh- 1 km- 1 for PM10. The corresponding OC and EC values for PM2.5 were 34 and 38 mg veh- 1 km- 1. The EFs are slightly lower than those found for other tunnels, but within the ranges presented by the EMEP/EEA inventory.

  18. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends.

    PubMed

    Cheung, C S; Zhu, Ruijun; Huang, Zuohua

    2011-01-01

    The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small.

  19. Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural Northern China

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Wang, Wei; Yang, Yifeng; Zhu, Chen; Min, Yujia; Xue, Miao; Ding, Junnan; Li, Wei; Wang, Bin; Shen, Huizhong; Wang, Rong; Wang, Xilong; Tao, Shu

    2010-12-01

    Coal consumption is one important contributor to energy production, and is regarded as one of the most important sources of air pollutants that have considerable impacts on human health and climate change. Emissions of polycyclic aromatic hydrocarbons (PAHs) from coal combustion were studied in a typical stove. Emission factors (EFs) of 16 EPA priority PAHs from tested coals ranged from 6.25 ± 1.16 mg kg -1 (anthracite) to 253 ± 170 mg kg -1 (bituminous), with NAP and PHE dominated in gaseous and particulate phases, respectively. Size distributions of particulate phase PAHs from tested coals showed that they were mostly associated with particulate matter (PM) with size either between 0.7 and 2.1 μm or less than 0.4 μm (PM 0.4). In the latter category, not only were more PAHs present in PM 0.4, but also contained higher fractions of high molecular weight PAHs. Generally, there were more than 89% of total particulate phase PAHs associated with PM 2.5. Gas-particle partitioning of freshly emitted PAHs from residential coal combustions were thought to be mainly controlled by absorption rather than adsorption, which is similar to those from other sources. Besides, the influence of fuel properties and combustion conditions was further investigated by using stepwise regression analysis, which indicated that almost 57 ± 10% of total variations in PAH EFs can be accounted for by moisture and volatile matter content of coal in residential combustion.

  20. Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural Northern China

    PubMed Central

    Shen, Guofeng; Wang, Wei; Yang, Yifeng; Zhu, Chen; Min, Yujia; Xue, Miao; Ding, Junnan; Li, Wei; Wang, Bin; Shen, Huizhong; Wang, Rong; Wang, Xilong; Tao, Shu

    2013-01-01

    Coal consumption is one important contributor to energy production, and is regarded as one of the most important sources of air pollutants that have considerable impacts on human health and climate change. Emissions of polycyclic aromatic hydrocarbons (PAHs) from coal combustion were studied in a typical stove. Emission factors (EFs) of 16 EPA priority PAHs from tested coals ranged from 6.25 ± 1.16 mg kg−1 (anthracite) to 253 ± 170 mg kg−1 (bituminous), with NAP and PHE dominated in gaseous and particulate phases, respectively. Size distributions of particulate phase PAHs from tested coals showed that they were mostly associated with particulate matter (PM) with size either between 0.7 and 2.1 μm or less than 0.4 μm (PM0.4). In the latter category, not only were more PAHs present in PM0.4, but also contained higher fractions of high molecular weight PAHs. Generally, there were more than 89% of total particulate phase PAHs associated with PM2.5. Gas-particle partitioning of freshly emitted PAHs from residential coal combustions were thought to be mainly controlled by absorption rather than adsorption, which is similar to those from other sources. Besides, the influence of fuel properties and combustion conditions was further investigated by using stepwise regression analysis, which indicated that almost 57 ± 10% of total variations in PAH EFs can be accounted for by moisture and volatile matter content of coal in residential combustion. PMID:24179437

  1. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size

  2. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    PubMed

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.

  3. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    PubMed Central

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of <0.01 μg/m3. Proximity and modelled PM10 concentrations for both MSWIs at postcode level were highly correlated when using continuous measures (Spearman correlation coefficients ~ 0.7) but showed poor agreement for categorical measures (deciles or quintiles, Cohen's kappa coefficients ≤ 0.5). Conclusion. To provide the most appropriate estimate of ambient exposure from MSWIs, it is essential that incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  4. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  5. Particulate Emissions from a Stationary Engine Fueled with Ultra-Low-Sulfur Diesel and Waste-Cooking-Oil-Derived Biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. [Box: see text].

  6. Trace gases and particulate matter emissions from wildfires and agricultural burning in Northeastern Mexico during the 2000 fire season.

    PubMed

    Mendoza, Alberto; Garcia, Marisa R; Vela, Patricia; Lozano, D Fabian; Allen, David

    2005-12-01

    An inventory of air pollutants emitted from forest and agricultural fires in Northeastern Mexico for the period of January to August of 2000 is presented. The emissions estimates were calculated using an emissions factor methodology. The inventory accounts for the emission of carbon monoxide (CO), methane, nonmethane hydrocarbons, ammonia, nitrogen oxides, and particulate matter (PM). Particulate matter emissions include estimates for fine PM and coarse PM. A total of 2479 wildfires were identified in the domain for the period of interest, which represented approximately 810,000 acres burned and 621,130 short tons emitted (81% being CO). The main source of information used to locate and estimate the extent of the fires came from satellite imagery. A geographic information system was used to determine the type of vegetation burned by each fire. More than 54% of the total area burned during the period of study was land on the State of Tamaulipas. However, >58% of the estimated emissions came from the State of Coahuila. This was because of the mix of vegetation types burned in each state. With respect to the temporal distribution, 76.9% of the fires occurred during the months of April and May consuming almost 78% of the total area burned during the period of study. Analysis of wind forward trajectories of air masses passing through the burned areas and 850-mb wind reanalyses indicate possible transboundary transport of the emissions from Mexico to the United States during the occurrence of the major wildfires identified.

  7. Source apportionment of particulate matter in Chinese megacities: the implication for emission control strategies

    NASA Astrophysics Data System (ADS)

    Huang, Ru-Jin; Elser, Miriam; Wang, Qiyuan Wang; Bozzetti, Carlo; Wolf, Robert; Wang, Yichen; Ni, Haiyan; Wang, Meng; Ho, Kin-Fai; Han, Yongming; Dällenbach, Kaspar; Canonaco, Francesco; Slowik, Jay; El Haddad, Imad; Baltensperger, Urs; Cao, Junji; Prévôt, André S. H.

    2015-04-01

    The rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. A quantitative understanding of these effects has proven extremely challenging due to spatial and temporal variability in the sources of aerosols and their precursors, the complexity of particle composition, and uncertainties associated with the atmospheric aging of existing particles (Pöschl 2005; Hallquist et al., 2009; Huang et al., 2014). Nowadays the average PM2.5 concentrations in China are approximately one to two orders of magnitude higher than those observed in urban areas in the US and European countries (Cao 2012). This has forced the Chinese government to announce its first national environmental standard for PM2.5 in 2012 and to make highly ambitious plans for emission control. The Chinese aim to reduce the PM2.5 concentrations by up to 25% of the 2012 levels by 2017, backed by 277 billion investments from the central government. To achieve this ambitious aim, a better understanding of the aerosol composition, sources, and atmospheric processing is required. In this study, we present the results from intensive field measurement campaigns carried out in Chinese megacities in 2013/2014. The sources of PM2.5 and the organic aerosol (OA) were investigated by applying the multi-linear engine (ME-2) receptor model (Canonaco et al., 2013) to a comprehensive dataset. Primary sources including vehicle emissions, biomass burning, coal burning, and dust-related emissions were identified and quantified. The contributions from secondary aerosol formation processes to total PM2.5 mass and OA mass were evaluated. Detailed results will be presented and discussed. References Cao, J. J. (2012) J. Earth Environ., 3, 1030

  8. Particulate Emissions from the Combustion of Diesel Fuel with a Fuel-Borne Nanoparticulate Cerium Catalyst

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Willis, R. D.; Weinstein, J. P.; Krantz, T.; King, C.

    2013-12-01

    To address the adverse impacts on health and climate from the use of diesel-fueled vehicles, a number of technological solutions have been developed for reducing diesel soot emissions and to improve fuel economy. One such solution is the use fuel-borne metal oxide catalysts. Of current interest are commercially-available fuel additives consisting of nanoparticulate cerium oxide (CeO2). In response to the possible use of CeO2-containing fuels in on-road vehicles in the U.S., the Environmental Protection Agency is conducting research to address the potential toxicity and environmental effects of particulate CeO2 emitted with diesel soot. In this study, emissions from a diesel-fueled electric generator were size-segregated on polished silicon wafers in a nanoparticle cascade impactor. The diesel fuel contained 10 ppm Ce by weight in the form of crystalline CeO2 nanoparticles 4 nm to 7.5 nm in size. Primary CeO2 nanoparticles were observed in the diesel emissions as well as CeO2 aggregates encompassing a broad range of sizes up to at least 200 nm. We report the characterization of individual particles from the size-resolved samples with focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy. Results show a dependency between the impactor size range and CeO2 agglomeration state: in the larger size fractions of the impactor (e.g., 560 nm to 1000 nm) CeO2 nanoparticles were predominantly attached to soot particles. In the smaller size fractions of the impactor (e.g., 100 nm to 320 nm), CeO2 aggregates tended to be larger and unattached to soot. The result is important because the deposition of CeO2 nanoparticles attached to soot particles in the lung or on environmental surfaces such as plant tissue will likely present different consequences than the deposition of unagglomerated CeO2 particles. Disclaimer The U.S. Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described

  9. Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan.

    PubMed

    Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching

    2010-10-01

    Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.

  10. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  11. Emissions of particulate-bound elements from biodiesel and ultra low sulfur diesel: size distribution and risk assessment.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2013-01-01

    Use of waste cooking oil derived biodiesel (WCOB) as an alternative fuel in diesel engines has increased significantly in recent years. The impact of WCOB on particulate emissions from diesel engines needs to be investigated thoroughly. This study was conducted to make a comparative evaluation and size-differentiated speciation of the particulate bound elements from ultra low sulfur diesel (ULSD) and WCOB and a blend of both of the fuels (B50). Particle mass and their elemental size distributions ranging from 0.01-5.6 μm were measured. It was observed that more ultrafine particles (UFPs, <100 nm) were emitted when the engine was fueled with WCOB. Fifteen particulate-bound elements such as K, Al, Mg, Co, Cr, Cu, Fe, Mn, Cd, Ni, As, Ba, Pb, Zn and Sr were investigated and reported in this study. Potential health risk associated with these particulate bound elements upon inhalation was also evaluated based on dose-response assessments for both adults and children. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to that of ULSD. Also, investigations on human health risk due to exposure to UFPs indicate that UFPs contribute a major fraction (>70%) of the total estimated health risk.

  12. Bioavailability and biotransformation of the mutagenic component of particulate emissions present in motor exhaust samples.

    PubMed Central

    Vostal, J J

    1983-01-01

    The pharmacokinetic concepts of bioavailability and biotransformation are introduced into the assessment of public health risk from experimental data concerning the emissions of potentially mutagenic and carcinogenic substances from motor vehicles. The inappropriateness of an automatic application in the risk assessment process of analytical or experimental results, obtained with extracts and procedures incompatible with the biological environment, is illustrated on the discrepancy between short-term laboratory tests predictions that wider use of diesel engines on our roads will increase the risk of respiratory cancer and the widely negative epidemiological evidence. Mutagenic activity of diesel particulates was minimal or negative when tested in extracts obtained with biological fluids, was substantially dependent on the presence of nitroreductase in the microbial tester strain, and disappeared completely 48 hr after the diesel particles had been phagocytized by alveolar macrophages. Similarly, long-term animal inhalation exposures to high concentrations of diesel particles did not induce the activity of hydrocarbon metabolizing enzymes or specific adverse immune response unless organic solvent extracts of diesel particles were administered intratracheally or parenterally in doses that highly exceed the predicted levels of public exposure even by the year 2000. Furthermore, the suspected cancer producing effects of inhaled diesel particles have thus far not been verified by experimental animal models or available long-term epidemiological observations. It is concluded that unless the biological accessibility of the active component on the pollutant as well as its biotransformation and clearance by natural defense mechanisms are considered, lung cancer risk assessment based solely on laboratory microbial tests will remain an arbitrary and unrealistic process and will not provide meaningful information on the potential health hazard of a pollutant. PMID:6186478

  13. Modelisation 0D/1D des emissions de particules de suie dans les turbines a gaz aeronautiques

    NASA Astrophysics Data System (ADS)

    Bisson, Jeremie

    Because of more stringent regulations of aircraft particle emissions as well as strong uncertainties about their formation and their effects on the atmosphere, a better understanding of particle microphysical mechanisms and their interactions with the engine components is required. This thesis focuses on the development of a 0D/1D combustion model with soot production in an aeronautical gas turbine. A major objective of this study is to assess the quality of soot particle emission predictions for different flight configurations. The model should eventually allow performing parametric studies on current or future engines with a minimal computation time. The model represents the combustor as well as turbines and nozzle with a chemical reactor network (CRN) that is coupled with a detailed combustion chemistry for kerosene (Jet A-1) and a soot particle dynamics model using the method of moments. The CRN was applied to the CFM56-2C1 engine during flight configurations of the LTO cycle (Landing-Take-Off) as in the APEX-1 study on aircraft particle emissions. The model was mainly validated on gas turbine thermodynamic data and pollutant concentrations (H2O, COX, NOx, SOX) which were measured in the same study. Once the first validation completed, the model was subsequently used for the computation of mass and number-based emissions indices of the soot particulate population and average diameter. Overall, the model is representative of the thermodynamic conditions and succeeds in predicting the emissions of major pollutants, particularly at high power. Concerning soot particulate emissions, the model's ability to predict simultaneously the emission indices as well as mean diameter has been partially validated. Indeed, the mass emission indices have remained higher than experimental results particularly at high power. These differences on particulate emission index may be the result of uncertainties on thermodynamic parameters of the CRN and mass air flow distribution in

  14. Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions.

    PubMed

    Seagrave, JeanClare; McDonald, Jacob D; Gigliotti, Andrew P; Nikula, Kristen J; Seilkop, Steven K; Gurevich, Michael; Mauderly, Joe L

    2002-12-01

    Exposure to engine emissions is associated with adverse health effects. However, little is known about the relative effects of emissions produced by different operating conditions, fuels, or technologies. Rapid screening techniques are needed to compare the biological effects of emissions with different characteristics. Here, we examined a set of engine emission samples using conventional bioassays. The samples included combined particulate material and semivolatile organic compound fractions of emissions collected from normal- and high-emitter gasoline and diesel vehicles collected at 72 degrees F, and from normal-emitter groups collected at 30 degrees F. The relative potency of the samples was determined by statistical analysis of the dose-response curves. All samples induced bacterial mutagenicity, with a 10-fold range of potency among the samples. Responses to intratracheal instillation in rats indicated generally parallel rankings of the samples by multiple endpoints reflecting cytotoxic, inflammatory, and lung parenchymal changes, allowing selection of a more limited set of parameters for future studies. The parameters selected to assess oxidative stress and macrophage function yielded little useful information. Responses to instillation indicated little difference in potency per unit of combined particulate material and semivolatile organic compound mass between normal-emitter gasoline and diesel vehicles, or between emissions collected at different temperatures. However, equivalent masses of emissions from high-emitter vehicles of both types were more potent than those from normal-emitters. While preliminary in terms of assessing contributions of different emissions to health hazards, the results indicate that a subset of this panel of assays will be useful in providing rapid, cost-effective feedback on the biological impact of modified technology.

  15. Control of diesel gaseous and particulate emissions with a tube-type wet electrostatic precipitator.

    PubMed

    Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Liang, Fuyan; Khang, Soon-Jai

    2008-10-01

    In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms

  16. IDENTIFICATION AND EMISSION RATES OF MOLECULAR TRACERS IN COAL SMOKE PARTICULATE MATTER. (R823990)

    EPA Science Inventory

    The abundances and distributions of organic constituents in coal smoke particulate matter are dependent on thermal combustion temperature, ventilation, burn time, and coal rank (geologic maturity). Important coal rank indicators from smoke include (1) the decreases in CPIs of ...

  17. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  18. DIFFERENTIAL CARDIAC ARRHYTHMIA PROFILES IN HYPERTENSIVE AND NORMAL RATS AFTER EMISSION SOURCE PARTICULATE EXPOSURE

    EPA Science Inventory

    Exposure to combustion-derived fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. These effects are especially conspicuous in individuals with pre-existing cardiovascular diseases including hypertension and coronary heart disease...

  19. Effectiveness of Mitigation Measures in Reducing Future Primary Particulate Matter Emissions from On-Road Vehicle Exhaust

    SciTech Connect

    Yan, Fang; Bond, Tami C.; Streets, David G.

    2014-12-16

    This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much as 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa

  20. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    PubMed

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

  1. Assessment of Microphysical Models in the National Combustion Code (NCC) for Aircraft Particulate Emissions: Particle Loss in Sampling Lines

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2008-01-01

    This paper at first describes the fluid network approach recently implemented into the National Combustion Code (NCC) for the simulation of transport of aerosols (volatile particles and soot) in the particulate sampling systems. This network-based approach complements the other two approaches already in the NCC, namely, the lower-order temporal approach and the CFD-based approach. The accuracy and the computational costs of these three approaches are then investigated in terms of their application to the prediction of particle losses through sample transmission and distribution lines. Their predictive capabilities are assessed by comparing the computed results with the experimental data. The present work will help establish standard methodologies for measuring the size and concentration of particles in high-temperature, high-velocity jet engine exhaust. Furthermore, the present work also represents the first step of a long term effort of validating physics-based tools for the prediction of aircraft particulate emissions.

  2. Indoor air quality in a middle school, Part II: Development of emission factors for particulate matter and bioaerosols.

