Fine urban and precursor emissions control for diesel urban transit buses.
Lanni, Thomas
2003-01-01
Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled "Clean Diesel Air Quality Demonstration Program" has been initiated by the New York City Metropolitan Transit Authority (MTA) under the supervision of New York State Department of Environmental Conservation and with active participation from Johnson Matthey, Corning, Equilon, Environment Canada and RAD Energy. Under this program, several MTA transit buses with DDC Series 50 engines were equipped with Continuously Regenerating Technology (CRTTM) particulate filter systems and have been operated with ultra low sulfur diesel (<30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9-month period for durability and maintainability of the particulate filter. In addition, an extensive emissions testing program was carried out using transient cycles on a chassis dynamometer to evaluate the emissions reductions obtained with the particle filter. In this paper, the emissions testing data from the Clean Diesel Air Quality Demonstration Program are discussed in detail.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-25
...-AR30 Implementation of the New Source Review (NSR) Program for Particulate Matter Less Than 2.5... Particulate Matter AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The EPA is... for particulate matter (PM) known as ``particulate matter emissions'' in the context of the PSD and...
ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4
As part of an extensive program to study the small combustion sources of indoor fine particulate matter (PM), candles with lead-core wicks were burned in a 46-L glass flow- through chamber. The particulate emissions with aerodynamic diameters <10 micrometers (PM10) were captured ...
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...
Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric
2011-10-15
Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.
CHARACTERIZATION OF THE FUGITIVE PARTICULATE EMISSIONS FROM CONSTRUCTION MUD/DIRT CARRYOUT
The paper describes a research program which directly determined mud/dirt carryout emission factors for both particulate matter (PM) with aerodynamic diameters of 10 micrometers or less (PM10) and PM with aerodynamic diameters of 2.5 micrometers or less (PM2.5). The research was ...
Vision for Future North American Emission Inventory Programs
The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...
Voluntary program to reduce soot
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-01-01
The U.S. Environmental Protection Agency (EPA) announced on 17 January that it has formulated a voluntary clean air program, Particulate Matter (PM) Advance, to help communities develop strategies to reduce fine-particle emissions, often called soot or particulate matter, that can be harmful to human health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in twomore » phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.« less
U.S. Coast Guard Pollution Abatement Program : Cutter Estimated Exhaust Emissions.
DOT National Transportation Integrated Search
1975-09-01
The gaseous and particulate emissions of the Coast Guard cutter fleet are estimated by using measured emission factors and derived operational duty cycles. These data are compared to previous estimates by using emission factors found in the literatur...
NARSTO EMISSION INVENTORY ASSESSMENT
The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...
PARTICULATE CONTROL HIGHLIGHTS: RESEARCH ON ELECTROSTATIC PRECIPITATOR TECHNOLOGY
The report gives highlights of a major EPA research program on electrostatic precipitator (ESP) technology, directed toward improving the performance of ESPs in controlling industrial particulate emissions, notably fly ash from coal combustion in electric power plants. Relationsh...
McDonald-Buller, Elena; Kimura, Yosuke; Craig, Michael; McGaughey, Gary; Allen, David; Webster, Mort
2016-02-02
Cap and trade programs have historically been designed to achieve annual or seasonal reductions in emissions of nitrogen oxides and sulfur dioxide from power plants. Emissions reductions may not be temporally coincident with meteorological conditions conducive to the formation of peak ozone and fine particulate matter concentrations. Integrated power system and air quality modeling methods were developed to evaluate time-differentiated emissions price signals on high ozone days in the Mid-Atlantic portion of the Pennsylvania-New Jersey-Maryland (PJM) Interconnection and Electric Reliability Council of Texas (ERCOT) grids. Sufficient flexibility exists in the two grids with marked differences in demand and fuel generation mix to accommodate time-differentiated emissions pricing alone or in combination with a season-wide program. System-wide emissions reductions and production costs from time-differentiated pricing are shown to be competitive with those of a season-wide program on high ozone days and would be more cost-effective if the primary policy goal was to target emissions reductions on these days. Time-differentiated pricing layered as a complement to the Cross-State Air Pollution Rule had particularly pronounced benefits for the Mid-Atlantic PJM system that relies heavily on coal-fired generation. Time-differentiated pricing aimed at reducing ozone concentrations had particulate matter reduction co-benefits, but if particulate matter reductions are the primary objective, other approaches to time-differentiated pricing may lead to greater benefits.
In Situ Characterization of Point-of-Discharge Fine Particulate Emissions
2008-07-01
of Point- of -Discharge Fine Particulate Emissions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6... NUMBER OF PAGES 163 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form... number of weapons systems. A number of Ft. Sill’s training ranges were projected to be in use during the last half of March, 2007 through
Simon, Heather; Allen, David T; Wittig, Ann E
2008-02-01
Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... dryer stack a. The average mass flow of particulate matter from the control system applied to emissions...
The particulate-related health benefits of reducing power plant emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, C.
The report estimates the adverse human health effects due to exposure to particulate matter from power plants. Power plants are significant emitters of sulfur dioxide and nitrogen oxides. In many parts of the U.S., especially the Midwest, power plants are the largest contributors. These gases are harmful themselves, and they contribute to the formation of acid rain and particulate matter. Particulate matter reduces visibility, often producing a milky haze that blankets wide regions, and it is a serious public health problem. Over the past decade and more, numerous studies have linked particulate matter to a wide range of adverse healthmore » effects in people of all ages. Epidemiologists have consistently linked particulate matter with effects ranging from premature death, hospital admissions and asthma attacks to chronic bronchitis. This study documents the health impacts from power plant air pollution emissions. Using the best available emissions and air quality modeling programs, the stud y forecasts ambient air quality for a business-as-usual baseline scenario for 2007, assuming full implementation of the Acid Rain program and the U.S. Environmental Protection Agency's (EPA) Summer Smog rule (the 1999 NO{sub x} SIP Call). The study then estimates the attributable health impacts from all power plant emissions. Finally, the study estimates air quality for a specific policy alternative: reducing total power plant emissions of SO{sub 2} and NO{sub x} 75 percent form the levels emitted in 1997. The difference between this '75 percent reduction scenario' and the baseline provides an estimate of the health effects that would be avoided by this reduction in power plant emissions. In addition to the policy scenario, the work involved performing sensitivity analyses to examine alternative emission reductions and forecast ambient air quality using a second air quality model. EPA uses both air quality models extensively, and both suggest that power plants make a large contribution to ambient particulate matter levels in the Eastern U.S. To put the power plant results in context, air pollution from all on-road and off-road diesel engine emissions was also examined. The results suggest that both power plants and diesel engines make a large contribution to ambient particulate matter levels and the associated health effects. Chapter 2 describes the development of the emissions inventory. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and in Chapter 6, the results of the various analyses are presented. The study includes 6 appendices. Appendix A provides results of this analysis for all metropolitan areas in the U.S. and a list of the counties in each metropolitan area. Appendices B, C and D present a detailed examination of how the pollution emission estimates were derived and then translated into forecasts of ambient particulate matter levels.« less
STRATIFICATION OF PARTICULATE AND VOC POLLUTANTS IN PAINT SPRAY BOOTHS
The paper discusses flow management as part of a joint EPA/U.S. Air Force program on emissions from paint spray booths. he goal of the program is to identify and develop efficienct and economical emissions control concepts for this source. low management is one potential solution...
NASA Astrophysics Data System (ADS)
Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo
2016-10-01
Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.
Emission patterns of diesel-powered passenger cars. Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braddock, J.N.; Gabele, P.A.
An experimental program was conducted to characterize the gaseous and particulate emissions from a 1975 Peugeot 504D light duty diesel-powered vehicle. The vehicle was tested over the 1975 Federal Test Procedure, Highway Fuel Economy Test, and Sulfate Emissions Test driving cycles using four different fuels covering a fair range of composition, density, and sulfur content. In addition to fuel economy and regulated gaseous emission measurements of hydrocarbons, carbon monoxide, and oxides of nitrogen, emission measurements were also obtained for non-regulated pollutants including sulfur dioxide, sulfates, aldehydes, benzo(a)pyrene, carbonyl sulfide, hydrogen cyanide, nonreactive hydrocarbons, and particulate matter. The results are discussedmore » in terms of emission trends due to either fuel type or driving cycle influence.« less
The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...
The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...
The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of this testing program was to obtain emissions data for uncontrolled and controlled hydrochloric acid (HCl), particulate matter (PM) and speciated hydrocarbon Hazardous Air Pollutants (HAPs) from a secondary aluminum processing plant to support a national emission standard for hazardous air pollutants (NESHAP).
The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...
The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...
Challenges and Opportunities of Air Quality Management in Mexico City
NASA Astrophysics Data System (ADS)
Paramo, V.
2013-05-01
The Mexico City Metropolitan Area (MCMA) is located in the central plateau of Mexico and is the capital of the country. Its natural characteristics present favorable conditions for air pollution formation and accumulation: mountains surrounding the city, frequent thermal inversions, high isolation all around the year and weak winds. To these natural conditions, a population of more than 20 million inhabitants, a fleet of 4.5 million vehicles and more than 4 thousands industries, make air quality management a real challenge for governments of the region. Intensive air quality improvement actions and programs began at the end of the 1980's and continued nowadays. Since then criteria air pollutants concentrations have decreased in such a way that currently most of pollutants meet the Mexican air quality standards, except for ozone and particulate matter. Applied measures comprised of fuel quality improvements, fuel replacements, regulations for combustion processes, closing of high polluting refineries and industries, regulations of emissions for new and on road vehicles, mandatory I/M programs for vehicles, circulation restrictions for vehicles (Day without car program), alert program for elevated air pollution episodes, improvement of public transportation, among others. Recent researches (MILAGRO 2006 campaign) found that currently it is necessary to implement emissions reduction actions for Volatile Organic Compounds, particulate matter with a diameter of less than 2.5 micrometers PM2.5 and Nitrogen Oxides, in order to reduce concentrations of ozone and fine particulate matter. Among the new measures to be implemented are: regulations for VOCs emissions in the industry and commercial sectors; regulation of the diesel fleet that includes fleets renewal, filters and particulate traps for in use vehicles and regulation of the cargo fleet; new schemes for reducing the number of vehicles circulating in the city; implementation of non-motorized mobility programs; among others.
Modeling particulate matter emissions during mineral loading process under weak wind simulation.
Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen
2013-04-01
The quantification of particulate matter emissions from mineral handling is an important problem for the quantification of global emissions on industrial sites. Mineral particulate matter emissions could adversely impact environmental quality in mining regions, transport regions, and even on a global scale. Mineral loading is an important process contributing to mineral particulate matter emissions, especially under weak wind conditions. Mathematical models are effective ways to evaluate particulate matter emissions during the mineral loading process. The currently used empirical models based on the form of a power function do not predict particulate matter emissions accurately under weak wind conditions. At low particulate matter emissions, the models overestimated, and at high particulate matter emissions, the models underestimated emission factors. We conducted wind tunnel experiments to evaluate the particulate matter emission factors for the mineral loading process. A new approach based on the mathematical form of a logistical function was developed and tested. It provided a realistic depiction of the particulate matter emissions during the mineral loading process, accounting for fractions of fine mineral particles, dropping height, and wind velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on themore » relative toxicological effects of exposure to particulate emissions.« less
40 CFR 63.11623 - What are the testing requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the cyclone, dry basis, corrected to standard conditions, g/min; MOUTLET = Mass of particulate... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Prepared Feeds...
A case study of real-world tailpipe emissions for school buses using a 20% biodiesel blend.
Mazzoleni, Claudio; Kuhns, Hampden D; Moosmüller, Hans; Witt, Jay; Nussbaum, Nicholas J; Oliver Chang, M-C; Parthasarathy, Gayathri; Nathagoundenpalayam, Suresh Kumar K; Nikolich, George; Watson, John G
2007-10-15
Numerous laboratory studies report carbon monoxide, hydrocarbon, and particulate matter emission reductions with a slight nitrogen oxides emission increase from engines operating with biodiesel and biodiesel blends as compared to using petroleum diesel. We conducted a field study on a fleet of school buses to evaluate the effects of biodiesel use on gaseous and particulate matter fuel-based emission factors under real-world conditions. The field experiment was carried out in two phases during winter 2004. In January (phase I), emissions from approximately 200 school buses operating on petroleum diesel were measured. Immediately after the end of the first phase measurement period, the buses were switched to a 20% biodiesel blend. Emission factors were measured again in March 2004 (phase II) and compared with the January emission factors. To measure gaseous emission factors we used a commercial gaseous remote sensor. Particulate matter emission factors were determined with a combination of the gaseous remote sensor, a Lidar (light detection and ranging), and transmissometer system developed at the Desert Research Institute of Reno, NV, U.S.A. Particulate matter emissions from school buses significantly increased (up to a factor of 1.8) after the switch from petroleum diesel to a 20% biodiesel blend. The fuel used during this campaign was provided by a local distributor and was independently analyzed at the end of the on-road experiment. The analysis found high concentrations of free glycerin and reduced flash points in the B 100 parent fuel. Both measures indicate improper separation and processing of the biodiesel product during production. The biodiesel fuels used in the school buses were not in compliance with the U.S.A. ASTM D6751 biodiesel standard that was finalized in December of 2001. The U.S.A. National Biodiesel Board has formed a voluntary National Biodiesel Accreditation Program for producers and marketers of biodiesel to ensure product quality and compliance with the ASTM standard. The results of our study underline the importance of the program since potential emission benefits from biodiesel may be reduced or even reversed without appropriate fuel quality control on real-world fuels.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... for measurement of ``particulate matter emissions'' in the context of the PSD and NSR regulations there is no explicit requirement to include measurement of condensable PM. However, the condensable... 109 of the Act. See 36 FR 8186. Compliance with the original PM NAAQS was based on the measurement of...
SUMMARY OF EMISSIONS MANAGEMENT STRATEGY POLICY RELEVANT FINDINGS FROM EPA'S PM SUPERSITES PROGRAM
EPA is developing an integrated synthesis of key scientific and policy-relevant findings from EPA's Particulate Matter Supersites Program. This presentation provides a summary of the program and the integrated synthesis. Since there are many examples of such findings, ranging f...
40 CFR 86.1318-84 - Engine dynamometer system calibrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
40 CFR 86.1318-84 - Engine dynamometer system calibrations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
40 CFR 86.1318-84 - Engine dynamometer system calibrations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
40 CFR 86.1318-84 - Engine dynamometer system calibrations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
40 CFR 86.136-90 - Engine starting and restarting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... started. If necessary, braking may be employed to keep the drive wheels from turning. (c) If the vehicle... petroleum-fueled diesel vehicles and the particulate sampling system when testing methanol-fueled diesel... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission...
40 CFR 94.104 - Test procedures for Category 2 marine engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test procedures for Category 2 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.104 Test procedures for Category 2 marine engines. (a) Gaseous and particulate emissions shall be measured...
40 CFR 94.104 - Test procedures for Category 2 marine engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test procedures for Category 2 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.104 Test procedures for Category 2 marine engines. (a) Gaseous and particulate emissions shall be measured...
40 CFR 94.103 - Test procedures for Category 1 marine engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test procedures for Category 1 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.103 Test procedures for Category 1 marine engines. (a) Gaseous and particulate emissions shall be measured...
40 CFR 94.103 - Test procedures for Category 1 marine engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test procedures for Category 1 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.103 Test procedures for Category 1 marine engines. (a) Gaseous and particulate emissions shall be measured...
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
40 CFR 86.1308-84 - Dynamometer and engine equipment specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Dynamometer and engine equipment... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Mineral Wool Production Compliance with Standards § 63.1181 How do I comply...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Mineral Wool Production Compliance with Standards § 63.1181 How do I comply...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Mineral Wool Production Compliance with Standards § 63.1181 How do I comply...
Rohr, Annette; McDonald, Jacob
2016-02-01
Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue.
Particulate emissions from diesel engines: correlation between engine technology and emissions.
Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian
2014-03-07
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.
Particulate emissions from diesel engines: correlation between engine technology and emissions
2014-01-01
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725
Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources
NASA Astrophysics Data System (ADS)
Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.
Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie
This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.
40 CFR 52.970 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Particulate Matter Jun 1988, LR14:348 06/15/89, 54 FR 25451 Ref 52.999(c)(50) Section 1303.A Toxic Substances... Stringent Regulations may be Prescribed if Particulates are Toxic Jun 1988, LR14:348 06/15/89, 54 FR 25451... Law 30:2060 N.6 Toxic air pollution emission control program 10/22/92 06/23/94, 59 FR 32359 Ref 52.999...
Particulate and Gaseous Emissions Measurement System (PAGEMS) Project
NASA Technical Reports Server (NTRS)
Kostic, Milivoje
2003-01-01
Professor Kostic will work on the current UEET program of the Aerosol and Particulate task. This task will focus on: how to acquire experimental data through Labview software how to make the data acquisition system more efficient trouble existing problem of the labview software recommend a better system improve existing system with better data and usually friendly.Three different assignments in this project included:Particle-Size Distribution Data Presentation;Error or Uncertainty Analysis of Measurement Results; and Enhancement of LabVlRN Data Acquisition Program for GRC PAGEMS Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lies, K.H.; Postulka, A.; Gring, H.
Besides regulated components VW's research program in the field of characterization of diesel emissions comprises a detailed analysis of the particulates and a comprehensive study of a number of unregulated gaseous compounds. The following chemical compounds and classes of compounds are measured: particulates, traces of metals, major elements, sulfates, sulfur dioxide, hydrogen sulfide, hydrogen cyanide, aldehydes, ammonia, phenols, individual hydrocarbons, and odor (DOAS). The test fleet of this investigation included a number of VW and Audi cars equipped with 4-, and 5-cylinder diesel engines (naturally aspirated and turbocharged). All measurements were performed on a chassis dynamometer in accordance with themore » specification of the known US-test-procedures: Federal Test Procedure, Sulfate Emission Test, Fuel Economy Test. For sampling , in principle, the dilution tunnel technique was used combined with an automatically working collection system. This micro-processor controlled system involves 13 individual sample lines, 8 for gaseous and 5 for particulate components.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Process Heaters With Particulate Matter Emission Limits 2 Table 2 to Subpart DDDDD of Part 63 Protection... Heaters With Particulate Matter Emission Limits As stated in § 63.7500, you must comply with the applicable operating limits: If you demonstrate compliance with applicable particulate matter emission limits...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Process Heaters With Particulate Matter Emission Limits 2 Table 2 to Subpart DDDDD of Part 63 Protection... Heaters With Particulate Matter Emission Limits As stated in § 63.7500, you must comply with the applicable operating limits: If you demonstrate compliance with applicable particulate matter emission limits...
Richardson, Claire; Rutherford, Shannon; Agranovski, Igor
2018-06-01
Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM 10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM 2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Comprehensive air quality monitoring was undertaken, and corresponding recommendations were provided.
The report gives results of a field program to establish a predictive model for PM-10 (particulate matter with diameters or < 10 micrometers) emission. NOTE: Several areas of the U.S. in violation of the National Ambient Air Quality Standard for PM-10 have conducted studies that ...
Characterization of the fugitive particulate emissions from construction mud/dirt carryout.
Kinsey, John S; Linna, Kara J; Squier, William C; Muleski, Gregory E; Cowherd, Chatten
2004-11-01
Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in nonattainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles < or =10 and 2.5 microm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with reentrained mud/dirt carryout.
CHARACTERIZATION OF PARTICULATE EMISSIONS FROM IN-USE DIESEL VEHICLES
Particulate emissions data are presented from a group of 19 in-use diesel automobiles. Five driving cycles and three fuel/lubricating oil combinations have been used to obtain particulate emissions data and also to collect particulate samples for chemical and bioassay characteriz...
A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...
DOT National Transportation Integrated Search
2011-06-01
The primary objective of this project is to develop an improved understanding of the factors affecting the toxicology of particulate exhaust emissions. Diesel particulate matter is a known carcinogen, and particulate exhaust emissions from both light...
CHARACTERIZATION OF EMISSIONS FROM BURNING INCENSE
The primary objective of this study was to improve the characterization of particulate matter emissions from burning incense. Emissions of particulate matter were measured for 23 different types of incense using a cyclone/filter method. Emission rates for PM2.5 (particulate matte...
NASA Technical Reports Server (NTRS)
Peddie, Catherine
2001-01-01
Aircraft emissions are deposited throughout the atmosphere, and at the lower stratosphere and upper troposphere they have greater potential to change ozone abundance and affect climate. There are significant uncertainties arising from the incomplete knowledge of the composition and evolution of the exhaust emissions, particularly regarding reactive trace species, particles, and their gaseous precursors. NASA Glenn Research Center at Lewis Field has considered its role in answering these challenges and has been committed to strengthening its aerosol/particulate research capabilities with initial emphasis on establishing advanced measurement systems and a particulate database. Activities currently supported by the NASA Ultra-Efficient Engine Technology (UEET) Program and accomplishment up to date will be described.
40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Rule for limiting fugitive particulate matter emissions. (a) What is the purpose of this section? This section limits the amount of fugitive particulate matter that may be emitted from certain air pollution... source of fugitive particulate matter emissions. (c) What is exempted from this section? This section...
R. J. Yokelson; I. R. Burling; J. B. Gilman; C. Warneke; C. E. Stockwell; J. de Gouw; S. K. Akagi; S. P. Urbanski; P. Veres; J. M. Roberts; W. C. Kuster; J. Reardon; D. W. T. Griffith; T. J. Johnson; S. Hosseini; J. W. Miller; D. R. Cocker; H. Jung; D. R. Weise
2013-01-01
An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions...
R. J. Yokelson; I. R. Burling; J. B. Gilman; C. Warneke; C. E. Stockwell; J. de Gouw; S. K. Akagi; S. P. Urbanski; P. Veres; J. M. Roberts; W. C. Kuster; J. Reardon; D. W. T. Griffith; T. J. Johnson; S. Hosseini; J. W. Miller; D. R. Cocker III; H. Jung; D. R. Weise
2012-01-01
An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series 5 of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., hydrocarbon, and particulate matter exhaust emission standards. 89.112 Section 89.112 Protection of....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., hydrocarbon, and particulate matter exhaust emission standards. 89.112 Section 89.112 Protection of....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
EXHAUST EMISSION PATTERNS FROM TWO LIGHT-DUTY DIESEL AUTOMOBILES
Particulate and gaseous emissions from two light-duty diesel automobiles were examined over six operating cycles. Particulate characterizations included mass emission rate, soluble organic content, and trace element content determinations. The particulate matter was sampled using...
Stevens, Gretchen; Wilson, Andrew; Hammitt, James K
2005-08-01
In the Mexico City metropolitan area, poor air quality is a public health concern. Diesel vehicles contribute significantly to the emissions that are most harmful to health. Harmful diesel emissions can be reduced by retrofitting vehicles with one of several technologies, including diesel particulate filters. We quantified the social costs and benefits, including health benefits, of retrofitting diesel vehicles in Mexico City with catalyzed diesel particulate filters, actively regenerating diesel particulate filters, or diesel oxidation catalysts, either immediately or in 2010, when capital costs are expected to be lower. Retrofit with either type of diesel particulate filter or an oxidation catalyst is expected to provide net benefits to society beginning immediately and in 2010. At current prices, retrofit with an oxidation catalyst provides greatest net benefits. However, as capital costs decrease, retrofit with diesel particulate filters is expected to provide greater net benefits. In both scenarios, retrofit of older, dirtier vehicles that circulate only within the city provides greatest benefits, and retrofit with oxidation catalysts provides greater health benefits per dollar spent than retrofit with particulate filters. Uncertainty about the magnitude of net benefits of a retrofit program is significant. Results are most sensitive to values used to calculate benefits, such as the concentration-response coefficient, intake fraction (a measure of exposure), and the monetary value of health benefits.
Effects of retrofitting emission control systems on in-use heavy diesel vehicles.
Millstein, Dev E; Harley, Robert A
2010-07-01
Diesel engines are now the largest source of nitrogen oxides (NO(x)) and fine particulate black carbon (soot) emissions in California. The California Air Resources Board recently adopted a rule requiring that by 2014 all in-use heavy trucks and buses meet current (2007) exhaust particulate matter (PM) emission standards. Also by 2023 all in-use heavy-duty vehicles will have to meet current NO(x) emission standards, with significant progress in achieving the requirements for NO(x) control expected by 2014. This will require retrofit or replacement of older in-use engines. Diesel particle filters (DPF) reduce PM emissions but may increase the NO(2)/NO(x) emission ratio to approximately 35%, compared to approximately 5% typical of diesel engines without particle filters. Additionally, DPF with high oxidative capacity reduce CO and hydrocarbon emissions. We evaluate the effects of retrofitting trucks with DPF on air quality in southern California, using an Eulerian photochemical air quality model. Compared to a 2014 reference scenario without the retrofit program, black carbon concentrations decreased by 12 +/- 2% and 14 +/- 2% during summer and fall, respectively, with corresponding increases in ambient ozone concentrations of 3 +/- 2% and 7 +/- 3%. NO(2) concentrations decreased by 2-4% overall despite the increase in primary NO(2) emissions because total NO(x) emissions were reduced as part of the program to retrofit NO(x) control systems on in-use engines. However, in some cases NO(2) concentrations may increase at locations with high diesel truck traffic.
PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES
The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...
Code of Federal Regulations, 2010 CFR
2010-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Code of Federal Regulations, 2014 CFR
2014-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Code of Federal Regulations, 2012 CFR
2012-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Code of Federal Regulations, 2013 CFR
2013-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Code of Federal Regulations, 2011 CFR
2011-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... Promulgation of Implementation Plans; State of Missouri; Restriction of Emission of Particulate Matter From...) submitted March 17, 2011. This revision will amend the rule restricting emissions of particulate matter from... amendments to rule 10 CSR 10-6.400 Restriction of Emission of Particulate Matter from Industrial Processes...
Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram
2008-06-01
To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Huifang; Lam, William; Remias, Joseph
Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE; ORNL; NREL
1999-10-15
The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices formore » multiple levels of fuel sulfur content. This interim report discusses the results of the DECSE test program that demonstrates the potential of NOx adsorber catalyst technology across the range of diesel engine operation with a fuel economy penalty less than 4%.« less
2009-05-07
would discourage the use of LIBS for distinguishing between gaseous and particulate species; however, recent studies by Prof. David Hahn at the...If a concept proved feasible, then it would be evaluated in more realistic environments. The program involved a joint effort between Prof. David ...multiphase ns-LIBS measurement that are most relevant to this study are illustrated in the research performed by Prof. David Hahn at the University of Florida
Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants
NASA Astrophysics Data System (ADS)
Sengupta, Ishita
Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.
40 CFR 1042.125 - Maintenance instructions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...
40 CFR 1042.125 - Maintenance instructions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...
40 CFR 1042.125 - Maintenance instructions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...
40 CFR 1042.125 - Maintenance instructions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...
40 CFR 92.123 - Test procedure; general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurements of brake specific emissions and smoke opacity at each throttle position and of measurements of... at idle and dynamic brake, all measurements of gaseous, particulate and smoke emissions may be... is removed for gaseous and particulate sampling, measurements of gaseous, and particulate emissions...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1935 What special provisions may... attributable to engine manufacturers failing to meet their commitments under that agreement, the following...
NASA Astrophysics Data System (ADS)
Kleeman, Michael J.; Ying, Qi; Kaduwela, Ajith
The effect of NO x, volatile organic compound (VOC), and NH 3 emissions control programs on the formation of particulate ammonium nitrate in the San Joaquin Valley (SJV) was examined under the typical winter conditions that existed on 4-6 January, 1996. The UCD/CIT photochemical transport model was used for this study so that the source origin of primary particulate matter and secondary particulate matter could be identified. When averaged across the entire SJV, the model results predict that 13-18% of the reactive nitrogen (NO y=NO x+reaction products of NO x) emitted from local sources within the SJV was converted to nitrate at the ground level. Each gram of NO x emitted locally within the SJV (expressed as NO 2) produced 0.23-0.31 g of particulate ammonium nitrate (NH 4NO 3), which is much smaller than the maximum theoretical yield of 1.7 g of NH 4NO 3 per gram of NO 2. The fraction of reactive nitrogen converted to nitrate varied strongly as a function of location. Urban regions with large amounts of fresh NO emissions converted little reactive nitrogen to nitrate, while remote areas had up to 70% conversion (equivalent to approximately 1.2 g of NH 4NO 3 per gram of NO 2). The use of a single spatially averaged ratio of NH 4NO 3/NO x as a predictor of how changes to NO x emissions would affect particulate nitrate concentrations would not be accurate at all locations in the SJV under the conditions studied. The largest local sources of particulate nitrate in the SJV were predicted to be diesel engines and catalyst equipped gasoline engines under the conditions experienced on 6 January, 1996. Together, these sources accounted for less than half of the ground-level nitrate aerosol in the SJV. The remaining fraction of the aerosol nitrate originated from reactive nitrogen originally released upwind of the SJV. The majority of this upwind reactive nitrogen was already transformed to nitrate by the time it entered the SJV. The effect of local emissions controls on this upwind material was small. A 50% reduction in NO x emissions applied to sources within the SJV reduced the predicted concentration of total nitrate by approximately 25% during the study episode. VOC emissions controls were less effective, while reasonable NH 3 emissions controls had the smallest effect on the amount of ammonium nitrate produced. A 50% reduction in VOC emissions lowered predicted concentrations of total nitrate by 17.5%, while a 50% reduction in NH 3 emissions lowered predicted concentrations of total nitrate by only 10%. This latter result is expected since the formation of ammonium nitrate aerosol is limited by the availability of gas-phase nitric acid, with large amounts of excess NH 3 available. NO x emissions controls appear to be the most efficient method to reduce the concentration of locally generated particulate nitrate in the SJV under the conditions experienced on 4-6 January, 1996.
PARTICULATE EMISSIONS AND CONTROL IN FLUIDIZED-BED COMBUSTION: MODELING AND PARAMETRIC PERFORMANCE
The report discusses a model, developed to describe the physical characteristics of the particulates emitted from fluidized-bed combustion (FBC) systems and to evaluate data on FBC particulate control systems. The model, which describes the particulate emissions profile from FBC,...
40 CFR 62.3110 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Identification of plan. 62.3110 Section 62.3110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED..., Organic Compounds, Particulates and Nitrogen Oxide Emissions from Existing Hospital/medical/infectious...
40 CFR 86.1809-12 - Prohibition of defeat devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and... manufacturer must submit, with the Part II certification application, an engineering evaluation demonstrating... vehicles, the engineering evaluation must also include particulate emissions. [75 FR 25685, May 7, 2010] ...
USDA-ARS?s Scientific Manuscript database
Particulate Matter (PM) emissions from animal operations have been identified as a major air pollutant source with health and environmental impacts. Nearly 600 million broilers are produced annually on the Delmarva Peninsula, making it a hot spot for particulate matter emissions from poultry houses....
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter 2002 Base Year Emissions... approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of the State...), a reasonable further progress (RFP) plan, contingency measures, a 2002 base year emissions inventory...
Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich
2005-09-01
The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.
40 CFR 52.1476 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Ambient Air Quality Standards for particulate matter. (1) NAQR Article 7.2.7, Particulate Matter; Table 4.2, Emissions Inventory Summary for Particulates and Table 5.2, Summary of Control Strategy... 24, 1979. (2) Nevada Air Quality Regulations, Article 4, Rule 4.34, (Visible Emission from Stationary...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the air pollution control equipment used to reduce particulate matter emissions released to the... given them in the Clean Air Act and in subpart A of this part. Calciner means the equipment used to... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the air pollution control equipment used to reduce particulate matter emissions released to the... given them in the Clean Air Act and in subpart A of this part. Calciner means the equipment used to... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the air pollution control equipment used to reduce particulate matter emissions released to the... given them in the Clean Air Act and in subpart A of this part. Calciner means the equipment used to... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the air pollution control equipment used to reduce particulate matter emissions released to the... given them in the Clean Air Act and in subpart A of this part. Calciner means the equipment used to... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the air pollution control equipment used to reduce particulate matter emissions released to the... given them in the Clean Air Act and in subpart A of this part. Calciner means the equipment used to... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Li, Ying; Crawford-Brown, Douglas J
2011-04-15
Since the 1990s, the capital city of Thailand, Bangkok has been suffering from severe ambient particulate matter (PM) pollution mainly attributable to its wide use of diesel-fueled vehicles and motorcycles with poor emission performance. While the Thai government strives to reduce emissions from transportation through enforcing policy measures, the link between specific control policies and associated health impacts is inadequately studied. This link is especially important in exploring the co-benefits of greenhouse gas emissions reductions, which often brings reduction in other pollutants such as PM. This paper quantifies the health benefits potentially achieved by the new PM-related I/M programs targeting all diesel vehicles and motorcycles in the Bangkok Metropolitan Area (BMA). The benefits are estimated by using a framework that integrates policy scenario development, exposure assessment, exposure-response assessment and economic valuation. The results indicate that the total health damage due to the year 2000 PM emissions from vehicles in the BMA was equivalent to 2.4% of Thailand's GDP. Under the business-as-usual (BAU) scenario, total vehicular PM emissions in the BMA will increase considerably over time due to the rapid growth in vehicle population, even if the fleet average emission rates are projected to decrease over time as the result of participation of Thailand in post-Copenhagen climate change strategies. By 2015, the total health damage is estimated to increase by 2.5 times relative to the year 2000. However, control policies targeting PM emissions from automobiles, such as the PM-oriented I/M programs, could yield substantial health benefits relative to the BAU scenario, and serve as co-benefits of greenhouse gas control strategies. Despite uncertainty associated with the key assumptions used to estimate benefits, we find that with a high level confidence, the I/M programs will produce health benefits whose economic impacts considerably outweigh the expenditures on policy implementation. Copyright © 2011 Elsevier B.V. All rights reserved.
A Comprehensive Program for Measurement of Military Aircraft Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn
2009-11-01
Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicatemore » that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.« less
Standardized emissions inventory methodology for open-pit mining areas.
Huertas, Jose I; Camacho, Dumar A; Huertas, Maria E
2011-08-01
There is still interest in a unified methodology to quantify the mass of particulate material emitted into the atmosphere by activities inherent to open-pit mining. For the case of total suspended particles (TSP), the current practice is to estimate such emissions by developing inventories based on the emission factors recommended by the USEPA for this purpose. However, there are disputes over the specific emission factors that must be used for each activity and the applicability of such factors to cases quite different to the ones under which they were obtained. There is also a need for particulate matter with an aerodynamic diameter less than 10 μm (PM(10)) emission inventories and for metrics to evaluate the emission control programs implemented by open-pit mines. To address these needs, work was carried out to establish a standardized TSP and PM(10) emission inventory methodology for open-pit mining areas. The proposed methodology was applied to seven of the eight mining companies operating in the northern part of Colombia, home to the one of the world's largest open-pit coal mining operations (∼70 Mt/year). The results obtained show that transport on unpaved roads is the mining activity that generates most of the emissions and that the total emissions may be reduced up to 72% by spraying water on the unpaved roads. Performance metrics were defined for the emission control programs implemented by mining companies. It was found that coal open-pit mines are emitting 0.726 and 0.180 kg of TSP and PM(10), respectively, per ton of coal produced. It was also found that these mines are using on average 1.148 m(2) of land per ton of coal produced per year.
Code of Federal Regulations, 2010 CFR
2010-07-01
... must I use to demonstrate initial compliance with the emission limits for particulate matter? 63.9621... the emission limits for particulate matter? (a) You must conduct each performance test that applies to... source, you must determine compliance with the applicable emission limit for particulate matter in Table...
Code of Federal Regulations, 2011 CFR
2011-07-01
... must I use to demonstrate initial compliance with the emission limits for particulate matter? 63.7822... demonstrate initial compliance with the emission limits for particulate matter? (a) You must conduct each... applicable emission limit for particulate matter in Table 1 to this subpart, follow the test methods and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... must I use to demonstrate initial compliance with the emission limits for particulate matter? 63.7822... demonstrate initial compliance with the emission limits for particulate matter? (a) You must conduct each... applicable emission limit for particulate matter in Table 1 to this subpart, follow the test methods and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... must I use to demonstrate initial compliance with the emission limits for particulate matter? 63.9621... the emission limits for particulate matter? (a) You must conduct each performance test that applies to... source, you must determine compliance with the applicable emission limit for particulate matter in Table...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter 2002 Base Year Emissions... action to approve the 1997 annual fine particulate matter (PM 2.5 ) 2002 base year emissions inventory... 45957
Evaluations of in-use emission factors from off-road construction equipment
NASA Astrophysics Data System (ADS)
Cao, Tanfeng; Durbin, Thomas D.; Russell, Robert L.; Cocker, David R.; Scora, George; Maldonado, Hector; Johnson, Kent C.
2016-12-01
Gaseous and particle emissions from construction engines contribute an important fraction of the total air pollutants released into the atmosphere and are gaining increasing regulatory attention. Robust quantification of nitrogen oxides (NOx) and particulate matter (PM) emissions are necessary to inventory the contribution of construction equipment to atmospheric loadings. Theses emission inventories require emissions factors from construction equipment as a function of equipment type and modes of operation. While the development of portable emissions measurement systems (PEMS) has led to increased studies of construction equipment emissions, emissions data are still much more limited than for on-road vehicles. The goal of this research program was to obtain accurate in-use emissions data from a test fleet of newer construction equipment (model year 2002 or later) using a Code of Federal Requirements (CFR) compliant PEMS system. In-use emission measurements were made from twenty-seven pieces of construction equipment, which included four backhoes, six wheel loaders, four excavators, two scrapers (one with two engines), six bulldozers, and four graders. The engines ranged in model year from 2003 to 2012, in rated horsepower (hp) from 92 to 540 hp, and in hours of operation from 24 to 17,149 h. This is the largest study of off-road equipment emissions using 40 CFR part 1065 compliant PEMS equipment for all regulated gaseous and particulate emissions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... Emissions From Industrial Process Operations New Castle County.'' 12. Regulation 1112 ``Control of Nitrogen... the State Implementation Plans.'' 25. Regulation 1139 ``Nitrogen Oxides (NO X ) Budget Trading Program... by reference, Intergovernmental relations, Lead, Nitrogen dioxide, Ozone, Particulate matter...
Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yogeshwar Sahai
2007-07-31
Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Cleanmore » Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy conservation. In this program, the salt metal interactions were studies and the emissions at laboratory scale at OSU were monitored. The goal of the project was to obtain a fundamental understanding, based on first principles, of the pollutant formation that occurs when the salts are used in furnaces. This information will be used to control process parameters so that emissions are consistently below the required levels. The information obtained in these experiments will be used in industrial furnaces at aluminum plants and which will help in optimizing the process.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... must I use to demonstrate initial compliance with the emission limits for particulate matter and PM10... compliance with the emission limits for particulate matter and PM10? (a) You must conduct each performance... determine compliance with the applicable emission limits for particulate matter in Table 1 to this subpart...
Code of Federal Regulations, 2010 CFR
2010-07-01
... must I use to demonstrate initial compliance with the emission limits for particulate matter and PM10... compliance with the emission limits for particulate matter and PM10? (a) You must conduct each performance... determine compliance with the applicable emission limits for particulate matter in Table 1 to this subpart...
Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D
2014-12-02
This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.
Particulate Emissions Hazards Associated with Fueling Heat Engines
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Bushnell, Dennis M.
2010-01-01
All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (<10 to 140 nm) contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft) and other HC-fueled power systems. CO2 emissions are tracked, and when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.
Impacts of biodiesel on pollutant emissions of a JP-8-fueled turbine engine.
Corporan, Edwin; Reich, Richard; Monroig, Orvin; DeWitt, Matthew J; Larson, Venus; Aulich, Ted; Mann, Michael; Seames, Wayne
2005-07-01
The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8-fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions. Particulate emissions were characterized by measuring the particle number density (PND; particulate concentration), the particle size distribution, and the total particulate mass. PM samples were collected for offline analysis to obtain information about the effect of the biodiesel on the polycyclic aromatic hydrocarbon (PAH) content. In addition, temperature-programmed oxidation was performed on the collected soot samples to obtain information about the carbonaceous content (elemental or organic). Major and minor gaseous emissions were quantified using a total hydrocarbon analyzer, an oxygen analyzer, and a Fourier Transform IR analyzer. Test results showed the potential of biodiesel to reduce soot emissions in the jet-fueled turbine engine without negatively impacting the engine performance. These reductions, however, were observed only at the higher power settings with relatively high concentrations of biodiesel. Specifically, reductions of approximately 15% in the PND were observed at cruise and takeoff conditions with 20% biodiesel in the jet fuel. At the idle condition, slight increases in PND were observed; however, evidence shows this increase to be the result of condensed uncombusted biodiesel. Most of the gaseous emissions were unaffected under all of the conditions. The biodiesel was observed to have minimal effect on the formation of polycyclic aromatic hydrocarbons during this study. In addition to the combustion results, discussion of the physical and chemical characteristics of the blended fuels obtained using standard American Society for Testing and Materials (ASTM) fuel specifications methods are presented.
Development of an exposure model for diesel locomotive emissions near the Alameda Corridor.
DOT National Transportation Integrated Search
2008-02-01
The present investigation is part of a program of study at the Center for Energy and Environmental Research and Services (CEERS) at CSULB to assess the exposure risks of the particulate matter (PM) in the outdoor environment related to the seaport op...
Laznow, J; Daniel, J
1992-01-01
Under provision of the Clean Air Act Amendments of 1990 Title III, the EPA has proposed a regulation (Early Reduction Program) to allow a six-year compliance extension from Maximum Achievable Control Technology (MACT) standards for sources that voluntarily reduce emissions of Hazardous Air Pollutants (HAPs) by 90 percent or more (95 percent or more for particulates) from a base year of 1987 or later. The emission reduction must be made before the applicable MACT standard is proposed for the source category or be subject to an enforceable commitment to achieve the reduction by January 1, 1994 for sources subject to MACT standards prior to 1994. The primary purpose of this program is to encourage reduction of HAPs emissions sooner than otherwise required. Industry would be allowed additional time in evaluating emission reduction options and developing more cost-effective compliance strategies, although, under strict guidelines to ensure actual, significant and verifiable emission reductions occur.
Optical backscatter probe for sensing particulate in a combustion gas stream
Parks, James E; Partridge, William P
2013-05-28
A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.
Chen, Yi; Ho, Kin Fai; Ho, Steven Sai Hang; Ho, Wing Kei; Lee, Shun Cheng; Yu, Jian Zhen; Sit, Elber Hoi Leung
2007-12-01
Commercial cooking emissions are important air pollution sources in a heavily urbanized city. Exhaust samples were collected in six representative commercial kitchens including Chinese restaurants, Western restaurants, and Western fast-food restaurants in Hong Kong during peak lunch hours. Both gaseous and particulate emissions were evaluated. Eight gaseous and twenty-two particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in this study. In the gaseous phase, naphthalene (67-89%) was the most abundant PAH in all of the exhaust samples. The contribution of acenaphthylene in the gaseous phase was significantly higher in emissions from the Chinese restaurants, whereas fluorene was higher in emissions from the Western cooking style restaurants (i.e., Western restaurants and Western fast-food restaurants). Pyrene is the most abundant particulate PAH in the Chinese restaurants (14-49%) while its contribution was much lower in the Western cooking style restaurants (10-22%). Controlled cooking conditions were monitored in a staff canteen to compare the emissions from several different local cooking styles, including deep frying, steaming, and mixed cooking styles (combination of steaming and frying). Deep frying produced the highest amount of total gaseous PAHs, 6 times higher than the steaming. However, steaming produced the highest particulate emissions. The estimated annual gaseous PAH emissions for the Chinese restaurants, Western restaurants, and Western fast-food restaurants were 255, 173, and 20.2 t y(-1) whereas 252, 1.9, and 0.4 t y(-1) were estimated for particulate phase PAH emissions. The study provides useful information and estimates for PAH emissions from commercial cooking exhaust in Hong Kong.
Russell, Armistead G
2008-02-01
One objective of the U.S. Environmental Protection Agency's (EPA's) Supersite Program was to provide data that could be used to more thoroughly evaluate and improve air quality models, and then have those models used to address both scientific and policy-related issues dealing with air quality management. In this direction, modeling studies have used Supersites-related data and are reviewed here. Fine temporal resolution data have been used both to test model components (e.g., the inorganic thermodynamic routines) and air quality modeling systems (in particular, Community Multiscale Air Quality [CMAQ] and Comprehensive Air Quality Model with extensions [CAMx] applications). Such evaluations suggest that the inorganic thermodynamic approaches being used are accurate, as well as the description of sulfate production, although there are significant uncertainties in production of nitric acid, biogenic and ammonia emissions, secondary organic aerosol formation, and the ability to follow the formation and evolution of ultrafine particles. Model applications have investigated how PM levels will respond to various emissions controls, suggesting that nitrate will replace some of the reductions in sulfate particulate matter (PM), although the replacement is small in the summer. Although not part of the Supersite program, modeling being conducted by EPA, regional planning organizations, and states for policy purposes has benefited from the detailed data collected, and the PM models have advanced by their more widespread use.
EPA proposes withdrawing the federal implementation plan provisions that require affected electricity generating units (EGUs) in Texas to participate in Phase 2 of the Cross-State Air Pollution Rule trading programs for annual emissions of SO2 and NOx.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... modifies Delaware's PSD program at 7 DE Admin. Code 1125 to establish appropriate emission thresholds for..., Sulfur oxides, Volatile organic compounds. Dated: February 8, 2013. W.C. Early, Acting Regional...-approved baseline dates for sulfur dioxide, particulate matter, and nitrogen dioxide in the definition of...
COMPARATIVE U.S./USSR TESTS OF A HOT-SIDE ELECTROSTATIC PRECIPITATOR
The report describes a U.S./USSR cooperative test program to quantify and characterize particulate emissions from a U.S. coal-burning power plant boiler, equipped with a hot-side electrostatic precipitator, at Duke Power Co.'s Allen Steam Station in March 1976. U.S. and Soviet eq...
EPA‘s Environmental Technology Verification program is designed to further environmental protection by accelerating the acceptance and use of improved and cost effective technologies. This is done by providing high-quality, peer reviewed data on technology performance to those in...
A laboratory-scale experimental program was designed to standardize each of four black carbon measurement methods, provide appropriate quality assurance/control procedures for these techniques, and compare measurements made by these methods to a NIST traceable standard (filter gr...
40 CFR 49.132 - Rule for general open burning permits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Rule for general open burning permits... open burning permits. (a) What is the purpose of this section? This section establishes a permitting program for open burning within the Indian reservation to control emissions of particulate matter and...
40 CFR 49.133 - Rule for agricultural burning permits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Rule for agricultural burning permits... agricultural burning permits. (a) What is the purpose of this section? This section establishes a permitting program for agricultural burning within the Indian reservation to control emissions of particulate matter...
40 CFR 49.133 - Rule for agricultural burning permits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Rule for agricultural burning permits... agricultural burning permits. (a) What is the purpose of this section? This section establishes a permitting program for agricultural burning within the Indian reservation to control emissions of particulate matter...
40 CFR 49.132 - Rule for general open burning permits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Rule for general open burning permits... open burning permits. (a) What is the purpose of this section? This section establishes a permitting program for open burning within the Indian reservation to control emissions of particulate matter and...
40 CFR 49.132 - Rule for general open burning permits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Rule for general open burning permits... open burning permits. (a) What is the purpose of this section? This section establishes a permitting program for open burning within the Indian reservation to control emissions of particulate matter and...
40 CFR 49.132 - Rule for general open burning permits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Rule for general open burning permits... open burning permits. (a) What is the purpose of this section? This section establishes a permitting program for open burning within the Indian reservation to control emissions of particulate matter and...
40 CFR 49.133 - Rule for agricultural burning permits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Rule for agricultural burning permits... agricultural burning permits. (a) What is the purpose of this section? This section establishes a permitting program for agricultural burning within the Indian reservation to control emissions of particulate matter...
40 CFR 49.133 - Rule for agricultural burning permits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Rule for agricultural burning permits... agricultural burning permits. (a) What is the purpose of this section? This section establishes a permitting program for agricultural burning within the Indian reservation to control emissions of particulate matter...
Magnetic properties and heavy metal contents of automobile emission particulates*
Lu, Sheng-gao; Bai, Shi-qiang; Cai, Jing-bo; Xu, Chang
2005-01-01
Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χ fd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R 2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution. PMID:16052705
[Characteristic of Particulate Emissions from Concrete Batching in Beijing].
Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao
2016-01-15
With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.
Yan, Fang; Bond, Tami C; Streets, David G
2014-12-16
This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much as 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fang; Bond, Tami C.; Streets, David G.
This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much asmore » 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa« less
40 CFR 60.2720 - May I conduct performance testing less often?
Code of Federal Regulations, 2010 CFR
2010-07-01
... least 3 years, and all performance tests for the pollutant (particulate matter, hydrogen chloride, or...) If your CISWI unit continues to meet the emission limitation for particulate matter, hydrogen... shows a deviation from an emission limitation for particulate matter, hydrogen chloride, or opacity, you...
40 CFR 1066.605 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the test interval, corrected to standard temperature and pressure. m PMfil = mass of particulate... = stabilized, ht = hot transient), corrected to standard reference conditions. m PMfil = mass of particulate... stabilized), corrected to standard reference conditions. m PMfil = mass of particulate matter emissions on...
The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...
The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...
Light-Duty Motor Vehicle Exhaust Particulate Matter Measurement in the Denver, Colorado, Area.
Cadle, Steven H; Mulawa, Patricia; Hunsanger, Eric C; Nelson, Ken; Ragazzi, Ronald A; Barrett, Richard; Gallagher, Gerald L; Lawson, Douglas R; Knapp, Kenneth T; Snow, Richard
1999-09-01
A study of particulate matter (PM) emissions from in-use, light-duty vehicles was conducted during the summer of 1996 and the winter of 1997 in the Denver, CO, region. Vehicles were tested as received on chassis dynamometers on the Federal Test Procedure Urban Dynamometer Driving Schedule (UDDS) and the IM240 driving schedule. Both PM10 and regulated emissions were measured for each phase of the UDDS. For the summer portion of the study, 92 gasoline vehicles, 10 diesel vehicles, and 9 gasoline vehicles with visible smoke emissions were tested once. For the winter, 56 gasoline vehicles, 12 diesel vehicles, and 15 gasoline vehicles with visible smoke were tested twice, once indoors at 60 °F and once outdoors at the prevailing temperature. Vehicle model year ranged from 1966 to 1996. Impactor particle size distributions were obtained on a subset of vehicles. Continuous estimates of the particle number emissions were obtained with an electrical aerosol analyzer. This data set is being provided to the Northern Front Range Air Quality Study program and to the State of Colorado and the U.S. Environmental Protection Agency for use in updating emissions inventories.
NASA Astrophysics Data System (ADS)
Declet-Barreto, J.; Pham, M.
2016-12-01
Carbon emissions trading has been implemented in parts of the United States (and elsewhere) to reduce greenhouse gas emissions. Data from one such program focused on power plant emissions in the U.S. Northeast and Mid-Atlantic, the Regional Greenhouse Gas Initiative (RGGI), have shown that regionally, power sector carbon dioxide emissions have been reduced since the adoption of the program in 2009. However, it is not known what the spatial distributions of such reductions have been in individual plants, and if emissions reductions have ocurred in plants impacting low-income and ethnic minority communities, arguably the populations most overburdened by health threats from co-pollutants (e.g., fine particulates, nitrous oxides, and sulfurous oxides) emitted along greenhouse gases. In this research, we explore the trajectory of power plant emissions in the RGGI region in vulnerable communities. This is a first, exploratory step in understanding the environmental justice implications of market-based carbon reduction policies.
Motorcycle pollution control in Taiwan, Republic of China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.W.; Hsiao, H.C.; Walsh, M.P.
