Sample records for particulate filtration efficiency

  1. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE PAGES

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...

    2018-01-03

    The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  2. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla

    The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  3. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla

    The state-of-the-art multiscale modeling of GPFs including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtration on a singlemore » channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. The microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  4. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    PubMed

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  5. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J [Grand Forks, ND; Zhuang, Ye [Grand Forks, ND; Almlie, Jay C [East Grand Forks, MN

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  6. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  7. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Experimental study on filtration and continuous regeneration of a particulate filter system for heavy-duty diesel engines.

    PubMed

    Tang, Tao; Zhang, Jun; Cao, Dongxiao; Shuai, Shijin; Zhao, Yanguang

    2014-12-01

    This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst (DOC) and a catalyzed diesel particulate filter (CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for continuous regeneration. The filtration efficiency on solid particle number (SPN) was close to 100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was sensitively influenced by the variation of the soot loading. This phenomenon provides a method for determining the balance point temperature by measuring the trend of SPN concentration. Copyright © 2014. Published by Elsevier B.V.

  9. EVALUATION OF FOUR NOVEL FINE PARTICULATE COLLECTION DEVICES

    EPA Science Inventory

    The report gives results of an experimental performance evaluation of four novel fine particulate control devices: the Johns-Manville Cleanable High-Efficiency Air Filtration (CHEAF) System, the APS Electrostatic Scrubber, the APS Electrotube, and the TRW Charged Droplet Scrubber...

  10. Evaluating the Long-Term Health and Economic Impacts of Central Residential Air Filtration for Reducing Premature Mortality Associated with Indoor Fine Particulate Matter (PM2.5) of Outdoor Origin

    PubMed Central

    Zhao, Dan; Azimi, Parham; Stephens, Brent

    2015-01-01

    Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002–2.5% and increase life expectancy by 0.02–1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location. PMID:26197328

  11. Evaluating the Long-Term Health and Economic Impacts of Central Residential Air Filtration for Reducing Premature Mortality Associated with Indoor Fine Particulate Matter (PM2.5) of Outdoor Origin.

    PubMed

    Zhao, Dan; Azimi, Parham; Stephens, Brent

    2015-07-21

    Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002-2.5% and increase life expectancy by 0.02-1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location.

  12. High-Temperature Particulate Matter Filtration with Resilient Yttria-Stabilized ZrO2 Nanofiber Sponge.

    PubMed

    Wang, Haolun; Lin, Sen; Yang, Shen; Yang, Xudong; Song, Jianan; Wang, Dong; Wang, Haiyang; Liu, Zhenglian; Li, Bo; Fang, Minghao; Wang, Ning; Wu, Hui

    2018-05-01

    Particulate matter (PM) is a major air pollutant in many regions, jeopardizing ecosystems and public health. Filtration at pollutant source is one of the most important ways to protect the environment, however, considering the high-temperature exhaust gas emissions, effective removal of PM and related pollutants from their sources remains a major challenge. In this study, a resilient, heat-resisting, and high-efficiency PM filter based on yttria-stabilized ZrO 2 (YSZ) nanofiber sponge produced with a scalable solution blow spinning process is reported. The porous 3D sponge composed of YSZ nanofibers is lightweight (density of 20 mg cm -3 ) and resilient at both room temperature and high temperatures. At room-temperature conditions, the YSZ nanofiber sponge exhibits 99.4% filtration efficiency for aerosol particles with size in the range of 20-600 nm, associated with a low pressure drop of only 57 Pa under an airflow velocity of 4.8 cm s -1 . At a high temperature of 750 °C, the ceramic sponge maintains a high filtration efficiency of 99.97% for PM 0.3-2.5 under a high airflow velocity of 10 cm s -1 . A practical vehicle exhaust filter to capture particles with filtration efficiency of >98.3% is also assembled. Hence, the YSZ nanofiber sponge has enormous potential to be applied in industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  14. Experimental investigation of the effect of inlet particle properties on the capture efficiency in an exhaust particulate filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Sandeep; Rothamer, David; Zelenyuk, Alla

    The impact of inlet particle properties on the filtration performance of clean and particulate matter (PM) laden cordierite filter samples was evaluated using PM generated by a spark-ignition direct-injection (SIDI) engine fuelled with tier II EEE certification gasoline. Prior to the filtration experiments, a scanning mobility particle spectrometer (SMPS) was used to measure the electrical-mobility based particle size distribution (PSD) in the SIDI exhaust from distinct engine operating conditions. An advanced aerosol characterization system that comprised of a centrifugal particle mass analyser (CPMA), a differential mobility analyser (DMA), and a single particle mass spectrometer (SPLAT II) was used to obtainmore » additional information on the SIDI particulate, including particle composition, mass, and dynamic shape factors (DSFs) in the transition () and free-molecular () flow regimes. During the filtration experiments, real-time measurements of PSDs upstream and downstream of the filter sample were used to estimate the filtration performance and the total trapped mass within the filter using an integrated particle size distribution method. The filter loading process was paused multiple times to evaluate the filtration performance in the partially loaded state. The change in vacuum aerodynamic diameter () distribution of mass-selected particles was examined for flow through the filter to identify whether preferential capture of particles of certain shapes occurred in the filter. The filter was also probed using different inlet PSDs to understand their impact on particle capture within the filter sample. Results from the filtration experiment suggest that pausing the filter loading process and subsequently performing the filter probing experiments did not impact the overall evolution of filtration performance. Within the present distribution of particle sizes, filter efficiency was independent of particle shape potentially due to the diffusion-dominant filtration process. Particle mobility diameter and trapped mass within the filter appeared to be the dominant parameters that impacted filter performance.« less

  15. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    PubMed

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.

  16. Filter-based control of particulate matter from a lean gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less

  17. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  18. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Drop Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  19. Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  20. Allergy-Proof Your House

    MedlinePlus

    ... small-particle or high-efficiency particulate air (HEPA) filter. Shampoo the carpet frequently. Curtains and blinds. Use ... dander they shed. Air filtration. Choose an air filter that has a small-particle or HEPA filter. ...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottney, T.C.

    Filtration systems that are incorrectly selected, installed and maintained can cause excessive particulates in occupied spaces. This article describes how to identify and correct problems. Particulate matter can be removed from ventilation air at several sites within a building. These sites include: on heat exchanger surfaces; inside ductwork, ceiling tiles and diffusers; and in the air filter. The cost associated with removing these unwanted contaminants is unavoidable. However, this removal cost varies depending on where the particulates have been deposited. Not all particulates that are generated by work-related activities are transported to the filter bank by return air currents beforemore » being deposited on other surfaces. Accordingly, walls still have to be repainted at varying intervals and carpeting vacuumed. Ceiling tiles will discolor at a rate that is influenced by their texture, the air outlet velocity, the amount of dirt in the ventilation air and how much contaminant is being generated in the room. It is estimated that 15% of ventilation air escapes the air filtration process. This leakage results in higher utility, janitorial and redecorating costs as well as contributing to employee absenteeism. When building management does not prevent it, air-conditioning coils and ductwork become an unintended part of the building's air filtration system. In time, this is much more expensive both in energy and cleaning costs than the steps available to keep them clean. Good particulate control can lower the total cost of building operation. However, a building operator may not have to upgrade to a higher efficiency filter to achieve higher system efficiency. Simply eliminating the source of leaks and better management of the existing filters may be all that is necessary.« less

  2. Effects of MERV 16 filters and routine work practices on enclosed cabs for reducing respirable dust and DPM exposures in an underground limestone mine

    PubMed Central

    Noll, J.D.; Cecala, A.B.; J.A.Organiscak; Rider, J.P.

    2015-01-01

    An effective technique to minimize miners’ respirable dust and diesel exposure on mobile mining equipment is to place mine operators in enclosed cabs with designed filtration and pressurization systems. Many factors affect the performance of these enclosed cab systems, and one of the most significant factors is the effectiveness of the filtration system. High-efficiency particulate air (HEPA)-type filters are typically used because they are highly efficient at capturing all types and sizes of particles, including those in the submicron range such as diesel particulate matter (DPM). However, in laboratory tests, minimum efficiency reporting value (MERV) 16 filters have proven to be highly efficient for capturing DPM and respirable dust. Also, MERV 16 filters can be less restrictive to cab airflow and less expensive than HEPA filters. To verify their effectiveness in the field, MERV 16 filters were used in the enclosed cab filtration system on a face drill and roof bolting mining machine and tested at an underground limestone mine. Test results showed that DPM and respirable dust concentrations were reduced by more than 90% when the cabs were properly sealed. However, when the cab door was opened periodically throughout the shift, the reduction efficiency of the MERV 16 filters was reduced to 80% on average. PMID:26236044

  3. Achieving 'excellent' indoor air quality in commercial offices equipped with air-handling unit--respirable suspended particulate.

    PubMed

    Lam, K S; Chan, F S; Fung, W Y; Lui, B S S; Lau, L W L

    2006-04-01

    A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.

  4. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  5. Buses retrofitting with diesel particle filters: Real-world fuel economy and roadworthiness test considerations.

    PubMed

    Fleischman, Rafael; Amiel, Ran; Czerwinski, Jan; Mayer, Andreas; Tartakovsky, Leonid

    2018-05-01

    Retrofitting older vehicles with diesel particulate filter (DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%-1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23-560nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency. Copyright © 2017. Published by Elsevier B.V.

  6. Life Support Filtration System Trade Study for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  7. Filter Efficiency and Leak Testing of Returned ISS Bacterial Filter Elements After 2.5 Years of Continuous Operation

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    The atmosphere revitalization equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provides the vital functions of maintaining a habitable environment for the crew as well as protecting the hardware from fouling by suspended particulate matter. Providing these functions are challenging in pressurized spacecraft cabins because no outside air ventilation is possible and a larger particulate load is imposed on the filtration system due to lack of sedimentation in reduced gravity conditions. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) filters deployed at multiple locations in each module. These filters are referred to as Bacteria Filter Elements (BFEs). As more experience has been gained with ISS operations, the BFE service life, which was initially one year, has been extended to two to five years, dependent on the location in the U.S. Segment. In previous work we developed a test facility and test protocol for leak testing the ISS BFEs. For this work, we present results of leak testing a sample set of returned BFEs with a service life of 2.5 years, along with particulate removal efficiency and pressure drop measurements. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS to 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  8. Forced-air warming design: evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions.

    PubMed

    Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C

    2013-08-01

    Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.

  9. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Wong, Victor

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less

  10. Penetration of diesel exhaust particles through commercially available dust half masks.

    PubMed

    Penconek, Agata; Drążyk, Paulina; Moskal, Arkadiusz

    2013-04-01

    Half masks are certified by the competent, national institutions--National Institute for Occupational Safety and Health (NIOSH) in the USA and the respective European national institutions applying common European regulations. However, certification testing is conducted with particles of NaCl, paraffin oil, or dioctyl phthalate (DOP) and at the constant flow rate, whereas particles commonly found in workplaces may differ in size, shape, and morphology from these particles. Therefore, the aim of this study was to investigate filtration efficiency of commercially available filtering facepiece half masks under the condition of exposure to diesel fumes. In this study, we focused on the particulate phase [diesel exhaust particles (DEP)] of three (petroleum diesel, ecodiesel, and biodiesel) diesel fuel combustion types. Two types of European standard-certified half masks, FFP2 and FFP - Filtering Facepiece, and three types of popular diesel fuels were tested. The study showed that the filtration efficiencies for each examined half mask and for each of diesel exhaust fumes were lower than the minimum filtration efficiency required for the standard test aerosols by the European standards. For FFP2 and FFP3 particulate half masks, standard minimum filtration efficiency is 94 and 99%, respectively, whereas 84-89% of mass of DEP from various fuels were filtered by the tested FFP2 and only 75-86% by the FFP3. The study indicated that DEP is more penetrating for these filters than the standard salt or paraffin oil test aerosols. The study also showed that the most penetrating DEP are probably in the 30- to 300-nm size range, regardless of the fuel type and the half-mask model. Finally, the pressure drops across both half masks during the 80-min tests remained below an acceptable maximum of breathing resistance-regardless of the fuel types. The respiratory system, during 40-min test exposures, may be exposed to 12-16mg of DEP if a FFP2 or FFP3 particulate half mask is used. To conclude, commercially available half masks may not ensure a sufficient level of protection of the respiratory tract against diesel exhaust fumes.

  11. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    PubMed

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  12. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    PubMed Central

    Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862

  13. Impact of the air filtration on indoor particle concentration by using combination filters in offices building

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.

  14. TEST QA PLAN FOR THE VERIFICATION TESTING OF BAGHOUSE FILTRATION PRODUCTS

    EPA Science Inventory

    Baghouses and their accompanying filter media are a leading particulate control technique for industrial sources. Increasingly emphasis on higher removal efficiencies has helped the baghouse to be even more competitive when compared to other control devices. At present there is n...

  15. Combined use of an electrostatic precipitator and a high-efficiency particulate air filter in building ventilation systems: Effects on cardiorespiratory health indicators in healthy adults.

    PubMed

    Day, D B; Xiang, J; Mo, J; Clyde, M A; Weschler, C J; Li, F; Gong, J; Chung, M; Zhang, Y; Zhang, J

    2018-05-01

    High-efficiency particulate air (HEPA) filtration in combination with an electrostatic precipitator (ESP) can be a cost-effective approach to reducing indoor particulate exposure, but ESPs produce ozone. The health effect of combined ESP-HEPA filtration has not been examined. We conducted an intervention study in 89 volunteers. At baseline, the air-handling units of offices and residences for all subjects were comprised of coarse, ESP, and HEPA filtration. During the 5-week long intervention, the subjects were split into 2 groups, 1 with just the ESP removed and the other with both the ESP and HEPA removed. Each subject was measured for cardiopulmonary risk indicators once at baseline, twice during the intervention, and once 2 weeks after baseline conditions were restored. Measured indoor and outdoor PM 2.5 and ozone concentrations, coupled with time-activity data, were used to calculate exposures. Removal of HEPA filters increased 24-hour mean PM 2.5 exposure by 38 (95% CI: 31, 45) μg/m 3 . Removal of ESPs decreased 24-hour mean ozone exposure by 2.2 (2.0, 2.5) ppb. No biomarkers were significantly associated with HEPA filter removal. In contrast, ESP removal was associated with a -16.1% (-21.5%, -10.4%) change in plasma-soluble P-selectin and a -3.0% (-5.1%, -0.8%) change in systolic blood pressure, suggesting reduced cardiovascular risks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Straight-Pore Microfilter with Efficient Regeneration

    NASA Technical Reports Server (NTRS)

    Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.

    2010-01-01

    A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Huifang; Lam, William; Remias, Joseph

    Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less

  18. Magnetically Enhanced Solid-Liquid Separation

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  19. Invasive aspergillosis in severely neutropenic patients over 18 years: impact of intranasal amphotericin B and HEPA filtration.

    PubMed

    Withington, S; Chambers, S T; Beard, M E; Inder, A; Allen, J R; Ikram, R B; Schousboe, M I; Heaton, D C; Spearing, R I; Hart, D N

    1998-01-01

    The impact of intranasal amphotericin B and high-efficiency particulate air (HEPA) filtration on the incidence of invasive aspergillosis was reviewed in patients from 1977 to 1994 undergoing intensive chemotherapy. Overall, the incidence of proven invasive aspergillosis was reduced from 24.4% (1977-1984) to 7.1% (1985-1991) (P < 0.001) following the introduction of intranasal prophylaxis, but when probable cases of aspergillosis were included and lymphoma cases excluded, there was no change in incidence. Following the introduction of HEPA filtration, patient exposure to aspergillus spores as measured by air sampling was markedly reduced and there were no new cases of invasive aspergillosis. HEPA filtration proved effective in reducing invasive aspergillosis and has allowed increasingly aggressive treatment regimens to be introduced.

  20. Influence of Acidification on the Partitioning of Steroid Hormones among Filtrate, Filter Media, and Retained Particulate Matter.

    PubMed

    Havens, Sonya M; Hedman, Curtis J; Hemming, Jocelyn D C; Mieritz, Mark G; Shafer, Martin M; Schauer, James J

    2016-09-01

    Hormone contamination of aquatic systems has been shown to have deleterious effects on aquatic biota. However, the assessment of hormone contamination of aquatic environments requires a quantitative evaluation of the potential effects of sample preservation on hormone concentrations. This study investigated the influence of acidification (pH 2) of surface water samples on the partitioning of hormones among filtrate, filter media, and filter-retained particulate matter. Hormones were spiked into unpreserved and sulfuric acid-preserved ultrapure water and surface water runoff samples. The samples were filtered, and hormones were extracted from the filter and filtrate and analyzed by high-performance liquid chromatography. Acidification did not influence the partitioning of hormones onto the filter media. For the majority of the hormones investigated in this study, the partitioning of hormones to the filter-retained particulate matter was not influenced by acidification. Acidification increased the partitioning of progesterone and melengestrol acetate onto the retained particulate matter (about 25% for both analytes). Incorporation of an isotopically labeled internal standard (ISTD) for progesterone accounted for the loss of progesterone to the filter-retained particulates and resulted in accurate concentrations of progesterone in the filtrate. The incorporation of an ISTD for melengestrol acetate, however, was unable to account for the loss of melengestrol acetate to the retained particulates and resulted in underestimations of melengestrol acetate in the filtrate. Our results indicate that the analysis of melengestrol acetate in acid preserved surface runoff samples should be conducted on the filter-retained particulates as well as the filtrate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. CRADA opportunities in removal of particulates from hot-gas streams by filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D H

    1995-06-01

    Our analyses of samples and operating data from the Pressurized Fluidized Bed Combustion (PFBC), cyclone, and filtration units of the Tidd Clean Coal demonstration facility show that calcined dolomitic sorbent reacted with SO{sub 2} (and O{sub 2}) to form Sulfates (CaSO{sub 4} and CaMgn [SO{sub 4}]n+1) not only in the PFBC bed, but also in the filtration vessel. Analyses of limited data from the journal literature suggest that the filter-vessel reactions may have produced sulfate {open_quotes}necks,{close_quotes} which bonded the particles together, thus substantially increasing the critical angle of repose and shear tensile strengths of the filtered powders. This proposed mechanismmore » rationalizes the {open_quotes}bridging{close_quotes} and other particle-accumulation problems that caused filter breakage. Engineering services potentially available to resolve these problems include elucidation and modeling of ex-situ and in-situ filter-vessel chemistry, measurement and modeling of particulate materials properties, and measurement and modeling of cleaning back-pulse aerodynamics and cleaning efficiencies.« less

  2. High Efficiency Particulate Air (HEPA) Filter Generation, Characterization, and Disposal Experiences at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, D. E.

    2002-02-28

    High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less

  3. Results of the Particulate Contamination Control Trade Study for Space Suit Life Support Development

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Conger, Bruce; Paul, Heather L.

    2009-01-01

    As the United States plans to return astronauts to the moon and eventually to Mars, designing the most effective, efficient, and robust space suit life support system that will operate successfully in these dusty environments is vital. There is some knowledge of the contaminants and level of infiltration expected from the Lunar and Mars dust, however risk mitigation strategies and filtration designs to prevent contamination within the space suit life support system are still undefined. A trade study was initiated to identify and address these concerns, and to develop new requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS). This trade study investigates historical methods of particulate contamination control in space suits and vehicles, and evaluated the possibility of using commercial technologies for this application. In addition, the trade study examined potential filtration designs. This paper summarizes the results of this trade study.

  4. Transparent Nanofibrous Mesh Self-Assembled from Molecular LEGOs for High Efficiency Air Filtration with New Functionalities.

    PubMed

    Singh, Varun Kumar; Ravi, Sai Kishore; Sun, Wanxin; Tan, Swee Ching

    2017-02-01

    Alarming levels of particulate matter pollution in air pose a serious health threat in several countries, therefore intriguing a strong need for an economic and a viable technology of air filtration. Current air purification technology is rather expensive with certain types even having the risk of emitting hazardous by-products. The authors have developed a multifunctional air filter inspired from the nasal hairs possessing an ability to specifically trap/exhale the foreign particles and allergens while still letting the air flow. This design is achieved by introducing different functionalities at different dimensional scale employing a bottom-up approach starting with an organic molecule which is further self-organized to form nanoparticles and ultimately to a nanofibrous mesh. While the molecular building block inherently possesses the property of shielding Ultraviolet (UV) rays, the nanofibrous mesh built up from it aids in trapping the particulate matter while maintaining good air flow. By controlling the concentration of the organic molecule, the formation of fibers has been enabled in the nanoscale regime to obtain high particle-capture possibilities. The self-assembled nanofibrous filter thus designed has achieved a high filtration efficiency of ≈90% for the PM 2.5 particle in congruence with the ability to block the harmful UV radiations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reducing indoor air pollutants with air filtration units in wood stove homes.

    PubMed

    McNamara, Marcy L; Thornburg, Jonathon; Semmens, Erin O; Ward, Tony J; Noonan, Curtis W

    2017-08-15

    Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM 2.5 ) and coarse (particles with aerodynamic diameters <10μm and >2.5μm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM 2.5 , PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM 2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). These findings support the use of high efficiency air filtration units for reducing indoor PM 2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel. Copyright © 2017. Published by Elsevier B.V.

  6. Environmental Technology Verification, Baghouse Filtration Products TTG Inc., TG800 Filtration Media (Tested August 2012)

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  7. Donaldson Company, Inc., Dura-Life #0701607 Filtration Media(Tested October 2011) (ETV Baghouse Filtration Products) Verification Report

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  8. Environmental Technology Verification; Baghouse Filtration Products TTG Inc., TG100 Filtration Media (Tested August 2012)

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  9. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration.

    PubMed

    Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee

    2017-10-17

    Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.

  10. Novel Particulate Air-Filtration Media: Market Survey

    DTIC Science & Technology

    2013-02-01

    efficiencies up to 99.999% (0.001% penetration) using two solid-state laser photometers to measure aerosol concentration levels up and downstream of...MN) Tetratex, Ultra-Web, Spider-Web, Dura-Life, Fiber-Web, and Syntek XP DuPont (Wilmington, DE) Spunbond Polypropylene , Nomex KD, and Hybrid...nanofiber technology. The meltblown textiles can be manufactured using polypropylene , polyamides, polylactic acid and biodegradable polymers

  11. A new installation for treatment of road runoff: up-flow filtration by porous polypropylene media.

    PubMed

    Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T; Tanaka, Y

    2005-01-01

    We installed a new device on a paved road to treat runoff from a roadway surface. All the stormwater runoff was transferred into the device and the runoff equivalent to 10 mm/hr or less was treated. The treatment method consists of sedimentation and up-flow filtration with porous polypropylene (PPL) processes. The treated runoff was discharged into the existing storm drainage pipe. The average removal efficiency of the initial runoff at the beginning of rainfall which has high pollution intensity was about 90% for SS, about 70% for COD, about 40% for total phosphorus (T-P), about 80% for Pb and Cd, about 70% for Zn, Cu, Mn and Cr, and about 60% for polycyclic aromatic hydrocarbons (PAHs). The overall removal efficiencies of the experiment that ran for four months remained > 60% of SS, > 40% of COD, > 60% of heavy metals, and > 40% of PAHs. The PPL is excellent for removing smaller size particulates of suspended solids, which originate basically from diesel exhaust, as well as larger size particulates from automobile tires, asphalt roads, and other accumulated source(s) of clay and sand, etc.

  12. Development of Test Protocols for International Space Station Particulate Filters

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Vijayakumar, R.; Agui, Juan H.

    2014-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High- Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. Over the years, the service life of these filters has been re-evaluated based on limited post-flight tests of returned filters and risk factors. On earth, a well designed and installed HEPA filter will last for several years, e.g. in industrial and research clean room applications. Test methods for evaluating these filters are being developed on the basis of established test protocols used by the industry and the military. This paper will discuss the test methods adopted and test results on prototypes of the ISS filters. The results will assist in establishing whether the service life can be extended for these filters. Results from unused filters that have been in storage will also be presented to ascertain the shelf life and performance deterioration, if any and determine if the shelf life may be extended.

  13. Shuttle filter study. Volume 1: Characterization and optimization of filtration devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A program to develop a new technology base for filtration equipment and comprehensive fluid particulate contamination management techniques was conducted. The study has application to the systems used in the space shuttle and space station projects. The scope of the program is as follows: (1) characterization and optimization of filtration devices, (2) characterization of contaminant generation and contaminant sensitivity at the component level, and (3) development of a comprehensive particulate contamination management plane for space shuttle fluid systems.

  14. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  15. Further evaluation of alternative air-filtration systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol

    PubMed Central

    Deen, John; Cano, Jean Paul; Batista, Laura; Pijoan, Carlos

    2006-01-01

    Abstract The purpose of this study was to compare 4 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, 2×-low-cost filtration, bag filtration, and use of a filter tested against particles derived from dioctylphthalate (DOP). The HEPA-filtration system used a prefilter screen, a bag filter (Eurovent [EU] 8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (prefilter), 2 fiberglass furnace filters, and 2 electrostatic furnace filters. Bag filtration involved the use of a filter rated EU8 and a minimum efficiency reporting value (MERV) of 14. The 95%-DOP, 0.3-μm-filtration system involved a pleat-in-pleat V-bank disposable filter with a 95% efficiency rating for particles 0.3 μm or greater in diameter and ratings of EU9 and MERV 15. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct containing the treatments. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 0 of the 10 HEPA-filtration replicates, 2 of the 10 bag-filtration replicates, 4 of the 10 low-cost-filtration replicates, 0 of the 10 95%-DOP, 0.3-μm-filtration replicates, and all 10 of the control replicates. Using a similar approach, we further evaluated the HEPA- and 95%-DOP, 0.3-μm-filtration systems. Infection was not observed in any of the 76 HEPA-filtration replicates but was observed in 2 of the 76 95%-DOP, 0.3-μm replicates and 42 of the 50 control replicates. Although the difference between the 95%-DOP, 0.3-μm and control replicates was significant (P < 0.0005), so was the level of failure of the 95%-DOP, 0.3-μm system (P = 0.02). In conclusion, under the conditions of this study, some methods of air filtration were significantly better than others in reducing aerosol transmission of PRRSV, and HEPA filtration was the only system that completely prevented transmission. PMID:16850938

  16. Environmental Technology Verification Report and Statement for Baghouse Filtration Products, W. L. Gore & Associates, Inc. 5117 High Durability PPS Laminate Filtration Media (Tested March-April 2012)

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  17. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.« less

  18. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of dust particles on the filter surface and to facilitate dust removal with pulse or back airflow.

  19. Analysis of contaminants in factor VIII preparations administered to patients with hemophilia.

    PubMed Central

    Rock, G. A.; Farrah, G.; Rozon, G.; Smiley, R. K.; Cole, R.; Villeneuve, D.; Tittley, P.

    1983-01-01

    Cryoprecipitate and the more purified factor VIII concentrates are all heterogeneous preparations that contain not only a high concentration of factor VIII but also various other materials, some of which might be injurious, causing liver damage after long-term exposure. The efficiency of three standard cryoprecipitate filters, two microaggregate filters and the appropriate factor VIII concentrate filters in reducing the amount of particulate matter delivered to the patient was assessed. Filtration of cryoprecipitate through the standard filters removed less than 20% of the contaminating microaggregates and very few of the large number of intact platelets, although the total dose of factor VIII was delivered. Microaggregate filters were no better in reducing the platelet contamination, although the total number of particles delivered was halved. However, 25% of the factor VIII was retained in the bed volume of the filter. The concentrate preparations also contained significant amounts of particulate matter that was unrelated to factor VIII and was not removed following filtration through the designated filter. These findings indicate that a new filter should be developed for administration of factor VIII concentrate that would remove the particulate matter while delivering all of the factor VIII to the patient. Images FIG. 1 FIG. 2 FIG. 3 FIG. 5 PMID:6401585

  20. 20. View of sand filtration bed. Wheelbarrow was used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  1. An indoor air filtration study in homes of elderly: cardiovascular and respiratory effects of exposure to particulate matter

    PubMed Central

    2013-01-01

    Background Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction. Methods We examined potential beneficial effects of indoor air filtration in the homes of elderly, including people taking vasoactive drugs. Forty-eight nonsmoking subjects (51 to 81 years) in 27 homes were included in this randomized, double-blind, crossover intervention study with consecutive two-week periods with or without the inclusion of a high-efficiency particle air filter in re-circulating custom built units in their living room and bedroom. We measured blood pressure, microvascular and lung function and collected blood samples for hematological, inflammation, monocyte surface and lung cell damage markers before and at day 2, 7 and 14 during each exposure scenario. Results The particle filters reduced the median concentration of PM2.5 from approximately 8 to 4 μg/m3 and the particle number concentration from 7669 to 5352 particles/cm3. No statistically significant effects of filtration as category were observed on microvascular and lung function or the biomarkers of systemic inflammation among all subjects, or in the subgroups taking (n = 11) or not taking vasoactive drugs (n = 37). However, the filtration efficacy was variable and microvascular function was within 2 days significantly increased with the actual PM2.5 decrease in the bedroom, especially among 25 subjects not taking any drugs. Conclusion Substantial exposure contrasts in the bedroom and no confounding by drugs appear required for improved microvascular function by air filtration, whereas no other beneficial effect was found in this elderly population. PMID:24373585

  2. Constraints on the utility of MnO2 cartridge method for the extraction of radionuclides: A case study using 234Th

    USGS Publications Warehouse

    Baskaran, M.; Swarzenski, P.W.; Biddanda, B.A.

    2009-01-01

    [1] Large volume (102-103 L) seawater samples are routinely processed to investigate the partitioning of particle reactive radionuclides and Ra between solution and size-fractionated suspended particulate matter. One of the most frequently used methods to preconcentrate these nuclides from such large volumes involves extraction onto three filter cartridges (a prefilter for particulate species and two MnO2-coated filters for dissolved species) connected in series. This method assumes that the extraction efficiency is uniform for both MnO2-coated cartridges, that no dissolved species are removed by the prefilter, and that any adsorbed radionuclides are not desorbed from the MnO2-coated cartridges during filtration. In this study, we utilized 234Th-spiked coastal seawater and deionized water to address the removal of dissolved Th onto prefilters and MnO2-coated filter cartridges. Experimental results provide the first data that indicate (1) a small fraction of dissolved Th (<6%) can be removed by the prefilter cartridge; (2) a small fraction of dissolved Th (<5%) retained by the MnO2 surface can also be desorbed, which undermines the assumption of uniform extraction efficiency for Th; and (3) the absolute and relative extraction efficiencies can vary widely. These experiments provide insight on the variability of the extraction efficiency of MnO 2-coated filter cartridges by comparing the relative and absolute efficiencies and recommend the use of a constant efficiency on the combined activity from two filter cartridges connected in series for future studies of dissolved 234Th and other radionuclides in natural waters using sequential filtration/extraction methods. ?? 2009 by the American Geophysical Union.

  3. Water reuse systems: A review of the principal components

    USGS Publications Warehouse

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    Principal components of water reuse systems include ammonia removal, disease control, temperature control, aeration, and particulate filtration. Effective ammonia removal techniques include air stripping, ion exchange, and biofiltration. Selection of a particular technique largely depends on site-specific requirements (e.g., space, existing water quality, and fish densities). Disease control, although often overlooked, is a major problem in reuse systems. Pathogens can be controlled most effectively with ultraviolet radiation, ozone, or chlorine. Simple and inexpensive methods are available to increase oxygen concentration and eliminate gas supersaturation, these include commercial aerators, air injectors, and packed columns. Temperature control is a major advantage of reuse systems, but the equipment required can be expensive, particularly if water temperature must be rigidly controlled and ambient air temperature fluctuates. Filtration can be readily accomplished with a hydrocyclone or sand filter that increases overall system efficiency. Based on criteria of adaptability, efficiency, and reasonable cost, we recommend components for a small water reuse system.

  4. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    PubMed

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-05

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens.

  5. Particle Collection Efficiency of a Lens-Liquid Filtration System

    NASA Astrophysics Data System (ADS)

    Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.

    2011-09-01

    Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.

  6. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    NASA Technical Reports Server (NTRS)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  7. Hydrophobic and porous cellulose nanofibrous screen for efficient particulate matter (PM2.5) blocking

    NASA Astrophysics Data System (ADS)

    Chen, Liping; Guo, Yi; Peng, Xinsheng

    2017-10-01

    Particulate matter (PM2.5) pollution in air seriously affects public health. However, both bulk thickness and the accumulation of PM particles typically lead to a quick decline in the air permeability and large pressure drops of the conventional air clean membranes. In this work, we choose cellulose nanofibers (CNFs, a low cost, biodegradable and sustainable material) to form a hydrophobic and porous CNF thin layer on a stainless steel screen (300 mesh with pore size of 48 µm) through a simple filtration-assisted gelation process and subsequent polydimethylsiloxane modification. The prepared hydrophobic CNFs/stainless steel screen demonstrates highly efficient PM2.5 blocking based on size-sieving effect, fast air permeability and long-term durability under natural ventilation conditions in the relative humidity range from 45% to 93%. This technique holds great potential for indoor PM2.5 blocking under natural ventilation conditions.

  8. NASA Lunar Dust Filtration and Separations Workshop Report

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Stocker, Dennis P.

    2009-01-01

    NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.

  9. Effluent characterization from a conical pressurized fluid bed

    NASA Technical Reports Server (NTRS)

    Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.

    1977-01-01

    To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.

  10. Evaluation of systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol

    PubMed Central

    2006-01-01

    Abstract The purpose of this study was to compare 3 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, low-cost filtration, and ultraviolet light (UV) irradiation. The HEPA-filtration system involved a pre-filter screen, a bag filter (EU8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (pre-filter), a fiberglass furnace filter, and an electrostatic furnace filter. For UV irradiation, a lamp emitted UVC radiation at 253.7 nm. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 9 of the 10 control replicates, 8 of the 10 UVC-irradiation replicates, 4 of the 10 low-cost-filtration replicates, and 0 of the 10 HEPA-filtration replicates. When compared with no intervention, HEPA filtration and low-cost filtration significantly reduced PRRSV transmission (P < 0.0005 and = 0.0286, respectively), whereas UV irradiation had no effect (P = 0.5). However, low-cost filtration and UV irradiation were significantly less effective (P = 0.043 and P < 0.0005, respectively) than HEPA filtration. In conclusion, under the conditions of this study, HEPA filtration was significantly more effective at reducing aerosol transmission of PRRSV than the other methods evaluated. PMID:16548329

  11. Antibiotics elimination and risk reduction at two drinking water treatment plants by using different conventional treatment techniques.

    PubMed

    Li, Guiying; Yang, Huan; An, Taicheng; Lu, Yujuan

    2018-04-20

    Safe drinking water is essential for the wellbeing of people around the world. In this work, the occurrence, distribution, and elimination of four groups of antibiotics including fluoroquinolones, sulfonamides, chloramphenicols and macrolides (21 antibiotics total), were studied in two drinking water treatment plants during the wet and dry seasons. In the drinking water source (river), the most abundant group was fluoroquinolones. In contrast, chloramphenicols were all under the limitation of detection. Total concentration of all investigated antibiotics was higher in dissolved phase (62-3.3 × 10 2 ng L -1 ) than in particulate phase (2.3-7.1 ng L -1 ) during both wet and dry seasons in two plants. With the treatment process of flocculation → horizontal flow sedimentation → V type filtration → liquid Cl 2 chlorination, approximately 57.5% (the dry season) and 73.6% (the wet season) of total antibiotics in dissolved phase, and 46.3% (the dry season) and 51.0% (the wet season) in particulate phase were removed. In contrast, the removal efficiencies of total antibiotics were obtained as -49.6% (the dry season) and 52.3% (the wet season) in dissolved phase, and -15.5% (the dry season) and 44.3% (the wet season) in particulate phase, during the process of grille flocculation→ tube settler sedimentation → siphon filtration → ClO 2 chlorination. Sulfonamides were found to be typically easily removed antibiotics from the dissolved and particulate phases during both seasons. Through a human health risk assessment, we found that the former treatment technologies were much better than the later for risk reduction. Overall, it can be concluded that the treatment processes currently used should be modified to increase emerging contaminant elimination efficiency and ensure maintenance of proper water quality. Copyright © 2018. Published by Elsevier Inc.

  12. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  13. Diesel particulate abatement via wall-flow traps based on perovskite catalysts.

    PubMed

    Fino, Debora; Russo, Nunzio; Saracco, Guido; Specchia, Vito

    2003-01-01

    It is probably redundant to stress how extensive are nowadays the attempts to reduce the diesel particulate emissions from automotive and stationary sources. The present paper looks into a technology relied on a catalytic trap based on a SiC wall-flow monolith lined with suitable catalysts for the sake of promoting a more complete and faster regeneration after particulate capture. All the major steps of the catalytic filter preparation are dealt with, including: the synthesis and choice of the proper catalyst and trap materials, the development of an in situ catalyst deposition technique, the bench testing of the derived catalytic wall-flow. The best catalyst selected was the perovskite La0.9K0.1Cr0.9O3-delta. The filtration efficiency and the pressure drop of the catalytic and non-catalytic monoliths were evaluated on a diesel engine bench under various operating conditions.

  14. Development of Test Protocols for International Space Station Particulate Filters

    NASA Technical Reports Server (NTRS)

    Vijayakumar, R.; Green, Robert D.; Agui, Juan H.

    2015-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing can be applied to conducting acceptance testing and inventory testing for future manned exploration programs with air revitalization filtration needs, possibly even for in-situ filter element integrity testing for extensively long-duration missions. We plan to address the unique needs for test protocols for crewed spacecraft particulate filters by preparing the initial version of a standard, to be documented as a NASA Technical Memorandum (TM).

  15. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wallmore » surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.« less

  16. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    PubMed

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  17. Field Assessment of Enclosed Cab Filtration System Performance Using Particle Counting Measurements

    PubMed Central

    Organiscak, John A.; Cecala, Andrew B.; Noll, James D.

    2015-01-01

    Enclosed cab filtration systems are typically used on mobile mining equipment to reduce miners’ exposure to airborne dust generated during mining operations. The National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) has recently worked with a mining equipment manufacturer to examine a new cab filtration system design for underground industrial minerals equipment. This cab filtration system uses a combination of three particulate filters to reduce equipment operators’ exposure to dust and diesel particulates present in underground industrial mineral mines. NIOSH initially examined this cab filtration system using a two-instrument particle counting method at the equipment company’s manufacturing shop facility to assess several alternative filters. This cab filtration system design was further studied on several pieces of equipment during a two- to seven-month period at two underground limestone mines. The two-instrument particle counting method was used outside the underground mine at the end of the production shifts to regularly test the cabs’ long-term protection factor performance with particulates present in the ambient air. This particle counting method showed that three of the four cabs achieved protection factors greater than 1,000 during the field studies. The fourth cab did not perform at this level because it had a damaged filter in the system. The particle counting measurements of submicron particles present in the ambient air were shown to be a timely and useful quantification method in assessing cab performance during these field studies. PMID:23915268

  18. Tuberculosis Infection Control in Health-Care Facilities: Environmental Control and Personal Protection.

    PubMed

    Lee, Ji Yeon

    2016-10-01

    Transmission of tuberculosis (TB) is a recognized risk to patients and healthcare workers in healthcare settings. The literature review suggests that implementation of combination control measures reduces the risk of TB transmission. Guidelines suggest a three-level hierarchy of controls including administrative, environmental, and respiratory protection. Among environmental controls, installation of ventilation systems is a priority because ventilation reduces the number of infectious particles in the air. Natural ventilation is cost-effective but depends on climatic conditions. Supplemented intervention such as air-cleaning methods including high efficiency particulate air filtration and ultraviolet germicidal irradiation should be considered in areas where adequate ventilation is difficult to achieve. Personal protective equipment including particulate respirators provides additional benefit when administrative and environmental controls cannot assure protection.

  19. [Effect of ozone on membrane fouling in water and wastewater treatment: a research review].

    PubMed

    Zhu, Hong-tao; Wen, Xiang-hua; Huang, Xia

    2009-01-01

    As a high efficient water and wastewater treatment technology, membrane filtration has been mainly used in wastewater treatment as membrane bioreactor, in reclaiming secondary effluent,treating surface water and potable water, and etc. Membrane fouling is a main obstacle to the wide application of membrane technology. Ozone has strong oxidizing power and has been utilized widely in water and wastewater treatment. In recent years, researches on combined process of ozone-membrane filtration are increasing. This paper does reviews and analysis of these researches. It is noticed that there has been a few of researches on the ozone treatment plus MBR process. Pre-ozonation of feed to MBR and slight ozonation of the mixed liquid in MBR may be used to relieve membrane fouling.Combined processes of ozone-membrane filtration can be divided into three classes in terms of the function of ozone and the system configuration: (1) cleaning the fouled membrane with ozone; (2) separate ozone-membrane filtration process; (3) integrated ozone-membrane filtration process. Although most reports supported that ozonation can control membrane fouling development,there were contrary results. At present, researches on the mechanisms of ozone's effect on membrane fouling control concentrated on the change of organic composition of the filtration influent under ozonation, however, particulate substances, microbial and inorganic substances may also be affected and then play roles in membrane fouling, depending on source water quality and process configuration. Moreover, there have not been common parameters to evaluate the ozone diffusion equipment and efficiency. The authors suggest that further researches should emphasize on integrated ozone-membrane process, and more attention should be paid to the cost-effectiveness of the combined process.

  20. Protection of the vehicle cab environment against bacteria, fungi and endotoxins in composting facilities.

    PubMed

    Schlosser, O; Huyard, A; Rybacki, D; Do Quang, Z

    2012-06-01

    Microbial quality of air inside vehicle cabs is a major occupational health risk management issue in composting facilities. Large differences and discrepancies in protection factors between vehicles and between biological agents have been reported. This study aimed at estimating the mean protection efficiency of the vehicle cab environment against bioaerosols with higher precision. In-cab measurement results were also analysed to ascertain whether or not these protection systems reduce workers' exposure to tolerable levels. Five front-end loaders, one mobile mixer and two agricultural tractors pulling windrow turners were investigated. Four vehicles were fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system. The four others were only equipped with pleated paper filter without pressurisation. Bacteria, fungi and endotoxins were measured in 72 pairs of air samples, simultaneously collected inside the cab and on the outside of the cab with a CIP 10-M sampler. A front-end loader, purchased a few weeks previously, fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system, and with a clean cab, exhibited a mean protection efficiency of between 99.47% CI 95% [98.58-99.97%] and 99.91% [99.78-99.98%] depending on the biological agent. It is likely that the lower protection efficiency demonstrated in other vehicles was caused by penetration through the only moderately efficient filters, by the absence of pressurisation, by leakage in the filter-sealing system, and by re-suspension of particles which accumulated in dirty cabs. Mean protection efficiency in regards to bacteria and endotoxins ranged between 92.64% [81.87-97.89%] and 98.61% [97.41-99.38%], and between 92.68% [88.11-96.08%] and 98.43% [97.44-99.22%], respectively. The mean protection efficiency was the lowest when confronted with fungal spores, from 59.76% [4.19-90.75%] to 94.71% [91.07-97.37%]. The probability that in-cab exposure to fungi exceeded the benchmark value for short-term respiratory effects suggests that front-end loaders and mobile mixers in composting facilities should be fitted with a pressurisation and HEPA filtration system, regardless of whether or not the facility is indoors or outdoors. Regarding the tractors, exposure inside the cabs was not significantly reduced. However, in this study, there was a less than 0.01% risk of exceeding the bench mark value associated with fungi related short-term respiratory effects during an 1-h per day windrow turning operation. Pressurisation and a HEPA filtration system can provide safe working conditions inside loaders and mobile mixer with regard to airborne bacteria, fungi and endotoxins in composting facilities. However, regular thorough cleaning of the vehicle cab, as well as overalls and shoes cleaning, and mitigation of leakage in the filter-sealing system are necessary to achieve high levels of protection efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Fibrous Filter to Protect Building Environments from Polluting Agents: A Review

    NASA Astrophysics Data System (ADS)

    Chavhan, Md. Vaseem; Mukhopadhyay, Arunangshu

    2016-04-01

    This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.