    PubMed

    Scheff, P A; Paulius, V K; Curtis, L; Conroy, L M

    2000-11-01

    A middle school (grades 6 to 8) in a residential section of Springfield, Illinois, with no known air quality problems, was selected for a baseline indoor air quality survey. The study was designed to measure and evaluate air quality at the middle school with the objective of providing a benchmark for comparisons with measurements in schools with potential air quality problems. The focus of this article is on the development of emission factors for particulate matter and bioaerosols. The school was characterized as having no health complaints and good maintenance schedules. Four indoor locations including the cafeteria, a science classroom, an art classroom, the lobby outside the main office, and one outdoor location were sampled for various environmental comfort and pollutant parameters for one week in February 1997. Integrated samples (eight-hour sampling time) for respirable and total particulate matter, and short-term measurements (two-minute samples, three times per day) for bioaerosols were collected on three consecutive days at each of the sampling sites. Continuous measurements of carbon dioxide were logged at all locations for five days. Continuous measurements of respirable particulate matter were also collected in the lobby area. A linear relationship between occupancy and corresponding carbon dioxide and particle concentrations was seen. A completely mixed space, one compartment mass balance model with estimated CO2 generation rates and actual CO2 and particulate matter concentrations was used to model ventilation and pollutant emission rates. Emission factors for occupancy were represented by the slope of emission rate versus occupancy scatter plots. The following particle and bioaerosol emission factors were derived from the indoor measurements: total particles: 1.28 mg/hr/person-hr; respirable particles: 0.154 g/hr/person-hr; total fungi: 167 CFU/hr/person-min; thermophilic fungi: 35.8 CFU/hr/person-min; mesophilic fungi: 119 CFU/hr/person-min; total

  3. VOC and particulate emissions from commercial cigarettes: analysis of 2,5-DMF as an ETS tracer.

    PubMed

    Charles, Simone M; Jia, Chunrong; Batterman, Stuart A; Godwin, Christopher

    2008-02-15

    Emissions of particulate matter (PM) and a broad suite of target volatile organic compounds (VOCs) in total, main-stream (MS) and side-stream (SS) smoke emissions are measured for six types of commercial cigarettes. The suitability of 2,5-dimethyl furan (DMF) as a tracer for environmental tobacco smoke (ETS) is investigated using laboratory results and a field study of 47 residences. Over 30 VOCs were characterized in cigarette smoke, including several that have not been reported previously. "regular tar", "low tar", menthol, and nonmenthol cigarettes showed only minor differences in PM and VOC emissions. When total emissions are considered, PM emissions averaged 18 +/- 2 mg cigarette(-1) and VOC emissions averaged 3644 +/- 160 mg cigarette(-1). DMF appears to satisfy all requirements for a tracer, namely, uniqueness, detectability, similar emission factors across tobacco products (211 +/- 16 microg cigarette(-1)), consistent proportions to other ETS compounds, and behavior similar to other ETS components in relevant environments. On the basis of field study results, DMF more reliably indicated smoking status than occupant-completed questionnaires, and cigarette smoking was responsible for significant fractions of benzene (50%), styrene (49%), and other VOCs in the smoker's homes.

  4. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: comparison of emission rates and secondhand exposure.

    PubMed

    Saffari, Arian; Daher, Nancy; Ruprecht, Ario; De Marco, Cinzia; Pozzi, Paolo; Boffi, Roberto; Hamad, Samera H; Shafer, Martin M; Schauer, James J; Westerdahl, Dane; Sioutas, Constantinos

    2014-01-01

    In recent years, electronic cigarettes have gained increasing popularity as alternatives to normal (tobacco-containing) cigarettes. In the present study, particles generated by e-cigarettes and normal cigarettes have been analyzed and the degree of exposure to different chemical agents and their emission rates were quantified. Despite the 10-fold decrease in the total exposure to particulate elements in e-cigarettes compared to normal cigarettes, specific metals (e.g. Ni and Ag) still displayed a higher emission rate from e-cigarettes. Further analysis indicated that the contribution of e-liquid to the emission of these metals is rather minimal, implying that they likely originate from other components of the e-cigarette device or other indoor sources. Organic species had lower emission rates during e-cigarette consumption compared to normal cigarettes. Of particular note was the non-detectable emission of polycyclic aromatic hydrocarbons (PAHs) from e-cigarettes, while substantial emission of these species was observed from normal cigarettes. Overall, with the exception of Ni, Zn, and Ag, the consumption of e-cigarettes resulted in a remarkable decrease in secondhand exposure to all metals and organic compounds. Implementing quality control protocols on the manufacture of e-cigarettes would further minimize the emission of metals from these devices and improve their safety and associated health effects.

  5. Particulate monitoring, modeling, and management: natural sources, long-range transport, and emission control options: a case study of Cyprus

    NASA Astrophysics Data System (ADS)

    Kleanthous, Savvas; Savvides, Chrysanthos; Christofides, Ioannis; Hadjimitsis, Diofantos G.; Themistocleous, Kyriacos; Achilleos, Constantia; Akylas, Evangelos; Demetriadou, Chrystalla; Christodoulides, Pavlos; Douros, Ioannis; Moussiopoulos, Nicolas; Panayiotou, Charalambos; Gregoris, Charalambous; Fedra, Kurt; Kubat, Milan; Mihalopoulos, Nicolaos

    2013-08-01

    The LIFE+ Project PM3: Particulate Monitoring, Modeling, Management is coordinated by the Department of Labour Inspection in Cyprus and funded in part by LIFE+ Environment Policy & Governance. The project aims at the analysis of dust emissions, transport, and control options for Cyprus, as well as at the identification of "natural" contributions (Directive 2008/50/EC). The ultimate objective is to provide inputs for the design of a dust management plan to improve compliance to EC Directives and minimise impacts to human health and environment. This paper presents a short analysis of historical monitoring data and their patterns as well as a description of a dynamic dust entrainment model. The pyrogenic PM10 emissions combined with the wind driven emissions, are subject to a two phase non-linear multi-criteria emission control optimization procedure. The resulting emission scenarios with an hourly resolution provide input to the Comprehensive Air quality Model with extensions (CAMx) 3D fate and transport model, implemented for the 4,800 km master domain and embedded subdomains (270 km around the island of Cyprus and embedded smaller city domains of up to 30 km down to street canyon modeling). The models test the feasibility of candidate emission control solutions over a range of weather conditions. Model generated patterns of local emissions and long-range transport are discussed compared with the monitoring data, remote sensing (MODIS derived AOT), and the chemical analysis of dust samples.

  6. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

    NASA Astrophysics Data System (ADS)

    Jalava, Pasi I.; Happo, Mikko S.; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Hukkanen, Annika; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2012-04-01

    Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM1 samples from the furnaces were collected in an experimental setup with a Dekati® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic

  7. A comprehensive study of the characterization of particulate matter emissions from a Delmarva broiler poultry operation

    NASA Astrophysics Data System (ADS)

    Carter, Shannon E.

    Particulate matter (PM) emissions from agricultural practices, including those from animal feeding operations (AFO's) have become an increasingly important topic, and has generated considerable interest from local and state agencies, as well as, the local community over the past decade. Because of growth in population, and an increase in commercial and residential development within close proximity to these operations, which house a large number of animals in confinement, and because of a better understanding of the effects of exposure to airborne contaminants on health, this has lead to an increase in concerns and a demand for more research to be conducted on PM from AFO's. Particulate matter generated within, and emitted from, AFO's can carry with it various components including metals and microorganisms that can negatively affect health. This research was conducted in order to verify if PM from a broiler poultry operation on Delmarva has the potential to become a health concern. The first step was to determine concentrations of two size segregated fractions of PM from indoor and outdoor sampling sites over four seasonal periods, early summer (ES), late summer (LS), Fall (F), and Winter (W). Both PM10 and PM2.5 were collected because of their classification from the Environmental Protection Agency as having the ability to cause significant health effects with short-term exposure. Next, temporal and spatial characteristics were investigated to determine their effects on PM concentrations over the four seasonal periods. Following this, the chemical composition and morphology of PM10 and PM2.5 generated from the broiler poultry operation was investigated. Finally, further detailed information was obtained on arsenic speciation and oxidation state in PM to investigate toxicity. Arsenic use in the poultry industry has been occurring for a number of decades, and is most frequently administered in the organic form. However, studies have shown that these organo

  8. Particulate emission abatement for Krakow boiler houses. Technical progress report {number_sign}7, October 1--December 31, 1995

    SciTech Connect

    1996-01-12

    This project involves the implementation of a new particulate control technology called a Core Separator for low emission sources (LES) in Krakow. With several hundred boiler sites in the city burning low grade coal, existing pollution control equipment consists primarily of low efficiency cyclones. Such equipment cannot meet the emission standards of most industrial nations. More importantly, these conditions have been the cause of low ambient air quality in Krakow from suspended particles. The Core Separator can be retrofitted onto these boiler houses to substantially reduce particulate emissions, particularly those consisting of the fraction classified as PM10. In this project, Core Separator technology will be demonstrated for boiler house applications in the Krakow region. Phase 1 entailed business planning and infrastructure studies to determine the market for this equipment. In the second phase, the technology is to be demonstrated in several boilers of different capacity and firing various grades of coal. Later, a joint venture company will be established with the capability of manufacturing and supplying this equipment in Krakow and throughout Poland. Several new installations are now nearing completion in Krakow. As of this writing, four Core Separator units have been installed in Krakow and others have been proposed.

  9. Uncontrolled combustion of shredded tires in a landfill – Part 1: Characterization of gaseous and particulate emissions

    PubMed Central

    Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika; Simmons, Donald L.; Wels, Brian R.; Spak, Scott N.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles; Stone, Elizabeth A.

    2014-01-01

    In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies’ findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg−1), particle number (3.5×1016 kg−1), PM2.5 (5.3 g kg−1), EC (2.37 g kg−1), and 19 individual PAH (totaling 56 mg kg−1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85-0.98. Recommendations for future research on this under-characterized source are also provided. PMID:25663800

  10. Particulate hydroxy-PAH emissions from a residential wood log stove using different fuels and burning conditions

    NASA Astrophysics Data System (ADS)

    Avagyan, Rozanna; Nyström, Robin; Lindgren, Robert; Boman, Christoffer; Westerholm, Roger

    2016-09-01

    Hydroxylated polycyclic aromatic hydrocarbons are oxidation products of polycyclic aromatic hydrocarbons, but have not been studied as extensively as polycyclic aromatic hydrocarbons. Several studies have however shown that hydroxylated polycyclic aromatic hydrocarbons have toxic and carcinogenic properties. They have been detected in air samples in semi urban areas and combustion is assumed to be the primary source of those compounds. To better understand the formation and occurrence of particulate hydroxylated polycyclic aromatic hydrocarbons from residential wood log stove combustion, 9 hydroxylated polycyclic aromatic hydrocarbons and 2 hydroxy biphenyls were quantified in particles generated from four different types of wood logs (birch, spruce, pine, aspen) and two different combustion conditions (nominal and high burn rate). A previously developed method utilizing liquid chromatography - photo ionization tandem mass spectrometry and pressurized liquid extraction was used. Polycyclic aromatic hydrocarbons were analyzed along with hydroxylated polycyclic aromatic hydrocarbons. The hydroxylated polycyclic aromatic hydrocarbon emissions varied significantly across different wood types and burning conditions; the highest emissions for nominal burn rate were from spruce and for high burn rate from pine burning. Emissions from nominal burn rate corresponded on average to 15% of the emissions from high burn rate, with average emissions of 218 μg/MJfuel and 32.5 μg/MJfuel for high burn rate and nominal burn rate, respectively. Emissions of the measured hydroxylated polycyclic aromatic hydrocarbons corresponded on average to 28% of polycyclic aromatic hydrocarbons emissions. This study shows that wood combustion is a large emission source of hydroxylated polycyclic aromatic hydrocarbons and that not only combustion conditions, but also wood type influences the emissions of hydroxylated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons. There are

  11. Users guide for the conversion of Navy paint spray booth particulate emission control systems from wet to dry operation

    NASA Astrophysics Data System (ADS)

    Ayer, Jacqueline; Tate, Darrel

    1990-06-01

    Users are provided instructions and cost evaluation information for converting the water curtain particulate emission control system currently used on many Navy painting facilities to dry filter operation. Engineering and logistical issues are addressed, and example design plans are provided. Construction and operating permit requirements mandated by regulatory agencies, such as air pollution control districts and fire departments, are discussed. Cost estimates that may be used to perform comprehensive cost evaluation analyses are provided. In addition, sample calculations that illustrate how to use the cost data are included.

  12. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine.

    PubMed

    Brem, Benjamin T; Durdina, Lukas; Siegerist, Frithjof; Beyerle, Peter; Bruderer, Kevin; Rindlisbacher, Theo; Rocci-Denis, Sara; Andac, M Gurhan; Zelina, Joseph; Penanhoat, Olivier; Wang, Jing

    2015-11-17

    Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards.

  13. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  14. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    PubMed

    Chang, M-C Oliver; Shields, J Erin

    2017-01-03

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards.

  15. Characterization of size-specific particulate matter emission rates for a simulated medical laser procedure--a pilot study.

    PubMed

    Lopez, Ramon; Lacey, Steven E; Lippert, Julia F; Liu, Li C; Esmen, Nurtan A; Conroy, Lorraine M

    2015-05-01

    Prior investigation on medical laser interaction with tissue has suggested device operational parameter settings influence laser generated air contaminant emission, but this has not been systematically explored. A laboratory-based simulated medical laser procedure was designed and pilot tested to determine the effect of laser operational parameters on the size-specific mass emission rate of laser generated particulate matter. Porcine tissue was lased in an emission chamber using two medical laser systems (CO2, λ = 10,600 nm; Ho:YAG, λ = 2100 nm) in a fractional factorial study design by varying three operational parameters (beam diameter, pulse repetition frequency, and power) between two levels (high and low) and the resultant plume was measured using two real-time size-selective particle counters. Particle count concentrations were converted to mass emission rates before an analysis of variance was used to determine the influence of operational parameter settings on size-specific mass emission rate. Particle shape and diameter were described for a limited number of samples by collecting particles on polycarbonate filters, and photographed using a scanning electron microscope (SEM) to examine method of particle formation. An increase in power and decrease in beam diameter led to an increase in mass emission for the Ho:YAG laser at all size ranges. For the CO2 laser, emission rates were dependent on particle size and were not statistically significant for particle ranges between 5 and 10 µm. When any parameter level was increased, emission rate of the smallest particle size range also increased. Beam diameter was the most influential variable for both lasers, and the operational parameters tested explained the most variability at the smallest particle size range. Particle shape was variable and some particles observed by SEM were likely created from mechanical methods. This study provides a foundation for future investigations to better estimate size

  16. Reduction in trace particulate matter emissions due to adoption of clean diesel technology at a major port

    NASA Astrophysics Data System (ADS)

    Kuwayama, Toshihiro

    Air pollution emissions from major ports around the world contribute to airborne particulate matter (PM) exposure in surrounding communities. The Port of Oakland is one of three major shipping ports in California that collectively account for 39% of all the goods movement in the United States. The current study is the first to perform relatively complete chemical speciation on the real-world reduction in primary PM emissions from heavy duty trucks at a major shipping Port during the implementation of a retrofit and replacement program. Measurements of fine PM composition at the Port were analyzed using Positive Matrix Factorization (PMF) to identify five dominant PM sources: shipping, port truck traffic, distant on-road traffic, background sea spray, and road dust. Changes to port truck traffic related PM concentration on days with similar meteorological conditions during and after implementation of the controls programs were used as a direct indication of emissions reductions. Primary PM mass emissions from port trucks decreased by 75% due to the control program which meets the target inherent in the Emissions Reduction Plan for Ports and Goods Movement in California. Contributions of PM components attributed to Port truck activities decreased by amounts ranging from 66-86% (elemental carbon (EC) = 66%, organic carbon (OC) = 78%, Na = 82%, Ba = 84%, Fe = 87%). These reductions include contributions from both tailpipe emissions and brake/tire wear. Prior to implementation of the control program, port trucks accounted for approximately 56% of the ambient EC concentrations in the vicinity of the Port while ships accounted for approximately 12% of the EC concentrations. After implementation of the control program, port trucks and ships accounted for approximately 23% and 29% of the ambient EC concentrations at the Port, respectively. This estimate does not account for rail emissions that were downwind of the sampling site. The current study provides an example of how

  17. 2012 update-characterization of cotton gin particulate matter emissions study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, EPA implemented a more stringent standard for PM2.5, particulate matter whose effective diameter is less than 2.5 microns. PM2.5 is listed as a criteria pollutant in the National Ambient Air Quality Standards (NAAQS). All cotton gins across the cotton belt will be impacted by this standard....

  18. Fugitive particulate air emissions from off-road vehicle maneuvers at military training lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Military training lands used for off-road vehicle maneuvers may be subject to severe soil loss and air quality degradation as a result of severe wind erosion. The objective of this study was to measure suspended particulate matter resulting from various different vehicle training scenarios. Soil s...

  19. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section limits the amount of fugitive particulate matter that may be emitted from certain air pollution... houses or lodges, non-commercial smoke houses, public roads owned or maintained by any Federal, Tribal... other similar operations. (vii) Covering, at all times when in motion, open bodied trucks...

  20. 40 CFR 60.48b - Emission monitoring for particulate matter and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... matter and nitrogen oxides. 60.48b Section 60.48b Protection of Environment ENVIRONMENTAL PROTECTION... monitoring for particulate matter and nitrogen oxides. (a) Except as provided in paragraph (j) of this... nitrogen content of 0.30 weight percent or less, natural gas, distillate oil, gasified coal, or any...

  1. 40 CFR 60.48b - Emission monitoring for particulate matter and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... matter and nitrogen oxides. 60.48b Section 60.48b Protection of Environment ENVIRONMENTAL PROTECTION... monitoring for particulate matter and nitrogen oxides. (a) Except as provided in paragraph (j) of this... nitrogen content of 0.30 weight percent or less, natural gas, distillate oil, gasified coal, or any...

  2. 40 CFR 60.48b - Emission monitoring for particulate matter and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... matter and nitrogen oxides. 60.48b Section 60.48b Protection of Environment ENVIRONMENTAL PROTECTION... monitoring for particulate matter and nitrogen oxides. (a) Except as provided in paragraph (j) of this... has an annual capacity factor for residual oil having a nitrogen content of 0.30 weight percent...

  3. 40 CFR 60.48b - Emission monitoring for particulate matter and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... matter and nitrogen oxides. 60.48b Section 60.48b Protection of Environment ENVIRONMENTAL PROTECTION... monitoring for particulate matter and nitrogen oxides. (a) Except as provided in paragraph (j) of this... nitrogen content of 0.30 weight percent or less, natural gas, distillate oil, gasified coal, or any...

  4. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section limits the amount of fugitive particulate matter that may be emitted from certain air pollution... limited to the following: (i) Use, where possible, of water or chemicals for control of dust in the...) Application of asphalt, oil (but not used oil), water, or other suitable chemicals on unpaved roads,...

  5. The environmental cost of reducing agricultural fine particulate (PM2.5) dust emissions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate (PM2.5) levels; state environmental protection agencies in states with non-attainment areas are required to draft State Implementation Plans (SIP) det...

  6. Preliminary particulate measurements and emission calculation results from a California dairy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural operations are a potentially important source of particulate matter (PM) pollution, including PM2.5 and PM10, which negatively impact air quality and human health. LIDAR (LIght Detection And Ranging) technology enables the measurement of high resolution profiles of PM concentration and ...

  7. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND OTHER FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT General Federal... sources operating within the Indian reservation to control ground-level concentrations of particulate... buildings with four or fewer dwelling units. (d) What are the requirements for sources of...

  8. Concentrations and source contributions of particulate organic matter before and after implementation of a low emission zone in Munich, Germany.

