Particulate Air Contamination in Puerto Rico: A Student Involvement Project.
ERIC Educational Resources Information Center
Eckert, Richard R.
1979-01-01
Describes a research project undertaken by physics undergraduate students to monitor particulate air contamination in Ponce, Puerto Rico, and to determine the meteorological factors which contribute to it. (GA)
EPA has developed a technology transfer handbook for the EMPACT Roxbury Air Monitoring (AirBeat) Project. The purpose of AirBeat is to make real-time air quality monitoring information (for ozone, black carbon, and fine particulates) available to the Boston MA community of Roxbur...
Atmospheric ammonia and particulate inorganic nitrogen over the United States
We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Ch...
In 1998, the Environmental Protection Agency (EPA) initiated a major air quality program, known as the Particulate Matter (PM) Supersites Program. The Supersites Program was a multi year, $27 million air quality monitoring program consisting of eight regional air quality projects...
Air Sensor Kit Performance Testing and Pollutant Mapping Supports Community Air Monitoring Project
EPA is collaborating on a research project with the South Coast Air Quality Management District in Diamond Bar, Calif. to gain an enhanced understanding of fine particulate matter (PM2.5) and ozone concentrations across the study area.
Monitoring of atmospheric particles and ozone in Sequoia National Park: 1985-1987. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, T.A.
1989-06-01
The Air Quality Group Monitored particles and ozone in Sequoia National Park as part of an effort to understand the impact of acid deposition and other air pollutants on the park's forests and watersheds. For high-elevation ozone measurement, the project developed a new solar-powered ozone monitoring system. The particulate matter sampled was analyzed for elemental content using nuclear techniques. The measurements were correlated with meteorology, known elemental sources, and wet and dry deposition measurements. The results show that particulate matter at Sequoia National Park is similar to that present at other sites on the western slope of the Sierra Nevadamore » range at equivalent elevations. Some anthropogenic species, including nickel and sulfate, are present in higher concentrations at Sequoia than at Yosemite National Park.« less
ADVANCEMENTS IN SOURCE-TO-DOSE ANALYSIS OF POPULATION EXPOSURES TO OZONE
The current study takes advantage of the observations from regional air quality monitoring networks, the data from the NE-OPS (North East Oxidant and Particulate Study) Project in the Philadelphia region, and regional photochemical air quality model predictions to obtain and co...
Assessing the impact of fine particulate matter (PM2.5) on ...
An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM2.5 in areas with and without air quality monitors by combining PM2.5 concentrations measured by monitors, PM2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition t
Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A.; Nikolich, George; McCurdy, Greg
On April 24, 1957, the Atomic Energy Commission (AEC, now the Department of Energy [DOE]) conducted the Project 57 safety experiment in western Emigrant Valley north east of the Nevada National Security Site (NNSS, formerly the Nevada Test Site) on lands withdrawn by the Department of Defense (DoD) for the Nevada Test and Training Range (NTTR). The test was undertaken to develop (1) a means of estimating plutonium distribution resulting from a nonnuclear detonation; (2) biomedical evaluation techniques for use in plutonium-laden environments; (3) methods of surface decontamination; and (4) instruments and field procedures for prompt estimation of alpha contaminationmore » (Shreve, 1958). Although the test did not result in the fission of nuclear materials, it did disseminate plutonium across the land surface. Following the experiment, the AEC fenced the contaminated area and returned control of the surrounding land to the DoD. Various radiological surveys have been performed in the area and in 2007, the DOE expanded the demarked contamination area by posting signs 200 to 400 feet (60 to 120 meters) outside of the original fence. Plutonium in soil is thought to attach preferentially to smaller particles. Therefore, redistribution of soil particulates by wind (dust) is the mechanism most likely to transport plutonium beyond the boundary of the Project 57 contamination area. In 2011, DRI installed two instrumentation towers to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination was detectable in samples of airborne dust and characterize meteorological and environmental parameters that influence dust transport. Collected data also permits comparison of radiological conditions at the Project 57 monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Biweekly samples of airborne particulates are submitted for laboratory assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and environmental parameters. Although winds sufficient to generate significant amounts of dust occur at the Project 57 site, they are infrequent and of short duration. Additionally, the potential for wind transport of dust is dependent on other parameters whose influence have not yet been assessed.« less
Definition of air quality measurements for monitoring space shuttle launches
NASA Technical Reports Server (NTRS)
Thorpe, R. D.
1978-01-01
A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.
Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources
NASA Astrophysics Data System (ADS)
Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.
Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.
Karelin, A O; Lomtev, A Yu; Mozzhukhina, N A; Yeremin, G B; Nikonov, V A
Inhalation of fine particulate matters (PM and PM ) poses a threat for the health of population. Purpose of the study the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint-Petersburg and identification of the main problems of the monitoring. Research methods methods of scientific hypothetical deductive cognition, sanitary-statistical methods, general logical methods and approaches of researches: analysis, synthesis, abstracting, generalization, induction. Results. The article represents the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint- Petersburg. Only 11 in automatic monitoring stations out of 22 there is carried out the control of fine particulate matters: in 7 - PM and PM, and in 4 - PM The average year concentrations were below MAC in all the stations. The maximum concentrations achieved 3 MAC, but the repeatance of cases of exceedence of concentrations more than MAC was very rare. On the average of the city concentrations of PM were decreased from 0,8 MAC in 2006 and 1,1 MAC in 2007 to 0,5 MAC in 2013-14. The executed analysis revealed main problems of the monitoring of fine particulate matters in the Russian Federation. They include the absence of the usage 1of the officially approved methods of controlling of PM and PM in the atmospheric air until March 1, 2016, lack of the modern equipment for measurement of fine particulate matters. Conclusions. Therefore, the state of the monitoring of fine particulate matters in the atmospheric air in the Russian Federation fails to be satisfactory. It is necessary to improve system of the monitoring, create modern Russian appliances, methods and means for measurement of fine particulate matters concentrations in the atmospheric air.
Olmedo, Luis; Bejarano, Ester; Lugo, Humberto; Murillo, Eduardo; Seto, Edmund; Wong, Michelle; King, Galatea; Wilkie, Alexa; Meltzer, Dan; Carvlin, Graeme; Jerrett, Michael; Northcross, Amanda
2017-01-01
Summary: The Imperial County Community Air Monitoring Network (the Network) is a collaborative group of community, academic, nongovernmental, and government partners designed to fill the need for more detailed data on particulate matter in an area that often exceeds air quality standards. The Network employs a community-based environmental monitoring process in which the community and researchers have specific, well-defined roles as part of an equitable partnership that also includes shared decision-making to determine study direction, plan research protocols, and conduct project activities. The Network is currently producing real-time particulate matter data from 40 low-cost sensors throughout Imperial County, one of the largest community-based air networks in the United States. Establishment of a community-led air network involves engaging community members to be citizen-scientists in the monitoring, siting, and data collection process. Attention to technical issues regarding instrument calibration and validation and electronic transfer and storage of data is also essential. Finally, continued community health improvements will be predicated on facilitating community ownership and sustainability of the network after research funds have been expended. https://doi.org/10.1289/EHP1772 PMID:28886604
Code of Federal Regulations, 2010 CFR
2010-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Code of Federal Regulations, 2014 CFR
2014-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Code of Federal Regulations, 2012 CFR
2012-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Code of Federal Regulations, 2013 CFR
2013-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Code of Federal Regulations, 2011 CFR
2011-07-01
... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...
Ravikumar, Dwarakanath; Sinha, Parikhit
2017-10-01
With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM 2.5 and PM 10 (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM 2.5 and PM 10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM 2.5 and PM 10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM 2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions. This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.
Miniaturized inertial impactor for personal airborne particulate monitoring: Prototyping
NASA Astrophysics Data System (ADS)
Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele; Cortelezzi, Luca
2017-11-01
Computational fluid dynamic (CFD) simulations allowed us to conceive and design a miniaturized inertial impactor able to collect fine airborne particulate matter (PM10, PM2.5 and PM1). We created, by 3D printing, a prototype of the impactor. We first performed a set of experiments by applying a suction pump to the outlets and sampling the airborne particulate of our laboratory. The analysis of the slide showed a collection of a large number of particles, spanning a wide range of sizes, organized in a narrow band located below the exit of the nozzle. In order to show that our miniaturized inertial impactor can be truly used as a personal air-quality monitor, we performed a second set of experiments where the suction needed to produce the airflow through the impactor is generated by a human being inhaling through the outlets of the prototype. To guarantee a number of particles sufficient to perform a quantitative characterization, we collected particles performing ten consecutive deep inhalations. Finally, the potentiality for realistic applications of our miniaturized inertial impactor used in combination with a miniaturized single-particle detector will be discussed. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).
Code of Federal Regulations, 2011 CFR
2011-07-01
... flue gases at the inlet of my particulate matter control device? 60.1815 Section 60.1815 Protection of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You... flue gas stream at the inlet of each particulate matter control device. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... flue gases at the inlet of my particulate matter control device? 60.1815 Section 60.1815 Protection of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You... flue gas stream at the inlet of each particulate matter control device. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false How do I monitor the temperature of....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false How do I monitor the temperature of....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false How do I monitor the temperature of....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device. ...
HIERARCHIAL BAYESIAN CALIBRATION: AN APPLICATION TO AIRBORNE PARTICULATE MATTER MONITORING DATA
In studies of the relationship between airborne fine particulate matter (PM2.5) and health, researchers frequently use monitoring data with the most extensive temporal coverage. Such data may come from a monitor that is not a federal reference monitor (FRM), a monitor that is d...
Code of Federal Regulations, 2010 CFR
2010-07-01
... flue gases at the inlet of my particulate matter control device? 62.15270 Section 62.15270 Protection....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... flue gases at the inlet of my particulate matter control device? 62.15270 Section 62.15270 Protection....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device. ...
Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim
2012-01-01
Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.
40 CFR Table 7 to Subpart Ddddd of... - Establishing Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Particulate matter, mercury, or total selected metals a. Wet scrubber operating parameters i. Establish a site... drop and liquid flow rate monitors and the particulate matter, mercury, or total selected metals... from the pressure drop and liquid flow rate monitors and the particulate matter, mercury, or total...
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus
2017-04-01
We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse-resolution satellite products of air quality with the help of high-resolution model information. This will add value to existing earth observation products of air quality by bringing them to spatial scales that are more in line with what is generally required for studying urban and regional scale air quality. In a fifth activity, we implement robust and independent validation schemes for evaluating the quality of the generated products. Finally, in a sixth activity the consortium is working towards a pre-operational system for improved PM forecasts using observational (in situ and satellite) data assimilation. SAMIRA aims to maximize project benefits by liaison with national and regional environmental protection agencies and health institutions, as well as related ESA and European initiatives such as the Copernicus Atmosphere Monitoring Service (CAMS).
Air quality monitor and acid rain networks
NASA Technical Reports Server (NTRS)
Rudolph, H.
1980-01-01
The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.
Lazaridis, Mihalis; Semb, Arne; Larssen, Steinar; Hjellbrekke, Anne-Gunn; Hov, Oystein; Hanssen, Jan Erik; Schaug, Jan; Tørseth, Kjetil
2002-02-21
Particulate matter (PM) monitoring presents a new challenge to the transboundary air pollution strategies in Europe. Evidence for the role of long-range transport of particulate matter and its significant association with a wide range of adverse health effects has urged for the inclusion of particulate matter within the European Monitoring and Evaluation Programme (EMEP) framework. Here we review available data on PM physico-chemical characteristics within the EMEP framework. In addition we identify future research needs for the characterisation of the background PM in Europe that include detailed harmonised measurements of mass, size and chemical composition (mass closure) of the ambient aerosol.
NASA Advanced Explorations Systems: Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Schneider, Walter F.
2016-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies rely largely on sending environmental samples back to Earth. The LSS project is developing onboard analysis capabilities that will replace the need to return air and water samples from space for ground analysis. Air Revitalization- The air revitalization task is comprised of work in carbon dioxide removal, oxygen generation and recovery and trace contamination and particulate control. The CO2 Removal and associated air drying development efforts under the LSS project are focused both on improving the current SOA technology on the ISS and assessing and examining the viability of other sorbents and technologies available in academia and industry. The Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an effort to supply O2 to the crew at the required conditions, to recover O2 from metabolic CO2, and to recycle recovered O2 back to the cabin environment. Current state-of-the-art oxygen generation systems aboard space station are capable of generating or recovering approximately 40% of required oxygen; for exploration missions this percentage needs to be greatly increased. A spacecraft cabin trace contaminant and particulate control system serves to keep the environment below the spacecraft maximum allowable concentration (SMAC) for chemicals and particulates. Both passive (filters) and active (scrubbers) methods contribute to the overall TC & PC design. Work in the area of trace contamination and particulate control under the LSS project is focused on making improvements to the SOA TC & PC systems on ISS to improve performance and reduce consumables. Wastewater Processing and Water Management- A major goal of the LSS project is the development of water recovery systems to support long duration human exploration beyond LEO. Current space station wastewater processing and water management systems distill urine and wastewater to recover water from urine and humidity condensate in the spacecraft at a approximately 74% recovery rate. For longer, farther missions into deep space, that recovery rate must be greatly increased so that astronauts can journey for months without resupply cargo ships from Earth.
Summary of Ambient Air Monitoring in Southeast Chicago - Oct. 28, 2013
The monitoring station at George Washington High School reports pollutants including fine particulate matter, inhalable particulate matter, lead, and toxic metals. Data suggests sources including Beemsterboer and KCBX petcoke (petroleum coke) facilities.
Monitoring by Control Technique - Wet Scrubber For Particulate Matter
Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Wet Scrubber For Particulate Matter controls used to reduce pollutant emissions.
Under Project No. WP-1538 of the Strategic Environmental Research and Development Program, the U. S. Air Force's Arnold Engineering Development Center (AEDC) is developing an interim test method for non-volatile particulate matter (PM) specifically for the Joint Strike Fighter (J...
NASA Astrophysics Data System (ADS)
Lim, H. S.; Lu, X. X.