1998-12-31
The Taiwan EPA has developed a comprehensive approach to motor vehicle pollution control. Building on its early adoption of US `83 standards for light duty vehicles (starting July 1, 1990) it recently moved to US `87 requirements, which include the 0.2 gram per mile particulate standard, as of July 1, 1995. Heavy duty diesel particulate standards almost as stringent as US `90, 6.0 grams per brake horsepower hour NO{sub x} and 0.7 particulate, using the US transient test procedure, went into effect on July 1, 1993. It is intended that US`94 standards, 5.0 NO{sub x} and 0.25 particulate, will bemore » adopted soon. Clearly the most distinctive feature of the Taiwan program, however, is its motorcycle control effort, reflecting the fact that motorcycles dominate the vehicle fleet and are a substantial source of emissions. This paper will summarize Taiwan`s extensive efforts to address this problem.« less
TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE
The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...
NASA Technical Reports Server (NTRS)
Quayle, S. S.; Davis, M. M.; Walter, R. A.
1981-01-01
The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a U.S. no. 2 diesel and a European diesel fuel. The vehicle was tested with retarded timing and with and without an oxidation catalyst. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that while the catalyst was generally effective in reducing hydrocarbon and carbon monoxide levels, it was also a factor in increasing particulate emissions. Increased particulate emission rates were particularly evident when the vehicle was operated on the European fuel which has a high sulfur content.
Albert, R E
1983-01-01
Mammalian cell mutagenesis, transformation and skin tumorigenesis assays show similar results in comparing the potencies of diesel, coke oven, roofing tar and cigarette smoke particulates. These assay results are reasonably consistent with the comparative carcinogenic potencies of coke oven and roofing tar emissions as determined by epidemiological studies. The bacterial mutagenesis assay tends to show disproportionately high potencies, particularly with diesel particulates. Results to date encourage the approach to the assessment for carcinogenic risks from diesel emissions based on the use of epidemiological data on cancer induced by coke oven emissions, roofing tar particulates and cigarette smoke with the comparative potencies of these materials determined by in vivo and in vitro bioassays. PMID:6186481
DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGILL,R; KHAIR, M; SHARP, C
2003-08-24
This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels thatmore » have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.« less
Updated methane, non-methane organic gas, and volatile organic compound calculations based on speciation data. Updated speciation and toxic emission rates for new model year 2010 and later heavy-duty diesel engines. Updated particulate matter emission rates for 2004 and later mod...
USDA-ARS?s Scientific Manuscript database
It is well established that particulate matter (PM) continues to be a major air pollutant challenge for human health globally and vehicle exhaust PM emissions have been linked to many adverse health effects. However, the relative toxicity of biodiesel emissions compared to petroleum diesel remains u...
[Particle emission characteristics of diesel bus fueled with bio-diesel].
Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei
2013-10-01
With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).
FINE PARTICULATE MATTER EMISSIONS FROM CANDLES
The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...
Evaluation of emissions from simulated commercial meat wrapping operations using PVC wrap.
Smith, T J; Cafarella, J J; Chelton, C; Crowley, S
1983-03-01
Meatwrapper's asthma is an elusive health problem with a suspected relationship to exposure to emissions from polyvinyl chloride (PVC) film cut with a hot wire. A study was conducted to determine how the type of wrap cutter (wire or rod) and its temperature affected the emissions from a simulated occupational wrapping process. The cutting temperatures covered the same range as was measured in Boston retail food stores. A commercial wrapping machine and samples of commercial PVC meat and produce wraps were used. Seventy five percent of the particulate from the hot wire was respirable, and the quantity of emissions was a strong function of the film tension and cutting technique. Particulate emissions did not increase steadily with increasing wire temperature, but plateaued or declined at high temperatures. Particulate emissions from the rod cutter were very low at low temperatures, but exceeded those of the wire at temperatures above 200 degrees C. The particulate was 100% dioctyl adipate (DOA, the plasticizer in the wrap) with wire temperatures below 200 degrees C, and was approximately 80% DOA for temperatures above this. Gaseous HCl was not detected in emissions from a hot wire operated below 150 degrees C, but HCl emissions increased rapidly to a plateau for temperatures above 200 degrees C. Approximately 20% of the HCl produced at temperatures above 200 degrees C was associated with the particulate, which appeared to act as a carrier and transport the HCl through water filled impingers. Field tests are needed to determine if particulate produced in the workplace may also behave as a carrier for HCl.
40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...
40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... requirement for inclusion of condensable emissions of particulate matter (condensables) within the definition of ``regulated new source review (NSR) pollutant'' for fine particulate matter (PM 2.5 ) and particulate matter emissions less than or equal to ten micrometers in diameter (PM 10 ). In addition, because...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R04-OAR-2011-0849-201153(b); FRL-9617-3] Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002 Emissions... approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory portion of the State...
77 FR 63234 - Approval and Promulgation of Implementation Plans; North Carolina 110(a)(1) and (2...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental... SIP addresses emissions of particulate matter generally, and does not distinguish between PM 10 and PM 2.5. The Commenter also references the particulate matter maximum emission rates for two coal-fired...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R04-OAR-2010-0153(b); FRL-9717-4] Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter 2002 Base Year Emissions... approve the 1997 annual fine particulate matter (PM 2.5 ) 2002 base year emissions inventory portion of...
The U.S. EPA has created the Environmental Technology Verification (ETV) program to provide high quality, peer reviewed data on technology performance to those involved in the design, distribution, financing, permitting, purchase, and use of environmental technologies. The Air Po...
NASA Astrophysics Data System (ADS)
Reddington, Carly L.; Spracklen, Dominick V.; Artaxo, Paulo; Ridley, David A.; Rizzo, Luciana V.; Arana, Andrea
2016-09-01
We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol over the period 2003 to 2011. Previous studies report a large underestimation of AOD over regions impacted by tropical biomass burning, scaling particulate emissions from fire by up to a factor of 6 to enable the models to simulate observed AOD. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1). In these datasets the tropics account for 66-84 % of global particulate emissions from fire. With all emission datasets GLOMAP underestimates dry season PM2.5 concentrations in regions of high fire activity in South America and underestimates AOD over South America, Africa and Southeast Asia. When we assume an upper estimate of aerosol hygroscopicity, underestimation of AOD over tropical regions impacted by biomass burning is reduced relative to previous studies. Where coincident observations of surface PM2.5 and AOD are available we find a greater model underestimation of AOD than PM2.5, even when we assume an upper estimate of aerosol hygroscopicity. Increasing particulate emissions to improve simulation of AOD can therefore lead to overestimation of surface PM2.5 concentrations. We find that scaling FINN1 emissions by a factor of 1.5 prevents underestimation of AOD and surface PM2.5 in most tropical locations except Africa. GFAS1 requires emission scaling factor of 3.4 in most locations with the exception of equatorial Asia where a scaling factor of 1.5 is adequate. Scaling GFED3 emissions by a factor of 1.5 is sufficient in active deforestation regions of South America and equatorial Asia, but a larger scaling factor is required elsewhere. The model with GFED3 emissions poorly simulates observed seasonal variability in surface PM2.5 and AOD in regions where small fires dominate, providing independent evidence that GFED3 underestimates particulate emissions from small fires. Seasonal variability in both PM2.5 and AOD is better simulated by the model using FINN1 emissions. Detailed observations of aerosol properties over biomass burning regions are required to better constrain particulate emissions from fires.
Fuel and Lubricant Effects on Exhaust Emissions from a Light-Duty CIDI Powered Vehicle
2003-09-01
particulate emissions were examined on a 1999 Mercedes Benz C220 D. Test cycles included the FTP and the US06. Statistical analyses were performed on...4 REPORT 03.03227.03 viii LIST OF FIGURES Figure Page 1 Mercedes - Benz C220D Vehicle on...macroemulsion fuel was also evaluated. REPORT 03.03227.03 2 of 28 II. PROGRAM DESCRIPTION The test vehicle was a 1999 Mercedes - Benz C220 D equipped with a
Urban stress-induced biogenic VOC emissions impact secondary aerosol formation in Beijing
NASA Astrophysics Data System (ADS)
Ghirardo, A.; Xie, J.; Zheng, X.; Wang, Y.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; Butterbach-Bahl, K.; Schnitzler, J.-P.
2015-08-01
Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on an inventory of BVOC emissions and the tree census, we assessed the potential impact of BVOCs on secondary particulate matter formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids and sesquiterpenes, constituted a significant fraction (∼ 15 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ∼ 3.6 × 109 g C year-1 in 2005 to ∼ 7.1 × 109 g C year-1 in 2010 due to the increase in urban greens, while at the same time, the emission of anthropogenic VOCs (AVOCs) could be lowered by 24 %. Based on our BVOC emission assessment, we estimated the biological impact on SOA mass formation in Beijing. Compared to AVOCs, the contribution of biogenic precursors (2-5 %) for secondary particulate matter in Beijing was low. However, sBVOCs can significantly contribute (∼ 40 %) to the formation of total secondary organic aerosol (SOA) from biogenic sources; apparently, their annual emission increased from 1.05 μg m-3 in 2005 to 2.05 μg m-3 in 2010. This study demonstrates that biogenic and, in particular, sBVOC emissions contribute to SOA formation in megacities. However, the main problems regarding air quality in Beijing still originate from anthropogenic activities. Nevertheless, the present survey suggests that in urban plantation programs, the selection of plant species with low cBVOC and sBVOC emission potentials have some possible beneficial effects on urban air quality.
Particle and gas emissions from a simulated coal-burning household fire pit.
Tian, Linwei; Lucas, Donald; Fischer, Susan L; Lee, S C; Hammond, S Katharine; Koshland, Catherine P
2008-04-01
An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO2, total hydrocarbons, and NOx) were 2-4 times higherfor bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories.
Gaseous and particulate emissions generated from the combustion of coal have been associated with adverse effects on human health and the environment, and have therefore been the subject of regulation by federal and state government agencies. Detailed emission characterizations ...
Lidar Based Emissions Measurement at the Whole Facility Scale: Method and Error Analysis
USDA-ARS?s Scientific Manuscript database
Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regiona...
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollution sources? (1) Particulate matter emissions from a combustion source stack (except for wood-fired..., British thermal unit (Btu), coal, combustion source, distillate fuel oil, emission, fuel, fuel oil, gaseous fuel, heat input, incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine...
The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cycle vehicles not requiring particulate emission measurements. 86.109-94 Section 86.109-94 Protection... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.109-94 Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate...
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...
Transient particle emission measurement with optical techniques
NASA Astrophysics Data System (ADS)
Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín
2008-06-01
Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.
NASA/DERA Collaborative Program
NASA Technical Reports Server (NTRS)
Whitefield, Phillip D.; Hagen, Donald E.; Wormhoudt, Jody C.; Miake-Lye, Richard C.; Brundish, Kevin; Wilson, Christopher W.; Wey, Chowen (Technical Monitor)
2002-01-01
This report is an interim report. The work reported are the results from the combustor testing, the first phase of testing in the DERA/NASA collaborative program. A program of work was developed by DERA and NASA utilizing specialist facilities within the UK, and specialist measurement techniques developed within the U.S. Under a Memorandum of Understanding (MoU) between the UK and U.S. governments, the joint UK/U.S. funded program commenced. The objective of the program was to make combustor and engine exit plane emissions measurements, including particulate and sulphur measurements, for kerosene fuels with different sulphur levels. The combustor test program was performed in August/September 2000. Although probe issues complicated the test program, a consistent set of data, including CO, NO(x), NO, NO2, CO2, O2, smoke number, particulate number density and size distribution, SO2, SO3 and HONO were collected at the exit plane of the DERA TRACE engine combustor. A second probe was utilized to measure spatial location of CO, NO(x), NO, NO2 and CO2 concentrations. Data are therefore available for development of aerosol, particulate and aerosol precursor chemistry sub-models for inclusion into CFD. Inlet boundary conditions have been derived at the exit of the combustion system for the modelling of the DERA TRACE engine. The second phase of the program is to perform identical measurements at the engine exit, to allow a full data set to be available. This will be performed in July 2001 at the Glenn test facility, DERA Pyestock.
Mukhopadhyay, N; Bose, P K
2009-10-01
Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.
Particulate Matter Emissions for Fires in the Palmetto-Gallberry Fuel Type
Darold E. Ward
1983-01-01
Fire management specialists in the southeastern United States needing guides for predicting or assessing particulate matter emission factors, emission rates, and heat release rate can use the models presented in this paper for making these predictions as a function of flame length in the palmetto-gallberry fuel type.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...
Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...
Particulate Matter Speciation Profiles for Light-duty Gasoline Vehicles in the United States
Representative particulate matter (PM2.5) profiles for particles less than or equal to 2.5 micrometers are estimated from the Kansas City Light-Duty Vehicle Emissions Study for use in the US EPA’s vehicle emission model, the Motor Vehicle Emission Simulator (MOVES). The profiles ...
40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Rule for limiting particulate matter emissions from wood products industry sources. (a) What is the... certain wood products industry sources operating within the Indian reservation to control ground-level...
Gaseous and particulate emissions from thermal power plants operating on different technologies.
Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain
2010-07-01
This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel.
Characterization of particulate matter and gaseous emissions of a C-130H aircraft.
Corporan, Edwin; Quick, Adam; DeWitt, Matthew J
2008-04-01
The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.
40 CFR 85.1805 - Notification to vehicle or engine owners.
Code of Federal Regulations, 2010 CFR
2010-07-01
... family particulate emission limits, as defined in part 86. These standards or family particulate emission... paragraph (a) of this section nor any other contemporaneous communication sent to vehicle or engine owners...
Particle and VOC emission factor measurements for anthropogenic sources in West Africa
NASA Astrophysics Data System (ADS)
Keita, Sekou; Liousse, Cathy; Yoboué, Véronique; Dominutti, Pamela; Guinot, Benjamin; Assamoi, Eric-Michel; Borbon, Agnès; Haslett, Sophie L.; Bouvier, Laetitia; Colomb, Aurélie; Coe, Hugh; Akpo, Aristide; Adon, Jacques; Bahino, Julien; Doumbia, Madina; Djossou, Julien; Galy-Lacaux, Corinne; Gardrat, Eric; Gnamien, Sylvain; Léon, Jean F.; Ossohou, Money; Touré N'Datchoh, E.; Roblou, Laurent
2018-06-01
A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (Air Pollution and Health
) of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) FP7 program. Emission sources considered here include wood (hevea and iroko) and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM), elemental carbon (EC), primary organic carbon (OC) and volatile organic compounds (VOCs) have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea), and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10). Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg-1 of fuel burned (g kg-1), 11.05 ± 4.55 and 41.12 ± 24.62 g kg-1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg-1 fuel for EC, 65.11 g kg-1 fuel for OC and 496 g kg-1 fuel for TPM). The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg-1 fuel). EC is primarily emitted in the ultrafine fraction, with 77 % of the total mass being emitted as particles smaller than 0.25 µm. The particles and VOC emission factors obtained in this study are generally higher than those in the literature whose values are discussed in this paper. This study underlines the important role of in situ measurements in deriving realistic and representative emission factors.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
... the Second Section 812 Prospective Benefit-Cost Study of the Clean Air Act. DATES: The AQMS will... particulate matter (PM 2.5 ) emissions and air quality changes for the Second Section 812 Benefit-Cost... Clean Air Act Amendments (CAAA), EPA conducts periodic studies to assess benefits and costs of programs...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled... programs is voluntary. (2)(i) Engine families with FELs exceeding the applicable standard shall obtain emission credits in a mass amount sufficient to address the shortfall. Credits may be obtained from...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled... programs is voluntary. (2)(i) Engine families with FELs exceeding the applicable standard shall obtain emission credits in a mass amount sufficient to address the shortfall. Credits may be obtained from...
40 CFR 52.970 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...)(50) Section 1303.A Toxic Substances 10/20/1995 7/05/2011, 76 FR 38977 Section 1305 Control of....999(c)(50) Section 1315 More Stringent Regulations may be Prescribed if Particulates are Toxic Jun... Law 30:2060 N.6 Toxic air pollution emission control program 10/22/92 06/23/94, 59 FR 32359 Ref 52.999...
40 CFR 52.970 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...)(50) Section 1303.A Toxic Substances 10/20/1995 7/05/2011, 76 FR 38977 Section 1305 Control of....999(c)(50) Section 1315 More Stringent Regulations may be Prescribed if Particulates are Toxic Jun... Law 30:2060 N.6 Toxic air pollution emission control program 10/22/92 06/23/94, 59 FR 32359 Ref 52.999...
Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D
2010-01-15
The use of methanol in combination with diesel fuel is an effective measure to reduce particulate matter (PM) and nitrogen oxides (NOx) emissions from in-use diesel vehicles. In this study, a diesel/methanol compound combustion (DMCC) scheme was proposed and a 4-cylinder naturally-aspirated direct-injection diesel engine modified to operate on the proposed combustion scheme. The effect of DMCC and diesel oxidation catalyst (DOC) on the regulated emissions of total hydrocarbons (THC), carbon monoxide (CO), NOx and PM was investigated based on the Japanese 13 Mode test cycle. Certain unregulated emissions, including methane, ethyne, ethene, 1,3-butadiene, BTX (benzene, toluene, xylene), unburned methanol and formaldehyde were also evaluated based on the same test cycle. In addition, the soluble organic fraction (SOF) in the particulate and the particulate number concentration and size distribution were investigated at certain selected modes of operation. The results show that the DMCC scheme can effectively reduce NOx, particulate mass and number concentrations, ethyne, ethene and 1,3-butadiene emissions but significantly increase the emissions of THC, CO, NO(2), BTX, unburned methanol, formaldehyde, and the proportion of SOF in the particles. After the DOC, the emission of THC, CO, NO(2), as well as the unregulated gaseous emissions, can be significantly reduced when the exhaust gas temperature is sufficiently high while the particulate mass concentration is further reduced due to oxidation of the SOF. Copyright 2009 Elsevier B.V. All rights reserved.
Systems and methods for controlling diesel engine emissions
Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.
2004-06-01
Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.
PERFORMANCE AND DURABILITY OF THE PSA PEUGEOT CITROEN'S DPF SYSTEM ON A TAXI FLEET IN THE PARIS AREA
DOE Office of Scientific and Technical Information (OSTI.GOV)
COROLLER, P; PLASSAT, G
The use of Diesel engines has strongly increased during the last years and now represents 40% of the sales in Europe and up to 50% of the number of cars in circulation for some countries. This success is linked not only to the economical aspect of the use of such vehicles, but also to the recent technological improvements of these engines. The new technical solutions (high pressure direct injection, turbocharger) have indeed allowed the increase of these engine performances while decreasing their fuel consumption, pollutant emissions and noise level. From an environment point of view, Diesel engines are nevertheless penalizedmore » by their particulates and NOx emissions. The study and the treatment of the particulate, highly criticized for their potential impact on health, are the subject of numerous works of characterizations and developments. PSA Peugeot Citroen has recently (2000) launched its particulate filter technology on several types of vehicles (500,000 vehicles with DPF have been sold today). In order to evaluate the durability of this technology over a long period of time, a study program has been set-up by ADEME (French Environmental Agency), IFP Powertrain, PSA Peugeot Citroen and Taxis G7 (a Parisian taxis Company). The objective is to study the evolution of five taxis and their after-treatment system performances over 80,000km mileage--which corresponds to the recommended mileage before the first DPF maintenance--in hard urban driving conditions, as well over 120,000km, after the DPF maintenance and remanufacturing. More specifically, the following evaluations are being performed at regular intervals (around 20,000km): regulated gaseous pollutant emissions on NEDC cycle, particulate emissions and unregulated pollutant emissions. The results obtained until now have not shown any degradation of the particulate filter efficiency (more than 90%). This paper presents the methodology set-up, and the explanation of the first results obtained. Indeed, a more specific study has shown that most of the aerosols, measured with SMPS are composed of liquid fractions, mainly sulfates due to the sulphur coming from the fuel but also from the lubricant. The impact of sulfates stored on the catalyst surface during low temperature running phases and removed during high temperature running phases has been also outlined.« less
Effects of Changing Emissions on Ozone and Particulates in the Northeastern United States
NASA Astrophysics Data System (ADS)
Frost, G. J.; McKeen, S.; Trainer, M.; Ryerson, T.; Holloway, J.; Brock, C.; Middlebrook, A.; Wollny, A.; Matthew, B.; Williams, E.; Lerner, B.; Fortin, T.; Sueper, D.; Parrish, D.; Fehsenfeld, F.; Peckham, S.; Grell, G.; Peltier, R.; Weber, R.; Quinn, P.; Bates, T.
2004-12-01
Emissions of nitrogen oxides (NOx) from electric power generation have decreased in recent years due to changes in burner technology and fuels used. Mobile NOx emissions assessments are less certain, since they must account for increases in vehicle miles traveled, changes in the proportion of diesel and gasoline vehicles, and more stringent controls on engines and fuels. The impact of these complicated emission changes on a particular region's air quality must be diagnosed by a combination of observation and model simulation. The New England Air Quality Study - Intercontinental Transport and Chemical Transformation 2004 (NEAQS-ITCT 2004) program provides an opportunity to test the effects of changes in emissions of NOx and other precursors on air quality in the northeastern United States. An array of ground, marine, and airborne observation platforms deployed during the study offer checks on emission inventories and air quality model simulations, like those of the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Retrospective WRF-Chem runs are carried out with two EPA inventories, one compiled for base year 1999 and an update for 2004 incorporating projected and known changes in emissions during the past 5 years. Differences in model predictions of ozone, particulates, and other tracers using the two inventories are investigated. The inventories themselves and the model simulations are compared with the extensive observations available during NEAQS-ITCT 2004. Preliminary insights regarding the sensitivity of the model to NOx emission changes are discussed.
Particulates and fine dust removal: processes and equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sittig, M.
1977-01-01
Particulates and fine dust created by man's activities contribute significantly to all major aspects of air pollution. While the generation of natural fine dusts is also very large in some parts of the earth, industrially generated, particle-loaded air emissions may push the particulate level to a point where acceptable air quality standards are exceeded continuously. How to reduce such emissions at the source, and what processes and equipment to use, is the subject of this book, which is based on reports of federally-financed air pollution studies as well as U.S. patents. Following an introduction with an overview of industrial particulatemore » emissions, emission data and emission control processes are discussed for the following specific industries: airlines; asphalt; cement; coal; electric utilities; ferrous metals; fertilizer; food; forest products; paper; chemicals; nonferrous metals; nuclear; petroleum refining; stone and clay; and textiles. Conventional and innovative particle removal devices are described. The disposal of collected particles is discussed. The economic and energy consumption aspects of particulate control are presented. (LCL)« less
Trace gas and particulate emissions from biomass burning in temperate ecosystems
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.
1991-01-01
Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.
40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources. (a... emitted from certain wood products industry sources operating within the Indian reservation to control...
40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources. (a... emitted from certain wood products industry sources operating within the Indian reservation to control...
The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R07-OAR-2012-0758; FRL 9781-6] Approval and Promulgation of Implementation Plans; State of Missouri; Restriction of Emission of Particulate Matter From... March 17, 2011. This revision proposes to amend the rule restricting emissions of particulate matter...
40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources. (a... emitted from certain wood products industry sources operating within the Indian reservation to control...
Particulate matter emissions from combustion of wood in district heating applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine
2011-01-01
The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning systemmore » in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.« less
75 FR 80117 - Methods for Measurement of Filterable PM10
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-21
...This action promulgates amendments to Methods 201A and 202. The final amendments to Method 201A add a particle-sizing device to allow for sampling of particulate matter with mean aerodynamic diameters less than or equal to 2.5 micrometers (PM2.5 or fine particulate matter). The final amendments to Method 202 revise the sample collection and recovery procedures of the method to reduce the formation of reaction artifacts that could lead to inaccurate measurements of condensable particulate matter. Additionally, the final amendments to Method 202 eliminate most of the hardware and analytical options in the existing method, thereby increasing the precision of the method and improving the consistency in the measurements obtained between source tests performed under different regulatory authorities. This action also announces that EPA is taking no action to affect the already established January 1, 2011 sunset date for the New Source Review (NSR) transition period, during which EPA is not requiring that State NSR programs address condensable particulate matter emissions.
Characterization of chemical and particulate emissions from aircraft engines
NASA Astrophysics Data System (ADS)
Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.
2008-06-01
This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.
Monitoring by Control Technique - Wet Scrubber For Particulate Matter
Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Wet Scrubber For Particulate Matter controls used to reduce pollutant emissions.
2012-09-01
experiments. J. Aerosol Sci., 40, 603- 612. Zheng, M., Cass, G. R., Schauer, J. J., Edgerton, E. S. (2002) Source Apportionment of PM2.5 in the...Energy Heavy Vehicle Research Program. The SERDP project WP1627 team consists of the following members (listed in alphabetical order of the last name...aircraft emissions are dominated by a fleet of high payload aircraft, such as the C-130, B1 B-52, and a variety of heavy -lift turboshaft vehicles
Mobile Particulate Emission Studies of New York City Vehicles
NASA Astrophysics Data System (ADS)
Canagaratna, M.; Jayne, J.; Shi, Q.; Kolb, C. E.; Worsnop, D.
Emissions from both diesel and gasoline powered motor vehicles are a significant source of urban particulate (PM2.5) and trace gas pollution. Emission characteriza- tions of motor vehicles are typically performed using a dynamometer. Few studies have been performed which characterize emissions from in-use vehicles using a mo- bile sampling platform. This work, which was part of the PM2.5 Technology Assess- ment and Characterization Study in New York (PMTACS-NY), describes the applica- tion of new instrumentation for rapid (1-5 second) and real-time characterization of particulate emissions from in-use vehicles . An Aerosol Mass Spectrometer (AMS) was deployed on the Aerodyne Research (ARI) mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides quantitative particle size and composition information for volatile and semi- volatile matter (0.05-2.5 um). The AMS was operated in a fast acquisition mode de- signed to monitor particle emissions from the mobile sources. In this mode mass spec- tra (0-300 amu) and chemically speciated particle size distributions were recorded at 4 sec intervals. In addition to the AMS, the Mobile Laboratory was equipped with the ARI tunable diode laser (TILDAS) system which was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde, a global positioning system, a condensation particle counter, and a Licor CO2 instrument. The simultaneous measurement of particulate mass loading and plume CO2 enabled the calculation of emission indices for the targeted vehicles. Particulate matter emis- sion indices for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet were determined in an effort to characterize new emission control technologies currently implemented by the NYC MTA. In addition to total particle emission indices, chemically speciated sulfate and organic mass loadings and size distributions were determined. Representative mass spectral signatures and size dis- tributions observed from the exhaust plume particles and correlations between the simultaneous gas and particulate measurements will be discussed. Differences in ob- served particle emission factors and compositions between buses using different fuels and technologies will also be presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a... (2) Meet or exceed the applicable particulate matter emission requirements of the Environmental...