  2. CONTRIBUTIONS OF WATER FILTRATION TO IMPROVING WATER QUALITY

    EPA Science Inventory

    A variety of water quality improvements can be accomplished by properly operated filtration plants. These include reduction of turbidity, micro-organisms, asbestos fibers, color, trihalomethane precursors, and organics adsorbed to particulate matter. The focus of the paper is on ...

  3. A CONTINUED INVESTIGATION OF ELECTRICALLY STIMULATED FABRIC FILTRATION

    EPA Science Inventory

    The report summarizes three experiments performed by Southern Research Institute under a cooperative agreement with EPA. First was a demonstration of electrostatically stimulated fabric filtration (ESFF) used to collect particulate matter (PM) from fossil fuel electrical power pl...

  4. Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies.

    PubMed

    Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Jekel, Martin; Ruhl, Aki Sebastian

    2018-07-01

    Degradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.

    High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less

  6. Propulsion and trapping of microparticles by active cilia arrays.

    PubMed

    Bhattacharya, Amitabh; Buxton, Gavin A; Usta, O Berk; Balazs, Anna C

    2012-02-14

    We model the transport of a microscopic particle via a regular array of beating elastic cilia, whose tips experience an adhesive interaction with the particle's surface. At optimal adhesion strength, the average particle velocity is maximized. Using simulations spanning a range of cilia stiffness and cilia-particle adhesion strength, we explore the parameter space over which the particle can be "released", "propelled", or "trapped" by the cilia. We use a lower-order model to predict parameters for which the cilia are able to "propel" the particle. This is the first study that shows how both stiffness and adhesion strength are crucial for manipulation of particles by active cilia arrays. These results can facilitate the design of synthetic cilia that integrate adhesive and hydrodynamic interactions to selectively repel or trap particulates. Surfaces that are effective at repelling particulates are valuable for antifouling applications, while surfaces that can trap and, thus, remove particulates from the solution are useful for efficient filtration systems.

  7. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses.

    PubMed

    Zhou, S Steve; Lukula, Salimatu; Chiossone, Cory; Nims, Raymond W; Suchmann, Donna B; Ijaz, M Khalid

    2018-03-01

    Prevention of infection with airborne pathogens and exposure to airborne particulates and aerosols (environmental pollutants and allergens) can be facilitated through use of disposable face masks. The effectiveness of such masks for excluding pathogens and pollutants is dependent on the intrinsic ability of the masks to resist penetration by airborne contaminants. This study evaluated the relative contributions of a mask, valve, and Micro Ventilator on aerosol filtration efficiency of a new N95 respiratory face mask. The test mask was challenged, using standardized methods, with influenza A and rhinovirus type 14, bacteriophage ΦΧ174, Staphylococcus aureus ( S . aureus ), and model pollutants. The statistical significance of results obtained for different challenge microbial agents and for different mask configurations (masks with operational or nonoperational ventilation fans and masks with sealed Smart Valves) was assessed. The results demonstrate >99.7% efficiency of each test mask configuration for exclusion of influenza A virus, rhinovirus 14, and S . aureus and >99.3% efficiency for paraffin oil and sodium chloride (surrogates for PM 2.5 ). Statistically significant differences in effectiveness of the different mask configurations were not identified. The efficiencies of the masks for excluding smaller-size (i.e., rhinovirus and bacteriophage ΦΧ174) vs. larger-size microbial agents (influenza virus, S . aureus ) were not significantly different. The masks, with or without features intended for enhancing comfort, provide protection against both small- and large-size pathogens. Importantly, the mask appears to be highly efficient for filtration of pathogens, including influenza and rhinoviruses, as well as the fine particulates (PM 2.5 ) present in aerosols that represent a greater challenge for many types of dental and surgical masks. This renders this individual-use N95 respiratory mask an improvement over the former types of masks for protection against a variety of environmental contaminants including PM 2.5 and pathogens such as influenza and rhinoviruses.

  8. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses

    PubMed Central

    Zhou, S. Steve; Lukula, Salimatu; Chiossone, Cory; Nims, Raymond W.; Suchmann, Donna B.

    2018-01-01

    Background Prevention of infection with airborne pathogens and exposure to airborne particulates and aerosols (environmental pollutants and allergens) can be facilitated through use of disposable face masks. The effectiveness of such masks for excluding pathogens and pollutants is dependent on the intrinsic ability of the masks to resist penetration by airborne contaminants. This study evaluated the relative contributions of a mask, valve, and Micro Ventilator on aerosol filtration efficiency of a new N95 respiratory face mask. Methods The test mask was challenged, using standardized methods, with influenza A and rhinovirus type 14, bacteriophage ΦΧ174, Staphylococcus aureus (S. aureus), and model pollutants. The statistical significance of results obtained for different challenge microbial agents and for different mask configurations (masks with operational or nonoperational ventilation fans and masks with sealed Smart Valves) was assessed. Results The results demonstrate >99.7% efficiency of each test mask configuration for exclusion of influenza A virus, rhinovirus 14, and S. aureus and >99.3% efficiency for paraffin oil and sodium chloride (surrogates for PM2.5). Statistically significant differences in effectiveness of the different mask configurations were not identified. The efficiencies of the masks for excluding smaller-size (i.e., rhinovirus and bacteriophage ΦΧ174) vs. larger-size microbial agents (influenza virus, S. aureus) were not significantly different. Conclusions The masks, with or without features intended for enhancing comfort, provide protection against both small- and large-size pathogens. Importantly, the mask appears to be highly efficient for filtration of pathogens, including influenza and rhinoviruses, as well as the fine particulates (PM2.5) present in aerosols that represent a greater challenge for many types of dental and surgical masks. This renders this individual-use N95 respiratory mask an improvement over the former types of masks for protection against a variety of environmental contaminants including PM2.5 and pathogens such as influenza and rhinoviruses. PMID:29707364

  9. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. FILTRATION OF GROUND WATER SAMPLES FOR METALS ANALYSIS

    EPA Science Inventory

    The filtration of a ground water samples with 0.45 um filters for determination of 'dissolved' metals is not only inaccurate for distinguishing between dissolved and particulate phases, but if used for estimates of mobile contaminant loading in a given aquifer, may result in sign...

  11. Improving IAQ Via Air Filtration.

    ERIC Educational Resources Information Center

    Monk, Brian

    1999-01-01

    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  12. Caught in a net: Retention efficiency of microplankton ≥ 10 and < 50 μm collected on mesh netting

    NASA Astrophysics Data System (ADS)

    Molina, Vanessa; Robbins-Wamsley, Stephanie H.; Riley, Scott C.; First, Matthew R.; Drake, Lisa A.

    2018-03-01

    Living organisms ≥ 10 μm and < 50 μm in ballast water discharged from ships are typically collected by filtering samples through a monofilament mesh net with pore openings sized to retain organisms ≥ 10 μm. This (or any) filtering method does not result in perfect size fractionation, and it can induce stress, mortality, and loss of organisms that, in turn, may underestimate the concentration of organisms within samples. To address this loss, the retention efficiency (RE) was determined for six filtration approaches using laboratory cultures of microalgae and ambient marine organisms. The approaches employed a membrane filter or mesh nettings of different compositions (nylon, stainless steel, polyester, and polycarbonate), nominal pore sizes (5, 7, and 10 μm), and filtering sequences (e.g., pre-filtering water through a coarse filter). Additionally, in trials with polycarbonate track etched (PCTE) membrane filters, water was amended with particulate material to increase turbidity. Organisms ≥ 10 μm were counted in the material retained on the filter (the filtrand), the material passing through the filter (the filtrate), and the whole water (i.e., unfiltered water). In addition, variable fluorescence fluorometry was used to gauge the relative photochemical yield of phytoplankton-a proximal measurement of the physiological status of phytoplankton-in the size fractions. Further, the mesh types and filters were examined using scanning electron microscopy, which showed irregular openings. The RE of cultured organisms-calculated as the concentration in the filtrand relative to combined concentration in the filtrand and the filtrate-was high for all filtration approaches when laboratory cultures were assessed (> 93%), but RE ranged from 66 to 98% when mixed assemblages of ambient organisms were evaluated. Although PCTE membrane filters had the highest RE (98%), it was not significantly higher than the efficiencies of the 7-μm polyester, Double 7-μm polyester, and Dual 35-μm and 7-μm polyester approaches, but it was significantly higher than the 5-μm nylon and 5-μm stainless steel techniques. This result suggests that PCTE membrane filters perform comparably to 7-μm polyester meshes, so that any of these approaches could be used for concentrating organisms. However, the potential for handling loss is inherently lower for one rinsing step rather than two. Therefore, it is recommended that, either PCTE filters or 7-μm polyester mesh could be used to concentrate organisms ≥ 10 μm and < 50 μm. In trials conducted using a 10-μm PCTE filters with water amended to increase the particulate concentration, no significant difference in RE of ambient organisms was found compared to unamended water. Finally, photochemical yield did not vary significantly between organisms in the filtrand or filtrate, regardless of the filtration approach used.

  13. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment.

    PubMed

    Cecala, A B; Organiscak, J A; Noll, J D; Zimmer, J A

    2016-08-01

    Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design.

  14. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment

    PubMed Central

    Cecala, A.B.; Organiscak, J.A.; Noll, J.D.; Zimmer, J.A.

    2016-01-01

    Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design. PMID:27524838

  15. Time- and cost-saving apparatus for analytical sample filtration

    Treesearch

    William R. Kenealy; Joseph C. Destree

    2005-01-01

    Simple and cost-effective protocols were developed for removing particulates from samples prior to analysis by high performance liquid chromatography and gas chromatography. A filter and vial holder were developed for use with a 96-well filtration plate. The device saves preparation time and costs.

  16. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Hee Je; Choi, Seungmok

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWCmore » functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.« less

  17. Particulate, colloidal, and dissolved-phase associations of plutonium and americium in a water sample from well 1587 at the Rocky Flats Plant, Colorado

    USGS Publications Warehouse

    Harnish, R.A.; McKnight, Diane M.; Ranville, James F.

    1994-01-01

    In November 1991, the initial phase of a study to determine the dominant aqueous phases that control the transport of plutonium (Pu), americium (Am), and uranium (U) in surface and groundwater at the Rocky Flats Plant was undertaken by the U.S. Geological Survey. By use of the techniques of stirred-cell spiral-flow filtration and crossflow ultrafiltration, particles of three size fractions were collected from a 60-liter sample of water from well 1587 at the Rocky Flats Plant. These samples and corresponding filtrate samples were analyzed for Pu and Am. As calculated from the analysis of filtrates, 65 percent of Pu 239 and 240 activity in the sample was associated with particulate and largest colloidal size fractions. Particulate (22 percent) and colloidal (43 percent) fractions were determined to have significant activities in relation to whole-water Pu activity. Am and Pu 238 activities were too low to be analyzed. Examination and analyses of the particulate and colloidal phases indicated the presence of mineral species (iron oxyhydroxides and clay minerals) and natural organic matter that can facilitate the transport of actinides in ground water. High concentrations of the transition metals copper and zinc in the smallest colloid fractions strongly indicate a potential for organic complexation of metals, and potentially of actinides, in this size fraction.

  18. A large volume particulate and water multi-sampler with in situ preservation for microbial and biogeochemical studies

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Sheik, C. S.; Gomez-Ibanez, D.; Sayre-McCord, R. T.; Sanger, R.; Rauch, C.; Coleman, M.; Bennett, S. A.; Cron, B. R.; Li, M.; German, C. R.; Toner, B. M.; Dick, G. J.

    2014-12-01

    A new tool was developed for large volume sampling to facilitate marine microbiology and biogeochemical studies. It was developed for remotely operated vehicle and hydrocast deployments, and allows for rapid collection of multiple sample types from the water column and dynamic, variable environments such as rising hydrothermal plumes. It was used successfully during a cruise to the hydrothermal vent systems of the Mid-Cayman Rise. The Suspended Particulate Rosette V2 large volume multi-sampling system allows for the collection of 14 sample sets per deployment. Each sample set can include filtered material, whole (unfiltered) water, and filtrate. Suspended particulate can be collected on filters up to 142 mm in diameter and pore sizes down to 0.2 μm. Filtration is typically at flowrates of 2 L min-1. For particulate material, filtered volume is constrained only by sampling time and filter capacity, with all sample volumes recorded by digital flowmeter. The suspended particulate filter holders can be filled with preservative and sealed immediately after sample collection. Up to 2 L of whole water, filtrate, or a combination of the two, can be collected as part of each sample set. The system is constructed of plastics with titanium fasteners and nickel alloy spring loaded seals. There are no ferrous alloys in the sampling system. Individual sample lines are prefilled with filtered, deionized water prior to deployment and remain sealed unless a sample is actively being collected. This system is intended to facilitate studies concerning the relationship between marine microbiology and ocean biogeochemistry.

  19. Estimated effect of ventilation and filtration on chronic health risks in U.S. offices, schools, and retail stores.

    PubMed

    Chan, W R; Parthasarathy, S; Fisk, W J; McKone, T E

    2016-04-01

    We assessed the chronic health risks from inhalation exposure to volatile organic compounds (VOCs) and particulate matter (PM2.5) in U.S. offices, schools, grocery, and other retail stores and evaluated how chronic health risks were affected by changes in ventilation rates and air filtration efficiency. Representative concentrations of VOCs and PM2.5 were obtained from available data. Using a mass balance model, changes in exposure to VOCs and PM2.5 were predicted if ventilation rate were to increase or decrease by a factor of two, and if higher efficiency air filters were used. Indoor concentrations were compared to health guidelines to estimate percentage exceedances. The estimated chronic health risks associated with VOC and PM2.5 exposures in these buildings were low relative to the risks from exposures in homes. Chronic health risks were driven primarily by exposures to PM2.5 that were evaluated using disease incidence of mortality, chronic bronchitis, and non-fatal stroke. The leading cancer risk factor was exposure to formaldehyde. Using disability-adjusted life years (DALYs) to account for both cancer and non-cancer effects, results suggest that increasing ventilation alone is ineffective at reducing chronic health burdens. Other strategies, such as pollutant source control and the use of particle filtration, should also be considered. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Prediction of particulate loading in exhaust from fabric filter baghouses with one or more failed bags.

    PubMed

    Qin, Wenjun; Dekermenjian, Manuel; Martin, Richard J

    2006-08-01

    Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developed is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse.

  1. Using a mathematical model to evaluate the efficacy of TB control measures.

    PubMed Central

    Gammaitoni, L.; Nucci, M. C.

    1997-01-01

    We evaluated the efficacy of recommended tuberculosis (TB) infection control measures by using a deterministic mathematical model for airborne contagion. We examined the percentage of purified protein derivative conversions under various exposure conditions, environmental controlstrategies, and respiratory protective devices. We conclude that environmental control cannot eliminate the risk for TB transmission during high-risk procedures; respiratory protective devices, and particularly high-efficiency particulate air masks, may provide nearly complete protection if used with air filtration or ultraviolet irradiation. Nevertheless, the efficiency of these control measures decreases as the infectivity of the source case increases. Therefore, administrative control measures (e.g., indentifying and isolating patients with infectious TB) are the most effective because they substantially reduce the rate of infection. PMID:9284378

  2. Evolution of deep-bed filtration of engine exhaust particulates with trapped mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Sandeep; Rothamer, David A.; Foster, David E.

    Micro-scale filtration experiments were performed on cordierite filter samples using particulate matter (PM) generated by a spark-ignition direct-injection (SIDI) engine fueled with tier II EEE certification gasoline. Size-resolved mass and number concentrations were obtained from several engine operating conditions. The resultant mass-mobility relationships showed weak dependence on the operating condition. An integrated particle size distribution (IPSD) method was used estimate the PM mass concentration in the exhaust stream from the SIDI engine and a heavy duty diesel (HDD) engine. The average estimated mass concentration between all conditions was ~77****** % of the gravimetric measurements performed on Teflon filters. Despite themore » relatively low elemental carbon fraction (~0.4 to 0.7), the IPSD mass for stoichiometric SIDI exhaust was ~83±38 % of the gravimetric measurement. Identical cordierite filter samples with properties representative of diesel particulate filters were sequentially loaded with PM from the different SIDI engine operating conditions, in order of increasing PM mass concentration. Simultaneous particle size distribution measurements upstream and downstream of the filter sample were used to evaluate filter performance evolution and the instantaneous trapped mass within the filter for two different filter face velocities. The evolution of filtration performance for the different samples was sensitive only to trapped mass, despite using PM from a wide range of operating conditions. Higher filtration velocity resulted in a more rapid shift in the most penetrating particle size towards smaller mobility diameters.« less

  3. Development of an Indexing Media Filtration System for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles including skin flakes, hair and clothing fibers, other biological matter, and particulate matter derived from material and equipment wear. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. These features may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reducegravity flight tests data will be presented.

  4. Air cleaning performance of a new environmentally controlled primary crusher operator booth.

    PubMed

    Organiscak, J A; Cecala, A B; Zimmer, J A; Holen, B; Baregi, J R

    2016-02-01

    The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company's Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system's effectiveness in controlling airborne dusts and particulates. The booth's dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions.

  5. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...

  6. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...

  7. Plasma discharge self-cleaning filtration system

    DOEpatents

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  8. Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control.

    PubMed

    Miller-Leiden, S; Lobascio, C; Nazaroff, W W; Macher, J M

    1996-09-01

    Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.

  9. Effectiveness of In-Room Air Filtration and Dilution Ventilation for Tuberculosis Infection Control.

    PubMed

    Miller-Leiden, S; Lohascio, C; Nazaroff, W W; Macher, J M

    1996-09-01

    Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.

  10. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries.

    PubMed

    Huq, A; Xu, B; Chowdhury, M A; Islam, M S; Montilla, R; Colwell, R R

    1996-07-01

    Plankton to which cells of Vibrio cholerae O1 and/or O139 were attached was introduced into 0.5% Instant Ocean microcosms maintained at 25 degrees C. The bulk of the plankton and associated particulates was removed with a filter constructed from either nylon net and one of several different types of sari material, the latter being very inexpensive and readily available in villages in Bangladesh, where V. cholerae is endemic. V. cholerae was enumerated before and after filtration to evaluate the efficiency of the filtration procedure. The results obtained indicate that 99% of V. cholerae, i.e., those cells attached to plankton, were removed from the water samples. Epidemic strains of V. cholerae O1 and O139 from various geographical sources, including Bangladesh, Brazil, India, and Mexico, were included in the experiments. Removal of vibrios from water by this simple filtration method was found to yield consistent results with all strains examined in this study. Thus, it is concluded that a simple filtration procedure involving the use of domestic sari material can reduce the number of cholera vibrios attached to plankton in raw water from ponds and rivers commonly used for drinking. Since untreated water from such sources serves as drinking water for millions of people living in developing countries (e.g., Bangladesh), filtration should prove effective at reducing the incidence and severity of outbreaks, especially in places that lack fuel wood for boiling water and/or municipal water treatment plants. The results of this study provide the basis for determining such reductions, which are to be carried out in the near future.

  11. Air cleaning performance of a new environmentally controlled primary crusher operator booth

    PubMed Central

    Organiscak, J.A.; Cecala, A.B.; Zimmer, J.A.; Holen, B.; Baregi, J.R.

    2016-01-01

    The National Institute for Occupational Safety and Health (NIOSH) cooperated with 3M Company in the design and testing of a new environmentally controlled primary crusher operator booth at the company’s Wausau granite quarry near Wausau, WI. This quarry had an older crusher booth without a central heating, ventilation and air conditioning (HVAC) system, and without an air filtration and pressurization system. A new replacement operator booth was designed and installed by 3M based on design considerations from past NIOSH research on enclosed cab filtration systems. NIOSH conducted pre-testing of the old booth and post-testing of the new booth to assess the new filtration and pressurization system’s effectiveness in controlling airborne dusts and particulates. The booth’s dust and particulate control effectiveness is described by its protection factor, expressed as a ratio of the outside to inside concentrations measured during testing. Results indicate that the old booth provided negligible airborne respirable dust protection and low particulate protection from the outside environment. The newly installed booth provided average respirable dust protection factors from 2 to 25 over five shifts of dust sampling with occasional worker ingress and egress from the booth, allowing some unfiltered contaminants to enter the enclosure. Shorter-term particle count testing outside and inside the booth under near-steady-state conditions, with no workers entering or exiting the booth, resulted in protection factors from 35 to 127 on 0.3- to 1.0-μm respirable size particulates under various HVAC airflow operating conditions. PMID:26937052

  12. Liquid additives for particulate emissions control

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  13. Recovery of hygiene water by multifiltration. [in space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Putnam, David F.; Jolly, Clifford D.; Colombo, Gerald V.; Price, Don

    1989-01-01

    A multifiltration hygiene water reclamation process that utilizes adsorption and particulate filtration techniques is described and evaluated. The applicability of the process is tested using a simulation of a 4-man subsystem operation for 240 days. It is proposed the process has a 10 year life, weighs 236 kg, and uses 88 kg of expendable filters and adsorption beds to process 8424 kg of water. The data reveal that the multifiltration is an efficient nonphase change technique for hygiene water recovery and that the chemical and microbiological purity of the product water is within the standards specified for the Space Station hygiene water.

  14. Novel Hollow Fiber Air Filters for the Removal of Ultrafine Particles in PM2.5 with Repetitive Usage Capability.

    PubMed

    Li, Manqing; Feng, Yingnan; Wang, Kaiyu; Yong, Wai Fen; Yu, Liya; Chung, Tai-Shung

    2017-09-05

    Severe air pollution has become a global concern, and there is a pressing need to develop effective and efficient air filters for removing airborne particulate matters (PMs). In this work, a highly permeable poly(ether sulfone) (PES) based hollow fiber membrane was developed via a one-step dry-jet wet spinning. For the first time, a hollow fiber membrane was used in removing the ultrafine particles (PMs with aerodynamic equivalent diameters of less than 100 nm) in PM 2.5 . The novel air filter was designed to possess the synergistic advantages of porous filters and fibrous filters with a sievelike outer surface and a fibrouslike porous substrate. A filtration efficiency of higher than 99.995% could be easily achieved when the self-support hollow fiber was challenged with less than 300 nm particulates. Without losses of the structural advantages, we have demonstrated that the permeation properties of the hollow fiber membrane can be facilely tailored via manipulation of the dope and bore fluid formulations. Various cleaning strategies were explored to regenerate the membrane performance after fouling. Both water rinse and backwash showed effectiveness to restore the membrane permeance for repetitive usage.

  15. Prediction of particulate loading in exhaust from fabric filter baghouses with one or more failed bags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenjun Qin; Manuel Dekermenjian; Richard J. Martin

    2006-08-15

    Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developedmore » is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse. 10 refs., 5 figs., 3 tabs.« less

  16. Protein-Based Nanofabrics for Multifunctional Air Filtering

    NASA Astrophysics Data System (ADS)

    Souzandeh, Hamid

    With the fast development of economics and population, air pollution is getting worse and becomes a great concern worldwide. The release of chemicals, particulates and biological materials into air can lead to various diseases or discomfort to humans and other living organisms, alongside other serious impacts on the environment. Therefore, improving indoor air quality using various air filters is in critical need because people stay inside buildings most time of the day. However, current air filters using traditional polymers can only remove particles from the polluted air and disposing the huge amount of used air filters can cause serious secondary environmental pollution. Therefore, development of multi-functional air filter materials with environmental friendliness is significant. For this purpose, we developed "green" protein-based multifunctional air-filtering materials. The outstanding performance of the green materials in removal of multiple species of pollutants, including particulate matter, toxic chemicals, and biological hazards, simultaneously, will greatly facilitate the development of the next-generation air-filtration systems. First and foremost, we developed high-performance protein-based nanofabric air-filter mats. It was found that the protein-nanofabrics possess high-efficiency multifunctional air-filtering properties for both particles and various species of chemical gases. Then, the high-performance natural protein-based nanofabrics were promoted both mechanically and functionally by a textured cellulose paper towel. It is interestingly discovered that the textured cellulose paper towel not only can act as a flexible mechanical support, but also a type of airflow regulator which can improve the pollutant-nanofilter interactions. Furthermore, the protein-based nanofabrics were crosslinked in order to enhance the environmental-stability of the filters. It was found that the crosslinked protein-nanofabrics can significantly improve the structure stability against different moisture levels and temperatures, while maintain the multifunctional filtration performance. Moreover, it was demonstrated that the crosslinked protein-nanomaterials also possess antibacterial properties against the selected gram-negative and gram-positive bacteria. This provides a cost-effective solution for advanced "green" nanomaterials with excellent performance in both filtration functions and structure stability under varying environment. This work indicates that protein-based air-filters are promising "green" air-filtering materials for next-generation air-filtration systems.

  17. Distribution of polycyclic aromatic hydrocarbons in southern Chesapeake Bay surface water: Evaluation of three methods for determining freely dissolved water concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, K.E.; Dickhut, R.M.

    1997-03-01

    Gas sparging, semipermeable-membrane devices (SPMDs), and filtration with sorption of dissolved polycyclic aromatic hydrocarbons (PAHs) to XAD-2 resin were evaluated for determining the concentrations of freely dissolved PAHs in estuarine waters of southern Chesapeake Bay at sites ranging from rural to urban and highly industrialized. Gas sparging had significant sampling artifacts due to particle scavenging by rising bubbles, and SPMDs were kinetically limited for four-ring and larger PAHs relative to short-term temporal changes in water concentrations. Filtration with sorption of the dissolved contaminant fraction to XAD-2 resin was found to be the most accurate and feasible method for determining concentrationsmore » of freely dissolved PAHs in estuarine water. Concentrations and distribution coefficients of dissolved and particulate PAHs were measured using the filtration/XAD-2 method. Concentrations of PAHs in surface waters of southern Chesapeake Bay were higher than those reported for the northern bay; concentrations in the Elizabeth River were elevated relative to all other sites. A gradient for particulate PAHs was observed from urban to remote sites. No seasonal trends were observed in dissolved or particle-bound PAH fractions at any site. Distributions of dissolved and particulate PAHs in surface waters of the Chesapeake Bay are near equilibrium at all locations and during all seasons.« less

  18. Enhanced performance of crumb rubber filtration for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2009-03-01

    Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.

  19. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    PubMed

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  20. The Effect of Oyster Reef Morphology on Particulate Transfer in a North Carolina Tidal Creek

    NASA Astrophysics Data System (ADS)

    Lemon, M. G.; Posey, M.; Mallin, M.; Alphin, T.

    2014-12-01

    The eastern oyster (Crassostrea virginica) is a vital ecosystem engineer species, providing a number of ecosystem services that structure and maintain estuarine environments through the construction of large, hard-bottom reef complexes. Through suspension feeding, oysters clear the water column of particulates, leading to decreased suspended material and enhanced benthic pelagic coupling. Past field studies have indicated the potential importance of the physical reef structure in regulating the transfer of particulate material in the seston. In order to directly assess the existence of the physical reef effect, multiple field experiments were performed in a small tidal creek estuary along the south eastern coast of North Carolina. Comparison of clearance rates derived from two different in situ methods, one accounting for the physical structure of the oyster reef in addition to oyster filtration and one looking at oyster filtration alone, indicate that the reef structure may increase the amount of particulate removal performed by the reef by more than 4 times the removal performed by oyster filtration alone. A defaunation experiment was performed by eliminating the live component of the oyster reef and comparing particulate transfer of this defaunated transect to that of an adjacent faunated transect. The defaunated transect had reduced but not significantly lower material removal when compared to the faunated transect prior to defaunation. Results from short and long term sediment collection and flow velocity measurements indicate that the physical effect of oyster reefs is strong over short temporal scales (days) but is much smaller when evaluated over longer time periods (months). Generally, large silt and small sand sized material is permanently removed from the seston due to the interaction of oyster reef structure and tidal flows, however the transfer of small and medium sized silt grains is only slowed down by the presence of large reef complexes. This effect has important ecological implications for downstream water quality and must be accounted for when modeling water quality improvements performed by oysters.

  1. Improvement of municipal wastewater pretreatment by direct membrane filtration.

    PubMed

    Nascimento, Thiago A; Mejía, Fanny R; Fdz-Polanco, Fernando; Peña Miranda, Mar

    2017-10-01

    The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m 2  h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.

  2. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic

    NASA Astrophysics Data System (ADS)

    Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.

    2011-09-01

    We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.

  3. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J [Grand Forks, ND

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  4. Investigation of the influence of the zeta-potential on the filtration rate in the presence of collectors

    NASA Technical Reports Server (NTRS)

    Provirnina, E. V.; Barbin, M. B.

    1984-01-01

    The value of the zeta-potential does not have an explicit effect, which is expressed by a simple math correlation, on filtration rate when a solution of the tested collector is filtered through a cake prepared under standard conditions from the examined particulate material. The zeta-potential measurements and filtration tests were carried out on silica and galena with solutions contg. a cationic container ANP and Et xanthane, resp. at PH = 6.5, varying concentration of the agent (0-2500 g/ton), and under a vacuum of 100 to 600 mm Hg.

  5. Effect of work of adhesion on deep bed filtration process

    NASA Astrophysics Data System (ADS)

    Przekop, Rafał; Jackiewicz, Anna; WoŻniak, Michał; Gradoń, Leon

    2016-06-01

    Collection of aerosol particles in the particular steps of the technology of their production, and purification of the air at the workplace and atmospheric environment, requires the efficient method of separation of particulate matter from the carrier gas. There are many papers published in last few years in which the deposition of particles on fibrous collectors is considered, Most of them assume that collisions between particle and collector surface is 100% effective. In this work we study the influence of particles and fiber properties on the deposition efficiency. For the purpose of this work the lattice-Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the Brownian dynamics. The interactions between particles and surface are modelled using energy balanced oscillatory model. The work of adhesion was estimated using Atomic Force Microscopy.

  6. Effect of work of adhesion on deep bed filtration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przekop, Rafał; Jackiewicz, Anna; Gradoń, Leon

    2016-06-08

    Collection of aerosol particles in the particular steps of the technology of their production, and purification of the air at the workplace and atmospheric environment, requires the efficient method of separation of particulate matter from the carrier gas. There are many papers published in last few years in which the deposition of particles on fibrous collectors is considered, Most of them assume that collisions between particle and collector surface is 100% effective. In this work we study the influence of particles and fiber properties on the deposition efficiency. For the purpose of this work the lattice-Boltzmann model describes fluid dynamics,more » while the solid particle motion is modeled by the Brownian dynamics. The interactions between particles and surface are modelled using energy balanced oscillatory model. The work of adhesion was estimated using Atomic Force Microscopy.« less

  7. Liquid additives for particulate emissions control

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1999-01-05

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  8. Water recovery in a concentrated solar power plant

    NASA Astrophysics Data System (ADS)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane design could be used for water conservation in CSP plants.

  9. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  10. Fluorometric Method for Determining the Efficiency of Spun-Glass Air Filtration Media

    PubMed Central

    Sullivan, James F.; Songer, Joseph R.; Mathis, Raymond G.

    1967-01-01

    The procedures and equipment needed to measure filtration efficiency by means of fluorescent aerosols are described. The filtration efficiency of individual lots of spun-glass air filtration medium or of entire air filtration systems employing such media was determined. Data relating to the comparative evaluation of spun-glass filter media by means of the fluorometric method described, as well as by conventional biological procedures, are presented. PMID:6031433

  11. Physico-Chemical Characterization of Fine and Ultrafine Particles Emitted during Diesel Particulate Filter Active Regeneration of Euro5 Diesel Vehicles.

    PubMed

    R'Mili, Badr; Boréave, Antoinette; Meme, Aurelie; Vernoux, Philippe; Leblanc, Mickael; Noël, Ludovic; Raux, Stephane; D'Anna, Barbara

    2018-03-06

    Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted. Here, we report new information on particle morphology and chemical composition of fine (FPs) and ultrafine particles (UFPs) measured downstream of the DPF during active regeneration of two Euro 5 passenger cars. The first vehicle was equipped with a close-coupled diesel oxidation catalyst (DOC) and noncatalyzed DPF combined with fuel borne catalyst and the second one with DOC and a catalyzed-diesel particle filter (CDPF). Differences in PM emission profiles of the two vehicles were related to different after treatment design, regeneration strategies, and vehicle characteristics and mileage. Particles in the nucleation mode consisted of ammonium bisulfate, sulfate and sulfuric acid, suggesting that the catalyst desulfation is the key process in the formation of UFPs. Larger particles and agglomerates, ranging from 90 to 600 nm, consisted of carbonaceous material (soot and soot aggregates) coated by condensable material including organics, ammonium bisulfate and sulfuric acid. Particle emission in the accumulation mode was due to the reduced filtration efficiency (soot cake oxidation) throughout the regeneration process.

  12. Development of a Simple Method for Concentrating Enteroviruses from Oysters

    PubMed Central

    Sobsey, Mark D.; Wallis, Craig; Melnick, Joseph L.

    1975-01-01

    The development of a simple method for concentrating enteroviruses from oysters is described. In this method viruses in homogenized oyster tissues are efficiently adsorbed to oyster solids at pH 5.5 and low salt concentration. After low-speed centrifugation, the supernatant is discarded and viruses are eluted from the sedimented oyster solids by resuspending them in pH 3.5 glycine-buffered saline. The solids are then removed by low-speed centrifugation, and the virus-containing supernatant is filtered through a 0.2-μm porosity filter to remove bacteria and other small particulates without removing viruses. The virus-containing filtrate is then concentrated to a volume of a few milliliters by ultrafiltration, and the concentrate obtained is inoculated directly into cell cultures for virus assay. When tested with pools of oysters experimentally contaminated with small amounts of different enteroviruses, virus recovery efficiency averaged 63%. PMID:234154

  13. Development of a simple method for concentrating enteroviruses from oysters.

    PubMed

    Sobsey, M D; Wallis, C; Melnick, J L

    1975-01-01

    The development of a simple method for concentrating enteroviruses from oysters is described. In this method viruses in homogenized oyster tissues are efficiently absorbed to oyster solids at pH 5.5 and low salt concentration. After low-speed centrifugation, the supernatant is discarded and viruses are eluted from the sedimented oyster solids by resuspending them in pH 3.5 glycine-buffered saline. The solids are then removed by low-speed centrifugation, and the virus-containing supernatant is filtered through a 0.2-micronm porosity filter to remove bacteria and other small particulates without removing viruses. The virus-containing filtrate is then concentrated to a volume of a few milliliters by ultrafiltration, and the concentrate obtained is inoculated directly into cell cultures for virus assay. When tested with pools of oysters experimentally contaminated with small amounts of different enteroviruses, virus recovery efficiency averaged 63%.

  14. Electrostatic N-95 respirator filter media efficiency degradation resulting from intermittent sodium chloride aerosol exposure.

    PubMed

    Moyer, E S; Bergman, M S

    2000-08-01

    The effects of intermittently loading small masses of sodium chloride aerosol on the filtration efficiency of N-95 filtering facepiece respirators was investigated. The National Institute for Occupational Safety and Health (NIOSH) certifies that N-95 respirators must provide at least 95 percent filtration efficiency against a sodium chloride aerosol challenge as per the respirator certification (42 CFR 84) test criteria. N-95 respirators are specified for protection against solid and water-based particulates (i.e., non-oil aerosols). New N-95 respirators from three different manufacturers were loaded with 5 +/- 1 mg of sodium chloride aerosol one day a week, over a period of weeks. Aerosol loading and penetration measurements were performed using the TSI 8130 Filter Tester. Respirators were stored uncovered on an office desktop outside the laboratory. To investigate environmental and temporal effects of filters being stored without sodium chloride exposure, control respirators were stored on the desk for various lengths of time before being initiated into weekly testing. For all manufacturers' respirators, the controls showed similar initial penetrations on their day of initiation (day zero) to those of the study samples on day zero. As the controls were tested weekly, they showed similar degradation rates to those of the study samples. Results show that some of the manufacturers' models had penetrations of greater than 5 percent when intermittently exposed to sodium chloride aerosol. It is concluded that intermittent, low-level sodium chloride aerosol loading of N-95 respirators has a degrading effect on filter efficiency. This reduction in filter efficiency was not accompanied by a significant increase in breathing resistance that would signal the user that the filter needs to be replaced. Furthermore, it was noted that the effect of room storage time prior to initial exposure was much less significant.

  15. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  16. Crumb rubber filtration: a potential technology for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2006-05-01

    The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).

  17. NEW TECHNOLOGY FOR THE CONTROL OF AEROSOLS FROM STATIONARY SOURCES

    EPA Science Inventory

    The paper discusses an EPA program to develop new technologies for controlling particulate matter from stationary sources, including both electrostatically augmented fabric filtration (ESFF) and electrostatic precipitators (ESPs). The first generation ESFF system, using an electr...

  18. Oregon Salt Marshes: How Blue are They?

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  19. TREATMENT PLANT EVALUATION FOR PARTICULATE CONTAMINANT REMOVAL

    EPA Science Inventory

    A general procedure is suggested for evaluating performance of water filtration plants. Plant operating records should be reviewed. Plant hydraulics should be evaluated. Chemical feed pumps, measuring, and additional points, plus control of chemical doses, are discussed. Rapid mi...

  20. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  1. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  2. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  3. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  4. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  5. Removal of cyanobacteria and cyanotoxins through drinking water treatment-full-scale studies?

    EPA Science Inventory

    This presentation covers the control of intact cyanobacterial cells through particulate removal processes such as coagulation, sedimentation and filtration. The control of cyanobacterial toxins through oxidation and adsorption processes including, but not limited to, chlorine, oz...

  6. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    PubMed

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was also determined for gabapentin, an anticonvulsant drug recently detected in drinking water resources for which suitable removal technologies are still largely unknown. Gabapentin showed poor adsorptive removal, resulting in rapid concentration increases. Whereas previous studies classified gabapentin as not readily biodegradable, sustained removal was observed after prolonged operation and points at biological elimination of gabapentin within the GAC filter. The application of GAC as filter medium was compared to direct addition of powdered activated carbon (PAC) to deep-bed filtration as a direct process alternative. Both options yielded comparable OMP removals for most compounds at similar carbon usage rates, but GAC achieved considerably higher removals for biodegradable OMPs. Based on the results, the application of GAC in combination with coagulation/filtration represents a promising alternative to powdered activated carbon and ozone for advanced wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modeling of submicrometer aerosol penetration through sintered granular membrane filters.

    PubMed

    Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle

    2004-06-01

    We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).

  8. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-03-01

    We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a

  9. Use of isotopically-tagged isolates of E. coli for tracking bacterial movement in karst environments

    NASA Astrophysics Data System (ADS)

    Bandy, A.; Fryar, A. E.; Macko, S. A.; Cook, K.

    2014-12-01

    Because of limited filtration and turbulent flow, karst aquifers are more susceptible to microbial contamination than clastic aquifers. Assessment of microbial transport in groundwater is complicated by the need to identify tracers that have a low detection limit, have minimal background concentrations, behave like the organisms of interest, and are non-pathogenic. We are assessing transport of two non-pathogenic isolates of Escherichia coli (E. coli) compared to traditional groundwater tracers in epikarst above Cave Springs Cavern near Bowling Green, KY, and in a karst conduit that emerges at Royal Spring in Georgetown, KY. The E. coli isolate exhibiting higher attachment efficiency in saturated granular columns contains the iha gene, while the isolate exhibiting lower attachment efficiency contains the kps gene. For the field experiments, bacteria are being grown on media enriched in 13C or 15N. Isotopically-tagged bacteria will be injected with rhodamine WT as a solute tracer and fluorescent microspheres as an abiotic particulate tracer. We will monitor breakthrough of the tracers in the cave and at the spring; based on a previous field test, we anticipate that particulate tracers may be remobilized during subsequent storm events. E. coli will be quantified by molecular methods (qPCR) and dual isotope analysis. Preliminary findings suggest that these two methods may be complementary, with each method having detection limitations.

  10. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  11. EVALUATING TREATMENT PLANTS FOR PARTICULATE CONTAMINANT REMOVAL

    EPA Science Inventory

    The article is intended to serve as a guide for those who evaluate water treatment plants with the objective of lowering the turbidity of finished water produced from filtration plants in which chemical coagulation is part of the treatment process. Ineffective removal of turbidit...

  12. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    NASA Astrophysics Data System (ADS)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  13. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    PubMed

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Color-Changing Microfiber-Based Multifunctional Window Screen for Capture and Visualized Monitoring of NH3.

    PubMed

    Wang, Zhen; Yuan, Xinxin; Cong, Shan; Chen, Zhigang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang

    2018-05-02

    Air pollution is one of the most serious issues affecting the world today. Instead of expensive and energy-intensive air filtering devices, a fiber-based transparent air filter coated on a window screen is seen as one of the state-of-the-art filtration technologies to combat the seriously growing problem, delivering the advantages of simplicity, convenience, and high filtering efficiency. However, such a window screen is currently limited to particulate matter (PM) filtration and ineffective with other air pollutants. Here, we report the use of a newfangled type of color-changing fibers, porous Prussian blue analogues (CuHCF)/polymer composite microfibers, for transparent window screens toward air pollutant filtration. To increase pollution filtration, pores and dimples are purposely introduced to the fibers using binary solvent systems through a nonsolvent-induced phase separation mechanism. Such composite microfibers overcome some of the limitations of those previously used fibers and could simultaneously capture PM 2.5 , PM 10 , and NH 3 with high efficiency. More interestingly, a distinct color change is observed upon exposure to air pollutants in such window screens, which provides multifunctional capability of simultaneous pollutant capture and naked eye screening of the pollutant amount. Specifically, in the case of long-term exposure to low-concentration NH 3 , the symbol displayed in such window screens changes from yellow color to brown and the coloration rate is directly controlled by the NH 3 concentration, which may serve as a careful reminder for those people who are repeatedly exposed to low-concentration ammonia gas (referred to as chronic poisoning). In contrast, after short-term exposure to a high concentration of ammonia gas, the yellow symbol immediately becomes blackened, which provides timely information about the risk of acute ammonia poisoning or even ammonia explosion. Further spectroscopic results show that the chromatic behaviors in response to different concentrations of NH 3 are fundamentally different, which is related to the different locations of ammonia in the lattice of CuHCF, either in its interstitial sites or at the Fe(CN) 6 vacancy sites, largely distinguished by the absence or presence of atmospheric moisture.

  15. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed

    USGS Publications Warehouse

    Harvey, J.W.; Drummond, J.D.; Martin, R.L.; McPhillips, L.E.; Packman, A.I.; Jerolmack, D.J.; Stonedahl, S.H.; Aubeneau, A.F.; Sawyer, A.H.; Larsen, L.G.; Tobias, C.R.

    2012-01-01

    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams.

  16. Evaluation of the ICET Test Stand to Assess the Performance of a Range of Ceramic Media Filter Elements in Support of ASME AG-1 Subsection FO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schemmel, A.

    High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes themore » modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.« less

  17. Sol-gel applications for ceramic membrane preparation

    NASA Astrophysics Data System (ADS)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  18. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Domestic wash water reclamation

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    System consists of filtration unit, reverse-osmosis module, tanks, pumps, plumbing, and various gauges, meters, and valves. After water is used in washing machine or shower, it is collected in holding tank. Water is pumped through series of five particulate filters. Pressure tank supplies processed water to commode water closet.