2016-07-01
The Active Beautiful Clean (ABC) Waters Program was implemented in 2006 as part of Singapore's stormwater management strategy and reflects the country's move towards Water Sensitive Urbanism through the adoption of Low-Impact Development (LID) ideology and practices. It is the first holistic and comprehensive LID program in the tropics and holds promise for extension to other tropical cities. This paper presents a comprehensive summary of the goals, LID practices (ABC design features) and design considerations as well as results of several monitored sites, including a constructed wetland, two rain gardens, green roofs and three canal restoration projects. We evaluate the ABC Waters Program based on these initial results and consider the challenges, issues and the research needs for it to meet its hydrological and water quality remediation goals. So far, the ABC design features evaluated perform well in removing particulates. Performance in nutrient removal is poor. With over 60 projects completed within 10 years, post-project monitoring and evaluation is necessary and complements on-going laboratory and modelling research projects conducted by local academic institutions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... flue gases at the inlet of my particulate matter control device? 60.1325 Section 60.1325 Protection of... the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate... particulate matter control device. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... flue gases at the inlet of my particulate matter control device? 60.1325 Section 60.1325 Protection of... the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate... particulate matter control device. ...
CleAir Monitoring System for Particulate Matter: A Case in the Napoleonic Museum in Rome
Bonacquisti, Valerio; Di Michele, Marta; Frasca, Francesca; Chianese, Angelo; Siani, Anna Maria
2017-01-01
Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case. PMID:28892016
BAYESIAN HIERARCHICAL MODELING OF PERSONAL EXPOSURE TO PARTICULATE MATTER
In the US EPA's 1998 Baltimore Epidemiology-Exposure Panel Study, a group of 21 residents of a single building retirement community wore personal monitors recording personal fine particulate air pollution concentrations (PM2.5) for 27 days, while other monitors recorde...
Szigeti, Tamás; Dunster, Christina; Cattaneo, Andrea; Spinazzè, Andrea; Mandin, Corinne; Le Ponner, Eline; de Oliveira Fernandes, Eduardo; Ventura, Gabriela; Saraga, Dikaia E; Sakellaris, Ioannis A; de Kluizenaar, Yvonne; Cornelissen, Eric; Bartzis, John G; Kelly, Frank J
2017-06-01
In the frame of the OFFICAIR project, office buildings were investigated across Europe to assess how the office workers are exposed to different particulate matter (PM) characteristics (i.e. PM 2.5 mass concentration, particulate oxidative potential (OP) based on ascorbate and reduced glutathione depletion, trace element concentration and total particle number concentration (PNC)) within the buildings. Two offices per building were investigated during the working hours (5 consecutive days; 8h per day) in two campaigns. Differences were observed for all parameters across the office buildings. Our results indicate that the monitoring of the PM 2.5 mass concentration in different offices within a building might not reflect the spatial variation of the health relevant PM characteristics such as particulate OP or the concentration of certain trace elements (e.g., Cu, Fe), since larger differences were apparent within a building for these parameters compared to that obtained for the PM 2.5 mass concentration in many cases. The temporal variation was larger for almost all PM characteristics (except for the concentration of Mn) than the spatial differences within the office buildings. These findings indicate that repeated or long-term monitoring campaigns are necessary to have information about the temporal variation of the PM characteristics. However, spatial variation in exposure levels within an office building may cause substantial differences in total exposure in the long term. We did not find strong associations between the investigated indoor activities such as printing or windows opening and the PNC values. This might be caused by the large number of factors affecting PNC indoors and outdoors. Copyright © 2017 Elsevier B.V. All rights reserved.
Advanced Hybrid Particulate Collector Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.J.
As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...
Samek, Lucyna; Furman, Leszek; Mikrut, Magdalena; Regiel-Futyra, Anna; Macyk, Wojciech; Stochel, Grażyna; van Eldik, Rudi
2017-11-01
Submicron particulate matter containing particles with an aerodynamic diameter ≤1 μm (PM1) are not monitored continuously by Environmental Protection Agencies around the World and are seldom studied. Numerous studies have indicated that people exposed to ultrafine (≤100 nm), submicron and fine particulate matter containing particles with an aerodynamic diameter ≤2.5 μm (PM2.5), can suffer from respiratory track diseases, cardiovascular, immunological or heart diseases and others. Inorganic pollutants containing redox active transition metals and small gaseous molecules, are involved in the generation of reactive oxygen and reactive nitrogen species. Inhalation of this kind of particles can affect immune-toxicity. Environmental pollution may aggravate the course of autoimmune diseases, in particular influence the mechanisms of the autoimmune system. Important factors that influence the toxicity of particulate matter, are particle size distribution, composition and concentration. This report deals with the composition of PM1 and PM2.5 fractions collected in Krakow, Poland. In spring 2015, the mean concentrations of PM1 and PM2.5 were 19 ± 14 and 27 ± 19 μg/m 3 , respectively. The PM2.5 fraction contained approximately 70 ± 17% of submicron particulate matter. In spring 2016, the mean concentrations of PM1 and PM2.5 were 12 ± 5 and 22 ± 12 μg/m 3 , respectively. The PM2.5 fraction contained approximately 60 ± 15% of submicron particulate matter. The concentrations of the elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in both fractions were determined by X-ray fluorescence spectrometry. Most of the analyzed metals had higher concentrations in the fine fraction than in the submicron one. Concentrations of V and As were below the detection limit in both fractions, whereas concentrations of Mn and Ca were below the detection limits in the PM1 fraction. The results are discussed in terms of the consequences they may have on the APARIC project presently underway in Krakow. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of a Direct Personal Coarse Particulate Matter Monitor
One aspect of the North Carolina Adult Asthma and Environment study (NCAAES) was to evaluate personal exposures to coarse particulate matter (PM 10-2.5) and their associated variability. As part of this, we examined the ability of a community-based monitor to act as...
Effects of Large-Scale Solar Installations on Dust Mobilization and Air Quality
NASA Astrophysics Data System (ADS)
Pratt, J. T.; Singh, D.; Diffenbaugh, N. S.
2012-12-01
Large-scale solar projects are increasingly being developed worldwide and many of these installations are located in arid, desert regions. To examine the effects of these projects on regional dust mobilization and air quality, we analyze aerosol product data from NASA's Multi-angle Imaging Spectroradiometer (MISR) at annual and seasonal time intervals near fifteen photovoltaic and solar thermal stations ranging from 5-200 MW (12-4,942 acres) in size. The stations are distributed over eight different countries and were chosen based on size, location and installation date; most of the installations are large-scale, took place in desert climates and were installed between 2006 and 2010. We also consider air quality measurements of particulate matter between 2.5 and 10 micrometers (PM10) from the Environmental Protection Agency (EPA) monitoring sites near and downwind from the project installations in the U.S. We use monthly wind data from the NOAA's National Center for Atmospheric Prediction (NCEP) Global Reanalysis to select the stations downwind from the installations, and then perform statistical analysis on the data to identify any significant changes in these quantities. We find that fourteen of the fifteen regions have lower aerosol product after the start of the installations as well as all six PM10 monitoring stations showing lower particulate matter measurements after construction commenced. Results fail to show any statistically significant differences in aerosol optical index or PM10 measurements before and after the large-scale solar installations. However, many of the large installations are very recent, and there is insufficient data to fully understand the long-term effects on air quality. More data and higher resolution analysis is necessary to better understand the relationship between large-scale solar, dust and air quality.
Grimm, Hans; Eatough, Delbert J
2009-01-01
The GRIMM model 1.107 monitor is designed to measure particle size distribution and particulate mass based on a light scattering measurement of individual particles in the sampled air. The design and operation of the instrument are described. Protocols used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring particulate matter (PM) less than 10 microm (PM10) and less than 2.5 microm (PM2.5) in aerodynamic diameter are described. The performance of the resulting continuous monitor has been evaluated by comparing GRIMM monitor PM2.5 measurements with results obtained by the Rupprecht and Patashnick Co. (R&P) filter dynamic measurement system (FDMS). Data were obtained during month-long studies in Rubidoux, CA, in July 2003 and in Fresno, CA, in December 2003. The results indicate that the GRIMM monitor does respond to total PM2.5 mass, including the semi-volatile components, giving results comparable to the FDMS. The data also indicate that the monitor can be used to estimate water content of the fine particles. However, if the inlet to the monitor is heated, then the instrument measures only the nonvolatile material, more comparable to results obtained with a conventional heated filter tapered element oscillating microbalance (TEOM) monitor. A recent modification of the model 180, with a Nafion dryer at the inlet, measures total PM2.5 including the nonvolatile and semi-volatile components, but excluding fine particulate water. Model 180 was in agreement with FDMS data obtained in Lindon, UT, during January through February 2007.
Numerous epidemiological studies have found associations between airborne particulate matter measured at community monitors and increased mortality and morbidity. Chemical and physical characteristics of particulate matter (e.g., elemental composition, size) and source identifi...
Risch, M.R.; Prestbo, E.M.; Hawkins, L.
2007-01-01
Ground-level concentrations of three atmospheric mercury species were measured using manual sampling and analysis to provide data for estimates of mercury dry deposition. Three monitoring stations were operated simultaneously during winter, spring, and summer 2004, adjacent to three mercury wet-deposition monitoring stations in northern, central, and southern Indiana. The monitoring locations differed in land-use setting and annual mercury-emissions level from nearby sources. A timer-controlled air-sampling system that contained a three-part sampling train was used to isolate reactive gaseous mercury, particulate-bound mercury, and elemental mercury. The sampling trains were exchanged every 6 days, and the mercury species were quantified in a laboratory. A quality-assurance study indicated the sampling trains could be held at least 120 h without a significant change in reactive gaseous or particulate-bound mercury concentrations. The manual sampling method was able to provide valid mercury concentrations in 90 to 95% of samples. Statistical differences in mercury concentrations were observed during the project. Concentrations of reactive gaseous and elemental mercury were higher in the daytime samples than in the nighttime samples. Concentrations of reactive gaseous mercury were higher in winter than in summer and were highest at the urban monitoring location. The results of this case study indicated manual sampling and analysis could be a reliable method for measurement of atmospheric mercury species and has the capability for supplying representative concentrations in an effective manner from a long-term deposition-monitoring network. ?? 2007 Springer Science+Business Media B.V.
DOT National Transportation Integrated Search
2011-06-01
The primary objective of this project is to develop an improved understanding of the factors affecting the toxicology of particulate exhaust emissions. Diesel particulate matter is a known carcinogen, and particulate exhaust emissions from both light...
Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Markham; Joseph Cosgrove; David Marran
1999-05-31
This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustionmore » flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.« less
This page contains a variety of fact sheets and other documents that are supplementary to the 2010 final revisions to lead (Pb) ambient air monitoring requirements and the 2013 final method for determination of Pb in total suspended particulate matter.
A Citizen Science and Government Collaboration: Developing ...
The U.S. Environmental Protection Agency (EPA) is actively involved in supporting citizen science projects and providing communities with information and assistance for conducting their own air pollution monitoring. As part of a Regional Applied Research Effort (RARE) project, EPA's Office of Research and Development (ORD) worked collaboratively with EPA Region 2 and the Ironbound Community Corporation (ICC) in Newark, New Jersey, to develop and test the “Air Sensor Toolbox for Citizen Scientists.” In this collaboration, citizen scientists measured local gaseous and particulate air pollution levels by using a customized low-cost sensor pod designed and fabricated by EPA. This citizen science air quality measurement project provided an excellent opportunity for EPA to evaluate and improve the Toolbox resources available to communities. The Air Sensor Toolbox, developed in coordination with the ICC, can serve as a template for communities across the country to use in developing their own air pollution monitoring programs in areas where air pollution is a concern. This pilot project provided an opportunity for a highly motivated citizen science organization and the EPA to work together directly to address environmental concerns within the community. Useful lessons were learned about how to improve coordination between the government and communities and the types of tools and technologies needed for conducting an effective citizen science project that can be app
SUMMARY FINDINGS FROM THE U.S. EPA'S PARTICULATE MATTER PANEL STUDIES
The U.S. EPA's Particulate Matter Panel Studies were a series of longitudinal human exposure studies used to characterize personal exposures to particulate matter (PM) and related co-pollutants to that of pollutants of ambient origin. Participants were monitored over time (28 d...
Stanfill, S B; Ashley, D L
2000-04-01
Little is known about the possible health effects associated with inhaling alkenylbenzenes through cigarette smoking, even though these flavor-related compounds have known toxic effects in animals. We developed a rapid and sensitive solid-phase extraction (SPE) method to quantify seven alkenylbenzenes and piperonal in mainstream cigarette smoke particulate. The smoke particulate fraction of a single cigarette was collected on Cambridge filter pads, solvent extracted, concentrated, purified with SPE, and analyzed by selected ion monitoring gas chromatography-mass spectrometry. We positively identified and quantified five alkenylbenzenes compounds (eugenol, isoeugenol, methyleugenol myristicin, and elemicin) and piperonal in the smoke particulate from eight U.S. brands with mean levels (measured in triplicate) ranging from 6.6 to 4210 ng per cigarette. Additionally, complete blocking of nearly invisible ventilation holes in the cigarette filter increased 2- to 7-fold the percent transfer of alkenylbenzenes from tobacco to the particulate fraction of mainstream smoke.
Comprehensive assessment of toxic emissions from coal-fired power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T D; Schmidt, C E; Radziwon, A S
1991-01-01
The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS)more » to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong, Hee Je; Choi, Seungmok
2015-10-09
This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWCmore » functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.« less
Space Station Environmental Health System water quality monitoring
NASA Technical Reports Server (NTRS)
Vincze, Johanna E.; Sauer, Richard L.
1990-01-01
One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.
A combined epidemiological-exposure panel study was conducted during the summer of 1998 in Baltimore, Maryland. The objectives of the exposure analysis component of the 28-day study were to investigate the statistical relationships between particulate matter (PM) and related co...
Atmospheric pollution in Lisbon urban atmosphere
NASA Astrophysics Data System (ADS)
Oliveira, C.
2009-04-01
Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µm
Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, Ronald; Acheson, A.; Peterson, J.
1999-01-01
An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forests, lichens, cryptogamic crusts, high-elevation lakes and streams, arid lands, and class I areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.
Real-time non-invasive detection of inhalable particulates delivered into live mouse airways.