    PubMed

    Qadir, R M; Abbaszade, G; Schnelle-Kreis, J; Chow, J C; Zimmermann, R

    2013-04-01

    Within the Munich low emission zone (LEZ), samples of PM(2.5) were collected before (2006/2007) and after (2009/2010) the implementation of the LEZ. The samples were analyzed for carbon fraction (EC/OC) and particulate organic compounds (POC). Significant lower concentrations were noticed for elemental carbon (EC) and some of the POC like vanillic acid, acetosyringone, syringylacetone and syringic acid after the implementation of the LEZ. Higher concentrations of levoglucosan, retene and O-PAH were detected in the second sampling period. Positive matrix factorization (PMF) was used to identify the main sources of POC. Emissions from traffic, solid fuels combustion, cooking and mixed source were separated. The contribution of traffic source factor was decreased about 60% after the implementation of the LEZ. Thus the average concentration of EC from traffic factor decreased from 1.1 to 0.5 μg/m(3) after the implementation of the LEZ.

  9. Application of multicriteria decision making methods to compression ignition engine efficiency and gaseous, particulate, and greenhouse gas emissions.

    PubMed

    Surawski, Nicholas C; Miljevic, Branka; Bodisco, Timothy A; Brown, Richard J; Ristovski, Zoran D; Ayoko, Godwin A

    2013-02-19

    Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

  10. Current and future particulate-matter-related mortality risks in the United States from aviation emissions during landing and takeoff.

    PubMed

    Levy, Jonathan I; Woody, Matthew; Baek, Bok Haeng; Shankar, Uma; Arunachalam, Saravanan

    2012-02-01

    Demand for air travel is projected to increase in the upcoming years, with a corresponding influence on emissions, air quality, and public health. The trajectory of health impacts would be influenced by not just emissions growth, but also changes in nonaviation ambient concentrations that influence secondary fine particulate matter (PM(2.5) ) formation, population growth and aging, and potential shifts in PM(2.5) concentration-response functions (CRFs). However, studies to date have not systematically evaluated the individual and joint contributions of these factors to health risk trajectories. In this study, we simulated emissions during landing and takeoff from aircraft at 99 airports across the United States for 2005 and for a 2025 flight activity projection scenario. We applied the Community Multiscale Air Quality (CMAQ) model with the Speciated Modeled Attainment Test (SMAT) to determine the contributions of these emissions to ambient concentrations, including scenarios with 2025 aircraft emissions and 2005 nonaviation air quality. We combined CMAQ outputs with PM(2.5) mortality CRFs and population projections, and evaluated the influence of changing emissions, nonaviation concentrations, and population factors. Given these scenarios, aviation-related health impacts would increase by a factor of 6.1 from 2005 to 2025, with a factor of 2.1 attributable to emissions, a factor of 1.3 attributable to population factors, and a factor of 2.3 attributable to changing nonaviation concentrations which enhance secondary PM(2.5) formation. Our study emphasizes that the public health burden of aviation emissions would be significantly influenced by the joint effects of flight activity increases, nonaviation concentration changes, and population growth and aging.

  11. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel-biodiesel blends

    NASA Astrophysics Data System (ADS)

    Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.

    2015-11-01

    A comparative morphological analysis was performed on the exhaust particles emitted from a CI engine using different blending ratios of palm biodiesel at several operating conditions. It was observed from this experiment; peak particle concentration for PB10 at 1200 rpm is 1.85E + 02 and at 1500 rpm is 2.12E + 02. A slightly smaller amount of volatile material has found from the biodiesel samples compared to the diesel fuel sample. Thermogravimetric analysis (TGA) showed that the amount of volatile material in the soot from biodiesel fuels was slightly lower than that of diesel fuel. PB20 biodiesel blends reduced maximum 11.26% of volatile matter from the engine exhaust, while PB10 biodiesel blend reduced minimum 5.53% of volatile matter. On the other hand, the amount of fixed carbon from the biodiesel samples was slightly higher than diesel fuel. Analysis of carbon emissions, palm biodiesel (PB10) reduced elemental carbon (EC) was varies 0.75%-18%, respectively. Similarly, the emission reduction rate for PB20 was varies 11.36%-23.46% respectively. While, organic carbon (OC) emission rates reduced for PB20 was varied 13.7-49% respectively. Among the biodiesel blends, PB20 exhibited highest oxygen (O), sulfur (S) concentration and lowest silicon (Si) and iron (Fe) concentration. Scanning electron microscope (SEM) images for PB20 showed granular structure particulates with bigger grain sizes compared to diesel. Particle diameter increased under the 2100-2400 rpm speed condition and it was 8.70% higher compared to the low speed conditions. Finally, the results indicated that the composition and degree of unsaturation of the methyl ester present in biodiesel, play an important role in the chemical composition of particulate matter emissions.

  12. The effect of large anthropogenic particulate emissions on atmospheric aerosols, deposition and bioindicators in the eastern Gulf of Finland region.

    PubMed

    Jalkanen, L; Mäkinen, A; Häsänen, E; Juhanoja, J

    2000-10-30

    The effect of the emissions from large oil shale fuelled power plants and a cement factory in Estonia on the elemental concentration of atmospheric aerosols, deposition, elemental composition of mosses and ecological effects on mosses, lichens and pine trees in the eastern Gulf of Finland region has been studied. In addition to chemical analysis, fly ash, moss and aerosol samples were analysed by a scanning electron microscope with an energy dispersive X-ray spectrometer (SEM/EDS). The massive particulate calcium emissions, approximately 60 kton/year (1992), is clearly observed in the aerosols, deposition and mosses. The calcium deposition is largest next to the Russian border downwind from the power plants and in south-eastern part of Finland. This deposition has decreased due to the application of dust removal systems at the particulate emission sources. At the Virolahti EMEP station approximately 140 km north from the emission sources, elevated elemental atmospheric aerosol concentrations are observed for Al, Ca, Fe, K and Si and during episodes many trace elements, such as As, Br, Mo, Ni, Pb and V. The acidification of the soil is negligible because of the high content of basic cations in the deposition. Visible symptoms on pine trees are negligible. However, in moss samples close to the power plants, up to 25% of the leaf surface was covered by particles. Many epiphytic lichen species do not tolerate basic stemflow and on the other hand most species are also very sensitive for the SO2 content in air. Consequently a large lichen desert is found in an area of 2500 km2 in the vicinity of the power plants with only one out of the investigated 12 species growing.

  13. Adaptation of an ambient ion monitor for detection of amines in gas and particulate agricultural emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile amines are emitted from many sources including agricultural facilities. Recent work has shown that amines may be important players in secondary aerosol formation. Because amine emissions are significantly lower than ammonia, previous measurements and emission studies at agricultural facilit...

  14. Characterizing and Quantifying Local and Regional Particulate Matter Emissions from Department of Defense Installations

    DTIC Science & Technology

    2005-03-01

    69 4.6.2.3 Calculation of Scattering Cross Section Emission Factors........71 4.6.2.4 Scattering Cross Section Emission...of the TRAKER-measured emission potential [g/ VKT ]/[m/sec] for unpaved roads near Reno, NV...fraction of PM 10 fugitive dust emissions from unpaved roads that is regionally transportable, for the conditions observed at Ft. Bliss was calculated

  15. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    PubMed

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass

  16. Measurement of particulate matter emission fluxes from a beef cattle feedlot using Flux-gradient technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data on air emissions from open-lot beef cattle feedlots are limited. This research was conducted to determine PM10 emission fluxes from a commercial beef cattle feedlot in Kansas using the flux-gradient technique, a widely-used micrometeorological method for gaseous emissions from open sources. V...

  17. Temperature effects on particulate matter emissions from light-duty, gasoline-powered motor vehicles

    EPA Science Inventory

    The Kansas City Light-Duty Vehicle Emissions study measured exhaust emissions of regulated and unregulated pollutants from over 500 vehicles randomly recruited in the Kansas City metropolitan area in 2004 and 2005. Vehicle emissions testing occurred during the summer and winter, ...

  18. Removal of Particulate Matter Emissions from a Vehicle Using a Self-Powered Triboelectric Filter.

    PubMed

    Han, Chang Bao; Jiang, Tao; Zhang, Chi; Li, Xiaohui; Zhang, Chaoying; Cao, Xia; Wang, Zhong Lin

    2015-12-22

    Particulate matter (PM) pollution from automobile exhaust has become one of the main pollution sources in urban environments. Although the diesel particulate filter has been used in heavy diesel vehicles, there is no particulate filter for most gasoline cars or light-duty vehicles because of high cost. Here, we introduce a self-powered triboelectric filter for removing PMs from automobile exhaust fumes using the triboelectrification effect. The finite element simulation reveals that the collision or friction between PTFE pellets and electrodes can generate large triboelectric charges and form a space electric field as high as 12 MV/m, accompanying an open-circuit voltage of ∼6 kV between the two electrodes, which is comparable to the measured value of 3 kV. By controlling the vibration frequency and fill ratio of pellets, more than 94% PMs in aerosol can be removed using the high electric field in the triboelectric filter. In real automobile exhaust fumes, the triboelectic filter has a mass collection efficiency of ∼95.5% for PM2.5 using self-vibration of the tailpipe.

  19. Contribution of lubricating oil to particulate matter emissions from light-duty gasoline vehicles in Kansas City.

    PubMed

    Sonntag, Darrell B; Bailey, Chad R; Fulper, Carl R; Baldauf, Richard W

    2012-04-03

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline using aerosol-phase chemical markers measured in PM samples obtained from 99 vehicles tested on the California Unified Driving Cycle. The oil contribution to fleet-weighted PM emission rates is estimated to be 25% of PM emission rates. Oil contributes primarily to the organic fraction of PM, with no detectable contribution to elemental carbon emissions. Vehicles are analyzed according to pre-1991 and 1991-2004 groups due to differences in properties of the fitting species between newer and older vehicles, and to account for the sampling design of the study. Pre-1991 vehicles contribute 13.5% of the KC vehicle population, 70% of oil-derived PM for the entire fleet, and 33% of the fuel-derived PM. The uncertainty of the contributions is calculated from a survey analysis resampling method, with 95% confidence intervals for the oil-derived PM fraction ranging from 13% to 37%. The PM is not completely apportioned to the gasoline and oil due to several contributing factors, including varied chemical composition of PM among vehicles, metal emissions, and PM measurement artifacts. Additional uncertainties include potential sorption of polycyclic aromatic hydrocarbons into the oil, contributions of semivolatile organic compounds from the oil to the PM measurements, and representing the in-use fleet with a limited number of vehicles.

  20. Development and application of a mobile laboratory for measuring emissions from diesel engines. 2. Sampling for toxics and particulate matter.

    PubMed

    Cocker, David R; Shah, Sandip D; Johnson, Kent C; Zhu, Xiaona; Miller, J Wayne; Norbeck, Joseph M

    2004-12-15

    Limited data are available on the emission rates of speciated volatile and semivolatile organic compounds, as well as the physical and chemical characteristics of fine particulate matter (PM) from mobile, in-use diesel engines operated on the road. A design for the sampling of these fractions and the first data from in-use diesel sources are presented in this paper. Emission rates for carbonyls, 1,3-butadiene, benzene, toluene, xylene, PM, and elemental and organic carbon (EC and OC) are reported for a vehicle driven while following the California Air Resources Board (ARB) four-mode heavy heavy-duty diesel truck (HHDDT) cycle and while transiting through a major transportation corridor. Results show that distance specific emission rates are substantially greater in congested traffic as compared with highway cruise conditions. Specifically, emissions of toxic compounds are 3-15 times greater, and PM is 7 times greater under these conditions. The dependence of these species on driving mode suggests that health and source apportionment studies will need to account for driving patterns in addition to emission factors. Comparison of the PM/NOx ratios obtained for the above tests provides insight into the presence and importance of "off-cycle" emissions during on-road driving. Measurements from a stationary source (operated and tested at constant engine speed) equipped with an engine similar to that in the HHDDT yielded a greater understanding of the relative dependence of emissions on load versus engine transients. These data are indicative of the type of investigations made possible by the development of this novel laboratory.

  1. In vitro relative toxicity screening of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions.

    PubMed

    Seagrave, JeanClare; Mauderly, Joe L; Seilkop, Steven K

    2003-06-27

    Engine technology modifications designed to reduce engine emissions are likely to alter the physicochemical characteristics of the emissions. These changes may alter the biological effects of the emissions, but these effects cannot currently be predicted from the physical and chemical properties. Rapid in vitro toxicity screening techniques to compare the biological effects of emission samples would be useful as preliminary guides to assess the relative health impact of modified technology. Here, we demonstrate that selected responses of cultured human lung epithelial cells and rat alveolar macrophages can discriminate among combined particulate matter (PM) and semivolatile organic compound (SVOO fractions of emissions collected from normal- and high-emitter, in-use gasoline and diesel vehicles. Macrophages were more susceptible to cytotoxicity than epithelial cells. Samples from gasoline vehicles (except a vehicle that produced visible white smoke) generally caused greater effects than the diesel engine samples. However, low concentrations of diesel emission samples were more potent stimulators of peroxide production than gasoline emission samples. The same rank order of potency applied to suppression of this response at high concentrations. A diesel PM fraction was much less toxic to both types of cells than the combined PM +SVOC fractions, consistent with a role for the SVOC fraction in cytotoxicity. However, the rank order of potency from the in vitro assays in general did not correspond with the previous rankings from in vivo comparisons of the same samples. Thus, while the in vitro assays may provide mechanistic information, revealing cell type-specific responses, they did not accurately reflect in vivo comparative toxicity in their current form.

  2. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  3. [Technology-based emission inventory of particulate matters (PM) from cement industry].

    PubMed

    Lei, Yu; He, Ke-bin; Zhang, Qiang; Liu, Zuo-yi

    2008-08-01

    A bottom-up PM emission model was developed based on the production technologies and PM emission control devices in Chinese cement industry. Through analyzing the historical distribution of technologies in cement producing and the impact of standards on PM emission control from cement industry, emission factors of cement industry in China during 1990-2004 were generated by this technology-based model, and emission inventories were developed thereby. Emission factor decreased from 27.9 kg x t(-1) cement in 1990 to 8.05 kg x t(-1) cement in 2004. Emissions of PM from cement industry in China reached the peak value in 1997, with 1044 x 10(4) t of TSP, 716 x 10(4) t of PM10, 436 x 10(4) t of PM2.5 emitted, then decreased until 2001, and increased slowly again during 2001-2004. The distribution of PM emissions among provinces is uneven. Shandong, Guangdong, Hebei, Jiangsu, Zhejiang, and Henan contribute more than 50% of emissions of China. Rapid spread of pre-calcining kilns in China and implementation of Emission Standard of Air Pollutants for Cement Industry in 2004 will probably decrease PM emissions from cement industry to a large extent, leading to obvious variation on PM pollution characteristics in China.

  4. Detailed characterization and profiles of crankcase and diesel particulate matter exhaust emissions using speciated organics.

    PubMed

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R; Ireson, Robert G; Weaver, Christopher S; Hesterberg, Thomas W; Larson, Timothy; Davey, Mark; Liu, L J Sally

    2008-08-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.

  5. Long-term records of fire occurrence and their implications for gaseous and particulate emissions to the atmosphere

    SciTech Connect

    Clark, J.S.; Stocks, B.J. Forestry Canada, Sault Ste, Marie, Ontario )

    1993-06-01

    Changing climate and land use appear to importantly affect the biosphere by way of impacts on fire regimes. Feedback effects on climate and air quality are likely through emissions of trace gases, aerosols, and particulates that affect radiation budgets, stability of the troposphere, and biogeochemical and hydrologic cycles. Paleorecords of biomass burning are available in the form of stratigraphic charcoal in lake and mire deposits and fire scars on trees. When taken together with recent emissions data from experimental bums and wildland fires they hold promise for estimation of how changing fire regimes may be affecting atmospheric composition. We synthesize existing evidence for effects of global change on fire regimes for each of the major biomes. Fire regimes vary in their sensitivities to changing climate, with woodland/savanna types and boreal forest among the most sensitive. Emissions have greatly increased with changing human influences in some vegetation types (temperate and some low-latitude biomes) and decreased in others (temperate pine forests). Some biomes, including boreal forests, hold promise for rather detailed reconstructions of past emissions. We recommend that future efforts focus on those regions where the importance of fire and availability of paleodata are greatest.

  6. Effect of a fuel activation device (FAD) on particulate matter and black carbon emissions from a diesel locomotive engine.

    PubMed

    Park, Duckshin; Lee, Taejeong; Lee, Yongil; Jeong, Wonseog; Kwon, Soon-Bark; Kim, Dongsool; Lee, Kiyoung

    2017-01-01

    Emission reduction is one of the most efficient control measures in fuel-powered locomotives. The purpose of this study was to determine the reduction in particulate matter (PM) and black carbon (BC) emissions following the installation of a fuel activation device (FAD). The FAD was developed to enhance fuel combustion by atomizing fuel and to increase the surface area per unit volume of injected fuel. Emission reduction by the FAD was evaluated by installing a FAD in an operating diesel locomotive in Mongolia. The test was conducted on a train operating on a round-trip 238-km route between Ulaanbaatar and Choir stations in Mongolia. The fuel consumption rate was slightly reduced following the FAD installation. The FAD installation decreased PM and BC emissions in the diesel locomotive, especially coarse PM. The PM10 reductions achieved after FAD installation were 58.0, 69.7, and 34.2% for the constant velocity, stopping, and acceleration stages of the train's operation, respectively. The BC reduction rates were 29.5, 52.8, and 27.4% for the constant velocity, stopping, and acceleration stages, respectively.

  7. Gas Turbine Engine Nonvolatile Particulate Matter Mass Emissions: Correlation with Smoke Number for Conventional and Alternative Fuel Blends.

    PubMed

    Christie, Simon; Lobo, Prem; Lee, David; Raper, David

    2017-01-17

    This study evaluates the relationship between the emissions parameters of smoke number (SN) and mass concentration of nonvolatile particulate matter (nvPM) in the exhaust of a gas turbine engine for a conventional Jet A-1 and a number of alternative fuel blends. The data demonstrate the significant impact of fuel composition on the emissions and highlight the magnitude of the fuel-induced uncertainty for both SN within the Emissions Data Bank as well as nvPM mass within the new regulatory standard under development. Notwithstanding these substantial differences, the data show that correlation between SN and nvPM mass concentration still adheres to the first order approximation (FOA3), and this agreement is maintained over a wide range of fuel compositions. Hence, the data support the supposition that the FOA3 is applicable to engines burning both conventional and alternative fuel blends without adaptation or modification. The chemical composition of the fuel is shown to impact mass and number concentration as well as geometric mean diameter of the emitted nvPM; however, the data do not support assertions that the emissions of black carbon with small mean diameter will result in significant deviations from FOA3.

  8. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions.

    PubMed

    Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini

    2014-07-01

    Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase.

  9. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials.

    PubMed

    Wang, Jingxian; Xie, Ping; Kettrup, Antonius; Schramm, Karl-Werner

    2005-10-15

    Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit hPR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants.