  20. TREATMENT BY FILTRATION OF STORMWATER RUNOFF PRIOR TO GROUNDWATER RECHARGE

    EPA Science Inventory

    Generally, dry ponds, trenches and swales do not have the same pollutant removal capacity as wet detention ponds. Their pollutant removal ability results from the straining of particulate matter out of the water. However, infiltration ceases when the bottom of the pond, trench or...

  1. Particulate carbon and nitrogen and suspended particulate matter in the Sacramento River at Rio Vista, California, January 3 - May 26, 1983 and October 31, 1983 - November 29, 1984

    USGS Publications Warehouse

    Hager, Stephen W.

    1994-01-01

    Particulate matter was collected at Rio Vista, California, in two study periods; the first, from January 3 to May 26, 1983; the second from October 31, 1983 to November 29, 1984. Concentrations of suspended particulate matter were measured gravimetrically on silver membrane filters. The pooled standard deviation on replicated samples was 1.4 mg/L, giving a coefficient of variation of 5.7 percent. Concentrations of particulate carbon and nitrogen were measured during a Perkin-Elmer model 240C elemental analyzer to combust material collected on glass fiber filters. Refrigeration of samples prior to filtration was shown to be a likely influence on precision of duplicate analyses. Median deviations between duplicates for carbon were 5.4 percent during the first study period and 8.9 percent during the second. For nitrogen, median deviations were 4.9 percent and 7.2 percent, respectively. This report presents the data for concentrations of suspended particulate material, the duplicate analyses for particulate carbon and nitrogen, and the volumes of sample filtered for the particulate carbon and nitrogen analyses for both studies. Not all samples collected during the second study have been analyzed for particulate carbon and nitrogen.

  2. Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry.

    PubMed

    Ehama, Makoto; Hashihama, Fuminori; Kinouchi, Shinko; Kanda, Jota; Saito, Hiroaki

    2016-06-01

    Determining the total particulate phosphorus (TPP) and particulate inorganic phosphorus (PIP) in oligotrophic oceanic water generally requires the filtration of a large amount of water sample. This paper describes methods that require small filtration volumes for determining the TPP and PIP concentrations. The methods were devised by validating or improving conventional sample processing and by applying highly sensitive liquid waveguide spectrophotometry to the measurements of oxidized or acid-extracted phosphate from TPP and PIP, respectively. The oxidation of TPP was performed by a chemical wet oxidation method using 3% potassium persulfate. The acid extraction of PIP was initially carried out based on the conventional extraction methodology, which requires 1M HCl, followed by the procedure for decreasing acidity. While the conventional procedure for acid removal requires a ten-fold dilution of the 1M HCl extract with purified water, the improved procedure proposed in this study uses 8M NaOH solution for neutralizing 1M HCl extract in order to reduce the dilution effect. An experiment for comparing the absorbances of the phosphate standard dissolved in 0.1M HCl and of that dissolved in a neutralized solution [1M HCl: 8M NaOH=8:1 (v:v)] exhibited a higher absorbance in the neutralized solution. This indicated that the improved procedure completely removed the acid effect, which reduces the sensitivity of the phosphate measurement. Application to an ultraoligotrophic water sample showed that the TPP concentration in a 1075mL-filtered sample was 8.4nM with a coefficient of variation (CV) of 4.3% and the PIP concentration in a 2300mL-filtered sample was 1.3nM with a CV of 6.1%. Based on the detection limit (3nM) of the sensitive phosphate measurement and the ambient TPP and PIP concentrations of the ultraoligotrophic water, the minimum filtration volumes required for the detection of TPP and PIP were estimated to be 15 and 52mL, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A pilot study to investigate the effects of combined dehumidification and HEPA filtration on dew point and airborne mold spore counts in day care centers.

    PubMed

    Bernstein, J A; Levin, L; Crandall, M S; Perez, A; Lanphear, B

    2005-12-01

    Meteorological factors such as relative humidity directly correlate with airborne fungal levels outdoors and indoors. While dehumidification alone is effective at reducing moisture necessary for mold growth, it is inadequate as a single intervention as it does not remove viable and non-viable fungal spores that are potentially allergenic. The purpose of this pilot study was to investigate whether dehumidification in combination with high-efficiency particulate arrestance (HEPA) filtration is effective at reducing airborne mold spore levels in day care centers. Two day care centers within a 2-mile radius of each other were selected. Day care center A was 2 years old with eight rooms while day care center B was 15 years old with six rooms. A high efficiency Santa Fe dehumidification unit equipped with a HEPA filter was installed in half the rooms (intervention) of each day care facility. Electronic HOBO data loggers continuously measured outdoor and indoor room dew point and temperature every 2 h throughout the study. Dew point and airborne fungal spore measurements from selected rooms with controlled air conditions were analyzed by comparing baseline measurements to those obtained at subsequent time periods over 1 year. Regression models accounted for correlations between measurements in the same room over time. Intervention resulted in a lowered average dew point from baseline by 8.8 degrees C compared with a decrease of 7.1 degrees C in non-intervention rooms across all time periods in both facilities (P<0.001). Fungal analyses demonstrated lower baseline (P=0.06) and follow-up means in intervention rooms (P<0.05), however the change from baseline to end of follow-up differed between intervention and non-intervention rooms in the two facilities. Log transformation was applied to approximate normality of fungal measurements. Dehumidification with HEPA filtration was effective at controlling indoor dew point in both facilities and at reducing airborne culturable fungal spore levels in one of the two facilities. These preliminary results provide a scientific rationale for using this intervention in future studies designed to investigate the impact of indoor mold exposure on health outcomes. Poor indoor air quality is a recognized cause or contributing factor to health effects. Dampness and humidity have been linked to upper and lower respiratory symptoms in children and adults. This study indicates that reducing indoor relative humidity and airborne mold spore levels using high-efficiency dehumidification units equipped with HEPA filtration is feasible even in work facilities such as day care centers where traffic in and out of the building is difficult to regulate. Clinicians should emphasize to their patients the importance of dehumidification and HEPA filtration to improve indoor air quality in the home and workplace.

  4. An Automated Hollow Fiber System for the Deglycerolization of Thawed Frozen Human Blood. Phase 1.

    DTIC Science & Technology

    1994-09-13

    is restored . Each controe module will have its own internal power supply meeting medical device specifications (FDA, ISO 9000, AAMI, and UL). This...Colton, "A Concentration Polarization Model for the Filtrate Flux in Cross-Flow Microfiltration of Particulate Suspensions," Dept. of Chemical

  5. E.I. DuPont De Nemours & Company/Oberlin Filter Company Microfiltration Technology. Applications Analysis Report

    EPA Science Inventory

    This report evaluates the DuPont/Oberlin microfiltration technology’s ability to remove metals (present in soluble or insoluble form) and particulates from liquid wastes while producing a dry filter cake and a filtrate that meet applicable disposal requirements. This report also ...

  6. 40 CFR 63.11607 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...

  7. 40 CFR 63.11607 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...

  8. 40 CFR 63.11607 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...

  9. 40 CFR 63.11607 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...

  10. FILTRATION ARTIFACTS CAUSED BY OVERLOADING MEMBRANE FILTERS. (R825395)

    EPA Science Inventory

    The conventional practice of using 0.45 or 0.40 src="/ncer/pubs/images/mgr.gif">m membranes to distinguish between the
    particulate and dissolved phases in natural waters neglects the importance of
    colloids. Many of the colloids in natural waters pass through 0...

  11. IDENTIFICATION AND EMISSION FACTORS OF MOLECULAR TRACERS IN ORGANIC AEROSOLS FROM BIOMASS BURNING PART 1. TEMPERATE CLIMATE CONIFERS. (R823990)

    EPA Science Inventory

    Smoke particulate matter from conifers subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane and the crude extracts...

  12. IDENTIFICATION AND EMISSION FACTORS OF MOLECULAR TRACERS IN ORGANIC AEROSOLS FROM BIOMASS BURNING PART 2. DECIDUOUS TREES. (R823990)

    EPA Science Inventory

    Smoke particulate matter from deciduous trees (angiosperms) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane a...

  13. PCBs, PCDD/Fs and PAHs in dissolved, suspended and settling particulate matrixes from the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naef, C.; Broman, D.; Zebuehr, Y.

    The occurrence and dynamics of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) are discussed on the basis of results from samples taken at pristine coastal and off shore locations in the Baltic Sea. The sampling techniques used were high volume cross flow filtration and sediment traps for suspended and settling particulate matter, respectively, and polyurethane foam adsorbents for the compounds associated with the apparently dissolved fractions. All samples were Soxhlet extracted with toluene and separated on a HPLC system followed by quantification on GS/MS. The importance of parameters such as concentrations of particulate lipids, particulatemore » organic carbon and dissolved organic carbon, etc. for the distribution of the compounds between the suspended and settling particulate matrixes and the dissolved phase in the water are discussed. In situ determined particulate organic carbon-water partition coefficients as well as predicted dissolved organic carbon-water partition coefficients and approximations of the average ``truly`` dissolved concentrations are presented. The particulate and dissolved concentrations in the mixed surface layer are discussed in perspective to the particulate flux of PCBs, PCDD/Fs and PAHs.« less

  14. Effects of air filtration on concentration and deposition of gaseous and particulate air pollutants in open-top field chambers. [Ceanothus crassifolius Torr. , Pinus coulteri D. Don, P. ponderosa Dougl. ex P. C. Lawson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bytnerowicz, A.; Olszyk, D.M.; Dawson, P.J.

    Concentrations of gaseous and particulate air pollutants, and deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup {minus}2}{sub 4}, and NH{sup +}{sub 4} ions to branches of California lilac (Ceanothus crassifolius Torr.), Coulter pine (Pinus coulteri D. Don.), ponderosa pine (P. ponderosa Dougl. ex P. C. Lawson), nylon filters, and paper filters were measured in open-top field chambers with different filtration materials and in chamberless outside plots. Additionally, concentrations of O{sub 3}, NO{sub 2}, NO, SO{sub 2} and total S compounds also were determined in the chambers. Effects of different air filtrations were more evident for deposition fluxes to plant and surrogatemore » surfaces. On the average, in the CHARCOAL chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} to the surfaces were reduced to 21, 38, and 26% of the outside values, respectively. In the DUST 1 DUST 2 chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} were reduced to about 50, 56, and 75% of the outside levels, respectively. Deposition fluxes of the studied ions to plants were much lower than to nylon and paper filters.« less

  15. Particle characterization in retail environments: concentrations, sources, and removal mechanisms.

    PubMed

    Zaatari, M; Siegel, J

    2014-08-01

    Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5 , number concentrations of submicron particles (0.02-1 μm), size-resolved 0.3-10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m(3), respectively, with indoor-to-outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm(3) with an indoor-to-outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level. Little is known about particle concentrations, contribution of indoor sources, and emission rates in retail environments. Knowledge of these particle characteristics informs health scientists with input parameters to include in exposure modeling. The predicted concentration change in response to different ventilation rates and filtration efficiencies may be used for guidance to develop control strategies to lower particulate matter concentrations in retail environments. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Estimates of associated outdoor particulate matter health risk and costs reductions from alternative building, ventilation and filtration scenarios.

    PubMed

    Sultan, Zuraimi M

    2007-05-01

    Although many studies have reported calculations of outdoor particulate matter (PM) associated externalities using ambient data, there is little information on the role buildings, their ventilation and filtration play. This study provides the framework to evaluate the health risk and cost reduction of building, ventilation and filtration strategies from outdoor PM pollution on a nationwide level and applied it to a case study in Singapore. Combining Indoor Air Quality (IAQ) and time weighted exposure models, with established concentration-response functions and monetary valuation methods, mortality and morbidity effects of outdoor PM on the population of Singapore under different building, ventilation and filtration strategies were estimated. Different interventions were made to compare the effects from the current building conditions. The findings demonstrate that building protection effect reduced approximately half the attributable health cases amounting to US$17.7 billion due to PM pollution when compared to levels computed using outdoor data alone. For residential buildings, nationwide adoption of natural ventilation from current state is associated with 28% higher cases of mortality and 13 to 38% higher cases for different morbidities, amounting to US$6.7 billion. The incurred cost is negligible compared to energy costs of air-conditioning. However, nationwide adoption of closed residence and air-conditioning are associated with outcomes including fewer mortality (10 and 6% respectively), fewer morbidities (8 and 4% respectively) and economic savings of US$1.5 and 0.9 billion respectively. The related savings were about a factor of 9 the energy cost for air-conditioning. Nationwide adoption of mechanical ventilation and filtration from current natural ventilation in schools is associated with fewer asthma hospital admissions and exacerbations; although the economic impact is not substantial. Enhanced workplace filtration reduces the mortality and morbidity cases by 14 and 13% respectively amounting to savings of up to US$2.4 billion. The huge costs savings are comparable to the average worker salary and insignificant to energy, installation and rental cost. Despite uncertainty about accurate benefits, this study shows that health and economic gain via different building, ventilation and filtration designs in minimizing ingress of outdoor PM applied to a nationwide scale can be very large. Importantly, the results suggest that PM associated externalities and legislative efforts should not only focus on ambient PM reduction policies but also include building-informed decisions.

  17. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  18. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  19. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  20. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  1. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  2. Al-Coated Conductive Fiber Filters for High-Efficiency Electrostatic Filtration: Effects of Electrical and Fiber Structural Properties.

    PubMed

    Choi, Dong Yun; An, Eun Jeong; Jung, Soo-Ho; Song, Dong Keun; Oh, Yong Suk; Lee, Hyung Woo; Lee, Hye Moon

    2018-04-10

    Through the direct decomposition of an Al precursor ink AlH 3 {O(C 4 H 9 ) 2 }, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.

  3. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  4. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  5. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling.

    PubMed

    Liu, Yili; Sun, Weixin; Du, Bing; Liu, Jianguo

    2018-02-12

    Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L -1 ) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10 -8 to 10 -9 m s -1 after 1-2 years of operation and perching significant leachate above it (0.6-0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China.

  6. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOEpatents

    Cohen, M.R.; Gal, E.

    1993-04-13

    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  7. Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels.

    PubMed

    Araujo, Ricardo; Cabral, João Paulo; Rodrigues, Acácio Gonçalves

    2008-03-01

    High-efficiency particulate air (HEPA) filters do not completely prevent nosocomial fungal infections. The first aim of this study was to evaluate the impact of different filters and access conditions upon airborne fungi in hospital facilities. Additionally, this study identified fungal indicators of indoor air concentrations. Eighteen rooms and wards equipped with different air filter systems, and access conditions were sampled weekly, during 16 weeks. Tap water samples were simultaneously collected. The overall mean concentration of atmospheric fungi for all wards was 100 colony forming units/m(3). We found a direct proportionality between the levels of the different fungi in the studied atmospheres. Wards with HEPA filters at positive air flow yielded lower fungal levels. Also, the existence of an anteroom and the use of protective clothes were associated to the lowest fungal levels. Principal component analysis showed that penicillia afforded the best separation between wards' air fungal levels. Fungal strains were rarely recovered from tap water samples. In addition to air filtration systems, some access conditions to hospital units, like presence of anteroom and use of protective clothes, may prevent high fungal air load. Penicillia can be used as a general indicator of indoor air fungal levels at Hospital S. João.

  8. Portable water filtration system for oil well fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, D. L.

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which ismore » obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.« less

  9. Legal requirements and guidelines for the control of harmful laser generated particles, vapours and gases

    NASA Astrophysics Data System (ADS)

    Horsey, John

    2015-07-01

    This paper is a review of the Health and Safety laws and guidelines relating to laser generated emissions into the workplace and outside environment with emphasis on the differences between legal requirements and guideline advice. The types and nature of contaminants released by various laser processes (i.e. cutting, coding, engraving, marking etc) are discussed, together with the best methods for controlling them to within legal exposure limits. A brief description of the main extract air filtration techniques, including the principles of particulate removal and the action of activated carbon for gas/vapour/odour filtration, is given.

  10. A Randomized Cross-over Air Filtration Intervention Trial for Reducing Cardiovascular Health Risks in Residents of Public Housing near a Highway

    PubMed Central

    Padró-Martínez, Luz T.; Owusu, Emmanuel; Reisner, Ellen; Zamore, Wig; Simon, Matthew C.; Mwamburi, Mkaya; Brown, Carrie A.; Chung, Mei; Brugge, Doug; Durant, John L.

    2015-01-01

    Exposure to traffic-generated ultrafine particles (UFP; particles <100 nm) is likely a risk factor for cardiovascular disease. We conducted a trial of high-efficiency particulate arrestance (HEPA) filtration in public housing near a highway. Twenty residents in 19 apartments living <200 m from the highway participated in a randomized, double-blind crossover trial. A HEPA filter unit and a particle counter (measuring particle number concentration (PNC), a proxy for UFP) were installed in living rooms. Participants were exposed to filtered air for 21 days and unfiltered air for 21 days. Blood samples were collected and blood pressure measured at days 0, 21 and 42 after a 12-hour fasting period. Plasma was analyzed for high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor necrosis factor alpha-receptor II (TNF-RII) and fibrinogen. PNC reductions ranging from 21% to 68% were recorded in 15 of the apartments. We observed no significant differences in blood pressure or three of the four biomarkers (hsCRP, fibrinogen, and TNF-RII) measured in participants after 21-day exposure to HEPA-filtered air compared to measurements after 21-day exposure to sham-filtered air. In contrast, IL-6 concentrations were significantly higher following HEPA filtration (0.668 pg/mL; CI = 0.465–0.959) compared to sham filtration. Likewise, PNC adjusted for time activity were associated with increasing IL-6 in 14- and 21-day moving averages, and PNC was associated with decreasing blood pressure in Lags 0, 1 and 2, and in a 3-day moving average. These negative associations were unexpected and could be due to a combination of factors including exposure misclassification, unsuccessful randomization (i.e., IL-6 and use of anti-inflammatory medicines), or uncontrolled confounding. Studies with greater reduction in UFP levels and larger sample sizes are needed. There also needs to be more complete assessment of resident time activity and of outdoor vs. indoor source contributions to UFP exposure. HEPA filtration remains a promising, but not fully realized intervention. PMID:26184257

  11. A Randomized Cross-over Air Filtration Intervention Trial for Reducing Cardiovascular Health Risks in Residents of Public Housing near a Highway.

    PubMed

    Padró-Martínez, Luz T; Owusu, Emmanuel; Reisner, Ellen; Zamore, Wig; Simon, Matthew C; Mwamburi, Mkaya; Brown, Carrie A; Chung, Mei; Brugge, Doug; Durant, John L

    2015-07-10

    Exposure to traffic-generated ultrafine particles (UFP; particles <100 nm) is likely a risk factor for cardiovascular disease. We conducted a trial of high-efficiency particulate arrestance (HEPA) filtration in public housing near a highway. Twenty residents in 19 apartments living <200 m from the highway participated in a randomized, double-blind crossover trial. A HEPA filter unit and a particle counter (measuring particle number concentration (PNC), a proxy for UFP) were installed in living rooms. Participants were exposed to filtered air for 21 days and unfiltered air for 21 days. Blood samples were collected and blood pressure measured at days 0, 21 and 42 after a 12-hour fasting period. Plasma was analyzed for high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor necrosis factor alpha-receptor II (TNF-RII) and fibrinogen. PNC reductions ranging from 21% to 68% were recorded in 15 of the apartments. We observed no significant differences in blood pressure or three of the four biomarkers (hsCRP, fibrinogen, and TNF-RII) measured in participants after 21-day exposure to HEPA-filtered air compared to measurements after 21-day exposure to sham-filtered air. In contrast, IL-6 concentrations were significantly higher following HEPA filtration (0.668 pg/mL; CI = 0.465-0.959) compared to sham filtration. Likewise, PNC adjusted for time activity were associated with increasing IL-6 in 14- and 21-day moving averages, and PNC was associated with decreasing blood pressure in Lags 0, 1 and 2, and in a 3-day moving average. These negative associations were unexpected and could be due to a combination of factors including exposure misclassification, unsuccessful randomization (i.e., IL-6 and use of anti-inflammatory medicines), or uncontrolled confounding. Studies with greater reduction in UFP levels and larger sample sizes are needed. There also needs to be more complete assessment of resident time activity and of outdoor vs. indoor source contributions to UFP exposure. HEPA filtration remains a promising, but not fully realized intervention.

  12. PAH and PCB in the Baltic -- A budget approach including fluxes, occurrence and concentration variability in air, suspended and settling particulates in water, surface sediments and river water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broman, D.; Axelman, J.; Bandh, C.

    In order to study the fate and occurrence of two groups of hydrophobic compounds in the Baltic aquatic environment a large number of samples were collected from the southern Baltic proper to the northern Bothnian Bay for the analyses of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The following sample matrices were collected; bottom surface sediments (0--1 cm, collected with gravity corer), settling particulate matter (collected with sediment traps), open water samples and over water samples (suspended particulates and dissolved fraction sampled by filtration) and air samples (aerosols and vapor phase sampled by filtration). All samples (except over watermore » and air) were collected at open sea in the Baltic. The analyses results have been used to make a model approach on the whole Baltic and to elucidate different aspects of the behavior of PAHs and PCBs in the Baltic, such as the occurrence of the compounds in water and sediment, the total content as well as the concentration variabilities over such a large geographical area, Further, the data on settling particulate matter as well as the air concentration data were used to estimate the total fluxes of PAHs and PCBs to the bottoms of the Baltic and t o the total water area of the Baltic, respectively. Further, data on the PAH and PCB content in river water from four major rivers provides rough estimates of the riverine input to the Baltic. The dynamics of PAHs and PCBs within the water mass have also been studied in terms of settling velocities and residence times in the water mass for these type of compounds in the open Baltic.« less

  13. In-home air filtration for improving cardiovascular health: Lessons from a CBPR study in public housing

    PubMed Central

    Brugge, Doug; Reisner, Ellin; Padró-Martínez, Luz T.; Zamore, Wig; Owusu, Emmanuel; Durant, John L.

    2013-01-01

    Background Particulate air pollution, including from motor vehicles, is associated with cardiovascular disease. Objectives To describe lessons learned from installing air filtration units in public housing apartments next to a major highway. Methods We reviewed experience with recruitment, retention and acceptance of the air filtration units. Results Recruitment and retention have been challenging, but similar to other studies in public housing. Equipment noise and overheated apartments during hot weather have been notable complaints from participants. In addition, we found that families with members with Alzheimer’s or mental disability were less able to tolerate the equipment. Conclusions For this research the primary lesson is that working closely with each participant is important. A future public health program would need to address issues of noise and heat to make the intervention more acceptable to residents. PMID:23543021

  14. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  15. Effects of biodiesel on continuous regeneration DPF characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Xie, Hui; Gao, Guoyou; Wang, Wei; Hui, Chun

    2017-06-01

    A critical requirement for the implementation of DPF on a modern engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. In order to study the influence of biodiesel on the Regenerating Characteristics of Continuously Regeneration DPF, Bench test were carried out to investigate the BET of a continuously regeneration DPF assembled with a diesel engine fueled with neat diesel and biodiesel. Test results show that at the same engine operation conditions the fuel consumption is higher for biodiesel case, and also the intake air quantity and boost pressure are lower; the BET for the Diesel fuel is about 310 ° while it is about 250 ° for the Biodiesel case. When the engine is at the low torque and low exhaust temperature operation condition, CO conversion rate is extremely low, NO2/NOX ratio is small; with the increase of torque and exhaust temperature, CO conversion and NO2/NOX ratio increased significantly, and the maximum NO2/NOX ratio (about 35%) has been measured at 350 °. In addition, the DPF has better filtration efficiency for biodiesel PM, and the use of biodiesel to engine assembled with DPF has significant benefits.

  16. [Pilot study on pentavalent arsenic removal by coagulation and the strengthening effect of flocs recycling].

    PubMed

    Yao, Juan-Juan; Gao, Nai-Yun; Xia, Sheng-Ji; Chen, Bei-Bei

    2009-06-15

    The pilot and bench scale studies on pentavalent arsenic removal by coagulation and the strengthening effect of flocs recycling were performed. The results show that above 95% As (V) in the raw water exists in the form of dissolved As (V). Furthermore, the removal efficiencies of dissolved arsenic and total arsenic by mixing, first flocculation, second flocculation, sedimentation, filtration units were 87.92%, 6.18%, 2.38%, 1.55%, 1.23% and 1.10%, 1.83%, 2.20%, 86.42%, 7.38% respectively. Therefore, conversion rate of dissolved As(V) into particulate As(V) and the settlement performance of flocs were strongly dependent on the coagulation effect, which determined the As(V) removal efficiency in the whole system. Flocs have a strong adsorption capacity for As(V) and the adsorption obeys a second order reaction kinetics and well fits the modified Freundlich model. Flocs recycling can obviously promoted the As(V) removal by enhanced coagulation and reduce the dosage of coagulant with recycling point set at rapid mixed site and recycling ratio at 50%.

  17. Public health protection through bank filtration - Kearney Nebraska case study

    NASA Astrophysics Data System (ADS)

    Esseks, E.; Bellamy, W.; Heinemann, T.; Stocker, K.

    2003-04-01

    The investigation of Kearney's bank filtration system provides further evidence of this technology's capability to assist in providing public health protection, as it relates to drinking water. The results of hydrogeologic and treatment studies demonstrate the capabilities of the Platte River aquifer materials, in this locale, to remove pathogens and their surrogates. Continual monitoring and evaluations will establish the system’s longevity and continued treatment efficacy. The City of Kearney is located in south central Nebraska. The City owns and operates a public water system that serves approximately 24,889 people. The water system includes 12 wells located on Killgore Island in the Platte River. In 1994, the Nebraska Department of Health and Human Services System (Department) determined that 3 wells in the wellfield serving the City of Kearney were ground water under the direct influence of surface water. This determination was based on results of microscopic particulate analysis (MPA). The City of Kearney undertook the natural bank filtration study to determine whether natural bank filtration was occurring at the site and if the filtration was sufficient to meet pathogen treatment requirements designed to protect public health. A preliminary study was undertaken from June through October 1995. This coincided with the City’s peak pumping time, which may be the time when the influence of the River is greatest on the wellfield wells. Hydrogeologic studies assisted in selecting wells that were at highest risk based on shortest travel times and greatest differential head. Data collected included particle counts, MPAs, turbidity, coliform, centrifugate pellet evaluation (CPE) volumes, pH, conductivity, and temperature. Following analysis of data collected during the preliminary 18-week study the Department granted conditional approval of 2-log credit for removal of Giardia lamblia and 1-log credit for removal of viruses through bank filtration, pending the results of an additional 12-month study. Additional monitoring took place from October 1997 to October 1998. Results of the second study supported the findings of the original 18-week study. The Department finalized approval of the removal credits on December 16, 1999. This paper discusses the 2 studies, ongoing monitoring, decisions made by the Department, and issues the City and the Department have addressed and will be addressing with the addition of new treatment requirements to surface water treatment rules. In addition, this paper examines features of the Island wellfield that may explain the documented bank filtration treatment efficiencies.

  18. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick [Bromley, GB

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  19. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling

    PubMed Central

    Sun, Weixin; Liu, Jianguo

    2018-01-01

    Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L−1) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10−8 to 10−9 m s−1 after 1–2 years of operation and perching significant leachate above it (0.6–0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China. PMID:29439538

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PHYSICAL REMOVAL OF PARTICULATE CONTAMINANTS IN DRINKING WATER: POLYMEM UF 120 S2 ULTRAFILTRATION MEMBRANE MODULE, LUXENBURG, WISCONSIN

    EPA Science Inventory

    Verification testing of the Polymem UF120 S2 Ultrafiltration Membrane Module was conducted over a 46-day period at the Green Bay Water Utility Filtration Plant, Luxemburg, Wisconsin. The ETV testing described herein was funded in conjunction with a 12-month membrane pilot study f...

  1. Preparing cytotoxic agents in an isolator.

    PubMed

    Favier, M; Hansel, S; Bressolle, F

    1993-11-01

    The design of an isolator and its use by an oncology satellite pharmacy for preparing cytotoxic drugs are described. The isolator (Iso Concept, Boulogne, France) is a totally enclosed ventilated biological-safety cabinet of class III polyvinyl chloride (PVC) with positive air pressure, a half-suit with a rotating seal, and attached neoprene gloves. There are three work-stations, one for the half-suit and two along one side of the isolator. The ventilation and air filtration system consists of one entry pipe with a full ventilation-filtration box fitted with one prefilter, one blower, one ball valve, one high-efficiency particulate air (HEPA) filter, one airtight nipple connected to an automatic sterilizer, alarms, and one exhaust pipe protected by a HEPA filter. The air lock consists of a rigid, transparent Plexiglas pass-through. The chamber is sterilized with heated compressed air mixed with 3.5% peracetic acid. Maintenance includes regular changing of gloves and HEPA filters; checking of the integrity of the PVC, half-suit, and gloves; and washing and decontamination procedures. Preparation of cytotoxics is planned in advance with prescription data and manufacturing sheets. In the half-suit, a pharmacy technician reads the label, supervises preparation of the sterile admixture, and writes a label. The operators on the side of the unit read the manufacturing sheet and prepare the dose identified by the label.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Filtration effectiveness of HVAC systems at near-roadway schools.

    PubMed

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  3. Effects on the efficiency of activated carbon on exposure to welding fumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, D.

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as partmore » of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.« less

  4. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  5. Aqueous Cleaning and Validation for Space Shuttle Propulsion Hardware at the White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy

    1999-01-01

    The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.

  6. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration.

    PubMed

    Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin

    2015-11-01

    Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluation of Low-Pressure Drop Antimicrobial and Hybrid Air Filters

    DTIC Science & Technology

    2006-09-01

    purification of aerosol- contaminated air streams has been performed by mechanical filtration. Existing particle filters will stop bacterial and viral...or hybrid low-∆P antimicrobial particulate filter materials. 1.2 Background Traditional purification of aerosol- contaminated air streams has...Plastics, Lima , Ohio). Each path runs through a test article and thence through one AGI-30 all-glass impinger (Chemglass, Vineland, N.J.) partially

  8. Methods for Investigating Mercury Speciation, Transport, Methylation, and Bioaccumulation in Watersheds Affected by Historical Mining

    NASA Astrophysics Data System (ADS)

    Alpers, C. N.; Marvin-DiPasquale, M. C.; Fleck, J.; Ackerman, J. T.; Eagles-Smith, C.; Stewart, A. R.; Windham-Myers, L.

    2016-12-01

    Many watersheds in the western U.S. have mercury (Hg) contamination from historical mining of Hg and precious metals (gold and silver), which were concentrated using Hg amalgamation (mid 1800's to early 1900's). Today, specialized sampling and analytical protocols for characterizing Hg and methylmercury (MeHg) in water, sediment, and biota generate high-quality data to inform management of land, water, and biological resources. Collection of vertically and horizontally integrated water samples in flowing streams and use of a Teflon churn splitter or cone splitter ensure that samples and subsamples are representative. Both dissolved and particulate components of Hg species in water are quantified because each responds to different hydrobiogeochemical processes. Suspended particles trapped on pre-combusted (Hg-free) glass- or quartz-fiber filters are analyzed for total mercury (THg), MeHg, and reactive divalent mercury. Filtrates are analyzed for THg and MeHg to approximate the dissolved fraction. The sum of concentrations in particulate and filtrate fractions represents whole water, equivalent to an unfiltered sample. This approach improves upon analysis of filtered and unfiltered samples and computation of particulate concentration by difference; volume filtered is adjusted based on suspended-sediment concentration to minimize particulate non-detects. Information from bed-sediment sampling is enhanced by sieving into multiple size fractions and determining detailed grain-size distribution. Wet sieving ensures particle disaggregation; sieve water is retained and fines are recovered by centrifugation. Speciation analysis by sequential extraction and examination of heavy mineral concentrates by scanning electron microscopy provide additional information regarding Hg mineralogy and geochemistry. Biomagnification of MeHg in food webs is tracked using phytoplankton, zooplankton, aquatic and emergent vegetation, invertebrates, fish, and birds. Analysis of zooplankton in multiple size fractions from multiple depths in reservoirs can provide insight into food-web dynamics. The presentation will highlight application of these methods in several Hg-contaminated watersheds, with emphasis on understanding seasonal variability in designing effective sampling strategies.

  9. Exploration of PM2.5 filtration property of filter bag for environment protection

    NASA Astrophysics Data System (ADS)

    Zhu, Ruitian; Zheng, Jinwei; Ni, Bingxuan; Zhang, Peng

    2017-06-01

    In this paper, filter bag of polyphenylene sulfide (PPS) needle punched nonwoven for environment protection was investigated. The results showed that air permeability of sample was linear rise with the increase of the pressure drop. During the testing process, the residual pressure drop rose with the increase of cycles because of test dust attaching on the surface of the filter. The PM2.5 filtration efficiency was obtained of 99.854%, which was smaller than the dust filtration efficiency of 99.971% because of the fine particles taking larger proportion of the dust through the sample. Results show that this method of evaluating the PM2.5 filtration property is feasible.

  10. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    PubMed

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. EFFECT OF LOADING DUST TYPE ON THE FILTRATION EFFICIENCY OF ELECTROSTATICALLY CHARGED FILTERS

    EPA Science Inventory

    The paper gives results of an evaluation of the effect of loading dust type on the filtration efficiency of electrostatically charged filters. Three types of filters were evaluated: a rigid-cell filter charged using an electrodynamic spinning process, a pleated-panel filter cha...

  12. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study.

    PubMed

    Chuang, Hsiao-Chi; Ho, Kin-Fai; Lin, Lian-Yu; Chang, Ta-Yuan; Hong, Gui-Bing; Ma, Chi-Ming; Liu, I-Jung; Chuang, Kai-Jen

    2017-09-01

    The association of short-term air pollution filtration with cardiovascular health has been documented. However, the effect of long-term indoor air conditioner filtration on the association between air pollution and cardiovascular health is still unclear. We recruited 200 homemakers from Taipei and randomly assigned 100 of them to air filtration or control intervention; six home visits were conducted per year from 2013 to 2014. The participants under air filtration intervention during 2013 were reassigned to control intervention in 2014. The air pollution measurements consisted of particulate matter less than or equal to 2.5μm in diameter (PM 2.5 ) and total volatile organic compounds (VOCs); blood pressure was monitored for each participant during each visit. The following morning, blood samples were collected after air pollution monitoring. The blood samples were used to analyze biological markers, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and fibrinogen. Household information, including cleaning, cooking, and air conditioning, was collected by a questionnaire. Mixed-effects models were used to investigate the associations among air pollution measurements, blood pressure and biological markers. The results showed that increased levels of PM 2.5 and total VOCs were associated with increased hs-CRP, 8-OHdG and blood pressure. The health variables were higher among participants in the control intervention phase than among those in the air filtration intervention phase. We concluded that air pollution exposure was associated with systemic inflammation, oxidative stress and elevated blood pressure. The long-term filtration of air pollution with an air conditioner filter was associated with cardiovascular health of adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Settling Efficiency of Urban Particulate Matter Transported by Stormwater Runoff.

    PubMed

    Carbone, Marco; Penna, Nadia; Piro, Patrizia

    2015-09-01

    The main purpose of control measures in urban areas is to retain particulate matter washed out by stormwater over impermeable surfaces. In stormwater control measures, particulate matter removal typically occurs via sedimentation. Settling column tests were performed to examine the settling efficiency of such units using monodisperse and heterodisperse particulate matter (for which the particle size distributions were measured and modelled by the cumulative gamma distribution). To investigate the dependence of settling efficiency from the particulate matter, a variant of the evolutionary polynomial regression (EPR), a Microsoft Excel function based on multi-objective EPR technique (EPR-MOGA), called EPR MOGA XL, was used as a data-mining strategy. The results from this study have shown that settling efficiency is a function of the initial total suspended solids (TSS) concentration and of the median diameter (d50 index), obtained from the particle size distributions (PSDs) of the samples.

  15. Fabrication of an anti-viral air filter with SiO₂-Ag nanoparticles and performance evaluation in a continuous airflow condition.

    PubMed

    Joe, Yun Haeng; Woo, Kyoungja; Hwang, Jungho

    2014-09-15

    In this study, SiO2 nanoparticles surface coated with Ag nanoparticles (SA particles) were fabricated to coat a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. A mathematical approach was developed to measure the anti-viral ability of the filter with various virus deposition times. Moreover, two quality factors based on the anti-viral ability of the filter, and a traditional quality factor based on filtration efficiency, were calculated. The filtration efficiency and pressure drop increased with decreasing media velocity and with increasing SA particle coating level. The anti-viral efficiency also increased with increasing SA particle coating level, and decreased by with increasing virus deposition time. Consequently, SA particle coating on a filter does not have significant effects on filtration quality, and there is an optimal coating level to produce the highest anti-viral quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fixation filter, device for the rapid in situ preservation of particulate samples

    NASA Astrophysics Data System (ADS)

    Taylor, C. D.; Edgcomb, V. P.; Doherty, K. W.; Engstrom, I.; Shanahan, T.; Pachiadaki, M. G.; Molyneaux, S. J.; Honjo, S.

    2015-02-01

    Niskin bottle rosettes have for years been the workhorse technology for collection of water samples used in biological and chemical oceanography. Studies of marine microbiology and biogeochemical cycling that aim to analyze labile organic molecules including messenger RNA, must take into account factors associated with sampling methodology that obscure an accurate picture of in situ activities/processes. With Niskin sampling, the large and often variable times between sample collection and preservation on deck of a ship, and the sometimes significant physico-chemical changes (e.g., changes in pressure, light, temperature, redox state, etc.) that water samples and organisms are exposed to, are likely to introduce artifacts. These concerns are likely more significant when working with phototrophs, deep-sea microbes, and/or organisms inhabiting low-oxygen or anoxic environments. We report here the development of a new technology for the in situ collection and chemical preservation of particulate microbial samples for a variety of downstream analyses depending on preservative choice by the user. The Fixation Filter Unit, version 3 (FF3) permits filtration of water sample through 47 mm diameter filters of the user's choice and upon completion of filtration, chemically preserves the retained sample within 10's of seconds. The stand-alone devices can be adapted to hydrocasting or mooring-based platforms.

  17. A 2-year comparative study of mold and bacterial counts in air samples from neutral and positive pressure rooms in 2 tertiary care hospitals.

    PubMed

    Ryan, Laura; O'Mara, Niall; Tansey, Sana; Slattery, Tom; Hanahoe, Belinda; Vellinga, Akke; Doyle, Maeve; Cormican, Martin

    2018-05-01

    Immunocompromised patients are at risk of invasive fungal infection. These high-risk patients are nursed in protective isolation to reduce the risk of nosocomial aspergillosis while in hospital-ideally in a positive pressure single room with high-efficiency particulate air filtration. However, neutral pressure rooms are a potential alternative, especially for patients requiring both protective and source isolation. This study examined mold and bacterial concentrations in air samples from positive and neutral pressure rooms to assess whether neutral pressure rooms offer a similar environment to that of positive pressure rooms in terms of mold concentrations in the air. Mold concentrations were found to be similar in the positive and neutral pressure room types examined in this study. These results add to the paucity of literature in this area. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Crystallization efficiencies of inorganic polyphosphate oligomers reacted with magnesium and calcium cations using anion-exchange chromatography with particulate formation-laser scattering detector.

    PubMed

    Ando, Masaki; Imadzu, Sakiyo; Kitagawa, Shinya; Ohtani, Hajime

    2010-08-06

    A particulate formation-laser scattering detector (PFLSD) was developed and used for evaluating the crystallization efficiency of inorganic polyphosphates (PPs) that reacted with either magnesium or calcium cations. As the solutions for reactive crystallization, 0.5 M ammonium buffer (pH 9.6) containing either 0.15 M MgCl(2) or 0.15 M CaCl(2) (MAP: magnesium ammonium phosphate and HAP: hydroxyapatite solution) were used. In the case of mono- and diphosphate (P1 and P2), the significant dependences of the particulate formation efficiency on various types of both P1/P2 and MAP/HAP reaction solutions were observed with the direct sample injection mode. The PFLSD was hyphenated with the anion-exchange chromatography and the dependence of the particulate formation efficiency on the polymerization degree (n(p)) of PP oligomers, separated chromatographically, was evaluated sequentially. The significant suppression of the particulate formation for PP oligomers was clearly confirmed, i.e., the MAP and HAP reaction solutions did not produce the particulates of the PP oligomers having an n(p) value of more than 3 and 5, respectively. As the overall tendency, the particulate formation efficiency in the case of the HAP solution was superior to that in the case of the MAP solution. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Bottles as models: predicting the effects of varying swimming speed and morphology on size selectivity and filtering efficiency in fishes.

    PubMed

    Paig-Tran, E W Misty; Bizzarro, Joseph J; Strother, James A; Summers, Adam P

    2011-05-15

    We created physical models based on the morphology of ram suspension-feeding fishes to better understand the roles morphology and swimming speed play in particle retention, size selectivity and filtration efficiency during feeding events. We varied the buccal length, flow speed and architecture of the gills slits, including the number, size, orientation and pore size/permeability, in our models. Models were placed in a recirculating flow tank with slightly negatively buoyant plankton-like particles (~20-2000 μm) collected at the simulated esophagus and gill rakers to locate the highest density of particle accumulation. Particles were captured through sieve filtration, direct interception and inertial impaction. Changing the number of gill slits resulted in a change in the filtration mechanism of particles from a bimodal filter, with very small (≤ 50 μm) and very large (>1000 μm) particles collected, to a filter that captured medium-sized particles (101-1000 μm). The number of particles collected on the gill rakers increased with flow speed and skewed the size distribution towards smaller particles (51-500 μm). Small pore sizes (105 and 200 μm mesh size) had the highest filtration efficiencies, presumably because sieve filtration played a significant role. We used our model to make predictions about the filtering capacity and efficiency of neonatal whale sharks. These results suggest that the filtration mechanics of suspension feeding are closely linked to an animal's swimming speed and the structural design of the buccal cavity and gill slits.

  20. Particulate filtration from emissions of a plasma pyrolysis assembly reactor using regenerable porous metal filters

    NASA Technical Reports Server (NTRS)

    Berger, Gordon M.; Agui, Juan H.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary W.; West, Philip J.; Mitchell, Karen O.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  1. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  2. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOEpatents

    Cohen, Mitchell R.; Gal, Eli

    1993-01-01

    A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

  3. Herbaceous plants as filters: immobilization of particulates along urban street corridors.

    PubMed

    Weber, Frauke; Kowarik, Ingo; Säumel, Ina

    2014-03-01

    Among air pollutants, particulate matter (PM) is considered to be the most serious threat to human health. Plants provide ecosystem services in urban areas, including reducing levels of PM by providing a surface for deposition and immobilization. While previous studies have mostly addressed woody species, we focus on herbaceous roadside vegetation and assess the role of species traits such as leaf surface roughness or hairiness for the immobilization of PM. We found that PM deposition patterns on plant surfaces reflect site-specific traffic densities and that strong differences in particulate deposition are present among species. The amount of immobilized PM differed according to particle type and size and was related to specific plant species traits. Our study suggests that herbaceous vegetation immobilizes a significant amount of the air pollutants relevant to human health and that increasing biodiversity of roadside vegetation supports air filtration and thus healthier conditions along street corridors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Performance of particulate containment at nanotechnology workplaces

    NASA Astrophysics Data System (ADS)

    Lo, Li-Ming; Tsai, Candace S.-J.; Dunn, Kevin H.; Hammond, Duane; Marlow, David; Topmiller, Jennifer; Ellenbecker, Michael

    2015-11-01

    The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These control assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37 % reduction on the particle concentration in the worker's breathing zone, and produce a 42 % lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15-20 % higher ultrafine (<500 nm) particle concentrations at the source and at the worker's breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored.