Donnelley, Martin; Morgan, Kaye S; Fouras, Andreas; Skinner, William; Uesugi, Kentaro; Yagi, Naoto; Siu, Karen K W; Parsons, David W
2009-07-01
Fine non-biological particles small enough to be suspended in the air are continually inhaled as we breathe. These particles deposit on airway surfaces where they are either cleared by airway defences or can remain and affect lung health. Pollutant particles from vehicles, building processes and mineral and industrial dusts have the potential to cause both immediate and delayed health problems. Because of their small size, it has not been possible to non-invasively examine how individual particles deposit on live airways, or to consider how they behave on the airway surface after deposition. In this study, synchrotron phase-contrast X-ray imaging (PCXI) has been utilized to detect and monitor individual particle deposition. The in vitro detectability of a range of potentially respirable particulates was first determined. Of the particulates tested, only asbestos, quarry dust, fibreglass and galena (lead sulfate) were visible in vitro. These particulates were then examined after delivery into the nasal airway of live anaesthetized mice; all were detectable in vivo but each exhibited different surface appearances and behaviour along the airway surface. The two fibrous particulates appeared as agglomerations enveloped by fluid, while the non-fibrous particulates were present as individual particles. Synchrotron PCXI provides the unique ability to non-invasively detect and track deposition of individual particulates in live mouse airways. With further refinement of particulate sizing and delivery techniques, PCXI should provide a novel approach for live animal monitoring of airway particulates relevant to lung health.
On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alex; Ragaller, Paul; Herman, Andrew
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directlymore » monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.« less
Influencing factors on particle-bound contaminant transport in the Elbe estuary
NASA Astrophysics Data System (ADS)
Kleisinger, Carmen; Haase, Holger; Schubert, Birgit
2016-04-01
Particulate matter, i.e. suspended particulate matter and sediments in rivers and estuaries, often are contaminated with trace metals and selected organic contaminants and are mainly associated with fine-grained fractions. Transport processes and fate of particles in estuaries are influenced by several factors, e.g. freshwater discharge, tide, flow velocity and dredging activities (Kappenberg et al., 2007). Understanding the transport processes in estuaries may help to achieve the objectives of the Water Framework Directive and the Marine Strategy Framework Directive. The German Federal Institute of Hydrology (BfG) operates for more than 20 years five monitoring sites in the Elbe estuary in order to monitor the development of particle-bound contaminant concentrations over time and to understand their transport mechanisms. Results of the monitoring revealed freshwater discharge as an important influencing factor on the transport of contaminated particulate matter (Ackermann et al., 2007). The bidirectional transport of marine and fluvial water and particulate matter in estuaries results in a turbidity zone where large amounts of particulate matter are temporarily retained and thus in a delayed transport of particulate matter towards the sea. The extent and the location of the turbidity zone as well as the ratio of highly contaminated fluvial and less contaminated marine sediments at a given location are mainly influenced by the freshwater discharge (Kowalewska et al., 2011). Furthermore, at high freshwater discharge conditions the highly contaminated particulate matter from fluvial origin are transported downstream the estuary, whereas at low freshwater discharges, upstream transport of less contaminated marine sediments prevails. Hence, residence times of particulate matter in the estuary are difficult to estimate. Furthermore, sedimentation areas with flow reduced conditions, e.g. wadden areas or branches of the Elbe estuary, may act as sinks for particle bound contaminants and remove them temporarily or in long term from further transport. In the past, highly contaminated sediments were deposited in these retention areas. The estimated total contamination load in these areas exceeds the annual contamination load entering the estuary by a factor up to 11 (BfG, 2014). Monitoring in sedimentation areas by the means of sediment cores gave no indications for current distinct sedimentation or erosion. It is assumed that the highly contaminated sediments in greater depths are most likely to be resuspended only due to extreme events or human intervention (BfG, 2014). Additionally, dredging and depositing of dredged sediments in the Elbe estuary influence the transport of contaminated sediments. Deposition of dredged material further downstream the dredging site accelerates the transport of particulate matter towards the sea. As the residence time of particulate matter within the estuary varies by many influencing factors, mass balances are associated with large uncertainties and accordingly, annual particle-bound contaminant loads released into the North Sea cannot be calculated reliable. Ackermann, F. and Schubert, B. (2007): Trace metals as indicators for the dynamics of (suspended) particulate matter in the tidal reach of the River Elbe. Sediment Dynamics and Pollutant Mobility in Rivers. U. Förstner and B. Westrich. Heidelberg, Springer Verlag, 296-304. BfG (2014). Sedimentmanagement Tideelbe - Strategien und Potenziale - Systemstudie II. Ökologische Auswirkungen der Unterbringung von Feinmaterial. BfG-1763. Kappenberg, J. and Fanger, H.-U. (2007): "Sedimenttransportgeschehen in der tidebeeinflussten Elbe, der Deutschen Bucht und in der Nordsee." 2007/20, 123. Kowalewska, G., Belzunce-Segarra, M. J., Schubert, B., Heininger, P. and Heise, S. (2011): The Role of Sediments in Coastal Monitoring. Chemical Marine Monitoring. P. Quevauviller, P. Roose and G. Verreet. Chichester, West Sussex, UK, John Wiley & Sons Ltd., 384-388.
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...
The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10-2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spa...
Ni, Yang; Tu, Xing-ying; Zhu, Yi-dan; Guo, Xin-biao; Deng, Fu-rong
2014-06-18
To study the concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing. Real-time monitoring of particles' mass and number concentrations were conducted in an area of Beijing from February 7(th) to 27(th), 2013. At the same time, the meteorological data were also collected from the Beijing meteorological website. Differences of the particles' mass and number concentrations during different periods were analyzed using Mann-Whitney U test. Meanwhile, the influenced factors were also analyzed. The mean concentrations of fine particulate matters and ultrafine particles were (157.2 ± 142.8) μg/m³ and (25 018 ± 9 309) particles/cm³, respectively. The particles' number and mass concentrations in haze days were 1.27 times and 2.91 times higher than those in non-haze days, respectively. The mass concentrations of fine particulate matters in the self-monitoring site were higher than those in the nearest central monitoring sites, and the hourly-average concentrations of particles were significantly consistent with those at the commuter times. Meanwhile, the setting off of fireworks/firecrackers during the Spring Festival could lead to short-term increases of the particles' number and mass concentrations. When the wind speed was low and the related humidity was high, the concentrations of particulate matters were relatively high, and the mass concentrations of fine particulate matters were lagged about 1-2 d. The level of the particulate matters in this area was high. Heavy traffic, setting off of fireworks/firecrackers and meteorological factors may be some of the main factors affecting the concentrations of the particulate matters in this area. Among those factors, the effect of setting off of fireworks/firecrackers didn't last long and the effect of the meteorological factors had a hysteresis effect.
Gupta, A K; Nag, Subhankar; Mukhopadhyay, U K
2006-04-01
In this study, the relationship between inhalable particulate (PM(10)), fine particulate (PM(2.5)), coarse particles (PM(2.5 - 10)) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003-2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3-5 m above ground near highly trafficked and congested areas. The 24 h average PM(10) and PM(2.5) samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM(2.5) and PM(10) were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM(10) and PM(2.5) and inverse correlation was observed between particulate matter (PM(10) and PM(2.5)) and wind speed. Statistical analysis of air quality data shows that PM(10) and PM(2.5) are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM(10) and PM(2.5) and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM(10)) and fine particulate (PM(2.5)) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM(10) (BSM10) and benzene soluble organic fraction of PM(2.5) (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, Jonathan L.; Miley, Harry S.; Bowyer, Theodore W.
The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed—particulate and noble gas (radioxenon) detection—have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature.more » Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked.« less
Burnett, Jonathan L; Miley, Harry S; Bowyer, Theodore W; Cameron, Ian M
2018-09-01
The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed-particulate and noble gas (radioxenon) detection-have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature. Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2008-12-31
As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
Miniature Sensors for Airborne Particulate Matter
Our group is working to design a small,lightweight, low-cost real-time particulate matter(PM) sensor to enable better monitoring of PMconcentrations in air, with the goal of informingpolicymakers and regulators to provide betterpublic health. The sensor reads the massconcentratio...
Estimating labile particulate iron concentrations in coastal waters from remote sensing data
NASA Astrophysics Data System (ADS)
McGaraghan, Anna R.; Kudela, Raphael M.
2012-02-01
Owing to the difficulties inherent in measuring trace metals and the importance of iron as a limiting nutrient for biological systems, the ability to monitor particulate iron concentration remotely is desirable. This study examines the relationship between labile particulate iron, described here as weak acid leachable particulate iron or total dissolvable iron, and easily obtained bio-optical measurements. We develop a bio-optical proxy that can be used to estimate large-scale patterns of labile iron concentrations in surface waters, and we extend this by including other environmental variables in a multiple linear regression statistical model. By utilizing a ratio of optical backscatter and fluorescence obtained by satellite, we identify patterns in iron concentrations confirmed by traditional shipboard sampling. This basic relationship is improved with the addition of other environmental parameters in the statistical linear regression model. The optical proxy detects known temporal and spatial trends in average surface iron concentrations in Monterey Bay. The proxy is robust in that similar performance was obtained using two independent particulate iron data sets, but it exhibits weaker correlations than the full statistical model. This proxy will be a valuable tool for oceanographers seeking to monitor iron concentrations in coastal regions and allows for better understanding of the variability of labile particulate iron in surface waters to complement direct measurement of leachable particulate or total dissolvable iron.
Exposure and Human Health Evaluation of Airborne Pollution ...
In the days following the September 11, 2001, terrorist attack on New York City's World Trade Center (WTC) towers, many Federal agencies, including the U.S. Environmental Protection Agency (EPA), were called upon to bring their technical and scientific expertise to the national emergency. Several EPA offices, including the Office of Research and Development (ORD), quickly became involved with the Agency's response. This project entails an exposure and human health risk assessment of the impact of air emissions from the collapse of the World Trade Center Towers. ORD's National Center for Environmental Assessment (NCEA) are conducting this assessment at the request of EPA's Region II, which includes the New York City metropolitan area in both New York and New Jersey. The assessment relies primarily on the results of ambient air samples from monitors at various sites in Lower Manhattan and surrounding areas. These monitoring activities were undertaken by Federal, State and local agencies that have made their analytical results available to EPA for analysis. Most of the monitors were placed following the disaster with the intent of surrounding the World Trade Center site at different distances. Some monitors for particulate matter, operated by New York State, existed prior to the disaster. In addition, this report provides a limited discussion of the results of both indoor and outdoor dust samples and the results of some indoor air samples. The project focus
MONITORING OF PARTICULATE MATTER OUTDOORS
Recent studies of the size and composition of atmospheric particulate matter (PM) have demonstrated the usefulness of separating atmospheric PM into its fine and coarse components. The need to measure the mass and composition of fine and coarse PM separately has been emphasized b...
Find tools for particulate matter, maps of nonattainment areas, an overview of the proposal, and information on designations, monitoring and permitting requirements and a presentation on the 2012 PM NAAQS revision.
Recent personal exposure panel studies and monitoring programs addressing fine particulate matter (PM) and associated co-pollutants have elucidated the physical and statistical relationships between personal exposures, residential indoor concentrations (and sources), concentratio...
Code of Federal Regulations, 2011 CFR
2011-07-01
... to monitor relative particulate matter loadings. Battery breaking area means the plant location at which lead-acid batteries are broken, crushed, or disassembled and separated into components. Blast...) Casting operations occur. High efficiency particulate air (HEPA) filter means a filter that has been...
Code of Federal Regulations, 2010 CFR
2010-07-01
... to monitor relative particulate matter loadings. Battery breaking area means the plant location at which lead-acid batteries are broken, crushed, or disassembled and separated into components. Blast...) Casting operations occur. High efficiency particulate air (HEPA) filter means a filter that has been...
The purpose of this SOP is to describe the in-field use of the particulate sampling system (pumping, control unit, and size selective inlet impactors) for collecting samples of particulate matter from the air during a predetermined time period during the Arizona NHEXAS project an...
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...
Hubeny, J Bradford; Kenney, Melanie; Warren, Barbara; Louisos, Jeremy
2017-01-01
Turbidity is a water quality parameter that is known to adversely affect aquatic systems, however the causes of turbid water are often elusive. We present results of a study designed to constrain the source of particulate matter in a coastal embayment that has suffered from increased turbidity over past decades. Our approach utilized monitoring buoys to quantify turbidity at high temporal resolution complemented by geochemical isotope analysis of suspended sediment samples and meteorological data. Results reveal a complex system in which multiple sources are associated with particulate matter. Weight of evidence demonstrates that phytoplankton productivity in the water column, however, is the dominant source of particulate matter associated with elevated turbidity in Salem Harbor, Massachusetts. Allochthonous matter from the watershed was observed to mix into the pool of suspended particulate matter near river mouths, especially in spring and summer. Resuspension of harbor surface sediments likely provides additional particulates in the regions of boat moorings, especially during summer when recreational boats are attached to moorings. Our approach allows us to constrain the causes of turbidity events in this embayment, is helping with conservation efforts of environmental quality in the region, and can be used as a template for other locations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.
2004-01-01
Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.
Kuwaiti oil fires—Particulate monitoring
NASA Astrophysics Data System (ADS)
Husain, Tahir; Amin, Mohamed B.
The total suspended particulate (TSP) matters using a high-volume sampler and inhalable particulate matters using PM-10 samplers were collected at various locations in the Eastern Province of Saudi Arabia during and after the Kuwaiti oil fires. The collected samples were analysed for toxic metals and oil hydrocarbon concentrations including some carcinogenic organic compounds in addition to gravimetric analysis. The concentration values of particulate matters were determined on a daily basis at Dhahran. Abqaiq, Rahima, Tanajib and Jubail locations. The analyses of the filters show a high concentration of the inhalable particulate at various locations, especially when north or northwest winds were blowing. It was found that the inhalable particulate concentration exceeded the Meteorology and Environmental Protection Administration (MEPA) permissible limit of 340 μg m- 3 at most of these locations during May-October 1991. A trend between the total suspended particulate and inhalable particulate measured concurrently at the same locations was observed and a regression equation was developed to correlate PM-10 data with the total suspended particulate data.
Epidemiological studies of particulate matter (PM) routinely use concentrations measured with stationary outdoor monitors as surrogates for personal exposure. Despite the frequently reported poor correlations between ambient concentrations and total personal exposure, the epidemi...