  10. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States.

    PubMed

    Pun, Betty K; Wu, Shiang-Yuh; Seigneur, Christian

    2002-08-15

    As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (<23%) on a domain-wide basis, despite significant biogenic volatile organic compounds (VOC) emissions (65-89% of total VOC emissions). However, the production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic

  11. Trends in concentrations of atmospheric gaseous and particulate species in rural eastern Tennessee as related to primary emission reductions

    NASA Astrophysics Data System (ADS)

    Tanner, R. L.; Bairai, S. T.; Mueller, S. F.

    2015-09-01

    Air quality measurements at Look Rock, Tennessee - on the western edge of the Great Smoky Mountains National Park - were begun in 1980 and expanded during the 1980s to a National Park Service (NPS) IMPROVE network station. Measurements were expanded again by the Tennessee Valley Authority (TVA, 1999-2007) to examine the effects of electric generating unit (EGU) emission reductions of SO2 and NOx on air quality at the station. Analysis of temporal trends (1999-2013) has been conducted at the site in collaboration with activities related to the 2013 Southeast Atmosphere Study (SAS) at Look Rock and other southeastern US locations. Key findings from these trend studies include the observation that primary pollutant levels have consistently tracked emission reductions from EGUs and other primary sources in the region, but reductions in secondary pollutants such as particulate sulfate and, specifically, ozone have been smaller compared to reductions in primary emissions. Organic carbonaceous material (OM) remains a major contributor (30-40 % in the period 2009-2013) to fine particulate mass at the site, as confirmed by ACSM measurements at the site in 2013. A large portion (65-85 %) of carbon in OM derives from modern carbon sources based on 14C measurements. Important parameters affecting ozone levels, fine mass, and visibility also include the specific diurnal meteorology at this ridge-top site, its location in a predominantly mixed-deciduous forest, and the presence of primary sources of precursors at distances of 50-500 km from the site in all directions.

  12. Trends in concentrations of atmospheric gaseous and particulate species in rural eastern Tennessee as related to primary emissions reductions

    NASA Astrophysics Data System (ADS)

    Tanner, R. L.; Bairai, S. T.; Mueller, S. F.

    2015-05-01

    Air quality measurements at Look Rock, Tennessee - on the western edge of the Great Smoky Mountains National Park - were begun in 1980 and expanded during the 1980s to a National Park Service (NPS) IMPROVE network station. Measurements were expanded again by the Tennessee Valley Authority (TVA, 1999-2007) to examine the effects of electric generating unit (EGU) emission reductions of SO2 and NOx on air quality at the station. Analysis of temporal trends (1999-2013) has been conducted at the site in collaboration with activities related to the 2013 Southeast Atmosphere Study (SAS) at Look Rock and other southeastern US locations. Key findings from these trend studies include the observation that primary pollutant levels have consistently tracked emissions reductions from EGUs and other primary sources in the region but reductions in secondary pollutants such as particulate sulfate and, specifically, ozone have been smaller compared to reductions in primary emissions. Organic carbonaceous material (OM) remains a major contributor (30-40% in the period 2009-2013) to fine particulate mass at the site, as confirmed by ACSM measurements at the site in 2013. A large portion (65-85%) of carbon in OM derives from modern carbon sources based on 14C measurements. Important parameters affecting ozone levels, fine mass and visibility also include the specific diurnal meteorology at this ridge-top site, its location in a predominantly mixed-deciduous forest, and the presence of primary sources of precursors at distances of 50-500 km from the site in all directions.

  13. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 1: gaseous and particulate matter emissions.

    PubMed

    Lobo, Prem; Rye, Lucas; Williams, Paul I; Christie, Simon; Uryga-Bugajska, Ilona; Wilson, Christopher W; Hagen, Donald E; Whitefield, Philip D; Blakey, Simon; Coe, Hugh; Raper, David; Pourkashanian, Mohamed

    2012-10-02

    Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.

  14. Composition, toxicity, and mutagenicity of particulate and semivolatile emissions from heavy-duty compressed natural gas-powered vehicles.

    PubMed

    Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L

    2005-09-01

    Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.

  15. An Analysis of Field-Aged Diesel Particulate Filter Performance: Particle Emissions Before, During and After Regeneration

    SciTech Connect

    Barone, Teresa L; Storey, John Morse; Domingo, Norberto

    2010-01-01

    A field-aged, passive diesel particulate filter (DPF) employed in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. Total number concentration and number-size distributions were measured by a condensation particle counter and scanning mobility particle sizer, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 1 mg/hp-hr before regeneration to 3 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameter less than 50 nm may have been emitted after regeneration since these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after four years of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 seconds of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty federal test procedure when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.

  16. An analysis of field-aged diesel particulate filter performance: particle emissions before, during, and after regeneration.

    PubMed

    Barone, Teresa L; Storey, John M E; Domingo, Norberto

    2010-08-01

    A field-aged, passive diesel particulate filter (DPF) used in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during, and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. A condensation particle counter and scanning mobility particle sizer measured total number concentration and number-size distributions, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However, after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 +/- 1 mg/hp-hr before regeneration to 3 +/- 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameters less than 50 nm may have been emitted after regeneration because these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after 4 yr of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 sec of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty Federal Test Procedure (FTP) when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.

  17. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios.

    PubMed

    Yang, Tzu-Ting; Lin, Shaw-Tao; Lin, Tser-Sheng; Chung, Hua-Yi

    2015-02-15

    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17-78.72 mg/g, 26,139.80-35,932.98 and 5735.22-13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26-83.70% and 16.30-29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82-797.76 ng/g) was approximately 6.92-25.08 times higher than that of the gaseous phase (26.27-36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO3) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency.

  18. Using a dispersion model to estimate emission rates of particulate matter from paved roads

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Fitz, Dennis; Bumiller, Kurt; Du, Shuming; Boeck, Michael; Ganguly, Chandragupta

    From January 1996 to June 1997, we carried out a series of measurements to estimate emissions of PM 10 from paved roads in Riverside County, California. The program involved the measurement of upwind and downwind vertical profiles of PM 10, in addition to meteorological variables such as wind speed and vertical turbulent intensity. This information was analyzed using a new dispersion model that incorporates current understanding of micrometeorology and dispersion. The emission rate was inferred by fitting model predictions to measurements. The inferred emission factors ranged from 0.2 g VKT -1 for freeways to about 3 g VKT -1 for city roads. The uncertainty in these factors is estimated to be approximately a factor of two since the contributions of paved road PM 10 emissions to ambient concentrations were comparable to the uncertainty in the mean value of the measurement. At this stage, our best estimate of emission factor lies between 0.1 and 10 g VKT -1; there is some indication that it is about 0.1 g VKT -1 for heavily traveled freeways, and is an order of magnitude higher for older city roads. We found that measured silt loadings were poor predictors of emission factors. The measured emission factors imply that paved road emissions may contribute about 30% to the total PM 10 emissions from a high traffic area such as Los Angeles. This suggests that it is necessary to develop methods that are more reliable than the upwind-downwind concentration difference technique.

  19. PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation

    NASA Astrophysics Data System (ADS)

    Brewer, Eli; Li, Yang; Finken, Bob; Quartucy, Greg; Muzio, Lawrence; Baez, Al; Garibay, Mike; Jung, Heejung S.

    2016-04-01

    The generation of electricity from natural gas-fired turbines has increased more than 200% since 2003. In 2007 the South Coast Air Quality Management District (SCAQMD) funded a project to identify control strategies and technologies for PM2.5 and ultrafine emissions from natural gas-fired turbine power plants and test at pilot scale advanced PM2.5 technologies to reduce emissions from these gas turbine-based power plants. This prompted a study of the exhaust from new facilities to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine located at the Walnut Creek Energy Park in August 2013. These tests included particulate matter less than 2.5 μm in diameter (PM2.5) and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. After turbine exhaust was diluted sevenfold with filtered air, particle concentrations in the 10-300 nm size range were approximately two orders of magnitude higher than those in the ambient air and those in the 2-3 nm size range were up to four orders of magnitude higher. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. While some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings of 3.63E-04 lb/MMBtu based on Methods 5.1/201A and 1.07E-04 lb/MMBtu based on SMPS method, which are similar to those previously measured from turbines in the SCAQMD area (FERCo et al., 2014), however, the turbine

  20. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  1. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project is to develop improved methods for modeling the source through...

  2. Measurement of Opacity and Particulate Emissions With an On-Stack Transmissometer

    ERIC Educational Resources Information Center

    Beutner, Heinz P.

    1974-01-01

    An on-stack transmissometer system, that is designed to provide a precision measurement of the opacity of visible emissions, is described. The sources of error in opacity measurements with regard to recent Environmental Protection Agency emission monitoring requirements and planned specifications are discussed. (Author/BT)

  3. Mote cyclone robber system total particulate emission factors and rates for cotton gins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  4. Cyclone robber system total particulate emission factors and rates for cotton gins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  5. Cyclone robber system total particulate emission factors and rates for cotton gins: Method 17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  6. Mote cyclone robber system total particulate emission factors and rate for cotton gins: Method 17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  7. Battery condenser system total particulate emission factors and rates for cotton gins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  8. Battery condenser system total particulate emission factors and rates for cotton gins: Method 17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  9. Characterization of particulate matter emissions from a current technology natural gas engine.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Yoon, Seungju; Collins, John; Kappanna, Hemanth; Carder, Daniel K; Ayala, Alberto; Herner, Jorn; Gautam, Mridul

    2014-07-15

    Experiments were conducted to characterize the particulate matter (PM)-size distribution, number concentration, and chemical composition emitted from transit buses powered by a USEPA 2010 compliant, stoichiometric heavy-duty natural gas engine equipped with a three-way catalyst (TWC). Results of the particle-size distribution showed a predominant nucleation mode centered close to 10 nm. PM mass in the size range of 6.04 to 25.5 nm correlated strongly with mass of lubrication-oil-derived elemental species detected in the gravimetric PM sample. Results from oil analysis indicated an elemental composition that was similar to that detected in the PM samples. The source of elemental species in the oil sample can be attributed to additives and engine wear. Chemical speciation of particulate matter (PM) showed that lubrication-oil-based additives and wear metals were a major fraction of the PM mass emitted from the buses. The results of the study indicate the possible existence of nanoparticles below 25 nm formed as a result of lubrication oil passage through the combustion chamber. Furthermore, the results of oxidative stress (OS) analysis on the PM samples indicated strong correlations with both the PM mass calculated in the nanoparticle-size bin and the mass of elemental species that can be linked to lubrication oil as the source.

  10. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    SciTech Connect

    Seong, Hee Je; Choi, Seungmok

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  11. Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland

    NASA Astrophysics Data System (ADS)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay A.; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer C.; Dickerson, Russell R.

    2016-04-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a ˜40% decrease of column SO2, and a ˜20% decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (˜90% reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (˜60% decrease) and AOD (˜20% decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by ˜20%, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 2009-2010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  12. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-04

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  13. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect

    Matthias, Nicholas; Farron, Carolyn; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

    2011-08-30

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition

  14. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

  15. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-02-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions, with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in BC and OA emitted by gasoline and diesel engines. Cycloalkanes predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. The presence of trace elements in vehicle exhaust raises the concern that ash deposits may accumulate over time in diesel particle filter systems, and may eventually lead to performance problems that require servicing.

  16. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-07-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as directly in the exhaust plumes of individual heavy-duty (HD) diesel trucks. BC emission factor distributions for HD trucks were more skewed than OA distributions (N = 293), with the highest 10% of trucks accounting for 56 and 42% of total measured BC and OA emissions, respectively. OA mass spectra measured for HD truck exhaust plumes show cycloalkanes are predominate in exhaust OA emissions relative to saturated alkanes (i.e., normal and iso-paraffins), suggesting that lubricating oil rather than fuel is the dominant source of primary organic aerosol (POA) emissions in diesel vehicle exhaust. This finding is supported by the detection of trace elements such as zinc and phosphorus in the exhaust plumes of individual trucks. Trace elements were emitted relative to total OA at levels that are consistent with typical weight fractions of commonly used additives present in lubricating oil. A comparison of measured OA and BC mass spectra across various sampling periods revealed a high degree of similarity in OA and BC emitted by gasoline and diesel engines. This finding indicates a large fraction of OA in gasoline exhaust is lubricant-derived as well. The similarity in OA and BC mass spectra for gasoline and diesel engine exhaust is likely to confound ambient source apportionment efforts to determine contributions to air pollution from these two important sources.

  17. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    SciTech Connect

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  18. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI).

    PubMed

    Kero, Ida; Naess, Mari K; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm - 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols.

  19. Particle Size Distributions of Particulate Emissions from the Ferroalloy Industry Evaluated by Electrical Low Pressure Impactor (ELPI)

    PubMed Central

    Kero, Ida; Naess, Mari K.; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm – 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385

  20. Characterization Of Particulate Matter (PM2.5) Emissions During Prescribed Fires Of The Coconino National Forest

    NASA Astrophysics Data System (ADS)

    Robinson, M.; Quarterman, M.; Zack, L.; Brindley, C.; Herckes, P.

    2006-12-01

    Biomass burning is a major source of carbonaceous particles in the atmosphere. In recent years, prescribed fire has become an increasingly important tool for forest management in the Western United States, in order to reduce the risk of catastrophic wildfire. This has led to concerns about the impact of prescribed fire on local and regional air pollution and on human health and visibility. However, in situ characterizations of wildland or prescribed fires are very rare. This is surprising, given that recent studies suggest that biomass burning, including forest fires, is a major source of particulate matter in the Western U.S. A number of laboratory studies exist; however, such studies reflect only poorly the actual fuel composition and burning regimes of authentic forest fires. We will report results that characterize particulate matter (PM2.5) collected during five prescribed fires of the Coconino National Forest, the largest ponderosa pine forest in North America. Samples were collected in situ during the initial (ignition/flaming) stage of the burns and, occasionally, a day later during the smoldering stage of the fire. Samples were analyzed for total, organic, and elemental carbon by a thermo-optical method. Individual organic species, including polycyclic aromatic hydrocarbons, anhydrosugars, resin acids, and methoxyphenols were quantified by gas chromatography coupled to mass spectrometry (GC/MS) after solvent extraction. We will discuss the concentrations and emission ratios of individual species as a function of burning regime and type of fuel burned. The resulting emission profiles will be compared to common profiles used in source apportionment studies.

  1. Gaseous and particulate composition of fresh and aged emissions of diesel, RME and CNG buses using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa

    2016-04-01

    Urban air pollution is becoming a significant global problem, especially for large cities around the world. Traffic emissions contribute significantly to both elevated particle concentrations and to gaseous pollutants in cities. The latter also have the potential of forming more particulate mass via their photochemical oxidation in the atmosphere. The International Agency for Research on Cancer and the US EPA have characterised diesel exhausts as a likely human carcinogen that can also contribute to other health problems. In order to meet the challenges with increased transportation and enhanced greenhouse gas emissions, the European Union have decided on a 10% substitution of traditional fuels in the road transport sector by alternative fuels (e.g. biodiesel, CNG) before the year 2020. However, it is also important to study the influence of fuel switches on other primary pollutants as well as the potential to form secondary aerosol mass. This work focuses on the characterisation of the chemical composition of the gas and the condensed phase of fresh bus emissions during acceleration, in order to mimic the exhaust plume that humans would inhale under realistic conditions. In addition, photochemical aging of the exhaust emissions was achieved by employing a Potential Aerosol Mass (PAM) flow reactor, allowing the characterization of the composition of the corresponding aged emissions. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the chamber. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in these measurements corresponded to a range from 4 to 8 days in the atmosphere. During June and July 2015, a total of 29 buses, 5 diesel, 13 CNG and 11 RME (rapeseed methyl ester), were tested in two different locations with limited influence from other types of emissions and traffic

  2. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  3. Potential ozone impacts of excess NO2 emissions from diesel particulate filters for on- and off-road diesel engines.

    PubMed

    Bar-llan, Amnon; Johnson, Jeremiah R; Denbleyker, Allison; Chan, Lit-Mian; Yarwood, Gregory; Hitchcock, David; Pinto, Joseph P

    2010-08-01

    This study considers potential impacts of increased use of diesel oxidation catalysts (DOCs) and catalyzed diesel particulate filters (DPFs) on ozone formation in the Dallas/ Fort Worth (DFW) area. There is concern that excess nitrogen dioxide (NO2) emissions from vehicles equipped with these devices could increase ambient ozone levels. The approach involved developing two scenarios for use of these devices, quantifying excess NO2 emissions in each scenario, and using a photochemical model to estimate the resulting ozone changes. In the "maximum penetration" scenario, DOC/DPF devices in a 2009 fleet of heavy-duty on-road trucks, school buses, and construction equipment were significantly increased by accelerating turnover of these vehicles and equipment to models that would require DOCs/DPFs. In the "realistic" scenario, current fractional usage of these devices was assessed for 2009. For both scenarios, excess NO2 emissions from DOCs/DPFs were estimated using U.S. Environmental Protection Agency's MOBILE6 and NONROAD emissions inventory modeling tools. The emissions analyses were used to adjust the DFW photochemical modeling emissions inventories and the Comprehensive Air Quality Model with extensions air quality model was rerun for the DFW area to determine the impact of these two scenarios on ozone formation. The maximum penetration scenario, which showed an overall reduction in oxides of nitrogen (NO(x)) because of the accelerated turnover of equipment to cleaner models, resulted in a net decrease in daily maximum 8-hr ozone of 4-5 parts per billion (ppb) despite the increase in NO2 emissions. The realistic scenario resulted in a small increase in daily maximum 8-hr ozone of less than 1 ppb for the DFW area. It was concluded that the excess NO2 emissions from DOC/DPF devices result in very small ozone impacts, particularly for the realistic scenario, in the DFW area. There are noticeable decreases in ozone for the maximum penetration scenario because NO

  4. 40 CFR 49.125 - Rule for limiting the emissions of particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., British thermal unit (Btu), coal, combustion source, distillate fuel oil, emission, fuel, fuel oil, gaseous fuel, heat input, incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine..., residual fuel oil, solid fuel, stack, standard conditions, stationary source, uncombined water, used...

  5. Source apportionment of traffic emissions of particulate matter using tunnel measurements

    NASA Astrophysics Data System (ADS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal; Mao, Hongjun; Prain, Hunter Douglas; Bull, Ian D.

    2013-10-01

    This study aims to quantify exhaust/non-exhaust emissions and the uncertainties associated with them by combining innovative motorway tunnel sampling and source apportionment modelling. Analytical techniques ICP-AES and GC-MS were used to identify the metallic and organic composition of PM10, respectively. Good correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb and change in traffic volume. The concentration of polycyclic aromatic hydrocarbons and other organics varies significantly at the entrance and exit site of the tunnel, with fluoranthene, pyrene, benzo[a]pyrene, chrysene and benzothiazole having the highest incremented concentrations. The application of Principal Component Analysis and Multiple Linear Regression Analysis helped to identify the emission sources for 82% of the total PM10 mass inside the tunnel. Identified sources include resuspension (27%), diesel exhaust emissions (21%), petrol exhaust emissions (12%), brake wear emissions (11%) and road surface wear (11%). This study shows that major health related chemical species of PM10 originate from non-exhaust sources, further signifying the need for legislation to reduce these emissions.