NASA Technical Reports Server (NTRS)
Walter, R. A.
1982-01-01
The results obtained from fuel economy and emission tests conducted on a prototype Chrysler Volare diesel vehicle are documented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. The fuel used, was a DOE/BETC referee fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. The vehicle obtained 32.7 mpg for the FTP urban cycle and 48.8 mpg for the highway cycle. The emissions rates were 0.42/1.58/1.17/0.28 g/mile of HC, CO, NOx and particulates respectively.
NASA Technical Reports Server (NTRS)
Quayle, S. S.
1982-01-01
The results obtained from fuel economy and emission tests conducted on a prototype Fiat 131 turbocharged diesel vehicle are presented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a United States number 2 diesel and a European diesel fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that turbocharging accompanied by complementary modifications results in small but substantial improvements in regulated emissions, fuel economy, and performance. Notably, particulate levels were reduced by 30 percent.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emissions and route them to a cyclone designed to reduce emissions of particulate matter by 95 percent or...) You must demonstrate that the cyclone is designed to reduce emissions of particulate matter by 95... operation of the cyclone in accordance with the applicable requirement in paragraphs (e)(2)(i), (ii), or...
40 CFR 60.422 - Standards for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per megagram...
40 CFR 60.422 - Standards for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per megagram...
40 CFR 60.422 - Standards for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per megagram...
40 CFR 60.422 - Standards for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per megagram...
30 CFR 57.5066 - Maintenance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5066... manufacturer specifications; and (3) The operator must maintain any emission or particulate control device...
30 CFR 57.5066 - Maintenance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5066... manufacturer specifications; and (3) The operator must maintain any emission or particulate control device...
Zhu, Rencheng; Hu, Jingnan; Bao, Xiaofeng; He, Liqiang; Lai, Yitu; Zu, Lei; Li, Yufei; Su, Sheng
2016-09-01
Vehicle emissions are greatly influenced by various factors that are related to engine technology and driving conditions. Only the fuel injection method and ambient temperature are investigated in this research. Regulated gaseous and particulate matter (PM) emissions from two advanced gasoline-fueled vehicles, one with direct fuel injection (GDI) and the other with port fuel injection (PFI), are tested with conventional gasoline and ethanol-blended gasoline (E10) at both -7 °C and 30 °C. The total particle number (PN) concentrations and size distributions are monitored with an Electrical Low Pressure Impactor (ELPI(+)). The solid PN concentrations are measured with a condensation particle counter (CPC) after removing volatile matters through the particle measurement program (PMP) system. The results indicate that decreasing the ambient temperature from 30 °C to -7 °C significantly increases the fuel consumption and all measured emissions except for NOx. The GDI vehicle exhibits lower fuel consumption than the PFI vehicle but emits more total hydrocarbons (THC), PM mass and solid PN emissions at 30 °C. The adaptability of GDI technology appears to be better than that of PFI technology at low ambient temperature. For example, the CO, THC and PM mass emission factors of the PFI vehicle are higher than those of the GDI vehicle and the solid PN emission factors are comparable in the cold-start tests at -7 °C. Specifically, during start-up the particulate matter emissions of the PFI are much higher than the GDI. In most cases, the geometric mean diameter (GMD) of the accumulation mode particles is 58-86 nm for both vehicles, and the GMD of the nucleation mode particles is 10-20 nm. The results suggest that the gaseous and particulate emissions from the PFI vehicle should not be neglected compared to those from the GDI vehicle especially in a cold environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emissivity of Rocket Plume Particulates
1992-09-01
V. EXPERIMENTAL RESULTS ........ ............... 29 VI. CONCLUSIONS AND RECOMMENDATIONS .... ........ 32 APPENDIX A. CATS -E SOFTWARE...interfaced through the CATS E Thermal Analysis software, which is MS-DOS based, and can be run on any 28b or higher CPU. This system allows real-time...body source to establish the parameters required by the CATS program for proper microscope/scanner interface. A complete description of microscope
Clack, Herek L
2012-07-03
The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.
Subramanian, R; Winijkul, Ekbordin; Bond, Tami C; Thiansathit, Worrarat; Oanh, Nguyen Thi Kim; Paw-armart, Ittipol; Duleep, K G
2009-06-01
A "piggyback" approach is used to characterize aerosol emissions to obtain input for large-scale models of atmospheric transport. Particulate and gaseous emissions from diesel trucks, light-duty vehicles, and buses were measured by the Bangkok Pollution Control Department as part of the Developing Integrated Emissions Strategies for Existing Land Transport (DIESEL) project. We added filter-based measurements of carbonaceous composition, particulate light absorption, and water uptake. For 88 "normal" diesel vehicles (PM emission rate < 4.7 g/kg), our best estimate of the average PM2.5 emission rate is 2.2 +/- 0.5 g/kg, whereas for 15 high emitters, it is 8.4 +/- 1.9 g/kg. The effect of Euro standards on PM emission rates was apparent for heavy-duty vehicles, but not for light-duty vehicles. Carbonaceous composition appears relatively consistent, with particulate (artifact-corrected) OC at 17 +/- 1% and EC at 40 +/- 8% of PM for 103 pickups, vans, heavy-duty trucks and buses. The median absorption cross-section for EC is 10.5 m2/g at 532 nm. The history of average emission rate and chemical composition during the project suggests that about 25 vehicles can provide a regional PM emission rate for normal vehicles. Other studies such as remote sensing measurements will be required to estimate the important contribution of high-emitting vehicles.
Mosonik, Bornes C; Kibet, Joshua K; Ngari, Silas M; Nyamori, Vincent O
2018-06-21
Pyrolysis of biodiesel at high temperatures may result in the formation of transient and stable free radicals immobilized on particulate emissions. Consequently, free radicals adsorbed on particulates are believed to be precursors for health-related illnesses such as cancer, cardiac arrest, and oxidative stress. This study explores the nature of free radicals and particulate emissions generated when Croton megalocarpus biodiesel is pyrolyzed at 600 °C in an inert environment of flowing nitrogen at a residence time of 0.5 s at 1 atm. The surface morphology of thermal emissions were imaged using a field emission gun scanning electron microscope (FEG SEM) while the radical characteristics were investigated using an electron paramagnetic resonance spectrometer (EPR). A g-value of 2.0024 associated with a narrow ∆Hp-p of 3.65 G was determined. The decay rate constant for the radicals was low (1.86 × 10 -8 s -1 ) while the half-life was long ≈ 431 days. The observed EPR characterization of Croton megalocarpus thermal particulates revealed the existence of free radicals typical of those found in coal. The low g-value and low decay rate constant suggests that the free radicals in particulates are possibly carbon-centered. The mechanistic channel for the formation of croton char from model biodiesel component (9-dodecenoic acid, methyl ester) has been proposed in this study.
NASA Astrophysics Data System (ADS)
Philip, Sajeev; Martin, Randall V.; Snider, Graydon; Weagle, Crystal L.; van Donkelaar, Aaron; Brauer, Michael; Henze, Daven K.; Klimont, Zbigniew; Venkataraman, Chandra; Guttikunda, Sarath K.; Zhang, Qiang
2017-04-01
Global measurements of the elemental composition of fine particulate matter across several urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is partially missing or strongly underrepresented in global models. We estimate 2-16 μg m-3 increase in fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in situ observations. Global population-weighted PM2.5 increases by 2.9 μg m-3 (10%). Our assessment ascertains the urgent need of including this underrepresented fine anthropogenic dust source into global bottom-up emission inventories and global models.
40 CFR 63.1446 - What alternative emission limitation may I meet for my combined gas streams?
Code of Federal Regulations, 2010 CFR
2010-07-01
... than a baghouse or venturi wet scrubber applied to meet any total particulate matter emission limit in... than 5 percent of the total operating time in any semiannual reporting period. (d) For each venturi wet scrubber applied to meet any total particulate matter emission limit in paragraph (b) of this section, you...
Characteristics of particulate matter emissions from toy cars with electric motors.
Wang, Xiaofei; Williams, Brent J; Biswas, Pratim
2015-04-01
Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.
Verification of a level-3 diesel emissions control strategy for transport refrigeration units
NASA Astrophysics Data System (ADS)
Shewalla, Umesh
Transport Refrigeration Units (TRUs) are refrigeration systems used to control the environment of temperature sensitive products while they are being transported from one place to another in trucks, trailers or shipping containers. The TRUs typically use an internal combustion engine to power the compressor of the refrigeration unit. In the United States TRUs are most commonly powered by diesel engines which vary from 9 to 40 horsepower. TRUs are capable of both heating and cooling. The TRU engines are relatively small, inexpensive and do not use emissions reduction techniques such as exhaust gas recirculation (EGR). A significant number of these engines operate in highly populated areas like distribution centers, truck stops, and other facilities which make them one of the potential causes for health risks to the people who live and work nearby. Diesel particulate matter (PM) is known for its adverse effects on both human beings and the environment. Considering these effects, regulatory bodies have imposed limitations on the PM emissions from a TRU engine. The objective of this study was to measure and analyze the regulated emissions from a TRU engine under both engine out and particulate filter system out conditions during pre-durability (when the filter system was new) and post-durability test (after the filter system was subjected to 1000 hours in-field trial). The verification program was performed by the Center for Alternative Fuel, Engines and Emissions (CAFEE) at West Virginia University (WVU). In this program, a catalyzed silicon carbide (SiC) diesel particulate filter (DPF) was evaluated and verified as a Level-3 Verified Diesel Emissions Control Strategy (VDECS) (. 85% PM reduction) under California Air Resources Board (CARB) regulations 2702 [1]. The emissions result showed that the filter system reduced diesel PM by a percentage of 96 +/- 1 over ISO 8178-C1 [2] cycle and 92 +/- 5 over EPA TRU [3] cycle, qualifying as a Level 3 VDECS. The percentage emission reduction in hydrocarbons (HC) and carbon monoxide (CO) was 76.8 +/- 4.8 and 72.2 +/- 5.2, respectively over both ISO 8178-C1 [2] and EPA TRU [3] cycles. It was also observed that there was 3.6 +/- 2.9 and 7.2 +/- 3.1 percentage reduction in oxides of nitrogen (NOx) and nitric oxide (NO), respectively with a slight increase in fuel consumption and carbon dioxide as a consequence of increased exhaust back pressure. It is required by the CARB regulations that the diesel emissions control strategy must not increase emissions of NO2 by more than 20% by mass over the baseline value. In this study, it was observed that the total increase in NO2 level was 5.6 +/- 2.6 percent, well within the limit specified by the CARB.
2015-12-30
FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine
Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines.
Shah, Sandip D; Cocker, David R; Miller, J Wayne; Norbeck, Joseph M
2004-05-01
Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.
Dust emission from wet, low-emission coke quenching process
NASA Astrophysics Data System (ADS)
Komosiński, Bogusław; Bobik, Bartłomiej; Konieczny, Tomasz; Cieślik, Ewelina
2018-01-01
Coke plants, which produce various types of coke (metallurgical, foundry or heating), at temperatures between 600 and 1200°C, with limited access to oxygen, are major emitters of particulates and gaseous pollutants to air, water and soils. Primarily, the process of wet quenching should be mentioned, as one of the most cumbersome. Atmospheric pollutants include particulates, tar substances, organic pollutants including B(a)P and many others. Pollutants are also formed from the decomposition of water used to quench coke (CO, phenol, HCN, H2S, NH3, cresol) and decomposition of hot coke in the first phase of quenching (CO, H2S, SO2) [1]. The development of the coke oven technology has resulted in the changes made to different types of technological installations, such as the use of baffles in quench towers, the removal of nitrogen oxides by selective NOx reduction, and the introduction of fabric filters for particulates removal. The BAT conclusions for coke plants [2] provide a methodology for the measurement of particulate emission from a wet, low-emission technology using Mohrhauer probes. The conclusions define the emission level for wet quenching process as 25 g/Mgcoke. The conducted research was aimed at verification of the presented method. For two of three quench towers (A and C) the requirements included in the BAT conclusions are not met and emissions amount to 87.34 and 61.35 g/Mgcoke respectively. The lowest particulates emission was recorded on the quench tower B and amounted to 22.5 g/Mgcoke, therefore not exceeding the requirements.
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.
SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I
Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...
THE IMPACT OF PARTICULATE EMISSIONS CONTROL ON THE CONTROL OF OTHER MWC AIR EMISSIONS
On December 20, 1989, the Environmental Protection Agency (EPA) proposed revised new source performance standards for new municipal waste combustion (MWC) units and guidelines for existing sources. The proposed national regulations require tighter particulate matter control and a...
An overview of particulate emissions from residential biomass combustion
NASA Astrophysics Data System (ADS)
Vicente, E. D.; Alves, C. A.
2018-01-01
Residential biomass burning has been pointed out as one of the largest sources of fine particles in the global troposphere with serious impacts on air quality, climate and human health. Quantitative estimations of the contribution of this source to the atmospheric particulate matter levels are hard to obtain, because emission factors vary greatly with wood type, combustion equipment and operating conditions. Updated information should improve not only regional and global biomass burning emission inventories, but also the input for atmospheric models. In this work, an extensive tabulation of particulate matter emission factors obtained worldwide is presented and critically evaluated. Existing quantifications and the suitability of specific organic markers to assign the input of residential biomass combustion to the ambient carbonaceous aerosol are also discussed. Based on these organic markers or other tracers, estimates of the contribution of this sector to observed particulate levels by receptor models for different regions around the world are compiled. Key areas requiring future research are highlighted and briefly discussed.
Modelisation des emissions de particules microniques et nanometriques en usinage
NASA Astrophysics Data System (ADS)
Khettabi, Riad
La mise en forme des pieces par usinage emet des particules, de tailles microscopiques et nanometriques, qui peuvent etre dangereuses pour la sante. Le but de ce travail est d'etudier les emissions de ces particules pour fins de prevention et reduction a la source. L'approche retenue est experimentale et theorique, aux deux echelles microscopique et macroscopique. Le travail commence par des essais permettant de determiner les influences du materiau, de l'outil et des parametres d'usinage sur les emissions de particules. E nsuite un nouveau parametre caracterisant les emissions, nomme Dust unit , est developpe et un modele predictif est propose. Ce modele est base sur une nouvelle theorie hybride qui integre les approches energetiques, tribologiques et deformation plastique, et inclut la geometrie de l'outil, les proprietes du materiau, les conditions de coupe et la segmentation des copeaux. Il ete valide au tournage sur quatre materiaux: A16061-T6, AISI1018, AISI4140 et fonte grise.
Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar
2017-04-01
Fine particulates (PM 2.5 ) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM 2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM 2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM 2.5 >100 μgm -3 , n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was found single dominating source over southern part while over Bangladesh, both vehicular, biomass burning and industrial sources were significant. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 52.570 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-burning Equipment 7/20/05 2/9/09, 75 FR 6309 391-3-1-.02(2)(e) Particulate Emission from Manufacturing...) Particulate Emission from Asphaltic Concrete Hot Mix Plants 1/17/79 9/18/79, 44 FR 54047 391-3-1-.02(2)(l... 7/10/01, 66 FR 35906 391-3-1-.02(2)(lll) NOX Emissions from Fuel-burning Equipment 2/16/00 7/10/01...
Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C
2018-08-01
Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K
2014-08-19
The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.
Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn; Corporan, E.; DeWitt, M.
2008-01-01
Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen localmore » air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.« less
This dataset provides all data used to generate the figures and tables in the article entitled Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States published in the Journal of Geophysical Research: AtmospheresThis dataset is associated with the following publication:Holder , A., G. Hagler , J. Aurell, M. Hays , and B. Gullett. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 121(7): 3465-3483, (2016).
2017-03-06
WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non -volatile Particulate Matter (PM...Engine Volatile and Non -Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non
Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen
2015-05-01
The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn; Corporan, E.; DeWitt, M.
2007-01-01
Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power settingmore » increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.« less
Particulate emissions calculations from fall tillage operations using point and remote sensors
USDA-ARS?s Scientific Manuscript database
Preparation of soil for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric loadings of particulate matter (PM). Efforts to reduce PM emissions from tillage operations through a variety of conservation management practices (CMP) have been made but the reduc...
Guidance document on how to develop emission inventories to meet State Implementation Plan requirements for complying with the 8-hour ozone national ambient air quality standards (NAAQS), the revised particulate matter (PM) NAAQS, and the regional haze reg
Novel Sampling Techniques for Measurement of Turbine Engine Total Particulate Matter Emissions
This is the first progress report of a study to evaluate two different condensation devices for the measurement of the total (volatile + non-volatile) particulate matter (PM) emissions from aircraft turbine engines by direct sampling at the engine exit. The characteristics of th...
HIGHLIGHTS FROM TECHNICAL MANUAL ON HOOD SYSTEM CAPTURE OF PROCESS FUGITIVE PARTICULATE EMISSIONS
The paper discusses a technical manual whose emphasis is on the design and evaluation of actual hood systems used to control various fugitive particulate emission sources. Engineering analyses of the most important hood types are presented to provide a conceptual understanding of...
Demand response, behind-the-meter generation and air quality.
Zhang, Xiyue; Zhang, K Max
2015-02-03
We investigated the implications of behind-the-meter (BTM) generation participating in demand response (DR) programs. Specifically, we evaluated the impacts of NOx emissions from BTM generators enrolled in the New York Independent System Operator (NYISO)'s reliability-based DR programs. Through analyzing the DR program enrollment data, DR event records, ozone air quality monitoring data, and emission characteristics of the generators, we found that the emissions from BTM generators very likely contribute to exceedingly high ozone concentrations in the Northeast Corridor region, and very likely account for a substantial fraction of total NOx emissions from electricity generation. In addition, a companion study showed that the emissions from BTM generators could also form near-source particulate matter (PM) hotspots. The important policy implications are that the absence of up-to-date regulations on BTM generators may offset the current efforts to reduce the emissions from peaking power plants, and that there is a need to quantify the environmental impacts of DR programs in designing sound policies related to demand-side resources. Furthermore, we proposed the concept of "Green" DR resources, referring to those that not only provide power systems reliability services, but also have verifiable environmental benefits or minimal negative environmental impacts. We argue that Green DR resources that are able to maintain resource adequacy and reduce emissions at the same time are key to achieving the cobenefits of power system reliability and protecting public health during periods with peak electricity demand.
40 CFR 60.532 - Standards for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...
40 CFR 60.532 - Standards for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...
40 CFR 60.532 - Standards for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...
40 CFR 60.532 - Standards for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...
Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G
2011-10-01
Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the contribution of particulate emissions to the total impact on the marine water column is of minor importance. We conclude that particles are an important stressor in marine ecosystems, particularly for marine sediment, and particulate emissions should therefore be included in a (life cycle) impact assessment of offshore oil and gas production. Copyright © 2011 SETAC.
Particulate measurement and control devices for hot mix asphalt plants.
DOT National Transportation Integrated Search
1973-01-01
The emission of particulates is the main form of air pollution from hot mix asphalt plants. The measurement of these emissions in the ambient air may be used by the state and the plant personnel to monitor the quality of air in the area of a plant. S...
The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...
CHARACTERIZATION OF PARTICULATE EMISSIONS FROM CONTROLLED CONSTRUCTION ACTIVITIES: MUD/DIRT CARRYOUT
The report describes a field study of PM-2.5 and PM-10 (particulate matter with aerodynamic diameter less than 2.5 and 10 micrometers, respectively) emissions from a public paved road in Overland Park, Kansas, adjacent to a 200-acre construction site which will ultimately have 4 ...
USDA-ARS?s Scientific Manuscript database
Poultry-emitted air pollutants, including particulate matter (PM) and ammonia, have raised concerns due to negative effects on human health and the environment. However, developing and optimizing remediation technologies requires a better understanding of air pollutant concentrations, the emission p...
Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei
2015-01-01
To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.
Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée
2017-11-01
Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Olave, R. J.; Forbes, E. G. A.; Johnston, C. R.; Relf, J.
2017-05-01
Woodchip is widely used as fuel in dedicated biomass and, even in some conventional energy generation plants. However, there are concerns about atmospheric air pollution from flue gases emitted during wood biomass combustion, particularly oxides of nitrogen (NOx) and particulates <10 μm diameter (PM10). In the United Kingdom (UK) a small scale biomass heat generation support scheme, the Renewable Heat Incentive (RHI), has been introduced. Qualifying criteria for this scheme have included limits for flue gas emissions of NOX and PM10 of 150 and 30 g per gigajoule (g/GJ) of energy input, respectively. In an experiment, three locally available types of Willow (Salix spp) and one of Sitka spruce (Picea sitchensis) woodchips, showed significant differences in physical and chemical constituents, gaseous and particulate emissions. During combustion in a 120 kW biomass system, air flows, flue gas temperatures and energy output correlated with gaseous emissions, NOx with raw fuel ash, nitrogen, phosphorus and potassium content, as did all flue gas particulate fractions. PM10 ranged from 30.3 to 105.7 g/GJ and NOx from 91.2 to 174.3 g/GJ. Sitka spruce produced significantly lower emissions of PM10 and NOx (27.5 and 52.6% less, respectively) than the three willow fuels, from which emissions were above the RHI emissions limits.
Cheung, C S; Zhu, Ruijun; Huang, Zuohua
2011-01-01
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. Copyright © 2010 Elsevier B.V. All rights reserved.
Kasurinen, Stefanie; Jalava, Pasi I; Happo, Mikko S; Sippula, Olli; Uski, Oskari; Koponen, Hanna; Orasche, Jürgen; Zimmermann, Ralf; Jokiniemi, Jorma; Hirvonen, Maija-Riitta
2017-05-01
According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets. We determined the chemical composition (elements, ions, and carbonaceous compounds) of the particulate emissions with a diameter of less than 1 µm and tested their cytotoxicity, genotoxicity, inflammatory potential, and ability to induce oxidative stress in a human lung epithelial cell line. The chemical composition of the samples differed significantly, especially with regard to the carbonaceous and metal contents. Also the toxic effects in our tested endpoints varied considerably between each of the three log wood combustion samples, as well as between the log wood combustion samples and the pellet combustion sample. The difference in the toxicological potential of the samples in the various endpoints indicates the involvement of different pathways of toxicity depending on the chemical composition. All three emission samples from the log wood combustions were considerably more toxic in all endpoints than the emissions from the pellet combustion. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1487-1499, 2017. © 2016 Wiley Periodicals, Inc.
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city
NASA Astrophysics Data System (ADS)
Xie, Yongdong; Xu, Guangju
2017-09-01
In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.
Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-03-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
NASA Astrophysics Data System (ADS)
Butler, T.; Vermeylen, F.; Lehmann, C. M.; Likens, G. E.; Puchalski, M.
2016-12-01
Data from bi-weekly passive samplers from 18 of the longest operating National Atmospheric Deposition Program's (NADP) Ammonia Monitoring Network (AMoN) sites (most operating from 2008 to 2015) show that concentrations of NH3 have been increasing (p-value < 0.0001) over large regions of the USA. This trend is occurring at a seasonal and annual level of aggregation. Using random coefficient models (RCM), the mean slope for the 18 sites combined shows an increase of NH3 concentration of +7% per year, with a 95% confidence interval (C.I.) from +5% to +9% per year. Travel blank corrected data using the same approach show increasing NH3 concentrations of +9% (95% C.I. +5% to +13%) per year. During a comparable period (2008-2014) NADP precipitation chemistry sites in the same regions show significant increasing (p-value = 0.0001) precipitation NH4+ concentrations trends for all sites combined of +5% (95% C.I. +3% to +7%) per year. Emissions inventory data for the study period show nearly constant rates of NH3 emissions, but large reductions in NOx and SO2 emissions. Seasonal air quality data from the Clean Air Status and Trends Network (CASTNET) sites in these regions show significant declines in atmospheric particulate SO42- and NH4+, and particulate NO3- plus HNO3 (total NO3-) during the same period. Less formation of acidic SO4 and NO3, due to reduced SO2 and NOx emissions, provide less substrate to interact with NH3 and form particulate ammonium species. Thus, concentrations of NH3 can increase in the atmosphere even if emissions remain constant. A likely result may be more localized deposition of NH3, as opposed to the more long-range transport and deposition of ammonium nitrate (NH4NO3) and sulfate (NH4)2SO4). Additionally, the spatial distribution of wet and dry acidic deposition will be impacted.
40 CFR 60.292 - Standards for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...
40 CFR 60.292 - Standards for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...
40 CFR 60.382 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.382 - Standard for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...
40 CFR 60.292 - Standards for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.382 - Standard for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.292 - Standards for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...
40 CFR 60.292 - Standards for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...
40 CFR 60.302 - Standard for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...
40 CFR 60.382 - Standard for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-02-18
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-01-01
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700
75 FR 42132 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...
75 FR 42131 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...
Steve Sutherland
2004-01-01
FOFEM 5.2 is a simple, yet versatile computer program that predicts first order fire effects using text and graphic outputs. It can be used in a variety of situations including: determining acceptable upper and lower fuel moistures for conducting prescribed burns, determining the number of acres that may be burned on a given day without exceeding particulate emission...
Feedbacks between Climate and Fire Emissions
2011-11-29
CH4 2. Direct emission of short-lived climate forcers - Black Carbon - Particulate organic matter 3. Production of tropospheric ozone and secondary... tropospheric ozone and secondary organic particulate matter 4. Changes in land surface properties - Black carbon on snow - Albedo Radiative Forcing of Black...lived climate forcers: particles 3. Ozone production 4. Change in surface properties Fires Impacts on the Climate System 1. Emission of long lived
Mobile Gas and Particulate Emission Studies of the New York City Transit Bus Fleet
NASA Astrophysics Data System (ADS)
Jayne, J. T.; Canagaratna, M.; Herndon, S.; Shorter, J.; Zahniser, M.; Shi, Q.; Kolb, C.; Worsnop, D.; Jimenez, J.; Drewnick, F.; Demerjian, K.; Lanni, T.