In situ measurement of particulate number density and size distribution from an aircraft
NASA Technical Reports Server (NTRS)
Briehl, D.
1974-01-01
Commercial particulate measuring instruments were flown aboard the NASA Convair 990. A condensation nuclei monitor was utilized to measure particles larger than approximately 0.003 micrometers in diameter. A specially designed pressurization system was used with this counter so that the sample could be fed into the monitor at cabin altitude pressure. A near-forward light scattering counter was used to measure the number and size distribution particles in the size range from 0.5 to 5 micrometers and greater in diameter.
Monitor of the concentration of particles of dense radioactive materials in a stream of air
Yule, Thomas J.
1979-01-01
A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.
Contamination monitoring approaches for EUV space optics
NASA Technical Reports Server (NTRS)
Ray, David C.; Malina, Roger F.; Welsh, Barry J.; Battel, Steven J.
1989-01-01
Data from contaminant-induced UV optics degradation studies and particulate models are used here to develop end-of-service-life instrument contamination requirements which are very stringent but achievable. The budget is divided into allocations for each phase of hardware processing. Optical and nonoptical hardware are monitored for particulate and molecular contamination during initial cleaning and baking, assembly, test, and calibration phases. The measured contamination levels are compared to the requirements developed for each phase to provide confidence that the required end-of-life levels will be met.
Fang, Guor-Cheng; Lin, Yen-Heng; Zheng, Yu-Cheng
2016-02-01
The main purpose of this study was to monitor ambient air particles and particulate-bound mercury Hg(p) in total suspended particulate (TSP) concentrations and dry deposition at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling sites during the daytime and nighttime, from 2011 to 2012. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulate-bound mercury Hg(p) were also studied with Baklanov & Sorensen and the Williams models. For a particle size of 10 μm, the Baklanov & Sorensen model yielded better predictions of dry deposition of ambient air particulates and particulate-bound mercury Hg(p) at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling site during the daytime and nighttime sampling periods. However, for particulates with sizes 20-23 μm, the results obtained in the study reveal that the Williams model provided better prediction results for ambient air particulates and particulate-bound mercury Hg(p) at all sampling sites in this study.
COMPARISON OF MEASUREMENTS OF AMBIENT PARTICLE NITRATE WITH SEMI-CONTINUOUS INSTRUMENTS
Comparisons between two different semi-continuous monitors of ambient level particulate nitrate are interpreted for both field and laboratory studies. One instrument involves thermal desorption of particulate nitrate to form a combination of NO and NO2 gases which are detected ...
COMPARISON OF MEASUREMENT OF AMBIENT PARTICLE NITRATE WITH SEMI-CONTINUOPUS INSTRUMENTS
Comparisons between two different semi-continuos monitors of ambient level particulate nitrate are interpreted for both field and laboratory studies. One instrument involves flash vaporization of impacted particulate nitrate to form a combination of NO and NO2 gases which are de...
An evaluation of indoor and outdoor biological particulate matter (BioPM)
Monitoring of indoor and ambient particulate matter (PM) and the characterization of the content for biological aerosol concentrations has not been extensively performed. Samples from urban and rural North Carolina, and Denver, CO, were collected and analyzed as the goal of this ...
SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I
Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...
Particulate and Gaseous Emissions Measurement System (PAGEMS) Project
NASA Technical Reports Server (NTRS)
Kostic, Milivoje
2003-01-01
Professor Kostic will work on the current UEET program of the Aerosol and Particulate task. This task will focus on: how to acquire experimental data through Labview software how to make the data acquisition system more efficient trouble existing problem of the labview software recommend a better system improve existing system with better data and usually friendly.Three different assignments in this project included:Particle-Size Distribution Data Presentation;Error or Uncertainty Analysis of Measurement Results; and Enhancement of LabVlRN Data Acquisition Program for GRC PAGEMS Project.
Richardson, Claire; Rutherford, Shannon; Agranovski, Igor
2018-06-01
Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM 10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM 2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Comprehensive air quality monitoring was undertaken, and corresponding recommendations were provided.
Transportation conformity particulate matter hot-spot air quality modeling.
DOT National Transportation Integrated Search
2013-07-01
In light of the new development in particulate matter (PM) hot-spot regulations and Illinois Department : of Transportation (IDOT)s National Environmental Policy Act (NEPA) documentation requirements, : this project is intended to (1) perform and ...
Dutmer, Cullen M; Schiltz, Allison M; Freeman, Kristy L; Christie, Matthew J; Cerna, Juana A; Cho, Seung-Hyun; Chartier, Ryan T; Thornburg, Jonathan W; Hamlington, Katharine L; Crooks, James L; Fingerlin, Tasha E; Schwartz, David A; Liu, Andrew H
2018-04-01
Home dampness and mold are associated with asthma severity and exacerbations, but little is known about the nature of these exposures in at-risk children. To test the hypothesis that observed dampness, water damage, and mold in the home are associated with higher exposure to particulate matter less than 10 μm in diameter in a cohort of at-risk children with asthma. We performed a pilot study in 8- to 16-year-old children with exacerbation-prone asthma (n = 29; Denver Asthma Panel Study). Exposure to particulate matter less than 10 μm in diameter was measured over ∼72 hours with personal wearable monitors (MicroPEM [RTI International] and iTrack Micro GPS tracker) and stationary bedroom-located monitors (PEM, MSP Corporation). Mean percentage personal monitored time was 93% (95% confidence interval, 90-96%). Mean and spikes of real-time exposure to particulate matter less than 10 μm in diameter were calculated and, for personal monitored samples, partitioned into exposure while at home, school, or other locations. We defined a sustained spike exposure as a continuous period of 20 minutes or longer during which levels were greater than 50 μg/μL over the participant's minimum levels, using a 2-minute moving average of the particulate matter measurements. Mold and dampness were assessed by detailed home inspection. Visible water damage/moisture/mold and mold/mildew were common in the homes of exacerbation-prone children: bathroom, 60% and 46%; basement, 30% and 34%; kitchen, 22% and 39%; living room, 20% and 2%; bedroom, 12% and 2%; and other rooms, 21% and 7%, respectively. Personal and bedroom filter-based levels of particulate matter less than 10 μm in diameter were associated with home cumulative measures of water damage/moisture/mold (personal r 2 = 0.13, P = 0.02; bedroom r 2 = 0.19, P = 0.006; analysis of variance) and mold/mildew (personal r 2 = 0.11, P = 0.04; bedroom r 2 = 0.18, P = 0.008). Real-time integrated particulate matter less than 10 μm in diameter during sustained spike exposures that occurred when participants were home (normalized by total duration of sustained spike exposures) was associated with cumulative drips/leaks/wet areas (r 2 = 0.27; P = 0.004), mold/mildew (r 2 = 0.15; P = 0.04), and water damage/moisture/mold (r 2 = 0.14; P = 0.04). Other measures of exposure to particulate matter less than 10 μm in diameter from personal or stationary monitors were not associated with home dampness or mold indicators. Although mold exposure was not directly quantified in the respirable aerosol in this study, observations of home dampness and mold were associated with sustained spikes in respirable particulate matter less than 10 μm in diameter that was measured by wearable real-time monitors. In our cohort of at-risk children, this finding could imply that mold may exert respiratory health effects via sustained spikes in exposure and help to guide future studies and interventions to reduce these spikes and improve asthma outcomes.
New Methods for Personal Exposure Monitoring for Airborne Particles
Koehler, Kirsten A.; Peters, Thomas
2016-01-01
Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary, central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual’s exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-hour monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2005-10-02
Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2006-04-02
As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM stationmore » will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2005-04-02
Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2004-10-02
Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing
Sappok, Alexander; Ragaller, Paul; Herman, Andrew; ...
2018-04-03
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means formore » interrogating the condition of the filter itself. Here, this study investigated the use of RF sensors for the continuous measurement of filter trapping efficiency, which was compared to downstream measurements with an AVL Microsoot Sensor, and a PM sampling probe simulating the geometry and installation configuration of a conventional PM sensor. The study included several particulate filter failure modes, both above and below the OBD threshold. Finally, the results confirmed the use of RF sensors to provide a direct and continuous measure of the particulate filter’s state of health over a range of typical in-use operating conditions, thereby significantly increasing the time window over which filter failures may be detected.« less
Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Ragaller, Paul; Herman, Andrew
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means formore » interrogating the condition of the filter itself. Here, this study investigated the use of RF sensors for the continuous measurement of filter trapping efficiency, which was compared to downstream measurements with an AVL Microsoot Sensor, and a PM sampling probe simulating the geometry and installation configuration of a conventional PM sensor. The study included several particulate filter failure modes, both above and below the OBD threshold. Finally, the results confirmed the use of RF sensors to provide a direct and continuous measure of the particulate filter’s state of health over a range of typical in-use operating conditions, thereby significantly increasing the time window over which filter failures may be detected.« less
Advances in Satellite Remote Sensing of Particulate Air Pollution: From MISR to MAIA
NASA Astrophysics Data System (ADS)
Diner, D. J.; Burke, K.; Xu, F.; Garay, M. J.; Kalashnikova, O. V.; Liu, Y.; Meng, X.; Wang, J.; Martin, R.; Ostro, B.
2017-12-01
Airborne particulate matter (PM) is a well-known cause of cardiovascular and respiratory disease. To estimate human exposure to PM pollution, satellite instruments such as the Terra Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate resolution Imaging Spectroradiometer (MODIS) have been used in conjunction with surface monitors to map near-surface PM concentrations. The relative toxicity of different size and compositional mixtures of PM is not well understood. To address this, we are developing the Multi-Angle Imager for Aerosols (MAIA) investigation. The satellite instrument extends MISR's multiangular visible and near-infrared (VNIR) spectral coverage to 14 bands in the ultraviolet, VNIR, and shortwave IR; three of the bands are polarimetric to enhance sensitivity to aerosol size and composition. To constrain the retrievals, the observations will be combined with data from surface monitors and the WRF-Chem and GEOS-Chem chemical transport models. Existing surface PM speciation monitors will be supplemented by adding new stations to the Surface PARTiculate mAtter Network (SPARTAN). Unlike MISR, MAIA is a targeting instrument. Primary areas of interest include metropolitan areas in North and South America, Europe, the Middle East, Africa, India, and East Asia. PM retrieval algorithms are being developed using data from MISR and the high-altitude Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Epidemiologists on the MAIA science team will use the derived PM data products and birth, death, and hospital records to investigate adverse health impacts of different types of airborne particulates. MAIA's earliest possible launch date is mid-2020, making it possible for the data to be complemented by global observations from Terra as well as high temporal resolution atmospheric chemistry measurements from TEMPO (Tropospheric Emissions: Monitoring Pollution), GEMS (Geostationary Environment Monitoring Spectrometer), and Sentinel-4.
Primary particulate matter from ocean-going engines in the Southern California Air Basin.
Agrawal, Harshit; Eden, Rudy; Zhang, Xinqiu; Fine, Philip M; Katzenstein, Aaron; Miller, J Wayne; Ospital, Jean; Teffera, Solomon; Cocker, David R
2009-07-15
The impact of primary fine particulate matter (PM2.5) from ship emissions within the Southern California Air Basin is quantified by comparing in-stack vanadium (V) and nickel (Ni) measurements from in-use ocean-going vessels (OGVs) with ambient measurements made at 10 monitoring stations throughout Southern California. V and Ni are demonstrated as robust markers for the combustion of heavy fuel oil in OGVs, and ambient measurements of fine particulate V and Ni within Southern California are shown to decrease inversely with increased distance from the ports of Los Angeles and Long Beach (ports). High levels of V and Ni were observed from in-stack emission measurements conducted on the propulsion engines of two different in-use OGVs. The in-stack V and Ni emission rates (g/h) normalized by the V and Ni contents in the fuel tested correlates with the stack total PM emission rates (g/h). The normalized emission rates are used to estimate the primary PM2.5 contributions from OGVs at 10 monitoring locations within Southern California. Primary PM2.5 contributions from OGVs were found to range from 8.8% of the total PM2.5 at the monitoring location closest to the port (West Long Beach) to 1.4% of the total PM2.5 at the monitoring location 80 km inland (Rubidoux). The calculated OGV contributions to ambient PM2.5 measurements at the 10 monitoring sites agree well with estimates developed using an emission inventory based regional model. Results of this analysis will be useful in determining the impacts of primary particulate emissions from OGVs upon worldwide communities downwind of port operations.
Using indoor air quality monitoring in 6 counties to change policy in North Carolina.
Proescholdbell, Scott; Steiner, Julea; Goldstein, Adam O; Malek, Sally Herndon
2009-07-01
Indoor air quality monitoring has become a valuable tool for states wanting to assess levels of particulate matter before and after smoke-free policies are implemented. However, many states face barriers in passing comprehensive smoke-free legislation, making such study comparisons unlikely. We used indoor air monitoring data to educate decision makers about the value of comprehensive smoke-free laws in a state with strong historical ties to tobacco. We trained teams in 6 counties in North Carolina to monitor air quality in hospitality venues with 1 of 3 possible smoking policy designations: 1) smoke-free, 2) separate smoking and nonsmoking sections (mixed), or 3) smoking allowed in all areas. Teams monitored 152 venues for respirable suspended particles that were less than 2.5 microm in diameter and collected information on venue characteristics. The data were combined and analyzed by venue policy and by county. Our findings were presented to key decision makers, and we then collected information on media publicity about these analyses. Overall, smoke-free venues had the lowest particulate matter levels (15 microg/m3), well below established Environmental Protection Agency standards. Venues with mixed policies and venues that permitted smoking in all areas had particulate matter levels that are considered unhealthy by Environmental Protection Agency standards. The media coverage of our findings included newspaper, radio, and television reports. Findings were also discussed with local health directors, state legislators, and public health advocates. Study data have been used to quantify particulate matter levels, raise awareness about the dangers of secondhand smoke, build support for evidence-based policies, and promote smoke-free policies among policy makers. The next task is to turn this effort into meaningful policy change that will protect everyone from the harms of secondhand smoke.
Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman
2011-01-15
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.
Atmospheric oxidative chemistry of organic particulate emissions from fuel combustion.