  5. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    PubMed

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  6. Seasonal variations on the residence times and partitioning of short-lived radionuclides (234Th, 7Be and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay, Florida

    USGS Publications Warehouse

    Baskaran, M.; Swarzenski, P.W.

    2007-01-01

    Historically, Tampa Bay has been impacted heavily by a wide range of anthropogenic perturbations that may include, agricultural-, shipping-, phosphate mining/distribution-related activities, as well as a burgeoning coastal population. Due to the presence of U-rich underlying sediments, elevated activities of U- and Th-series daughter products may be naturally released into this system. This region is also known for summer thunderstorms and corresponding increases in precipitation and surface water runoff. Only limited work has been conducted on the partitioning of particle-reactive radionuclides (such as 7Be, 210Pb, and 234Th) in such a dynamic coastal system. We investigated both the removal residence time and partitioning of these radionuclides between filter-retained particulate matter (≥ 0.5 μm) and the filtrate ( Our results indicate that the partitioning of 7Be, 210Pb, and 234Th between filtrate and filter-retained phase is controlled foremost by enhanced bottom resuspension events during summer thunderstorms. As a consequence, no significant relationship exists between the distribution coefficients (Kd values) of these isotopes and the concentration of suspended particulate matter (SPM). Relatively faster recycling rates of atmospheric water vapor derived from the ocean results in lower atmospheric depositional fluxes of 210Pb to the study site than predicted. The relationship between 7Be and 210Pb in bulk (wet + dry) deposition is compared to their respective water column activities. The residence times of particulate and dissolved 234Th, 7Be and 210Pb, as well the distribution coefficients of these radionuclides, are then compared to values reported in other coastal systems.

  7. Simultaneous determination of suspended particulate trace metals (Co, Ni, Cu, Zn, Cd and Pb) in seawater with small volume filtration assisted by microwave digestion and flow injection inductively coupled plasma mass spectrometer.

    PubMed

    Nakatsuka, Seiji; Okamura, Kei; Norisuye, Kazuhiro; Sohrin, Yoshiki

    2007-06-26

    A new technique for the determination of suspended particulate trace metals (P-metals >0.2 microm), such as Co, Ni, Cu, Zn, Cd and Pb, in open ocean seawater has been developed by using microwave digestion coupled with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Suspended particulate matter (SPM) was collected from 500 mL of seawater on a Nuclepore filter (0.2 microm) using a closed filtration system. Both the SPM and filter were completely dissolved by microwave digestion. Reagents for the digestion were evaporated using a clean evaporation system, and the metals were redissolved in 0.8 M HNO3. The solution was diluted with buffer solution to give pH 5.0 and the metals were determined by FI-ICP-MS using a chelating adsorbent of 8-hydroxyquinoline immobilized on fluorinated metal alkoxide glass (MAF-8HQ). The procedure blanks with a filter were found to be 0.048+/-0.008, 10.3+/-0.3, 0.27+/-0.05, 3.3+/-1.8, 0.02+/-0.03 and 0.85+/-0.09 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively (n=14). Detection limits defined as 3 times the standard deviation of the blanks were 0.023, 0.90, 0.14, 5.3, 0.078 and 0.28 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively. Accuracy was evaluated using certified reference materials of chlorella (NES CRM No. 3) and marine sediment (HISS-1). The method was applied to the determination of vertical distributions for P-Co, Ni, Cu, Zn, Cd and Pb in the Western North Pacific.

  8. Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland, northeast of China: implications for the filtration functions of wetlands.

    PubMed

    Liu, Jin; Ye, Siyuan; Yuan, Hongming; Ding, Xigui; Zhao, Guangming; Yang, Shixiong; He, Lei; Wang, Jin; Pei, Shaofeng; Huang, Xiaoyu

    2018-02-01

    Grain size and concentrations of organic carbon (Corg) and particulate metals (PMs) As, Cd, Cr, Cu, Hg, Pb, Zn, Al, Fe, and Mn of 373 surface sediment samples, salinities in 67 surface water samples, were analyzed in various environments, including the upper delta plain wetlands (UDPW), its adjacent shallow sea wetland (SSW) in the Liaodong Bay, and river channels that are running through the Liaohe Delta, to evaluate the spatial distribution, transportation environmental dynamics of metals, and the provenance of metal pollution and assess the filtration functions of wetlands. The concentrations of PMs for UDPW were generally higher by a factor of ~ 10-22% compared with its analogues in SSW, suggesting the accumulation of PMs within the UDPW indicates that the UDPW systems are efficiently physical and chemical traps for PMs of anthropogenic sources by retaining and storing pollutants flowing into the sea. However, there was sever sewage irrigation-induced Cd pollution with a geo-accumulation index of 0.62-3.11 in an area of ~ 86 km 2 of the adjacent shallow sea wetland, where large amount wetlands were historically moved for agriculture in the UDPW. Remarkably, the distributions of PMs were controlled by salinity-induced desorption and re-adsorption mechanisms and significantly dispersed the contamination coverage by the three-dimensional hydrodynamic and sedimentation processes that dominated by inputs of freshwater and ocean dynamics including NE-SW tidal currents and NE-E longshore drifts in the SSW of the Liaodong Bay. A high agreement between the UDPW and the SSW datasets in principal component analysis essentially reflects that the characteristics of PM sources in the SSW were actually inherited from that in the UDPW, with a much closer relationship among metals, organic matter, and fine particulates in SSW than that of UDPW, which was judged by their correlation coefficient range of 0.406-0.919 in SSW against those of 0.042-0.654 in UDPW.

  9. Probing Subsurface and Stream Particle Composition Through Optical Analysis at the Eel River Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Nghiem, A.; Thurnhoffer, B. M.; Bishop, J. K. B.; Kim, H.

    2014-12-01

    Particles constitute a significant portion of the flux weathered material from continents to ocean basins but little is understood about their seasonal dynamics particularly in subsurface and headwater stream environments. At the Eel River Critical Zone Observatory, located near the headwaters of the South Fork Eel River in the Angelo Coast Range Reserve (Northern California), groundwater from weathered bedrock and stream waters are sampled at a frequency of one to three days from three wells (Well 1 down-slope, Well 3 mid-slope, Well 10 upper-slope) and Elder Creek. Approximately one thousand samples collected by automated ISCO Gravity Filtration System (GFS; Kim et al. 2012, EST) since 2011 have been filtered through 0.45 μm 25 mm diameter Supor filters. Filters imaged under controlled lighting are analyzed for red, green, and blue optical density (OD) to enable rapid assessment of sample loading and color as a prelude to and selection aid for more labor-intensive ICP-MS and Scanning Electron Microscopic analysis. For example, samples with lower red OD relative to green and blue may correspond to samples high in Mn/Fe oxides. Optical imaging of the loaded filters provides a time-series over three years and color anomalies in these filters along with chemical analysis of dissolved and particulate filtrate is used to establish a method for calibrating optical data to interpret chemical composition of water and particles. Results are interpreted within a framework of environmental data such as rainfall, stream discharge and turbidity, and water table depth measured at the heavily monitored forested hillslope. Data from the four locations range up to 0.6 OD units with a typical detection limit of better than 0.01 OD units. At Well 10, wet season filter samples exhibit highest particle loading (OD ~ 0.3) with values rapidly decreasing during the dry season (OD < D.L.) water table recession. At Well 1, particle loads instantaneously reflect intense rain events. Applied at a larger scale, this method - if proven - may be used to estimate basin level particulate flux with an estimation of chemical composition in a highly efficient manner.

  10. Autonomous water sampling for long-term monitoring of trace metals in remote environments.

    PubMed

    Kim, Hyojin; Bishop, James K B; Wood, Todd J; Fung, Inez Y

    2012-10-16

    A remotely controlled autonomous method for long-term high-frequency sampling of environmental waters in remote locations is described. The method which preserves sample integrity of dissolved trace metals and major ions for month-long periods employs a gravitational filtration system (GFS) that separates dissolved and particulate phases as samples are collected. The key elements of GFS are (1) a modified "air-outlet" filter holder to maximize filtration rate and thus minimize filtration artifacts; and (2) the direct delivery of filtrate to dedicated bottle sets for specific analytes. Depth and screen filter types were evaluated with depth filters showing best performance. GFS performance is validated using ground, stream, and estuary waters. Over 30 days of storage, samples with GFS treatment had average recoveries of 95 ± 19% and 105 ± 7% of Fe and Mn, respectively; without GFS treatment, average recoveries were only 16% and 18%. Dissolved major cations K, Mg, and Na were stable independent of collection methodology, whereas Ca in some groundwater samples decreased up to 42% without GFS due to CaCO(3) precipitation. In-field performance of GFS equipped autosamplers is demonstrated using ground and streamwater samples collected at the Angelo Coast Range Reserve, California from October 3 to November 4 2011.

  11. Impacts of air cleaners on indoor air quality in residences impacted by wood smoke.

    PubMed

    Wheeler, Amanda J; Gibson, Mark D; MacNeill, Morgan; Ward, Tony J; Wallace, Lance A; Kuchta, James; Seaboyer, Matt; Dabek-Zlotorzynska, Ewa; Guernsey, Judith Read; Stieb, David M

    2014-10-21

    Residential wood combustion is an important source of ambient air pollution, accounting for over 25% of fine particulate matter (PM2.5) emissions in Canada. In addition to these ambient contributions, wood smoke pollutants can enter the indoor environment directly when loading or stoking stoves, resulting in a high potential for human exposure. A study of the effectiveness of air cleaners at reducing wood smoke-associated PM2.5 of indoor and outdoor origin was conducted in 31 homes during winter 2009-10. Day 1, the residents' wood burning appliance operated as usual with no air cleaner. Days 2 and 3, the wood burning appliance was not operational and the air cleaner was randomly chosen to operate in "filtration" or "placebo filtration" mode. When the air cleaner was operating, total indoor PM2.5 levels were significantly lower than on placebo filtration days (p = 0.0001) resulting in a median reduction of 52%. There was also a reduction in the median PM2.5 infiltration factor from 0.56 to 0.26 between these 2 days, suggesting the air cleaner was responsible for increased PM2.5 deposition on filtration days. Our findings suggest that the use of an air cleaner reduces exposure to indoor PM2.5 resulting from both indoor and ambient wood smoke sources.

  12. The use of charcoal in modified cigarette filters for mainstream smoke carbonyl reduction

    PubMed Central

    Holman, Matthew R.; Ding, Yan S.; Yan, Xizheng; Chan, Michele; Chafin, Dana; Perez, Jose; Mendez, Magaly I.; Cardenas, Roberto Bravo; Watson, Clifford

    2017-01-01

    Carbonyls are harmful and potentially harmful constituents (HPHCs) in mainstream cigarette smoke (MSS). Carbonyls, including formaldehyde and acrolein, are carcinogenic or mutagenic in a dose-dependent manner. Past studies demonstrate significant reduction of HPHCs by charcoal filtration. However, limits of charcoal filtration and cigarette design have not yet been investigated in a systematic manner. Objective data is needed concerning the feasibility of HPHC reduction in combustible filtered cigarettes. This systematic study evaluates the effect of charcoal filtration on carbonyl reduction in MSS. We modified filters of ten popular cigarette products with predetermined quantities (100–400 mg) of charcoal in a plug-space-plug configuration. MSS carbonyls, as well as total particulate matter, tar, nicotine, carbon monoxide (TNCO), and draw resistance were quantified. Significant carbonyl reductions were observed across all cigarette products as charcoal loading increased. At the highest charcoal loadings, carbonyls were reduced by nearly 99%. Tar and nicotine decreased modestly (<20%) compared to reductions in carbonyls. Increased draw resistance was significant at only the highest charcoal loadings. This work addresses information gaps in the science base that can inform the evaluation of charcoal filtration as an available technological adaptation to cigarette design which reduces levels of carbonyls in MSS. PMID:28238852

  13. Studies of the inner shelf and coastal sedimentation environment of the Beaufort Sea from ERTS-1

    NASA Technical Reports Server (NTRS)

    Reimnitz, E. (Principal Investigator); Barnes, P. W.

    1973-01-01

    The author has identified the following significant results. The particulate transport processes involved in the movement of surficial waters were examined using secchi disc readings, light attenuation coefficients, and particulate weights from filtration. Observations gathered during the summers of 1971 and 1972 indicate a remarkable difference in particulate matter and turbidity between the two years. ERTS-1 imagery during August 1972 showed turbid water along the northern Alaska coast. The uniformity of distribution of the turbid water and the fact that the river discharge is low at this period suggest that the turbidity is related to causes other than river effluent. Studies indicate that wave action is a more significant factor influencing particulate transport than believed heretofore. The boundary between the essentially immobile shorefast ice and the moving pack ice has been plotted from several ERTS-1 images and found to occur fairly consistently along the 20 meter contour. Considering the vast difference in the amount of ice movement shoreward and seaward of this boundary, ice-bottom action should also be different on either side of this boundary and for that matter at the shear zone that develops along the boundary.

  14. Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.

    2012-01-01

    A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.

  15. The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing.

    PubMed

    Zhan, Ying; Johnson, Karoline; Norris, Christina; Shafer, Martin M; Bergin, Mike H; Zhang, Yinping; Zhang, Junfeng; Schauer, James J

    2018-06-01

    In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM 2.5 ) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM 2.5 and several health relevant components of PM 2.5 including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM 2.5 reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM 2.5 concentration during true filtration was 8.47μg/m 3 , compared to 49.0μg/m 3 during sham filtration; thus, air cleaners can significantly reduce the indoor PM 2.5 concentration to well below WHO guideline levels and significantly lower all major components of PM 2.5 . However, the utility of air cleaners in reducing overall personal exposure to PM 2.5 and its components was marginal in this study: the average personal exposure PM 2.5 concentration was 67.8 and 51.1μg/m 3 during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM 2.5 concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM 2.5 exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Monodisperse CNT Microspheres for High Permeability and Efficiency Flow-Through Filtration Applications.

    PubMed

    Copic, Davor; Maggini, Laura; De Volder, Michael

    2018-03-01

    Carbon nanotube (CNT)-based filters have the potential to revolutionize water treatment because of their high capacity and fast kinetics in sorption of organic, inorganic, and biological pollutants. To date, CNT filters either rely on CNTs dispersed in liquids, which are difficult to recover and cause safety concerns, or on CNT buckypaper, which offers high efficiency, but suffers from an intrinsic trade-off between filter permeability and capacity. Here, a new approach is presented that bypasses this trade-off and achieves buckypaper-like efficiency combined with filter-column-like permeability and capacity. For this, CNTs are first assembled into porous microspheres and then are packed into microfluidic column filters. These microcolumns exhibit large flow-through filtration efficiencies, while maintaining membrane permeabilities an order of magnitude larger then CNT buckypaper and specific permeabilities double that of activated carbon for similar flowrates (232 000 L m -2 h -1 bar -1 , 1.23 × 10 -12 m 2 ). Moreover, in a test to remove sodium dodecyl sulfate (SDS) from water, these microstructured CNT columns outperform activated carbon columns. This improved filtration efficiency and permeability is an important step toward a broader implementation of CNT-based filtration devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Performance evaluation of different filter media in turbidity removal from water by application of modified qualitative indices.

    PubMed

    Gholikandi, G Badalians; Dehghanifard, E; Sepehr, M Noori; Torabian, A; Moalej, S; Dehnavi, A; Yari, Ar; Asgari, Ar

    2012-01-01

    Water filtration units have been faced problems in water turbidity removal related to their media, which is determined by qualitative indices. Moreover, Current qualitative indices such as turbidity and escaping particle number could not precisely determine the efficiency of the media in water filtration, so defining new indices is essential. In this study, the efficiency of Anthracite-Silica and LECA-Silica media in turbidity removal were compared in different operating condition by using modified qualitative indices. The pilot consisted of a filter column (one meter depth) which consisted of a layer of LECA (450 mm depth) and a layer of Silica sand (350 mm depth. Turbidities of 10, 20, and 30 NTU, coagulant concentrations of 4, 8, and 12 ppm and filtration rates of 10, 15, and 20 m/h were considered as variables. The LECA-Silica media is suitable media for water filtration. Averages of turbidity removal efficiencies in different condition for the LECA-Silica media were 85.8±5.37 percent in stable phase and 69.75±3.37 percent in whole operation phase, while the efficiency of total system were 98.31±0.63 and 94.49±2.97 percent, respectively. The LECA layer efficiency in turbidity removal was independent from filtration rates and due to its low head loss; LECA can be used as a proper medium for treatment plants. Results also showed that the particle index (PI) was a suitable index as a substitute for turbidity and EPN indices.

  18. Performance of ultrafiltration membrane process combined with coagulation/sedimentation.

    PubMed

    Jang, N Y; Watanabe, Y; Minegishi, S

    2005-01-01

    Effects of coagulation/sedimentation as a pre-treatment on the dead-end ultrafiltration (UF) membrane process were studied in terms of membrane fouling and removal efficiency of natural dissolved organic matter, using Chitose River water. Two types of experiment were carried out. One was a bench scale membrane filtration with jar-test and the other was membrane filtration pilot plant combined with the Jet Mixed Separator (JMS) as a pre-coagulation/sedimentation unit. In the bench scale experiment, the effects of coagulant dosage, pH and membrane operating pressure on the membrane fouling and removal efficiency of natural dissolved organic matter were investigated. In the pilot plant experiment, we also investigated the effect of pre-coagulation/sedimentation on the membrane fouling and the removal efficiency of natural dissolved organic matter. Coagulation/sedimentation prior to membrane filtration process controlled the membrane fouling and increased the removal efficiency of natural dissolved organic matter.

  19. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate.

    PubMed

    Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D

    2010-01-01

    Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.

  20. Phenomenology and modeling of particulate corrosion product behavior in Hanford N Reactor primary coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, D.B.

    1983-12-31

    The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspendedmore » crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN.« less

  1. In-Water Hull Cleaning & Filtration System

    NASA Astrophysics Data System (ADS)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped through a multi stage filtration unit on the surface. Solids greater than 50 micron are separated through a 1st stage separator and deposited into a disposal bin. Filtrate is then pumped through a series of high flow, back-flushable filters that remove particulate material greater than 5 micron. After the 1st and 2nd stage filtration the filtrate is then disinfected by passing through an automated UV reactor where the treated water is then released back into the ocean. This advancement in hull cleaning technology will allow vessels to be cleaned in areas where dry docking is not possible or viable along with being a preventive measure to reduce Biofouling in the environment. The in-water hull cleaning system certainly has earned its place as being an innovative leader in improving efficiencies and reducing environmental impact. https://www.linkedin.com/groups?mostRecent=&gid=6724648&trk=my_groups-tile-flipgrp

  2. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  3. Exploration of Ultralight Nanofiber Aerogels as Particle Filters: Capacity and Efficiency.

    PubMed

    Deuber, Fabian; Mousavi, Sara; Federer, Lukas; Hofer, Marco; Adlhart, Christian

    2018-03-14

    Ultralight nanofiber aerogels (NFAs) or nanofiber sponges are a truly three-dimensional derivative of the intrinsically flat electrospun nanofiber mats or membranes (NFMs). Here we investigated the potential of such materials for particle or aerosol filtration because particle filtration is a major application of NFMs. Ultralight NFAs were synthesized from electrospun nanofibers using a solid-templating technique. These materials had a tunable hierarchical cellular open-pore structure. We observed high filtration efficiencies of up to 99.999% at the most penetrating particle size. By tailoring the porosity of the NFAs through the processing parameters, we were able to adjust the number of permeated particles by a factor of 1000 and the pressure drop by a factor of 9. These NFAs acted as a deep-bed filter, and they were capable of handling high dust loadings without any indication of performance loss or an increase in the pressure drop. When the face velocity was increased from 0.75 to 6 cm s -1 , the filtration efficiency remained high within a factor of 1.1-10. Both characteristics were in contrast to the behavior of two commercial NFM particle filters, which showed significant increases in the pressure drop with the filtration time as well as a susceptibility against high face velocities by a factor of 105.

  4. Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tronville, Paolo

    2014-06-01

    The filtration of airborne nanoparticles is an important control technique as the environmental, health, and safety impacts of nanomaterials grow. A review of the literature shows that significant progress has been made on airborne nanoparticle filtration in the academic field in the recent years. We summarize the filtration mechanisms of fibrous and membrane filters; the air flow resistance and filter media figure of merit are discussed. Our review focuses on the air filtration test methods and instrumentation necessary to implement them; recent experimental studies are summarized accordingly. Two methods using monodisperse and polydisperse challenging aerosols, respectively, are discussed in detail. Our survey shows that the commercial instruments are already available for generating a large amount of nanoparticles, sizing, and quantifying them accurately. The commercial self-contained filter test systems provide the possibility of measurement for particles down to 15 nm. Current international standards dealing with efficiency test for filters and filter media focus on measurement of the minimum efficiency at the most penetrating particle size. The available knowledge and instruments provide a solid base for development of test methods to determine the effectiveness of filtration media against airborne nanoparticles down to single-digit nanometer range.

  5. Waterless Clothes-Cleaning Machine

    NASA Technical Reports Server (NTRS)

    Johnson, Glenn; Ganske, Shane

    2013-01-01

    A waterless clothes-cleaning machine has been developed that removes loose particulates and deodorizes dirty laundry with regenerative chemical processes to make the clothes more comfortable to wear and have a fresher smell. This system was initially developed for use in zero-g, but could be altered for 1-g environments where water or other re sources are scarce. Some of these processes include, but are not limited to, airflow, filtration, ozone generation, heat, ultraviolet light, and photocatalytic titanium oxide.

  6. The Role of Planetary Dust and Regolith Mechanics in Technology Developments at NASA

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2011-01-01

    One of NASA's long term goals continues to be the exploration of other planets and orbital bodies in our solar system. Our sustained presence through the installation of stations or bases on these planetary surfaces will depend on developing properly designed habitation modules, mobility systems and supporting infrastructure. NASA Glenn Research Center is involved in several technology developments in support of this overarching goal. Two key developments are in the area of advanced filtration and excavation systems. The first addresses the issues posed by the accumulation of particulate matter over long duration missions and the intrusion of planetary dust into spacecraft and habitat pressurized cabins. The latter supports the operation and infrastructure of insitu resource utilization (ISRU) processes to derive consumables and construction materials from the planetary regolith. These two developments require a basic understanding of the lunar regolith at the micro (particle) to macro (bulk) level. Investigation of the relevant properties of the lunar regolith and characterization of the standard simulant materials used in. testing were important first steps in these developments. The fundamentals and operational concepts of these technologies as well as descriptions of new NASA facilities, including the Particulate Filtration Testing and the NASA Excavation and Traction Testing facilities, and their capabilities for testing and advancing these technologies will be presented. The test data also serves to validate and anchor computational simulation models.

  7. Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Zhijuan

    2015-11-01

    Hierarchical structured nano-sized/porous poly(lactic acid) (PLA-N/PLA-P) composite fibrous membranes with excellent air filtration performance were prepared via an electrospinning technique. Firstly, PLA-P fibers with different morphology were fabricated by varying the relative humidity, and the nanopores on fiber surface played a key role in improving the specific surface area and filtration performance of the resultant membranes. Secondly, hierarchical structure of PLA-N/PLA-P interlaced structured membranes and PLA-N/PLA-P double-layer structured membranes with different mass ratios for further enhanced air filtration performance were also successfully prepared by combining PLA-N fibers with PLA-P fibers. Filtration tests by measuring the penetration of sodium chloride (NaCl) aerosol particles with a 260 nm mass median diameter revealed that a moderate mass ratio of PLA-P fibers and PLA-N fibers contributed to improving the filtration performance of the hierarchical structured PLA-N/PLA-P composite membrane, and the double-layer structured PLA-N/PLA-P membrane possessed a higher filtration efficiency and quality factor than that of an interlaced structured PLA-N/PLA-P membrane with the same mass ratio. The as-prepared PLA-N/PLA-P double-layer structured membrane with a mass ratio of 1/5 showed a high filtration efficiency (99.999%) and a relatively low pressure drop (93.3 Pa) at the face velocity of 5.3 cm/s.

  8. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    PubMed

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.

  9. Changes in collection efficiency in nylon net filter media through magnetic alignment of elongated aerosol particles.

    PubMed

    Lam, Christopher O; Finlay, W H

    2009-10-01

    Fiber aerosols tend to align parallel to surrounding fluid streamlines in shear flows, making their filtration more difficult. However, previous research indicates that composite particles made from cromoglycic acid fibers coated with small nanoscaled magnetite particles can align with an applied magnetic field. The present research explored the effect of magnetically aligning these fibers to increase their filtration. Nylon net filters were challenged with the aerosol fibers, and efficiency tests were performed with and without a magnetic field applied perpendicular to the flow direction. We investigated the effects of varying face velocities, the amount of magnetite material on the aerosol particles, and magnetic field strengths. Findings from the experiments, matched by supporting single-fiber theories, showed significant efficiency increases at the low face velocity of 1.5 cm s(-1) at all magnetite compositions, with efficiencies more than doubling due to magnetic field alignment in certain cases. At a higher face velocity of 5.12 cm s(-1), filtration efficiencies were less affected by the magnetic field alignment being, at most, 43% higher for magnetite weight compositions up to 30%, while at a face velocity of 10.23 cm s(-1) alignment effects were insignificant. In most cases, efficiencies became independent of magnetic field strength above 50 mT, suggesting full alignment of the fibers. The present data suggest that fiber alignment in a magnetic field may warrant applications in the filtration and detection of fibers, such as asbestos.

  10. Investigation of Microgranular Adsorptive Filtration System

    NASA Astrophysics Data System (ADS)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling in muGAF systems can occur both on the membrane surface and in the cake layer. Fouling caused by soluble NOM, like polysaccharides, occurs mostly on the membrane surface, and increasing the adsorbent surface loading (i.e., the thickness of the layer) can mitigate fouling by such molecules. By contrast, fouling by colloids and particulate matter occurs mostly on the surface or upstream portion of the pre-deposited adsorbent layer. Use of smaller adsorbent particles improves the capture of these contaminants but also exacerbates such fouling. Lastly, preliminary tests demonstrate that muGAF is also effective at reducing fouling caused by NOM in seawater, and that combining multiple adsorbents in muGAF is a potential approach to optimize overall system performance.

  11. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5

    PubMed Central

    Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-01-01

    Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60–100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications. PMID:27748419

  12. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5

    NASA Astrophysics Data System (ADS)

    Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-10-01

    Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60-100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications.

  13. Decontamination Efficiencies of Pot-Type Water Purifiers for 131I, 134Cs and 137Cs in Rainwater Contaminated during Fukushima Daiichi Nuclear Disaster

    PubMed Central

    Higaki, Shogo; Hirota, Masahiro

    2012-01-01

    Rainwater was contaminated by a large release of radionuclides into the environment during the Fukushima Daiichi nuclear disaster. It became a matter of concern for Japan when several water purification plants detected 131I contamination in the drinking water. In the present study, the decontamination efficiency of two easily obtainable commercial water purifiers were examined for rainwater contaminated with 131I, 134Cs and 137Cs. The water purifiers removed 94.2–97.8% of the 131I and 84.2–91.5% of the 134Cs and 137Cs after one filtration. Seven filtrations removed 98.2–99.6% of the 131I and over 98.0% of the 134Cs and 137Cs. From a practical perspective, over the fourth filtrations were not needed because of no significant improvements after the third filtration. PMID:22615935

  14. [Effects of algicidal bacterium BS03 (Microbulbifer sp.) on the growth and antioxidant systems of Alexandrium tamarense].

    PubMed

    Fu, Lijun; Li, Dong; Wu, Chengji; Zheng, Tianling

    2012-06-04

    We studied the algicidal mechanism of extracellular substances of algicidal bacteria strain BS03 (Microbulbifer sp.) on photosynthetic characteristics, antioxident enzyme system and cysteine-dependent aspartate specific protease-3 (Caspase-3) of Alexandrium tamarense. We tested photosynthetic pigments, chlorophyll fluorescence efficiency, antioxidant systems and caspase-3 activity in the algae cells treated with 0.5%, 1.0% , 1.5% and 2.0% BS03 cell-free filtrate after 12, 24, 36 and 48 h. (1) The chlorophyll-a and chlorophyll fluorescence efficiency Fv/Fm decreased with the increase of BS03 cell-free filtrate and treatment time. Carotenoids contents of A. tamarense cells treated with low BS03 (0.5% and 1.0%) cell-free filtrate were higher than the control. (2) Antioxident enzyme activities varied as treatment time and concentration. Malodialdehyde (MDA) contents increased significantly with BS03 cell-free filtrate treatment. (3) Caspase-3 protease activities of algal cells increased by BS03 cell-free filtrate. BS03 inhibited the photosynthesis whereas enhanced the lipid peroxidation of the cellular membrane of Alexandrium tamarense, indicating its algicidal activity.

  15. Transformation of metals speciation in a combined landfill leachate treatment.

    PubMed

    Wu, Yanyu; Zhou, Shaoqi; Chen, Dongyu; Zhao, Rong; Li, Huosheng; Lin, Yiming

    2011-04-01

    Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter >0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction <0.45 μm were considered as dissolved. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration.

    PubMed

    Nakazawa, Yoshifumi; Matsui, Yoshihiko; Hanamura, Yusuke; Shinno, Koki; Shirasaki, Nobutaka; Matsushita, Taku

    2018-07-01

    Superfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation-flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment. First, we developed a method to detect and quantify trace concentration of carbon particles in the sand filtrate. This method consisted of 1) sampling particles with a membrane filter and then 2) using image analysis software to manipulate a photomicrograph of the filter so that black spots with a diameter >0.2 μm (considered to be carbon particles) could be visualized. Use of this method revealed that CSF removed a very high percentage of SPAC: approximately 5-log in terms of particle number concentrations and approximately 6-log in terms of particle volume concentrations. When waters containing 7.5-mg/L SPAC and 30-mg/L PAC, concentrations that achieved the same adsorption performance, were treated, the removal rate of SPAC was somewhat superior to that of PAC, and the residual particle number concentrations for SPAC and PAC were at the same low level (100-200 particles/mL). Together, these results suggest that SPAC can be used in place of PAC in CSF treatment without compromising the quality of the filtered water in terms of particulate matter contamination. However, it should be noted that the activated carbon particles after sand filtration were smaller in terms of particle size and were charge-neutralized to a lesser extent than the activated carbon particles before sand filtration. Therefore, the tendency of small particles to escape in the filtrate would appear to be related to the fact that their small size leads to a low destabilization rate during the coagulation process and a low collision rate during the flocculation and filtration processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Performance of Particulate Containment at Nanotechnology Workplaces

    PubMed Central

    Lo, Li-Ming; Tsai, Candace S.-J.; Dunn, Kevin H.; Hammond, Duane; Marlow, David; Topmiller, Jennifer; Ellenbecker, Michael

    2015-01-01

    The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These controls assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37% reduction on the particle concentration in the worker’s breathing zone, and produce a 42% lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15%–20% higher ultrafine (<500 nm) particle concentrations at the source and at the worker’s breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored. PMID:26705393

  18. Flocculation increases the efficacy of depth filtration during the downstream processing of recombinant pharmaceutical proteins produced in tobacco.

    PubMed

    Buyel, Johannes F; Fischer, Rainer

    2014-02-01

    Flocculation is a cost-effective method that is used to improve the efficiency of clarification by causing dispersed particles to clump together, allowing their removal by sedimentation, centrifugation or filtration. The efficacy of flocculation for any given process depends on the nature and concentration of the particulates in the feed stream, the concentration, charge density and length of the flocculant polymer, the shear rate, the properties of the feed stream (e.g. pH and ionic strength) and the properties of the target products. We tested a range of flocculants and process conditions using a design of experiments approach to identify the most suitable polymers for the clarification step during the production of a HIV-neutralizing monoclonal antibody (2G12) and a fluorescent marker protein (DsRed) expressed in transgenic tobacco leaves. Among the 23 different flocculants we tested, the greatest reduction in turbidity was achieved with Polymin P, a branched, cationic polyethylenimine with a charge density of 13.0 meq/g. This flocculant reduced turbidity by more than 90% under a wide range of process conditions. We developed a model that predicted its performance under different process conditions, and this enabled us to increase the depth filter capacity three-sevenfold depending on the process scale, depth filter type and plant species. The costs of filter consumables were reduced by more than 50% compared with a process without flocculant, and there was no loss of recovery for either 2G12 or DsRed. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Study of the filtration performance of a plain wave fabric filter using response surface methodology.

    PubMed

    Qian, Fuping; Wang, Haigang

    2010-04-15

    The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.

  20. Evaluation of a Particulate Filtration System for an Alkaline Paint Stripper at Letterkenny Army Depot

    DTIC Science & Technology

    1991-08-01

    hydroxide 66.0 17.5 1 Mineral seal oil 1.00 0.26 1.00 Fluorochemical surfactant 0.02 0.005 0.02 Sodiun carbonate 1.62 0.43 5.00 Sulfunated oleic acid ...specified rejuvenating additive is currently not added to the solution at LEAD. d Sodium salt of N-hydroxyethylethylenediamine triacetic acid , dihydrate...methylene chloride) and formic acid or I abrasive blasting. Aluminum parts are not stripped in alkaline solutions because these solutions chemically attack

  1. Apparatus and method for quantitative determination of materials contained in fluids

    DOEpatents

    Radziemski, Leon J.; Cremers, David A.

    1985-01-01

    Apparatus and method for near real-time in-situ monitoring of particulates and vapors contained in fluids. Initial filtration of a known volume of the fluid sample is combined with laser-induced dielectric breakdown spectroscopy of the filter employed to obtain qualitative and quantitative information with high sensitivity. Application of the invention to monitoring of beryllium, beryllium oxide, or other beryllium-alloy dusts is demonstrated. Significant shortening of analysis time is achieved from those of the usual chemical techniques of analysis.

  2. Apparatus and method for quantitative determination of materials contained in fluids

    DOEpatents

    Radziemski, L.J.; Cremers, D.A.

    1982-09-07

    Apparatus and method for near real-time in-situ monitoring of particulates and vapors contained in fluids are described. Initial filtration of a known volume of the fluid sample is combined with laser-induced dielectric breakdown spectroscopy of the filter employed to obtain qualitative and quantitative information with high sensitivity. Application of the invention to monitoring of beryllium, beryllium oxide, or other beryllium-alloy dusts is shown. Significant shortening of analysis time is achieved from the usual chemical techniques of analysis.

  3. Particulate matter in cigarette smoke increases ciliary axoneme beating through mechanical stimulation.

    PubMed

    Navarrette, Chelsea R; Sisson, Joseph H; Nance, Elizabeth; Allen-Gipson, Diane; Hanes, Justin; Wyatt, Todd A

    2012-06-01

    The lung's ability to trap and clear foreign particles via the mucociliary elevator is an important mechanism for protecting the lung against respirable irritants and microorganisms. Although cigarette smoke (CS) exposure and particulate inhalation are known to alter mucociliary clearance, little is known about how CS and nanoparticles (NPs) modify cilia beating at the cytoskeletal infrastructure, or axonemal, level. We used a cell-free model to introduce cigarette smoke extract (CSE) and NPs with variant size and surface chemistry to isolated axonemes and measured changes in ciliary motility. We hypothesized that CSE would alter cilia beating and that alterations in ciliary beat frequency (CBF) due to particulate matter would be size- and surface chemistry-dependent. Demembranated axonemes were isolated from ciliated bovine tracheas and exposed to adenosine triphosphate (ATP) to initiate motility. CBF was measured in response to 5% CSE, CSE filtrate, and carboxyl-modified (COOH), sulphate (SO(4))-modified (sulfonated), or PEG-coated polystyrene (PS) latex NPs ranging in size from 40 nm to 500 nm. CSE concentrations as low as 5% resulted in rapid, significant stimulation of CBF (p<0.05 vs. baseline control). Filtering CSE through a 0.2-μm filter attenuated this effect. Introduction of sulphate-modified PS beads ~300 nm in diameter resulted in a similar increase in CBF above baseline ATP levels. Uncharged, PEG-coated beads had no effect on CBF regardless of size. Similarly, COOH-coated particles less than 200 nm in diameter did not alter ciliary motility. However, COOH-coated PS particles larger than 300 nm increased CBF significantly and increased the number of motile points. These data show that NPs, including those found in CSE, mechanically stimulate axonemes in a size- and surface chemistry-dependent manner. Alterations in ciliary motility due to physicochemical properties of NPs may be important for inhalational lung injury and efficient drug delivery of respirable particles.

  4. Dispersion and Filtration of Carbon Nanotubes (CNTs) and Measurement of Nanoparticle Agglomerates in Diesel Exhaust.

    PubMed

    Wang, Jing; Pui, David Y H

    2013-01-14

    Carbon nanotubes (CNTs) tend to form bundles due to their geometry and van der Walls forces, which usually complicates studies of the CNT properties. Dispersion plays a significant role in CNT studies and we summarize dispersion techniques to generate airborne CNTs from suspensions or powders. We describe in detail our technique of CNT aerosolization with controlled degree of agglomeration using an electrospray system. The results of animal inhalation studies using the electrosprayed CNTs are presented. We have performed filtration experiments for CNTs through a screen filter. A numerical model has been established to simulate the CNT filtration experiments. Both the modeling and experimental results show that the CNT penetration is less than the penetration for a sphere with the same mobility diameter, which is mainly due to the larger interception length of the CNTs. There is a need for instruments capable of fast and online measurement of gas-borne nanoparticle agglomerates. We developed an instrument Universal NanoParticle Analyzer (UNPA) and the measurement results for diesel exhaust particulates are presented. The results presented here are pertinent to non-spherical aerosol particles, and illustrate the effects of particle morphology on aerosol behaviors.

  5. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.

    PubMed

    Nemoto, Junji; Saito, Tsuguyuki; Isogai, Akira

    2015-09-09

    Simple freeze-drying of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN) dispersions in water/tert-butyl alcohol (TBA) mixtures was conducted to prepare TOCN aerogels as high-performance air filter components. The dispersibility of the TOCNs in the water/TBA mixtures, and the specific surface area (SSA) of the resulting TOCN aerogels, was investigated as a function of the TBA concentration in the mixtures. The TOCNs were homogeneously dispersed in the water/TBA mixtures at TBA concentrations up to 40% w/w. The SSAs of the TOCN aerogels exceeded 300 m2/g when the TBA concentration in the aqueous mixtures was in the range from 20% to 50% w/w. When a commercially available, high-efficiency particulate air (HEPA) filter was combined with TOCN/water/TBA dispersions prepared using 30% TBA, and the product was freeze-dried, the resulting TOCN aerogel-containing filters showed superior filtration properties. This was because nanoscale, spider-web-like networks of the TOCNs with large SSAs were formed within the filter.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppiti, James; Nelson, Roger; MacMillan, Walter J.

    The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of themore » underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.« less

  7. Intestinal receptor for heat-stable enterotoxin of Escherichia coli is tightly coupled to a novel form of particulate guanylate cyclase.

    PubMed Central

    Waldman, S A; Kuno, T; Kamisaki, Y; Chang, L Y; Gariepy, J; O'Hanley, P; Schoolnik, G; Murad, F

    1986-01-01

    A novel form of particulate guanylate cyclase tightly coupled by cytoskeletal components to receptors for heat-stable enterotoxin (ST) produced by Escherichia coli can be found in membranes from rat intestinal mucosa. Intestinal particulate guanylate cyclase was resistant to solubilization with detergent alone, with only 30% of the total enzyme activity being extracted with Lubrol-PX. Under similar conditions, 70% of this enzyme was solubilized from rat lung membranes. The addition of high concentrations of sodium chloride to the extraction buffer resulted in greater solubilization of particulate guanylate cyclase from intestinal membranes. Although extraction of intestinal membranes with detergent and salt resulted in greater solubilization of guanylate cyclase, a small fraction of the enzyme activity remained associated with the particulate fraction. This activity was completely resistant to solubilization with a variety of detergents and chaotropes. Particulate guanylate cyclase and the ST receptor solubilized by detergent retained their abilities to produce cyclic GMP and bind ST, respectively. However, ST failed to activate particulate guanylate cyclase in detergent extracts. In contrast, guanylate cyclase resistant to solubilization remained functional and coupled to the ST receptor since enzyme activation by ST was unaffected by various extraction procedures. The possibility that the ST receptor and particulate guanylate cyclase were the same molecule was explored. ST binding and cyclic GMP production were separated by affinity chromatography on GTP-agarose. Similarly, guanylate cyclase migrated as a 300,000-dalton protein, while the ST receptor migrated as a 240,000-dalton protein on gel filtration chromatography. Also, thiol-reactive agents such as cystamine and N-ethylmaleimide inhibited guanylate cyclase activation by ST, with no effect on receptor binding of ST. These data suggest that guanylate cyclase and the ST receptor are independent proteins coupled by cytoskeletal components in membranes of intestinal mucosa. PMID:2867046

  8. NANOSTRUCTURED MEMBRANES FOR FILTRATION, DISINFECTION, AND REMEDIATION OF AQUEOUS AND GASEOUS SYSTEMS

    EPA Science Inventory

    The expected result of this research is a new nanostructured system for the treatment and remediation of aqueous and gaseous environments with improved efficiency over current filtration technologies. The multiple functions that these chitosan membranes will serve (removal,...

  9. Removal Efficiencies and Attachment Coefficients for Cryptosporidium in Sandy Alluvial Riverbank Sediment

    EPA Science Inventory

    Riverbank filtration has been shown to be effective at removing viable Cryptosporidium parvum oocysts and, therefore, drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering a...

  10. RIVERBANK FILTRATION AS A PRETREATMENT FOR NANOFILTRATION MEMBRANES

    EPA Science Inventory

    The loss of membrane efficiency due to fouling is one of the main impediments to the development of membrane processes for use in drinking water treatment. Surface waters, in general, have a greater proclivity towards fouling as compared to groundwaters. Riverbank filtration ch...

  11. RIVERBANK FILTRATION AS A PRETREATMENT FOR NANOFILTRATION MEMBRANES

    EPA Science Inventory

    The loss of membrane efficiency due to fouling is one of the main impediments to the development of membrane processes for use in drinking water treatment. Surface waters, in general, have a greater proclivity towards fouling as compared to groundwaters. Riverbank filtration chan...

  12. 75 FR 42132 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...

  13. 75 FR 42131 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...

  14. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    PubMed

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  15. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings

    PubMed Central

    Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John

    2017-01-01

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841

  16. Effects of oil on the feeding mechanism of the bowhead whale. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braithwaite, L.F.

    1983-06-10

    Research was designed to determine the effect of crude oil on the filtration efficiency of bowhead whale (Balaena mysticetus) baleen. An experiment apparatus was constructed with temperature-controlled, circulating sea water moving through a chamber containing mounted baleen plates. All circulating water of the apparatus flowed over and through the hair-fringed stratum of the baleen plates. Efficiency of filtration of living plankters was measured and compared for various kinds and levels of petroleum fouling. The filtering efficiency of the baleen plates decreased when the plates were fouled with Prudhoe Bay crude oil.

  17. Water washable stainless steel HEPA filter

    DOEpatents

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  18. Oral cavity hydrodynamics and drag production in Balaenid whale suspension feeding.