  6. Emission Factors of Greenhouse Gases and Particulates from Australian Savanna Fires

    NASA Astrophysics Data System (ADS)

    Desservettaz, Maximilien; Paton-Walsh, Clare; Griffith, David; Kettlewell, Graham; Wilson, Stephen; Keywood, Melita; Van der Schoot, Marcel; Seleck, Paul; Ward, Jason; Harwell, James; Reisen, Fabienne; Lawson, Sarah; Ristovski, Zoran; Mallet, Marc; Miljevic, Brenka; Milic, Andjelija; Atkinson, Brad

    2016-04-01

    In June 2014 a measurement campaign took place at the Australian Tropical Atmospheric Research Station (ATARS), in the Northern Territory, Australia, during the early dry season. The campaign was focused on understanding biomass burning emissions from savanna fires. In order to achieve this, a suite of aerosol, reactive and trace gases instruments were deployed. Seven smoke events were extracted from the 4 weeks of continuous measurements using carbon monoxide as a proxy for biomass burning. Those events were then analysed and emission factors were calculated for CO2, CO, CH4, N2O, NOx and aerosols (Aitken and Accumulation mode, and chemical speciation), along with the modified combustion efficiency (MCE). Upon review of the emission factors, smoke events could then be classified in 3 groups: high MCE events (0.98) were characterised by emission factors typical of savanna grass fires while low MCE events (0.88) were characteristic of shrub fires. Intermediate MCE events (0.93) were found not to reflect any distinct vegetation type. This presentation will outline the campaign and present emission factors of trace and reactive gases as well as the first emission factors for aerosols reported for Australian savanna fires.

  7. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    PubMed

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.

  8. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China

    PubMed Central

    Shen, Guofeng; Yang, Yifeng; Wang, Wei; Tao, Shu; Zhu, Chen; Min, Yujia; Xue, Miao; Ding, Junnan; Wang, Bin; Wang, Rong; Shen, Huizhong; Li, Wei; Wang, Xilong; Russell, Armistead G.

    2013-01-01

    Both particulate matter (PM) and black carbon (BC) impact climate change and human health. Uncertainties in emission inventories of PM and BC are partially due to large variation of measured emission factors (EFs) and lack of EFs from developing countries. Although there is a debate whether thermal-optically measured elemental carbon (EC) may be referred to as BC, EC are often treated as the same mass of BC. In this study, EFs of PM (EFPM) and EC (EFEC) for 9 crop residues and 5 coals were measured in actual rural cooking and coal stoves using the carbon mass balance method. The dependence of the EFs on fuel properties and combustion conditions were investigated. It was found that the mean EFPM were 8.19 ± 4.27 and 3.17 ± 4.67 g/kg and the mean EFEC were 1.38 ± 0.70 and 0.23 ± 0.36 g/kg for crop residues and coals, respectively. PM with size less than 10 μm (PM10) from crop residues were dominated by particles of aerodynamic size ranging from 0.7 to 2.1 μm, while the most abundant size ranges of PM10 from coals were either from 0.7 to 2.1 μm or less than 0.7 μm. Of various fuel properties and combustion conditions tested, fuel moisture and modified combustion efficiency (MCE) were the most critical factors affecting EFPM and EFEC for crop residues. For coal combustion, EFPM were primarily affected by MCE and volatile matter, while EFEC were significantly influenced by ash content, volatile matter, heat value, and MCE. It was also found that EC emissions were significantly correlated with emissions of PM with size less than 0.4 μm. PMID:20735038

  9. A new alternative fuel for reduction of polycyclic aromatic hydrocarbon and particulate matter emissions from diesel engines.

    PubMed

    Yuan, Chung-Shin; Lin, Hsun-Yu; Lee, Wen-Jhy; Lin, Yuan-Chung; Wu, Tser-Son; Chen, Kung-Fu

    2007-04-01

    This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.

  10. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    PubMed

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-02

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).

  11. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China

    PubMed Central

    Yan, Shaomin; Wu, Guang

    2016-01-01

    Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating process. For PM2.5 emissions from electricity generation sector, strong locality of clusters was revealed, implying that each region had its own electricity generation system. For PM2.5 emissions from residential sector, the same pattern of 10 clusters was uncovered in both years, implicating the household energy consumption unchanged from 2008 to 2010. For PM2.5 emissions from transportation sector, the same pattern of 5 clusters with many connections in-between was unraveled, indicating the high-speed development of transportation nationalwidely. Except for the known elements, mercury (Hg) surfaced as an element for particle nucleation. To our knowledge, this is the first network study in this field. PMID:27608625

  12. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China

    NASA Astrophysics Data System (ADS)

    Yan, Shaomin; Wu, Guang

    2016-09-01

    Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating process. For PM2.5 emissions from electricity generation sector, strong locality of clusters was revealed, implying that each region had its own electricity generation system. For PM2.5 emissions from residential sector, the same pattern of 10 clusters was uncovered in both years, implicating the household energy consumption unchanged from 2008 to 2010. For PM2.5 emissions from transportation sector, the same pattern of 5 clusters with many connections in-between was unraveled, indicating the high-speed development of transportation nationalwidely. Except for the known elements, mercury (Hg) surfaced as an element for particle nucleation. To our knowledge, this is the first network study in this field.

  13. Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning

    NASA Astrophysics Data System (ADS)

    Keshtkar, Haleh; Ashbaugh, Lowell L.

    Burning of agricultural waste residue is a common method of disposal when preparing land following crop harvest. This practice introduces volatile organic compounds, including polycyclic aromatic hydrocarbons (PAHs), into the atmosphere. This study examines the particle size distribution in the smoke emissions of two common agricultural waste residues (biofuels) in California, almond prunings and rice straw. The residues were burned in a combustion chamber designed specifically for this purpose, and the smoke emissions were collected on 10-stage MOUDI impactors for analysis of PAH and total particle mass. The results, in units of emission factors, show that combustion temperature is an important factor in determining the smoke particle PAH composition. Total PAH emissions from rice straw burns were 18.6 mg kg -1 of fuel, while the emissions from almond prunings were lower at 8.03 mg kg -1. The less volatile five- and six-ring PAH was predominately on smaller particles where it condensed in the early stages of combustion while the more volatile three- and four-ring PAH formed on larger particles as the smoke cooled.

  14. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  15. Particulate matter composition and emission rates from the disk incorporation of class B biosolids into soil

    NASA Astrophysics Data System (ADS)

    Paez-Rubio, Tania; Xin, Hua; Anderson, James; Peccia, Jordan

    Biosolids contain metal, synthetic organic compound, endotoxin, and pathogen concentrations that are greater than concentrations in the agricultural soils to which they are applied. Once applied, biosolids are incorporated into soils by disking and the aerosols produced during this process may pose an airborne toxicological and infectious health hazard to biosolids workers and nearby residents. Field studies at a Central Arizona biosolids land application site were conducted to characterize the physical, chemical, and biological content of the aerosols produced during biosolids disking and the content of bulk biosolids and soils from which the aerosols emanate. Arrayed samplers were used to estimate the vertical source aerosol concentration profile to enable plume height and associated source emission rate calculations. Source aerosol concentrations and calculated emission rates reveal that disking is a substantial source of biosolids-derived aerosols. The biosolids emission rate during disking ranged from 9.91 to 27.25 mg s -1 and was greater than previously measured emission rates produced during the spreading of dewatered biosolids or the spraying of liquid biosolids. Adding biosolids to dry soils increased the moisture content and reduced the total PM 10 emissions produced during disking by at least three times. The combination of bulk biosolids and aerosol measurements along with PM 10 concentrations provides a framework for estimating aerosol concentrations and emission rates by reconstruction. This framework serves to eliminate the difficulty and inherent limitations associated with monitoring low aerosol concentrations of toxic compounds and pathogens, and can promote an increased understanding of the associated biosolids aerosol health risks to workers and nearby residents.

  16. Response of winter fine particulate matter concentrations to emission and meteorology changes in North China

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Carmichael, Gregory R.; Saide, Pablo E.; Lu, Zifeng; Yu, Man; Streets, David G.; Wang, Zifa

    2016-09-01

    The winter haze is a growing problem in North China, but the causes are not well understood. The chemistry version of the Weather Research and Forecasting model (WRF-Chem) was applied in North China to examine how PM2.5 concentrations change in response to changes in emissions (sulfur dioxide (SO2), black carbon (BC), organic carbon (OC), ammonia (NH3), and nitrogen oxides (NOx)), as well as meteorology (temperature, relative humidity (RH), and wind speeds) changes in winter. From 1960 to 2010, the dramatic changes in emissions lead to +260 % increases in sulfate, +320 % increases in nitrate, +300 % increases in ammonium, +160 % increases in BC, and +50 % increases in OC. The responses of PM2.5 to individual emission species indicate that the simultaneous increases in SO2, NH3, and NOx emissions dominated the increases in PM2.5 concentrations. PM2.5 shows more notable increases in response to changes in SO2 and NH3 as compared to increases in response to changes in NOx emissions. In addition, OC also accounts for a large fraction in PM2.5 changes. These results provide some implications for haze pollution control. The responses of PM2.5 concentrations to temperature increases are dominated by changes in wind fields and mixing heights. PM2.5 shows relatively smaller changes in response to temperature increases and RH decreases compared to changes in response to changes in wind speed and aerosol feedbacks. From 1960 to 2010, aerosol feedbacks have been significantly enhanced due to higher aerosol loadings. The discussions in this study indicate that dramatic changes in emissions are the main cause of increasing haze events in North China, and long-term trends in atmospheric circulations may be another important cause since PM2.5 is shown to be substantially affected by wind speed and aerosol feedbacks. More studies are necessary to get a better understanding of the aerosol-circulation interactions.

  17. Development of an empirical model to estimate real-world fine particulate matter emission factors: the traffic air quality model.

    PubMed

    Soliman, Ahmed S M; Jacko, Robert B; Palmer, George M

    2006-11-01

    The purpose of the study was to quantify the impact of traffic conditions, such as free flow and congestion, on local air quality. The Borman Expressway (I-80/94) in Northwest Indiana is considered a test bed for this research because of the high volume of class 9 truck traffic traveling on it, as well as the existing and continuing installation of the Intelligent Transportation System (ITS) to improve traffic management along the highway stretch. An empirical traffic air quality (TAQ) model was developed to estimate the fine particulate matter (PM2.5) emission factors (grams per kilometer) based solely on the measured traffic parameters, namely, average speed, average acceleration, and class 9 truck density. The TAQ model has shown better predictions that matched the measured emission factor values more than the U.S. Environmental Protection Agency (EPA)-PART5 model. During congestion (defined as flow-speeds < 50 km/hr [30 mi/hr]), the TAQ model, on average, overpredicted the measured values only by a factor of 1.2, in comparison to a fourfold underprediction using the EPA-PART5 model. On the other hand, during free flow (defined as flow-speeds > 80 km/hr [50 mi/hr]), the TAQ model was conservative in that it overpredicted the measured values by 1.5-fold.

  18. In-use light-duty gasoline vehicle particulate matter emissions on three driving cycles.

    PubMed

    Cadle, S H; Mulawa, P; Groblicki, P; Laroo, C; Ragazzi, R A; Nelson, K; Gallagher, G; Zielinska, B

    2001-01-01

    Twenty-four properly functioning and six high carbon monoxide emission light-duty gasoline vehicles were emission tested in Denver, CO, using the Federal Test Procedure (FTP), a hot start Unified Cycle (UC), and the REP05 driving cycles at 35 degrees F. All were 1990-1997 model year vehicles tested on both an oxygenated and a nonoxygenated fuel. PM10 emission rates for the properly functioning vehicles using oxygenated fuel averaged 6.1, 3.6, and 12.7 mg/mi for the FTP, UC, and REP05, respectively. The corresponding values for the high emitters were 52, 28, and 24 mg/mi. Use of oxygenated fuel significantly reduces PM10 on the FTP, with all the reduction occurring during the cold start. MOUDI impactor samples showed that 33 and 69% of the PM mass was smaller than 0.1 microm for the FTP and REP05 cycles, respectively, when collected under standard laboratory conditions. Particle number counts were much higher on the REP05 than the FTP. Counts were obtained using secondary dilution of samples drawn from the standard dilution tunnel. FTP PM10 was mostly carbonaceous material, 36% of which was classified as organic. For the REP05, as much as 20% of the PM10 was sulfate and associated water. Forty-five percent of the REP05 PM carbon emissions was classified as organic. Driving cycle had a significant impact on the distribution of the emitted polynuclear aromatic hydrocarbons.

  19. Portable air pollution control equipment for the control of toxic particulate emissions

    SciTech Connect

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) prior to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.

  20. Utilizing vegetative environmental buffers to mitigate ammonia and particulate matter emissions from poultry houses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetative Environmental Buffers (VEBs) are vegetation designed as a visual screen, which usually consist of trees, shrubs, grass and other potential plants. VEBs are placed around the poultry houses for the purpose of minimizing the air pollutant emissions. The expansion of the poultry industry due...

  1. 40 CFR 60.47c - Emission monitoring for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (COMS) for measuring the opacity of the emissions discharged to the atmosphere and record the output of... not to use a COMS shall conduct a performance test using Method 9 of appendix A-4 of this part and the... section. The observation period for Method 9 of appendix A-4 of this part performance tests may be...

  2. 40 CFR 60.47c - Emission monitoring for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (COMS) for measuring the opacity of the emissions discharged to the atmosphere and record the output of... not to use a COMS shall conduct a performance test using Method 9 of appendix A-4 of this part and the... observation period for Method 9 of appendix A-4 of this part performance tests may be reduced from 3 hours...

  3. 40 CFR 60.47c - Emission monitoring for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (COMS) for measuring the opacity of the emissions discharged to the atmosphere and record the output of... not to use a COMS shall conduct a performance test using Method 9 of appendix A-4 of this part and the... section. The observation period for Method 9 of appendix A-4 of this part performance tests may be...

  4. 40 CFR 60.47c - Emission monitoring for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (COMS) for measuring the opacity of the emissions discharged to the atmosphere and record the output of... not to use a COMS shall conduct a performance test using Method 9 of appendix A-4 of this part and the... section. The observation period for Method 9 of appendix A-4 of this part performance tests may be...

  5. Particulate Emissions from Fall Tillage Operations as Determined via Inverse Modeling and Lidar Mass Balance Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preparation of soil for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric loadings, especially in areas with a high density of perennial crops. Emissions may originate from the tractor’s diesel engine, the tractor moving over the ground, and the equipment...

  6. Development of a multi-point isokinetic sampling system to measure poultry house particulate matter emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2005, the Environmental Protection Agency (EPA) has attempted to regulate air emissions from confined animal feeding operations (CAFOs). These laws directly affect the poultry industry, which makes up approximately half of all CAFOs. The adaptation of these standards has been met with resistan...

  7. 40 CFR 86.137-94 - Dynamometer test run, gaseous and particulate emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air sample collection systems for methanol and formaldehyde (background measurements of methanol and... or shaft revolutions (both gas meter or flow measurement instrumentation readings), and reset the... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...

  8. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    EPA Science Inventory

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, ...

  9. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  10. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain

    NASA Astrophysics Data System (ADS)

    Amato, F.; Alastuey, A.; de la Rosa, J.; Sánchez de la Campa, A. M.; Pandolfi, M.; Lozano, A.; Contreras González, J.; Querol, X.

    2014-04-01

    The impact of road dust emissions on PM10 and PM2.5 (atmospheric particulate matter with diameteer < 10 μm and 2.5 μm mass concentrations recorded from 2003 to 2010 at 11 locations (rural, urban and industrial) in southern Spain was estimated based on the chemical characterization of PM and the use of a constrained Positive Matrix Factorization, where the chemical profile of local road dust samples is used as a priori knowledge. Results indicate that road dust increased PM10 levels on average by 21-35% at traffic sites, 29-34% at urban background sites heavily affected by road traffic emissions, 17-22% at urban-industrial sites and 9-22% at rural sites. Road dust contributions to ambient PM levels show a marked seasonality with maxima in summer and minima in winter, likely due to the rainfall frequency. Decreasing concentration trends over the sampling years were found at some traffic and urban sites but in most cases the decreases were less significant than for vehicle exhaust emissions, while concentrations increased at industrial sites, probably due to local peculiarities. Concerning PM2.5, road dust contributions were lower than in PM10, as expected but still important (21-31%, 11-31%, 6-16% and 7% for traffic, urban background, urban-industrial and rural sites, respectively). In addition the three main sources of road dust (carbonaceous particles, brake wear and road wear/mineral) were identified and their contributions to road dust mass loadings estimated, supporting the idea that air quality managers should drive measures aimed at preventing the build-up of road dust particles on roads.

  11. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions.

    PubMed

    Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas

    2012-10-02

    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane.

  12. Particulate emissions from wheat and Kentucky bluegrass stubble burning in eastern Washington and northern Idaho

    NASA Astrophysics Data System (ADS)

    Dhammapala, Ranil; Claiborn, Candis; Corkill, Jeff; Gullett, Brian

    The PM 2.5 emission factors (EF) in smoke from post-harvest wheat and Kentucky bluegrass (KBG) stubble burning were quantified in the United States Environmental Protection Agency test burn facility. The PM 2.5 EFs from high and low combustion efficiency (CE) wheat burns were 0.8±0.4 and 4.7±0.4 g kg -1, respectively, and decreased with increasing CE. While these EFs are generally in agreement with literature, it is difficult to compare the PM 2.5 EFs from KBG burns (12.1±1.4 g kg -1) due to the scarcity of published data. Wheat burns conducted with randomly piled stubble resulted in PM 2.5 EFs different to those where the stubble was oriented as found in the field post harvest. Two separate methods for estimating EFs were employed and found to be in good agreement. The carbon in the biomass was almost quantitatively accounted for by measuring CO 2, CO, total hydrocarbons (THC) and PM 2.5 emissions. The PM 2.5/CO emission ratios for wheat (0.05±0.01) agree with literature data, while the same ratio for KBG (0.23±0.02) was slightly higher than data reported. These ratios exhibit low dependence on CE and can be used to predict the level of one pollutant in a plume, when the concentration of the other is known. Wheat and KBG fields in 18 counties of eastern Washington and northern Idaho are burned on less than a tenth of the days of the year. Yet the fires were estimated to have produced between 0.04% and 34.5% of the total PM 2.5 and CO emissions within the respective counties, during 2002.