DOT National Transportation Integrated Search
2011-03-25
"Construction and characterization of the University of Vermont Environmental Chamber (UVMEC) : were completed in this last phase of the project. The primary function of the UVMEC is to enable : tropospheric particulate formation and aging studies to...
SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA
Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...
Particulate measurement and control devices for hot mix asphalt plants.
DOT National Transportation Integrated Search
1973-01-01
The emission of particulates is the main form of air pollution from hot mix asphalt plants. The measurement of these emissions in the ambient air may be used by the state and the plant personnel to monitor the quality of air in the area of a plant. S...
We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...
40 CFR 60.1315 - Must I meet other requirements for continuous monitoring?
Code of Federal Regulations, 2012 CFR
2012-07-01
... continuous monitoring? 60.1315 Section 60.1315 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1315 Must I meet other requirements for continuous monitoring? You must also monitor three... at the inlet of your particulate matter air pollution control device. (c) Carbon feed rate if...
40 CFR 60.1315 - Must I meet other requirements for continuous monitoring?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous monitoring? 60.1315 Section 60.1315 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1315 Must I meet other requirements for continuous monitoring? You must also monitor three... at the inlet of your particulate matter air pollution control device. (c) Carbon feed rate if...
40 CFR 60.1315 - Must I meet other requirements for continuous monitoring?
Code of Federal Regulations, 2014 CFR
2014-07-01
... continuous monitoring? 60.1315 Section 60.1315 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1315 Must I meet other requirements for continuous monitoring? You must also monitor three... at the inlet of your particulate matter air pollution control device. (c) Carbon feed rate if...
40 CFR 60.1315 - Must I meet other requirements for continuous monitoring?
Code of Federal Regulations, 2013 CFR
2013-07-01
... continuous monitoring? 60.1315 Section 60.1315 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1315 Must I meet other requirements for continuous monitoring? You must also monitor three... at the inlet of your particulate matter air pollution control device. (c) Carbon feed rate if...
40 CFR 60.1315 - Must I meet other requirements for continuous monitoring?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous monitoring? 60.1315 Section 60.1315 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1315 Must I meet other requirements for continuous monitoring? You must also monitor three... at the inlet of your particulate matter air pollution control device. (c) Carbon feed rate if...
Near-Port Air Quality Assessment Utilizing a Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
The determination of the microstructure, chemical nature, and dynamical evolution of scattering particulates in the atmosphere is considered. A description is given of indirect sampling techniques which can circumvent most of the difficulties associated with direct sampling techniques, taking into account methods based on scattering, extinction, and diffraction of an incident light beam. Approaches for reconstructing the particulate size distribution from the direct and the scattered radiation are discussed. A new method is proposed for determining the chemical composition of the particulates and attention is given to the relevance of methods of solution involving first kind Fredholm integral equations.
NASA Astrophysics Data System (ADS)
Tasić, Viša; Jovašević-Stojanović, Milena; Vardoulakis, Sotiris; Milošević, Novica; Kovačević, Renata; Petrović, Jelena
2012-07-01
Accurate monitoring of indoor mass concentrations of particulate matter is very important for health risk assessment as people in developed countries spend approximately 90% of their time indoors. The direct reading, aerosol monitoring device, Turnkey, OSIRIS Particle Monitor (Model 2315) and the European reference low volume sampler, LVS3 (Sven/Leckel LVS3) with size-selective inlets for PM10 and PM2.5 fractions were used to assess the comparability of available optical and gravimetric methods for particulate matter characterization in indoor air. Simultaneous 24-hour samples were collected in an indoor environment for 60 sampling periods in the town of Bor, Serbia. The 24-hour mean PM10 levels from the OSIRIS monitor were well correlated with the LVS3 levels (R2 = 0.87) and did not show statistically significant bias. The 24-hour mean PM2.5 levels from the OSIRIS monitor were moderately correlated with the LVS3 levels (R2 = 0.71), but show statistically significant bias. The results suggest that the OSIRIS monitor provides sufficiently accurate measurements for PM10. The OSIRIS monitor underestimated the indoor PM10 concentrations by approximately 12%, relative to the reference LVS3 sampler. The accuracy of PM10 measurements could be further improved through empirical adjustment. For the fine fraction of particulate matter, PM2.5, it was found that the OSIRIS monitor underestimated indoor concentrations by approximately 63%, relative to the reference LVS3 sampler. This could lead to exposure misclassification in health effects studies relying on PM2.5 measurements collected with this instrument in indoor environments.
Katterman, Matthew E; Birchard, Stephanie; Seraphin, Supapan; Riley, Mark R
2007-01-01
There is increasing interest in continual monitoring of air for the presence of inhalation health hazards, such as particulate matter, produced through combustion of fossil fuels. Currently there are no means to rapidly evaluate the relative toxicity of materials or to reliably predict potential health impact due to the complexity of the composition, size, and physical properties of particulate matter. This research evaluates the feasibility of utilizing cell cultures as the biological recognition element of an inhalation health monitoring system. The response of rat lung type II epithelial (RLE-6TN) cells to a variety of combustion derived particulates and their components has been evaluated. The focus of the current work is an evaluation of how particles are delivered to a cellular sensing array and to what degree does washing or grinding of the particles impacts the cellular response. There were significant differences in the response of these lung cells to PM's of varying sources. Mechanical grinding or washing was found to alter the toxicity of some of these particulates; however these effects were strongly dependent on the fuel source. Washing reduced toxicity of oil PM's, but had little effect on those from diesel or coal. Mechanical grinding could significantly increase the toxicity of coal PM's, but not for oil or diesel.
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-02-18
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-01-01
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700
A longitudinal particulate matter (PM) exposure study was conducted in the Research Triangle Park, NC area between June 2000 and June 2001. Participants were selected from two groups of potentially susceptible sub-populations: a group of African-Americans living in an environme...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... Hydrogen Peroxide Filter Extraction'' In this method, total suspended particulate matter (TSP) is collected on glass fiber filters according to 40 CFR Appendix G to part 50, EPA Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air. The filter samples are...
A prototype coarse particulate matter PM(10-2.5) monitor was field evaluated as part of the North Carolina Adult Asthma and Environment Study (NCAAES). The NCAAES was designed to evaluate if airway and blood inflammatory markers in moderate asthmatic adults vary with changes in ...
NASA Astrophysics Data System (ADS)
Guttikunda, S. K.; Johnson, T. M.; Procee, P.
2004-12-01
Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.
An extensive PM monitoring study was conducted during the 1998 Baltimore PM Epidemiology-Exposure Study of the Elderly. An exposure goal of this study was. to investigate the mass concentration variability between various monitoring instrumentation located across residential in...
2015-12-30
FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine
Monitoring and control of atmosphere in a closed environment
NASA Technical Reports Server (NTRS)
Humphries, R.; Perry, J.
1991-01-01
Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.
Airborne Monitoring of Pollution from Individual Ships in the Framework of the IGPS Project
NASA Astrophysics Data System (ADS)
Beecken, Jörg; Mellqvist, Johan; Salo, Kent; Ekholm, Johan
2013-04-01
The environmental impact of maritime transport has been recognized by the International Maritime Organization (IMO) which sets limits on fuel quality and emission characteristics of ships. The IGPS project (Identification of Gross-Polluting Ships) is a Swedish project aimed at developing a surveillance system for measuring emissions of SO2, NOx and particulate matter from individual vessels at sea as well as at harbors. Equipped on aircrafts, this system can be used for efficient compliance monitoring of ships at open sea. Additionally plumes can be sampled several times to increase the measurement quality. This operation environment also sets special demands on the instrumentation such as fast response times for example. The presented results cover the measurements of four airborne campaigns which were conducted during 2011 and 2012, covering the western Baltic Sea between Denmark, Sweden and Germany as well as the German Bight and the English Channel regions of the North Sea. As platforms, two different airplanes and a helicopter were used respectively. Emission data of more than 150 different vessels was obtained. From the measured emissions the sulfur content in the fuel and the emitted NOx per main engine speed as reference characteristics were determined for the individual ships. Additionally, measurements on the particle size distributions of ship plumes were studied. Furthermore the conducted measurements also showed that the system is flight functional and works fine independent from the type of aircraft.
PROJECT 5 -- ARCHITECTURE DEVELOPMENT AND PARTICLE DEPOSITION
Children and the elderly are thought to be the most susceptible to particulate air pollutant exposure. The elderly are more likely to have pre-existing impairments that make them more likely to suffer symptoms from inhaling particulates, and children respire much more than adu...
METHODOLOGY FOR SITING AMBIENT AIR MONITORS AT THE NEIGHBORHOOD SCALE
In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region in order to achieve monitor siting objectives.
We p...
Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...
Citizen Science Air Monitor (CSAM) Operating Procedures
The Citizen Science Air Monitor (CSAM) is an air monitoring system designed for measuring nitrogen dioxide (NO2) and particulate matter (PM) pollutants simultaneously. This self-contained system consists of a CairPol CairClip NO2 sensor, a Thermo Scientific personal DataRAM PM2.5...
Development and evaluation of an instantaneous atmospheric corrosion rate monitor
NASA Astrophysics Data System (ADS)
Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.
1985-06-01
A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.
Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Derenne; Robin Stewart
2009-09-30
This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{submore » x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.« less
Development of a Low-Cost Particulate Matter Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard M.; Apte, Michael G.; Gundel, Lara A.
2008-08-01
We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, andmore » determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic collection efficiency using an increased temperature gradient, and shielding the resonator electronics from deposition of ultrafine particles.« less
Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)
NASA Technical Reports Server (NTRS)
Severs, R. K.
1974-01-01
The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.
NASA Technical Reports Server (NTRS)
Patashnick, H.; Rupprecht, G.
1977-01-01
The tapered element oscillating microbalance (TEOM), an ultrasensitive mass measurement device which is suitable for both particulate and vapor deposition measurements is described. The device can be used in contamination measurements, surface reaction studies, particulate monitoring systems or any microweighing activity where either laboratory or field monitoring capability is desired. The active element of the TEOM consists of a tube or reed constructed of a material with high mechanical quality factor and having a special taper. The element is firmly mounted at the wide end while the other end supports a substrate surface which can be composed of virtually any material. The tapered element with the substrate at the free (narrow) end is set into oscillation in a clamped free mode. A feedback system maintains the oscillation whose natural frequency will change in relation to the mass deposited on the substrate.
Airborne particulate matter (PM) is routinely collected at over a thousand air monitoring stations across the nation using Teflon filters. After they are weighed to measure the amount of PM in the air, the filters are stored in refrigerators and, after a year, are thrown away. ...
Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...
Sampling and handling artifacts can bias filter-based measurements of particulate organic carbon (OC). Several measurement-based methods for OC artifact reduction and/or estimation are currently used in research-grade field studies. OC frequently is not artifact-corrected in larg...
PARTICULATE ORGANIC SOURCE MARKERS IN THE NEW YORK CITY METROPOLITAN AREA
A sampling network of four sites was established for the Speciation of Organics for Apportionment of PM2.5 (SOAP) project during 2002-2003 to investigate composition, seasonal and spatial variability, and source contributions to particulate organic matter in the New York City met...
Vichit-Vadakan, Nuntavarn; Vajanapoom, Nitaya; Ostro, Bart
2008-09-01
Air pollution data in Bangkok, Thailand, indicate that levels of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) are significantly higher than in most cities in North America and Western Europe, where the health effects of PM(10) are well documented. However, the pollution mix, seasonality, and demographics are different from those in developed Western countries. It is important, therefore, to determine whether the large metropolitan area of Bangkok is subject to similar effects of PM(10). This study was designed to investigate the mortality risk from air pollution in Bangkok, Thailand. The study period extended from 1999 to 2003, for which the Ministry of Public Health provided the mortality data. Measures of air pollution were derived from air monitoring stations, and information on temperature and relative humidity was obtained from the weather station in central Bangkok. The statistical analysis followed the common protocol for the multicity PAPA (Public Health and Air Pollution Project in Asia) project in using a natural cubic spline model with smooths of time and weather. The excess risk for non-accidental mortality was 1.3% [95% confidence interval (CI), 0.8-1.7] per 10 microg/m(3) of PM(10), with higher excess risks for cardiovascular and above age 65 mortality of 1.9% (95% CI, 0.8-3.0) and 1.5% (95% CI, 0.9-2.1), respectively. In addition, the effects from PM(10) appear to be consistent in multipollutant models. The results suggest strong associations between several different mortality outcomes and PM(10). In many cases, the effect estimates were higher than those typically reported in Western industrialized nations.
Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the resultsmore » to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
2013-12-31
This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understandmore » of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
...EPA is proposing to approve a revision to Indiana's State Implementation Plan alternative monitoring requirements for Indianapolis Power and Light Company (IPL) at its Harding Street Generating Station. On December 31, 2008, Indiana requested approval of alternative monitoring requirements that allow the use of a particulate matter continuous emissions monitoring system in place of a continuous opacity monitor.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... carbon monoxide, hydrocarbons, nitrogen dioxide, photochemical oxidant, sulfur dioxide, and particulate... rely on local dust ordinances, completion of local road paving projects, and regulation of emissions from industrial processing activities. Among the local dust ordinances referred to in these four plans...
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the "Border" study. Keywords: lab; equipmen...
Characterization of cotton gin particulate matter emissions – project plan
USDA-ARS?s Scientific Manuscript database
In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation timeline for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District, has pro...
Characterization of cotton gin particulate matter emissions - project plan
USDA-ARS?s Scientific Manuscript database
In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation time line for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District has pro...
EPA AND ERDA HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL PROGRAMS
The report describes and compares current projects sponsored by EPA and the U.S. Energy Research and Development Administration (ERDA), relating to the control of particulate matter in fuel gas streams at high temperatures (1000 to 2000F) and high pressures (5 atm and greater). T...
Ambient air monitoring plan for Ciudad Acuna and Piedra Negras, Coahuila, Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winberry, J.; Henning, L.; Crume, R.