    PubMed

    Potvin, Jean; Werth, Alexander J

    2017-01-01

    Balaenid whales feed on large aggregates of small and slow-moving prey (predominantly copepods) through a filtration process enabled by baleen. These whales exhibit continuous filtration, namely, with the mouth kept partially opened and the baleen exposed to oncoming prey-laden waters while fluking. The process is an example of crossflow filtration (CFF) in which most of the particulates (prey) are separated from the substrate (water) without ever coming into contact with the filtering surface (baleen). This paper discusses the simulation of baleen filtration hydrodynamics based on a type of hydraulic circuit modeling commonly used in microfluidics, but adapted to the much higher Reynolds number flows typical of whale hydrodynamics. This so-called Baleen Hydraulic Circuit (BHC) model uses as input the basic characteristics of the flows moving through a section of baleen observed in a previous flume study by the authors. The model has low-spatial resolution but incorporates the effects of fluid viscosity, which doubles or more a whale's total body drag in comparison to non-feeding travel. Modeling viscous friction is crucial here since exposing the baleen system to the open ocean ends up tripling a whale's total wetted surface area. Among other findings, the BHC shows how CFF is enhanced by a large filtration surface and hence large body size; how it is carried out via the establishment of rapid anteroposterior flows transporting most of the prey-water slurry towards the oropharyngeal wall; how slower intra-baleen flows manage to transfer most of the substrate out of the mouth, all the while contributing only a fraction to overall oral cavity drag; and how these anteroposterior and intra-baleen flows lose speed as they approach the oropharyngeal wall.

  19. Oral cavity hydrodynamics and drag production in Balaenid whale suspension feeding

    PubMed Central

    Werth, Alexander J.

    2017-01-01

    Balaenid whales feed on large aggregates of small and slow-moving prey (predominantly copepods) through a filtration process enabled by baleen. These whales exhibit continuous filtration, namely, with the mouth kept partially opened and the baleen exposed to oncoming prey-laden waters while fluking. The process is an example of crossflow filtration (CFF) in which most of the particulates (prey) are separated from the substrate (water) without ever coming into contact with the filtering surface (baleen). This paper discusses the simulation of baleen filtration hydrodynamics based on a type of hydraulic circuit modeling commonly used in microfluidics, but adapted to the much higher Reynolds number flows typical of whale hydrodynamics. This so-called Baleen Hydraulic Circuit (BHC) model uses as input the basic characteristics of the flows moving through a section of baleen observed in a previous flume study by the authors. The model has low-spatial resolution but incorporates the effects of fluid viscosity, which doubles or more a whale’s total body drag in comparison to non-feeding travel. Modeling viscous friction is crucial here since exposing the baleen system to the open ocean ends up tripling a whale’s total wetted surface area. Among other findings, the BHC shows how CFF is enhanced by a large filtration surface and hence large body size; how it is carried out via the establishment of rapid anteroposterior flows transporting most of the prey-water slurry towards the oropharyngeal wall; how slower intra-baleen flows manage to transfer most of the substrate out of the mouth, all the while contributing only a fraction to overall oral cavity drag; and how these anteroposterior and intra-baleen flows lose speed as they approach the oropharyngeal wall. PMID:28399142

  20. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies.

    PubMed

    Hong, Eunyoung; Seagren, Eric A; Davis, Allen P

    2006-02-01

    One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.

  1. Comparison of nonwoven fiberglass and stainless steel microfiber media in aerosol coalescence filtration

    NASA Astrophysics Data System (ADS)

    Manzo, Gabriel

    Coalescing filters are used to remove small liquid droplets from air streams. They have numerous industrial applications including dehumidification, cabin air filtration, compressed air filtration, metal working, CCV, and agriculture. In compressed air systems, oils used for lubrication of compressor parts can aerosolize into the main air stream causing potential contamination concerns for downstream applications. In many systems, humid air can present problems to sensitive equipment and sensors. As the humid air cools, small water drops condense and can disrupt components that need to be kept dry. Fibrous nonwoven filter media are commonly used to coalesce small drops into larger drops for easier removal. The coalescing performance of a medium is dependent upon several parameters including permeability, porosity, and wettability. In many coalescing filters, glass fibers are used. In this work, the properties of steel fiber media are measured to see how these properties compare to glass fiber media. Steel fiber media has different permeability, porosity and wettability to oil and water than fiber glass media. These differences can impact coalescence performance. The impact of these differences in properties on coalescence filtration performance was evaluated in a coalescence test apparatus. The overall coalescence performance of the steel and glass nonwoven fiber media are compared using a filtration efficiency and filtration index. In many cases, the stainless steel media performed comparably to fiber glass media with efficiencies near 90%. Since stainless steel media had lower pressure drops than fiber glass media, its filtration index values were significantly higher. Broader impact of this work is the use of stainless steel fiber media as an alternative to fiber glass media in applications where aerosol filtration is needed to protect the environment or sensitive equipment and sensors.

  2. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  3. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  4. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  5. Measurement of Biocolloid Collision Efficiencies for Granular Activated Carbon by Use of a Two-Layer Filtration Model

    PubMed Central

    Paramonova, Ekaterina; Zerfoss, Erica L.; Logan, Bruce E.

    2006-01-01

    Point-of-use filters containing granular activated carbon (GAC) are an effective method for removing certain chemicals from water, but their ability to remove bacteria and viruses has been relatively untested. Collision efficiencies (α) were determined using clean-bed filtration theory for two bacteria (Raoutella terrigena 33257 and Escherichia coli 25922), a bacteriophage (MS2), and latex microspheres for four GAC samples. These GAC samples had particle size distributions that were bimodal, but only a single particle diameter can be used in the filtration equation. Therefore, consistent with previous reports, we used a particle diameter based on the smallest diameter of the particles (derived from the projected areas of 10% of the smallest particles). The bacterial collision efficiencies calculated using the filtration model were high (0.8 ≤ α ≤ 4.9), indicating that GAC was an effective capture material. Collision efficiencies greater than unity reflect an underestimation of the collision frequency, likely as a result of particle roughness and wide GAC size distributions. The collision efficiencies for microspheres (0.7 ≤ α ≤ 3.5) were similar to those obtained for bacteria, suggesting that the microspheres were a reasonable surrogate for the bacteria. The bacteriophage collision efficiencies ranged from ≥0.2 to ≤0.4. The predicted levels of removal for 1-cm-thick carbon beds ranged from 0.8 to 3 log for the bacteria and from 0.3 to 1.0 log for the phage. These tests demonstrated that GAC can be an effective material for removal of bacteria and phage and that GAC particle size is a more important factor than relative stickiness for effective particle removal. PMID:16885264

  6. Particulate capture efficiency of a vegetative environmental buffer surrounding an animal feeding operation

    USDA-ARS?s Scientific Manuscript database

    Particulate matter emitted from tunnel-ventilated animal feeding operations (AFOs) is known to transport malodorous compounds. As a mitigation strategy, vegetative environmental buffers (VEBs) are often installed surrounding AFOs to capture particulates and induce lofting and dispersion. Currently, ...

  7. Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor.

    PubMed

    Maqbool, Tahir; Khan, Sher Jamal; Lee, Chung-Hak

    2014-11-01

    Relaxation or backwashing is obligatory for effective operation of membrane module and intermittent aeration is helpful for nutrients removal. This study was performed to investigate effects of different filtration modes on membrane fouling behavior and treatment in membrane bioreactor (MBR) operated at three modes i.e., 12, 10 and 8min filtration and 3, 2, and 2min relaxation corresponding to 6, 5 and 4cycles/hour, respectively. Various parameters including trans-membrane pressure, specific cake resistance, specific oxygen uptake rate, nutrients removal and sludge dewaterability were examined to optimize the filtration mode. TMP profiles showed that MBR(8+2) with 8min filtration and 2min relaxation reduced the fouling rate and depicted long filtration time in MBR treating synthetic wastewater. MBR(12+3) was more efficient in organic and nutrients removal while denitrification rate was high in MBR(8+2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Wastewater characterisation by combining size fractionation, chemical composition and biodegradability.

    PubMed

    Ravndal, Kristin T; Opsahl, Eystein; Bagi, Andrea; Kommedal, Roald

    2017-12-18

    The potential for resource recovery from wastewater can be evaluated based on a detailed characterisation of wastewater. In this paper, results from fractionation and characterisation of two distinct wastewaters are reported. Using tangential flow filtration, the wastewater was fractionated into 10 size fractions ranging from 1 kDa to 1 mm, wherein the chemical composition and biodegradability were determined. Carbohydrates were dominant in particulate size fractions larger than 100 μm, indicating a potential of cellulose recovery from these fractions. While the particulate size fractions between 0.65 and 100 μm show a potential as a source for biofuel production due to an abundance of saturated C16 and C18 lipids. Both wastewaters were dominated by particulate (>0.65 μm), and oligo- and monomeric (<1 kDa) COD. Polymeric (1-1000 kDa) and colloidal (1000 kDa-0.65 μm) fractions had a low COD content, expected due to degradation in the sewer system upstream of the wastewater treatment plant. Biodegradation rates of particulate fractions increase with decreasing size. However, this was not seen in polymeric fractions where degradation rate was governed by chemical composition. Analytical validation of molecular weight and particle size distribution showed below filter cut-off retention of particles and polymers close to nominal cut-off, shifting the actual size distribution. Copyright © 2017. Published by Elsevier Ltd.

  9. Filter aids influence on pressure drop across a filtration system

    NASA Astrophysics Data System (ADS)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  10. Enhanced membrane filtration of wood hydrolysates for hemicelluloses recovery by pretreatment with polymeric adsorbents.

    PubMed

    Koivula, Elsi; Kallioinen, Mari; Sainio, Tuomo; Antón, Enrique; Luque, Susana; Mänttäri, Mika

    2013-09-01

    In this study adsorption of foulants from birch and pine/eucalyptus wood hydrolysates on two polymeric adsorbents was studied aiming to reduce the membrane fouling. The effect of the pretreatment of hydrolysate on polyethersulphone membrane performance was studied in dead-end filtration experiments. Adsorption pretreatment improved significantly filtration capacity and decreased membrane fouling. Especially high-molecular weight lignin was efficiently removed. A multistep adsorption pretreatment was found to reduce the amount of adsorbent required. While large adsorbent amount was shown to increase flux in filtration, it was found also to cause significant hemicellulose losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Pig manure treatment by filtration.

    PubMed

    Kowalski, Zygmunt; Makara, Agnieszka; Matýsek, Dalibor; Hoffmann, Józef; Hoffmann, Krystyna

    2013-01-01

    A study of new pig manure treatment and filtration process was carried out. The advantage of the worked out technology is the method of incorporation of crystalline phase into solid organic part of manure. The obtained new solid phase of manure contains about 50% of crystalline phase forming a filtration aid that enables high effectiveness of manure filtration. The filtration rate of manure separation into solid and liquid fractions with pressure filter may achieve 1300-3000 kg/m(2)/h. The method makes it possible to maintain an overall average pollutant removal performance 90% for the chemical oxygen demand COD, > 99% for the suspended solids SS, to 47% for the total nitrogen content. The obtained results showed that the proposed technology being efficient and simple offers a possible solution to pig manure problems.

  12. Flexographic newspaper deinking : treatment of wash filtrate effluent by membrane technology

    Treesearch

    B. Chabot; G.A. Krishnagopalan; S. Abubakr

    1999-01-01

    Ultrafiltration was investigated as a means to remove flexographic ink pigments from wash filtrate effluent generated from various mixtures of flexographic and offset old newspapers from deinking operations. Membrane separation efficiency was assessed from permeate flux, fouling rate, and ease of membrane regeneration (cleaning). Ultrafiltration was capable of...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, AIRFLOW PRODUCTS AFP30

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AFP30 air filter for dust and bioaerosol filtration manufactured by Airflow Products. The pressure drop across the filter was 62 Pa clean and 247 Pa dust loaded. The filtration effici...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, PAINT OVERSPRAY ARRESTOR, PUROLATOR PRODUCTS AIR FILTRATION COMPANY, DMK804404 AND PB2424

    EPA Science Inventory

    Paint overspray arrestors (POAs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the particle filtration efficiency as a function of size for particles smaller than...

  15. Polyaluminium chloride as an alternative to alum for the direct filtration of drinking water.

    PubMed

    Zarchi, Idit; Friedler, Eran; Rebhun, Menahem

    2013-01-01

    The efficiency of various polyaluminium chloride coagulants (PACls) was compared to the efficiency of aluminium sulfate (alum) in the coagulation-flocculation process preceding direct filtration in drinking water treatment. The comparative study consisted of two separate yet complementary series of experiments: the first series included short (5-7 h) and long (24 h) filter runs conducted at a pilot filtration plant equipped with large filter columns that simulated full-scale filters. Partially treated surface water from the Sea of Galilee, characterized by very low turbidity (-1 NTU), was used. In the second series of experiments, speciation of aluminium in situ was investigated using the ferron assay method. Results from the pilot-scale study indicate that most PACls were as or more efficient a coagulant as alum for direct filtration of surface water without requiring acid addition for pH adjustment and subsequent base addition for re-stabilizing the water. Consequently, cost analysis of the chemicals needed for the process showed that treatment with PACl would be significantly less costly than treatment with alum. The aluminium speciation experiments revealed that the performance of the coagulant is more influenced by the species present during the coagulation process than those present in the original reagents.

  16. Evaluation of various activated carbons for air cleaning - Towards design of immune and sustainable buildings

    NASA Astrophysics Data System (ADS)

    Haghighat, Fariborz; Lee, Chang-Seo; Pant, Bhuvan; Bolourani, Golnoush; Lakdawala, Ness; Bastani, Arash

    There are increased demands for security, sustainability and indoor air quality in today's building design, construction, operation and maintenance. Installation of air cleaning systems can improve the indoor air quality by reducing the air pollution levels, and enhance the building security against sudden release of chemical and/or biological agents. At the same time, air cleaning techniques may reduce the building energy consumption by reducing the outdoor air supply rate, hence lowering the needs for conditioning of outdoor air. While the air filtration of particulate matter is well standardized, the standards against which the performance of air cleaning for gaseous contaminants is measured or classified are still under development. This study examined the performance of various granular activated carbons (GACs) for the removal of volatile organic compounds (VOCs) from mechanically ventilated buildings. Eight different GACs (three virgin and five impregnated) were tested against toluene using a dynamic test system. The virgin GACs showed better performance than impregnated ones, the percentage and the type of impregnation affected the removal efficiencies. Tests were also conducted with selected GACs against toluene, cyclohexane and ethyl acetate at relative humidity (RH) values of 30%, 50% and 70%. The effect of humidity was dependant on the VOC used. Both for toluene and cyclohexane, the removal efficiency decreased as RH increased. However, higher humidity showed a positive impact on the removal of ethyl acetate.

  17. Study of Electro-Cyclonic Filtration and Pneumatic Transfer of Lunar Regolith Simulants under 1/6-g and 1-g Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I.; Mueller, Robert P.

    2009-01-01

    NASA has built a prototype oxygen production plant to process the lunar regolith using the hydrogen reduction chemical process. This plant is known as "ROxygen - making oxygen from moon rocks". The ROxygen regolith transfer team has identified the flow and transfer characteristics of lunar regolith simulant to be a concern for lunar oxygen production efforts. It is important to ISRU lunar exploration efforts to develop hardware designs that can demonstrate the ability to flow and transfer a given mass of regolith simulant to a desired vertical height under lunar gravity conditions in order to introduce it into a reactor. We will present results obtained under both 1/6-g and 1-g gravity conditions for a system that can pneumatically convey 16.5 kg of lunar regolith simulant (NU-LHT-2M, Mauna Kea Tephra, and JSC-1A) from a flat-bottom supply hopper to a simulated ISRU reactor (dual-chambered receiving hopper) where the granular material is separated from the convey gas (air) using a series of cyclone separators, one of which is an electrically enhanced cyclone separator (electrocyclone). The results of our study include (1) the mass flow rate as a function of input air pressure for lunar regolith simulants that are conveyed pneumatically as a dusty gas in a vertical direction against gravity under lunar gravity conditions (for NU-LHT-2M and Mauna Kea Tephra), and under earth gravity conditions (for NU-LHT-2M, Mauna Kea Tephra and JSC-1A), and (2) the efficiency of the cyclone/electrocyclone filtration system in separating the convey gas (air) from the granular particulates as a function of particle size.

  18. Column studies to assess the effects of climate variables on redox processes during riverbank filtration.

    PubMed

    Rudolf von Rohr, Matthias; Hering, Janet G; Kohler, Hans-Peter E; von Gunten, Urs

    2014-09-15

    Riverbank filtration is an established technique used world-wide to produce clean drinking water in a reliable and cost-efficient way. This practice is, however, facing new challenges posed by climate change, as already observed during past heat waves with the local occurrence of anoxic conditions. In this study we investigated the effect of direct (temperature) and indirect (dissolved organic matter (DOM) concentration and composition, flow rate) climate change variables on redox processes (aerobic respiration, denitrification and Mn(III/IV)/Fe(III) reduction) by means of column experiments. Natural river water, modified river water and river water mixed with treated wastewater effluent were used as feed waters for the columns filled with natural sand from a river-infiltration system in Switzerland. Biodegradable dissolved organic matter was mainly removed immediately at the column inlet and particulate organic matter (POM) associated with the natural sand was the main electron donor for aerobic respiration throughout the column. Low infiltration rates (≤0.01 m/h) enhanced the oxygen consumption leading to anoxic conditions. DOM consumption did not seem to be sensitive to temperature, although oxygen consumption (i.e., associated with POM degradation) showed a strong temperature dependence with an activation energy of ∼70 kJmol(-1). Anoxic conditions developed at 30 °C with partial denitrification and formation of nitrite and ammonium. In absence of oxygen and nitrate, Mn(II) was mobilized at 20 °C, highlighting the importance of nitrate acting as a redox buffer under anoxic conditions preventing the reductive dissolution of Mn(III/IV)(hydr)oxides. Reductive dissolution of Fe(III)(hydr)oxides was not observed under these conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Review: elimination of bacteriophages in whey and whey products

    PubMed Central

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations. PMID:23882262

  20. Impact of humidification and nebulization during expiratory limb protection: an experimental bench study.

    PubMed

    Tonnelier, Alexandre; Lellouche, François; Bouchard, Pierre Alexandre; L'Her, Erwan

    2013-08-01

    Different filtering devices are used during mechanical ventilation to avoid dysfunction of flow and pressure transducers or for airborne microorganisms containment. Water condensates, resulting from the use of humidifiers, but also residual nebulization particles may have a major influence on expiratory limb resistance. To evaluate the influence of nebulization and active humidification on the resistance of expiratory filters. A respiratory system analog was constructed using a test lung, an ICU ventilator, heated humidifiers, and a piezoelectric nebulizer. Humidifiers were connected to different types of circuits (unheated, mono-heated, new-generation and old-generation bi-heated). Five filter types were evaluated: electrostatic, heat-and-moisture exchanger, standard, specific, and internal heated high-efficiency particulate air [HEPA] filter. Baseline characteristics were obtained from each dry filter. Differential pressure measurements were carried out after 24 hours of continuous in vitro use for each condition, and after 24 hours of use with an old-generation bi-heated circuit without nebulization. While using unheated circuits, measurements had to be interrupted before 24 hours for all the filtering devices except the internal heated HEPA filter. The heat-and-moisture exchangers occluded before 24 hours with the unheated and mono-heated circuits. The circuit type, nebulization practice, and duration of use did not influence the internal heated HEPA filter resistance. Expiratory limb filtration is likely to induce several major adverse events. Expiratory filter resistance increase is due mainly to the humidification circuit type, rather than to nebulization. If filtration is mandatory while using an unheated circuit, a dedicated filter should be used for ≤ 24 hours, or a heated HEPA for a longer duration.

  1. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  2. Advanced lithographic filtration and contamination control for 14nm node and beyond semiconductor processes

    NASA Astrophysics Data System (ADS)

    Varanasi, Rao; Mesawich, Michael; Connor, Patrick; Johnson, Lawrence

    2017-03-01

    Two versions of a specific 2nm rated filter containing filtration medium and all other components produced from high density polyethylene (HDPE), one subjected to standard cleaning, the other to specialized ultra-cleaning, were evaluated in terms of their cleanliness characteristics, and also defectivity of wafers processed with photoresist filtered through each. With respect to inherent cleanliness, the ultraclean version exhibited a 70% reduction in total metal extractables and 90% reduction in organics extractables compared to the standard clean version. In terms of particulate cleanliness, the ultraclean version achieved stability of effluent particles 30nm and larger in about half the time required by the standard clean version, also exhibiting effluent levels at stability almost 90% lower. In evaluating defectivity of blanket wafers processed with photoresist filtered through either version, initial defect density while using the ultraclean version was about half that observed when the standard clean version was in service, with defectivity also falling more rapidly during subsequent usage of the ultraclean version compared to the standard clean version. Similar behavior was observed for patterned wafers, where the enhanced defect reduction was primarily of bridging defects. The filter evaluation and actual process-oriented results demonstrate the extreme value in using filtration designed possessing the optimal intrinsic characteristics, but with further improvements possible through enhanced cleaning processes

  3. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, A.; Hamdy, M.K.

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline beta-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymic hydrolysis, decreased with the filtration time. The immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato beta-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcohol fermentation of the filtrate resulted in an alcohol contentmore » of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%.« less

  5. Battery-Powered Field Filtration Assembly Using an Inexpensive Mini-Compressor.

    ERIC Educational Resources Information Center

    Corbett, Robert G.; Quick, Thomas J.

    1986-01-01

    Suggests how modifications on a mini-compressor can result in a low-cost vacuum filtration system for use with suspended sediments in the field or laboratory. Explains and illustrates the changes needed to make the apparatus efficient and servicable for providing data for mass balance, geochemical exploration, and environmental studies. (ML)

  6. Decontamination efficiencies of pot-type water purifiers for ¹³¹I, ¹³⁴Cs and ¹³⁷Cs in rainwater contaminated during Fukushima Daiichi nuclear disaster.

    PubMed

    Higaki, Shogo; Hirota, Masahiro

    2012-01-01

    Rainwater was contaminated by a large release of radionuclides into the environment during the Fukushima Daiichi nuclear disaster. It became a matter of concern for Japan when several water purification plants detected ¹³¹I contamination in the drinking water. In the present study, the decontamination efficiency of two easily obtainable commercial water purifiers were examined for rainwater contaminated with ¹³¹I, ¹³⁴Cs and ¹³⁷Cs. The water purifiers removed 94.2-97.8% of the ¹³¹I and 84.2-91.5% of the ¹³⁴Cs and ¹³⁷Cs after one filtration. Seven filtrations removed 98.2-99.6% of the ¹³¹I and over 98.0% of the ¹³⁴Cs and ¹³⁷Cs. From a practical perspective, over the fourth filtrations were not needed because of no significant improvements after the third filtration.

  7. Test of precoat filtration technology for treatment of swimming pool water.

    PubMed

    Christensen, Morten Lykkegaard; Klausen, Morten Møller; Christensen, Peter Vittrup

    2018-02-01

    The technical performance of a precoat filter was compared with that of a traditional sand filter. Particle concentration and size distribution were measured before and after the filtration of swimming pool water. Both the sand and precoat filters could reduce the particle concentration in the effluent. However, higher particle removal efficiency was generally observed for the precoat filter, especially for particles smaller than 10 μm in diameter. Adding flocculant improved the removal efficiency of the sand filter, resulting in removal efficiencies comparable to those of the precoat filter. Three powders, i.e., two types of perlite (Harbolite ® and Aquatec perlite) and cellulose fibers (Arbocel ® ), were tested for the precoat filter, but no significant difference in particle removal efficiency was observed among them. The maximum efficiency was reached within 30-40 min of filtration. The energy required for the pumps increased by approximately 35% over a period of 14 days. The energy consumption could be reduced by replacing the powder on the filter cloth. The sand filter was backwashed once a week, while the powder on the precoat filter was replaced every two weeks. Under these conditions, it was possible to reduce the water used for cleaning by 88% if the precoat filter was used instead of the sand filter.

  8. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    NASA Astrophysics Data System (ADS)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  9. TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Sun, Kai; Jeffries, Jay B.; Hanson, Ronald K.; Pummill, Randy J.; Waind, Travis; Wagner, David R.; Whitty, Kevin J.

    2014-07-01

    Tunable diode laser absorption spectroscopy based in situ sensors for CO (2.33 μm), CO2 (2.02 μm), CH4 (2.29 μm) and H2O (1.35 μm) were deployed in a pilot-scale (1 ton/day), high-pressure (up to 18 atm), entrained flow, oxygen-blown, slagging coal gasifier at the University of Utah. Measurements of species mole fraction with 3-s time resolution were taken at the pre- and post-filtration stages of the gasifier synthesis gas (called here syngas) output flow. Although particulate scattering makes pre-filter measurements more difficult, this location avoids the time delay of flow through the filtration devices. With the measured species and known N2 concentrations, the H2 content was obtained via balance. The lower heating value and the Wobbe index of the gas mixture were estimated using the measured gas composition. The sensors demonstrated here show promise for monitoring and control of the gasification process.

  10. Effects on Occupants of Enhanced Particle Filtration in a non-problem office environment: A Double-Blind Crossover Intervention Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, M.J.; Fisk, W.J.; Petersen, M.

    1998-06-15

    Workers in indoor environments often complain of symptoms, such as eye and nose irritation, headache, and fatigue, which improve away from work. Exposures causing such complaints, sometimes referred to as sick building syndrome, generally have not been identified. Evidence suggests these worker symptoms are related to chemical, microbiological, physical, and psychosocial exposures not well characterized by current methods. Most research in this area has involved cross-sectional studies, which are limited in their abilities to show causal connections. Experimental studies have also been conducted which, by changing one factor at a time to isolate its effects, can demonstrate benefits of anmore » environmental intervention even before exposures or mechanisms are understood. This study was prompted by evidence that particulate contaminants may be related to acute occupant symptoms and discomfort. The objective was to assess, with a double-blind, double crossover intervention design, whether improved removal of small airborne particles by enhanced central filtration would reduce symptoms and discomfort.« less

  11. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    PubMed

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  12. Metal reduction at point-of-use filtration

    NASA Astrophysics Data System (ADS)

    Umeda, Toru; Daikoku, Shusaku; Varanasi, Rao; Tsuzuki, Shuichi

    2016-03-01

    We explored the metal removal efficiency of Nylon 6,6 and HDPE (High Density Polyethylene) membrane based filters, in solvents of varying degree of polarity such as Cyclohexanone and 70:30 mixture of PGME (Propylene Glycol Monomethyl Ether) and PGMEA (Propylene Glycol Monomethyl Ether), In all the solvents tested, Nylon 6,6 membrane filtration was found to be significantly more effective in removing metals than HDPE membranes, regardless of their respective membrane pore sizes. Hydrophilic interaction chromatography (HILIC) mechanism was invoked to rationalize metal removal efficiency dependence on solvent hydrophobicity.

  13. Efficiency of different air filter types for pig facilities at laboratory scale

    PubMed Central

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Truyen, Uwe

    2017-01-01

    Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs. PMID:29028843

  14. Efficiency of different air filter types for pig facilities at laboratory scale.

    PubMed

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Truyen, Uwe; Speck, Stephanie

    2017-01-01

    Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs.

  15. Control of asthma triggers in indoor air with air cleaners: a modeling analysis.

    PubMed

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; Macintosh, David L

    2008-08-06

    Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30-55% lower cat allergen levels, 90-99% lower risk of respiratory infection through the inhalation route of exposure, 90-98% lower environmental tobacco smoke (ETS) levels, and 50-75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice.

  16. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  17. Filtration and clogging of permeable pavement loaded by urban drainage.

    PubMed

    Sansalone, J; Kuang, X; Ying, G; Ranieri, V

    2012-12-15

    Permeable pavement, as a sustainable infrastructure material can promote hydrologic restoration, particulate matter (PM) and solute control. However, filtration and commensurate clogging are two aspects of continued interest and discussion. This study quantifies filtration and clogging of cementitious permeable pavement (CPP) for loadings from 50 to 200 mg/L of hetero-disperse sandy-silt PM. The CPP mix design provides a hetero-disperse pore size distribution (PSD)(pore), effective porosity (φ(e)) of 24% and median pore size of 658 μm with a standard deviation of 457 μm. The PM mass separation across the entire particle size distribution (PSD)(PM) exceeds 80%; with complete separation for PM greater than 300 μm and 50% separation for suspended PM. Turbidity is reduced (42-95%), and effluent is below 10 NTU in the first quartile of a loading period. Permeable pavement illustrates reductions in initial (clean-bed) hydraulic conductivity (k(0)) with loading time. For all PM loadings, k(0) (3.1 × 10(-1) mm/s) was reduced to 10(-4) mm/s for runoff loading durations from 100 to 250 h, respectively. Temporal hydraulic conductivity (k) follows exponential profiles. Maintenance by vacuuming and sonication illustrate that 96-99% of k(0) is recovered. Permeable pavement constitutive properties integrated with measured PM loads and a year of continuous rainfall-runoff simulation illustrate k reduction with historical loadings. Study results measure and model filtration and hydraulic conductivity phenomena as well as maintenance requirements of permeable pavement directly loaded by urban drainage. Copyright © 2011. Published by Elsevier Ltd.

  18. Mitigating and Tracking Black Carbon Exposure at Schools in the Mountain View Corridor of Salt Lake City

    NASA Astrophysics Data System (ADS)

    Roberts, P. T.; Brown, S. G.; Vaughn, D.; DeWinter, J. L.

    2015-12-01

    Black carbon (BC) is a short lived climate forcer and is associated with human health effects. We measured BC inside and outside at four schools in Salt Lake City during two studies in 2011-2014. In addition, PM2.5 was measured indoor and outdoor at one school, and gaseous air toxics outdoor at one school. The schools are within 500 m of a planned major freeway, and two of them will adjoin the freeway. The objectives included determining the outdoor and indoor concentrations of BC, the likely sources of BC, and once the freeway is built, the change in ambient BC at the schools. We determined the current state of air quality outdoors at these schools, to provide baseline data for comparison when the major freeway is operational, and indoors as a baseline before installing improved filtration to reduce BC in classrooms. Using MATES IV cancer risk values, we found that diesel particulate matter, as indicated by ambient, outdoor BC measurements, was responsible for 84% of the cancer risk at the schools. The HVAC system was moderately effective at filtrating PM mass (73% reduction), but very poor at filtering BC (7%-34% reduction), indicating that air toxics risk is similar indoors and outdoors. Improved filtration devices could potentially mitigate this risk, and improved filtration systems have been recommended for the schools. Lastly, we used the difference in absorption at two Aethalometer channels to determine that the majority of BC (> 90%) during the spring through fall is from fossil fuel emissions.

  19. Fine dust filtration using a metal fiber bed.

    PubMed

    Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min

    2006-08-01

    A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.

  20. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network.

    PubMed

    Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan

    2017-07-12

    Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.

  1. Volatile particles measured by vapor-particle separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Meng -Dawn; Corporan, Edwin

    Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel enginesmore » for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less

  2. Effectiveness of face masks used to protect Beijing residents against particulate air pollution.

    PubMed

    Cherrie, John W; Apsley, Andrew; Cowie, Hilary; Steinle, Susanne; Mueller, William; Lin, Chun; Horwell, Claire J; Sleeuwenhoek, Anne; Loh, Miranda

    2018-06-01

    Many residents in Beijing use disposable face masks in an attempt to protect their health from high particulate matter (PM) concentrations. Retail masks may be certified to local or international standards, but their real-life performance may not confer the exposure reduction potential that is marketed. This study aimed to evaluate the effectiveness of a range of face masks that are commercially available in China. Nine masks claiming protection against fine PM (PM 2.5 ) were purchased from consumer outlets in Beijing. The masks' filtration efficiency was tested by drawing airborne diesel exhaust through a section of the material and measuring the PM 2.5 and black carbon (BC) concentrations upstream and downstream of the filtering medium. Four masks were selected for testing on volunteers. Volunteers were exposed to diesel exhaust inside an experimental chamber while performing sedentary tasks and active tasks. BC concentrations were continuously monitored inside and outside the mask. The mean per cent penetration for each mask material ranged from 0.26% to 29%, depending on the flow rate and mask material. In the volunteer tests, the average total inward leakage (TIL) of BC ranged from 3% to 68% in the sedentary tests and from 7% to 66% in the active tests. Only one mask type tested showed an average TIL of less than 10%, under both test conditions. Many commercially available face masks may not provide adequate protection, primarily due to poor facial fit. Our results indicate that further attention should be given to mask design and providing evidence-based guidance to consumers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Volatile particles measured by vapor-particle separator

    DOE PAGES

    Cheng, Meng -Dawn; Corporan, Edwin

    2016-08-25

    Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel enginesmore » for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less

  4. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.

    PubMed

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B

    2010-01-01

    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.

  5. Membrane-less microfiltration using inertial microfluidics

    PubMed Central

    Warkiani, Majid Ebrahimi; Tay, Andy Kah Ping; Guan, Guofeng; Han, Jongyoon

    2015-01-01

    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstrated the systems engineered for CHO (10–20 μm) and yeast (3–5 μm) cells filtration, which are two main cell types used for large-scale bioreactors. Our proposed system can replace existing filtration membrane and provide passive (no external force fields), continuous filtration, thus eliminating the need for membrane replacement. This platform has the desirable combinations of high throughput, low-cost, and scalability, making it compatible for a myriad of microfiltration applications and industrial purposes. PMID:26154774

  6. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    PubMed

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  7. Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan.

    PubMed

    Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching

    2010-10-01

    Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.

  8. Pressurized liquid extraction of diesel and air particulate standard reference materials: effect of extraction temperature and pressure.

    PubMed

    Schantz, Michele M; McGaw, Elizabeth; Wise, Stephen A

    2012-10-02

    Four particulate matter Standard Reference Materials (SRMs) available from the National Institute of Standards and Technology (NIST) were used to evaluate the effect of solvent, number of static cycles and static times, pressure, and temperature when using pressurized liquid extraction (PLE) for the extraction of polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs. The four materials used in the study were SRM 1648a Urban Particulate Matter, SRM 1649b Urban Dust, SRM 1650b Diesel Particulate Matter, and SRM 2975 Diesel Particulate Matter (Industrial Forklift). The results from the study indicate that the choice of solvent, dichloromethane compared to toluene and toluene/methanol mixtures, had little effect on the extraction efficiency. With three to five extraction cycles, increasing the extraction time for each cycle from 5 to 30 min had no significant effect on the extraction efficiency. The differences in extraction efficiency were not significant (with over 95% of the differences being <10%) when the pressure was increased from 13.8 to 20.7 MPa. The largest increase in extraction efficiency occurred for selected PAHs when the temperature of extraction was increased from 100 to 200 °C. At 200 °C naphthalene, biphenyl, fluorene, dibenzothiophene, and anthracene show substantially higher mass fractions (>30%) than when extracted at 100 °C in all the SRMs studied. For SRM 2975, large increases (>100%) are also observed for some other PAHs including benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, benzo[ghi]perylene, and benzo[b]chrysene when extracted at the higher temperatures; however, similar trends were not observed for the other diesel particulate sample, SRM 1650b. The results are discussed in relation to the use of the SRMs for evaluating analytical methods.

  9. Controllable Preparation of Ultrathin Sandwich-Like Membrane with Porous Organic Framework and Graphene Oxide for Molecular Filtration

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanzhi; Xu, Danyun; Zhao, Qingshan; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-10-01

    Porous organic frameworks (POFs) based membranes have potential applications in molecular filtration, despite the lack of a corresponding study. This study reports an interesting strategy to get processable POFs dispersion and a novel ultrathin sandwich-like membrane design. It was accidentally found that the hydrophobic N-rich Schiff based POFs agglomerates could react with lithium-ethylamine and formed stable dispersion in water. By successively filtrating the obtained POFs dispersion and graphene oxide (GO), we successfully prepared ultrathin sandwich-like hybrid membranes with layered structure, which showed significantly improved separation efficiency in molecular filtration of organic dyes. This study may provide a universal way to the preparation of processable POFs and their hybrid membranes with GO.

  10. Accelerated testing technique for evaluating performance of chemical air filters for DUV photolithographic equipment

    NASA Astrophysics Data System (ADS)

    Kishkovich, Oleg P.; Bolgov, Dennis; Goodwin, William

    1999-06-01

    In this paper, the authors discuss the requirements for chemical air filtration system used in conjunction with modern DUV photolithography equipment. Among the topics addressed are the scope of pollutants, their respective internal and external sources, and an overview of different types of filtration technologies currently in use. Key filtration parameters, including removal efficiency, service life, and spill protection capacity, are discussed and supported by actual data, reflection the total molecular base concentration in operational IC manufacturing facilities. The authors also describe a time-accelerated testing procedure for comparing and evaluating different filtration technologies and designs, and demonstrate how this three-day test procedure can reliably predict an effective filter service life up to ten years.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, A.; Hamdy, M.K.

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline /beta/-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymatic hydrolysis, decreased with the filtration time. THe immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato /beta/-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcoholic fermentation of the filtrate resulted in an alcohol contentmore » of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%. 17 refs.« less

  12. Concentration of Enteroviruses, Adenoviruses, and Noroviruses from Drinking Water by Use of Glass Wool Filters▿

    PubMed Central

    Lambertini, Elisabetta; Spencer, Susan K.; Bertz, Phillip D.; Loge, Frank J.; Kieke, Burney A.; Borchardt, Mark A.

    2008-01-01

    Available filtration methods to concentrate waterborne viruses are either too costly for studies requiring large numbers of samples, limited to small sample volumes, or not very portable for routine field applications. Sodocalcic glass wool filtration is a cost-effective and easy-to-use method to retain viruses, but its efficiency and reliability are not adequately understood. This study evaluated glass wool filter performance to concentrate the four viruses on the U.S. Environmental Protection Agency contaminant candidate list, i.e., coxsackievirus, echovirus, norovirus, and adenovirus, as well as poliovirus. Total virus numbers recovered were measured by quantitative reverse transcription-PCR (qRT-PCR); infectious polioviruses were quantified by integrated cell culture (ICC)-qRT-PCR. Recovery efficiencies averaged 70% for poliovirus, 14% for coxsackievirus B5, 19% for echovirus 18, 21% for adenovirus 41, and 29% for norovirus. Virus strain and water matrix affected recovery, with significant interaction between the two variables. Optimal recovery was obtained at pH 6.5. No evidence was found that water volume, filtration rate, and number of viruses seeded influenced recovery. The method was successful in detecting indigenous viruses in municipal wells in Wisconsin. Long-term continuous filtration retained viruses sufficiently for their detection for up to 16 days after seeding for qRT-PCR and up to 30 days for ICC-qRT-PCR. Glass wool filtration is suitable for large-volume samples (1,000 liters) collected at high filtration rates (4 liters min−1), and its low cost makes it advantageous for studies requiring large numbers of samples. PMID:18359827

  13. Assessment of dioxin-like activity in ambient air particulate matter using recombinant yeast assays

    NASA Astrophysics Data System (ADS)

    Olivares, Alba; van Drooge, Barend L.; Pérez Ballesta, Pascual; Grimalt, Joan O.; Piña, Benjamin

    2011-01-01

    Ectopic activation of the aryl hydrocarbon receptor (AhR), also known as dioxin-like activity, is a major component of the toxicity associated with polycyclic aromatic hydrocarbons (PAH). Filtration of ambient air particulate matter through PM 10 filters followed by chemical determination of PAH concentrations and a yeast-based bioassay (RYA) were combined to evaluate and characterize dioxin-like activity in ambient air. Samples were collected in a semirural area of Northern Italy between September 2008 and February 2009. Total PAH contents ranged between 0.3 ng m -3 and 34 ng m -3 and were in correlation with seasonal variations of meteorological conditions and combustion processes. Dioxin-like activity values in air samples showed an excellent correlation (0.71 < R2 < 0.86) with the observed PAH concentrations and the predicted toxicity equivalents for PAH. This RYA-bioassay reported in the present study provides a simple and low-cost routine control for toxic PAH emissions, even at background air concentration levels.

  14. Removal of Cryptosporidium parvum in bank filtration systems

    NASA Astrophysics Data System (ADS)

    Harter, T.; Atwill, E. R.; Hou, L. L.

    2003-04-01

    The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Many surface water systems therefore depend on filtration systems, including bank filtration systems, for the removal of the pathogenic oocysts. To better understand the effectiveness, e.g., of bank filtration systems, we have implemented a series of columns studies under various environmental conditions (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough of C. parvum in pulsed injections of the oocyst through sand columns, although the model does not account for the significant tailing that occurs in C. parvum transport. Application of colloid filtration theory to bank filtration system is further limited by the intrinsic heterogeneity of the geologic systems used for bank filtration. We couple filtration theory with a stochastic subsurface transport approach and with percolation theory to account for the effects of intrinsic heterogeneity. We find that a 1-log removal can be achieved even under relatively adverse conditions (low collision efficiency, high velocity) if 85% - 90% of the sedimentary hydrofacies located within the bank filtration system or of the coarsest known hydrofacies connecting the riverbed with the extraction system has a grain-size distribution with a 10% passing diameter equal to 1 mm. One millimeter is a standard sieve size in sediment analysis.

  15. Operation TEAPOT Nevada Test Site, February-May 1955. Projects 34.1 and 34.3. Evaluation of Various Types of Personnel Shelters Exposed to an Atomic Explosion

    DTIC Science & Technology

    1957-05-10

    mid- polut of foor along wall 4209 4.4 Opus§W at ation 31.1 b-2 P000 ft) I Intersection of roof .e wall. I ftC Ia. 43110 0.0 from ecomer lie of wall 2...Design. The design was advantageous in that the concrete wall would provide good shielding for the occupants from any accumulation of radioactive ...particulate filters for a more absolute filtration of dust and radioactive materials of various types since contamination of the void area with

  16. Cabin air filtration: helping to protect occupants from infectious diseases.

    PubMed

    Bull, Karen

    2008-05-01

    Presentation made at the Aviation Health Conference, London, November 2006. In modern aircraft, the air in the cabin is provided by the environmental control system (ECS) and consists of approximately 50% outside air (engine 'bleed air') mixed with approximately 50% filtered, recirculated air. This paper describes how modern aircraft cabin air filters are effective at removing airborne particulate contamination (such as bacteria and viruses) from the recirculated air system. It also describes one of the technological solutions that is currently available to treat any odours or volatile organic compounds (VOCs) that may be present in the aircraft ECS.

  17. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  18. Effect of Hydrodynamics on Particle Transport in Saturated Fractures: Experimental and Simulation Results

    NASA Astrophysics Data System (ADS)

    Cianflone, S.; Lakhian, V.; Dickson, S. E.

    2014-12-01

    Approximately one third of Canadians and Americans use groundwater as their source of drinking water. Porous media aquifers typically provide significant filtration of particulate contaminants (e.g., viruses, bacteria, protozoa). Fractured media, however, does not provide the same degree of filtration, and in fact often acts as a pathway for particulates to migrate, typically at much greater velocities than in porous media. Fractured aquifers, therefore, are significantly more vulnerable to particulate contamination than unconsolidated porous media. Thus, understanding in the mechanisms of particle migration and retention in fractures is important for the protection and management of these drinking water sources. The purpose of this work was to investigate the role of hydrodynamics on particle transport in saturated, variable aperture fractures. A 2D fracture was randomly generated with an average aperture of approximately 2mm. The fracture was inscribed into pieces of poly(methyl methacrylate), thus creating a pseudo-2D fracture (the xy fracture domain is invariant in z). Transport experiments using fluorescent microspheres (0.05 um, 0.5 um, and 0.75 um) were performed at 2.6 m/day, 26 m/day and 113 m/day and the resulting breakthrough curves were measured. These breakthrough curves included various shoulders and artifacts that were repeatable and could be used to evaluate the quality of a model. COMSOL Multiphysics, was used to generate an average flow field through the 2D fracture by numerically solving the steady-state Navier-Stokes equation. In order to have a 3D realization of the flow field, a parabolic flow regime was assumed in the z-axis and used to scale the average flow field. Random walk particle tracking was utilized to generate breakthrough curves; however, the Brownian motion and local fluid shear mechanisms needed to be considered in addition to the standard movement of particles via the local flow field in order to appropriately model the experimental results. These results suggest that local hydrodynamics are important in defining the transport of particles through a fracture. We plan to discuss further applications, general statistics, and particle retention in fractures due to hydrodynamics and ultimately the role of fracture geometry in particle transport.