  13. The formation and emission of particulate matter during the combustion of density separated coal fractions

    SciTech Connect

    Xiaowei Liu; Minghou Xu; Hong Yao; Dunxi Yu; Dangzhen Lv; Ke Zhou

    2008-11-15

    A Chinese bituminous coal was separated into three density fractions using the float-sink method: heavy , medium and light Combustion and pyrolysis ofcoal with different density fractions were carried out in a laboratory-scale drop tube furnace to understand the formation mechanism of inhalable particulate matter, PM10 and PM1. The results indicated that the light fraction of the coal produced 44 wt % of total PM10 and 45 wt % of total PM1. The medium fraction of the coal contributed 52 wt % of total PM10 and 49 wt % of total PM1. The heavy fraction contributed 4 wt % of total PM10 and 6 wt % of total PM1. The light fraction and the medium fraction of the coal contained mostly included mineral and the heavy fraction contained largely excluded minerals. The PM10 and PM1 contents formed by the excluded minerals were very low compared to those formed primarily from included minerals. The proportion of the minerals in the light density fraction converted into PM1 and PM10 was the highest, with their weight percentages being 9.59% and 43.49%, respectively. One reason for this was the mineral particle size. The median mineral size in the light density fraction coal was smallest. Another reason was mineral transformation during combustion. The light fraction and the medium fraction of the coal contained mostly included minerals, and the heavy fraction contained largely excluded minerals. The transformations of included and excluded minerals were largely different and played a different role during coal combustion. The last reason was char fragmentation. Char formed by the light coal fraction was easier to fragment and subsequently formed more fine ash particles. This was because the swelling ratio, BET surface area, and total pore volume of char decreased with increasing parent coal density. 37 refs., 10 figs., 3 tabs.

  14. Particulate emission factors for mobile fossil fuel and biomass combustion sources.

    PubMed

    Watson, John G; Chow, Judith C; Chen, L-W Antony; Lowenthal, Douglas H; Fujita, Eric M; Kuhns, Hampden D; Sodeman, David A; Campbell, David E; Moosmüller, Hans; Zhu, Dongzi; Motallebi, Nehzat

    2011-05-15

    PM emission factors (EFs) for gasoline- and diesel-fueled vehicles and biomass combustion were measured in several recent studies. In the Gas/Diesel Split Study (GD-Split), PM(2.5) EFs for heavy-duty diesel vehicles (HDDV) ranged from 0.2 to ~2 g/mile and increased with vehicle age. EFs for HDDV estimated with the U.S. EPA MOBILE 6.2 and California Air Resources Board (ARB) EMFAC2007 models correlated well with measured values. PM(2.5) EFs measured for gasoline vehicles were ~two orders of magnitude lower than those for HDDV and did not correlate with model estimates. In the Kansas City Study, PM(2.5) EFs for gasoline-powered vehicles (e.g., passenger cars and light trucks) were generally <0.03 g/mile and were higher in winter than summer. EMFAC2007 reported higher PM(2.5) EFs than MOBILE 6.2 during winter, but not during summer, and neither model captured the variability of the measured EFs. Total PM EFs for heavy-duty diesel military vehicles ranged from 0.18±0.03 and 1.20±0.12 g/kg fuel, corresponding to 0.3 and 2 g/mile, respectively. These values are comparable to those of on-road HDDV. EFs for biomass burning measured during the Fire Laboratory at Missoula Experiment (FLAME) were compared with EFs from the ARB Emission Estimation System (EES) model. The highest PM(2.5) EFs (76.8±37.5 g/kg) were measured for wet (>50% moisture content) Ponderosa Pine needles. EFs were generally <20 g/kg when moisture content was <20%. The EES model agreed with measured EFs for fuels with low moisture content but underestimated measured EFs for fuel with moisture content >40%. Average EFs for dry chamise, rice straw, and dry grass were within a factor of three of values adopted by ARB in California's San Joaquin Valley (SJV). Discrepancies between measured and modeled emission factors suggest that there may be important uncertainties in current PM(2.5) emission inventories.

  15. Diesel particulate control

    SciTech Connect

    Bertelsen, F.I. )

    1988-01-01

    Diesel particulates, because of their chemical composition and extremely small size, have raised health and welfare issues. Health experts have expressed concern that they contribute to or aggravate chronic lung diseases such as asthma, bronchitis and emphysema, and there is the lingering issue about the potential cancer risk from exposure to diesel particulate. Diesel particulates impair visibility, soil buildings, contribute to structural damage through corrosion and give off a pungent odor. Diesel trucks, buses and cars together are such a significant and growing source of particulate emissions. Such vehicles emit 30 to 70 times more particulate matter than gasoline vehicles equipped with catalytic converters. Diesel engines currently power the majority of larger trucks and buses. EPA predicted that, if left uncontrolled, diesel particulate from motor vehicles would increase significantly. Diesel particulate emissions from motor vehicles are particularly troublesome because they frequently are emitted directly into the breathing zone where we work and recreate. The U.S. Congress recognized the risks posed by diesel particulate and as part of the 1977 Clean Air Act Amendments established specific, technology-forcing requirements for controlling these emissions. The U.S. Environmental Protection Agency (EPA) in 1980 established particulate standards for automobiles and light trucks and in 1985, heavy trucks and buses. California, concerned that EPA standards would not adequately protect its citizens, adopted its own set of standards for passenger cars and light trucks. This paper discusses emerging technologies proposed to address the problem.

  16. Environmental assessment of three egg production systems--Part II. Ammonia, greenhouse gas, and particulate matter emissions.

    PubMed

    Shepherd, T A; Zhao, Y; Li, H; Stinn, J P; Hayes, M D; Xin, H

    2015-03-01

    As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P<0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P<0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P<0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study enable

  17. Environmental assessment of three egg production systems — Part II. Ammonia, greenhouse gas, and particulate matter emissions

    PubMed Central

    Shepherd, T. A.; Zhao, Y.; Li, H.; Stinn, J. P.; Hayes, M. D.; Xin, H.

    2015-01-01

    As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P < 0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P < 0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P < 0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study

  18. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission

    PubMed Central

    Héroux, Marie-Eve; Gerlofs-Nijland, Miriam E.; Kelly, Frank J.

    2013-01-01

    Particulate matter (PM) is regulated in various parts of the world based on specific size cut offs, often expressed as 10 or 2.5 µm mass median aerodynamic diameter. This pollutant is deemed one of the most dangerous to health and moreover, problems persist with high ambient concentrations. Continuing pressure to re-evaluate ambient air quality standards stems from research that not only has identified effects at low levels of PM but which also has revealed that reductions in certain components, sources and size fractions may best protect public health. Considerable amount of published information have emerged from toxicological research in recent years. Accumulating evidence has identified additional air quality metrics (e.g. black carbon, secondary organic and inorganic aerosols) that may be valuable in evaluating the health risks of, for example, primary combustion particles from traffic emissions, which are not fully taken into account with PM2.5 mass. Most of the evidence accumulated so far is for an adverse effect on health of carbonaceous material from traffic. Traffic-generated dust, including road, brake and tire wear, also contribute to the adverse effects on health. Exposure durations from a few minutes up to a year have been linked with adverse effects. The new evidence collected supports the scientific conclusions of the World Health Organization Air Quality Guidelines and also provides scientific arguments for taking decisive actions to improve air quality and reduce the global burden of disease associated with air pollution. PMID:24304307

  19. Field testing of particulate matter continuous emission monitors at the DOE Oak Ridge TSCA incinerator. Toxic Substances Control Act.

    PubMed

    Dunn, James E; Davis, Wayne T; Calcagno, James A; Allen, Marshall W

    2002-01-01

    A field study to evaluate the performance of three commercially available particulate matter (PM) continuous emission monitors (CEMs) was conducted in 1999-2000 at the US Department of Energy (DOE) Toxic Substances Control Act (TSCA) Incinerator. This study offers unique features that are believed to enhance the collective US experience with PM CEMs. The TSCA Incinerator is permitted to treat PCB-contaminated RCRA hazardous low-level radioactive wastes. The air pollution control system utilizes MACT control technology and is comprised of a rapid quench, venturi scrubber, packed bed scrubber, and two ionizing wet scrubbers in series, which create a saturated flue gas that must be conditioned by the CEMs prior to measurement. The incinerator routinely treats a wide variety of wastes including high and low BTU organic liquids, aqueous, and solid wastes. The various possible combinations for treating liquid and solid wastes may present a challenge in establishing a single, acceptable correlation relationship for individual CEMs. The effect of low-level radioactive material present in the waste is a unique site-specific factor not evaluated in previous tests. The three systems chosen for evaluation were two beta gauge devices and a light scattering device. The performance of the CEMs was evaluated using the requirements in draft Environmental Protection Agency (EPA) Performance Specification 11 (PS11) and Procedure 2. The results of Reference Method 5i stack tests for establishing statistical correlations between the reference method data and the CEMs responses are discussed.

  20. Impacts of continuously regenerating trap and particle oxidation catalyst on the NO2 and particulate matter emissions emitted from diesel engine.

    PubMed

    Liu, Zhihua; Ge, Yunshan; Tan, Jianwei; He, Chao; Shah, Asad Naeem; Ding, Yan; Yu, Linxiao; Zhao, Wei

    2012-01-01

    Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere.

  1. Chemical Characteristics of Particulate Matter from Vehicle emission using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.

    2015-12-01

    Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.

  2. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi

    NASA Astrophysics Data System (ADS)

    Nagpure, Ajay Singh; Gurjar, B. R.; Kumar, Vivek; Kumar, Prashant

    2016-02-01

    Analysis of emissions from on-road vehicles in an Indian megacity, Delhi, have been performed by comparing exhaust emissions of gaseous, particulate matter and mobile source air toxics (MSATs), together with volatile organic compound (VOCs) and PM10 (particulate matter ≤10 μm) from non-exhaust vehicular sources, during the past (1991-2011) and future (2011-2020) scenarios. Results indicate that emissions of most of the pollutants from private vehicles (two wheelers and cars) have increased by 2- to 18-times in 2020 over the 1991 levels. Two wheelers found to be dominating the emissions of carbon monoxide (CO, 29-51%), hydrocarbons (HC, 45-73%), acetaldehyde (46-51%) and total poly aromatic hydrocarbons (PAHs, 37-42%). Conversely, private cars were found to be responsible for the majority of the carbon dioxide (CO2, 24-42%), 1,3-butadiene (72-89%), benzene (60-82%), formaldehyde (23-44%) and total aldehyde (27-52%) between 1991 and 2011. The heavy-duty commercial vehicles (HCVs) shows their accountability for most of the nitrogen oxide (NOx, 18-41%) and PM10 (33-43%) emissions during the years 1991-2011. In terms of PM10 emissions, vehicular exhaust contributed by 21-55%, followed by road dust (42-73%) and brake wear (3-5%) between 1991 and 2011. After 2002, non-exhaust emissions (e.g. road dust, brake wear and tyre wear) together indicate higher accountability (66-86%) for PM10 emission than the exhaust emissions (14-34%). The temporal trend of emissions of NOx and CO show reasonable agreement with available ambient air concentrations that were monitored at locations, significantly influenced by vehicular activity. Encouraging results were emerged, showing a good correlation coefficient for CO (0.94) and NOx (0.68).

  3. Chemical constituents in particulate emissions from an integrated iron and steel facility.

    PubMed

    Tsai, Jiun-Horng; Lin, Kuo-Hsiung; Chen, Chih-Yu; Ding, Jian-Yuan; Choa, Ching-Guan; Chiang, Hung-Lung

    2007-08-17

    Particle emissions from four integrated iron and steel plant processes, i.e., coke making, sintering, cold forming, and hot forming, were investigated in this study. Particle compositions of 21 element species, 11 ionic species, elemental carbon (EC), organic carbon (OC) and 16 polyaromatic hydrocarbons (PAHs) were analyzed to create "fingerprints" of the particles emitted from various processes in an integrated iron and steel plant. Results indicated that element compositions (0.11-0.42 g/g), water-soluble ions (0.34-0.52 g/g), elemental carbon (0.008-0.14 g/g), organic carbon (0.02-0.06 g/g) and PAHs (0.52-6.2 mg/g) contributed to the particle mass. In general, sulfur had a higher mass contribution than the other elements, which resulted from the use of coal, flux, heavy oil, and many recycled materials in the iron and steel plant. The particle mass contribution of potassium and chlorine in the sinter plant was higher than in other processes; this may be attributed to the lower boiling point and volatility of potassium. In addition, many recycled materials were fed into the sinter plant, causing a high concentration of potassium and chlorine in the particle phase. Eight PAH compounds were analyzed in the four processes. The carcinogenic compound Benzo(a)pyrene (BaP) was detectable only in the sintering process.

  4. Efficiency of Emission Control Measures on Particulate Matter-Related Health Impacts and Economic Cost during the 2014 Asia-Pacific Economic Cooperation Meeting in Beijing

    PubMed Central

    Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao

    2016-01-01

    Background: The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods: The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results: Average concentrations of PM2.5 and PM10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM2.5 and PM10 during the APEC were the lowest. The economic cost associated with mortality caused by PM2.5 and PM10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions: The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection. PMID:28036006

  5. Baumot BA-B Diesel Particulate Filter with Pre-Catalyst (ETV Mobile Source Emissions Control Devices) Verification Report

    EPA Science Inventory

    The Baumot BA-B Diesel Particulate Filter with Pre-Catalyst is a diesel engine retrofit device for light, medium, and heavy heavy-duty diesel on-highway engines for use with commercial ultra-low-sulfur diesel (ULSD) fuel. The BA-B particulate filter is composed of a pre-catalyst ...

  6. Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995-2008: impact of emission changes in mainland China

    NASA Astrophysics Data System (ADS)

    Nie, W.; Wang, T.; Wang, W.; Wei, X.; Liu, Q.

    2011-12-01

    The release of large amounts of sulfur dioxide (SO2) and nitrogen oxides (NOx) from the burning of fossil fuel leads to regional air pollution phenomena such as haze and acidic deposition. Despite longstanding recognition of the severity of these problems and the numerous studies conducted in China, little is known of long-term trends in particulate sulfate and nitrate and their association with changes in precursor emissions. In this study, we analyze records covering a 14-year period (1995-2008) of coarse particulate (PM10) composition in the subtropical city of Hong Kong, situated in the rapidly developing Pearl River Delta region of southern China. A linear regression method and a Regional Kendall test are employed for trend calculations. In contrast to the decreased levels of SO2 and NOx emissions in Hong Kong, there are increasing overall trends in ambient concentrations of sulfate and nitrate, with the most obvious rise seen during 2001-2005 and relatively steady values recorded thereafter. These increased sulfate and nitrate concentrations have both negated the effect of emission-reduction efforts for coarse particles and increased the acidity of wet deposition in Hong Kong. Backward trajectories are computed to help identify the origin of large-scale air masses arriving in Hong Kong. In air masses dominated by Hong Kong urban sources and ship emissions, no statistically significant trend is apparent in either sulfate or nitrate, results that can be attributed to falling local urban emissions and increasing ship emissions; however, the sharp increases seen in particulate sulfate and nitrate concentrations were observed in air masses originating from eastern China and are generally consistent with changes in emissions of their precursors in eastern China. Examination of PM10 mass data recorded at a pair of upwind-urban sites also indicates that long-range transport makes a large contribution (> 80%) to coarse particulate loadings in Hong Kong. Together with

  7. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect

    Matthias, Nick; Farron, Carrie; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs) from an aerosol sample. One method is a Dekati Thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented for this project in an engine test cell built around a direct injection spark ignited (DISI) engine. The engine was designed for stoichiometric, homogeneous combustion. Direct injection is of particular interest for improved fuel efficiency but this comes with the production of a significant amount of (PM) and may therefore be subject to the proposed number based regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition. The first interesting observation is that PM number distributions, acquired using a TSI SMPS, have a large accumulation mode (30-294 nm) but a very small nuclei mode (8-30 nm). This is understood to represent a lack of condensation particles meaning that neither the exhaust conditions nor the sample handling conditions are conducive to condensation. This lack of nuclei mode does not, however, represent a lack of VOCs in the sample. It has been observed, using mass spectral analysis (limited to PM>50 nm), that PM from the DISI engine has approximately 40% organic content through varying operating conditions. This begs the question of how effective different sample handling methods are at removing these VOCs. For one specific operating condition, called Cold Start, the un-treated PM was 40% organic. The TD

  8. Speciation of Total Organic Gas and Particulate Matter Emissions from Onroad Vehicles in the Next Version of MOVES

    EPA Science Inventory

    Calculation of organic gas measures used in MOVES (total hydrocarbons, methane, non-methane hydrocarbons, volatile organic compounds, non-methane organic gases, and total organic gases). Incorporation of speciation within MOVES to produce total organic gas and particulate matte...

  9. About Cardiac Arrest

    MedlinePlus

    ... Thromboembolism Aortic Aneurysm More About Cardiac Arrest Updated:Mar 10,2017 What is cardiac arrest? Cardiac arrest is the abrupt loss of heart function in a person who may or may not have diagnosed heart ...

  10. Particulate and trace gas emissions from prescribed burns in southeastern U.S. fuel types: Summary of a 5-year project

    SciTech Connect

    Weise, David; Johnson, Timothy J.; Reardon, James

    2015-03-04

    Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using state-of-the-art instrumentation in both laboratory and field experiments. Emission factors for flaming, smoldering, and residual smoldering were developed. Agreement between laboratory and field-derived emission factors was generally good in most cases. Reference spectra of over 50 wildland fire gas-phase smoke components were added to a publicly-available database to support identification via infrared spectroscopy. Fuel loading for the field experiments was similar to previously measured fuels. This article summarizes the results of a five-year study to better understand the composition of smoke during all phases of burning for such forests.

  11. Nuclei-mode particulate emissions and their response to fuel sulfur content and primary dilution during transient operations of old and modern diesel engines.

    PubMed

    Liu, Z Gerald; Vasys, Victoria N; Kittelson, David B

    2007-09-15

    The effects of fuel sulfur content and primary dilution on PM number emissions were investigated during transient operations of an old and a modern diesel engine. Emissions were also studied during steady-state operations in order to confirm consistency with previous findings. Testing methods were concurrent with those implemented by the EPA to regulate PM mass emissions, including the use of the Federal Transient Testing Procedure-Heavy Duty cycle to simulate transient conditions and the use of a Critical Flow Venturi-Constant Volume System to provide primary dilution. Steady-state results were found to be consistent with previous studies in that nuclei-mode particulate emissions were largely reduced when lower-sulfur content fuel was used in the newer engine, while the nuclei-mode PM emissions from the older engine were much less affected by fuel sulfur content. The transient results, however, show that the total number of nuclei-mode PM emissions from both engines increases with fuel sulfur content, although this effect is only seen under the higher primary dilution ratios with the older engine. Transient results further show that higher primary dilution ratios increase total nuclei-mode PM number emissions in both engines.