1998-01-01
The Cities of Ciudad Acuna and Piedras Negras and the State of Coahuila in Mexico are interested in improving ambient air quality monitoring capabilities in the two cities through the establishment of a network of ambient air monitors. The purpose of the network is to characterize population exposure to potentially harmful air contaminants, possibly including sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), ozone (O{sub 3}), carbon monoxide (CO), total suspended particulate matter (TSP), particulate matter with aerodynamic diameter less than 100 micrometers PM-10, and lead. This report presents the results of an evaluation of existing air quality monitoring equipmentmore » and facilities in Ciudad Acuna and Piedras Negras. Additionally, the report presents recommendations for developing an air quality monitoring network for PM-10, SO{sub 2}, lead, and ozone in these cities, using a combination of both new and existing equipment. The human resources currently available and ultimately needed to operate and maintain the network are also discussed.« less
Fayerweather, William E; Trumbore, David C; Johnson, Kathleen A; Niebo, Ronald W; Maxim, L Daniel
2011-09-01
This paper summarizes available data on worker exposures to asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica (quartz) [hereinafter RCS] over a 30-year period in Owens Corning's asphalt production and roofing manufacturing plants. For the period 1977 through 2006, the air-monitoring database contains more than 1,400 personal samples for asphalt fume (soluble fraction), 2,400 personal samples for total particulate, and 1,300 personal samples for RCS. Unique process-job categories were identified for the asphalt production and roofing shingle manufacturing plants. Quantitative exposures were tabulated by agent, process-job, and calendar period to form an exposure matrix for use in subsequent epidemiologic studies of the respiratory health of these workers. Analysis of time trends in exposure data shows substantial and statistically significant exposure reductions for asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica at Owens Corning plants. Cumulative distribution plots for the most recent sampling period (2001-2006) show that 95% of the asphalt fume (soluble fraction) measurements were less than 0.25 mg/m3; 95% of the total particulate measurements were less than 2.2 mg/m3; and 95% of the RCS measurements were less than 0.05 mg/m3. Several recommendations are offered to improve the design of future monitoring efforts.
Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A
2015-09-01
A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cimorelli, A. J.; House, F. B.
1974-01-01
The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.
Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.
2015-01-01
Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.
OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING
The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...
Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.
There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particul...
Community, time-series epidemiology typically uses either 24-hour integrated particulate matter (PM) concentrations averaged across several monitors in a city or data obtained at a central monitoring site to relate PM concentrations to human health effects. If 24-hour integrated...
Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring
NASA Technical Reports Server (NTRS)
Diehl, S. R.; Smith, D. T.; Sydor, M.
1979-01-01
Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.
NASA's Contributions to the Gulf of Mexico Alliance
NASA Technical Reports Server (NTRS)
Glorioso, Mark
2008-01-01
This viewgraph document reviews the contribution that NASA has made and the plans for future missions that will assist the mission of the Gulf of Mexico Alliance (GOMA). Specific reference to the work of the Stennis Space Center is reviewed. Some of the projects are: Coastal Online Assessment and Synthesis Tool (COAST), Regional Sediment Management, Coral Reef Early Warning System, Harmful Algal Bloom, Hypoxia, Land-Use and Land-Cover (LULC) Change from 1974-2008 around Mobile Bay, AL, Satellite Estimation of Suspended Particulate Loads in and around Mobile Bay, AL, Estimating Relative Nutrient Contributions of Agriculture and Forests Using MODIS Time Series, Coastal Marsh Monitoring for Persistent Saltwater Intrusion, Standardized Remote Sensing PRoduct for Water Clarity estimation within Gulf of Mexico Coastal Waters.
NASA Astrophysics Data System (ADS)
Tseng, Tung-Tse
In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.
Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.
Low Cost Sensor Calibration Options
Low-cost sensors ($1 D0-500) represent a unique class of air monitoring devices that may provide for more ubiquitous pollutant monitoring. They vary widely in design and measure pollutants, ranging from ozone, particulate matter, to volatile organic compounds. Many of these senso...
40 CFR 60.2165 - What monitoring equipment must I install and what parameters must I monitor?
Code of Federal Regulations, 2011 CFR
2011-07-01
... provide output of relative or absolute particulate matter loadings. (5) The bag leak detection system must..., repairs, calibration checks, and zero and span adjustments, emissions data must be obtained by using other...
40 CFR 60.2730 - What monitoring equipment must I install and what parameters must I monitor?
Code of Federal Regulations, 2011 CFR
2011-07-01
... system sensor must provide output of relative or absolute particulate matter loadings. (5) The bag leak..., repairs, calibration checks and zero and span adjustments, you must collect emissions data by using other...
Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yogeshwar Sahai
2007-07-31
Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Cleanmore » Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy conservation. In this program, the salt metal interactions were studies and the emissions at laboratory scale at OSU were monitored. The goal of the project was to obtain a fundamental understanding, based on first principles, of the pollutant formation that occurs when the salts are used in furnaces. This information will be used to control process parameters so that emissions are consistently below the required levels. The information obtained in these experiments will be used in industrial furnaces at aluminum plants and which will help in optimizing the process.« less
NASA Technical Reports Server (NTRS)
Stramski, Dariusz; Mitchell, B. Greg; Marra, John W. (Technical Monitor)
2001-01-01
This project was a collaboration between two Principal Investigators, Dr. Dariusz Stramski and Dr. Greg Mitchell of Scripps Institution of Oceanography, University of California San Diego. Our overall goal was to conduct optical measurements and modeling to estimate concentrations of organic matter in the Southern Ocean in support of the U.S. JGOFS Process Study in this region. Key variables and processes of high relevance to accomplish the JGOFS goals include time and space resolution of phytoplankton pigments, particulate organic carbon, and the formation and export of organic carbon. Our project focused on establishing the fundamental relationships for parameterization of these variables and processes in terms of the optical properties of seawater, and developing understanding of why the Southern Ocean differs from other low-latitude systems, or has differentiation within. Our approach builds upon historical observations that optical properties provide a useful proxy for key reservoirs of organic matter such as chlorophyll alpha (Chl) and particulate organic carbon (POC) concentrations, which are of relevance to the JGOFS objectives. We carried out detailed studies of in situ and water sample optical properties including spectral reflectance, absorption, beam attenuation, scattering, and backscattering coefficients. We evaluated the ability to estimate Chl from the spectral reflectance (ocean color) in the Southern Ocean. We examined relationships between the ocean optical properties and particulate organic carbon. We developed, for the first time, an algorithm for estimating particulate organic carbon concentration in the surface ocean from satellite imagery of ocean color. With this algorithm, we obtained maps of POC distribution in the Southern Ocean showing the seasonal progression of POC in the austral spring-summer season. We also developed a semianalytical reflectance model for the investigated polar waters based on our field measurements of absorption and backscattering coefficients and Chl-dependent parameterizations of these coefficients. With this model, libraries of expected reflectance spectra for various chlorophyll concentrations can be generated with high spectral resolution for specific oceanic regions. In addition, our semianalytical reflectance model provided insight into the mechanisms which drive the empirical relationships between the ocean color and chlorophyll concentration. Our optical approach to the study of pigment and carbon concentrations will be directly relevant to development of system models and long-term monitoring of the Southern Ocean.
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the Border study. Keywords: lab; equipment;...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... precursors, sulfur oxides (SO X ), to the CPV Sentinel Energy Project. The District's SIP approved NSR... Management District shall transfer sulfur oxides and particulate emission credits from the CPV Sentinel... needed to issue permits to construct and to meet requirements for sulfur oxides and particulate matter...
USDA-ARS?s Scientific Manuscript database
The objective of this project is to compare the soil C quality in Conservation Reserve Program (CRP) vs. land under Sorghum cropping or rangeland in the Southern High Plains. Whole soils as well as light fraction particulate organic matter (lfPOM) was assessed using diffuse reflectance Fourier trans...
NASA Technical Reports Server (NTRS)
Brooks, A. D.; Monteith, L. K.; Wortman, J. J.; Mulligan, J. C.
1974-01-01
A metal-oxide-silicon (MOS) capacitor-type particulate sensor was evaluated for use in atmospheric measurements. An accelerator system was designed and tested for the purpose of providing the necessary energy to trigger the MOS-type sensor. The accelerator system and the MOS sensor were characterized as a function of particle size and velocity. Diamond particles were used as particulate sources in laboratory tests. Preliminary tests were performed in which the detector was mounted on an aircraft and flown in the vicinity of coal-fired electric generating plants.
Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling
NASA Astrophysics Data System (ADS)
Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.
2012-12-01
We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples. Internal temperatures are monitored by the thermocouple array, while external temperatures are monitored by a Forward Looking Infrared Radiometer (FLIR) video camera. The experimental data thus describe the cooling rates of the system, and reveal the release of latent heat of crystallization within the cooling lava. These experiments have been conducted in conjunction with numerical simulations of the heat transfer from a lava flow into various substrates, to quantify the depth reached by the heat pulse as it penetrates the substrate. Models include material-specific, temperature-dependent thermophysical properties, including thermal conductivity, specific heat capacity, and latent heat of crystallization. We find that particulate materials, such as lunar regolith, sand, and soils will be heated to depths shallower than solid materials. In addition, the particulate materials will act as insulators, shielding the lava flow from basal cooling and maintaining high temperatures in the flow core. These results suggest that lava flows emplaced on a dry particulate terrain will remain above solidus for a longer duration, allowing the lava to flow further than when emplaced on a solid substrate.
Masson, M; Angot, H; Le Bescond, C; Launay, M; Dabrin, A; Miège, C; Le Coz, J; Coquery, M
2018-05-10
Monitoring hydrophobic contaminants in surface freshwaters requires measuring contaminant concentrations in the particulate fraction (sediment or suspended particulate matter, SPM) of the water column. Particle traps (PTs) have been recently developed to sample SPM as cost-efficient, easy to operate and time-integrative tools. But the representativeness of SPM collected with PTs is not fully understood, notably in terms of grain size distribution and particulate organic carbon (POC) content, which could both skew particulate contaminant concentrations. The aim of this study was to evaluate the representativeness of SPM characteristics (i.e. grain size distribution and POC content) and associated contaminants (i.e. polychlorinated biphenyls, PCBs; mercury, Hg) in samples collected in a large river using PTs for differing hydrological conditions. Samples collected using PTs (n = 74) were compared with samples collected during the same time period by continuous flow centrifugation (CFC). The grain size distribution of PT samples shifted with increasing water discharge: the proportion of very fine silts (2-6 μm) decreased while that of coarse silts (27-74 μm) increased. Regardless of water discharge, POC contents were different likely due to integration by PT of high POC-content phytoplankton blooms or low POC-content flood events. Differences in PCBs and Hg concentrations were usually within the range of analytical uncertainties and could not be related to grain size or POC content shifts. Occasional Hg-enriched inputs may have led to higher Hg concentrations in a few PT samples (n = 4) which highlights the time-integrative capacity of the PTs. The differences of annual Hg and PCB fluxes calculated either from PT samples or CFC samples were generally below 20%. Despite some inherent limitations (e.g. grain size distribution bias), our findings suggest that PT sampling is a valuable technique to assess reliable spatial and temporal trends of particulate contaminants such as PCBs and Hg within a river monitoring network. Copyright © 2018 Elsevier B.V. All rights reserved.
TRENDS IN RURAL SULFUR CONCENTRATIONS
This paper presents an analysis of regional trends in atmospheric concentrations in sulfur dioxide (502) and particulate sulfate (50~- ) at rural monitoring sites in the Clean Air Act Status and Trends Monitoring Network (CAsTNet) from 1990 to 1999. A two-stage approach is used t...
PM 2.5 Airborne Particulates Near Frac Sand Operations.
Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin
2015-11-01
The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health.
Deshommes, Elise; Laroche, Laurent; Deveau, Dominique; Nour, Shokoufeh; Prévost, Michèle
2017-09-05
Thirty-three households were monitored in a full-scale water distribution system, to investigate the impact of recent (<2 yr) or old partial lead service line replacements (PLSLRs). Total and particulate lead concentrations were measured using repeat sampling over a period of 1-20 months. Point-of-entry filters were installed to capture sporadic release of particulate lead from the lead service lines (LSLs). Mean concentrations increased immediately after PLSLRs and erratic particulate lead spikes were observed over the 18 month post-PLSLR monitoring period. The mass of lead released during this time frame indicates the occurrence of galvanic corrosion and scale destabilization. System-wide, lead concentrations were however lower in households with PLSLRs as compared to those with no replacement, especially for old PLSLRs. Nonetheless, 61% of PLSLR samples still exceeded 10 μg/L, reflecting the importance of implementing full LSL replacement and efficient risk communication. Acute concentrations measured immediately after PLSLRs demonstrate the need for appropriate flushing procedures to prevent lead poisoning.
Monitoring Air Quality over China: Evaluation of the modeling system of the PANDA project
NASA Astrophysics Data System (ADS)
Bouarar, Idir; Katinka Petersen, Anna; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Xuemei; Fan, Qi; Wang, Lili
2015-04-01
Air pollution has become a pressing problem in Asia and specifically in China due to rapid increase in anthropogenic emissions related to growth of China's economic activity and increasing demand for energy in the past decade. Observed levels of particulate matter and ozone regularly exceed World Health Organization (WHO) air quality guidelines in many parts of the country leading to increased risk of respiratory illnesses and other health problems. The EU-funded project PANDA aims to establish a team of European and Chinese scientists to monitor air pollution over China and elaborate air quality indicators in support of European and Chinese policies. PANDA combines state-of-the-art air pollution modeling with space and surface observations of chemical species to improve methods for monitoring air quality. The modeling system of the PANDA project follows a downscaling approach: global models such as MOZART and MACC system provide initial and boundary conditions to regional WRF-Chem and EMEP simulations over East Asia. WRF-Chem simulations at higher resolution (e.g. 20km) are then performed over a smaller domain covering East China and initial and boundary conditions from this run are used to perform simulations at a finer resolution (e.g. 5km) over specific megacities like Shanghai. Here we present results of model simulations for January and July 2010 performed during the first year of the project. We show an intercomparison of the global (MACC, EMEP) and regional (WRF-Chem) simulations and a comprehensive evaluation with satellite measurements (NO2, CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) at several surface stations. Using the WRF-Chem model, we demonstrate that model performance is influenced not only by the resolution (e.g. 60km, 20km) but also the emission inventories used (MACCity, HTAPv2), their resolution and diurnal variation, and the choice of initial and boundary conditions (e.g. MOZART, MACC analysis).
Agricultural Influences on Cache Valley, Utah Air Quality During a Wintertime Inversion Episode
NASA Astrophysics Data System (ADS)
Silva, P. J.