  19. Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models

    NASA Astrophysics Data System (ADS)

    Krupp, Armin; Griffiths, Ian; Please, Colin

    2016-11-01

    Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.

  20. Modeling filtration and fouling with a microstructured membrane filter

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Sanaei, Pejman

    2017-11-01

    Membrane filters find widespread use in diverse applications such as A/C systems and water purification. While the details of the filtration process may vary significantly, the broad challenge of efficient filtration is the same: to achieve finely-controlled separation at low power consumption. The obvious resolution to the challenge would appear simple: use the largest pore size consistent with the separation requirement. However, the membrane characteristics (and hence the filter performance) are far from constant over its lifetime: the particles removed from the feed are deposited within and on the membrane filter, fouling it and degrading the performance over time. The processes by which this occurs are complex, and depend on several factors, including: the internal structure of the membrane and the type of particles in the feed. We present a model for fouling of a simple microstructured membrane, and investigate how the details of the microstructure affect the filtration efficiency. Our idealized membrane consists of bifurcating pores, arranged in a layered structure, so that the number (and size) of pores changes in the depth of the membrane. In particular, we address how the details of the membrane microstructure affect the filter lifetime, and the total throughput. NSF DMS 1615719.

  1. Production of a ruminant protein supplement by anaerobic fermentation of feedlot waste filtrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, C.A.; Erdman, M.D.

    1977-01-01

    In studies initiated to develop simple and efficient procedures for the production of feed supplements, it was shown that the filtrate from feedlot wastes diluted with water and filtered could be fermented under anaerobic conditions by mixed rumen bacteria, Lactobacilli, or natural microflora from the feedlot wastes to produce a protein-rich feed supplement. The filtrate is low in carbohydrate and therefore supplemental carbohydrate in the form of whey, molasses, starch from potato processing wastes, or corn starch is necessary. Rigid anaerobic conditions need not be maintained nor must aseptic conditions be observed. (JSR)

  2. Removal of trace metal contaminants from potable water by electrocoagulation.

    PubMed

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K

    2016-06-21

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  3. Removal of trace metal contaminants from potable water by electrocoagulation

    NASA Astrophysics Data System (ADS)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  4. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.« less

  5. On the Failure of Upscaling the Single-Collector Efficiency to the Transport of Colloids in an Array of Collectors

    NASA Astrophysics Data System (ADS)

    Messina, F.; Tosco, T.; Sethi, R.

    2017-12-01

    Colloidal transport and deposition in saturated porous media are phenomena of considerable importance in a large number of natural processes and engineering applications, such as the contaminant and microorganism propagation in aquifer systems, the development of innovative groundwater remediation technologies, air and water filtration, and many others. Therefore, a thorough understanding of particle filtration is essential for predicting the transport and fate of colloids in the subsurface environment. The removal efficiency of a filter is a key aspect for colloid transport in porous media. Several efforts were devoted to derive accurate correlations for the single collector efficiency, one of the key concept in the filtration theory. However, up scaling this parameter to the entire porous medium is still a challenge. The common up-scaling approach assumes the deposition to be independent of the transport history, which means that the collector efficiency is considered uniform along the porous medium. However, previous works showed that this approach is inadequate under unfavorable deposition conditions. This study demonstrates that it is not adequate even in the simplest case of favorable deposition. Computational Fluid Dynamics simulations were run for a simplify porous media geometry, composed of a vertical array of 50 identical spherical collectors. A combination of Lagrangian and Eulerian simulations were performed to analyze the particle transport under a broad range of parameters (i.e., particle size, particle density, water velocity). The results show the limits of the existing models to interpret the experimental data. In fact, the outcome evidenced that when particle deposition is not controlled by Brownian diffusion, non-exponential concentration profiles are retrieved, in contrast with the assumption of uniform efficiency. Moreover, when the deposition mechanisms of sedimentation and interception dominate, the efficiency of the first sphere of the column is significantly higher compared to the others, and then it declines along the array down to an asymptotic value. A more rigorous procedure to evaluate the filtration processes in presence of a series of collectors was developed, and a new correlation for the up-scaled removal efficiency of the entire array was derived and proposed.

  6. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.

    PubMed

    Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun

    2011-09-01

    We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Liu, Yanming; Quan, Xie; Yu, Hongtao; Chen, Shuo

    2015-02-17

    Membrane filtration provides effective solutions for removing contaminants, but achieving high permeability, good selectivity, and antifouling ability remains a great challenge for existing membrane filtration technologies. In this work, membrane filtration coupled with electrochemistry has been developed to enhance the filtration performance of a CNTs/Al2O3 membrane. The as-prepared CNTs/Al2O3 membrane, obtained by coating interconnected CNTs on an Al2O3 substrate, presented good pore-size tunability, mechanical stability, and electroconductivity. For the removal of a target (silica spheres as a probe) with a size comparable to the membrane pore size, the removal efficiency and flux at +1.5 V were 1.1 and 1.5 times higher, respectively, than those without electrochemical assistance. Moreover, the membrane also exhibited a greatly enhanced removal efficiency for contaminants smaller than the membrane pores, providing enhancements of 4 orders of magnitude and a factor of 5.7 for latex particles and phenol, respectively. These results indicated that both the permeability and the selectivity of CNTs/Al2O3 membranes can be significantly improved by electrochemical assistance, which was further confirmed by the removal of natural organic matter (NOM). The permeate flux and NOM removal efficiency at +1.5 V were about 1.6 and 3.0 times higher, respectively, than those without electrochemical assistance. In addition, the lost flux of the fouled membrane was almost completely recovered by an electrochemically assisted backwashing process.

  8. Characterization of a Regenerable Impactor Filter for Spacecraft Cabin Applications

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2015-01-01

    Regenerable filters will play an important role in human exploration beyond low-Earth orbit. Life Support Systems aboard crewed spacecrafts will have to operate reliably and with little maintenance over periods of more than a year, even multiple years. Air filters are a key component of spacecraft life support systems, but they often require frequent routine maintenance. Bacterial filters aboard the International Space Station require almost weekly cleaning of the pre-filter screen to remove large lint debris captured in the microgravity environment. The source of the airborne matter which is collected on the filter screen is typically from clothing fibers, biological matter (hair, skin, nails, etc.) and material wear. Clearly a need for low maintenance filters requiring little to no crew intervention will be vital to the success of the mission. An impactor filter is being developed and tested to address this need. This filter captures large particle matter through inertial separation and impaction methods on collection surfaces, which can be automatically cleaned after they become heavily loaded. The impactor filter can serve as a pre-filter to augment the life of higher efficiency filters that capture fine and ultrafine particles. A prototype of the filter is being tested at the Particulate Filtration Laboratory at NASA Glenn Research Center to determine performance characteristics, including particle cut size and overall efficiency. Model results are presented for the flow characteristics near the orifice plate through which the particle-laden flow is accelerated as well as around the collection bands.

  9. Pilot study of high-performance air filtration for classroom applications.

    PubMed

    Polidori, A; Fine, P M; White, V; Kwon, P S

    2013-06-01

    A study was conducted to investigate the effectiveness of three air purification systems in reducing the exposure of children to air contaminants inside nine classrooms of three Southern California schools. Continuous and integrated measurements were conducted to monitor the indoor and outdoor concentrations of ultrafine particles (UFPs), fine and coarse particulate matter (PM2.5 and PM10 , respectively), black carbon (BC), and volatile organic compounds. An heating, ventilating, and air conditioning (HVAC)-based high-performance panel filter (HP-PF), a register-based air purifier (RS), and a stand-alone air cleaning system (SA) were tested alone and in different combinations for their ability to remove the monitored pollutants. The combination of a RS and a HP-PF was the most effective solution for lowering the indoor concentrations of BC, UFPs, and PM2.5 , with study average reductions between 87% and 96%. When using the HP-PF alone, reductions close to 90% were also achieved. In all cases, air quality conditions were improved substantially with respect to the corresponding baseline (preexisting) conditions. Data on the performance of the gas-absorbing media included in the RS and SA unit were inconclusive, and their effectiveness, lifetime, costs, and benefits must be further assessed before conclusions and recommendations can be made. The installation of effective air filtration devices in classrooms may be an important mitigation measure to help reduce the exposure of school children to indoor pollutants of outdoor origin including ultrafine particles and diesel particulate matter, especially at schools located near highly trafficked freeways, refineries, and other important sources of air toxics. Published 2012. This article is a US Government work and is in the public domain in the USA.

  10. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house.

    PubMed

    Singer, B C; Delp, W W; Black, D R; Walker, I S

    2017-07-01

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Delp, William W.; Black, Douglas R.

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration produced indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection whereas supply MERV16 filtration reduced PM 2.55 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filters in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5. Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  12. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, B. C.; Delp, W. W.; Black, D. R.

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 fil ter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  13. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE PAGES

    Singer, B. C.; Delp, W. W.; Black, D. R.; ...

    2016-12-05

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 fil ter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  14. OCCURRENCE OF SELECTED PHARMACEUTICAL AND NON-PHARMACEUTICAL COMPOUNDS, AND STABLE HYDROGEN AND OXYGEN ISOTOPE RATIOS, IN A RIVERBANK FILTRATION STUDY, PLATTE RIVER, NEBRASKA, 2001 TO 2003, VOLUME 1. DATA SERIES 117.

    EPA Science Inventory

    Although studied extensively in recent years in Europe, the occurrence of endocrine disrupters and other organic wastewater compounds in the environment in the United States is not well documented. To better understand the efficiency of riverbank filtration with respect to endoc...

  15. Leakage of soluble microbial products from biological activated carbon filtration in drinking water treatment plants and its influence on health risks.

    PubMed

    Hong, Shen; Xian-Chun, Tang; Nan-Xiang, Wu; Hong-Bin, Chen

    2018-07-01

    The application of ozone-biological activated carbon (O 3 -BAC) as an advanced treatment method in drinking water treatment plants (DWTPs) can help to remove organic micropollutants and further decrease the dissolved organic carbon (DOC) level in finished water. With the increase attention to microbial safety of drinking water, a pre-positioned O 3 -BAC followed by a sand filter has been implanted into DWTP located in Shanghai, China to increase the biostability of effluents. The results showed that BAC had high removal efficiencies of UV 254 , DOC and disinfection by-product formation potential (DBPFP). The removal efficiencies between pre- and post-positioned BAC filtrations were similar. Based on the analyses of fluorescence excitation-emission matrix spectrophotometry (FEEM), the generation and leakage of soluble microbial products (SMPs) were found in both two BAC filtrations on account of the increased fluorescence intensities and fluorescence regional integration (FRI) distribution of protein-like organics, as well as the enhanced biological index (BIX). The leakage of SMPs produced by metabolism of microbes during BAC process resulted in increased DBPFP yield and carcinogenic factor per unit of DOC (CF/DOC). Although BAC filtration reduced the DBPFP and CF, there still was high health risk of effluents for the production of SMPs. Therefore, the health risks for SMPs generated by BAC filtration in drinking water advanced treatment process should be addressed, especially with that at high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Recycled PET Nanofibers for Water Filtration Applications

    PubMed Central

    Zander, Nicole E.; Gillan, Margaret; Sweetser, Daniel

    2016-01-01

    Water shortage is an immediate and serious threat to our world population. Inexpensive and scalable methods to clean freshwater and wastewater are in high demand. Nanofiber filtration membranes represent a next generation nonwoven filter media due to their unique properties. Polyethlyene terephthalate (PET) is often used in the packaging of water and other commonly used materials, leading to a large amount of plastic waste often with limited incentive for recycling (few value-added uses). Here, we present work in the generation of nanofiber liquid filtration membranes from PET plastic bottles and demonstrate their use in microfiltration. PET nanofiber membranes were formed via solution electrospinning with fiber diameters as low as ca. 100 nm. Filtration efficiency was tested with latex beads with sizes ranging from 30 to 2000 nm. Greater than 99% of the beads as small as 500 nm were removed using gravity filtration. To reduce biofouling, the mats were functionalized with quaternary ammonium and biguanide biocides. The biguanide functionalized mats achieved 6 log reduction for both gram negative and gram positive bacteria. PMID:28773380

  17. Harvesting microalgal biomass using crossflow membrane filtration: critical flux, filtration performance, and fouling characterization.

    PubMed

    Elcik, Harun; Cakmakci, Mehmet

    2017-06-01

    The purpose of this study was to investigate the efficient harvesting of microalgal biomass through crossflow membrane filtration. The microalgal biomass harvesting experiments were performed using one microfiltration membrane (pore size: 0.2 µm, made from polyvinylidene fluoride) and three ultrafiltration membranes (molecular weight cut-off: 150, 50, and 30 kDa, made from polyethersulfone, hydrophilic polyethersulfone, and regenerated cellulose, respectively). Initially, to minimize membrane fouling caused by microalgal cells, experiments with the objective of determining the critical flux were performed. Based on the critical flux calculations, the best performing membrane was confirmed to be the UH050 membrane, produced from hydrophilic polyethersulfone material. Furthermore, we also evaluated the effect of transmembrane pressure (TMP) and crossflow velocity (CFV) on filtration flux. It was observed that membrane fouling was affected not only by the membrane characteristics, but also by the TMP and CFV. In all the membranes, it was observed that increasing CFV was associated with increasing filtration flux, independent of the TMP.

  18. TU-EF-204-08: Dose Efficiency of Added Beam-Shaping Filter with Varied Attenuation Levels in Lung-Cancer Screening CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yu, L; Vrieze, T

    Purpose: Added filtration such as tin filter has the potential to improve dose efficiency of x-ray beam in lung-cancer screening CT. However, dose efficiency with added beam filtration is highly dependent on patient attenuation level. In this phantom study, we evaluated the image quality at different tube voltages with and without added tin filter when attenuation level varies. Methods: A 30 x 20 cm anthropomorphic thorax phantom with three added extension rings were used to simulate small (S), medium (M), large (L), and extra-large (XL) adult patients. These phantoms were scanned on a 192-slice CT scanner (Force, Siemens) at 100more » and 120kV without tin filtration, and 100 and 150 kV with tin filtration (100Sn and 150Sn), at multiple dose levels at each kV. Images were reconstructed using iterative reconstruction (ADMIRE, Siemens). Radiation dose was measured with a 0.6 cc ion chamber in the middle and peripheral areas of the phantom. Image quality was assessed using mean image noise at uniform areas in the central region and lung. Radiation dose that is required for each kV to match the noise in a routine lung-cancer CT screening technique (120kV, 25 quality reference mAs) was calculated. Results: At each of the four phantom sizes, 100Sn had the lowest noise in both soft tissue and lung. Compared with 120 kV, 100Sn saved 39%–60% dose for the same noise, depending on phantom size. For the XL phantom (50 by 40 cm), 150Sn provided images with the least beam-hardening artifact in peripheral region. Conclusion: For thoracic CT, added tin filtration can provide considerable dose reduction compared with 120 kV. 100Sn provides better dose efficiencies for all phantom sizes, while 150Sn provides better image quality in peripheral region for extra-large patients. Drs.Joel G. Fletcher and Cynthia H. McCollough receive research support from Siemens Healthcare.« less

  19. Performance of a Retrofitted Multicyclone for PM2.5 Emission Control

    NASA Astrophysics Data System (ADS)

    Dewika, M.; Rashid, M.; Ammar, M. R.

    2018-03-01

    This paper presents on the performance of a retrofitted multicyclone system, which aims to increase the collection efficiency of PM2.5 (i.e. particulate size fraction ≤ 2.5 μm) emission. The multicyclone was retrofitted by extracting 15% and 20% of the total volumetric air flow rate at the dust hopper of the unit using an additional Induced Draft Fan. The total collection efficiency with and without the extraction was measured at various air volumetric flow rates and particulate mass inlet concentration. The results showed that there was a reduction of 12% to 54% depending on the inlet concentration of PM2.5 emission in the stack with compared to without extraction increasing the collection efficiency of the retrofitted multicyclone. The finding suggests that a simple technique of applying gas extraction at the dust hopper of a multicyclone as reported in this study able to increase the overall performance in fine particulate collection.

  20. Lipid biomarker analysis for the quantitative analysis of airborne microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macnaughton, S.J.; Jenkins, T.L.; Cormier, M.R.

    1997-08-01

    There is an ever increasing concern regarding the presence of airborne microbial contaminants within indoor air environments. Exposure to such biocontaminants can give rise to large numbers of different health effects including infectious diseases, allergenic responses and respiratory problems, Biocontaminants typically round in indoor air environments include bacteria, fungi, algae, protozoa and dust mites. Mycotoxins, endotoxins, pollens and residues of organisms are also known to cause adverse health effects. A quantitative detection/identification technique independent of culturability that assays both culturable and non culturable biomass including endotoxin is critical in defining risks from indoor air biocontamination. Traditionally, methods employed for themore » monitoring of microorganism numbers in indoor air environments involve classical culture based techniques and/or direct microscopic counting. It has been repeatedly documented that viable microorganism counts only account for between 0.1-10% of the total community detectable by direct counting. The classic viable microbiologic approach doe`s not provide accurate estimates of microbial fragments or other indoor air components that can act as antigens and induce or potentiate allergic responses. Although bioaerosol samplers are designed to damage the microbes as little as possible, microbial stress has been shown to result from air sampling, aerosolization and microbial collection. Higher collection efficiency results in greater cell damage while less cell damage often results in lower collection efficiency. Filtration can collect particulates at almost 100% efficiency, but captured microorganisms may become dehydrated and damaged resulting in non-culturability, however, the lipid biomarker assays described herein do not rely on cell culture. Lipids are components that are universally distributed throughout cells providing a means to assess independent of culturability.« less

  1. Particle counter as a tool to control pre-hydrolyzed coagulant dosing and rapid filtration efficiency in a conventional treatment system.

    PubMed

    Gumińska, Jolanta; Kłos, Marcin

    2015-01-01

    Filtration efficiency in a conventional water treatment system was analyzed in the context of pre-hydrolyzed coagulant overdosing. Two commercial coagulants of different aluminum speciation were tested. A study was carried out at a water treatment plant supplied with raw water of variable quality. The lack of stability of water quality caused many problems with maintaining the optimal coagulant dose. The achieved results show that the type of coagulant had a very strong influence on the effectiveness of filtration resulting from the application of an improper coagulant dose. The overdosing of high basicity coagulant (PAC85) caused a significant increase of fine particles in the outflow from the sedimentation tanks, which could not be retained in the filter bed due to high surface charge and the small size of hydrolysis products. When using a coagulant of lower basicity (PAC70), it was much easier to control the dose of coagulant and to adjust it to the changing water quality.

  2. Mineral Adsorbents for Removal of Metals in Urban Runoff

    NASA Astrophysics Data System (ADS)

    Bjorklund, Karin; Li, Loretta

    2014-05-01

    The aim of this research was to determine the capacity of four different soil minerals to adsorb metals frequently detected in urban runoff. These are low-cost, natural and commercially available soil minerals. Contaminated surface runoff from urban areas is a major cause of concern for water quality and aquatic ecosystems worldwide. Pollution in urban areas is generated by a wide array of non-point sources, including vehicular transportation and building materials. Some of the most frequently detected pollutants in urban runoff are metals. Exhaust gases, tire wear and brake linings are major sources of such metals as Pb, Zn and Cu, while impregnated wood, plastics and galvanized surfaces may release As, Cd, Cr and Zn. Many metals have toxic effects on aquatic plants and animals, depending on metal speciation and bioavailability. The removal efficiency of pollutants in stormwater depends on treatment practices and on the properties the pollutant. The distribution of metals in urban runoff has shown, for example, that Pb is predominantly particle-associated, whereas Zn and Cd are present mainly in dissolved form. Many metals are also attached to colloids, which may act as carriers for contaminants, thereby facilitating their transport through conventional water treatment processes. Filtration of stormwater is one of the most promising techniques for removal of particulates, colloidal and truly dissolved pollutants, provided that effective filtration and adsorption media are used. Filtration and infiltration are used in a wide array of stormwater treatment methods e.g. porous paving, infiltration drains and rain gardens. Several soil minerals were investigated for their potential as stormwater filter materials. Laboratory batch tests were conducted to determine the adsorption capacity of these minerals. A synthetic stormwater was tested, with spiked concentrations corresponding to levels reported in urban runoff, ranging from 50-1,500 µg/L for Zn; 5-250 µg/L for Cu, 2-20 µg/L for Cd and 10-150 µg/L for Ni and Pb. Humic acids were used to imitate natural stormwater contaminated with natural organic matter. The adsorption kinetics was also investigated through a sequence (10-120 min) of batch tests. By studying the capacity of a range of sorbents in batch tests under identical conditions, the most promising sorbent can be identified. The research is ongoing. Preliminary results will be presented.

  3. 40 CFR 63.542 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to monitor relative particulate matter loadings. Battery breaking area means the plant location at which lead-acid batteries are broken, crushed, or disassembled and separated into components. Blast...) Casting operations occur. High efficiency particulate air (HEPA) filter means a filter that has been...

  4. 40 CFR 63.542 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to monitor relative particulate matter loadings. Battery breaking area means the plant location at which lead-acid batteries are broken, crushed, or disassembled and separated into components. Blast...) Casting operations occur. High efficiency particulate air (HEPA) filter means a filter that has been...

  5. Filter media properties of mineral fibres produced by plasma spray.

    PubMed

    Prasauskas, Tadas; Matulevicius, Jonas; Kliucininkas, Linas; Krugly, Edvinas; Valincius, Vitas; Martuzevicius, Dainius

    2016-01-01

    The purpose of this study was to determine the properties of fibrous gas filtration media produced from mineral zeolite. Fibres were generated by direct current plasma spray. The paper characterizes morphology, chemical composition, geometrical structure of elementary fibres, and thermal resistance, as well as the filtration properties of fibre media. The diameter of the produced elementary fibres ranged from 0.17 to 0.90 μm and the length ranged from 0.025 to 5.1 mm. The release of fibres from the media in the air stream was noticed, but it was minimized by hot-pressing the formed fibre mats. The fibres kept their properties up to the temperature of 956°C, while further increase in temperature resulted in the filter media becoming shrunk and brittle. The filtration efficiency of the prepared filter mats ranged from 95.34% to 99.99% for aerosol particles ranging in a size between 0.03 and 10.0 μm. Unprocessed fibre media showed the highest filtration efficiency when filtering aerosol particles smaller than 0.1 µm. Hot-pressed filters were characterized by the highest quality factor values, ranging from 0.021 to 0.064 Pa(-1) (average value 0.034 Pa(-1)).

  6. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    PubMed

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb 2+ , Cu 2+ , and Cd 2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  7. Removal of trace metal contaminants from potable water by electrocoagulation

    PubMed Central

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564

  8. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  9. ELECTRON MICROSCOPIC EXAMINATION OF SUBCELLULAR FRACTIONS

    PubMed Central

    Baudhuin, Pierre; Evrard, Philippe; Berthet, Jacques

    1967-01-01

    A method is described for preparing, by filtration on Millipore filters, very thin (about 10 µ) pellicles of packed particles. These pellicles can be embedded in Epon for electron microscopic examination. They are also suitable for cytochemical assays. The method was used with various particulate fractions from rat liver. Its main advantages over the usual centrifugal packing techniques are that it produces heterogeneity solely in the direction perpendicular to the surface of the pellicle and that sections covering the whole depth of the pellicle can be photographed in a single field. It thus answers the essential criterion of random sampling and can be used for accurate quantitative evaluations. PMID:10976209

  10. [The aspiratory resistance and filtration penetration of N95 filtering-facepiece respirators used widely in China].

    PubMed

    Wang, Xinyan; Shi, Tingming; Lu, Wei; Qin, Shaoxian; Liu, Yuewei; Tao, Ying; Zhang, Hongge; Chen, Weihong

    2015-01-01

    The objective of this study was to investigate the aspiratory resistance, filtration penetration and their influence factors of N95 filtering-facepiece respirators used widely in China. The total of 6 brands and 21 models of N95 filtering-facepiece respirators which are certified and big sales on the market. The aspiratory resistance and filtration efficiency filter penetration were measured while air pump ran from 10 L/min to 100 L/min using differential pressure gauge and the PortaCount, respectively. The filtration penetrations for 2 of the 21 models were lower than 95%, and the qualified rate for all models was 90.47%. The filtration penetrations gradually decreased when ventilation flow of air pump increased. The negative correlation was observed between filtration penetration and ventilation flow (r(2) = 0.711, P < 0.05). The resistances of all 21 models of N95 respirators met the requirements of the national standard. The aspiratory resistance started to elevate with the increasing of ventilation flow, and a positive correlation between both (r(2) = 0.878, P < 0.05). Significant differences of filtration penetration and aspiratory resistance were observed among between different brands (P < 0.05) although no differences of filtration penetration existed among different models of one brand (P > 0.05). But the differences of the aspiratory resistance among different models of one brand were statistically significant (P < 0.05). The aspiratory resistances of all N95 filtering-facepiece respirators used in this study met the requirements of the national standard. And the qualified ratio of filtration penetration of all models was higher than 90%. The influencing factors of aspiratory resistance included materials, size and ventilation flow. And influencing factors for filtration penetration were materials and ventilation flow.

  11. IMPROVED TEST METHODS FOR ELECTRONIC AIR CLEANERS

    EPA Science Inventory

    The objective of this project was to develop a fractional filtration efficiency test protocol for residential electrostatic precipitators (ESPs) that avoids the limitations of the ASHRAE 52.2 method. Specifically, the objectives were to a) determine the change in efficiency that ...

  12. Application of Colloidal Filtration Theory on Textile Fibrous Media: Effect of Fiber Orientation on Bacterial Removal Efficiency and Attachment

    NASA Astrophysics Data System (ADS)

    Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan

    2018-06-01

    A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.

  13. Application of Colloidal Filtration Theory on Textile Fibrous Media: Effect of Fiber Orientation on Bacterial Removal Efficiency and Attachment

    NASA Astrophysics Data System (ADS)

    Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan

    2018-05-01

    A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.

  14. Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, South Ural Mountains of Russia.

    PubMed

    Williamson, B J; Udachin, V; Purvis, O W; Spiro, B; Cressey, G; Jones, G C

    2004-11-01

    Airborne total suspended particulates (TSP), dusts from smelter blast furnace and converter stacks, and filtrates of snow melt waters have been characterised in the Cu smelter and former mining town of Karabash, Russia. TSP was collected at sites up- and downwind of the smelter and large waste and tailings dumps (Oct. 2000 and July 2001). Methods for particle size, mineralogical and elemental determinations have been tested and described, and a new PSD-MicroSOURCE XRD technique developed for the mineralogical analysis of microsamples on filter substrates. TSP in downwind samples has a mean equivalent spherical diameter of 0.5 microm (s.d. = 0.2) and was found to be 100% respirable. The main element of human health/environmental concern, above Russian maximum permitted levels (1 microg m(-3), average over any time period), was Pb which was measured at 16-30 microg m(-3) in downwind samples. Individual particulates mainly consisted of complex mixtures of anglesite (PbSO4), Zn2SnO4 and poorly ordered Zn sulphates. From experimental and theoretical considerations, a high proportion of contained Pb, Zn, Cd and As in this material is considered to be in a readily bioavailable form. Chemical and mineralogical differences between the TSP, stack dusts and snow samples are discussed, as well as the implications for human and regional environmental health.

  15. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  16. Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches.

    PubMed

    Di Francesco, Alessandra; Roberti, Roberta; Martini, Camilla; Baraldi, Elena; Mari, Marta

    2015-12-01

    The Aureobasidium pullulans L1 and L8 strains are known as efficient biocontrol agents against several postharvest fungal pathogens. In order to better understand the mechanism of action underneath the antifungal activity of L1 and L8 strains, yeast cell filtrates grown at different times were evaluated in vivo against Monilinia laxa on peach. Lesion diameters on peach fruit were reduced by L1 and L8 culture filtrates of 42.5% and 67% respectively. The ability of these filtrates to inhibit M. laxa conidia germination and germ tube elongation was studied by in vitro assays. The results showed a 70% reduction of conidia germination for both strains while for germ tube elongation, it was 52% and 41% for L1 and L8 culture filtrates respectively. Finally, the activity of cell wall hydrolytic enzymes such as chitinase and glucanase in cell filtrates was analysed and the expression of genes encoding these activities was quantified during yeast growth. From 24h onward, both culture filtrates contained β,1-3,glucanase and. chitinase activities, the most pronounced of which was N-β-acetylglucosaminidase. Gene expression level encoding for these enzymes in L1 and L8 varied according to the strain. These results indicate that L1 and L8 strains culture filtrates retain the yeast antagonistic activity and suggest that the production of hydrolytic enzymes plays an important role in this activity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.

    PubMed

    Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng

    2014-01-01

    An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.

  18. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    PubMed

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for respirator users against DPM under all circumstances of diesel generated particles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. Effectiveness of a pressurized stormwater filtration system in Green Bay, Wisconsin: a study for the environmental technology verification program of the U.S. Environmental Protection Agency

    USGS Publications Warehouse

    Horwatich, J.A.; Corsi, Steven R.; Bannerman, Roger T.

    2004-01-01

    A pressurized stormwater filtration system was installed in 1998 as a stormwater-treatment practice to treat runoff from a hospital rooftop and parking lot in Green Bay, Wisconsin. This type of filtration system has been installed in Florida citrus groves and sewage treatment plants around the United States; however, this installation is the first of its kind to be used to treat urban runoff and the first to be tested in Wisconsin. The U.S. Geological Survey (USGS) monitored the system between November 2000 and September 2002 to evaluate it as part of the U.S. Environmental Protection Agency's Environmental Technology Verification Program. Fifteen runoff events were monitored for flow and water quality at the inlet and outlet of the system, and comparison of the event mean concentrations and constituent loads was used to evaluate its effectiveness. Loads were decreased in all particulate-associated constituents monitored, including suspended solids (83 percent), suspended sediment (81 percent), total Kjeldahl nitrogen (26 percent), total phosphorus (54 percent), and total recoverable zinc (62 percent). Total dissolved solids, dissolved phosphorus, and nitrate plus nitrite loads remained similar or increased through the system. The increase in some constituents was most likely due to a ground-water contribution between runoff events. Sand/silt split analysis resulted in the median silt content of 78 percent at the inlet, 87 percent at the outlet, and 3 percent at the flow splitter.

  20. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    PubMed

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-03

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

  1. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    NASA Astrophysics Data System (ADS)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  2. Genetic diversity of Aspergillus fumigatus in indoor hospital environments.

    PubMed

    Araujo, Ricardo; Amorim, António; Gusmão, Leonor

    2010-09-01

    Environmental isolates of Aspergillus fumigatus are less studied than those recovered from clinical sources. In the present study, the genetic diversity among such environmental isolates was assessed, as well as their dispersion ability and the acquisition of new strains in 19 medical units of the same hospital. A. fumigatus isolates were genotyped using a single multiplex PCR-based reaction with eight microsatellite markers and an insertion/deletion polymorphism. A total of 130 unique genotypes were found among a total of 250 A. fumigatus isolates. Genotypic diversity ranged from 0.86 to 1 in samples from hospital rooms, and there was no correlation between these samples and the presence of high-efficiency particulate air filters or any other air filtration system. Four of the six most prevalent A. fumigatus strains were recovered from water samples. The occurrence of microvariation was common among environmental isolates, which affected each of the microsatellite markers. The assessment of the genetic diversity of A. fumigatus is a useful tool for illustrating the presence or absence of specific clonal populations in a clinical setting. A. fumigatus populations were highly dynamic indoors, and new populations were found in just a few months. Due to the high indoor dispersion capability of A. fumigatus, more attention should be given to strains with increased pathogenic potential or reduced susceptibility to anti-fungal drugs.

  3. Dynamics and fates of trace metals chronically input in a Mediterranean coastal zone impacted by a large urban area.

    PubMed

    Oursel, B; Garnier, C; Durrieu, G; Mounier, S; Omanović, D; Lucas, Y

    2013-04-15

    Quantification and characterization of chronic inputs of trace metals and organic carbon in a coastal Mediterranean area (the city of Marseille) during the dry season was carried out. The 625 km(2) watershed includes two small coastal rivers whose waters are mixed with treated wastewater (TWW) just before their outlet into the sea. Dissolved and particulate Cu, Pb, Cd, Zn, Co, Ni and organic carbon concentrations in the rivers were comparable to those in other Mediterranean coastal areas, whereas at the outlet, 2- to 18-fold higher concentrations reflected the impact of the TWW. A non-conservative behavior observed for most of the studied metals in the mixing zone was validated by a remobilization experiment performed in the laboratory. The results showed that sorption/desorption processes could occur with slow kinetics with respect to the mixing time in the plume, indicating non-equilibrium in the dissolved/particulate metal distribution. Thus, a sample filtration immediately after sampling is strictly required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules.

    PubMed

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H Amy; Ashley, Kevin

    2014-10-01

    An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 - 4 mg of National Institute of Standards and Technology Standard Reference Material ® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were housed within plastic closed-face cassette samplers (CFCs). A method detection limit (MDL) of 0,075 mg per sample was estimated. Precision S r at 0,5 - 4 mg per sample was 0,031 and the estimated bias was 0,058. Weight stability over 28 days was verified for both blanks and spiked capsules. Independent laboratory testing on blanks and field samples verified long-term weight stability as well as sampling and analysis precision and bias estimates. An overall precision estimate Ŝ rt of 0,059 was obtained. An accuracy measure of ±15,5% was found for the gravimetric method using PVC internal capsules.

  5. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules

    PubMed Central

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H. Amy

    2015-01-01

    Summary An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 – 4 mg of National Institute of Standards and Technology Standard Reference Material® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were housed within plastic closed-face cassette samplers (CFCs). A method detection limit (MDL) of 0,075 mg per sample was estimated. Precision Sr at 0,5 - 4 mg per sample was 0,031 and the estimated bias was 0,058. Weight stability over 28 days was verified for both blanks and spiked capsules. Independent laboratory testing on blanks and field samples verified long-term weight stability as well as sampling and analysis precision and bias estimates. An overall precision estimate Ŝrt of 0,059 was obtained. An accuracy measure of ±15,5% was found for the gravimetric method using PVC internal capsules. PMID:26435581

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION--GENERIC VERIFICATION PROTOCOL FOR BIOLOGICAL AND AEROSOL TESTING OF GENERAL VENTILATION AIR CLEANERS

    EPA Science Inventory

    Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...

  7. Rotating Reverse Osmosis for Wastewater Reuse

    NASA Technical Reports Server (NTRS)

    Lueptow, Richard M.; Yoon, Yeomin; Pederson, Cynthia

    2004-01-01

    Membrane filtration such as Reverse Osmosis (RO) removes ions, proteins, and organic chemicals which are generally very difficult to remove using conventional treatment. Moreover, membrane is an absolute filtration method, so its treatment efficiency and performance are stable and predictable. We are currently working on the development of rotating RO membrane system. Dynamic rotating membrane filtration, which can produce a high shear rate, may be helpful to obtain high rejection of organic pollutants.The goal of our current work is to improve the flux of the device by increasing pressure by a factor of 3 to 4. In addition, the rejections for a wider variety of inorganic and organic compounds typically found in space mission wastewater are measured.

  8. Comparative Recoveries of Naegleria fowleri Amoebae from Seeded River Water by Filtration and Centrifugation

    PubMed Central

    Pernin, P.; Pélandakis, M.; Rouby, Y.; Faure, A.; Siclet, F.

    1998-01-01

    Detection of pathogenic Naegleria fowleri in environmental water samples, which is necessary for the prevention of primary amoebic meningoencephalitis, generally requires concentrating the samples. Two concentration techniques, filtration and centrifugation, were used to study the recovery of N. fowleri, in vegetative or cystic form, that had been mixed with the two other thermotolerant Naegleria species, N. lovaniensis and N. australiensis. Counting of amoebae was performed by the most probable number method on 10 water replicates of 100 ml and 10 ml each. With both concentration methods, recovery was better for cysts than for trophozoites (53% ± 21% versus 5% ± 5% by filtration and 57% ± 25% versus 22% ± 5% by centrifugation). The recovery of Naegleria trophozoites by filtration was very low, and centrifugation was significantly better than filtration in recovery of Naegleria trophozoites (22% ± 5% versus 5% ± 5%; P < 0.001). For cysts, however, filtration appeared as efficient as centrifugation, with equivalent values for recovery (53% ± 21% versus 57% ± 25%; P > 0.7). Although the recovery of cysts of N. fowleri obtained by filtration (51% ± 24%) appeared higher than that by centrifugation (36% ± 23%), the difference was not significant (P > 0.1). Both concentration methods have highly variable recovery rates, making accurate quantification of low concentrations (<100/liter) of N. fowleri in the environment difficult. PMID:9501435

  9. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA

    USGS Publications Warehouse

    Yang, Qiang; Culbertson, Charles W.; Nielsen, Martha G.; Schalk, Charles W.; Johnson, Carole D.; Marvinney, Robert G.; Stute, Martin; Zheng, Yan

    2014-01-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70-100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93-99%) in particulates (>0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560-13,000 g/kg of As and 14-35% weight/weight of Fe. As/Fe ratios (2.5-20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000-100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ18O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater.

  10. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA.

    PubMed

    Yang, Qiang; Culbertson, Charles W; Nielsen, Martha G; Schalk, Charles W; Johnson, Carole D; Marvinney, Robert G; Stute, Martin; Zheng, Yan

    2015-02-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70-100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93-99%) in particulates (>0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560-13,000 mg/kg of As and 14-35% weight/weight of Fe. As/Fe ratios (2.5-20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000-100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ(18)O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA

    PubMed Central

    Yang, Qiang; Culbertson, Charles W.; Nielsen, Martha G.; Schalk, Charles W.; Johnson, Carole D.; Marvinney, Robert G.; Stute, Martin; Zheng, Yan

    2014-01-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 µg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70–100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93–99%) in particulates (>0.45 µm). These particulates and those settled after a 16-day batch experiment contain 560–13,000 mg/kg of As and 14–35% weight/weight of Fe. As/Fe ratios (2.5–20 mmole/mole) and As partitioning ratios (adsorbed/dissolved [As], 20,000–100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1,300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ18O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater. PMID:24842411

  12. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    NASA Astrophysics Data System (ADS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-05-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.

  13. Biofiltration of airborne VOCs with green wall systems-Microbial and chemical dynamics.

    PubMed

    Mikkonen, A; Li, T; Vesala, M; Saarenheimo, J; Ahonen, V; Kärenlampi, S; Blande, J D; Tiirola, M; Tervahauta, A

    2018-05-06

    Botanical air filtration is a promising technology for reducing indoor air contaminants, but the underlying mechanisms need better understanding. Here, we made a set of chamber fumigation experiments of up to 16 weeks of duration, to study the filtration efficiencies for seven volatile organic compounds (VOCs; decane, toluene, 2-ethylhexanol, α-pinene, octane, benzene, and xylene) and to monitor microbial dynamics in simulated green wall systems. Biofiltration functioned on sub-ppm VOC levels without concentration-dependence. Airflow through the growth medium was needed for efficient removal of chemically diverse VOCs, and the use of optimized commercial growth medium further improved the efficiency compared with soil and Leca granules. Experimental green wall simulations using these components were immediately effective, indicating that initial VOC removal was largely abiotic. Golden pothos plants had a small additional positive impact on VOC filtration and bacterial diversity in the green wall system. Proteobacteria dominated the microbiota of rhizosphere and irrigation water. Airborne VOCs shaped the microbial communities, enriching potential VOC-utilizing bacteria (especially Nevskiaceae and Patulibacteraceae) in the irrigation water, where much of the VOC degradation capacity of the biofiltration systems resided. These results clearly show the benefits of active air circulation and optimized growth media in modern green wall systems. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    PubMed Central

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  15. Advanced Hybrid Particulate Collector Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.J.

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less

  16. In-Line Filtration Reduces Postoperative Venous Peripheral Phlebitis Associated With Cannulation: A Randomized Clinical Trial.

    PubMed

    Villa, Gianluca; Chelazzi, Cosimo; Giua, Rosa; Tofani, Lorenzo; Zagli, Giovanni; Boninsegni, Paolo; Pinelli, Fulvio; De Gaudio, A Raffaele; Romagnoli, Stefano

    2018-04-23

    Peripheral venous cannulation is an everyday practice of care for patients undergoing anesthesia and surgery. Particles infused with intravenous fluids (eg, plastic/glass/drugs particulate) contribute to the pathogenesis of peripheral phlebitis. The aim of this study is to demonstrate the efficacy of in-line filtration in reducing the incidence of postoperative phlebitis associated with peripheral short-term vascular access. In this controlled trial, 268 surgical patients were randomly assigned to in-line filtration and standard care (NCT03193827). The incidence of phlebitis (defined as visual infusion phlebitis [VIP] score, ≥2) within 48 hours was compared between the 2 groups, as well as the onset and severity of phlebitis and the reasons for removal of the cannula. The lifespan of venous cannulae was compared for the in-line filter and no-filter groups through a Kaplan-Meier curve. The incidence of phlebitis within 48 hours postoperatively was 2.2% and 26.9% (difference, 25% [95% confidence interval {CI}, 12%-36%]; odds ratio, 0.05 [0.01-0.15]), respectively, for the in-line filter and no-filter groups (P < .001). From 24 to 96 hours postoperatively, patients in the no-filter group had higher VIP scores than those in in-line filter group (P < .001). Venous cannulae in the in-line filter group exhibited prolonged lifespan compared to those in the no-filter group (P = .01). In particular, 64 (47.8%) of cannulae in the in-line filter group and 56 (41.8%) of those in the no-filter group were still in place at 96 hours postoperatively. At the same time point, patients with a VIP score <3 were 100% in the in-line filter group and only 50% for the no-filter group. In-line filtration was a protective factor for postoperative phlebitis (hazard ratio, 0.05 [95% CI, 0.014-0.15]; P < .0001) and cannula removal (hazard ratio, 0.7 [95% CI, 0.52-0.96]; P = .02). In-line filtration has a protective effect for postoperative phlebitis and prolongs cannula lifespan during peripheral venous cannulation in surgical patients.

  17. A hybrid process of biofiltration of secondary effluent followed by ozonation and short soil aquifer treatment for water reuse.

    PubMed

    Zucker, I; Mamane, H; Cikurel, H; Jekel, M; Hübner, U; Avisar, D

    2015-11-01

    The Shafdan reclamation project facility (Tel Aviv, Israel) practices soil aquifer treatment (SAT) of secondary effluent with hydraulic retention times (HRTs) of a few months to a year for unrestricted agricultural irrigation. During the SAT, the high oxygen demand (>40 mg L(-1)) of the infiltrated effluent causes anoxic conditions and mobilization of dissolved manganese from the soil. An additional emerging problem is the occurrence of persistent trace organic compounds (TrOCs) in reclaimed water that should be removed prior to reuse. An innovative hybrid process based on biofiltration, ozonation and short SAT with ∼22 d HRT is proposed for treatment of the Shafdan secondary effluent to overcome limitations of the existing system and to reduce the SAT's physical footprint. Besides efficient removal of particulate matter to minimize clogging, coagulation/flocculation and filtration (5-6 m h(-1)) operated with the addition of hydrogen peroxide as an oxygen source efficiently removed dissolved organic carbon (DOC, to 17-22%), ammonium and nitrite. This resulted in reduced effluent oxygen demand during infiltration and oxidant (ozone) demand during ozonation by 23 mg L(-1) and 1.5 mg L(-1), respectively. Ozonation (1.0-1.2 mg O3 mg DOC(-1)) efficiently reduced concentrations of persistent TrOCs and supplied sufficient dissolved oxygen (>30 mg L(-1)) for fully oxic operation of the short SAT with negligible Mn(2+) mobilization (<50 μg L(-1)). Overall, the examined hybrid process provided DOC reduction of 88% to a value of 1.2 mg L(-1), similar to conventional SAT, while improving the removal of TrOCs and efficiently preventing manganese dissolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants.