2001-12-01
Emissions from both diesel and gasoline powered motor vehicles are a significant source of particulate (PM2.5) and trace gas pollution, especially in urban environments. Emission characterizations of motor vehicles can be performed using a dynamometer but these studies make fleet characterization impractical. Few studies have been performed which characterize emissions from in-use vehicles using a mobile sampling platform. This work describes application of new technology instrumentation for rapid (1-5 second) and real-time characterization of both gas and particulate emissions from in-use vehicles and is part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY). An aerosol mass spectrometer (AMS) and a tunable infrared laser differential absorption spectrometer (TILDAS) system were deployed on the Aerodyne Research mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides particle size and composition information for volatile and semi-volatile matter while the TILDAS system was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde. In addition to a GPS, an ELPI and a condensation particle counter, the mobile laboratory was also equipped with a CO2 monitor to allow emission ratios to be computed for the targeted vehicles. Emission ratios for both particulate and trace gases are reported for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet in an effort to characterize new emission control technologies currently implemented by the NYC MTA.
NASA Astrophysics Data System (ADS)
Karjalainen, Panu; Timonen, Hilkka; Saukko, Erkka; Kuuluvainen, Heino; Saarikoski, Sanna; Aakko-Saksa, Päivi; Murtonen, Timo; Bloss, Matthew; Dal Maso, Miikka; Simonen, Pauli; Ahlberg, Erik; Svenningsson, Birgitta; Brune, William Henry; Hillamo, Risto; Keskinen, Jorma; Rönkkö, Topi
2016-07-01
Changes in vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic-related emissions, both primary (direct) particulate emission and secondary particle formation (from gaseous precursors in the exhaust emissions) need to be characterized. In this study, we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a Euro 5 level gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the tailpipe to the atmosphere, and also takes into account differences in driving patterns. We observed that, in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence.
Assessment of Small-Particle Emissions (Less Than 2 Micron).
ERIC Educational Resources Information Center
Shannon, Larry J.; And Others
This paper is based on a particulate pollutant system study to delineate the deficiencies in knowledge regarding the nature and magnitude of particulate pollutant emissions from stationary sources. Presented at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, it focuses…
USDA-ARS?s Scientific Manuscript database
Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
EPA Method 101A applies to the determination of particulate and gaseous mercury missions from sewage sludge incinerators and other sources. oncern has been expressed hat ammonia or hydrogen chloride (HCl) when present in the emissions, interferes in the analytical processes and p...
40 CFR 86.137-96 - Dynamometer test run, gaseous and particulate emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Dynamometer test run, gaseous and particulate emissions. 86.137-96 Section 86.137-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.137-96 Dynamometer test run, gaseous...
40 CFR 86.137-96 - Dynamometer test run, gaseous and particulate emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Dynamometer test run, gaseous and particulate emissions. 86.137-96 Section 86.137-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.137-96 Dynamometer test run, gaseous...
USDA-ARS?s Scientific Manuscript database
Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in California, USA in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and OPCs characterized aerodynamic an...
Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attig, R.C.; Crawford, L.W.; Lynch, T.P.
Proof-of-Concept (POC) scale demonstration of such technology is currently being carried out at the US Department of Energy's (DOE's) Coal-Fired Flow Facility (CFFF), located at The University of Tennessee Space Institute (UTSI) in Tullahoma, Tennessee and at the Component Development and Integration Facility in Butte, Montana. The CFFF is dedicated to the evaluation of downstream (steam cycle) components and technology that may be considered for a full-scale MHD system. The objectives of the CFFF testing include the demonstration of various pollution control devices and techniques at a scale sufficient for future scale-up. The CFFF offers a unique test environment inmore » which emissions control techniques can be developed and evaluated through emissions and environmental monitoring. Results thus far have demonstrated the ability of sulfur oxide (SO{sub x}), nitrogen oxide (NO{sub x}) and particulate emissions well below the New Source Performance Standards (NSPS). Regeneration of the potassium sulfate to produce sulfur-free compounds also has been demonstrated. The experimental program at the CFFF is now aimed at determining the optimum conditions for future commercial scale designs. Because of increased interests in Air Toxics, measurements of nitrous oxide (N{sub 2}O), a potential greenhouse gas, priority pollutants (inorganic as well as organics), and chlorine-containing species (Cl{sub 2} and HCl) are also included in our ongoing efforts. Environmental monitoring activities are being pursued to develop an environmental impact assessment data base. These include the use of three ambient air sites to determine the impacts of gaseous and particulate emissions, five lake water sites to determine impacts due to process water discharges and seven sites to collect terrestrial data on possible soil contamination and tree growth. In this paper, we will summarize the status of our ongoing environmental program. 16 refs., 15 figs., 3 tabs.« less
Effects of Retrofitting Emission Control Systems on all In-Use Heavy Diesel Trucks
NASA Astrophysics Data System (ADS)
Millstein, D.; Harley, R. A.
2009-12-01
Diesel exhaust is now the largest source of nitrogen oxide (NOx) emissions nationally in the US, and contributes significantly to emissions of fine particulate black carbon (soot) as well. New national standards call for dramatically lower emissions of exhaust particulate matter (PM) and NOx from new diesel engines starting in 2007 and 2010, respectively. Unfortunately it will take decades for the cleaner new engines to replace those currently in service on existing heavy-duty trucks. The state of California recently adopted a rule to accelerate fleet turnover in the heavy-duty truck sector, requiring that all in-use trucks meet the new exhaust PM standards by 2014. This will entail retrofit of diesel particle filters or replacement for over a million existing diesel engines. Diesel particle filters can replace the muffler on existing trucks, and there is extensive experience with retrofit of this control equipment on public sector fleets such as diesel-powered transit buses. Nitrogen dioxide (NO2) is used as an oxidizing agent to remove carbon particles from the particle filter, to prevent it from becoming plugged. To create the needed NO2, NOx already present in engine exhaust as nitric oxide (NO) is deliberately oxidized to NO2 upstream of the particle filter using a platinum catalyst. The NO2/NOx ratio in exhaust emissions therefore increases to ~35% in comparison to much lower values (~5%) typical of older engines without particle filters. We evaluate the effects on air quality of increased use of diesel particle traps and NOx controls in southern California using the Community Multiscale Air Quality (CMAQ) model. Compared to a reference scenario without the retrofit program, we found black carbon concentrations decreased by ~20%, with small increases (4%) in ambient ozone concentrations. During summer, average NO2 concentrations decrease despite the increase in primary NO2 emissions - because total NOx emissions are reduced as part of a parallel but more gradual program to retrofit NOx control systems on in-use engines. During winter, NO2 concentrations increase by 1-2% at locations with high diesel truck traffic, and larger increases may occur if diesel trucks outfitted with particle traps do not meet the in-use NOx emission reduction requirements. Small changes to fine particulate nitrate are seen as well with increases over the Los Angeles area of 3 and 6% during the summer and fall, respectively. During the summer, but not the fall, downwind nitrate decreased by 2% east of Los Angeles near Riverside. Emissions reductions due to fleet turnover in the reference scenario (without retrofit) may be optimistic, and the air quality benefits of retrofits could therefore be understated, due to slow sales of new engines in recent years. In any case, significant changes in diesel engine emissions of NOx and PM are expected to occur over the next 5 years in California.
Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos
2008-08-15
The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher concentrations in the residue solid ash of PVC as compared to those from the other types of plastic. The open-air burning of plastic material and their toxic emissions is of growing concern in areas of municipal solid waste where open-fires occur intentionally or accidentally. Another problem is building fires in which victims may suffer severe smoke inhalation from burning plastic materials in homes and in working places.
Particulates generated from combustion of polymers (plastics).
Shemwell, B E; Levendis, Y A
2000-01-01
This is an experimental study on the characterization of particulate (soot) emissions from burning polymers. Emissions of polystyrene (PS), polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), and polyvinyl chloride (PVC) plastics were studied. Combustion took place in a laboratory-scale, electrically heated, drop-tube furnace at temperatures of 1300 and 1500 K, in air. The nominal bulk (global) equivalence ratio, phi, was varied in the range of 0.5-1.5, and the gas residence time in the nearly isothermal radiation zone of the furnace was approximately 1 sec. The particulate emissions were size-classified at the exit of the furnace, using a multi-stage inertial particle impactor. Results showed that both the yields and the size distributions of the emitted soot were remarkably different for the five plastics burned. Soot yields increased with an increasing bulk equivalence ratio. Combustion of PS yielded the highest amounts of soot (most highly agglomerated), several times more than the rest of the polymers. More soot was emitted from PS at 1500 than at 1300 K. Substantial amounts of soot agglomerates were larger than 9 microns. At 1500 and 1300 K, 35 and 29% of the soot mass, respectively, was PM2 (2 microns or smaller). Emissions from PE and PP were remarkably similar to each other. These polymers produced very low emissions at phi < or = 0.5, but emissions increased drastically with phi, and most of the soot was very fine (70-97% of the mass was PM2, depending on phi). Emissions from the combustion of PMMA were comparatively low and were the least influenced by the bulk phi, and 79-95% of the emissions were PM2. Combustion of PVC yielded the lowest amounts of soot; moreover, only 13-34% of the mass was PM2. On a comparative basis, at 1500 K, the following ranges of particulate yields were PM2: 19-75 mg/g of PS, 8-36 mg/g of PE, 1.5-47 mg/g of PP, 11-20 mg/g of PMMA, and 2-8 mg/g of PVC, depending on phi. These comparative results demonstrate that PS produces the highest amounts of fine particulates, followed by PP, PE, and PMMA, and then PVC. Burning these materials with excess oxygen drastically reduces the particulate emissions of PE and PP, substantially reduces those of PS, and mildly reduces those of PMMA and PVC.
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...) for determination.) (2) Mp2 = Mass of particulate determined from the “stabilized” phase of the cold...
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...) for determination.) (2) Mp2 = Mass of particulate determined from the “stabilized” phase of the cold...
Clean-burning diesel engines. Interim report, June-December 1985 on Phase 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietzmann, H.E.; Smith, L.R.
Gaseous and particulate emissions were measured from diesel forklift engines under a variety of steady-state conditions. An EPA certification fuel was used to determine CO, CO/sub 2/, NOx, HC, particulate, aldehydes, smoke and SO/sub 2/ emission rates from Isuzu C-240, Peugeot XD3P, and Teledyne TMD-20 diesel engines. Emission rates were reported in b/hp-hr, g/hr, and observed concentration, i.e., ppm, percent, or mg/cu. m.
Dispersion Modeling of Inert Particulate Matter in the El Paso, TX- Cd. Juarez, MX Region
NASA Astrophysics Data System (ADS)
Pearson, R.; Fitzgerald, R.
2005-05-01
The El Paso, TX-Cd. Juarez, MX region is subject to the emission of inert particulate matter (PM) into the atmosphere, from a variety of sources. The impact of these emissions has been studied extensively in for regulatory compliance in the area of health effects, air quality and visibility. Little work has been done to study the fate and transport of the particulate matter within the region. The Environmental Physics Group at The University of Texas at El Paso has recently applied the SARMAP Air Quality Model (SAQM) to model the dispersion of inert particulate matter in the region. The meteorological data for the SAQM was created with the Penn State/NCAR meteorological modeling system, version 5 (MM5). The SAQM was used to simulate three common occurrences for large particulate emission and concentration. The first was times of heavy traffic volume at the international bridges which cause large numbers of cars to sit, with engines running, for extended periods of time. The second was moderate to high wind events that cause large amounts of coarse particulate matter to become entrained in the atmosphere and transported into and around the region. The third is a temperature inversion which traps the particulate matter at the surface during morning rush hour. The initial conditions for particulate matter, for the two cases involving mobile emissions, were derived from the 1999 version 3 national emissions inventory (NEI) mobile, on-road data from the EPA. Output from the MM5 was used to as the meteorological driver for the SAQM. The MM5 was initialized with data from the NCAR reanalysis project. Meteorological data collected in the region bye the Texas Commission on Environmental Quality (TCEQ) and the EPA was used for Four Dimensional Data Assimilation. The MM5 was nudged with gridded, surface and observational data. Statistical analysis was done on the MM5 for the variables, wind speed, wind direction, temperature and mixing ratio. The statistics performed included RMSE, RMSEs, RMSEu and index of agreement. MM5 output with low RMSE and high index of agreement was used to drive the SAQM. The MM5 grid domains were 39x39 at 36km, 47x47 at 12km, 55x55 at 4 km and 40x40 at 1.3km. The SAQM was applied on to the 1.3km domain. For the case of emission at the international bridges, the bridges' latitude and longitude were translated to grid cell locations. The NEI data derived for those locations were set as emission rates for those cells. The SAQM was run for a 24hr period starting at twelve pm local time with the emissions ending after morning rush hour. The same conditions were done for the inversion time period with the addition of emissions for major roadways and arterial feeders. No data is available for concentrations of entrained particulate matter during wind events. Thus, the entrainment episodes were simulated with varying initial concentrations along the boundary of the domain. The emission rates were varied for each simulation to give both a very intense episode, and a moderate episode lasting for 12 hrs with the SAQM simulation ending after 24 hrs. Analysis for all the simulations was done to show the spatial and temporal evolution of the PM. Temporal comparisons were done between EPA PM2.5 to show identify similarities in the evolution of the SAQM with observation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Particulate Matter Stack Emission Compliance Test Procedure for Fuel Burning Units.
ERIC Educational Resources Information Center
West Virginia Air Pollution Control Commission, Charleston.
This publication details the particulate matter emissions test procedure that is applicable for conducting compliance tests for fuel burning units required to be tested under Sub-section 7 of Regulation II (1972) as established by the state of West Virginia Air Pollution Control Commission. The testing procedure is divided into five parts:…
Consumption-based Total Suspended Particulate Matter Emissions in Jing-Jin-Ji Area of China
NASA Astrophysics Data System (ADS)
Yang, S.; Chen, S.; Chen, B.
2014-12-01
The highly-industrialized regions in China have been facing a serious problem of haze mainly consisted of total suspended particulate matter (TSPM), which has attracted great attention from the public since it directly impairs human health and clinically increases the risks of various respiratory and pulmonary diseases. In this paper, we set up a multi-regional input-output (MRIO) model to analyze the transferring routes of TSPM emissions between regions through trades. TSPM emission from particulate source regions and sectors are identified by analyzing the embodied TSPM flows through monetary flow and carbon footprint. The track of TSPM from origin to end via consumption activities are also revealed by tracing the product supply chain associated with the TSPM emissions. Beijing-Tianjin-Hebei (Jing-Jin-Ji) as the most industrialized area of China is selected for a case study. The result shows that over 70% of TSPM emissions associated with goods consumed in Beijing and Tianjin occurred outside of their own administrative boundaries, implying that Beijing and Tianjin are net embodied TSPM importers. Meanwhile, 63% of the total TSPM emissions in Hebei Province are resulted from the outside demand, indicating Hebei is a net exporter. In addition, nearly half of TSPM emissions are the by-products related to electricity and heating supply and non-metal mineral products in Jing-Jin-Ji Area. Based on the model results, we provided new insights into establishing systemic strategies and identifying mitigation priorities to stem TSPM emissions in China. Keywords: total suspended particulate matter (TSPM); urban ecosystem modeling; multi-regional input-output (MRIO); China
The effect of fuel processes on heavy duty automotive diesel engine emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, E.G.
1995-12-31
The effect of fuel quality on exhaust emissions from 2 heavy duty diesel engines has been measured over the ECE R49 test cycle. The engines were selected to represent technologies used to meet Euro 1 and 2 emission standards (1992/93 and 1995/96); engines 1 and 2 respectively. The test fuels were prepared by a combination of processing, blending and additive treatment. When comparing the emissions from engines 1 and 2, using base line data generated on the CEC reference fuel RF73-T-90, engine technology had the major effect on emission levels. Engine 2 reduced both particulate matter (PM) and carbon monoxidemore » levels by approximately 50%, with total hydrocarbon (THC) being approximately 75% lower. Oxides of nitrogen levels were similar for both engines. The variations in test fuel quality had marginal effects on emissions, with the two engines giving directionally opposite responses in some cases. For instance, there was an effect on CO and NOx but where one engine showed a reduction the other gave an increase. There were no significant changes in THC emissions from either engine when operating on any of the test fuels. When the reference fuel was hydrotreated, engine 1 showed a trend towards reduced particulate and NOx but with CO increasing. Engine 2 also showed a trend for reduced particulate levels, with an increase in NOx and no change in CO. Processing to reduce the final boiling point of the reference fuel showed a trend towards reduced particulate emissions with CO increasing on engine 1 but decreasing on engine 2.« less
Gaseous and particulate emissions from prescribed burning in Georgia.
Lee, Sangil; Baumann, Karsten; Schauer, James J; Sheesley, Rebecca J; Naeher, Luke P; Meinardi, Simone; Blake, Donald R; Edgerton, Eric S; Russell, Armistead G; Clements, Mark
2005-12-01
Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.
Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine
NASA Technical Reports Server (NTRS)
Heisey, J. B.; Lestz, S. S.
1981-01-01
A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-08-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
NASA Astrophysics Data System (ADS)
Cook, S. L.; Richards, P. J.
The motivations for legislation to set diesel emissions limits requiring the use of diesel particulate filters (DPF) are summarised. If the DPF is to be used, demonstration of regeneration (combustion of collected carbonaceous material) without additional emission problems is important. Potential metal emissions resulting from use of a synergistic Fe/Sr fuel-borne DPF regeneration catalyst are evaluated. Measurements over legislated drive cycle estimate the metals to comprise 1-2% of the solid material emitted, and the DPF to collect >99% of such material. Diesel particulate matter is used as a marker, and from existing air quality and emission inventory measurements, maximum conceivable increases of <1 ng m -3 and <250 pg m -3 for iron and strontium, respectively, are calculated. From environmental assessment levels, derived from occupational exposure limits, these are not significant. For humans, daily ingress of airborne Sr is estimated at 3.5 ng. This is small compared to the known Sr contents of lungs, blood and the daily diet. In the context of reductions of other metals, particulate matter and pollutant emissions, the overall assessment is that the use of these metals to enable use of a DPF allows significant net environmental benefit to be obtained.
Volatile and semivolatile organic compounds in laboratory ...
Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p
Emission and atmospheric transport of particulate PAHs in Northeast Asia.
Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime
2012-05-01
The emission, concentration levels, and transboundary transport of particulate polycyclic aromatic hydrocarbons (PAHs) in Northeast Asia were investigated using particulate PAH measurements, the newly developed emission inventory (Regional Emission inventory in ASia for Persistent Organic Pollutants version, REAS-POP), and the chemical transport model (Regional Air Quality Model ver2 for POPs version, RAQM2-POP). The simulated concentrations of the nine particulate PAHs agreed well with the measured concentrations, and the results firmly established the efficacy of REAS/RAQM2-POP. It was found that the PAH concentrations in Beijing (China, source region), which were emitted predominantly from domestic coal, domestic biofuel, and other transformations of coal (including coke production), were approximately 2 orders of magnitude greater than those monitored at Noto (Japan, leeward region). In Noto, the PAH concentrations showed seasonal variations; the PAH concentrations were high from winter to spring due to contributions from domestic coal, domestic biofuel, and other transformations of coal, and low in summer. In summer, these contribution were decrease, instead, other sources, such as the on-road mobile source, were relatively increased compared with those in winter. These seasonal variations were due to seasonal variations in emissions from China, as well as transboundary transport across the Asian continent associated with meteorological conditions. © 2012 American Chemical Society
Brassard, Patrick; Palacios, Joahnn H; Godbout, Stéphane; Bussières, Denis; Lagacé, Robert; Larouche, Jean-Pierre; Pelletier, Frédéric
2014-03-01
The aim of this study was to compare gaseous and particulate matter (PM) emissions from the combustion of agricultural (switchgrass, fast-growing willow and the dried solid fraction of pig manure) and forest (wood mixture of Black Spruce and Jack Pine) biomasses in a small-scale unit (17.58kW). Concentrations of CO2, CO, CH4, NO2, NH3, N2O, SO2, HCl, and H2O were measured by Fourier transform infrared spectroscopy and converted into emission rates. Opacity was also evaluated and particulates were sampled. Results showed significantly higher emissions of SO2, NO2 and PM with the combustion of agricultural biomass compared to the forest biomass. However, further studies should be carried out so regulations can be adapted in order to permit the combustion of agricultural biomass in small-scale combustion units. Copyright © 2013 Elsevier Ltd. All rights reserved.
A preliminary test method for masonry heater particulate matter and carbon monoxide emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, C.H.; Jaasma, D.R.; Shelton, J.W.
1991-08-01
A test method for determining carbon monoxide (CO) and particulate matter (PM) emissions from masonry heaters is described and results of tests on two masonry heaters are presented. The method specifies fueling protocol and laboratory measurement procedures for determination of both emission factors (g/kg) and rates (g/hr). The fuel load size and fueling intervals are dependent upon the firebox volume of the masonry heater. The test method starts with a room temperature masonry heater and involves five firings to achieve burn rates in two ranges, where the burn rate is defined as the dry mass of the fuel load dividedmore » by the time between loadings. Emission samples are extracted from a dilution tunnel with a set flow rate and configuration. Particulate matter sampling is similar to US EPA Method 5G for woodstoves, and Co concentration is measured by a nondispersive infrared (NDIR) gas analyzer. The emissions results for each firing are weighted according to EPA Method 28 to obtain the overall emission totals for the test.« less
Mobile Particulate Emission Measurements of New York City Transit Buses and Other in use Vehicles
NASA Astrophysics Data System (ADS)
Jayne, J. T.; Canagaratna, M.; Herndon, S.; Shorter, J.; Zahniser, M.; Kolb, C.; Williams, L.; Worsnop, D.; Drewnick, F.; Demerjian, K. L.; Lanni, T.
2002-12-01
Emissions from both diesel and gasoline powered motor vehicles are a significant source of particulate (PM2.5) and trace gas pollution, especially in urban environments. Emission characterizations of motor vehicles can be performed using a dynamometer but these studies make fleet characterization impractical. Few studies have been performed which characterize emissions from in-use vehicles using a mobile sampling platform. This work describes application of new technology instrumentation for rapid (1-5 second) and real-time characterization of both gas and particulate emissions from in-use vehicles and is part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY). An aerosol mass spectrometer (AMS) and a tunable infrared laser differential absorption spectrometer (TILDAS) system were deployed on the Aerodyne Research mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides particle size and composition information for volatile and semi-volatile matter (0.03 - 1 um) while the TILDAS system was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde. In addition to a global positioning system, an ELPI and a condensation particle counter, the mobile laboratory was also equipped with a Licor CO2 monitor to allow emission indices to be computed for the targeted vehicles. Emission indices for both particulate and trace gases correlated with engine type are reported for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet in an effort to characterize new emission control technologies currently implemented by the NYC MTA.
Dallmann, Timothy R; Harley, Robert A; Kirchstetter, Thomas W
2011-12-15
Heavy-duty diesel drayage trucks have a disproportionate impact on the air quality of communities surrounding major freight-handling facilities. In an attempt to mitigate this impact, the state of California has mandated new emission control requirements for drayage trucks accessing ports and rail yards in the state beginning in 2010. This control rule prompted an accelerated diesel particle filter (DPF) retrofit and truck replacement program at the Port of Oakland. The impact of this program was evaluated by measuring emission factor distributions for diesel trucks operating at the Port of Oakland prior to and following the implementation of the emission control rule. Emission factors for black carbon (BC) and oxides of nitrogen (NO(x)) were quantified in terms of grams of pollutant emitted per kilogram of fuel burned using a carbon balance method. Concentrations of these species along with carbon dioxide were measured in the exhaust plumes of individual diesel trucks as they drove by en route to the Port. A comparison of emissions measured before and after the implementation of the truck retrofit/replacement rule shows a 54 ± 11% reduction in the fleet-average BC emission factor, accompanied by a shift to a more highly skewed emission factor distribution. Although only particulate matter mass reductions were required in the first year of the program, a significant reduction in the fleet-average NO(x) emission factor (41 ± 5%) was observed, most likely due to the replacement of older trucks with new ones.
New Approaches for Estimating Motor Vehicle Emissions in Megacities
NASA Astrophysics Data System (ADS)
Marr, L. C.; Thornhill, D. A.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Kolb, C. E.; Knighton, W. B.; Mazzoleni, C.; Zavala, M. A.; Molina, L. T.
2007-12-01
The rapid proliferation of megacities and their air quality problems is producing unprecedented air pollution health risks and management challenges. Quantifying motor vehicle emissions in the developing world's megacities, where vehicle ownership is skyrocketing, is critical for evaluating the cities' impacts on the atmosphere at urban, regional, and global scales. The main goal of this research is to quantify gasoline- and diesel-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA). We apply positive matrix factorization to fast measurements of gaseous and particulate pollutants made by the Aerodyne Mobile Laboratory as it drove throughout the MCMA in 2006. We consider carbon dioxide; carbon monoxide; volatile organic compounds including benzene and formaldehyde; nitrogen oxides; ammonia; fine particulate matter; particulate polycyclic aromatic hydrocarbons; and black carbon. Analysis of the video record confirms the apportionment of emissions to different engine types. From the derived source profiles, we calculate fuel-based fleet-average emission factors and then estimate the total motor vehicle emission inventory. The advantages of this method are that it can capture a representative sample of vehicles in a variety of on-road driving conditions and can separate emissions from gasoline versus diesel engines. The results of this research can be used to help assess the accuracy of emission inventories and to guide the development of strategies for reducing vehicle emissions.