2017-12-01
Several of northern Utah's intermountain valleys are classified as non-attainment for fine particulate matter. Past data indicate that ammonium nitrate is the major contributor to fine particles and that the gas phase ammonia concentrations are among the highest in the United States. During the 2017 Utah Winter Fine Particulate Study, USDA brought a suite of online and real-time measurement methods to sample particulate matter and potential gaseous precursors from agricultural emissions in the Cache Valley. Instruments were co-located at the State of Utah monitoring site in Smithfield, Utah from January 21st through February 12th, 2017. A Scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) acquired size distributions of particles from 10 nm - 10 μm in 5-min intervals. A URG ambient ion monitor (AIM) gave hourly concentrations for gas and particulate ions and a Chromatotec Trsmedor gas chromatograph obtained 10 minute measurements of gaseous sulfur species. High ammonia concentrations were detected at the Smithfield site with concentrations above 100 ppb at times, indicating a significant influence from agriculture at the sampling site. Ammonia is not the only agricultural emission elevated in Cache Valley during winter, as reduced sulfur gas concentrations of up to 20 ppb were also detected. Dimethylsulfide was the major sulfur-containing gaseous species. Analysis indicates that particle growth and particle nucleation events were both observed by the SMPS. Relationships between gas and particulate concentrations and correlations between the two will be discussed.
Carvlin, Graeme N; Lugo, Humberto; Olmedo, Luis; Bejarano, Ester; Wilkie, Alexa; Meltzer, Dan; Wong, Michelle; King, Galatea; Northcross, Amanda; Jerrett, Michael; English, Paul B; Hammond, Donald; Seto, Edmund
2017-12-01
The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM 2.5 and PM 10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R 2 for converted hourly averaged Dylos mass measurements versus a PM 2.5 BAM was 0.79 and that versus a PM 10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM 2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R 2 = 0.35-0.81). The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.
NASA Technical Reports Server (NTRS)
Meyer, P.; Shire, J.; Qualters, Judy; Daley, Randolph; Fiero, Leslie Todorov; Autry, Andy; Avchen, Rachel; Stock, Allison; Correa, Adolofo; Siffel, Csaba;
2007-01-01
CDC and its partners established the Health and Environment Linked for Information Exchange, Atlanta (HELIX-Atlanta) demonstration project, to develop linking and analysis methods that could be used by the National Environmental Public Health Tracking (EPHT) Network. Initiated in October 2003, the Metropolitan Atlanta-based collaborative conducted four projects: asthma and particulate air pollution, birth defects and ozone and particulate air pollution, childhood leukemia and traffic emissions, and children's blood lead testing and neighborhood risk factors for lead poisoning. This report provides an overview of the HELIX-Atlanta projects' goals, methods and outcomes. We discuss priority attributes and common issues and challenges and offer recommendations for implementation of the nascent national environmental public health tracking network.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section are met. (A) The zero (low-level), mid-level (if applicable), or high-level calibration drift... representative of the relative or absolute particulate matter loadings for each exhaust stack, roof vent, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... section are met. (A) The zero (low-level), mid-level (if applicable), or high-level calibration drift... representative of the relative or absolute particulate matter loadings for each exhaust stack, roof vent, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... section are met. (A) The zero (low-level), mid-level (if applicable), or high-level calibration drift... representative of the relative or absolute particulate matter loadings for each exhaust stack, roof vent, or...
REGIONAL TRENDS IN RURAL SULFUR CONCENTRATIONS
This paper presents an analysis of trends in atmospheric concentrations of sulfur dioxide (SO,) and particulate sulfate (SO42-) at rural monitoring sites in the Clean Air Act Status and Trends Monitoring Network (CASTNet) from 1990 to 1999. A two-stage approach is used to estimat...
Dry Particulate Nitrate Deposition in China.
Liu, Lei; Zhang, Xiuying; Zhang, Yan; Xu, Wen; Liu, Xuejun; Zhang, Xiaomin; Feng, Junlan; Chen, Xinrui; Zhang, Yuehan; Lu, Xuehe; Wang, Shanqian; Zhang, Wuting; Zhao, Limin
2017-05-16
A limited number of ground measurements of dry particulate nitrate deposition (NO 3 - ) makes it difficult and challenging to fully know the status of the spatial and temporal variations of dry NO 3 - depositions over China. This study tries to expand the ground measurements of NO 3 - concentrations at monitoring sites to a national scale, based on the Ozone Monitoring Instrument (OMI) NO 2 columns, NO 2 profiles from an atmospheric chemistry transport model (Model for Ozone and Related chemical Tracers, version 4, MOZART-4) and monitor-based sources, and then estimates the NO 3 - depositions on a regional scale based on an inferred model. The ground NO 2 concentrations were first derived from NO 2 columns and the NO 2 profiles, and then the ground NO 3 - concentrations were derived from the ground NO 2 concentrations and the relationship between NO 2 and NO 3 - based on Chinese Nationwide Nitrogen Deposition Monitoring Network (NNDMN). This estimated dry NO 3 - depositions over China will be helpful in determining the magnitude and pollution status in regions without ground measurements, supporting the construction plan of environmental monitoring in future.
NASA Astrophysics Data System (ADS)
Morales Rincon, L. A.; Jimenez-Pizarro, R.; Porras-Diaz, H.
2012-12-01
Luis Morales-Rincon (1), Hernan Porras-Diaz (1), Rodrigo Jiménez (2,*) (1) Geomatic Research Group, Department of Civil Engineering, Universidad Industrial de Santander, Bucaramanga, Santander 680002, Colombia; (2) Air Quality Research Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, DC 111321, Colombia *Corresponding author: phone +57-1-316-5000 ext. 14099, fax +57-1-316-5334, e-mail rjimenezp@unal.edu.co The semi-desertic area of Central Cesar, Colombia, produced approximately 44 million tons of coal in 2011. This mining activity has been intensively developed since 2005. There are currently 7 large-scale mining projects in that area. The coal industry has strongly impacted not only the ecosystems, but also the neighboring communities around the coal mines. The main goal of the research work was to characterize spatial and temporal variations of particulate matter (total suspended particulates - TSP - and particulate matter below 10 μm - PM10) as measured at various air quality monitoring stations in Cesar's coal industry region as well as to study the relationship between these variability and meteorological factors. The analysis of the meteorological time series of revealed a complex atmospheric circulation in the region. No clear repetitive diurnal circulation patterns were observed, i.e. statistical mean patterns do not physically represent the actual atmospheric circulation. We attribute this complexity to the interdependence between local and synoptic phenomena over a low altitude, relatively flat area. On the other hand, a comparison of air quality in the mining area with a perimeter station indicates that coal industry in central Cesar has a mayor effect on the levels of particulate matter in the region. Particulate matter concentration is highly variable throughout the year. The strong correlation between TSP and PM10 indicates that secondary aerosols are of minor importance. Furthermore, particle concentrations are the highest in January and February, being the correlation between the TSP and PM10 measurements not as strong during this time period. This could be associated with the spatial and temporal variability of wet deposition as well as a larger mechanical and eolic resuspension of particles. We found that precipitation drastically reduces the levels of particulate matter. In order to describe the effect of wet deposition, a mathematical model was developed based on a first order relaxation proportional to the precipitation rate. Daily average concentrations and daily accumulated precipitation were used in this model, which showed high concentration reductions even for low precipitation levels essentially for all stations. Monthly precipitation values showed a better correlation with TSP concentrations. Finally, we found evidence of a significant decrease in global radiation due to particulate matter, particularly during the dry season, which could potentially affect farming and agricultural activities in the region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...
Impact of sampling techniques on measured stormwater quality data for small streams
Harmel, R.D.; Slade, R.M.; Haney, R.L.
2010-01-01
Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Weber, Stephanie A; Insaf, Tabassum Z; Hall, Eric S; Talbot, Thomas O; Huff, Amy K
2016-11-01
An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM 2.5 ) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM 2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM 2.5 in areas with and without air quality monitors by combining PM 2.5 concentrations measured by monitors, PM 2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM 2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM 2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition to data from PM 2.5 monitors and predictions from CMAQ. The second objective was to determine if inclusion of AOD surfaces in HBM model algorithms results in PM 2.5 air pollutant concentration surfaces which more accurately predict hospital admittance and emergency room visits for MI, asthma, and HF. This study focuses on the New York City, NY metropolitan and surrounding areas during the 2004-2006 time period, in order to compare the health outcome impacts with those from previous studies and focus on any benefits derived from the changes in the HBM model surfaces. Consistent with previous studies, the results show high PM 2.5 exposure is associated with increased risk of asthma, myocardial infarction and heart failure. The estimates derived from concentration surfaces that incorporate AOD had a similar model fit and estimate of risk as compared to those derived from combining monitor and CMAQ data alone. Thus, this study demonstrates that estimates of PM 2.5 concentrations from satellite data can be used to supplement PM 2.5 monitor data in the estimates of risk associated with three common health outcomes. Results from this study were inconclusive regarding the potential benefits derived from adding AOD data to the HBM, as the addition of the satellite data did not significantly increase model performance. However, this study was limited to one metropolitan area over a short two-year time period. The use of next-generation, high temporal and spatial resolution satellite AOD data from geostationary and polar-orbiting satellites is expected to improve predictions in epidemiological studies in areas with fewer pollutant monitors or over wider geographic areas. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Ambient Background Particulate Compositiion Outdoor Natural Background: Interferents/Clutter
2011-08-01
FIGURES 1. Map of UK Sampling Locations, Lizard, Pershore, Birmingham, Lichfield 10 2. Mean UK Airborne Pollen , Fungi, and Bacteria and/or their Sum...routinely other than for health effects. Allergy caused by pollen (>15 urn) and mold is monitored for health effects by National Allergy 9...occurrence. To achieve this, measurement of pollens , bacteria, and fungal spores and dust particulates were undertaken for weekly periods at four
DOT National Transportation Integrated Search
2005-02-01
Annual average PM10 concentrations at the Greenwood monitoring station in western Phoenix have : exceeded EPAs annual average air quality standard and are higher on average than values observed at the : West Phoenix monitor, which is located just ...
40 CFR 63.9631 - What are my monitoring requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintain a bag leak detection system to monitor the relative change in particulate matter loadings... of ensuring the proper functioning of removal mechanisms. (3) Check the compressed air supply of... interior for air leaks. (8) Inspect fans for wear, material buildup, and corrosion through quarterly visual...
RESULTS FROM EXPOSURE MONITORING PERFORMED DURING THE 1997 BALTIMORE PM PILOT STUDY
An eighteen day winter-time ambient and personal exposure monitoring study of particulate matter (PM) was conducted as part of an.integrated epidemiological-exposure pilot study of an aged population. Goals of the study were to determine the feasibility of performing active per...
Hung, H; Blanchard, P; Halsall, C J; Bidleman, T F; Stern, G A; Fellin, P; Muir, D C G; Barrie, L A; Jantunen, L M; Helm, P A; Ma, J; Konoplev, A
2005-04-15
The Northern Contaminants Program (NCP) baseline monitoring project was established in 1992 to monitor for persistent organic pollutants (POPs) in Arctic air. Under this project, weekly samples of air were collected at four Canadian and two Russian arctic sites, namely Alert, Nunavut; Tagish, Yukon; Little Fox Lake, Yukon; Kinngait, Nunavut; Dunai Island, Russia and Amderma, Russia. Selected POPs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides, were analyzed in both the gas and particulate phases. This paper summarizes results obtained from this project in the past 5 years. Temporal trends were developed for atmospheric PCBs and OCs observed at Alert using a digital filtration (DF) technique. It was found that trends developed with 5 years of data (1993-1997) did not differ significantly from those determined with 7 years of data (1993-1999). This implies that with the DF technique, long-term trends can still be developed with less than 10 years of data. An acceleration in decline of OC and PCB air concentrations was noted in 1999 for some compounds, although the reason is unknown. Monitoring efforts must continue to assess the effect of this decline on the long-term trends of POPs in the Canadian Arctic. Occasional high trans-/cis-chlordane ratios and heptachlor air concentrations measured at Alert between 1995 and 1997 suggests sporadic fresh usage of chlordane-based pesticides. However, significant decreasing trends of chlordanes along with their chemical signatures has provided evidence that emission of old soil residues is replacing new usage as an important source to the atmosphere. Measurements of OC air concentrations conducted at Kinngait in 1994-1995 and 2000-2001 indicated faster OC removal at this location than at Alert. This may be attributed to the proximity of Kinngait to temperate regions where both biotic and abiotic degradation rates are faster. The PAH concentrations observed at Alert mimic those at mid-latitudes and are consistent with long-range transport to the Arctic, particularly for the lighter PAHs. A decline in particulate PAH was observed, similar to atmospheric sulphate aerosol and can be attributed to the collapse of industrial activity in the former Soviet Union between 1991 and 1995. Spatial comparisons of OC seasonality at Alert, Tagish, Dunai and Kinngait show elevated air concentrations of some compounds in spring. However, elevated spring concentrations were observed for different compounds at different sites. Potential causes are discussed. Further investigation in the atmospheric flow pattern in spring which is responsible for the transport of POPs into the Arctic is required. OC and PCB air concentrations at Alert were found to be influenced by two climate variation patterns, the North Atlantic Oscillation (NAO) and the Pacific North American (PNA) pattern. Planetary atmospheric patterns must be taken into account in the global prediction and modelling of POPs in the future.
Gaidajis, George
2003-01-01
To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.
Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha
NASA Astrophysics Data System (ADS)
Mahapatra, Parth Sarathi; Ray, Sanak; Das, Namrata; Mohanty, Ayusman; Ramulu, T. S.; Das, Trupti; Chaudhury, G. Roy; Das, S. N.
2013-04-01
Acid- and water-soluble component of suspended particulate matter was studied from January 2009 to December 2009 at Bhubaneshwar, an urban coastal location of eastern India, by high-volume sampler, environmental dust monitor using GRIMM®, and scanning electron microscope and energy dispersive X-ray spectrometer. The water-soluble components accounted for 30-45 % of the total suspended particulate matter, and the major elements were observed to be ammonium and nitrate as the cationic and anionic species, respectively. The acid-soluble component like copper, nickel, cobalt, iron, and lead accounted for 5-15 % of the total particulate matter concentration. The composition of particulate matter shows a clear seasonal variation in relation to wind speed, wind direction, and trajectories of the air mass movement. The GRIMM spectrometer analysis shows higher concentration of fine particulate matter. Source apportionment and enrichment factor analysis indicated that except sodium and chloride, all other elements have emerged from different sources such as crustal as well as anthropogenic.