    PubMed

    Johnson, Andrew C; Jürgens, Monika D; Lawlor, Alan J; Cisowska, Iwona; Williams, Richard J

    2014-10-01

    Differential filtration was used to measure silver (>2 nm) entering and leaving nine sewage treatment plants (STPs). The mean concentration of colloidal (2-450 nm) silver, which includes nanosilver, was found to be 12 ng L(-1) in the influent and 6 ng L(-1) in the effluent. For particulate silver (>450 nm) the mean values were 3.3 μg L(-1) for influent and 0.08 μg L(-1) for effluent. Thus, removal was around 50% and 98% for colloidal and particulate silver respectively. There was no significant difference in performance between the different types of STP investigated (three examples each of activated sludge, biological filter and biological filter with tertiary treatment located across England, UK). In addition, treated sewage sludge samples (biosolids) were taken from several STPs to measure the total silver likely to be discharged to soils. Total silver was 3-14 mg kg(-1) DW in the sludge (median 3.6), which if the sludge were added at the recommended rate to soil, would add 11 μg kg(-1) yr(-1) to the top 20 cm soil layer. Predicted concentrations using the LF2000-WQX model for all the rivers of England and Wales for nanosilver were typically in the 0-1 ng L(-1) range but levels up to 4 ng L(-1) are possible in a high discharge and low flow scenario. Predicted concentrations for the total particulate forms were mostly below 50 ng L(-1) except for a high discharge and low flow scenario where concentrations could reach 135 ng L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Respiratory symptoms, lung function and particulate matter pollution in residential indoor environment in Ile-Ife, Nigeria.

    PubMed

    Ibhafidon, Lawrence I; Obaseki, Daniel O; Erhabor, Gregory E; Akor, Alexander A; Irabor, Iziegbe; Obioh, Ib

    2014-01-01

    Particulate air pollution is associated with increased incidence of respiratory symptoms and decreased pulmonary, function but the relative impact of pollution from different domestic energy sources is not well-known or studied. The study was aimed at assessing the association between particulate concentrations, respiratory symptoms and lung function. It was a cross-sectional study comprised of randomly selected residents of three communities. These communities were selected according to the predominant type of fuel used for household cooking which were: firewood, kerosene and liquefied petroleum gas (LPG). Assessment of the indoor PM10 levels was done by filtration using the Gent stacked filter unit sampler for collection of atmospheric aerosol in two size fractions (PM2.5 and PM10). The Medical Research Council (MRC) questionnaire was administered followed by spirometry test. The mean PM10 concentration in participants using LPG, kerosene and firewood was 80.8 ± 9.52 μg/m(3), 236.9 ± 26.5 μg/m(3) and 269 ±93.7 μg/m(3), respectively. The mean age and height-adjusted percent predicted forced expiratory volumes in 1 s (FEV1) for men were 127 ± 7, 109 ± 40 and 91 ± 20 and for women were 129 ± 13, 115 ± 14, 100 ± 14 in users of LPG, kerosene and firewood, respectively. A similar trend was found in the forced vital capacity (FVCs). Users of firewood had significantly lower FEV1 and FVC compared with LPG users (P < 0.05). The participants using firewood had the highest prevalence of pulmonary and non-pulmonary symptoms (57.1%), whereas subjects using LPG had the lowest (23.8%). There are high levels of particulate matter pollutions with respiratory effects in residential indoor environments in Ile-Ife, Nigeria.

  20. Recovery of the local gravity field by spherical regularization wavelets approximation and its numerical implementation

    NASA Astrophysics Data System (ADS)

    Shuler, Harrey Jeong

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands have increased by nearly a factor of four over the past decade. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously. As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses---ventilation and filtration---have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, the measured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could significantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in several climate zones in California. Results show that water-side economizers consistently provide less energy savings than air-side economizers, though the difference in savings varies by location. Model results also show that conventional limits on humidity levels in data centers can restrict the energy benefits of economizers. The modeling efforts are then extended to estimate national data center energy use. Different size data centers are modeled to represent the national variation in efficiency and operation of associated mechanical equipment. Results indicate increased energy efficiency opportunities with larger data centers and highlight the importance of temperature setpoints in maximizing economizer efficiency. A bottom-up modeling approach is used to estimate current (2008) United States data center energy use at nearly 62--70 billion kWh annually. The model indicates that more about 65--70% of this energy demand can be avoided through energy efficient IT and cooling infrastructure design, equivalent to an annual energy efficiency resource of approximately 40--50 billion kWh available at a national level. Within the context of greenhouse gas emissions, benefits can be significantly increased by incorporating site location into energy-efficient design strategies. (Abstract shortened by UMI.).

  1. Characterization of microsieves recovery efficiency in isolation of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Osuchowska, Paulina Natalia; Sarzyński, Antoni; Strzelec, Marek; Bogdanowicz, Zdzisław; Marczak, Jan; Łapiński, Mariusz Piotr; Trafny, ElŻbieta Anna

    2016-12-01

    Isolation of circulating tumor cells (CTCs) from the blood is important in the diagnosis of malignant tumors and for monitoring therapeutic responses. The two main problems to be solved are extremely low CTCs numbers in the blood (average 1-10 CTC per 10 ml of whole blood) and the absence of one particular phenotype or genotype, which would allow for precise identification. Isolation of CTCs can be based on physical characteristics, e.g. the size of the cells (ISET, Isolation by Size of Epithelial Tumor cells) or the biological properties of these cells (the expression of specific proteins on their surface). In the IOE WAT the copper alloy microsieves with a pore diameter of 10.85 +/- 0.89 μm designed for cell isolation by ISET method were produced. The microsieves with 100 000 pores with a 50 μm interval was made using precise, percussion laser drilling. The performance microsieves filtration was determined using fluorescent beads with three dimensions: 4 μm, 10 μm and 15 μm. Furthermore, the suspensions of cells lines from different types of tumor were used in the process of filtration. The efficiency of the cells filtration process was affected by lack of biocompatibility of the material used for the microsieves production as well as the roughness and porosity of the microsieves surface. Moreover, the diameter of the pores and the course of the filtration process were also significant.

  2. Removal of Surrogate Bacteriophages and Enteric Viruses from Seeded Environmental Waters Using a Semi-technical Ultrafiltration Unit.

    PubMed

    Frohnert, Anne; Kreißel, Katja; Lipp, Pia; Dizer, Halim; Hambsch, Beate; Szewzyk, Regine; Selinka, Hans-Christoph

    2015-03-19

    Experiments to determine the removal of viruses in different types of water (surface water from two reservoirs for drinking water treatment, treated groundwater and groundwater contaminated with either 5 or 30 % of wastewater) by ultrafiltration were performed with a semi-technical ultrafiltration unit. Concentrations of human adenoviruses (HAdVs), murine norovirus (MNV), and the bacteriophages MS2, ΦX174 and PRD1 were measured in the feed water and the filtrate, and log removal values were calculated. Bacteria added to the feed water were not detected in the filtrates. In contrast, in most cases viruses and bacteriophages were still present in the filtrates: log removal values were in the range of 1.4-6.3 depending on virus sizes and water qualities. Best removals were observed with bacteriophage PRD1 and HAdVs, followed by MNV and phages MS2 and ΦX174. Virus size, however, was not the only criterion for efficient removal. In diluted wastewater as compared to drinking water and uncontaminated environmental waters, virus removal was clearly higher for all viruses, most likely due to higher membrane fouling. For quality assessment purposes of membrane filtration efficiencies with regard to the elimination of human viruses the small bacteriophages MS2 and ΦX174 should be used as conservative viral indicators.

  3. Efficient Filtration of Effluent Organic Matter by Polycation-Clay Composite Sorbents: Effect of Polycation Configuration on Pharmaceutical Removal.

    PubMed

    Shabtai, Itamar A; Mishael, Yael G

    2016-08-02

    Hybrid polycation-clay composites, based on methylated poly vinylpyridinium, were optimized as sorbents for secondary effluent organic matter (EfOM) including emerging micropollutants. Composite structure was tuned by solution ionic strength and characterized by zeta potential, FTIR, X-ray diffraction, and thermal gravimetric analyses. An increase in ionic strength induced a transition from a train to a loops and tails configuration, accompanied by greater polycation adsorption. Composite charge reversal (zeta potential -18 to 45 mV) increased the adsorption of EfOM and humic acid (HA), moderately and sharply, respectively, suggesting electrostatic and also nonspecific interactions with EfOM. Filtration of EfOM by columns of positively charged composites was superior to that of granular activated carbon (GAC). The overall removal of EfOM was most efficient by the composite with a train configuration. Whereas a composite with a loops and tails configuration was beneficial for the removal of the anionic micropollutants diclofenac, gemfibrozil and ibuprofen from EfOM. These new findings suggest that the loops and tails may offer unique binding sites for small micropollutants which are overseen by the bulk EfOM. Furthermore, they may explain our previous observations that in the presence of dissolved organic matter, micropollutant filtration by GAC columns was reduced, while their filtration by composite columns remained high.

  4. A Controlled Design of Ripple-Like Polyamide-6 Nanofiber/Nets Membrane for High-Efficiency Air Filter.

    PubMed

    Zhang, Shichao; Liu, Hui; Zuo, Fenglei; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-03-01

    The filtration capacity of fibrous media for airborne particles is restricted by their thick diameter, low porosity, and limited frontal area. The ability to solve this problem would have broad technological implications for various air filtration applications; despite many past efforts, it remains a great challenge to achieve. Herein, a facile and scalable strategy to fabricate the ripple-like polyamide-6 nanofiber/nets (PA-6 NF/N) air filter via combining electrospinning/netting technique with receiving substrate design is demonstrated. This proposed approach allows the scaffold filaments to orderly embed into 2D PA-6 nanonets layer with Steiner-tree structures and nanoscale diameter of ≈20 nm, resulting in the ripple-like membrane with extremely small pore size, highly porous structure, and hugely extended frontal surface, by facilely adjusting its pleat span and pleat pitch. These unique structural advantages enable the ripple-like PA-6 NF/N filter to filtrate the ultrafine particles with high removal efficiency of 99.996%, low air resistance of 95 Pa, and robust quality factor of >0.11 Pa -1 ; using its superlight weight of 0.9 g m -2 and physical sieving manner. This approach has the potentialities to give rise to a novel generation of filter media displaying enhanced filtration capacity for various applications thanks to their nanoscale features and designed macrostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.

    An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.

  6. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  7. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  8. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  9. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  10. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  11. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  12. Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101.

    PubMed

    Kim, Kyochan; Shin, Heewon; Moon, Myounghoon; Ryu, Byung-Gon; Han, Jong-In; Yang, Ji-Won; Chang, Yong Keun

    2015-12-01

    Five technologies, coagulation, electro-flotation (EF), electro-coagulation-flotation (ECF), centrifugation, and membrane filtration, were systematically assessed for their adequacy of harvesting Aurantiochytrium sp. KRS101, a heterotrophic microalgal species that has much higher biomass concentration than photoautotrophic species. Coagulation, EF, and ECF were found to have limited efficiency. Centrifugation was overly powerful to susceptible cells like Aurantiochytrium sp. KRS101, inducing cell rupture and consequently biomass loss of over 13%. Membrane filtration, in particular equipped with an anti-fouling turbulence generator, turned out to be best suited: nearly 100% of harvesting efficiency and low water content in harvested biomass were achieved. With rotation rate increased, high permeate fluxes could be attained even with extremely concentrated biomass: e.g., 219.0 and 135.0 L/m(2)/h at 150.0 and 203.0 g/L, respectively. Dynamic filtration appears to be indeed a suitable means especially to obtain highly concentrated biomass that have no need of dewatering and can be directly processed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Removal of iron and manganese using biological roughing up flow filtration technology.

    PubMed

    Pacini, Virginia Alejandra; María Ingallinella, Ana; Sanguinetti, Graciela

    2005-11-01

    The removal of iron and manganese from groundwater using biological treatment methods is almost unknown in Latin America. Biological systems used in Europe are based on the process of double rapid biofiltration during which dissolved oxygen and pH need to be strictly controlled in order to limit abiotic iron oxidation. The performance of roughing filter technology in a biological treatment process for the removal of iron and manganese, without the use of chemical agents and under natural pH conditions was studied. Two pilot plants, using two different natural groundwaters, were operated with the following treatment line: aeration, up flow roughing filtration and final filtration (either slow or rapid). Iron and manganese removal efficiencies were found to be between 85% and 95%. The high solid retention capability of the roughing filter means that it is possible to remove iron and manganese simultaneously by biotic and abiotic mechanisms. This system combines simple, low-cost operation and maintenance with high iron and manganese removal efficiencies, thus constituting a technology which is particularly suited to small waterworks.

  14. Silica incorporated membrane for wastewater based filtration

    NASA Astrophysics Data System (ADS)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  15. Removal of endotoxin from water by microfiltration through a microporous polyethylene hollow-fiber membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Y.; Fujii, R.; Igami, I.

    The microporous polyethylene hollow-fiber membrane has a unique microfibrile structure throughout its depth and has been found to possess the functions of filtration and adsorption of endotoxin in water. The membrane has a maximum pore diameter of approximately 0.04 micron, a diameter which is within the range of microfiltration. Approximately 10 and 20% of the endotoxin in tap water and subterranean water, respectively, was smaller than 0.025 micron. Endotoxin in these water sources was efficiently removed by the microporous polyethylene hollow-fiber membrane. Escherichia coli O113 culture broth contained 26.4% of endotoxin smaller than 0.025 micron which was also removed. Endotoxinmore » was leaked into the filtrate only when endotoxin samples were successively passed through the membrane. These results indicate that endotoxin smaller than the pore size of the membrane was adsorbed and then leaked into the filtrate because of a reduction in binding sites. Dissociation of /sup 3/H-labeled endotoxin from the membrane was performed, resulting in the removal of endotoxin associated with the membrane by alcoholic alkali at 78% efficiency.« less

  16. Electrospun ceramic fibermats for filtration applications in lunar missions for in-habitat applications

    NASA Astrophysics Data System (ADS)

    Biswas, Apratim

    In the absence of atmosphere and hydrosphere, there are few collisions between dust particles in the lunar environment. Further, particles become charged in presence of cosmic rays and similarly charged particles repel each other. Hence particles retain sharp edges and often have high aspect ratios. When exposed to lunar dust, humans show symptoms similar to hay fever. Such particles are also damaging to equipment. Humans and robots, used in operations, can bring such dust particles inside the human habitat making them airborne. High efficiency particulate air (HEPA) filters provide an effective way to trap such particles. But due to environment conditions, polymer based filters are susceptible to mechanical erosion. The presence of high energy radiation, due to the absence of atmosphere and magnetic fields, is also damaging to polymers. Ceramic materials are resistant to abrasion and radiation and hence were chosen as the preferred class of materials for the filtration media. Among all the ceramics, TiO2 was selected for its photocatalytic activity which may play a key role in energy-efficient survival in space or lunar stations. Such fibers are multi-functional with the advantage of self-cleaning property in presence of radiation. However ceramic fibers, including TiO 2 fibers, have a significant disadvantage of their own. They are brittle and were considered too prone to failure to be successfully used as a filtration media when they reach nanometer dimensions. This dissertation describes the advances in fabrication and understanding of fundamentals in overcoming these challenges. In absence of crack initiation sites, amorphous ceramic fibers have near theoretical strength and strain to failure. Amorphous TiO2 -SiO2 fibermats, with lower flaw populations and exceptional surface quality, have been developed. They can be rolled to a radius of curvature of 3.4 mm -- exhibiting flexibility. The fibermats are also mechanically robust and can withstand the stress associated with general handling and fixture used for holding the filtration media. Electrospinning was selected as the fabrication method due to superior performance towards fiber diameter uniformity and the ability to decrease fiber diameters to the nm level. Filtration tests have been carried out on such fibermats concerning a number of key variables such as fiber diameter, particle size, pressure drop and more. Multifunctionality, as filter material and as photocatalyst, allows the filters to be regenerable. Furthermore, organic vapors (odors) and plant super hormones (ethylene gas) can be oxidized. This is key for a sustainable human base where food needs to be grown and the level of odors in habitat has to be minimized. Ceramic materials based on TiO2 and titania composites where selected. To enhance the catalytic properties doping with a pentavalent ion, viz. niobium, with varying concentrations was done. Materials were electrospun and characterized. An increase of niobium yields stabilization of the anatase phase at 600°C as evident from XRD patterns. Higher treatment temperatures allow a transformation to rutile. This is important since the semiconductor junction of anatase to rutile decreases electron-hole recombination rate, which enhances the photocatalytic activity. Furthermore, doping anatase with niobium increases the porosity and with it the catalytically active area. In fact the specific surface area of titania fibers increases by almost 6 times when doped with only 2.5 at% niobium. However, in this work reduced photocatalytic activity was observed. It is hypothesized that phase separation of the niobium rather than doping in a solid solution occurred which will change the properties of the semiconductor junction in an unfavorable way. The other possible explanation is the decrease in the anatase -- rutile semiconductor junction in niobium doped titania.

  17. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the samemore » (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.« less

  18. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C; Meyer, Terrence; Fox, Rodney

    2011-12-23

    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are knownmore » to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic products: condensable vapors, non-condensable gases, and liquid aerosols. Traditionally these are recovered by a spray quencher or a conventional shell and tube condenser. The spray quencher or condenser is typically followed by an electrostatic precipitator to yield 1 or 2 distinct fractions of bio-oil. The pyrolyzer system developed at Iowa State University incorporates a proprietary fractionating condenser train. The system collects the bio-oil into five unique fractions. For conditions typical of fluidized bed pyrolyzers, stage fractions have been collected that are carbohydrate-rich (anhydrosugars), lignin-rich, and an aqueous solution of carboxylic acids and aldehydes. One important feature is that most of the water normally found in bio-oil appears in the last stage fraction along with several water-soluble components that are thought to be responsible for bio-oil aging (low molecular weight carboxylic acids and aldehydes). Research work on laser diagnostics for hot-vapor filtration and bio-oil recovery centered on development of analytical techniques for in situ measurements during fast pyrolysis, hot-vapor filtration, and fractionation relative to bio-oil stabilization. The methods developed in this work include laser-induced breakdown spectroscopy (LIBS), laser-induced incandescence (LII), and laser scattering for elemental analysis (N, O, H, C), detection of particulates, and detection of aerosols, respectively. These techniques were utilized in simulated pyrolysis environments and applied to a small-scale pyrolysis unit. Stability of Bio-oils is adversely affected by the presence of particulates that are formed as a consequence of thermal pyrolysis, improving the CFD simulations of moving bed granular filter (MBGF) is useful for improving the design of MBGF for bio-oil production. The current work uses fully resolved direct numerical simulation (where the flow past each granule is accurately represented) to calculate the filter efficiency that is used in the CFD model at all flow speeds. This study shows that fully-resolved direct numerical simulation (DNS) is successful in calculating the filter efficiency at all speeds. Aldehydes and acids are thought to play key roles in the stability of bio-oils, so the catalytic stabilization of bio-oils was focused on whether a reaction approach could be employed that simultaneously addressed these two types of molecules in bio-oil. Our approach to post treatment was simultaneous hydrogenation and esterification using bifunctional metal/acidic heterogeneous catalyst in which reactive aldehydes were reduced to alcohols, creating a high enough alcohol concentration so that the carboxylic acids could be esterified.« less

  19. Air filtration media from electrospun waste high-impact polystyrene fiber membrane

    NASA Astrophysics Data System (ADS)

    Zulfi, Akmal; Miftahul Munir, Muhammad; Hapidin, Dian Ahmad; Rajak, Abdul; Edikresnha, Dhewa; Iskandar, Ferry; Khairurrijal, Khairurrijal

    2018-03-01

    Nanofiber membranes were synthesized from waste high-impact polystyrene (HIPS) using electrospinning method and then applied as air filtration media. The waste HIPS precursor solution with the concentration of 20 wt.% was prepared by dissolving waste HIPS into the mixture of d-limonene and DMF solvents. Beaded or fine nanofibers could be achieved by adjusting the ratio of solvents mixture (d-limonene and DMF). Using the ratios of solvents (d-limonene: DMF) of 3:1, 1:1, and 1:3, it was obtained beaded HIPS nanofibers with the average diameter of 272 nm, beaded HIPS nanofibers with the average diameter of 937, and fine HIPS nanofibers with the average diameter of 621 nm, respectively. From the FTIR spectral analysis, it was found that the FTIR peaks of the HIPS nanofiber membranes are the same as those of the cleaned waste HIPS and there are no FTIR peaks of DMF and d-limonene solvents. These findings implied that the electrospinning process allows the recycling of waste HIPS into HIPS nanofibers without any trapped solvent phases or apparent degradation of the original material. From the contact angle measurement, it was confirmed that the HIPS nanofiber membranes are hydrophobic and the presence of the beads in the HIPS nanofiber membranes varies their contact angles. From the air-filtration test, it was shown that the fiber morphology (beaded or fine nanofibers) considerably affects the filtration performance of the membranes. The presence of beads increased the distance between the fibers so that the pressure drop decreased. Moreover, the basis weight of the membrane greatly affected the filtration efficiency. The HIPS nanofiber membrane with the basis weight of 12.22 g m‑2 had the efficiency greater than 99.999%, which was equivalent to that of the HEPA filter.

  20. Assessment of Pollutant Removal Efficiency and Drainage Capacity in Stormwater Biofilters

    NASA Astrophysics Data System (ADS)

    Carroll, S. J.; Mills, H.; Reagan, A.; Triassi, M.; Bauer, S.; Matiasek, S. J.; Libby, R.; Meddings, C.

    2016-12-01

    Urban stormwater runoff contributes to flooding and impacts water quality with increased sediment and pollutant loads. Biofilters are vegetated filtration systems designed to mitigate stormwater by enhancing infiltration, sedimentation, contaminant sorption and uptake. Despite the rapid implementation of biofilters as stormwater management solutions, their performance is mainly evaluated in terms of flood reduction while their pollutant removal efficiency is rarely assessed. We investigated the effect of biofilter composition on drainage capacity and individual pollutant removal in test columns. Triplicate columns consisted of layers of pebbles, fine sand, filtration mix (test variable), mulch, lava rock and Santa Barbara sedges. The filtration mix was one of five combinations of coarse sand and local loam soil ranging from 100% sand to 100% soil. Consistent with differences in pore size distribution, hydraulic conductivity values were lowest in 100% soil biofilters (3.0 ± 0.6 mm/h) and highest in the 100% sand biofilters (22.7 ± 4.2 mm/h). A synthetic mixture of nutrients, metals, and salts in proportions representative of stormwater composition was applied to the test columns. Biofilters removed over 98% of dissolved copper, nickel, and zinc, and at least 67% of dissolved lead, even when applying synthetic runoff with metal concentrations three orders of magnitude larger than in actual stormwater. In addition, biofilters oxygenated, neutralized, and decreased the turbidity of stormwater. Ammonium was quantitatively removed from synthetic runoff (97-100%), while nitrate and phosphate were poorly retained (48-64%) or even leached from sand biofilters. This study demonstrated that, while decreasing drainage capacity, adding even a small proportion of native soil to the filtration media significantly increases pollutant removal of biofilters. With proper consideration of the filtration mixture, biofiltration systems can effectively remediate urban stormwater.

  1. Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff.

    PubMed

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-09-01

    Low-impact development (LID) and green infrastructure (GI) have recently become well-known methods to capture, collect, retain, and remove pollutants in stormwater runoff. The research was conducted to assess the efficiency of LID/GI systems applied in removing the particulate and dissolved heavy metals (Zn, Pb, Cu, Ni, Cr, Cd, and Fe) from urban stormwater runoff. A total of 82 storm events were monitored over a four-year period (2010-2014) on six LID/GI systems including infiltration trenches, tree box filter, rain garden, and hybrid constructed wetlands employed for the management of road, parking lot, and roof runoff. It was observed that the heavy metal concentration increased proportionally with the total suspended solids concentration. Among the heavy metal constituents, Fe appeared to be highly particulate-bound and was the easiest to remove followed by Zn and Pb; while metals such as Cr, Ni, Cu, and Cd were mostly dissolved and more difficult to remove. The mass fraction ratios of metal constituents at the effluent were increased relative to the influent. All the systems performed well in the removal of particulate-bound metals and were more efficient for larger storms greater than 15 mm wherein more particulate-bound metals were generated compared to smaller storms less than 5 mm that produced more dissolved metals. The efficiency of the systems in removing the particulate-bound metals was restricted during high average/peak flows; that is, high-intensity storms events and when heavy metals have low concentration levels.

  2. Performance Qualification Test of the ISS Water Processor Assembly (WPA) Expendables

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Tabb, David; Tatara, James D.; Mason, Richard K.

    2005-01-01

    The Water Processor Assembly (WPA) for use on the International Space Station (ISS) includes various technologies for the treatment of waste water. These technologies include filtration, ion exchange, adsorption, catalytic oxidation, and iodination. The WPA hardware implementing portions of these technologies, including the Particulate Filter, Multifiltration Bed, Ion Exchange Bed, and Microbial Check Valve, was recently qualified for chemical performance at the Marshall Space Flight Center. Waste water representing the quality of that produced on the ISS was generated by test subjects and processed by the WPA. Water quality analysis and instrumentation data was acquired throughout the test to monitor hardware performance. This paper documents operation of the test and the assessment of the hardware performance.

  3. The use of an air filtration system in podiatry clinics.

    PubMed

    McLarnon, Nichola; Burrow, Gordon; Maclaren, William; Aidoo, Kofi; Hepher, Mike

    2003-06-01

    A small-scale study was conducted to ascertain the efficiency and effectiveness of an air filtration system for use in podiatry/chiropody clinics (Electromedia Model 35F (A), Clean Air Ltd, Scotland, UK). Three clinics were identified, enabling comparison of data between podiatry clinics in the West of Scotland. The sampling was conducted using a portable Surface Air Sampler (Cherwell Laboratories, Bicester, UK). Samples were taken on two days at three different times before and after installation of the filtration units. The global results of the study indicate the filter has a statistically significant effect on microbial counts, with an average percentage decrease of 65%. This study is the first time, to the authors' knowledge, such a system has been tested within podiatric practice.

  4. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    PubMed Central

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor-generated particles for infant’s exposure to airborne particulate matter in the NICU. PMID:27175913

  5. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    PubMed

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J; Banfield, Jillian F; Nazaroff, William W

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor-generated particles for infant's exposure to airborne particulate matter in the NICU.

  6. On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in situ filtration

    NASA Astrophysics Data System (ADS)

    Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Chavagnac, V.; Cathalot, C.; Leleu, T.; Laës-Huon, A.; Perhirin, A.; Riso, R. D.; Sarradin, P.-M.

    2017-05-01

    Deep-sea hydrothermal venting is now recognized as a major source of iron (Fe), an essential trace element that controls marine productivity. However, the reactions occurring during dispersal from buoyant plumes to neutrally buoyant hydrothermal plumes are still poorly constrained. Here we report for the first time on the dissolved-particulate partition of Fe after in situ filtration at the early stage of mixing at different hydrothermal discharges, i.e., Lucky Strike (37°N), TAG (26°N), and Snakepit (23°N) on the Mid-Atlantic Ridge. We found that hydrothermal iron is almost completely preserved (>90%) in the dissolved fraction, arguing for low iron-bearing sulfide precipitation of iron in basalt-hosted systems with low Fe:H2S ratios. This result can only be explained by a kinetically limited formation of pyrite. The small part of Fe being precipitated as sulfides in the mixing gradient (<10%) is restricted to the inclusion of Fe in minerals of high Cu and Zn content. We also show that secondary venting is a source of Fe-depleted hydrothermal solutions. These results provide new constrains on Fe fluxes from hydrothermal venting.

  7. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    PubMed

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  8. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    PubMed Central

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  9. Value-added products from chicken feather fiber and protein

    NASA Astrophysics Data System (ADS)

    Fan, Xiuling

    Worldwide poultry consumption has generated a huge amount of feather "waste" annually. Currently, the feather has a low value-being used for animal feed in the world. The quality of fibrous air filters depend on their main component, fibers. The main physical structure of chicken feathers is barbs which can be used directly as fibers. They have small diameter, which makes them a good choice for air filtration. The main chemical structure of chicken feathers is structural fibrous protein, keratin. Therefore, chicken feathers could potentially be used for protein fiber production. To obtain chicken feather fibers, barbs were stripped from the quills by a stripping device and separated with a blender. Some feather fibers were entangled with polyester staple fibers, and needlepunched to form a nonwoven fabric. Some feather fibers were blended with CelBond(TM) bi-component polyester as binder fibers, and pressed between two hot plates to produce thermobonded nonwovens. Whole chicken feathers were ground into powder and their keratin was reduced in water. The reduced keratin was salt precipitated, dried and dissolved in ionic liquid with/without bleach cotton. The reduced chicken feather keratin ionic liquid solutions were spun into regenerated fibers through dry-jet wet spinning. The needlepunched and thermobonded nonwovens were tested for filtration and other properties. With an increase of areal density and feather fiber composition, the air permeability of the needlepunched nonwovens decreased, and their filtration efficiency and pressure drop both increased. The case can be made that feather fibers gave fabrics better filtration at the same fabric weight, but at the expense of air permeability and pressure drop. The scrim and needlepunching process improved the filtration efficiency. Their strength depended on scrim. The hot-press process was very simple. The thermobonded nonwovens had very high air permeability. In them, there was also an inverse relation between air permeability and either pressure drop or filtration efficiency. From these kinds of nonwovens, it is realized that feather fibers' fineness and the tree/fan-like structure of the feather does not offer a high level of performance advantages over conventional fibers. The use of feather fiber in air filtration applications must rely primarily on a favorable cost and weight differential in favor of the feather fiber. Only after chicken feather keratin was reduced, could it dissolve well in ionic liquid. 100% chicken feather keratin did not produce high tenacity fibers. Reduced chicken feather keratin and cellulose produced blend fibers with mechanical properties close to silk, cotton, and polyester fibers. Chemically reforming crosslinks might improve mechanical properties and the stability of the fibers to water and make them suitable for most fibrous applications. From this, it can be proposed that using chicken feathers for fiber production may be a good way to add value to chicken feather "waste".

  10. Herbal Extract Incorporated Nanofiber Fabricated by an Electrospinning Technique and its Application to Antimicrobial Air Filtration.

    PubMed

    Choi, Jeongan; Yang, Byeong Joon; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-18

    Recently, with the increased attention to indoor air quality, antimicrobial air filtration techniques have been studied widely to inactivate hazardous airborne microorganisms effectively. In this study, we demonstrate herbal extract incorporated (HEI) nanofibers synthesized by an electrospinning technique and their application to antimicrobial air filtration. As an antimicrobial herbal material, an ethanolic extract of Sophora flavescens, which exhibits great antibacterial activity against pathogens, was mixed with the polymer solution for the electrospinning process. We measured various characteristics of the synthesized HEI nanofibers, such as fiber morphology, fiber size distribution, and thermal stability. For application of the electrospun HEI nanofibers, we made highly effective air filters with 99.99% filtration efficiency and 99.98% antimicrobial activity against Staphylococcus epidermidis. The pressure drop across the HEI nanofiber air filter was 4.75 mmH2O at a face air velocity of 1.79 cm/s. These results will facilitate the implementation of electrospun HEI nanofiber techniques to control air quality and protect against hazardous airborne microorganisms.

  11. Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles

    NASA Astrophysics Data System (ADS)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush

    2015-10-01

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.

  12. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    PubMed

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.

  13. Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer

    USGS Publications Warehouse

    Harvey, R.W.; Garabedian, S.P.

    1991-01-01

    ??? A filtration model commonly used to describe removal of colloids during packed-bed filtration in water treatment applications was modified for describing downgradient transport of bacteria in sandy, aquifer sediments. The modified model was applied to the results of a small-scale (7 m), natural-gradient tracer test and to observations of an indigenous bacterial population moving downgradient within a plume of organically contaminated groundwater in Cape Cod, MA. The model reasonably accounted for concentration histories of labeled bacteria appearing at samplers downgradient from the injection well in the tracer experiment and for the observed 0.25-??m increase in average cell length for an unlabeled, indigenous bacterial population, 0.6 km downgradient from the source of the plume. Several uncertainties were apparent in applying filtration theory to problems involving transport of bacteria in groundwater. However, adsorption (attachment) appeared to be a major control of the extent of bacterial movement downgradient, which could be described, in part, by filtration theory. Estimates of the collision efficiency factor, which represents the physicochemical factors that determine adsorption of the bacteria onto the grain surfaces, ranged from 5.4 ?? 10-3 to 9.7 ?? 10-3.

  14. [In-line leukocyte depletion ov thrombocytapheresis concentrates with the Fresenius-AS-104 cell separator].

    PubMed

    Zeiler, T; Kretschmer, V

    1997-01-01

    This study reports on in-line filtration of 72 platelet concentrates (PC) collected by the Fresenius AS 104 cell separator, using the new C4F sets with integrated leukocyte filters (Biofil P plus). 72 volunteer donors, automatic counts of platelets, microscopical counting of residual leukocytes with the Nageotte chamber, GMP-140 by flow cytometrie, beta-thromboglobulin release, platelet aggregation (ADP, collagen). Filtration reduced leukocytes by 98.5%. Residual leukocyte contamination remained clearly below 5 x 10(6) (mean 0.5 +/- 0.6 x 10(6), maximum 2.8 x 10(6). Platelet loss by filtration was found to be between 27.4 and 0.7% (median 8.5%). Filtration caused a significant decrease of platelet aggregability (p < 0.005), but no significant increase of beta-thromboglobulin release and only a slight decrease of GMP-140 expression. From these data can be concluded that in-line filtration was highly efficient with acceptable platelet retention. No significant platelet activation could be observed in the PC. The decrease of platelet aggregability have been due to the reduction of activated platelets which are believed to show reduced in vivo survival.

  15. Towards sustainable membrane filtration of palm oil mill effluent: analysis of fouling phenomena from a hybrid PAC-UF process

    NASA Astrophysics Data System (ADS)

    Amosa, Mutiu Kolade

    2017-10-01

    Sustainability of a membrane process depends on many factors of which fouling mitigation is the most central. Because membrane fouling phenomenon is very complex, extent of fouling potential of a feedwater with respect to a membrane has to be identified right from the design stage. This will acquaint engineers with the proper fouling mitigation measures during operation. This study presents a preliminary fouling data from the ultrafiltration of biotreated palm oil mill effluent (POME) after an upstream adsorption process. The flux decline is studied in a typical constant-pressure experiments with a cross-flow ultrafiltration of biotreated POME through Sartocon® polyethersulfone membranes (MWCOs 1, 5 and 10 kDa) at applied pressures of 40, 80 and 120 kPa. Results are examined, within the frame of the common blocking mechanisms and it was found that the blocking index η decreased from 2 to 0. Pore blocking phenomenon was successively observed from complete blocking ( η = 2) down to cake filtration ( η = 0), and the early blockage of the pores and a formation of a cake resulted in a limiting cake height. Thus, cake filtration could be best used to explain the fouling mechanisms of biotreated POME on the ultrafiltration membranes based on the R 2 values at all applied pressures. This demonstrates that the fouling was as a result of gradual reversible cake deposition which could easily be removed by less onerous cleaning methods. In addition, it could be concluded that the upstream adsorption reduced the particulate deposition on the membrane surface.

  16. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  17. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  18. Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.

    PubMed

    Bandyopadhyay, Amitava; Biswas, Manindra Nath

    2008-08-01

    The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.

  19. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  20. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  1. Development of a filter to prevent infections with spore-forming bacteria in injecting drug users.

    PubMed

    Alhusein, Nour; Scott, Jenny; Kasprzyk-Hordern, Barbara; Bolhuis, Albert

    2016-12-01

    In heroin injectors, there have been a number of outbreaks caused by spore-forming bacteria, causing serious infections such as anthrax or botulism. These are, most likely, caused by injecting contaminated heroin, and our aim was to develop a filter that efficiently removes these bacteria and is also likely to be acceptable for use by people who inject drugs (i.e. quick, simple and not spoil the hit). A prototype filter was designed and different filter membranes were tested to assess the volume of liquid retained, filtration time and efficiency of the filter at removing bacterial spores. Binding of active ingredients of heroin to different types of membrane filters was determined using a highly sensitive analytical chemistry technique. Heroin samples that were tested contained up to 580 bacteria per gramme, with the majority being Bacillus spp., which are spore-forming soil bacteria. To remove these bacteria, a prototype filter was designed to fit insulin-type syringes, which are commonly used by people who inject drugs (PWIDs). Efficient filtration of heroin samples was achieved by combining a prefilter to remove particles and a 0.22 μm filter to remove bacterial spores. The most suitable membrane was polyethersulfone (PES). This membrane had the shortest filtration time while efficiently removing bacterial spores. No or negligible amounts of active ingredients in heroin were retained by the PES membrane. This study successfully produced a prototype filter designed to filter bacterial spores from heroin samples. Scaled up production could produce an effective harm reduction tool, especially during outbreaks such as occurred in Europe in 2009/10 and 2012.

  2. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation.

    PubMed

    Li, Jian; Kang, Ruimei; Tang, Xiaohua; She, Houde; Yang, Yaoxia; Zha, Fei

    2016-04-14

    Oil-polluted water has become a worldwide problem due to increasing industrial oily wastewater as well as frequent oil-spill pollution. Compared with underwater superoleophobic (water-removing) filtration membranes, superhydrophobic/superoleophilic (oil-removing) materials have advantages as they can be used for the filtration of heavy oil or the absorption of floating oil from water/oil mixtures. However, most of the superhydrophobic materials used for oil/water separation lose their superhydrophobicity when exposed to hot (e.g. >50 °C) water and strong corrosive liquids. Herein, we demonstrate superhydrophobic overlapped candle soot (CS) and silica coated meshes that can repel hot water (about 92 °C) and strong corrosive liquids, and were used for the gravity driven separation of oil-water mixtures in hot water and strong acidic, alkaline, and salty environments. To the best of our knowledge, we are unaware of any previously reported studies on the use of superhydrophobic materials for the separation of oil from hot water and corrosive aqueous media. In addition, the as-prepared robust superhydrophobic CS and silica coated meshes can separate a series of oils and organic solvents like kerosene, toluene, petroleum ether, heptane and chloroform from water with a separation efficiency larger than 99.0%. Moreover, the as-prepared coated mesh still maintained a separation efficiency above 98.5% and stable recyclability after 55 cycles of separation. The robust superhydrophobic meshes developed in this work can therefore be practically used as a highly efficient filtration membrane for the separation of oil from harsh water conditions, benefiting the environment and human health.

  3. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply.

    PubMed

    Tang, Xiaobin; Ding, An; Qu, Fangshu; Jia, Ruibao; Chang, Haiqing; Cheng, Xiaoxiang; Liu, Bin; Li, Guibai; Liang, Heng

    2016-08-01

    A pilot-scale gravity-driven membrane (GDM) filtration system under low gravitational pressure without any pre-treatment, backwash, flushing, or chemical cleaning was carried out to investigate the effect of operation parameters (including operation pressure, aeration mode, and intermittent filtration) on the effluent quality and permeability development. The results revealed that GDM system exhibited an efficient performance for the removal of suspended substances and organic compounds. The stabilization of flux occurred and the average values of stable flux were 6.6, 8.1, and 8.6 Lm(-2) h(-1) for pressures of 65, 120, and 200 mbar, respectively. In contrast, flux stabilization was not observed under continuous and intermittent aeration conditions. However, aeration (especially continuous aeration) was effective to improve flux and alleviate membrane fouling during 1-month operation. Moreover, intermittent filtration would influence the stabilization of permeate flux, resulting in a higher stable flux (ranging from 6 to 13 Lm(-2) h(-1)). The stable flux significantly improved with the increase of intermittent period. Additionally, GDM systems exhibited an efficient recovery of flux after simple physical cleaning and the analyses of resistance reversibility demonstrated that most of the total resistance was hydraulic reversible resistance (50-75 %). Therefore, it is expected that the results of this study can develop strategies to increase membrane permeability and reduce energy consumption in GDM systems for decentralized water supply.

  4. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    NASA Astrophysics Data System (ADS)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  5. Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator

    NASA Astrophysics Data System (ADS)

    Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.

    2018-02-01

    The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.

  6. Presence of Fe-Al binary oxide adsorbent cake layer in ceramic membrane filtration and their impact for removal of HA and BSA.

    PubMed

    Kim, Kyung-Jo; Jang, Am

    2018-04-01

    To enhance the removal of natural organic matter (NOM) in ceramic (Ce) membrane filtration, an iron-aluminum binary oxide (FAO) was applied to the ceramic membrane surface as the adsorbent cake layer, and it was compared with heated aluminum oxide (HAO) for the evaluation of the control of NOM. Both the HAO and FAO adsorbent cake layers efficiently removed the NOM regardless of NOM's hydrophobic/hydrophilic characteristics, and the dissolved organic carbon (DOC) removal in NOM for FAO was 1-1.12 times greater than that for HAO, which means FAO was more efficient in the removal of DOC in NOM. FAO (0.03 μm), which is smaller in size than HAO (0.4 μm), had greater flux reduction than HAO. The flux reduction increased as the filtration proceeded because most of the organic foulants (colloid/particles and soluble NOM) were captured by the adsorbent cake layer, which caused fouling between the membrane surface and the adsorbent cake layer. However, no chemically irreversible fouling was observed on the Ce membrane at the end of the FAO adsorbent cake layer filtration. This means that a stable adsorbent cake layer by FAO formed on the Ce membrane, and that the reduced pure water flux of the Ce membrane, resulting from the NOM fouling, can easily be recovered through physicochemical cleaning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    NASA Astrophysics Data System (ADS)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  8. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for decay Xenon 0.5/wk Based on xenon half-life of 5.3 days; Douglas bags: Released within one week Xenon 1 Provides no reduction of exposure to general public. Venturi scrubbers ParticulatesGases 0.051... precipitators Particulates 0.05 Not applicable for gaseous radionuclides Xenon traps Xenon 0.1 Efficiency is...

  9. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for decay Xenon 0.5/wk Based on xenon half-life of 5.3 days; Douglas bags: Released within one week Xenon 1 Provides no reduction of exposure to general public. Venturi scrubbers ParticulatesGases 0.051... precipitators Particulates 0.05 Not applicable for gaseous radionuclides Xenon traps Xenon 0.1 Efficiency is...

  10. Methodology for modeling the microbial contamination of air filters.

    PubMed

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  11. Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration.