  12. Diurnal variations of residential particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs)

    NASA Astrophysics Data System (ADS)

    Poulain, L.; Iinuma, Y.; Müller, K.; Birmili, W.; Weinhold, K.; Brüggemann, E.; Gnauk, T.; Hausmann, A.; Löschau, G.; Wiedensohler, A.; Herrmann, H.

    2011-04-01

    combustion to air quality and PAH emissions at the sampling place which might have a significant impact on human health. Moreover, it also emphasizes the need for a better time resolution of the chemical characterization of toxic particulate compounds in order to provide more information about variations of the different sources through the days as well as to better estimate the real human exposure.

  13. SRC burn test in 700-hp oil-designed boiler. Annex Volume E. Evaluation of fabric filter for particulate emission control. Final technical report

    SciTech Connect

    Not Available

    1983-09-01

    Three types of Solvent Refined Coal Fuels namely, Pulverized SRC Fuel Solids, SRC Residual Fuel Oil and SRC Fuel Water Slurry were fired, one at a time, in a 700 HP boiler designed for oil firing. The purpose was to demonstrate the suitability of SRC Fuels in serving as an alternative to fuel oil and to evaluate the feasibility of fabric filters for control of emissions from SRC fuel fired boilers. Two types of fabric filters, namely a Pulse Jet, full scale Baghouse and a Reverse Air, pilot scale filter were tested. The Pulse Jet Baghouse was an existing full scale unit with a cloth area of 1924 square feet and a gas flow capacity of approximately 10,000 ACFM at 400/sup 0/F. The Reverse Air Pilot Filter was a bench scale, portable unit with a cloth area of 1 square foot and a gas flow capacity of up to 6 ACFM at 400/sup 0/F. This report presents the results of particulate mass emission rates, operating conditions and performance of the two fabric filters. The particulate emissions from all fuel types were easily controlled to less than 0.01 lb/million Btu within normal and conventional working range of the fabric filters and with no special or restrictive operating conditions.

  14. Evaluation of catalyzed and electrically heated filters for removal of particulate emissions from diesel-A- and JP-8-fueled engines.

    PubMed

    Kelly, Kerry E; Wagner, David A; Lighty, JoAnn S; Sarofim, Adel F; Bretecher, Brad; Holden, Bruce; Helgeson, Norm; Sahay, Keshav; Nardi, Zack

    2004-01-01

    In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.

  15. Improved Model of Isoprene Emissions in Africa using Ozone Monitoring Instrument (OMI) Satellite Observations of Formaldehyde: Implications for Oxidants and Particulate Matter

    SciTech Connect

    Marais, E. A.; Jacob, D.; Guenther, Alex B.; Chance, K.; Kurosu, T. P.; Murphy, J. G.; Reeves, C. E.; Pye, H.

    2014-08-01

    We use a 2005-2009 record of isoprene emissions over Africa derived from OMI satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission on the scale of the continent and evaluate the impact of isoprene emissions on atmospheric composition in Africa. OMI-derived isoprene emissions show large seasonality over savannas driven by temperature and leaf area index (LAI), and much weaker seasonality over equatorial forests driven by temperature. The commonly used MEGAN (version 2.1) global 31 isoprene emission model reproduces this seasonality but is biased high, particularly for 32 equatorial forests, when compared to OMI and relaxed-eddy accumulation measurements. 33 Isoprene emissions in MEGAN are computed as the product of an emission factor Eo, LAI, and 34 activity factors dependent on environmental variables. We use the OMI-derived emissions to 35 provide improved estimates of Eo that are in good agreement with direct leaf measurements from 36 field campaigns (r = 0.55, bias = -19%). The largest downward corrections to MEGAN Eo values are for equatorial forests and semi-arid environments, and this is consistent with latitudinal transects of isoprene over West Africa from the AMMA aircraft campaign. Total emission of isoprene in Africa is estimated to be 77 Tg C a-1, compared to 104 Tg C a-1 in MEGAN. Simulations with the GEOS-Chem oxidant-aerosol model suggest that isoprene emissions increase mean surface ozone in West Africa by up to 8 ppbv, and particulate matter by up to 1.5 42 μg m-3, due to coupling with anthropogenic influences.

  16. A remote tester for surge arresters: Final report

    SciTech Connect

    Shaw, J.H.

    1986-12-01

    Laboratory studies show that the most probable indication that a surge arrester is failing is electromagnetic energy emission. In field trials by eight utilities, a tester designed to detect radiofrequency emissions located defective arresters, but stray emissions in the environment limited its performance.

  17. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

    NASA Astrophysics Data System (ADS)

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities.

  18. Volatile organic compound and particulate emission studies of AF (Air Force) paint-booth facilities. Phase 1. Final report, February-December 1987

    SciTech Connect

    Ayer, J.; Wolbach, D.

    1988-07-01

    This study presents the results of volatile organic compound (VOC) and particulate emission surveys performed at three Air Force painting facilities. The three facilities -- one in McClellan AFB buildings 655 and two at Travis AFB in buildings 550 and 1014 -- did not meet local VOC emission standards. The possibility of reducing these emissions with recirculation modifications and various VOC reduction and control strategies is discussed. Although VOC emissions from paint spray booths can be controlled by add-on control systems, control is expensive for present air flow rates. The use of air recirculation within the spray booth can reduce the cost of VOC emission controls by reducing the quantity of air that requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the systems, various criteria such as paint booth VOC concentrations and health and safety standards were considered. Add-on VOC emission-control systems that can be used in conjunction with the recirculation system are evaluated. The devices of interest are a solvent incineration system and an activated-carbon adsorption bed. The VOC removal efficiency, initial capital investment and operating costs for both of these technologies are discussed.

  19. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

    PubMed Central

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities. PMID:26782059

  20. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  1. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.

  2. Prevention of air pollution from ships: Characterization and assessment of diesel particulate emission reduction via lube-oil-consumption control. Final report, 1 April 1995-96 July 1931

    SciTech Connect

    Wong, V.W.; Brown, A.J.

    1997-03-01

    Strategies to allevuate particulate emissions from diesel engines on board vessels operating in coastal waters are being investigates. The approach is to determine the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. The research objectives are: (a) establish the baseline characteristics of reducing engine lube-oil consumption, and (b) investigate the effects of engine component-design and operating-condition on these characteristics. In this study, simultaneous lube-oil consumption and particulate emission data were collected on a single-cylinder diesel engine for various speeds and loads using three ring and intake pressure configurations. Lube-oil contribution to particulates was determined using chromatography.

  3. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels

    EPA Science Inventory

    Two diesel trucks equipped with a particulate filter (DPF) were tested at two ambient temperatures (70oF and 20oF), fuels (ultra low sulfur diesel (ULSD) and biodiesel (B20)) and operating loads (a heavy and light weight). The test procedure included three driving cycles, a cold ...

  4. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  5. Trends in Concentrations of Atmospheric Gaseous and Particulate Species at the Look Rock, TN NCORE Air Quality Station and Their Relation to Primary Emissions Reductions

    NASA Astrophysics Data System (ADS)

    Tanner, R. L.; Mueller, S. F.; Bairai, S. T.

    2013-12-01

    Air quality parameters, measured at Look Rock, TN, since 1980, were expanded by National Park Service (NPS) as an IMPROVE network station and again in 1999-2007 by Tennessee Valley Authority as part of efforts to determine the effects of reductions in EGU emissions of sulfur and nitrogen oxides on air quality at the site. Designated as a non-urban, NCORE-equivalent station in 2010, routine continuous monitoring of aerosol mass, sulfate, and black carbon, and primary and secondary gases at the site as well as additional measurements during a series of intensive research studies at the site have produced an extensive body to air quality data on background levels of species relevant to air quality standards (NAAQS) for ozone and fine particulate matter which is unique comprehensive for a high-altitude site in the southeastern U.S.A. Analysis of the temporal trends in these data (1999-present)is being conducted in conjunction with and support of 2013 Southern Atmosphere Studies at Look Rock and other southeastern U.S. locations. Key findings from analysis of temporal trends at Look Rock include the observation that primary pollutant levels have consistently tracked the emissions reductions from EGUs and other primary sources in the region, but reductions in secondary pollutants such as particulate sulfate and ozone have been less than proportional. Organic carbonaceous material (OM) remains a major contributor to fine particulate mass at the site, and a large portion (65-85%) of OM derives from modern carbon, based on 14C measurements. Important parameters affecting fine mass and ozone levels also include the specific diurnal meteorology at this ridge-top site, its location in a largely mixed-deciduous forest, and the presence of primary sources of precursors at distances of 50-500 km from the site in all directions.

  6. Real-world automotive particulate matter and PAH emission factors and profile concentrations: Results from an urban tunnel experiment in Naples, Italy

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Chianese, E.; Monaco, D.; Costagliola, M. A.; Perretta, G.; Prati, M. V.; Agrillo, G.; Esposito, A.; Gasbarra, D.; Shindler, L.; Brusasca, G.; Nanni, A.; Pozzi, C.; Magliulo, V.

    2016-09-01

    On-road particulate matter (PM) mass was measured during a sampling campaign in March of 2015 in the '4 giornate' tunnel in Naples, Italy. Two sets of samples were collected at both sides of the tunnel, each set representing the daily cycle at a 1 h time resolution. Distance-based - mass per kilometer - and fuel-based - mass per burned fuel - emission factors (EFs) were calculated using mass concentrations, traffic flow rates and wind speed as a function of fleet composition. Also, chemical analyses were performed for polycyclic aromatic hydrocarbons (PAHs). Due to the high traffic volume, particle mass concentration at the tunnel exit was always significantly elevated relative to entrance concentration; depending on the hour of the day, PM10 concentration ranged between 300 μg/m3, during the early afternoon, and 600 μg/m3 during rush hours at the tunnel exit. Correspondingly, PAHs achieved concentrations as high as 1450 ng/m3, and benzo(a)pyrene, a surely carcinogenic compound, achieved concentrations as high as 69 ng/m3, raising serious concerns in relation to population exposure close to this urban tunnel. Distance-based and fuel-based emission factors for CO2, PM10 and PAHs were estimated, but while the EF for CO2 was within the range of expected values, the present study found much higher EFs for particulate matter and PAHs. According to the national official statistics from ISPRA (the Italian Institute for the Protection and Research on Environment), derived from the COPERT database, we expected an EF for particulate matter of about 55 mg/km, but the EF estimated from measurements taken at both sides of the tunnel was about four times higher than that expected; also, benzo(a)pyrene achieved an average EF of 2.7 μg/km, about three times higher than that expected from the ISPRA database.

  7. Evaluating the Effects of Aromatics Content in Gasoline on Gaseous and Particulate Matter Emissions from SI-PFI and SIDI Vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Vu, Diep; Russell, Robert; Hajbabaei, Maryam; Asa-Awuku, Akua; Durbin, Thomas D

    2015-06-02

    We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.

  8. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT)

    PubMed Central

    Maurer, Devin L.; Koziel, Jacek A.; Harmon, Jay D.; Hoff, Steven J.; Rieck-Hinz, Angela M.; Andersen, Daniel S.

    2016-01-01

    The livestock and poultry production industry, regulatory agencies, and researchers lack a current, science-based guide and data base for evaluation of air quality mitigation technologies. Data collected from science-based review of mitigation technologies using practical, stakeholders-oriented evaluation criteria to identify knowledge gaps/needs and focuses for future research efforts on technologies and areas with the greatest impact potential is presented in the Literature Database tab on the air management practices tool (AMPAT). The AMPAT is web-based (available at www.agronext.iastate.edu/ampat) and provides an objective overview of mitigation practices best suited to address odor, gaseous, and particulate matter (PM) emissions at livestock operations. The data was compiled into Excel spreadsheets from a literature review of 265 papers was performed to (1) evaluate mitigation technologies performance for emissions of odor, volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), particulate matter (PM), and greenhouse gases (GHGs) and to (2) inform future research needs. PMID:27158660

  9. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT).

    PubMed

    Maurer, Devin L; Koziel, Jacek A; Harmon, Jay D; Hoff, Steven J; Rieck-Hinz, Angela M; Andersen, Daniel S

    2016-06-01

    The livestock and poultry production industry, regulatory agencies, and researchers lack a current, science-based guide and data base for evaluation of air quality mitigation technologies. Data collected from science-based review of mitigation technologies using practical, stakeholders-oriented evaluation criteria to identify knowledge gaps/needs and focuses for future research efforts on technologies and areas with the greatest impact potential is presented in the Literature Database tab on the air management practices tool (AMPAT). The AMPAT is web-based (available at www.agronext.iastate.edu/ampat) and provides an objective overview of mitigation practices best suited to address odor, gaseous, and particulate matter (PM) emissions at livestock operations. The data was compiled into Excel spreadsheets from a literature review of 265 papers was performed to (1) evaluate mitigation technologies performance for emissions of odor, volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), particulate matter (PM), and greenhouse gases (GHGs) and to (2) inform future research needs.

  10. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, brick kilns, generators, trash and crop residue burning

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert

    2016-04-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.

  11. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    PubMed Central

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  12. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A; Northrop, William F; Bohac, Stanislav V; Assanis, Dennis N

    2012-11-15

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  13. Assessing the Anthropogenic Fugitive Dust Emission Inventory and Temporal Allocation Using an Updated Speciation of Particulate Matter

    EPA Science Inventory

    Crustal materials are mainly emitted by anthropogenic and windblown fugitive dust, but also may potentially include some fly ash and industrial process emissions which are chemically similar to crustal emissions. Source apportionment studies have shown that anthropogenic fugitive...

  14. Control of fine particulate emissions from coal-fired utility boilers: Spin filter collection device (rotary cyclone)

    SciTech Connect

    He, Bo X.

    1990-01-01

    A bench-scale test program has been performed to evaluate the concept of placing a porous cylindrical surface (such as a metal screen) at the core of a container and spinning the surface with an external motor for fine particulate/gas separation. The rotating surface enhances the centrifugal effects in the annular region and provides a smooth transition between the flow in the annular and core regions and acts like an enhanced cyclone. It is therefore called a rotary cyclone.'' The porous surface is self-cleaning and offers good steady-state pressure drop characteristics. Objectives of this project are: (1) to carry out theoretical and experimental investigations using the rotary cyclone concept to capture particulates in the 0.5 to 10 micron size range; and (2) to evaluate its economic feasibility based on an engineering scale-up and comparison with conventional fabric filter and electrostatic precipitator systems. It was demonstrated that the efficiency in separating fine particulates is governed by two major characteristics, i.e., the magnitude of the centrifugal force and the approach velocity or the gas-to-surface area ratio. Results from the bench-scale tests have shown a collection efficiency of well over 99% for a typical fly ash. A preliminary conceptual design for a 40 MW installation was developed based on the experimental work. 4 refs., 4 figs., 8 tabs.

  15. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    NASA Astrophysics Data System (ADS)

    Chambliss, S. E.; Silva, R.; West, J. J.; Zeinali, M.; Minjares, R.

    2014-10-01

    Exposure to ambient fine particular matter (PM2.5) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m-3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants.

  16. Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy

    NASA Astrophysics Data System (ADS)

    Merico, E.; Donateo, A.; Gambaro, A.; Cesari, D.; Gregoris, E.; Barbaro, E.; Dinoi, A.; Giovanelli, G.; Masieri, S.; Contini, D.

    2016-08-01

    Ship emissions are a growing concern, especially in coastal areas, for potential impacts on human health and climate. International mitigation strategies to curb these emission, based on low-sulphur content fuels, have proven useful to improve local air quality. However, the effect on climate forcing is less obvious. Detailed information on the influence of shipping to particles of different sizes is needed to investigate air quality and climate interaction. In this work, the contributions of maritime emissions to atmospheric concentrations of gaseous pollutants (NO, NO2, SO2, and O3) and of particles (sizes from 0.009 μm to 30 μm) were investigated considering manoeuvring (arrival and departure of ships) and hotelling phases (including loading/unloading activities). Results showed that the size distributions of shipping contributions were different for the two phases and could be efficiently described, using measured data, considering four size-ranges. The largest contribution to particles concentration was observed for Dp < 0.25 μm, however, a secondary maximum was observed at Dp = 0.35 μm. The minimum contribution was observed at Dp around 0.8-0.9 μm with a negligible contribution from hotelling for size range 0.4-1 μm. The comparison of 2012 and 2014 datasets showed no significant changes of gaseous and particulate pollutant emissions and of the contribution to particle mass concentration. However, an increase of the contribution to particle number concentration (PNC) was observed. Results suggested that harbour logistic has a relevant role in determining the total impact of shipping on air quality of the nearby coastal areas. Additionally, future policies should focus on PNC that represents an important fraction of emissions also for low-sulphur fuels. DOAS remote sensing proved a useful tool to directly measure NO2 and SO2 ship emissions giving estimates comparable with those of emission inventory approach.

  17. Emission factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter at two high-rise layer hen houses

    NASA Astrophysics Data System (ADS)

    Ni, Ji-Qin; Liu, Shule; Diehl, Claude A.; Lim, Teng-Teeh; Bogan, Bill W.; Chen, Lide; Chai, Lilong; Wang, Kaiying; Heber, Albert J.

    2017-04-01

    Air pollutants emitted from confined animal buildings can cause environmental pollution and ecological damage. Long-term (>6 months) and continuous (or high frequency) monitoring that can reveal seasonal and diurnal variations is needed to obtain emission factors and characteristics about these pollutants. A two-year continuous monitoring of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2) and particulate matter (PM10) emissions from two 218,000-hen high-rise layer houses (H-A and H-B) in Indiana, USA was conducted from June 2007 to May 2009. Gaseous pollutant concentrations were measured with two gas analyzers and PM10 concentrations were measured with three Tapered Element Oscillating Microbalances. The operation and performance of ventilation fans were continuously monitored with multiple methods. Only the emission rates calculated with valid data days (days with more than 18 h, or 75%, of valid data) are reported in this paper. The two-house and two-year mean ± standard deviation emissions per day per hen for NH3, H2S, CO2, and PM10 were 1.08 ± 0.42 g, 1.37 ± 0.83 mg, 76.7 ± 14.6 g, and 20.6 ± 22.5 mg, respectively. Seasonal emission variations were demonstrated for NH3 and CO2, but not evident for H2S and PM10. Ammonia and CO2 emissions were higher in winter than in summer. Significant daily mean emission variations were observed for all four pollutants between the two houses (P < 0.05), and between the two years from the same house (P < 0.01) except for CO2 at one house. Carbon dioxide originated from manure decomposition was >9% of that from bird respiration. Emissions of CO2 during molting were about 80% of those during normal egg production days. Emissions of H2S were not a major concern due to their very low quantities. Emissions of PM10 were more variable than other pollutants. However, not all of the emission statistics are explainable.

  18. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk.