NASA Technical Reports Server (NTRS)
Bulzan, Dan
2001-01-01
Glenn Research Center has extensive instrumentation developed for measuring particulate and gaseous emissions. The Particulate and Gaseous Emissions Measurement System (PAGEMS) is a mobile facility housing advanced instrumentation used for measuring combustion particulates and gaseous species. Particulates sizes ranging from 10 nm to 10 mm can be measured along with SO2, NO, NO2, CO, CO2, THC and O2 . Measurements can be made from subatmospheric up to 60 atm. Representative data from two engine tests will be discussed. In one test, the fuel sulfur content was changed, while the other test (T-63 engine) used various fuel additives. Probe design is essential to acquiring accurate particulate data. I will discuss the AEDC designed particulate probe, and the results of a University of Minnesota calibration study using the probe. Another suite of instrumentation, a tunable diode laser (TDL), enables in-situ real time gaseous species measurements. Representative TDL data from a T-38 aircraft will be presented. In conclusion, near term measurement opportunities will be discussed.
Yang, Jiacheng; Roth, Patrick; Durbin, Thomas D; Johnson, Kent C; Cocker, David R; Asa-Awuku, Akua; Brezny, Rasto; Geller, Michael; Karavalakis, Georgios
2018-03-06
We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO 2 ) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.
Barone, Teresa L; Storey, John M E; Domingo, Norberto
2010-08-01
A field-aged, passive diesel particulate filter (DPF) used in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during, and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. A condensation particle counter and scanning mobility particle sizer measured total number concentration and number-size distributions, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However, after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 +/- 1 mg/hp-hr before regeneration to 3 +/- 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameters less than 50 nm may have been emitted after regeneration because these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after 4 yr of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 sec of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty Federal Test Procedure (FTP) when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.
40 CFR 52.1783 - Original identification of plan section.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Particulates from Hot Mix Asphalt Plants 2D.0507—Particulates from Chemical Fertilizer Manufacturing Plants 2D.0508—Control of Particulates from Pulp and Paper Mills 2D.0509—Particulates from Mica or... Emissions from Bulk Gasoline Terminals 2D.0918—Can Coating 2D.0919—Coil Coating 2D.0920—Paper Coating 2D...
40 CFR 52.1783 - Original identification of plan section.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Particulates from Hot Mix Asphalt Plants 2D.0507—Particulates from Chemical Fertilizer Manufacturing Plants 2D.0508—Control of Particulates from Pulp and Paper Mills 2D.0509—Particulates from Mica or... Emissions from Bulk Gasoline Terminals 2D.0918—Can Coating 2D.0919—Coil Coating 2D.0920—Paper Coating 2D...
40 CFR 52.1783 - Original identification of plan section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of Particulates from Hot Mix Asphalt Plants 2D.0507—Particulates from Chemical Fertilizer Manufacturing Plants 2D.0508—Control of Particulates from Pulp and Paper Mills 2D.0509—Particulates from Mica or... Emissions from Bulk Gasoline Terminals 2D.0918—Can Coating 2D.0919—Coil Coating 2D.0920—Paper Coating 2D...
NASA Astrophysics Data System (ADS)
Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg
2017-08-01
The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected near the oil sands operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong, Hee Je; Choi, Seungmok
2015-10-09
This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWCmore » functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.« less
NASA Astrophysics Data System (ADS)
Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.
2018-04-01
The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs. the BAU scenario while corresponding primary PM0.1 emissions decrease by 36 %. Ultrafine particles (PM0.1) are an emerging pollutant of concern expected to impact public health in future scenarios. The complexity of this situation illustrates the need for realistic treatment of criteria pollutant emissions inventories linked to GHG emissions policies designed for fully developed countries and states with strict existing environmental regulations.
NASA Astrophysics Data System (ADS)
Sulovcová, Katarína; Jandačka, Jozef; Nosek, Radovan
2014-08-01
Concentration of solid particles in ambient atmosphere is increasing in many countries nowadays. Particulate matter pollution in higher concentration has harmful impact on human and animal health. Source of particulate matter are not only industry and traffic. Small heat sources with biomass combustion, especially during winter heating season, are also significant producer of particulate matter emission. There is a huge importance to decrease quantities of solid particles which are getting into the atmosphere in every region of their production in order to decrease environmental pollution and improve air quality. The ability of flue gas emission elimination can influence future using of biomass combustion. Therefore effective and affordable solutions are searching for. The paper deals with the reduction of particulate matter in small heat source with biomass combustion by modification of geometric parameters in flue gas path.
An experimental study was conducted to determine the reliability of the Method 5 procedure for providing particulate emission data from an oil-fired steam generator. The study was concerned with determining whether any 'false' particulate resulted from the collection process of f...
The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...
ERIC Educational Resources Information Center
Hindy, Kamal T.; And Others
1992-01-01
An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…
DOT National Transportation Integrated Search
2008-12-01
The findings in this report are that there is not an one-to-one correspondence between emissions and costs. The reason for this is that the cost is based on health impacts which in turn are related to population exposure. Combustion particulate matte...
David R. Weise; Darold E. Ward
1991-01-01
Abstract. Prescribed fire is a tool used to manage vegetation in southern California. The nature and quantity of gaseous and particulate emissions have not been described for California chaparral. A study examining carbon monoxide (CO), carbon dioxide (CO2), and particulate matter emissions from fuel beds constructed from common chaparral shrubs was initiated. Chamise...
EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER (EPM) ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. L.B. Wichers1, J.P. Nolan2, W.H. Rowan2, M.J. Campen3, T.P. Jenkins4, D.L. Costa2, and W.P. Watkinson2. 1UNC SPH, Chap...
COMPARISON OF PULMONARY RESPONSES TO AUTOMOBILE-GENERATED AND NIST STANDARD REFERENCE MATERIAL DIESEL PARTICULATE EMISSIONS IN MICE. P. Singh1, C.A.J. Dick2, J. Richards3, M.J. Daniels3, and M.I. Gilmour3. 1NCSU, Raleigh, NC, 2UNC, Chapel Hill, NC and 3 USEPA, ORD, NHEERL, (ETD,...
Influence of maladjustment on emissions from two heavy-duty diesel bus engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullman, T.L.; Hare, C.T.; Baines, T.M.
1984-01-01
Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NO/sup x/ emission levels, butmore » higher CO emissions, smoke, and particulate.« less
Particulate Matter (PM) Pollution
Particulate matter (PM) is one of the air pollutants regulated by the National Ambient Air Quality Standards (NAAQS). Reducing emissions of inhalable particles improves public health as well as visibility.
Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua
2018-04-13
Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger sample of in-use HD vehicles. Implications Regulatory agencies, civil society, and the public at large have a growing interest in vehicle emission compliance in the real world. Leveraging roadside plume measurements to identify vehicles with malfunctioning emission control systems is emerging as a viable new and useful method to assess in-use performance. This work proposes fuel-based emission factor thresholds for PM and NOx that signify exceedances of emission standards on a work-specific basis by analyzing real-time emissions in the laboratory. These thresholds could be used to pre-screen vehicles before roadside enforcement inspection or other inquiry, enhance and further develop emission inventories, and potentially develop new requirements for heavy-duty inspection and maintenance (I/M) programs, including but not limited to identifying vehicles for further testing.
NASA Astrophysics Data System (ADS)
Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.
2015-09-01
Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1986-02-01
The report describes results from field testing a watertube industrial boiler firing a coal/water slurry (CWS) containing about 60% coal. Emission measurements included continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue-gas, with subsequent analysis of samples to obtain total flue-gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 73 trace elements: EPA Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; and grab sampling of fuel and ash for inorganic composition. NOx, SO/sub 2/, CO, andmore » TUHC emissions were in the 230-310, 880-960, 170-200, and 1-3 ppm ranges (corrected to 3% 02), respectively, over the two tests performed. Particulate levels at the boiler outlet (upstream of the unit's baghouse) were 7.3 g/dscm in the comprehensive test. Coarse particulate (>3 micrometers) predominated. Total organic emissions were almost 50 mg/dscm, with about 70% of the organic matter in the nonvolatile (>300 C) boiling point range. The bottom ash organic content was 8 mg/g, 80% of which was in the nonvolatile range. Of the PAHs, only naphthalene was detected in the flue gas particulate, with emission levels of 8.6 micrograms/dscm. Several PAHs were found in the bottom ash.« less
40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...
40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...
40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...
40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...
40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more stringent vehicle emissions standards. The proposed vehicle standards would reduce both tailpipe and evaporative emissions from passenger cars, light-duty trucks, medium-duty passenger vehicles, and some heavy-duty vehicles. This would result in significant reductions in pollutants such as ozone, particulate matter, and air toxics across the country and help state and local agencies in their efforts to attain and maintain health-based National Ambient Air Quality Standards. Motor vehicles are an important source of exposure to air pollution both regionally and near roads. These proposed vehicle standards are intended to harmonize with California's Low Emission Vehicle program, thus creating a federal vehicle emissions program that would allow automakers to sell the same vehicles in all 50 states. The proposed vehicle standards would be implemented over the same timeframe as the greenhouse gas/fuel efficiency standards for light-duty vehicles, as part of a comprehensive approach toward regulating emissions from motor vehicles.
NASA Astrophysics Data System (ADS)
Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C.
2014-05-01
Traffic emissions are a significant source of airborne particulate matter (PM) in ambient environments. These emissions contain high abundance of toxic metals and thus pose adverse effects on human health. Size-fractionated aerosol samples were collected from May to September 2013 by using micro-orifice uniform deposited impactor (MOUDI). Sample collection was conducted simultaneously at the inlet and outlet sites of Hsuehshan Tunnel in northern Taiwan, which is the second longest freeway tunnel (12.9 km) in Asia. Such endeavor aims to characterize the chemical constituents, size distributions, and fingerprinting ratios, as well as the emission factors of particulate metals emitted by vehicle fleets. A total of 36 metals in size-resolved aerosols were determined through inductively coupled plasma mass spectrometry. Three major groups, namely, tailpipe emissions (Zn, Pb, and V), wear debris (Cu, Cd, Fe, Ga, Mn, Mo, Sb, and Sn), and resuspended dust (Ca, Mg, K, and Rb), of airborne PM metals were categorized on the basis of the results of enrichment factor, correlation matrix, and principal component analysis. Size distributions of wear-originated metals resembled the pattern of crustal elements, which were predominated by super-micron particulates (PM1-10). By contrast, tailpipe exhaust elements such as Zn, Pb, and V were distributed mainly in submicron particles. By employing Cu as a tracer of wear abrasion, several inter-metal ratios, including Fe/Cu (14), Ba/Cu (1.05), Sb/Cu (0.16), Sn/Cu (0.10), and Ga/Cu (0.03), served as fingerprints for wear debris. Emission factor of PM10 mass was estimated to be 7.7 mg vkm-1. The metal emissions were mostly predominated in super-micron particles (PM1-10). Finally, factors that possibly affect particulate metal emissions inside Hsuehshan Tunnel are discussed.
Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000
NASA Technical Reports Server (NTRS)
Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.
2005-01-01
During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.
Advanced Hybrid Particulate Collector Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.J.
As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less
Source apportionment of particulate organic matter using infrared spectra at multiple IMPROVE sites
NASA Astrophysics Data System (ADS)
Kuzmiakova, A.; Dillner, A. M.; Takahama, S.
2016-12-01
As organic aerosol is a dominant contributor to air pollution and radiative forcing in many regions in the United States, characterizing its composition and apportioning the organic mass to its major sources provides insight into atmospheric processes and guidance for decreasing its abundance. National networks, such as Interagency Monitoring of Protected Visual Environment (IMPROVE), provide multi-site and multi-year particulate matter samples useful for evaluating sources over all four seasons. To this end, our study focuses on apportioning the particulate organic matter (OM) to specific anthropogenic and biological processes from year-long infrared aerosol measurements collected at six IMPROVE sites (five national park sites and one urban site) during 2011. Pooling these organic aerosol samples into one dataset, we apply factor and cluster analyses to extract four chemical factors (two dominated by processed emissions, one dominated by hydroxyl groups, and one by hydrocarbons) and ascribe each factor to a specific source depending on the site and season. We also present a method to characterize measurement uncertainty in infrared instrumental analysis and investigate sensitivity analysis in generated factors. In Phoenix (the urban site) we find the majority (80-95%) of the OM consisted of anthropogenic activities, such as traffic emissions, fossil fuel combustion (both all year long), and residential wood burning (fall to winter). Mineral dust emissions accounted for the rest of OM (5-20%). At the National Park sites the OM concentration was lower on average and consisted of marine and dust aerosols, summertime biomass burning and biogenic aerosols, processed fossil fuel combustion, and emissions from ships and oil refineries. Our study highlights the potential for further site-specific or multi-year aerosol characterization in the context of a long-term atmospheric sampling program to quantify sources of organic particles impacting air quality, aid in policy-making, and assess which (trans)formation mechanisms proposed in laboratory studies are consistent with observations.
N. S. Wagenbrenner; S. H. Chung; B. K. Lamb
2017-01-01
Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM) in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry...
Characterization of metals emitted from motor vehicles.
Schauer, James J; Lough, Glynis C; Shafer, Martin M; Christensen, William F; Arndt, Michael F; DeMinter, Jeffrey T; Park, June-Soo
2006-03-01
A systematic approach was used to quantify the metals present in particulate matter emissions associated with on-road motor vehicles. Consistent sampling and chemical analysis techniques were used to determine the chemical composition of particulate matter less than 10 microm in aerodynamic diameter (PM10*) and particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5), including analysis of trace metals by inductively coupled plasma mass spectrometry (ICP-MS). Four sources of metals were analyzed in emissions associated with motor vehicles: tailpipe emissions from gasoline- and diesel-powered vehicles, brake wear, tire wear, and resuspended road dust. Profiles for these sources were used in a chemical mass balance (CMB) model to quantify their relative contributions to the metal emissions measured in roadway tunnel tests in Milwaukee, Wisconsin. Roadway tunnel measurements were supplemented by parallel measurements of atmospheric particulate matter and associated metals at three urban locations: Milwaukee and Waukesha, Wisconsin, and Denver, Colorado. Ambient aerosol samples were collected every sixth day for one year and analyzed by the same chemical analysis techniques used for the source samples. The two Wisconsin sites were studied to assess the spatial differences, within one urban airshed, of trace metals present in atmospheric particulate matter. The measurements were evaluated to help understand source and seasonal trends in atmospheric concentrations of trace metals. ICP-MS methods have not been widely used in analyses of ambient aerosols for metals despite demonstrated advantages over traditional techniques. In a preliminary study, ICP-MS techniques were used to assess the leachability of trace metals present in atmospheric particulate matter samples and motor vehicle source samples in a synthetic lung fluid.
Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China
NASA Astrophysics Data System (ADS)
Cao, Yiqi; Liu, Tao; He, Jiao
2018-03-01
An assessment of the fugitive emission rates of PM2.5 and PM10 from an open static coal and mine storage piles. The experiment was conducted at a large union steel enterprises in the East China region to effectively control the fugitive particulate emissions pollution on daily work and extreme weather conditions. Wind tunnel experiments conducted on the surface of static storage piles, and it generated specific fugitive emission rates (SERs) at ground level of between ca.10-1 and ca.102 (mg/m2·s) for PM2.5 and between ca.101 and ca.103 (mg/m2·s) for PM10 under the u*(wind velocity) between ca.3.0 (m/s) and 10.0 (m/s). Research results show that SERs of different materials differ a lot. Material particulate that has lower surface moisture content generate higher SER and coal material generate higher SER than mine material. For material storage piles with good water infiltrating properties, aspersion is a very effective measure for control fugitive particulate emission.
Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China
NASA Astrophysics Data System (ADS)
Fu, X.; Wang, T.; Wang, S.; Zhang, L.
2017-12-01
Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.
Book, Emily K; Snow, Richard; Long, Thomas; Fang, Tiegang; Baldauf, Richard
2015-06-01
Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration. The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.
Discussing the air pollution of Sao Paulo City -- Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assuncao, J.V. de; Filho, J.B.G.
1999-07-01
The city of Sao Paulo has a population of about 10 million people (1998 estimate) and a vehicle fleet of about 4.5 millions. A great increase in the ratio of persons per car occurred in the last 28 years, starting from 11.4 persons per car in 1970 and reaching 2.2 persons per car in 1998, a ratio similar to those in developed countries. The population of the city represents about 6% of the Brazilian population, 30% of the State population, and 61% of Metropolitan population. In the 60's and in the beginning of the 70's the air quality in Saomore » Paulo Metropolitan Region and in Sao Paulo City was more influenced by industrial sources. Nowadays emissions in the metropolitan region come mainly from vehicles (94.8% of CO, 94.9% of NO{sub x}, 94.3% of HC and 54.1% of SO{sub x}, in 1997) and 40% contribution in relation to inhaling particulate (PM10) and in the city of Sao Paulo the contribution of vehicle emissions is the same or greater. Light-duty vehicles are powered by gasohol, a mixture of 78% gasoline and 22%, ethanol, and by plain ethanol. Heavy-duty vehicles are diesel oil fueled. A great concern exists in relation to health effects of small sized particulate and photochemical oxidants and its precursors. Besides the implementation of a strong air pollution control for stationary sources of particulate and sulfur dioxide, since the 70's and the existence of a federal law that established a program of emission control for new vehicles in 1986, only the sulfur dioxide control program was successful since the air quality levels of other common pollutants are still above the air quality standards for some part of the year. Other attempts were made in the last years, like the prohibition of free circulation of 20% of cars each day during the weekdays (rodizio of cars). Even with that the air quality levels don't meet the standards the all year, and other measures must be taken to solve the problem.« less
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., inside the dilution air filter box at EPA is very low. Pb will be assumed = 0, and background particulate.... 86.145-82 Section 86.145-82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... further defined in § 86.144. (3) P e = mass of particulate per test on the exhaust filter(s), grams. (4...
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., inside the dilution air filter box at EPA is very low. Pb will be assumed = 0, and background particulate.... 86.145-82 Section 86.145-82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... further defined in § 86.144. (3) P e = mass of particulate per test on the exhaust filter(s), grams. (4...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
...] Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002 Base Year... is taking direct final action to approve the fine particulate matter (PM 2.5 ) 2002 base year... progress (RFP) plan, contingency measures, a 2002 base year emissions inventory and other planning SIP...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
...] Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002 Base Year... is taking direct final action to approve the fine particulate matter (PM 2.5 ) 2002 base year... progress (RFP) plan, contingency measures, a 2002 base year emissions inventory and other planning SIP...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
...] Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002 Base Year... is taking direct final action to approve the fine particulate matter (PM 2.5 ) 2002 base year... progress (RFP) plan, contingency measures, a 2002 base year emissions inventory and other planning SIP...
2015-01-01
To estimate exposures to smokers from cigarettes, smoking topography is typically measured and programmed into a smoking machine to mimic human smoking, and the resulting smoke emissions are tested for relative levels of harmful constituents. However, using only the summary puff data—with a fixed puff frequency, volume, and duration—may underestimate or overestimate actual exposure to smoke toxins. In this laboratory study, we used a topography-driven smoking machine that faithfully reproduces a human smoking session and individual human topography data (n = 24) collected during previous clinical research to investigate if replicating the true puff profile (TP) versus the mathematically derived smoothed puff profile (SM) resulted in differences in particle size distributions and selected toxic/carcinogenic organic compounds from mainstream smoke emissions. Particle size distributions were measured using an electrical low pressure impactor, the masses of the size-fractionated fine and ultrafine particles were determined gravimetrically, and the collected particulate was analyzed for selected particle-bound, semivolatile compounds. Volatile compounds were measured in real time using a proton transfer reaction-mass spectrometer. By and large, TP levels for the fine and ultrafine particulate masses as well as particle-bound organic compounds were slightly lower than the SM concentrations. The volatile compounds, by contrast, showed no clear trend. Differences in emissions due to the use of the TP and SM profiles are generally not large enough to warrant abandoning the procedures used to generate the simpler smoothed profile in favor of the true profile. PMID:25536227
Measurement of emissions of fine particulate organic matter from Chinese cooking
NASA Astrophysics Data System (ADS)
He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan
Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.
Xu, Jia; Jin, Taosheng; Miao, Yaning; Han, Bin; Gao, Jiajia; Bai, Zhipeng; Xu, Xiaohong
2015-12-01
Diesel particulate matter (DPM) is associated with adverse human health effects. This study aims to investigate the relationship between DPM exposure and emissions by estimating the individual intake fraction (iFi) and population intake fraction (iFp) of DPM. Daily average concentrations of particulate matter at two bus stops during rush hours were measured, and then they were apportioned to DPM due to heavy-duty diesel bus emissions using Chemical Mass Balance Model. The DPM emissions of diesel buses for different driving conditions (idling, creeping and traveling) were estimated on the basis of field observations and published emission factors. The median iFi of DPM was 0.67 and 1.39 per million for commuters standing at the bus stop and pedestrians/cyclists passing through the bus stop during rush hours, respectively. The median iFp of DPM was 94 per million. Estimations of iFi and iFp of DPM are potentially significant for exposure assessment and risk management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Diesel particulate emissions from used cooking oil biodiesel.
Lapuerta, Magín; Rodríguez-Fernández, José; Agudelo, John R
2008-03-01
Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.
Westerholm, R; Christensen, A; Törnqvist, M; Ehrenberg, L; Rannug, U; Sjögren, M; Rafter, J; Soontjens, C; Almén, J; Grägg, K
2001-05-01
Diesel fuels, classified as environmentally friendly, have been available on the Swedish market since 1991. The Swedish diesel fuel classification is based upon the specification of selected fuel composition and physical properties to reduce potential environmental and health effects from direct human exposure to exhaust. The objective of the present investigation was to compare the most stringent, environmentally classified Swedish diesel fuel (MK1) to the reference diesel fuel used in the "European Program on Emissions, Fuels and Engine Technologies" (EPEFE) program. The study compares measurements of regulated emissions, unregulated emissions, and biological tests from a Volvo truck using these fuels. The regulated emissions from these two fuels (MK1 vs EPEFE) were CO (-2.2%), HC (12%), NOx (-11%), and particulates (-11%). The emissions of aldehydes, alkenes, and carbon dioxide were basically equivalent. The emissions of particle-associated polycyclic aromatic hydrocarbons (PAHs) and 1-nitropyrene were 88% and 98% lower than those of the EPEFE fuel, respectively. The emissions of semi-volatile PAHs and 1-nitropyrene were 77% and 80% lower than those from the EPEFE fuel, respectively. The reduction in mutagenicity of the particle extract varied from -75 to -90%, depending on the tester strain. The reduction of mutagenicity of the semi-volatile extract varied between -40 and -60%. Furthermore, the dioxin receptor binding activity was a factor of 8 times lower in the particle extracts and a factor of 4 times lower in the semi-volatile extract than that of the EPEFE fuel. In conclusion, the MK1 fuel was found to be more environmentally friendly than the EPEFE fuel.
Betha, Raghu; Balasubramanian, Rajasekhar
2011-10-01
Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. [Box: see text].
Betha, Raghu; Balasubramanian, Rajasekhar
2011-10-01
Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.
Liu, Zhihua; Ge, Yunshan; Tan, Jianwei; He, Chao; Shah, Asad Naeem; Ding, Yan; Yu, Linxiao; Zhao, Wei
2012-01-01
Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere.
The Recent History of the Composition of Fine Particulate Matter in the Rural United States
NASA Astrophysics Data System (ADS)
Schichtel, B. A.; Hand, J. L.; Prenni, A. J.; Copeland, S.; Gebhart, K.; Vimont, J.; Moore, C. T.; Malm, W. C.
2017-12-01
Over the past 30 years, there have been dramatic shifts in fine particulate matter (PM2.5) emissions and their precursors, changing the composition and levels of ambient PM2.5. Many of these trends are reflected in the daily speciated PM2.5 samples collected in the Interagency Monitoring of Protected Visual Environments (IMPROVE) program, which has operated uninterrupted throughout the rural United States since 1988. PM2.5, measured at eastern U.S. IMPROVE sites, is now about half of what it was in the 1990s. This change is primarily the result of decreasing particulate sulfate brought on by declining SO2 emissions. Much of the decreased SO2 emissions were initially driven by regulations and then later accelerated by a switch from coal- to natural-gas-powered electrical generation. However, the development of oil and gas resources has led to the industrialization of once-rural landscapes, bringing increased local emissions impacting the air quality in surrounding areas. The reductions in sulfate appear to have also caused commensurate reductions in sulfate-processed, biogenic secondary organic aerosols. Many of these changes have also occurred in the intermountainous western U.S., but the response in ambient PM2.5 is more subtle due to the lower anthropogenic emissions. Instead, the changes in PM2.5 composition appear to be driven by external and more-natural forces. This includes increases in spring sulfate concentrations in the first decade of the 2000's, potentially due to international transport, as well as increased wildfires contributing to the background of carbonaceous aerosols and spatially and temporally varying PM2.5 episodes. Over the last decade, there has also been an earlier onset of the spring dust season in the Southwest, presumably due to the increased surface winds and decreased precipitation which was associated with a shift in the Pacific decadal oscillation. In this presentation we will explore these and other changes in the PM2.5 composition over the past few decades and their potential causes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.
Gasoline- and diesel-powered vehicles are known to contribute appreciable amounts of inhalable fine particulate matter to the atmosphere in urban areas. Internal combustion engines burning gasoline and diesel fuel contribute more than 21% of the primary fine particulate organic carbon emitted to the Los Angeles atmosphere. In the present study, particulate (d[sub p] [le] 2 [mu]m) exhaust emissions from six noncatalyst automobiles, seven catalyst-equipped automobiles, and two heavy-duty diesel trucks are examined by gas chromatography/mass spectrometry. The purposes of this study are as follows: (a) to search for conservative marker compounds suitable for tracing the presence of vehicular particulate exhaustmore » emissions in the urban atmosphere, (b) to compile quantitative source profiles, and (c) to study the contributions of fine organic particulate vehicular exhaust to the Los Angeles atmosphere. More than 100 organic compounds are quantified, including n-alkanes, n-alkanoic acids, benzoic acids, benzaldehydes, PAH, oxy-PAH, steranes, pentacyclic triterpanes, azanaphthalenes, and others. Although fossil fuel markers such as steranes and pentacyclic triterpanes can be emitted from other sources, it can be shown that their ambient concentrations measured in the Los Angeles atmosphere are attributable mainly to vehicular exhaust emissions. 102 refs., 9 figs., 6 tabs.« less
Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.
Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D
2009-07-15
This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.
Multifunctional Fuel Additives for Reduced Jet Particulate Emissions
2006-06-01
additives, turbine engine emissions, particulates, chemical kinetics, combustion, JP-8 chemistry 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...from the UNICORN CFD code using the full and skeletal versions of the Violi et al JP-8 mechanism ...................114 Figure 64. Comparison of...calculated jet flame benzene mole fraction contours from the UNICORN CFD code using the full and skeletal versions of the Violi et al JP-8 mechanism
2016-09-01
AFRL-RQ-WP-TR-2016-0131 DEMONSTRATION OF NOVEL SAMPLING TECHNIQUES FOR MEASUREMENT OF TURBINE ENGINE VOLATILE AND NON-VOLATILE PARTICULATE...MATTER (PM) EMISSIONS Edwin Corporan Fuels and Energy Branch Turbine Engine Division Matthew DeWitt and Chris Klingshirn University of...Energy Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// CHARLES W. STEVENS Lead Engineer
Environmental Compliance Assessment System (ECAS). Kentucky Supplement (Revised)
1994-02-01
vehicles or vehicle bodies. "* FGD - Flue Gas Desulfurization . "* Field-Erected - assembled from components at a final site of operation. "* Flare - a...34* Spare Flue Gas Desulfurization System Module - a separate system of sulfur dioxide emission con- trol equipment capable of treating an amount of flue ...Carryover - particulate matter which is passed from the primary chamber of an incinerator into the flue gas stream. " Particulate Matter Emissions
Influence of particulate trap oxidizers on emission of mutagenic compounds by diesel automobiles.
Rasmussen, R E; Devillez, G; Smith, L R
1989-06-01
Diesel exhaust particles are known to contain mutagenic and carcinogenic chemicals. The aim of this study was to determine whether, and to what extent, catalytic particulate trap oxidizers on light-duty diesel engines may reduce the emission of particle-associated mutagenic chemicals into the environment. Exhaust particles were collected from Mercedes Benz and Volkswagen diesel automobiles, equipped with or without the manufacturer's exhaust traps, while running on a chassis dynamometer under specified load conditions. Exhaust particles were collected from a dilution tunnel onto 20" X 20" Teflon-coated fiberglass filters. Mutagenesis tests of dichloromethane (DCM) extracts of the particles were conducted using the Ames Salmonella bacterial test system. The mutation rate was calculated in terms of histidine revertants per mile of travel during a set of standard test cycles. With both vehicles the traps produced an 87-92% reduction in the total amount of particulate material collected by the filters. There was no significant change in the specific mutagenic activity (revertants per microgram of DCM particle extract) with or without the traps. These studies support the notion that installation of exhaust traps which reduce particulate emission on diesel-powered vehicles will also reduce the emission of particle-associated mutagenic and carcinogenic materials into the environment.
Comparability between various field and laboratory wood-stove emission-measurement methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrillis, R.C.; Jaasma, D.R.
1991-01-01
The paper compares various field and laboratory woodstove emission measurement methods. In 1988, the U.S. EPA promulgated performance standards for residential wood heaters (woodstoves). Over the past several years, a number of field studies have been undertaken to determine the actual level of emission reduction achieved by new technology woodstoves in everyday use. The studies have required the development and use of particulate and gaseous emission sampling equipment compatible with operation in private homes. Since woodstoves are tested for certification in the laboratory using EPA Methods 5G and 5H, it is of interest to determine the correlation between these regulatorymore » methods and the inhouse equipment. Two inhouse sampling systems have been used most widely: one is an intermittent, pump-driven particulate sampler that collects particulate and condensible organics on a filter and organic adsorbent resin; and the other uses an evacuated cylinder as the motive force and particulate and condensible organics are collected in a condenser and dual filter. Both samplers can operate unattended for 1-week periods. A large number of tests have been run comparing Methods 5G and 5H to both samplers. The paper presents these comparison data and determines the relationships between regulations and field samplers.« less
MARR, LINSEY C.; GROGAN, LISA A.; WÖHRNSCHIMMEL, HENRY; MOLINA, LUISAT.; MOLINA, MARIO J.; SMITH, THOMAS J.; GARSHICK, ERIC
2005-01-01
Surface properties of aerosols in the Mexico City metropolitan area have been measured in a variety of exposure scenarios related to vehicle emissions in 2002, using continuous, real-time instruments. The objective of these experiments is to describe ambient and occupational particulate polycyclic aromatic hydrocarbon (PAH) concentrations associated with vehicular traffic and facilities using diesel vehicles. Median total particulate PAH concentrations along Mexico City’s roadways range from 60 to 910 ng m−3, averaged over a minimum of 1 h. These levels are approximately 5 times higher than concentrations measured in the United States and among the highest measured ambient values reported in the literature. The ratio of particulate PAH concentration to aerosol active surface area is much higher along roadways and in other areas of fresh vehicle emissions, compared to ratios measured at sites influenced more by aged emissions or noncombustion sources. For particles freshly emitted by vehicles, PAH and elemental carbon (EC) concentrations are correlated because they both originate during the combustion process. Comparison of PAH versus EC and active surface area concentrations at different locations suggests that surface PAH concentrations may diminish with particle aging. These results indicate that exposure to vehicle-related PAH emissions on Mexico City’s roadways may present an important public health risk. PMID:15180054
LIDAR Remote Sensing of Particulate Matter Emissions from On-Road Vehicles
NASA Astrophysics Data System (ADS)
Keislar, R. E.; Kuhns, H.; Mazzoleni, C.; Moosmuller, H.; Watson, J.
2002-12-01
DRI has developed a remote sensing method for on-road particulate matter emissions from gasoline-powered and diesel-powered vehicles called the Vehicle Emissions Remote Sensing System (VERSS). Remote sensing of gaseous pollutants in vehicle exhaust is a well-established, economical way to determine on-road emissions for thousands of vehicles per day. The VERSS adds a particulate matter channel to complement gaseous pollutant measurements. The VERSS uses 266-nm ultraviolet laser light to achieve greater sensitivity than visible light to sub-micrometer particles, where the greatest mass fraction has been reported. The VERSS system integrates the lidar channel with a commercial remote sensing device (RSD) for gaseous pollutants, and the RSD CO2 measurement can be used to estimate fuel-based particle mass emissions. We describe the interpretation and processing of lidar returns from field measurements taken by the combined VERSS during the Southern Nevada Air Quality Study (SNAQS), conducted in the Las Vegas area. With suitable assumptions regarding size distribution and particle composition, the lidar backscatter signal and the RSD yield three basic measurements of particulate matter in the exhaust plume. For each passing vehicle, these three channels are: 1) Columnar extinction in the infrared (IR at 3.9 micrometers) 2) Columnar extinction in the ultraviolet (UV at 266 nm) 3) Range-resolved backscatter at 266 nm (horizontal spatial resolution of 20-25 cm) The 3.9-micrometer channel is a good surrogate for absorption by elemental carbon (EC) in tailpipe emissions and has been utilized in previous studies. Opacity measurements at 266 nm provide optical extinction due to scattering from tailpipe organic carbon (OC) and EC emissions.
Primary particulate matter from ocean-going engines in the Southern California Air Basin.
Agrawal, Harshit; Eden, Rudy; Zhang, Xinqiu; Fine, Philip M; Katzenstein, Aaron; Miller, J Wayne; Ospital, Jean; Teffera, Solomon; Cocker, David R
2009-07-15
The impact of primary fine particulate matter (PM2.5) from ship emissions within the Southern California Air Basin is quantified by comparing in-stack vanadium (V) and nickel (Ni) measurements from in-use ocean-going vessels (OGVs) with ambient measurements made at 10 monitoring stations throughout Southern California. V and Ni are demonstrated as robust markers for the combustion of heavy fuel oil in OGVs, and ambient measurements of fine particulate V and Ni within Southern California are shown to decrease inversely with increased distance from the ports of Los Angeles and Long Beach (ports). High levels of V and Ni were observed from in-stack emission measurements conducted on the propulsion engines of two different in-use OGVs. The in-stack V and Ni emission rates (g/h) normalized by the V and Ni contents in the fuel tested correlates with the stack total PM emission rates (g/h). The normalized emission rates are used to estimate the primary PM2.5 contributions from OGVs at 10 monitoring locations within Southern California. Primary PM2.5 contributions from OGVs were found to range from 8.8% of the total PM2.5 at the monitoring location closest to the port (West Long Beach) to 1.4% of the total PM2.5 at the monitoring location 80 km inland (Rubidoux). The calculated OGV contributions to ambient PM2.5 measurements at the 10 monitoring sites agree well with estimates developed using an emission inventory based regional model. Results of this analysis will be useful in determining the impacts of primary particulate emissions from OGVs upon worldwide communities downwind of port operations.
NASA Astrophysics Data System (ADS)
Gonzalez Abraham, R.; Zavala, M.; Molina, L. T.; Fortner, E.; Wormhoudt, J.; Knighton, B.; Herndon, S.; Roscioli, J. R.; Onasch, T. B.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.; Masera, O.; Berrueta, V.
2013-12-01
Black carbon emissions are a major contributor to climate change, with cookstoves being one of the top sources. The SLCF cookstove study was conducted in March 2013 at the Interdisciplinary Group for Appropriate Rural Technology (GIRA) in Pátzcuaro, Mexico. Seven different types of wood-burning cookstoves were measured giving insight to the effects of different designs and operating conditions on particle and gas phase emissions. High-time resolution measurements of emissions were made. For most of the cookstoves, measurements were made throughout a standard water boiling test. The Aerodyne Mobile Laboratory conducted these emission measurements utilizing extractive sampling from the stove exhaust. Sample flow to the gas phase instruments was extracted directly from the stovepipe and then quickly diluted with nitrogen. Sample flows for the particulate instruments were taken at points under a meter from the exit of the stovepipe, after dilution with ambient air. The key particulate instrument was the Aerodyne soot particle aerosol mass spectrometer (SP-AMS), which provided measurements of black carbon, divided into several sub-components, along with other classes of particulate matter classified by chemical composition. Gas phase measurements conducted included CO, CO2, NO, NOx, SO2, CH4, C2H2, C2H6, and a variety of VOCs (including benzene, methanol, acetaldehyde, toluene, acetone, acetonitrile, and terpene) measured with a PTR-MS instrument. All of these measurements will be examined to construct emission ratios evaluating how these vary with different cookstove types and different stove operating conditions. Comparisons will be made to previous measurements of cookstove emissions in the literature, with a focus on the variety of particulate measurements reported.
Zhang, Hongliang; Magara-Gomez, Kento T; Olson, Michael R; Okuda, Tomoaki; Walz, Kenneth A; Schauer, James J; Kleeman, Michael J
2015-12-15
The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ±5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC concentrations. These results emphasize the importance of considering EC mixing state in climate research. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.Y.
1999-06-01
The report discusses a joint US/Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in the streets of Mexicali, Mexico, were investigated experimentally by measuring levels of particulate matter, particle size distributions, volatile and semivolatile organic compounds, aldehydes, and oxides of nitrogen and sulfur, emitted when meat is cooked on a grill over a charcoal fire. To investigate the emission rate, both beef and chicken were tested. Furthermore, both meats were marinated with a mixture similarmore » to that used by the street vendors. Some tests were conducted with non-marinated beef for comparison. Two blank runs were performed sampling charcoal fires without meat. Finally, a simple control device, normally used in an exhaust fan to trap grease over a kitchen stove, was evaluated for its effectiveness in reducing emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.« less
Controls on mineral dust emissions at four arid locations in the western USA
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.; Gillies, John A.; Etyemezian, Vicken; Kuhns, Hampden; Baker, Sophie E.; Zhu, Dongzi; Nikolich, George; Kohl, Steven D.
Dust emission measurements from unique military sources, including tracked and wheeled military vehicles, low flying rotary-winged aircraft, and artillery backblast, were conducted in the course of four field campaigns in 2005-2008, at Yuma Proving Ground (YPG) in Arizona (twice), Yakima Test Center (YTC) in Washington State, and Ft. Carson in Colorado. This paper reports on the observed relationships between levels of dust emission, and the mineralogy, particle size, and chemical composition of the surface sediment and associated airborne mineral dust. We propose a mechanism for the generation of fine particulate matter, providing an explanation for high emissions in certain regions. PM10 (particulate matter with aerodynamic diameter of <10 μm) and PM2.5 (particulate matter with aerodynamic diameter of <2.5 μm) filter as well as bulk samples were collected for laboratory analysis in the course of the field campaigns. Analytical techniques applied include X-ray diffraction, Scanning Electron Microscopy, laser particle size analysis, as well as X-ray fluorescence spectrometry, Ion Chromatography, and Automated Colorimetry. Previous work has shown YTC has higher dust emission factors than YPG and Ft. Carson. The results presented in this paper demonstrate that the high PM10 and PM2.5 emissions measured at YTC can be explained by the high silt and low clay content of the surface sediment, attributed to glacial loess. In the other test areas, the abrasion of microscopic clay and oxide coatings, from and by silicate mineral grains, is considered a factor in the generation of fine particulate matter.
Air toxics provisions of the Clean Air Act: Potential impacts on energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hootman, H.A.; Vernet, J.E.
1991-11-01
This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less
Air toxics provisions of the Clean Air Act: Potential impacts on energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hootman, H.A.; Vernet, J.E.
1991-11-01
This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haynes, Erin N., E-mail: Erin.Haynes@uc.edu; Chen, Aimin, E-mail: Aimin.Chen@uc.edu; Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu
Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected frommore » the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical significance. In summary, airborne exposure to manganese, mercury, and particulate matter are associated with increased risk of adjudication. Causality cannot be proven in observational studies such as this one, but the association warrants further examination in other research studies. Comprehensive epidemiologic investigations of metal exposure in pediatric populations should include social health outcomes, including measures of delinquent or criminal activity. Furthermore, the influence of metals on the neurotoxic pathway leading to delinquent activity should be further explored. - Highlights: Black-Right-Pointing-Pointer We evaluate the relationship between air pollutants and adjudication. Black-Right-Pointing-Pointer Manganese, mercury, and particulate matter are associated with risk of adjudication. Black-Right-Pointing-Pointer Further research of metal exposure should include social health outcomes.« less
Control of Fine Particulate (PM2.5) Emissions from Restaurant Operations.
Whynot, Jill; Quinn, Gary; Perryman, Pamela; Votlucka, Peter
1999-09-01
This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter ( PM 2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers-chain-driven and underfired-underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM 2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.
Control of fine particulate (PM2.5) emissions from restaurant operations.
Whynot, J; Quinn, G; Perryman, P; Votlucka, P
1999-09-01
This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers--chain-driven and underfired--underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.
Grain Elevators: New Source Performance Standards (NSPS)
The New Source Performance Standards (NSPS) for Grain Elevators aims to reduce particulate matter pollution. The new amendments seek to clarify definitions, and requirements, as well as propose new regulations on particulate matter emissions
40 CFR 52.776 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Approval—The complete Indiana plan for Clark, Dearborn, Dubois, Marion (except for coke batteries), St..., Vandenburgh County; 6-1-17, Clark County; 6-1-18, St. Joseph County; 6-2, Particulate Emissions Limitations...
40 CFR 52.776 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Approval—The complete Indiana plan for Clark, Dearborn, Dubois, Marion (except for coke batteries), St..., Vandenburgh County; 6-1-17, Clark County; 6-1-18, St. Joseph County; 6-2, Particulate Emissions Limitations...
Measurement of gas and aerosol agricultural emissions
USDA-ARS?s Scientific Manuscript database
Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...
Incidence of real-world automotive parent and halogenated PAH in urban atmosphere.
Gao, Pan-Pan; Zhao, Yi-Bo; Ni, Hong-Gang
2018-06-01
This study reports results from a tunnel experiment impact of real-world traffic-related particle and gas parent and halogenated polycyclic aromatic hydrocarbons (PAHs and HPAHs) on urban air. The traffic related emission characteristics and subsequent environmental behavior of these compounds were investigated. To understand the significance of real-world transport emissions to the urban air, traffic-related mass emissions of PAHs and HPAHs were estimated based on measured emission factors. According to our results, PAHs and HPAHs emissions via particulate phase were greater than those via gaseous phase; particles in 2.1-3.3 μm size fraction, have the major contribution to particulate PAHs and HPAHs emissions. Over all, contribution of traffic-related emission of PAHs (only ∼3% of the total PAHs emission in China) is an overstated source of PAHs pollution in China. Actually, exhaust pipe emission contributed much less than the total traffic-related emission of pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Baumot BA-B Diesel Particulate Filter with Pre-Catalyst is a diesel engine retrofit device for light, medium, and heavy heavy-duty diesel on-highway engines for use with commercial ultra-low-sulfur diesel (ULSD) fuel. The BA-B particulate filter is composed of a pre-catalyst ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R04-OAR-2011-0850-201154(b); FRL-9639-7] Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002 Base Year... proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R04-OAR-2012-0050-201207(b); FRL-9639-3] Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002 Base Year... proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of...
DSMC simulation of two-phase plume flow with UV radiation
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-01
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
An automated atmospheric sampling system operating on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P.; Gustafsson, U. R. C.
1975-01-01
An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.
Aerosols from overseas rival domestic emissions over North America.
Yu, Hongbin; Remer, Lorraine A; Chin, Mian; Bian, Huisheng; Tan, Qian; Yuan, Tianle; Zhang, Yan
2012-08-03
Many types of aerosols have lifetimes long enough for their transcontinental transport, making them potentially important contributors to air quality and climate change in remote locations. We estimate that the mass of aerosols arriving at North American shores from overseas is comparable with the total mass of particulates emitted domestically. Curbing domestic emissions of particulates and precursor gases, therefore, is not sufficient to mitigate aerosol impacts in North America. The imported contribution is dominated by dust leaving Asia, not by combustion-generated particles. Thus, even a reduction of industrial emissions of the emerging economies of Asia could be overwhelmed by an increase of dust emissions due to changes in meteorological conditions and potential desertification.
Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F
2009-07-01
A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.
Survey of Aircraft Emissions and Related Instrumentation
DOT National Transportation Integrated Search
1971-03-31
The report presents the preliminary results of a survey of transportation systems emissions monitoring requirements. Emissions of carbon monoxide, hydrocarbons, oxides of nitrogen and particulates from aircraft power plants, with emphasis on gas turb...
Kholod, Nazar; Evans, Meredydd
2015-11-13
This article assesses options and challenges of reducing black carbon emissions from diesel vehicles in Russia. Black carbon is a product of incomplete diesel combustion and is a component of fine particulate matter. Particulate matter emissions have adverse health impacts, causing cardiopulmonary disease and lung cancer; black carbon is also a large climate forcer. Black carbon emissions from Russian diesel sources affect not only the Russian territory but also contribute to overall pollution. Here, this paper analyzes current ecological standards for vehicles and fuel, evaluates policies for emission reductions from existing diesel vehicle fleet, and assesses Russia’s attempts to encouragemore » the use of natural gas as a vehicle fuel. Based on best practices of black carbon emission reductions, this paper provides a number of policy recommendations for Russia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kholod, Nazar; Evans, Meredydd
This article assesses options and challenges of reducing black carbon emissions from diesel vehicles in Russia. Black carbon is a product of incomplete diesel combustion and is a component of fine particulate matter. Particulate matter emissions have adverse health impacts, causing cardiopulmonary disease and lung cancer; black carbon is also a large climate forcer. Black carbon emissions from Russian diesel sources affect not only the Russian territory but also contribute to overall pollution. Here, this paper analyzes current ecological standards for vehicles and fuel, evaluates policies for emission reductions from existing diesel vehicle fleet, and assesses Russia’s attempts to encouragemore » the use of natural gas as a vehicle fuel. Based on best practices of black carbon emission reductions, this paper provides a number of policy recommendations for Russia.« less
Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation
Koermer, Gerald S [Basking Ridge, NJ; Moini, Ahmad [Princeton, NJ; Furbeck, Howard [Hamilton, NJ; Castellano, Christopher R [Ringoes, NJ
2012-05-08
Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver on a particulate alumina support, the silver having a diameter of less than about 20 nm. Methods of manufacturing catalysts are described in which ionic silver is impregnated on particulate hydroxylated alumina particles.
David R. Weise; Timothy J. Johnson; James Reardon
2015-01-01
Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using...
Performance of a Retrofitted Multicyclone for PM2.5 Emission Control
NASA Astrophysics Data System (ADS)
Dewika, M.; Rashid, M.; Ammar, M. R.
2018-03-01
This paper presents on the performance of a retrofitted multicyclone system, which aims to increase the collection efficiency of PM2.5 (i.e. particulate size fraction ≤ 2.5 μm) emission. The multicyclone was retrofitted by extracting 15% and 20% of the total volumetric air flow rate at the dust hopper of the unit using an additional Induced Draft Fan. The total collection efficiency with and without the extraction was measured at various air volumetric flow rates and particulate mass inlet concentration. The results showed that there was a reduction of 12% to 54% depending on the inlet concentration of PM2.5 emission in the stack with compared to without extraction increasing the collection efficiency of the retrofitted multicyclone. The finding suggests that a simple technique of applying gas extraction at the dust hopper of a multicyclone as reported in this study able to increase the overall performance in fine particulate collection.
Untargeted Identification of Wood Type-Specific Markers in Particulate Matter from Wood Combustion.
Weggler, Benedikt A; Ly-Verdu, Saray; Jennerwein, Maximilian; Sippula, Olli; Reda, Ahmed A; Orasche, Jürgen; Gröger, Thomas; Jokiniemi, Jorma; Zimmermann, Ralf
2016-09-20
Residential wood combustion emissions are one of the major global sources of particulate and gaseous organic pollutants. However, the detailed chemical compositions of these emissions are poorly characterized due to their highly complex molecular compositions, nonideal combustion conditions, and sample preparation steps. In this study, the particulate organic emissions from a masonry heater using three types of wood logs, namely, beech, birch, and spruce, were chemically characterized using thermal desorption in situ derivatization coupled to a GCxGC-ToF/MS system. Untargeted data analyses were performed using the comprehensive measurements. Univariate and multivariate chemometric tools, such as analysis of variance (ANOVA), principal component analysis (PCA), and ANOVA simultaneous component analysis (ASCA), were used to reduce the data to highly significant and wood type-specific features. This study reveals substances not previously considered in the literature as meaningful markers for differentiation among wood types.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions... equipment used to collect particulate matter emissions. Converter arsenic charging rate means the hourly rate at which arsenic is charged to the copper converters in the copper converter department based on...
Code of Federal Regulations, 2011 CFR
2011-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions... equipment used to collect particulate matter emissions. Converter arsenic charging rate means the hourly rate at which arsenic is charged to the copper converters in the copper converter department based on...
OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES
The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...
Emissions of endocrine disrupting chemicals (EDCs) from combustion sources are poorly characterized due to the large number of compounds present in the emissions, the complexity of the analytical separations required, and the uncertainty regarding identification of chemicals with...
Modelisation 0D/1D des emissions de particules de suie dans les turbines a gaz aeronautiques
NASA Astrophysics Data System (ADS)
Bisson, Jeremie
Because of more stringent regulations of aircraft particle emissions as well as strong uncertainties about their formation and their effects on the atmosphere, a better understanding of particle microphysical mechanisms and their interactions with the engine components is required. This thesis focuses on the development of a 0D/1D combustion model with soot production in an aeronautical gas turbine. A major objective of this study is to assess the quality of soot particle emission predictions for different flight configurations. The model should eventually allow performing parametric studies on current or future engines with a minimal computation time. The model represents the combustor as well as turbines and nozzle with a chemical reactor network (CRN) that is coupled with a detailed combustion chemistry for kerosene (Jet A-1) and a soot particle dynamics model using the method of moments. The CRN was applied to the CFM56-2C1 engine during flight configurations of the LTO cycle (Landing-Take-Off) as in the APEX-1 study on aircraft particle emissions. The model was mainly validated on gas turbine thermodynamic data and pollutant concentrations (H2O, COX, NOx, SOX) which were measured in the same study. Once the first validation completed, the model was subsequently used for the computation of mass and number-based emissions indices of the soot particulate population and average diameter. Overall, the model is representative of the thermodynamic conditions and succeeds in predicting the emissions of major pollutants, particularly at high power. Concerning soot particulate emissions, the model's ability to predict simultaneously the emission indices as well as mean diameter has been partially validated. Indeed, the mass emission indices have remained higher than experimental results particularly at high power. These differences on particulate emission index may be the result of uncertainties on thermodynamic parameters of the CRN and mass air flow distribution in the combustion chamber. The analysis of the number-based emission index profile along the CRN also highlights the need to review the nucleation model that has been used and to consider in the future the implementation of a particle aggregation mechanism.
Kheirbek, Iyad; Haney, Jay; Douglas, Sharon; Ito, Kazuhiko; Caputo, Steven; Matte, Thomas
2014-12-02
In recent years, both New York State and City issued regulations to reduce emissions from burning heating oil. To assess the benefits of these programs in New York City, where the density of emissions and vulnerable populations vary greatly, we simulated the air quality benefits of scenarios reflecting no action, partial, and complete phase-out of high-sulfur heating fuels using the Community MultiScale Air Quality (CMAQ) model conducted at a high spatial resolution (1 km). We evaluated the premature mortality and morbidity benefits of the scenarios within 42 city neighborhoods and computed benefits by neighborhood poverty status. The complete phase-out scenario reduces annual average fine particulate matter (PM2.5) by an estimated 0.71 μg/m(3) city-wide (average of 1 km estimates, 10-90th percentile: 0.1-1.6 μg/m(3)), avoiding an estimated 290 premature deaths, 180 hospital admissions for respiratory and cardiovascular disease, and 550 emergency department visits for asthma each year. The largest improvements were seen in areas of highest building and population density and the majority of benefits have occurred through the partial phase out of high-sulfur heating fuel already achieved. While emissions reductions were greatest in low-poverty neighborhoods, health benefits are estimated to be greatest in high-poverty neighborhoods due to higher baseline morbidity and mortality rates.