    PubMed

    Lu, Ping; Amburgey, James E; Hill, Vincent R; Murphy, Jennifer L; Schneeberger, Chandra L; Arrowood, Michael J; Yuan, Tao

    2017-06-01

    Removal of Cryptosporidium-sized microspheres and Cryptosporidium parvum oocysts from swimming pools was investigated using diatomaceous earth (DE) precoat filtration and perlite-sand filtration. In pilot-scale experiments, microsphere removals of up to 2 log were obtained with 0.7 kg·DE/m 2 at a filtration rate of 5 m/h. A slightly higher microsphere removal (2.3 log) was obtained for these DE-precoated filters when the filtration rate was 3.6 m/h. Additionally, pilot-scale perlite-sand filters achieved greater than 2 log removal when at least 0.37 kg/m 2 of perlite was used compared to 0.1-0.4 log removal without perlite both at a surface loading rate of 37 m/h. Full-scale testing achieved 2.7 log of microspheres and oocysts removal when 0.7 kg·DE/m 2 was used at 3.6 m/h. Removals were significantly decreased by a 15-minute interruption of the flow (without any mechanical agitation) to the DE filter in pilot-scale studies, which was not observed in full-scale filters. Microsphere removals were 2.7 log by perlite-sand filtration in a full-scale swimming pool filter operated at 34 m/h with 0.5 kg/m 2 of perlite. The results demonstrate that either a DE precoat filter or a perlite-sand filter can improve the efficiency of removal of microspheres and oocysts from swimming pools over a standard sand filter under the conditions studied.

  12. Mutagenicity of airborne particulates in the rubber industry.

    PubMed

    Barański, B; Indulski, J; Janik-Spiechowicz, E; Palus, J

    1989-12-01

    The aim of this work was to evaluate the mutagenic activity of airborne particulate matter in the rubber industry. Air was sucked through Whatman glass-fibre filters with Staplex pumps and adsorbed substances and fume particles were extracted with acetone or toluene for 2 h in a ultrasonic cleaner. After separation of the insoluble solid phase by filtration, solvent was evaporated at a temperature of 70 degrees C in an argon atmosphere. The residue was stored at -20 degrees C. Mutagenicity was determined by the Salmonella plate incorporation assay with the tester strain TA98 and activity is related either to the weight of aerosol (rev mg-1) or to the volume of atmospheric sample (rev m-3). The fumes emitted from the tyre tread line, calender feeding, and tyre vulcanizing processes, showed the highest mutagenic activity (55-211 rev mg-1, + S9). At these and at other workplaces (extruder mill, carbon black station, mixer loading), mutagenic activity related to the volume of air was in the range of 22-158 rev m-3, + S9. The results indicate the need to reduce and monitor mutagenic contamination in order to increase the safety of work in the rubber industry.

  13. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation.

    PubMed

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H

    2014-12-01

    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.

    PubMed

    Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H

    2014-01-01

    Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.

  15. New approach to reducing water consumption in commercial kitchen hood

    NASA Astrophysics Data System (ADS)

    Asmuin, N.; Pairan, M. R.

    2017-09-01

    Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. The modern commercial kitchen hood ventilation system was adopted with the water mist nozzle technology as an additional tool to increase the filtration efficiency. However, low level of filtration effectiveness and high water consumption were the major problems among the Commercial Kitchen Ventilation expert. Therefore, this study aims to develop a new mist spray technology to replacing the conventional KSJB nozzle (KSJB is a nozzle’s name). At the same time, an appropriate recommended location to install the nozzle in kitchen hood system was suggested. An extensive simulation works were carried out to observe the spray characteristics, ANSYS (FLUENT) was used for simulation wise. In the case of nozzle studies, nozzles were tested at 1 bar pressure of water and air. In comparison with conventional nozzles configuration, this new approach suggested nozzle configuration was reduce up to 50% of water consumption, which by adopted 3 numbers of nozzles instead of 6 numbers of nozzles in the commercial kitchen hood system. Therefore, this nozzle will be used in industry for their benefits of water consumption, filtration efficiency and reduced the safety limitations.

  16. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon.

    PubMed

    Zipf, Mariah Siebert; Pinheiro, Ivone Gohr; Conegero, Mariana Garcia

    2016-07-01

    One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Influence of the stopcock on the efficiency of percutaneous drainage catheters: laboratory evaluation.

    PubMed

    D'Agostino, H B; Park, Y; Moyers, J P; vanSonnenberg, E; Sanchez, R B; Goodacre, B W; Kim, Y H; Vieira, M V

    1992-08-01

    The effects of stopcocks on percutaneous fluid drainage were tested in a laboratory model by using a standard stopcock (6-French inner diameter) and a prototype stopcock (9-French inner diameter) connected to 8-, 10-, 12-, 14-, and 16-French catheters. Catheters were immersed in water alone or in viscous fluid with particulate matter, and the system was connected to low wall suction or gravity drainage. The average volume of fluid aspirated in a given period with and without a stopcock was compared for each catheter. The standard stopcock decreased drainage efficiency for these catheters by 13-42%. This decreased drainage efficiency was worse with the larger catheters. Particulate fluid blocked the stopcock connection for all catheters. With the prototype stopcock, drainage of water alone was reduced by 0-9% for the catheters of different sizes. Particulate fluid did not obstruct the prototype stopcock with any size catheter. With gravity drainage, the volume of water aspirated was reduced by 12-42% with the standard stopcock and by 3-6% with the prototype stopcock. These data suggest that stopcock connections greatly influence the efficiency of the percutaneous drainage systems. Stopcocks with larger inner diameters may improve drainage over that achievable with the stopcocks that are currently available.

  18. Effects of boundary conditions on the cleaning efficiency of riverbank filtration and artificial groundwater recharge systems regarding bulk parameters and trace pollutants.

    PubMed

    Storck, Florian R; Schmidt, Carsten K; Wülser, Richard; Brauch, Heinz-Jürgen

    2012-01-01

    Drinking water is often produced from surface water by riverbank filtration (RBF) or artificial groundwater recharge (AGR). In this study, an AGR system was exemplarily investigated and results were compared with those of RBF systems, in which the effects of redox milieu, temperature and surface water discharge on the cleaning efficiency were evaluated. Besides bulk parameters such as DOC (dissolved organic carbon), organic trace pollutants including iodinated X-ray contrast media, personal care products, complexing agents, and pharmaceuticals were investigated. At all studied sites, levels of TOC (total organic carbon), DOC, AOX (adsorbable organic halides), SAC (spectral absorption coefficient at 254 nm), and turbidity were reduced significantly. DOC removal was stimulated at higher groundwater temperatures during AGR. Several substances were generally easily removable during both AGR and RBF, regardless of the site, season, discharge or redox regime. For some more refractory substances, however, removal efficiency turned out to be significantly influenced by redox conditions.

  19. Characterization of Dust on Solar Devices in Southern Nevada =

    NASA Astrophysics Data System (ADS)

    Sylva, Jason R.

    Dust can impact the efficiency of solar energy collection devices, and in some arid environments, dust can reduce solar energy efficiency up to 30%. Reducing the impact of dust is therefore critical in the expansion of solar technology throughout regions where solar energy is utilized. Characterization of suspended and settled particulate matter can assist in developing strategies for dust mitigation. With the characterization of suspended and settled particulate in remote, rural, and urban environments, more informed decisions can be made regarding the selection of coating material on solar panels as well as developing cleaning and maintenance procedures. Particulate matter that deposits on a solar surface can potentially interact with solar radiation, precipitation, or even directly with the surface material itself. These interactions could lead to the formation of coatings that reduce/block radiation and/or degrade the integrity of the surface. When you extrapolate these possibilities to a larger scale preliminary characterization of dust will play a vital role when planning the construction of a solar energy facility. A variety of sampling techniques were employed to obtain particulate matter for characterization. These included direct collection of particulates from solar surfaces: via vacuum and wipe sample collection on panels, tacky dot adhesive slides and plain slides that were exposed at different intervals, desert vugs that are natural particulate collectors, as well as high volume air sampling for collection of suspended particulates. High volume air sampling was performed using glass fiber filters and 2 micron stainless steel screens. Direct collection of settled particulates was performed by sampling from solar surfaces, vugs, and by collection on exposed glass surfaces. Collection onto glass surfaces was achieved by setting up a plain microscope slide, tacky dot slides, and panes of glass. The sampling methodology allowed for the collection of samples for analyses using various analytical methods that included Raman microspectroscopy, pyrolysis gas chromatography mass spectrometry, ion chromatography and inductively coupled plasma mass spectrometry. These various methods allow for identification of organic and inorganic components as well the mineral distribution of suspended and settled particulate material. None None None None None

  20. Adaptive Filtration of Physiological Artifacts in EEG Signals in Humans Using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, V. V.; Runnova, A. E.; Hramov, A. E.

    2018-05-01

    A new method for adaptive filtration of experimental EEG signals in humans and for removal of different physiological artifacts has been proposed. The algorithm of the method includes empirical mode decomposition of EEG, determination of the number of empirical modes that are considered, analysis of the empirical modes and search for modes that contains artifacts, removal of these modes, and reconstruction of the EEG signal. The method was tested on experimental human EEG signals and demonstrated high efficiency in the removal of different types of physiological EEG artifacts.

  1. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability.

    PubMed

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2014-08-07

    Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.

  2. Technology Base Enhancement Program. Metal Matrix Composites

    DTIC Science & Technology

    1993-08-30

    efficiency, improved structural reliability, and reduced maintenance when compared to carbon fiber reinforced composites . Aerospace engines (in particular...different materials. The composite consists of a metal matrix reinforced with particulates, flakes, whiskers,3 continuous fibers , filaments, wires, or...graphite and carbon to metals. They come in three general forms: particulates (or particles) with a length to diameter ratio of about 1; chopped fibers or

  3. Fumigation of Alcohol in a Light Duty Automotive Diesel Engine

    NASA Technical Reports Server (NTRS)

    Broukhiyan, E. M. H.; Lestz, S. S.

    1981-01-01

    A light-duty automotive Diesel engine was fumigated with methanol in amounts up to 35% and 50% of the total fuel energy respectively in order to determine the effect of alcohol fumigation on engine performance at various operating conditons. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific nitrogen oxide concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears that ethanol fumigation, like methanol fumigation, while lowering the mass of particulated emitted, does enhance the biological activity of that particulate.

  4. Sioux City Riverbank Filtration Study

    NASA Astrophysics Data System (ADS)

    Mach, R.; Condon, J.; Johnson, J.

    2003-04-01

    The City of Sioux City (City) obtains a large percentage of their drinking water supply from both a horizontal collector well system and vertical wells located adjacent to the Missouri River. These wells are set in either the Missouri Alluvium or the Dakota Sandstone aquifer. Several of the collector well laterals extend out beneath the Missouri River, with the laterals being over twenty feet below the river channel bottom. Due to concerns regarding ground water under direct surface water influence, the Iowa Department of Natural Resources (IDNR) required the City to expand their water treatment process to deal with potential surface water contaminant issues. With the extensive cost of these plant upgrades, the City and Olsson Associates (OA) approached the IDNR requesting approval for assessing the degree of natural riverbank filtration for water treatment. If this natural process could be ascertained, the level of treatment from the plant could be reduced. The objective of this study was to quantify the degree of surface water (i.e. Missouri River) filtration due to the underlying Missouri River sediments. Several series of microscopic particulate analysis where conducted, along with tracking of turbidity, temperature, bacteria and a full scale particle count study. Six particle sizes from six sampling points were assessed over a nine-month period that spanned summer, fall and spring weather periods. The project was set up in two phases and utilized industry accepted statistical analyses to identify particle data trends. The first phase consisted of twice daily sample collection from the Missouri River and the collector well system for a one-month period. Statistical analysis of the data indicated reducing the sampling frequency and sampling locations would yield justifiable data while significantly reducing sampling and analysis costs. The IDNR approved this modification, and phase II included sampling and analysis under this reduced plant for an eight-month period. Final statistical analyses of the nine months of data indicate up to a four-log particle reduction occurs through river bank filtration. Consequently, Missouri River sediments within the City's well field are very effective in water filtration. This information was submitted to the IDNR for review and approval. Subsequently, the IDNR approved 4.0 log removal for Giardia and 3.5 log removal for Cryptosporidium through the riverbank and treatment plant. The City and IDNR have agreed on subrogate parameters for monitoring purposes.

  5. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration.

    PubMed

    Wang, Jun; Richter, Henning; Howard, Jack B; Levendis, Yiannis A; Carlson, Joel

    2002-02-15

    Laboratory experiments were conducted in a two-stage horizontal muffle furnace in order to monitor emissions from batch combustion of polystyrene (PS) and identify conditions that minimize them. PS is a dominant component of municipal and hospital waste streams. Bench-scale combustion of small samples (0.5 g) of shredded styrofoam cups was conducted in air, using an electrically heated horizontal muffle furnace, kept at Tgas = 1000 degrees C. Upon devolatilization, combustion of the polymer took place in a diffusion flame over the sample. The gaseous combustion products were mixed with additional air in a venturi and were channeled to a secondary muffle furnace (afterburner) kept at Tgas = 900-1100 degrees C; residence time therein varied between 0.6 and 0.8 s. At the exits of the primary and the secondary furnace the emissions of CO, CO2, O2, NOx, particulates as well as volatile and semivolatile hydrocarbons, such as polycyclic aromatic hydrocarbons (PAH), were monitored. Online analyzers, gravimetric techniques, and gas chromatography coupled to mass spectrometry (GC-MS) were used. Experiments were also conducted with a high-temperature barrier filter, placed just before the exit of the primary furnace to prevent the particulates from entering into the secondary furnace. Results demonstrated the beneficial effect of the afterburner in reducing PAH concentrations, including those of mutagenic species such as benzo[a]pyrene. Concentrations of individual PAH exhibited a pronounced after burner temperature dependence, typically ranging from a small decrease at 900 degrees C to a larger degree of consumption at 1100 degrees C. Consumption of PAH was observed to be the dominant feature at 900 degrees C, while significant quantities of benzene and some of its derivatives, captured by means of carbosieve/Carbotrap adsorbents, were formed in the afterburner at a temperature of 1000 degrees C. In the primary furnace, about 30% of the mass of the initial polystyrene was converted into soot, while the total mass of PAH represented about 3% of the initial mass of combustible. The afterburner reduced the particulate (soot) emissions by only 20-30%, which indicates that once soot is formed its destruction is rather difficult because its oxidation kinetics are slow undertypical furnace conditions. Moreover, increasing the afterburnertemperature resulted in an increasing trend of soot emissions therefrom, which might indicate competition between soot oxidation and formation, with some additional formation occurring at the higher temperatures. Contrary to the limited effect of the afterburner, high-temperature filtration of the combustion effluent prior to the exit of the primary furnace allowed for effective soot oxidation inside of the ceramic filter. Filtration drastically reduced soot emissions, by more than 90%. Limited soot formation in the afterburner was again observed with increasing temperatures. The yields of both CO and CO2 were largely unaffected by the temperature of the afterburner but increased at the presence of the filter indicating oxidation therein. A previously developed kinetic model was used to identify major chemical reaction pathways involving PAH in the afterburner. The experimental data at the exit of the primary furnace was used as input to these model computations. A first evaluation of the predictive capability of the model was conducted for the case with ceramic filter and a temperature of 900 degrees C. The afterburner was approximated as a plug-flow reactor, and model predictions at a residence time of 0.8 s were compared to experimental data collected at its exit. In agreement with the experimental PAH concentration, only a minor impact of the afterburner treatment was observed for most species at 900 degrees C. OH was deduced to be the major reactant with a mole fraction about 4 orders of magnitudes higher than that of hydrogen radicals. Evidence for the need of further work on the quantitative assessment of oxidation of PAH and their radicals is given.

  6. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  7. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    PubMed

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Grey water treatment in urban slums by a filtration system: optimisation of the filtration medium.

    PubMed

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Kansiime, F; Lens, P N L

    2014-12-15

    Two uPVC columns (outer diameter 160 cm, internal diameter 14.6 cm and length 100 cm) were operated in parallel and in series to simulate grey water treatment by media based filtration at unsaturated conditions and constant hydraulic loading rates (HLR). Grey water from bathroom, laundry and kitchen activities was collected from 10 households in the Bwaise III slum in Kampala (Uganda) in separate containers, mixed in equal proportions followed by settling, prior to transferring the influent to the tanks. Column 1 was packed with lava rock to a depth of 60 cm, while column 2 was packed with lava rock (bottom 30 cm) and silica sand, which was later replaced by granular activated carbon (top 30 cm) to further investigate nutrient removal from grey water. Operating the two filter columns in series at a HLR of 20 cm/day resulted in a better effluent quality than at a higher (40 cm/day) HLR. The COD removal efficiencies by filter columns 1 and 2 in series amounted to 90% and 84% at HLR of 20 cm/day and 40 cm/day, respectively. TOC and DOC removal efficiency amounted to 77% and 71% at a HLR of 20 cm/day, but decreased to 72% and 67% at a HLR of 40 cm/day, respectively. The highest log removal of Escherichia coli, Salmonella sp. and total coliforms amounted to 3.68, 3.50 and 3.95 at a HLR of 20 cm/day respectively. The overall removal of pollutants increased with infiltration depth, with the highest pollutant removal efficiency occurring in the top 15 cm layer. Grey water pre-treatment followed by double filtration using coarse and fine media has the potential to reduce the grey water pollution load in slum areas by more than 60%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Increase of Total Nephron Albumin Filtration and Reabsorption in Diabetic Nephropathy.

    PubMed

    Mori, Keita P; Yokoi, Hideki; Kasahara, Masato; Imamaki, Hirotaka; Ishii, Akira; Kuwabara, Takashige; Koga, Kenichi; Kato, Yukiko; Toda, Naohiro; Ohno, Shoko; Kuwahara, Koichiro; Endo, Tomomi; Nakao, Kazuwa; Yanagita, Motoko; Mukoyama, Masashi; Mori, Kiyoshi

    2017-01-01

    The amount of albumin filtered through the glomeruli and reabsorbed at the proximal tubules in normal and in diabetic kidneys is debated. The megalin/cubilin complex mediates protein reabsorption, but genetic knockout of megalin is perinatally lethal. To overcome current technical problems, we generated a drug-inducible megalin-knockout mouse line, megalin(lox/lox);Ndrg1-CreER T2 (iMegKO), in which megalin expression can be shut off at any time by administration of tamoxifen (Tam). Tam administration in adult iMegKO mice decreased the expression of renal megalin protein by 92% compared with that in wild-type C57BL/6J mice and almost completely abrogated renal reabsorption of intravenously injected retinol-binding protein. Furthermore, urinary albumin excretion increased to 175 μg/d (0.46 mg albumin/mg creatinine) in Tam-treated iMegKO mice, suggesting that this was the amount of total nephron albumin filtration. By comparing Tam-treated, streptozotocin-induced diabetic iMegKO mice with Tam-treated nondiabetic iMegKO mice, we estimated that the development of diabetes led to a 1.9-fold increase in total nephron albumin filtration, a 1.8-fold increase in reabsorption, and a significant reduction in reabsorption efficiency (86% efficiency versus 96% efficiency in nondiabetic mice). Insulin treatment normalized these abnormalities. Akita;iMegKO mice, another model of type 1 diabetes, showed equivalent results. Finally, nondiabetic iMegKO mice had a glomerular sieving coefficient of albumin of 1.7×10 -5 , which approximately doubled in diabetic iMegKO mice. This study reveals actual values and changes of albumin filtration and reabsorption in early diabetic nephropathy in mice, bringing new insights to our understanding of renal albumin dynamics associated with the hyperfiltration status of diabetic nephropathy. Copyright © 2016 by the American Society of Nephrology.

  10. Removal of particulate matter emitted from a subway tunnel using magnetic filters.

    PubMed

    Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun

    2014-01-01

    We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.

  11. Occurrence of Mycobacteria in Water Treatment Lines and in Water Distribution Systems

    PubMed Central

    Le Dantec, Corinne; Duguet, Jean-Pierre; Montiel, Antoine; Dumoutier, Nadine; Dubrou, Sylvie; Vincent, Véronique

    2002-01-01

    The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature. PMID:12406720

  12. Vulnerability of bank filtration systems to climate change.

    PubMed

    Sprenger, C; Lorenzen, G; Hülshoff, I; Grützmacher, G; Ronghang, M; Pekdeger, A

    2011-01-15

    Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Optimization of an enhanced ceramic micro-filter for concentrating E.coli in water

    NASA Astrophysics Data System (ADS)

    Zhang, Yushan; Guo, Tianyi; Xu, Changqing; Hong, Lingcheng

    2017-02-01

    Recently lower limit of detection (LOD) is necessary for rapid bacteria detection and analysis applications in clinical practices and daily life. A critical pre-conditioning step for these applications is bacterial concentration, especially for low level of pathogens. Sample volume can be largely reduced with an efficient pre-concentration process. Some approaches such as hollow-fiber ultra-filtration and electrokinetic technique have been applied to bacterial concentration. Since none of these methods can provide a concentrating method with a stable recovery efficiency, bacterial concentration still remains challenging Ceramic micro- filter can be used to concentrate the bacteria but the cross flow system keeps the bacteria in suspension. Similar harvesting bacteria using ultra-filtration showed an average recovery efficiency of 43% [1] and other studies achieved recovery rates greater than 50% [2]. In this study, an enhanced ceramic micro-filter with 0.14 μm pore size was proposed and demonstrated to optimize the concentration of E.coli. A high recovery rate (mean value >90%) and a high volumetric concentration ratio (>100) were achieved. Known quantities (104 to 106 CFU/ml) of E.coli cells were spiked to different amounts of phosphate buffered saline (0.1 to 1 L), and then concentrated to a final retentate of 5 ml to 10 ml. An average recovery efficiency of 95.3% with a standard deviation of 5.6% was achieved when the volumetric con- centration ratio was 10. No significant recovery rate loss was indicated when the volumetric concentration ratio reached up to 100. The effects of multiple parameters on E.coli recovery rate were also studied. The obtained results indicated that the optimized ceramic micro- filtration system can successfully concentrate E.coli cells in water with an average recovery rate of 90.8%.

  14. Evaluation of the suitability of a plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the efficacy of coagulation-rapid sand filtration to remove those viruses.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Yamashita, R

    2018-02-01

    Here, we evaluated the removal of three representative human enteric viruses - adenovirus (AdV) type 40, coxsackievirus (CV) B5, and hepatitis A virus (HAV) IB - and one surrogate of human caliciviruses - murine norovirus (MNV) type 1 - by coagulation-rapid sand filtration, using water samples from eight water sources for drinking water treatment plants in Japan. The removal ratios of a plant virus (pepper mild mottle virus; PMMoV) and two bacteriophages (MS2 and φX174) were compared with the removal ratios of human enteric viruses to assess the suitability of PMMoV, MS2, and φX174 as surrogates for human enteric viruses. The removal ratios of AdV, CV, HAV, and MNV, evaluated via the real-time polymerase chain reaction (PCR) method, were 0.8-2.5-log 10 when commercially available polyaluminum chloride (PACl, basicity 1.5) and virgin silica sand were used as the coagulant and filter medium, respectively. The type of coagulant affected the virus removal efficiency, but the age of silica sand used in the rapid sand filtration did not. Coagulation-rapid sand filtration with non-sulfated, high-basicity PACls (basicity 2.1 or 2.5) removed viruses more efficiently than the other aluminum-based coagulants. The removal ratios of MS2 were sometimes higher than those of the three human enteric viruses and MNV, whereas the removal ratios of φX174 tended to be smaller than those of the three human enteric viruses and MNV. In contrast, the removal ratios of PMMoV were similar to and strongly correlated with those of the three human enteric viruses and MNV. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses for the assessment of the efficacy of coagulation-rapid sand filtration to remove viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Pollution prevention and control of aqueous extract of astragali radix processed with ZrO2 inorganic ceramic membrane micro-filtration].

    PubMed

    Pan, Lin-Men; Huang, Min-Yan; Guo, Li-Wei

    2012-11-01

    To study the measures for preventing and controlling the pollution of aqueous extract of Astragali Radix proceeded with inorganic ceramic membrane micro-filtration, in order to find effective measures for preventing and controlling the membrane pollution. The resistance distribution, polymer removal and changes in physical and chemical parameters of the zirconium oxide film of different pore diameters were determined to analyze the state or location of pollutants as well as the regularity of formation. Meanwhile, recoil and ultrasonic physical measures were adopted to strengthen the membrane process, in order to explore the methods for preventing and controlling the membrane pollution. When 0.2 microm of ZrO2 micro-filtrated aqueous extract of Astragali Radix, the rate of pollution was as high as 44.9%. The hole blocking resistance and the concentration polarization resistance were the main filtration resistances, while the surface deposit resistance decreased with the increase in the membrane's hold diameter; after micro-filtration, the liquid turbidity significantly reduced, with slight changes in both pH and viscosity. The 0.2 microm ZrO2 micro-filtration membrane performed better than the 0.05 microm pore size membrane in terms of conductivity. The 0. 2 microm and 0.05 microm pore diameter membranes showed better performance in the removal of pectin. The ultrasonic measure to strengthen membranes is more suitable to this system, with a flux rate up by 41.7%. The membrane optimization process adopts appropriate measures for preventing and controlling the membrane pollution, in order to reduce the membrane pollution, recover membrane performance and increase filtration efficiency.

  16. Problems of drinking water treatment along Ismailia Canal Province, Egypt.

    PubMed

    Geriesh, Mohamed H; Balke, Klaus-Dieter; El-Rayes, Ahmed E

    2008-03-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.

  17. Problems of drinking water treatment along Ismailia Canal Province, Egypt*

    PubMed Central

    Geriesh, Mohamed H.; Balke, Klaus-Dieter; El-Rayes, Ahmed E.

    2008-01-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6×106 m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626

  18. Suspended material availability and filtration-biodeposition processes performed by a native and invasive bivalve species in streams

    USGS Publications Warehouse

    Atkinson, C.L.; First, M.R.; Covich, A.P.; Opsahl, S.P.; Golladay, S.W.

    2011-01-01

    Unionid mussels are among the most threatened group of freshwater organisms globally. They are known for their ability to filter food particles from flowing and standing waters. However, invasive bivalve species, such as the Asian clam (Corbicula fluminea) in North America, have the potential to overlap in feeding and potentially out-compete the native species. Yet, the feeding preferences of unionid mussels and C. fluminea are incompletely understood. We hypothesized that Elliptio crassidens (native) and C. fluminea (invasive) would select for specific organic components present within seston. We examined changes in seston (dry mass and ash-free dry mass) resulting from bivalve feeding activity for three size classes of material that were isolated using gravimetric filtration. The treatments were also sub-sampled for flow cytometry (FC) which separated the suspended materials in the stream water into five categories: detritus, heterotrophic bacteria, picoautotrophs, nanoautotrophs, and heterotrophic nanoeukaryotes. Our results indicated that both species of bivalve showed preferences for organic and living materials. E. crassidens preferentially filtered nanoeukaryotes, whose decreases were associated with an increase in bacteria. In contrast, C. fluminea preferred smaller materials through selective filtration of picoautotrophs. In addition, both species increased the concentration of large materials toward the end of the experiment because of the suspension of their pseudofeces biodeposits. To our knowledge, this study is the first to examine grazing by bivalve species on natural stream particulate matter using FC. Our results suggest that native and non-native mussels have different functional roles, which has important implications for organic matter processing and food webs in streams. ?? 2011 Springer Science+Business Media B.V.

  19. Isolation of a latent polyphenol oxidase from loquat fruit (Eriobotrya japonica Lindl.): kinetic characterization and comparison with the active form.

    PubMed

    Sellés-Marchart, Susana; Casado-Vela, Juan; Bru-Martínez, Roque

    2006-02-15

    Polyphenol oxidase (PPO) has been extracted from both soluble and particulate fractions of loquat fruit (Eriobotrya japonica Lindl. cv. Algerie). The soluble PPO (20% of total activity) was partially purified 3.3-fold after ammonium sulfate fractionation being in its active state. The particulate PPO fraction (80% of total activity) was purified to homogeneity in a latent form being activable by sodium dodecyl sulfate (SDS). The enzyme was purified 40.0-fold with a total yield of 15.3% after extraction by phase partitioning in Triton X-114 followed by three chromatographic steps. The molecular weight was estimated to be about 59.2 and 61.2 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography, respectively, indicating that latent PPO is a monomer. Latent PPO catalyzed the oxidation of chlorogenic acid (CA) at a rate 50-fold faster than that of 4-tert-butylcatechol (TBC) but the soluble active counterpart only twice. Both PPOs exhibited similar Km values for TBC but Km for CA was 5-fold higher for the latent than for the active soluble PPO. Other kinetic characteristics, including sensitivity to inhibitors, substrate specificity, thermal stability, temperature, and pH profiles, were quite different between both PPOs. These results provide strong evidences that the soluble active and the particulate latent are different forms of PPO in loquat fruit flesh. The results suggest that the major PPO form for the oxidation of CA, leading to enzymatic browning under physiological conditions, is the latent one.

  20. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    USGS Publications Warehouse

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  1. Inhalation of diesel engine exhaust increases bone mineral concentrations in growing rats.

    PubMed

    Watanabe, N; Nakamura, T

    1996-03-01

    Experiments were conducted to determine whether diesel engine exhaust affects bone metabolism in growing rats. The rats were assigned to three groups: those exposed to total diesel engine exhaust with 5.63 mg/m3 particulate matter, 4.10 ppm nitrogen dioxide, 8.10 ppm nitrogen monoxide; those exposed to filtered exhaust without particulate matter; and those exposed to clean air. Dosing experiments were performed for 3 months beginning at birth (6 h/day for 5 days/week). Bone mineral content (BMC) values in lumbar vertebral bone were significantly increased in both groups exposed to diesel exhaust (P < 0.01) compared to that of rats exposed to clean air. Bone mineral density (BMD) values were also significantly increased in both exposed groups, total exhaust (P < 0.01) and filtered exhaust (P < 0.001), compared to that of rats exposed to clean air. BMD values in the mid-femur were also significantly greater in animals exposed to diesel exhaust, total exhaust (P < 0.05), and filtered exhaust (P < 0.01), compared to that of those exposed to clean air. Urinary excretion of deoxypyridinolines, a biochemical marker for bone resorption, was significantly reduced in animals exposed to total diesel exhaust and filtered exhaust (P < 0.001, P < 0.01) compared to control. There was also a significant difference between the two exposure groups of diesel exhaust (P < 0.05). Since these effects were not inhibited by filtration, the gaseous phase of the exhaust was considered more responsible than particulate matter for reducing bone resorption.

  2. Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats.

    PubMed

    Watanabe, N; Oonuki, Y

    1999-07-01

    We conducted experiments to determine whether diesel engine exhaust affects reproductive endocrine function in growing rats. The rats were assigned to three groups: a group exposed to total diesel engine exhaust containing 5.63 mg/m3 particulate matter, 4.10 ppm nitrogen dioxide, and 8.10 ppm nitrogen oxide; a group exposed to filtered exhaust without particulate matter; and a group exposed to clean air. Dosing experiments were performed for 3 months beginning at birth (6 hr/day for 5 days/week). Serum levels of testosterone and estradiol were significantly higher in animals exposed to total diesel exhaust and filtered exhaust (p < 0.05 for each group) as compared to the controls. Follicle-stimulating hormone was significantly decreased in the two groups exposed to diesel exhaust as compared to the control group (p < 0.05). Luteinizing hormone was significantly decreased in the total exhaust-exposed group as compared to the control and filtered groups (p < 0.05). Although testis weight did not show any significant difference among the groups, sperm production and activity of testicular hyaluronidase were significantly reduced in both exhaust-exposed groups as compared to the control group. Histological examination showed decreased numbers of step 18 and 19 spermatids in stage VI, VII, and VIII tubules in the testes of both diesel exhaust-exposed groups. This study suggests that diesel exhaust stimulates hormonal secretion of the adrenal cortex, depresses gonadotropin-releasing-hormone, and inhibits spermatogenesis in rats. Because these effects were not inhibited by filtration, the gaseous phase of the exhaust appears to be more responsible than particulate matter for disrupting the endocrine system.

  3. Developing particulate thin filter using coconut fiber for motor vehicle emission

    NASA Astrophysics Data System (ADS)

    Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.

    2016-03-01

    Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.

  4. Method to characterize inorganic particulates in lung tissue biopsies using field emission scanning electron microscopy

    USGS Publications Warehouse

    Lowers, Heather; Breit, George N.; Strand, Matthew; Pillers, Renee M.; Meeker, Gregory P.; Todorov, Todor I.; Plumlee, Geoffrey S.; Wolf, Ruth E.; Robinson, Maura; Parr, Jane; Miller, Robert J.; Groshong, Steve; Green, Francis; Rose, Cecile

    2018-01-01

    Humans accumulate large numbers of inorganic particles in their lungs over a lifetime. Whether this causes or contributes to debilitating disease over a normal lifespan depends on the type and concentration of the particles. We developed and tested a protocol for in situ characterization of the types and distribution of inorganic particles in biopsied lung tissue from three human groups using field emission scanning electron microscopy (FE-SEM) combined with energy dispersive spectroscopy (EDS). Many distinct particle types were recognized among the 13 000 particles analyzed. Silica, feldspars, clays, titanium dioxides, iron oxides and phosphates were the most common constituents in all samples. Particles were classified into three general groups: endogenous, which form naturally in the body; exogenic particles, natural earth materials; and anthropogenic particles, attributed to industrial sources. These in situ results were compared with those using conventional sodium hypochlorite tissue digestion and particle filtration. With the exception of clays and phosphates, the relative abundances of most common particle types were similar in both approaches. Nonetheless, the digestion/filtration method was determined to alter the texture and relative abundances of some particle types. SEM/EDS analysis of digestion filters could be automated in contrast to the more time intensive in situ analyses.

  5. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    PubMed

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  6. Respiratory symptoms, lung function and particulate matter pollution in residential indoor environment in Ile-Ife, Nigeria

    PubMed Central

    Ibhafidon, Lawrence I.; Obaseki, Daniel O.; Erhabor, Gregory E.; Akor, Alexander A.; Irabor, Iziegbe; Obioh, IB

    2014-01-01

    Introduction: Particulate air pollution is associated with increased incidence of respiratory symptoms and decreased pulmonary, function but the relative impact of pollution from different domestic energy sources is not well-known or studied. Aim: The study was aimed at assessing the association between particulate concentrations, respiratory symptoms and lung function. Materials and Methods: It was a cross-sectional study comprised of randomly selected residents of three communities. These communities were selected according to the predominant type of fuel used for household cooking which were: firewood, kerosene and liquefied petroleum gas (LPG). Assessment of the indoor PM10 levels was done by filtration using the Gent stacked filter unit sampler for collection of atmospheric aerosol in two size fractions (PM2.5 and PM10). The Medical Research Council (MRC) questionnaire was administered followed by spirometry test. Results: The mean PM10 concentration in participants using LPG, kerosene and firewood was 80.8 ± 9.52 μg/m3, 236.9 ± 26.5 μg/m3 and 269 ±93.7 μg/m3, respectively. The mean age and height-adjusted percent predicted forced expiratory volumes in 1 s (FEV1) for men were 127 ± 7, 109 ± 40 and 91 ± 20 and for women were 129 ± 13, 115 ± 14, 100 ± 14 in users of LPG, kerosene and firewood, respectively. A similar trend was found in the forced vital capacity (FVCs). Users of firewood had significantly lower FEV1 and FVC compared with LPG users (P < 0.05). The participants using firewood had the highest prevalence of pulmonary and non-pulmonary symptoms (57.1%), whereas subjects using LPG had the lowest (23.8%). Conclusion: There are high levels of particulate matter pollutions with respiratory effects in residential indoor environments in Ile-Ife, Nigeria PMID:24970970

  7. Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low Pressure Drop Systems to Reduce Engine Fuel Consumption (06B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie

    This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.

  8. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less

  9. Methodology for Modeling the Microbial Contamination of Air Filters

    PubMed Central

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908

  10. Engineering evaluation of the use of the Timberline condensing economizer for particulate collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T.; Serry, H.

    1980-12-01

    The possible use of the Timberline Industries condensing economizer as a particulate collection device on commercial sector boilers which are being converted to coal-oil mixture (COM) firing has been considered. The saturation temperature of the water vapor in the flue gas has been estimated as a function of excess air and ambient relative humidity. Also, boiler stack losses have been estimated for a variety of operating conditions including stack temperatures below the dew point. The condensing economizer concept will be limited to applications which can use the low temperature heat including water heating and forced air space heating. The potentialmore » particulate collection efficiency, water disposal, and similar heat recovery devices are discussed. A cost analysis is presented which indicates that the economizer system is not competitive with a cyclone but is competitive with a baghouse. The use of the cyclone is limited by collection efficiency. The measurement of COM flyash particle size distribution is recommended.« less

  11. Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine

    NASA Technical Reports Server (NTRS)

    Heisey, J. B.; Lestz, S. S.

    1981-01-01

    A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.

  12. Further evaluation of the NWF filter for the purification of Plasmodium vivax-infected erythrocytes.

    PubMed

    Li, Jiangyan; Tao, Zhiyong; Li, Qian; Brashear, Awtum; Wang, Ying; Xia, Hui; Fang, Qiang; Cui, Liwang

    2017-05-17

    Isolation of Plasmodium-infected red blood cells (iRBCs) from clinical blood samples is often required for experiments, such as ex vivo drug assays, in vitro invasion assays and genome sequencing. Current methods for removing white blood cells (WBCs) from malaria-infected blood are time-consuming or costly. A prototype non-woven fabric (NWF) filter was developed for the purification of iRBCs, which showed great efficiency for removing WBCs in a pilot study. Previous work was performed with prototype filters optimized for processing 5-10 mL of blood. With the commercialization of the filters, this study aims to evaluate the efficiency and suitability of the commercial NWF filter for the purification of Plasmodium vivax-infected RBCs in smaller volumes of blood and to compare its performance with that of Plasmodipur ® filters. Forty-three clinical P. vivax blood samples taken from symptomatic patients attending malaria clinics at the China-Myanmar border were processed using the NWF filters in a nearby field laboratory. The numbers of WBCs and iRBCs and morphology of P. vivax parasites in the blood samples before and after NWF filtration were compared. The viability of P. vivax parasites after filtration from 27 blood samples was examined by in vitro short-term culture. In addition, the effectiveness of the NWF filter for removing WBCs was compared with that of the Plasmodipur ® filter in six P. vivax blood samples. Filtration of 1-2 mL of P. vivax-infected blood with the NWF filter removed 99.68% WBCs. The densities of total iRBCs, ring and trophozoite stages before and after filtration were not significantly different (P > 0.05). However, the recovery rates of schizont- and gametocyte-infected RBCs, which were minor parasite stages in the clinical samples, were relatively low. After filtration, the P. vivax parasites did not show apparent morphological changes. Culture of 27 P. vivax-infected blood samples after filtration showed that parasites successfully matured into the schizont stage. The WBC removal rates and iRBC recovery rates were not significantly different between the NWF and Plasmodipur ® filters (P > 0.05). When tested with 1-2 mL of P. vivax-infected blood, the NWF filter could effectively remove WBCs and the recovery rates for ring- and trophozoite-iRBCs were high. P. vivax parasites after filtration could be successfully cultured in vitro to reach maturity. The performance of the NWF and Plasmodipur ® filters for removing WBCs and recovering iRBCs was comparable.

  13. Analysis of Basis Weight Uniformity of Microfiber Nonwovens and Its Impact on Permeability and Filtration Properties

    NASA Astrophysics Data System (ADS)

    Amirnasr, Elham

    It is widely recognized that nonwoven basis weight non-uniformity affects various properties of nonwovens. However, few studies can be found in this topic. The development of uniformity definition and measurement methods and the study of their impact on various web properties such as filtration properties and air permeability would be beneficial both in industrial applications and in academia. They can be utilized as a quality control tool and would provide insights about nonwoven behaviors that cannot be solely explained by average values. Therefore, for quantifying nonwoven web basis weight uniformity we purse to develop an optical analytical tool. The quadrant method and clustering analysis was utilized in an image analysis scheme to help define "uniformity" and its spatial variation. Implementing the quadrant method in an image analysis system allows the establishment of a uniformity index that can be used to quantify the degree of uniformity. Clustering analysis has also been modified and verified using uniform and random simulated images with known parameters. Number of clusters and cluster properties such as cluster size, member and density was determined. We also utilized this new measurement method to evaluate uniformity of nonwovens produced with different processes and investigated impacts of uniformity on filtration and permeability. The results of quadrant method shows that uniformity index computed from quadrant method demonstrate a good range for non-uniformity of nonwoven webs. Clustering analysis is also been applied on reference nonwoven with known visual uniformity. From clustering analysis results, cluster size is promising to be used as uniformity parameter. It is been shown that non-uniform nonwovens has provide lager cluster size than uniform nonwovens. It was been tried to find a relationship between web properties and uniformity index (as a web characteristic). To achieve this, filtration properties, air permeability, solidity and uniformity index of meltblown and spunbond samples was measured. Results for filtration test show some deviation between theoretical and experimental filtration efficiency by considering different types of fiber diameter. This deviation can occur due to variation in basis weight non-uniformity. So an appropriate theory is required to predict the variation of filtration efficiency with respect to non-uniformity of nonwoven filter media. And the results for air permeability test showed that uniformity index determined by quadrant method and measured properties have some relationship. In the other word, air permeability decreases as uniformity index on nonwoven web increase.

  14. Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment.

    PubMed Central

    Hoeger, Stefan J; Dietrich, Daniel R; Hitzfeld, Bettina C

    2002-01-01

    Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms. PMID:12417484

  15. Development of a rapid and sensitive HPLC method for the identification and quantification of cavoxin and cavoxone in Phoma cava culture filtrates.

    PubMed

    Masi, Marco; Moeini, Seyed Arash; Boari, Angela; Cimmino, Alessio; Vurro, Maurizio; Evidente, Antonio

    2018-07-01

    Cavoxin is a tetrasubstituted phytotoxic chalcone and cavoxone is the corresponding chroman-4-one, both produced in vitro by Phoma cava, a fungus isolated from chestnut. Cavoxin showed biofungicide potential against fungal species responsible for food moulding. Therefore, cavoxin has potential to be incorporated into biopolymer to generate 'intelligent food packaging'. To reach this objective, large-scale production of cavoxin by P. cava fermentation needs to be optimized. A rapid and efficient method for cavoxin analysis, as well as of cavoxone, in the fungal culture filtrates and the corresponding organic extracts is the first experimental step. Thus, a HPLC method was developed and applied to quantify cavoxin and cavoxone production in two different fungal culture conditions. The analysis proved that cavoxin production in stirred culture filtrates is significantly higher than in static ones.

  16. Simulation and optimization of an experimental membrane wastewater treatment plant using computational intelligence methods.

    PubMed

    Ludwig, T; Kern, P; Bongards, M; Wolf, C

    2011-01-01

    The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.

  17. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations

    PubMed Central

    Balamurugan, Ramalingam; Sundarrajan, Subramanian; Ramakrishna, Seeram

    2011-01-01

    In recent decades, engineered membranes have become a viable separation technology for a wide range of applications in environmental, food and biomedical fields. Membranes are now competitive compared to conventional techniques such as adsorption, ion exchangers and sand filters. The main advantage of membrane technology is the fact that it works without the addition of any chemicals, with relatively high efficiency and low energy consumption with well arranged process conductions. Hence they are widely utilized in biotechnology, food and drink manufacturing, air filtration and medical uses such as dialysis for kidney failure patients. Membranes from nanofibrous materials possess high surface area to volume ratio, fine tunable pore sizes and their ease of preparation prompted both industry and academic researchers to study their use in many applications. In this paper, modern concepts and current research progress on various nanofibrous membranes, such as water and air filtration media, are presented. PMID:24957734

  18. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    PubMed

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less

  20. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    PubMed

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.

Top