    PubMed

    Kholod, N; Evans, M; Gusev, E; Yu, S; Malyshev, V; Tretyakova, S; Barinov, A

    2016-03-15

    This paper presents a methodology for calculating exhaust emissions from on-road transport in cities with low-quality traffic data and outdated vehicle registries. The methodology consists of data collection approaches and emission calculation methods. For data collection, the paper suggests using video survey and parking lot survey methods developed for the International Vehicular Emissions model. Additional sources of information include data from the largest transportation companies, vehicle inspection stations, and official vehicle registries. The paper suggests using the European Computer Programme to Calculate Emissions from Road Transport (COPERT) 4 model to calculate emissions, especially in countries that implemented European emissions standards. If available, the local emission factors should be used instead of the default COPERT emission factors. The paper also suggests additional steps in the methodology to calculate emissions only from diesel vehicles. We applied this methodology to calculate black carbon emissions from diesel on-road vehicles in Murmansk, Russia. The results from Murmansk show that diesel vehicles emitted 11.7 tons of black carbon in 2014. The main factors determining the level of emissions are the structure of the vehicle fleet and the level of vehicle emission controls. Vehicles without controls emit about 55% of black carbon emissions.

  19. A potential instrumental counterpart to Method 5 for the continuous measurement of particulate matter emissions from combustion and other sources using isokinetic sample extraction technology followed by beta ray attenuation mass measurements

    SciTech Connect

    Griguoli, F.T.

    1997-12-31

    For many years opacity and other values available from optical devices have been used in an attempt to assess and often quantify particulate matter emissions from stationary sources, particularly combustion sources using coal. These opacity values have also been used to obtain mass concentration data. Today`s reality is such that pollution abatement technologies have become better and better, dry or wet, and most processes are subject to a variety of conditions no longer suitable, in the author`s opinion, for the use of optical devices or derivatives of them. This paper describes a continuous extractive technique to measure particulate matter which has been used in Europe and around the word for more than 10 years. This technique works very well in changing particulate matter conditions, low particulate concentrations, small diameter stacks, and stacks/ducts with high water vapor content in the flue gas. 2 refs., 2 figs.

  20. Model Beta 5M: A potential instrumental counterpart to Method 5 for the continuous measurement of particulate matter emissions from combustion and other sources using isokinetic sample extraction technology followed by beta ray attenuation mass measurement techniques

    SciTech Connect

    Griguoli, F.T.

    1997-12-31

    For many years opacity and other values available from optical devices have been used in an attempt to assess and often quantify particulate matter emissions from stationary sources, particularly combustion sources using coal. These opacity values have also been used to obtain mass concentration data. Today`s reality is such that pollution abatement technologies have become better and better, dry or wet, and most processes are subject to a variety of conditions no longer suitable, in the author`s opinion, for the use of optical devices or derivatives of them. This paper describes a continuous extractive technique to measure particulate matter which has been used in Europe and around the world for more than 10 years. This technique works very well in changing particulate matter conditions, low particulate concentrations, small diameter stacks, and stacks/ducts with high water vapor content in the flue gas.

  1. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S.

    2012-08-01

    Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe in an emission control area (ECA) which is passed by numerous private and commercial marine vessels reaching and leaving the port of Hamburg, Germany. From 25-30 April 2011 a total of 178 vessels were probed at a distance of about 0.8-2 km with high temporal resolution. 139 ship emission plumes were of sufficient quality to be analyzed further and to determine emission factors (EFs). Concentrations of aerosol number and mass as well as polycyclic aromatic hydrocarbons (PAH) and black carbon were measured in PM1 and size distribution instruments covered the size diameter range from 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) in the air and a weather station provided wind, precipitation, solar radiation and other parameters. Together with ship information for each vessel obtained from Automatic Identification System (AIS) broadcasts a detailed characterization of the individual ship types and of features affecting gas and particulate emissions is provided. Particle number EFs (average 2.6×1016 # kg -1) and PM1 mass EFs (average 2.4 g kg -1) positively correlate with the fuel sulfur content and depend on the engine type and performance. Observed PM1 composition of the vessel emissions was dominated by organic matter (72%), sulfate (22%) and black carbon (6%) while PAHs only account for 0.2% of the submicron aerosol mass. Measurements of gaseous components showed an increase of SO2 (average EF: 7.7 g kg-1) and NOx (average EF: 53 g kg-1) while O3 decreased when a ship plume reached the sampling site. The particle number size distributions of the vessels are generally characterized by a bimodal size

  2. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S.

    2013-04-01

    Measurements of the ambient aerosol, various trace gases and meteorological quantities using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe in an emission control area (ECA) which is passed by numerous private and commercial marine vessels reaching and leaving the port of Hamburg, Germany. From 25-29 April 2011 a total of 178 vessels were probed at a distance of about 0.8-1.2 km with high temporal resolution. 139 ship emission plumes were of sufficient quality to be analyzed further and to determine emission factors (EFs). Concentrations of aerosol number and mass as well as polycyclic aromatic hydrocarbons (PAH) and black carbon were measured in PM1 and size distribution instruments covered the diameter range from 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) in the air and a weather station provided wind, precipitation, solar radiation data and other quantities. Together with ship information for each vessel obtained from Automatic Identification System (AIS) broadcasts a detailed characterization of the individual ship types and of features affecting gas and particulate emissions is provided. Particle number EFs (average 2.6e+16 # kg-1) and PM1 mass EFs (average 2.4 g kg-1) tend to increase with the fuel sulfur content. Observed PM1 composition of the vessel emissions was dominated by organic matter (72%), sulfate (22%) and black carbon (6%) while PAHs only account for 0.2% of the submicron aerosol mass. Measurements of gaseous components showed an increase of SO2 (average EF: 7.7 g kg-1) and NOx (average EF: 53 g kg-1) while O3 decreased when a ship plume reached the sampling site. The particle number size distributions of the vessels are generally characterized by a bimodal size distribution, with the nucleation mode in the 10-20 nm diameter

  3. DEVELOPMENT OF A NEW MOBILE LABORATORY FOR CHARACTERIZATION OF THE FINE PARTICULATE EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS.

    EPA Science Inventory

    This paper describes the development of a new mobile laboratory for the determination of the fine particle and gaseous emissions from a Class 8 diesel tractor-trailer research vehicle. The new laboratory (Diesel Emissions Aerosol Laboratory or DEAL) incorporates plume sampling ca...

  4. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    EPA Science Inventory

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  5. Users guide for the conversion of Navy paint-spray-booth particulate emission-control systems from wet to dry operation. Final report, January-September 1989

    SciTech Connect

    Ayer, J.; Tate, D.

    1990-03-01

    The report is a guide for converting U.S. Navy paint-spray-booth particulate emission control systems from wet to dry operation. The use of water curtains for air-pollution-control of paint-spray booths is considered a major source of water and solid-waste pollution from industrial painting operations. It is possible, however, to eliminate this water-pollution problem and significantly reduce the solid-waste load by converting the booth to utilize a dry-filter pollution-control system. The conversion, however, requires extensive planning prior to actual facility modification. The report describes requirements to facilitate the planning and preparation for conversion of typical spray booths. Although the report addresses modifications of Navy spray booths, the basic engineering requirements discussed apply also to other Department of Defense installations and to commercial industrial facilities.

  6. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  7. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  8. Analysis of motor vehicle emissions over eastern Los Angeles, California from in-situ airborne measurements of trace gases and particulates during CalNex

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Frost, G. J.; Holloway, J. S.; McKeen, S. A.; Peischl, J.; Fahey, D. W.; Perring, A.; Schwarz, J. P.; Spackman, J. R.

    2010-12-01

    In-situ measurements of trace gases and particulates were acquired on the instrumented NOAA WP-3D aircraft during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May and June 2010. Multiple daytime research flights under similar meteorological conditions provide a sufficient data set for characterizing automobile emissions over the eastern Los Angeles (eLA) area of the South Coast air basin. Ratios of nitrogen oxides (NOx) and black carbon (BC) to carbon monoxide (CO) are used to isolate emissions of light duty vehicles from those of medium/heavy duty diesel trucks. Observations in the mixed boundary layer for the eLA area are separated according to latitude, longitude, and altitude. Industrial influences are eliminated by filtering the data according to SO2 mixing ratio and wind direction. The resulting correlations show weekday-to-weekend differences in enhancement ratios of NOx to CO and BC to CO, indicating a general tendency for higher emissions from heavy duty vehicles during the week. The CalNex data over eLA in 2010 will be compared to eLA data from a research flight in May 2002 by the WP-3D aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) field study.

  9. Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation

    SciTech Connect

    Chun Lou; Huai-Chun Zhou; Peng-Feng Yu; Zhi-Wei Jiang

    2007-07-01

    Due to the complicated processes for coal particles burning in industrial furnaces, their radiative properties, such as the absorption and scattering coefficients, which are essential to make reliable calculation of radiative transfer in combustion computation, are hard to be given exactly by the existing methods. In this paper, multiple color image detectors were used to capture approximately red, green, and blue monochromatic radiative intensity images in the visible wavelength region, and the flame emissivity and the radiative properties of the particulate media in three pulverized-coal-fired boiler furnaces were got from the flame images. It was shown that as the load increased, the flame emissivity and the radiative properties increased too; these radiative parameters had the largest values near the burner zone, and decreased along the combustion process. Compared with the combustion medium with a low-volatile anthracite coal burning in a 670 t/h boiler, the emissivity and the absorption coefficient of the medium with a high-volatile bituminous coal burning in a 1025 t/h boiler were smaller near the outlet zone, but were larger near the burner zone of the furnace, due to the significant contribution of soot to the radiation. This work will be of practical importance in modeling and calculating the radiative heat transfer in combustion processes, and improving the technology for in situ, multi-dimensional visualization of large-scale combustion processes in coal-fired furnaces of power plants. 18 refs., 10 figs., 8 tabs.

  10. Emission characterization and δ(13)C values of parent PAHs and nitro-PAHs in size-segregated particulate matters from coal-fired power plants.

    PubMed

    Wang, Ruwei; Yousaf, Balal; Sun, Ruoyu; Zhang, Hong; Zhang, Jiamei; Liu, Guijian

    2016-11-15

    The objective of this study was to characterize parent polycyclic aromatic hydrocarbons (pPAHs) and their nitrated derivatives (NPAHs) in coarse (PM2.5-10), intermediate (PM1-2.5) and fine (PM1) particulate matters emitted from coal-fired power plants (CFPPs) in Huainan, China. The diagnostic ratios and the stable carbon isotopic approaches to characterize individual PAHs were applied in order to develop robust tools for tracing the origins of PAHs in different size-segregated particular matters (PMs) emitted CFPP coal combustion. The concentrations of PAH compounds in flue gas emissions varied greatly, depending on boiler types, operation and air pollution control device (APCD) conditions. Both pPAHs and NPAHs were strongly enriched in PM1-2.5 and PM1. In contrary to low molecular weight (LMW) PAHs, high molecular weight (HMW) PAHs were more enriched in finer PMs. The PAH diagnostic ratios in size-segregated PMs are small at most cases, highlighting their potential application in tracing CFPP emitted PAHs attached to different sizes of PMs. Yet, substantial uncertainty still exists to directly apply PAH diagnostic ratios as emission tracers. Although the stable carbon isotopic composition of PAH molecular was useful in differentiating coal combustion emissions from other sources such as biomass combustion and vehicular exhausts, it was not feasible to differentiate isotopic fractionation processes such as low-temperature carbonization, high-temperature carbonization, gasification and combustion.

  11. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M; Edwards, Kevin Dean; Smith, David E

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  12. A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes.

    PubMed

    Blair, Sandra L; Epstein, Scott A; Nizkorodov, Sergey A; Staimer, Norbert

    Tobacco-free electronic cigarettes (e-cigarettes), which are currently not regulated by the FDA, have become widespread as a "safe" form of smoking. One approach to evaluate the potential toxicity of e-cigarettes and other types of potentially "reduced-harm" cigarettes is to compare their emissions of volatile organic compounds (VOCs), including reactive organic electrophillic compounds such as acrolein, and particulate matter to those of conventional and reference cigarettes. Our newly designed fast-flow tube system enabled us to analyze VOC composition and particle number concentration in real-time by promptly diluting puffs of mainstream smoke obtained from different brands of combustion cigarettes and e-cigarettes. A proton transfer reaction time-of-flight mass spectrometer (PTRMS) was used to analyze real-time cigarette VOC emissions with a 1 s time resolution. Particles were detected with a condensation particle counter (CPC). This technique offers real-time analysis of VOCs and particles in each puff without sample aging and does not require any sample pretreatment or extra handling. Several important determining factors in VOC and particle concentration were investigated: (1) puff frequency; (2) puff number; (3) tar content; (4) filter type. Results indicate that electronic cigarettes are not free from acrolein and acetaldehyde emissions and produce comparable particle number concentrations to those of combustion cigarettes, more specifically to the 1R5F reference cigarette. Unlike conventional cigarettes, which emit different amounts of particles and VOCs each puff, there was no significant puff dependence in the e-cigarette emissions. Charcoal filter cigarettes did not fully prevent the emission of acrolein and other VOCs.

  13. High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajökull eruption and resuspension of deposited ash

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Throstur; Jóhannsson, Thorsteinn; Stohl, Andreas; Kristiansen, Nina I.

    2012-09-01

    The dangers to people living near a volcano due to lava and pyroclastic flows, and, on glacier- or snow-covered volcanoes, jökulhlaups, are well known. The level of risk to human health due to high concentrations of ash from direct emission and resuspension from the ground is, however, not as well known. The eruption at Eyjafjallajökull, 14 April to 20 May 2010, produced abundant particulate matter due to its explosive eruption style. Even after the volcanic activity ceased, high particulate matter (PM) concentrations were still measured on several occasions, due to resuspended ash. The 24 hour mean concentration of PM10 in the small town of Vík, 38 km SE of the volcano, reached 1230 μg m-3, which is about 25 times the health limit, on 7 May 2010, with 10 min average values over 13,000 μg m-3. Even after the eruption ceased, values as high as 8000 μg m-3 (10 min), and 900 μg m-3 (24 h), were measured because of resuspension of freshly deposited fine ash. In Reykjavík, 125 km WNW of the volcano, the PM10 concentration reached over 2000 μg m-3 (10 min) during an ash storm on 4 June 2010, which should have warranted airport closure. Summarizing, our study reveals the importance of ash resuspension compared to direct volcanic ash emissions. This likely has implications for air quality but could also have detrimental effects on the quality of ash dispersion model predictions, which so far generally do not include this secondary source of volcanic ash.

  14. In-use light duty gasoline vehicle particulate matter emissions on the FTP, REP05 and UC cycles. Final report

    SciTech Connect

    Cadle, S.H.; Mulawa, P.; Groblicki, P.; Laroo, C.; Ragazzi, R.A.

    1999-06-02

    The study was conducted at the Colorado Department of Public Health and Environment (CDPHE) Aurora Emissions Technical Center, in the eastern Denver metropolitan area starting in May 1998. The program was designed to focus on in-use, late model (1990 or later model year) LDGVs. The goals of the exhaust PM characterization component (aided by CRC`s participation in this study) were to (1) improve the data base on PM emission rates from in-use vehicles at low temperatures (35 deg F); (2) determine the impact of driving cycle on PM emission rate; (3) determine the impact of an oxygenated fuel on the PM emission rate and (4) determine the impact of fuel and driving cycle on the particle size distribution, number and the PM chemical composition.

  15. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration.

    PubMed

    Wang, Jun; Richter, Henning; Howard, Jack B; Levendis, Yiannis A; Carlson, Joel

    2002-02-15

    Laboratory experiments were conducted in a two-stage horizontal muffle furnace in order to monitor emissions from batch combustion of polystyrene (PS) and identify conditions that minimize them. PS is a dominant component of municipal and hospital waste streams. Bench-scale combustion of small samples (0.5 g) of shredded styrofoam cups was conducted in air, using an electrically heated horizontal muffle furnace, kept at Tgas = 1000 degrees C. Upon devolatilization, combustion of the polymer took place in a diffusion flame over the sample. The gaseous combustion products were mixed with additional air in a venturi and were channeled to a secondary muffle furnace (afterburner) kept at Tgas = 900-1100 degrees C; residence time therein varied between 0.6 and 0.8 s. At the exits of the primary and the secondary furnace the emissions of CO, CO2, O2, NOx, particulates as well as volatile and semivolatile hydrocarbons, such as polycyclic aromatic hydrocarbons (PAH), were monitored. Online analyzers, gravimetric techniques, and gas chromatography coupled to mass spectrometry (GC-MS) were used. Experiments were also conducted with a high-temperature barrier filter, placed just before the exit of the primary furnace to prevent the particulates from entering into the secondary furnace. Results demonstrated the beneficial effect of the afterburner in reducing PAH concentrations, including those of mutagenic species such as benzo[a]pyrene. Concentrations of individual PAH exhibited a pronounced after burner temperature dependence, typically ranging from a small decrease at 900 degrees C to a larger degree of consumption at 1100 degrees C. Consumption of PAH was observed to be the dominant feature at 900 degrees C, while significant quantities of benzene and some of its derivatives, captured by means of carbosieve/Carbotrap adsorbents, were formed in the afterburner at a temperature of 1000 degrees C. In the primary furnace, about 30% of the mass of the initial polystyrene was

  16. Assessing the impact of the forthcoming decrease in diesel exhaust particulate matter emissions on air quality: implications for black carbon concentrations in ambient air

    NASA Astrophysics Data System (ADS)

    González, Y.; Rodríguez, S.; Cuevas, E.; Ramos, R.; Abreu-Afonso, J.; Baldasano, J. M.

    2009-04-01

    Forthcoming regulations (e.g. EURO 5 and EURO 6) are planned to reduce particulate matter emissions (PM) in the exhaust of forthcoming vehicles. In this study we assess the impact of such reduction in the diesel PM exhaust emissions on the urban ambient air PM concentrations. This has been done by studying the relationship between black carbon (BC) and carbon monoxide (CO) in urban ambient air and in the exhaust of current and forthcoming vehicles. The slope of the BC-vs-CO linear relationship is mainly affected by the percentage (%) of diesel automobiles in the urban vehicles fleet. This slope is a better indicator of the diesel PM emissions than bulk BC concentrations in urban ambient air. BC-vs-CO slopes within the range 1-3 and 7-14 ngBC/µgCO are typically observed in urban areas with low (<25%) and high (≥50%) proportions of diesel-fuel consumption for on road transportation, respectively. The entry into force of forthcoming regulations will decrease the BC-vs-CO slope in urban ambient air from about 10 to 5 ngBC/µgCO in the next decade, according to calculations based on the current data on diesel vehicles in urban fleets in Spanish cities. However, this will not necessary prompt a significant decrease in the urban BC concentrations if road traffic volume follows the increasing trend of the last decade. The results of this study shows that the analysis of the BC-vs-CO slope trend in ambient air is an useful tool for understandi