1990 Fuel oil utilization workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, B.L.; Lange, H.B.; Miller, M.N.
1992-01-01
Following a 1983 EPRI-sponsored workshop on utility boiler problems (EPRI report AP-3753), the Institute has responded to the need for better information on fuel utilization by sponsoring annual utility-focused workshops. This workshop is the sixth in a series of annual events designed to address this need. The objective was to provide utility personnel with an opportunity to exchange information on residual oil use in fossil steam plants. Participants at the 1990 workshop, held in Arlington, Virginia, October 31-November 1, 1990, included 37 representatives from 19 electric utilities, including representatives from Mexico, Canada, and Spain, as well as the Institute demore » Investigaciones Electricas in Mexico. The workshop comprised formal presentations followed by question-and-answer sessions and three 2-hour discussion group sessions. Topics included a water/oil emulsion test summary, a NO{sub x} reduction program, particulate and unburned carbon emissions reductions from oil-fired boilers using combustion promoters, a utility perspective on oil spills, and size distribution and opacity of particulate matter emissions from combustion of residual fuel oils. In addition, participants discussed the development of a coke formation index, instability and compatibility of residual fuel oils, the clean combustion of heavy liquid fuels, toxic air emissions from the combustion of residual fuel oils, H{sub 2}S release from residual fuel oils, and increased reliability of superheater and reheater tubes and headers by optimization of steam-side and gas-side temperatures.« less
NASA Astrophysics Data System (ADS)
Kunuku, Srinivasu; Chen, Yen-Chun; Yeh, Chien-Jui; Chang, Wen-Hao; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I.-Nan
2016-10-01
We report the synthesis of silicon-vacancy (SiV) incorporated spherical shaped ultrananocrystalline diamond (SiV-UNCD) particulates (size ∼1 μm) with bright luminescence at 738 nm. For this purpose, different granular structured polycrystalline diamond films and particulates were synthesized by using three different kinds of growth plasma conditions on the three types of substrate materials in the microwave plasma enhanced CVD process. The grain size dependent photoluminescence properties of nitrogen vacancy (NV) and SiV color centers have been investigated for different granular structured diamond samples. The luminescence of NV center and the associated phonon sidebands, which are usually observed in microcrystalline diamond and nanocrystalline diamond films, were effectively suppressed in UNCD films and UNCD particulates. Micron sized SiV-UNCD particulates with bright SiV emission has been attained by transfer of SiV-UNCD clusters on soda-lime glass fibers to inverted pyramidal cavities fabricated on Si substrates by the simple crushing of UNCD/soda-lime glass fibers in deionized water and ultrasonication. Such a plasma enhanced CVD process for synthesizing SiV-UNCD particulates with suppressed NV emission is simple and robust to attain the bright SiV-UNCD particulates to employ in practical applications.
Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stermer, D.L.; Gale, L.G.
1989-03-01
Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simons, Carl A.
1988-06-01
One major objective of this study was to compare several woodstove particulate emission sampling methods under laboratory and in-situ conditions. The laboratory work compared the EPA Method 5H, EPA Method 5G, and OMNI Automated Woodstove Emission Sampler (AWES)/Data LOG'r particulate emission sampling systems. A second major objective of the study was to evaluate the performance of two integral catalytic, two low emission non-catalytic, and two conventional technology woodstoves under in-situ conditions with AWES/Data LOG'r system. The AWES/Data LOG'r and EPA Method 5G sampling systems were also compared in an in-situ test on one of the integral catalytic woodstove models. 7more » figs., 12 tabs.« less
Developing particulate thin filter using coconut fiber for motor vehicle emission
NASA Astrophysics Data System (ADS)
Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.
2016-03-01
Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.
Gaseous and particulate emissions from a DC arc melter.
Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M
2003-01-01
Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.
Exposure assessment of particulates of diesel and natural gas fuelled buses in silico.
Pietikäinen, Mari; Oravisjärvi, Kati; Rautio, Arja; Voutilainen, Arto; Ruuskanen, Juhani; Keiski, Riitta L
2009-12-15
Lung deposition estimates of particulate emissions of diesel and natural gas (CNG) fuelled vehicles were studied by using in silico methodology. Particulate emissions and particulate number size distributions of two Euro 2 petroleum based diesel buses and one Euro 3 gas bus were measured. One of the petroleum based diesel buses used in the study was equipped with an oxidation catalyst on the vehicle (DI-OC) while the second had a partial-DPF catalyst (DI-pDPF). The third bus used was the gas bus with an oxidation catalyst on the vehicle (CNG-OC). The measurements were done using a transient chassis dynamometer test cycle (Braunschweig cycle) and an Electric Low Pressure Impactor (ELPI) with formed particulates in the size range of 7 nm to 10 microm. The total amounts of the emitted diesel particulates were 88-fold for DI-OC and 57-fold for DI-pDPF compared to the total amount of emitted CNG particulates. Estimates for the deposited particulates were computed with a lung deposition model ICRP 66 using in-house MATLAB scripts. The results were given as particulate numbers and percentages deposited in five different regions of the respiratory system. The percentages of particulates deposited in the respiratory system were 56% for DI-OC, 51% for DI-pDPF and 77% for CNG-OC of all the inhaled particulates. The result shows that under similar conditions the total lung dose of particulates originating from petroleum diesel fuelled engines DI-OC and DI-pDPF was more than 60-fold and 35-fold, respectively, compared to the lung dose of particulates originating from the CNG fuelled engine. The results also indicate that a majority (35-50%) of the inhaled particulates emitted from the tested petroleum diesel and CNG engines penetrate deep into the unciliated regions of the lung where gas-exchange occurs.
NASA Astrophysics Data System (ADS)
Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.
2015-12-01
Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
...; Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year...
40 CFR 52.2620 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ambient standards for particulate matter 9/13/99, 10/29/99 7/28/04, 69 FR 44965. Section 3 Ambient... standards for particulate matter 9/13/99, 10/29/99 7/28/04, 69 FR 44965. Section 3 Emission standards for... sources 9/13/99, 10/29/99 7/28/04, 69 FR 44965. Chapter 8 Section 2 Sweetwater County particulate matter...
Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin
2014-02-15
A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.
Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M
1989-06-01
Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.
NASA Astrophysics Data System (ADS)
Zhang, Yunhua; Lou, Diming; Tan, Piqiang; Hu, Zhiyuan
2018-03-01
The increasingly stringent emission regulations will mandate the retrofit of after-treatment devices for in-use diesel vehicles, in order to reduce their substantial particulate matter and nitrogen oxides (NOX) emissions. In this paper, a combination of DOC (diesel oxidation catalyst), CDPF (catalytic diesel particulate filter) and SCR (selective catalytic reduction) retrofit for a heavy-duty diesel engine was employed to perform experiment on the engine test bench to evaluate the effects on the particulate matter emissions including particle number (PN), particle mass (PM), particle size distributions and nitrogenous compounds emissions including NOX, nitrogen dioxide (NO2)/NOX, nitrous oxide (N2O) and ammonia (NH3) slip. In addition, the urea injection was also of our concern. The results showed that the DOC+CDPF+SCR retrofit almost had no adverse effect on the engine power and fuel consumption. Under the test loads, the upstream DOC and CDPF reduced the PN and PM by an average of 91.6% and 90.9%, respectively. While the downstream SCR brought about an average decrease of 85% NOX. Both PM and NOX emission factors based on this retrofit were lower than China-Ⅳ limits (ESC), and even lower than China-Ⅴ limits (ESC) at medium and high loads. The DOC and CDPF changed the particle size distributions, leading to the increase in the proportion of accumulation mode particles and the decrease in the percentage of nuclear mode particles. This indicates that the effect of DOC and CDPF on nuclear mode particles was better than that of accumulation mode ones. The upstream DOC could increase the NO2/NOX ratio to 40%, higher NO2/NOX ratio improved the efficiency of CDPF and SCR. Besides, the N2O emission increased by an average of 2.58 times after the retrofit and NH3 slip occurred with the average of 26.7 ppm. The rate of urea injection was roughly equal to 8% of the fuel consumption rate. The DOC+CDPF+SCR retrofit was proved a feasible and effective measurement in terms of reducing particulate emissions and NOX simultaneously for in-use engine. However, it also resulted in higher N2O emission, NH3 slip as well as urea injecting strategy problem which should be of further concern.
Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen
2010-01-15
Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hildebrandt Ruiz, L.; Bean, J. K.; Bilotto, A.
2017-12-01
The use of hydraulic fracturing for production of petroleum and natural gas has increased dramatically in the last decade, but the environmental impacts of this technology remain unclear. Experiments were conducted to quantify airborne emissions from twelve samples of hydraulic fracturing flowback wastewater collected in the Permian Basin, as well as the photochemical processing of these emissions leading to the formation of particulate matter. The concentration of total volatile carbon (TVC, hydrocarbons evaporating at room temperature) averaged 29 milligrams of carbon per liter (mgC/L) and the TVC evaporation rate averaged 1357 mgC/L-m2-min. After photochemical oxidation under high NOx conditions the amount of organic particulate matter formed per milliliter of wastewater evaporated averaged 24 micrograms (µg); the amount of ammonium nitrate formed averaged 262 µg. In the state of Texas, the potential formation of PM from evaporated flowback wastewater is similar to the estimated PM emissions from diesel engines used in oil rigs, emphasizing the need to quantify wastewater evaporation and atmospheric processing of these emissions.
Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao
2016-12-28
Background : The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods : The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results : Average concentrations of PM 2.5 and PM 10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM 2.5 and PM 10 during the APEC were the lowest. The economic cost associated with mortality caused by PM 2.5 and PM 10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions : The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection.
Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao
2016-01-01
Background: The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods: The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results: Average concentrations of PM2.5 and PM10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM2.5 and PM10 during the APEC were the lowest. The economic cost associated with mortality caused by PM2.5 and PM10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions: The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection. PMID:28036006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezzati, M.; Mbinda, B.M.; Kammen, D.M.
Suspended particulate matter and carbon emissions from the combustion of biomass, in addition to their environmental consequences, have been causally associated with the incidence of respiratory and eye infections. Improved stoves offer the potential for emissions reduction. The authors compare the emissions of suspended particulate matter and carbon monoxide from traditional and improved biofuel stoves in Kenya under the actual conditions of household use. Data for analysis is from 137 14-h days of continuous real-time emission concentration monitoring in a total of 38 households. Their analysis shows that improved (ceramic) wood-burning stoves reduce daily average suspended particulate matter concentration bymore » 48% during the active burning period and by 77% during the smoldering phase. Ceramic stoves also reduce the median and the 75th and 95th percentiles of daily emission concentration during the burning period and the 95th percentile during the smoldering phase, and therefore shift the overall emission profile downward. Improved charcoal-burning stoves also offer reductions in indoor air pollution compared to the traditional metal stove, but these are not statistically significant. The greatest reduction in emission concentration is achieved as a result of transition from wood to charcoal where mean emission concentrations drop by 87% during the burning period and by 92% when smoldering as well as large reductions in the median and 75th and 95th percentiles. These results indicate that transition to charcoal, followed by the use of improved wood stoves, are viable options for reduction of human exposure to indoor air pollution in many developing nations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-09-01
This volume describes emission results from sampling of flue-gas from a firetube boiler burning a coal/oil/water (COW) mixture and COW with soda ash added (COW+SA) to control SO/sub 2/ emissions. Measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of the samples to give total flue gas organics in two boiling point ranges, specific quantitation of the semivolatile organic priority pollutant species, and flue gas concentrations of 73 trace elements; Method 5 sampling for total particulate; and controlled condensation system sampling for SO/sub 2/ and SO/sub 3/ emissions.more » Flue-gas SO/sub 2/ emissions decreased almost 99% with soda ash addition from 1,089 to 13.6 ppm (3% O2). NOx emissions decreased slightly from 477 to 427 ppm, while CO emissions increased significantly from an average of 25 to 426 ppm (all at 3% O2). Particulate loading at the boiler outlet almost doubled (from 1,970 to 3,715 pg/dscm) with the additive. The size distribution of particulate also shifted to a much smaller mean diameter. Total organic emissions increased from 6.7 to 13.1 mg/dscm; most of the increase were nonvolatile (C16+) organics. Of the semivolatile organic priority pollutant species, only fluoranthene and phenanthrene were detected with the COW fuel, and phenanthrene with the COW+SA fuel.« less
Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corporan, E.; DeWitt, M.; Klingshirn, Christopher D
2010-01-01
The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch syntheticmore » paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.« less
Characterization of Emissions and Residues from Simulations ...
The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent toxicity testing. A representative crude oil (Bayou Sweet) was burned in ocean-salinity seawater and emissions were collected from the plume by means of a crane-suspended emission sampling platform. A comprehensive array of emissions was characterized, accounting for over 92% by mass of the combustion products even without accounting for H2O. The particulate matter emissions were 70 g/kg (±8.3) of oil consumed, composed of 81% (±8) elemental carbon, and 80% were 1 µm in diameter or less. The particulate matter emissions were strongly light absorbing and had a single scattering albedo of 0.4 (±0.01) at 532 nm. Emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) were approximately 1 g/kg of oil consumed. While the oil burn particles were highly PAH-enriched, less than 30% of the PAHs were particle-bound, the rest being in the gas phase. Formation of polychlorinated dibenzodioxin/dibenzofuran (PCDD/DF) was observed at 1.2 ng toxic equivalency (TEQ)/kg of oil consumed. Analysis of the particles showed the major elements to be Na, S, Cl and Si with no other elements, including metals, exceeding 5 mg/kg oil consumed. The unburned oil mass was 29% of the original crude oil mas
Comprehensive assessment of toxic emissions from coal-fired power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T D; Schmidt, C E; Radziwon, A S
1991-01-01
The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS)more » to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.« less
NASA Astrophysics Data System (ADS)
Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man
2012-06-01
Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.
NASA Astrophysics Data System (ADS)
Ge, C.; Stenhouse, K. J.; Du, K.; Xing, Z.; Norman, A. L.
2016-12-01
Carbonaceous matter is often the dominant contributor to Particulate Matter (PM) which has a significant influence on climate, air quality and human health. The measurement of particulate carbon in rainfall in Calgary, Alberta has not been studied. This study reports the sulfate and the first concentrations of particulate carbon (PC) in rainfall in Calgary. It traces seasonal carbonaceous sources for the purpose of understanding sources for air quality control. Precipitation samples are collected twice a day at the University of Calgary. Thermo-optical methods are used to analyze concentrations of PC, including elemental carbon (EC), primary organic carbon (POC) and secondary organic carbon (SOC). Sulfate concentrations are measured using ion chromatography. In this study, sources from long range transport and local emissions are examined. We emphasized the apportionment of OC/EC in oil and gas emissions and diurnal variations in transportation emissions. Weekly average data for dry deposition were calculated to estimate the scavenging ratio of EC/POC/SOC and ions in precipitation. The results of this study will be presented with an emphasis on the relationship of carbonaceous material and sulfate. A range of apportionment methods have been applied to examine limitations in quantifying SOC in fall.
Atmospheric oxidative chemistry of organic particulate emissions from fuel combustion.
DOT National Transportation Integrated Search
2011-03-25
"Construction and characterization of the University of Vermont Environmental Chamber (UVMEC) : were completed in this last phase of the project. The primary function of the UVMEC is to enable : tropospheric particulate formation and aging studies to...
Chemical composition and sources of atmospheric aerosols at Djougou (Benin)
NASA Astrophysics Data System (ADS)
Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel
2017-06-01
In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.
Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C
2011-01-01
The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeePhD, John; TzanetakisPhD, Tom; Travers, Michael
With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modificationmore » to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.« less
Monitoring the soot emissions of passing cars.
Kurniawan, A; Schmidt-Ott, A
2006-03-15
We report on the first application of a novel fast on-road sensing method for measurement of particulate emissions of individual passing passenger cars. The studywas motivated by the shift of interest from gases to particles in connection with strong adverse health effects. The results correspond very much to findings by Beaton et al. (Science, May 19,1995) for gaseous hydrocarbon and CO emissions: A small percentage of "superpolluters" (here 5%) account for a high percentage (here 43%) of the pollution (here elemental carbon). We estimate that up to 50% of the particulate emissions of vehicles could be avoided on the basis of the present legislation, if on-road monitoring would be applied to enforce maintenance. Our fast sensing method for particles is based on photoelectron emission from the emitted airborne soot particles in combination with a CO2 sensor delivering a reference.
Temperature effects on particulate matter emissions from light-duty, gasoline-powered motor vehicles
The Kansas City Light-Duty Vehicle Emissions study measured exhaust emissions of regulated and unregulated pollutants from over 500 vehicles randomly recruited in the Kansas City metropolitan area in 2004 and 2005. Vehicle emissions testing occurred during the summer and winter, ...
Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan
2016-01-01
Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.
Community air pollution in Canada: a review and predictions for the 1980s.
Bates, D. V.
1979-01-01
The main trends in Canadian air pollution since the national program of surveillance began are reviewed in this paper. In common with the United States, significant improvements in sulfur dioxide and particulate pollution have been recorded in a number of cities after the institution of control measures. However, some areas with a concentration of certain industries still have considerable particulate pollution. Since emission of nitrogen dioxide is increasing in the United States, the consequent photochemical pollution in southern Ontario will probably continue to increase. Nitrogen dioxide concentrations in the air are elevated in some western Canadian cities, presumably because of the presence of plants that burn natural gas to generate electricity and increasing pollution from automobiles. There is increasing concern about community air pollution in cities with large metal-fabricating plants, and community exposure to asbestos fibres is likely to be an important concern in the 1980s. PMID:445269
Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida
NASA Astrophysics Data System (ADS)
1981-05-01
This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.
40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX), carbon monoxide (CO...) Source-specific emission tests; (ii) Mass balance calculations; (iii) Published, verifiable emission...
Particle sizes in slash fire smoke.
David V. Sandberg; Robert E. Martin
1975-01-01
Particulate emissions are the most objectionable atmospheric contaminant from forest burning. Little is known of the particulate sizes, and this research was done under laboratory conditions to obtain particle size information. Comments are made concerning techniques for future work in this field.
Particle or particulate matter is defined as any finely divided solid or liquid material, other than uncombined water, emitted to the ambient air as measured by applicable reference methods, or an equivalent or alternative method, or by a test method specified in 40CFR50.
Secondary aerosol production from agricultural gas precursors
USDA-ARS?s Scientific Manuscript database
Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Increasing evidence from both laboratory and field work suggests that not only does ammonia produce secondary particulate matter, but some volatile org...
Exposure to combustion-derived fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. These effects are especially conspicuous in individuals with pre-existing cardiovascular diseases including hypertension and coronary heart disease...
NASA Astrophysics Data System (ADS)
Kleindienst, Tadeusz E.; Smith, David F.; Hudgens, Edward E.; Snow, Richard F.; Perry, Erica; Claxton, Larry D.; Bufalini, Joseph J.; Black, Francis M.; Cupitt, Larry T.
Dilute mixtures of automobile emissions (comprising 50% exhaust and 50% surrogate evaporative emissions) were irradiated in a 22.7 m 3 smog chamber and tested for mutagenic activity by using a variant of the Ames test. The exhaust was taken from a single vehicle, a 1977 Ford Mustang equipped with a catalytic converter. Irradiated and nonirradiated gas-phase emissions were used in exposures of the bacteria, Salmonella typhimurium, strains TA100 and TA98. A single set of vehicular operating conditions was used to perform multiple exposures. The mutagenic activities of extracts from the particulate phase were also measured with the standard plate incorporation assay. (In most experiments only direct-acting mutagenic compounds were measured.) The gas-phase data for TA100 and TA98 showed increased activity for the irradiated emissions when compared to the nonirradiated mixture, which exhibited negligible activity with respect to the control values. The particulate phase for both the irradiated and nonirradiated mixtures showed negligible activity when results were compared to the control values for both strains. However, the experimental conditions limited the amount of extractable mass which could be collected in the particulate phase. The measured activities from the gas phase and particulate phase were converted to the number of revertants per cubic meter of effluent (i.e. the mutagenic density) to compare the contributions of each of these phases to the total mutagenic activity for each strain. Under the experimental conditions of this study, the mutagenic density of the gas-phase component of the irradiated mixture contributed approximately two orders of magnitude more of the total TA100 activity than did the particulate phase. For TA98 the gas-phase component contributed approximately one order of magnitude more. However, caution must be exercised in extrapolating these results to urban atmospheres heavily impacted by automotive emissions, because the bacterial mutagenicity assay was used as a screening method, and additional assays using mammalian systems have not yet been conducted. In addition, only limited number of conditions were able to be tested. The significance and limitations of the results are discussed.
Breathing easier? The known impacts of biodiesel on air quality
Traviss, Nora
2013-01-01
Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a ‘green’, more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure – defined in this instance as human contact with tailpipe emissions – is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health. PMID:23585814
NASA Astrophysics Data System (ADS)
Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.
2015-12-01
Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.
EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES
A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...
40 CFR 62.8105 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Gases, Organic Compounds, Particulates and Nitrogen Oxide Emissions from Existing Hospital/medical..., 1999. [64 FR 43094, Aug. 9, 1999] Air Emissions From Existing Commercial and Industrial Solid Waste...
40 CFR 86.094-3 - Abbreviations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Petroleum Gas NMHC—Nonmethane Hydrocarbons NMHCE—Non-Methane Hydrocarbon Equivalent PM—Particulate Matter...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission...
40 CFR 86.094-3 - Abbreviations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Petroleum Gas NMHC—Nonmethane Hydrocarbons NMHCE—Non-Methane Hydrocarbon Equivalent PM—Particulate Matter...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission...
40 CFR 86.094-3 - Abbreviations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Petroleum Gas NMHC—Nonmethane Hydrocarbons NMHCE—Non-Methane Hydrocarbon Equivalent PM—Particulate Matter...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission...
40 CFR 86.094-3 - Abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Petroleum Gas NMHC—Nonmethane Hydrocarbons NMHCE—Non-Methane Hydrocarbon Equivalent PM—Particulate Matter...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission...
40 CFR 86.094-3 - Abbreviations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Petroleum Gas NMHC—Nonmethane Hydrocarbons NMHCE—Non-Methane Hydrocarbon Equivalent PM—Particulate Matter...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission...
Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.
Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry
2018-05-15
Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurek, M.A.; Hildemann, L.M.; Cass, G.R.
1990-04-01
Extractable organic compounds having between 6 to 40 carbon atoms comprise an important mass fraction of the fine particulate matter samples from major urban emission sources. Depending on the emission source type, this solvent-soluble fraction accounts for <20% to 100% of the total organic aerosol mass, as measured by quantitative high-resolution has chromatography (HRGC) with flame ionization detection. In addition to total extract quantitation, HRGC can be applied to further analyses of the mass distributions of elutable organics present in the complex aerosol extract mixtures, thus generating profiles that serve as fingerprints'' for the sources of interest. This HRGC analyticalmore » method is applied to emission source samples that contain between 7 to 12,000 {mu}g/filter organic carbon. It is shown to be a sensitive technique for analysis of carbonaceous aerosol extract mixtures having diverse mass loadings and species distributions. This study describes the analytical chemical methods that have been applied to: the construction of chemical mass balances based on the mass of fine organic aerosol emitted for major urban sources of particulate carbon; and the generation of discrete emission source chemical profiles derived from chromatographic characteristics of the organic aerosol components. 21 refs., 1 fig., 2 tabs.« less
Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality.
Erdakos, Garnet B; Bhave, Prakash V; Pouliot, George A; Simon, Heather; Mathur, Rohit
2014-11-04
Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissions and alter the emissions of carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) species, including several hazardous air pollutants (HAPs). To predict their net effect on regional air quality, we review the emissions literature and develop a multipollutant inventory for a hypothetical scenario in which nCe additives are used in all on-road and nonroad diesel vehicles. We apply the Community Multiscale Air Quality (CMAQ) model to a domain covering the eastern U.S. for a summer and a winter period. Model calculations suggest modest decreases of average PM2.5 concentrations and relatively larger decreases in particulate elemental carbon. The nCe additives also have an effect on 8 h maximum ozone in summer. Variable effects on HAPs are predicted. The total U.S. emissions of fine-particulate cerium are estimated to increase 25-fold and result in elevated levels of airborne cerium (up to 22 ng/m3), which might adversely impact human health and the environment.
40 CFR 62.9350 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plan was officially submitted as follows: (1) Control of fluoride emissions from phosphate fertilizer... August 9, 1982. (4) Control of metals, acid gases, organic compounds and nitrogen oxide emissions from..., organic compounds, particulates and nitrogen oxide emissions from existing Hospital/Medical/Infectious...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... has withdrawn its May 30, 2008 adequacy finding of the 2010 particulate matter of ten microns or less... particulate matter of ten microns or less (PM-10) motor vehicle emission budget (MVEB) for the Maricopa County...
30 CFR 72.500 - Emission limits for permissible diesel-powered equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... underground coal mine after May 21, 2001 must emit no more than 2.5 grams per hour of diesel particulate... underground area of an underground coal mine must emit no more than 2.5 grams per hour of diesel particulate...
30 CFR 72.500 - Emission limits for permissible diesel-powered equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... underground coal mine after May 21, 2001 must emit no more than 2.5 grams per hour of diesel particulate... underground area of an underground coal mine must emit no more than 2.5 grams per hour of diesel particulate...
30 CFR 72.500 - Emission limits for permissible diesel-powered equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... underground coal mine after May 21, 2001 must emit no more than 2.5 grams per hour of diesel particulate... underground area of an underground coal mine must emit no more than 2.5 grams per hour of diesel particulate...
30 CFR 72.500 - Emission limits for permissible diesel-powered equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... underground coal mine after May 21, 2001 must emit no more than 2.5 grams per hour of diesel particulate... underground area of an underground coal mine must emit no more than 2.5 grams per hour of diesel particulate...
USDA-ARS?s Scientific Manuscript database
Agricultural emissions impact particulate mass concentrations through both primary and secondary processes. Evidence from laboratory and field work suggest that not only does ammonia produce secondary particulate matter, but nitrogen and sulfur containing volatile organic compounds also contribute. ...