This final rule, published March 10, 2006, establishes requirements for project-level conformity determinations in particulate matter (PM) 2.5 nonattainment and maintenance areas, and revises existing requirements for projects in PM10 areas.
Michikawa, Takehiro; Morokuma, Seiichi; Nitta, Hiroshi; Kato, Kiyoko; Yamazaki, Shin
2017-06-13
Numerous earlier studies examining the association of air pollution with maternal and foetal health estimated maternal exposure to air pollutants based on the women's residential addresses. However, residential addresses, which are personally identifiable information, are not always obtainable. Since a majority of pregnant women reside near their delivery hospitals, the concentrations of air pollutants at the respective delivery hospitals may be surrogate markers of pollutant exposure at home. We compared air pollutant concentrations measured at the nearest monitoring station to Kyushu University Hospital with those measured at the closest monitoring stations to the respective residential postal code regions of pregnant women in Fukuoka. Aggregated postal code data for the home addresses of pregnant women who delivered at Kyushu University Hospital in 2014 was obtained from Kyushu University Hospital. For each of the study's 695 women who resided in Fukuoka Prefecture, we assigned pollutant concentrations measured at the nearest monitoring station to Kyushu University Hospital and pollutant concentrations measured at the nearest monitoring station to their respective residential postal code regions. Among the 695 women, 584 (84.0%) resided in the proximity of the nearest monitoring station to hospital or one of the four other stations (as the nearest stations to their respective residential postal code region) in Fukuoka city. Pearson's correlation for daily mean concentrations among the monitoring stations in Fukuoka city was strong for fine particulate matter (PM 2.5 ), suspended particulate matter (SPM), and photochemical oxidants (Ox) (coefficients ≥0.9), but moderate for coarse particulate matter (the result of subtracting the PM 2.5 from the SPM concentrations), nitrogen dioxide, and sulphur dioxide. Hospital-based and residence-based concentrations of PM 2.5 , SPM, and Ox were comparable. For PM 2.5 , SPM, and Ox, exposure estimation based on the delivery hospital is likely to approximate that based on the home of pregnant women.
Data collected between January to December, 1999 were polled from the USEPA Aerometric Information Retrieval System. For the purpose of this analysis, data which were flagged with qualifiers related to laboratory and monitor malfunctions were removed from the data set. Analys...
A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standard for 24-h PM10. Ambient data were collected at three monitoring sites from October 1996 through Ju...
40 CFR 63.7330 - What are my monitoring requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... relative change in particulate matter loadings using a bag leak detection system according to the... integrity of the baghouse through quarterly visual inspections of the baghouse interior for air leaks; and... must at all times monitor the pressure drop and water flow rate using a CPMS according to the...
Report #2005-P-00004, February 7, 2005. EPA has made substantial progress in establishing a speciation monitoring network, but still faces a number of challenges in ensuring that the controls are implemented at the right sources.
A 17-day pilot study investigating potential PM exposures of an elderly population was conducted near Baltimore, Maryland. Collection of residential indoor, residential outdoor, and ambient monitoring data associated with the subjects living at a common retirement facility was...
The U.S. EPA's current regulatory approach for combustion and incineration sources emphasizes the use of real-time continuous emission monitors (CEMs) for particulate, Metals, and volatile, semivolatile, and of nonvolatile organic compounds to monitor source emissions. Currently...
Code of Federal Regulations, 2012 CFR
2012-07-01
... control if the conditions of paragraph (a)(7)(i)(A) or (a)(7)(i)(B) of this section are met. (A) The zero... representative of the relative or absolute particulate matter loadings for each exhaust stack, roof vent, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... control if the conditions of paragraph (a)(7)(i)(A) or (a)(7)(i)(B) of this section are met. (A) The zero... representative of the relative or absolute particulate matter loadings for each exhaust stack, roof vent, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... control if the conditions of paragraph (a)(7)(i)(A) or (a)(7)(i)(B) of this section are met. (A) The zero... representative of the relative or absolute particulate matter loadings for each exhaust stack, roof vent, or...
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle, an all-electric vehicle measuring real-time concentrations of particulate and gaseous poll...
The U.S. EPA National Exposure Research Laboratory (NERL) collaborated with EPA's Regional offices to establish a monitoring network to characterize ambient air concentrations of particulate matter (PM) and air toxics in lower Manhattan following the collapse of the World Trade...
Relationship Between PM2.5 Collected at Residential Outdoor Locations and a Central Site
Regression models are developed to describe the relationship between ambient PM2.5 (particulate matter [PM] ≤ 2.5 μm in aerodynamic diameter) mass concentrations measured at a central-site monitor with those at residential outdoor monitors. Understanding the...
Coronagraph particulate measurements. Skylab flight experiment T025
NASA Technical Reports Server (NTRS)
Greenberg, J. M.; Schuerman, D. W.; Giovane, F.; Wang, R. T.; Hardy, D. C.
1975-01-01
Major results of the Skylab T025 Coronagraph experiment designed to monitor the particulate contamination about the spacecraft and to study the earth's atmospheric aerosol distribution are presented. A model for comet outbursts based on the properties of amorphous ice and ground based narrow-band and white light photography of comet Kohoutek ten days to perihelion are included. The effect of atmospheric refraction on the analysis of the T025 atmospheric data was also investigated.
Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan
NASA Astrophysics Data System (ADS)
Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu
2012-12-01
Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.
Tropical river suspended sediment and solute dynamics in storms during an extreme drought
NASA Astrophysics Data System (ADS)
Clark, Kathryn E.; Shanley, James B.; Scholl, Martha A.; Perdrial, Nicolas; Perdrial, Julia N.; Plante, Alain F.; McDowell, William H.
2017-05-01
Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) "new water" dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie
This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.
Microscale Particulate Classifiers (MiPAC) Being Developed
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.
2001-01-01
The NASA Glenn Research Center is developing microscale sensors to characterize atmospheric-borne particulates. The devices are fabricated using MEMS (microelectromechanical systems) technologies. These technologies are derived from those originally developed in support of the semiconductor processing industry. The resulting microsensors can characterize a wide range of particles and are, therefore, suitable to a broad range of applications. This project is supported under a collaborative program called the Glennan Microsystems Initiative. The initiative comprises members of NASA Glenn Research Center, various university affiliates from the State of Ohio, and a number of participating industrial partners. Funding is jointly provided by NASA, the State of Ohio, and industrial members. The work described here is a collaborative arrangement between researchers at Glenn, the University of Minnesota, The National Institute of Standards and Technology (NIST), and the Cleveland State University. Actual device fabrication is conducted at Glenn and at the laboratories of Case Western Reserve University. Case Western is also located in Cleveland, Ohio, and is a participating member of the initiative. The principal investigator for this project is Paul S. Greenberg of Glenn. Two basic types of devices are being developed, and target different ranges of particle sizes. The first class of devices, which is used to measure nanoparticles (i.e., particles in the range of 0.002 to 1 mm), is based on the technique of Electrical Mobility Classification. This technique also affords the valuable ability of measuring the electrical charge state of the particles. Such information is important in the understanding of agglomeration mechanisms and is useful in the development of methods for particle repulsion. The second type of device being developed, which utilizes optical scattering, is suitable for particles larger than 1 mm. This technique also provides information on particle shape and composition. Applications for these sensors include fundamental planetary climatology, monitoring and filtration in spacecraft, human habitation modules and related systems, characterization of particulate emissions from propulsion and power systems, and as early warning sensors for both space-based and ter-restrial fire detection. These devices are also suitable for characterizing biological compounds such as allergens, infectious agents, and biotoxic agents.
Space Station Induced Monitoring
NASA Technical Reports Server (NTRS)
Spann, James F. (Editor); Torr, Marsha R. (Editor)
1988-01-01
This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... continuously monitor relative particulate matter loadings. Capture system means the equipment (including hoods... due to wind or mechanical inducement such as vehicle traffic. Fugitive dust sources include plant...
Code of Federal Regulations, 2014 CFR
2014-07-01
... continuously monitor relative particulate matter loadings. Capture system means the equipment (including hoods... due to wind or mechanical inducement such as vehicle traffic. Fugitive dust sources include plant...
Code of Federal Regulations, 2013 CFR
2013-07-01
... continuously monitor relative particulate matter loadings. Capture system means the equipment (including hoods... due to wind or mechanical inducement such as vehicle traffic. Fugitive dust sources include plant...
Assessing transboundary influences in the lower Rio Grande Valley
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukerjee, S.; Shadwick, D.S.; Dean, K.E.
1999-07-01
The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI Program project to assess transboundary air pollution in and near Brownsville, Texas. The study used a three-site air monitoring network very close to the border to capture the direct impact of local sources and transboundary transport. Ambient data included particulate mass and elemental composition, VOCs, PAHs, pesticides, and meteorology. Also, near real-time, PM{sub 2.5} mass measurements captured potential pollutant plume events occurring over 1-h periods. Data collected were compared to screening levels and other monitoring data to assess general air pollution impacts on nearby bordermore » communities. Wind sector analyses, chemical tracer analyses, principal component analyses, and other techniques were used to assess the extent of transboundary transport of air pollutants and identify possible transboundary air pollution sources. Overall, ambient levels were comparable to or lower than other urban and rural areas in Texas and elsewhere. Movement of air pollution across the border did not appear to cause noticeable deterioration of air quality on the US side of the Lower Rio Grande Valley. Dominant southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions in the Brownsville airshed. Few observations of pollutants exceeded effects screening levels, almost all being VOCs; these appeared to be due to local events and immediate influences, not regional phenomena or persistent transboundary plumes.« less
NASA Technical Reports Server (NTRS)
King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.; Burr, J. C.; Craig, G. T.; Cornett, C. L.
1974-01-01
Preliminary review of a study of trace elements and compound concentrations in the ambient suspended particulate matter in Cleveland, Ohio, measured from August 1971 through June 1973, as a function of source, monitoring location, and meteorological conditions. The study is aimed at the development of techniques for identifying specific pollution sources which could be integrated into a practical system readily usable by an enforcement agency.
NASA Technical Reports Server (NTRS)
Rasool, Quazi Z.; Zhang, Rui; Lash, Benjamin; Cohan, Daniel S.; Cooter, Ellen J.; Bash, Jesse O.; Lamsal, Lok N.
2016-01-01
Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions.
We use a 2005–2009 record of isoprene emissions over Africa derived from Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission in the continent and evaluate the impact on atmospheric co...
Microsensor Technologies for Plant Growth System Monitoring
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo
2004-01-01
This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.
The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range belo...
NASA Astrophysics Data System (ADS)
Mukherjee, A. D.; Brown, S. G.; McCarthy, M. C.
2017-12-01
A new generation of low cost air quality sensors have the potential to provide valuable information on the spatial-temporal variability of air pollution - if the measurements have sufficient quality. This study examined the performance of a particulate matter sensor model, the AirBeam (HabitatMap Inc., Brooklyn, NY), over a three month period in the urban environment of Sacramento, California. Nineteen AirBeam sensors were deployed at a regulatory air monitoring site collocated with meteorology measurements and as a local network over an 80 km2 domain in Sacramento, CA. This study presents the methodology to evaluate the precision, accuracy, and reliability of the sensors over a range of meteorological and aerosol conditions. The sensors demonstrated a robust degree of precision during collocated measurement periods (R2 = 0.98 - 0.99) and a moderate degree of correlation against a Beta Attenuation Monitor PM2.5 monitor (R2 0.6). A normalization correction is applied during the study period so that each AirBeam sensor in the network reports a comparable value. The role of the meteorological environment on the accuracy of the sensor measurements is investigated, along with the possibility of improving the measurements through a meteorology weighted correction. The data quality of the network of sensors is examined, and the spatial variability of particulate matter through the study domain derived from the sensor network is presented.
Peraza-Castro, M; Sauvage, S; Sánchez-Pérez, J M; Ruiz-Romera, E
2016-11-01
An understanding of the processes controlling sediment, organic matter and metal export is critical to assessing and anticipating risk situations in water systems. Concentrations of suspended particulate matter (SPM), dissolved (DOC) and particulate (POC) organic carbon and metals (Cu, Ni, Pb, Cr, Zn, Mn, Fe) in dissolved and particulate phases were monitored in a forest watershed in the Basque Country (Northern Spain) (31.5km(2)) over three hydrological years (2009-2012), to evaluate the effect of flood events on the transport of these materials. Good regression was found between SPM and particulate metal concentration, making it possible to compute the load during the twenty five flood events that occurred during the study period at an annual scale. Particulate metals were exported in the following order: Fe>Mn>Zn>Cr>Pb>Cu>Ni. Annual mean loads of SPM, DOC and POC were estimated at 2267t, 104t and 57t, respectively, and the load (kg) of particulate metals at 76 (Ni), 83 (Cu), 135 (Pb), 256 (Cr), 532 (Zn), 1783 (Mn) and 95170 (Fe). Flood events constituted 91%-SPM, 65%-DOC, 71%-POC, 80%-Cu, 85%-Ni, 72%-Pb, 84%-Cr, 74%-Zn, 87%-Mn and 88%-Fe of total load exported during the three years studied. Flood events were classified into three categories according to their capacity for transporting organic carbon and particulate metals. High intensity flood events are those with high transport capacity of SPM, organic carbon and particulate metals. Most of the SPM, DOC, POC and particulate metal load was exported by this type of flood event, which contributed 59% of SPM, 45% of organic carbon and 54% of metals. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation And Application Of Biomagnetic Monitoring Of Traffic-Derived Particulate Pollution.
NASA Astrophysics Data System (ADS)
Maher, B.; Mitchell, R.
2009-05-01
Inhalation of particulate pollutants below 10 micrometres in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ×ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c.0.1-1 micrometre. Analysis of leaf particles by SEM confirms that their dominant grain size is less than 1 micrometre, with a significant number of iron-rich spherules less than 0.1 micrometre in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (less than 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf SIRM values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating that leaf SIRMs are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B. A.
2009-04-01
Inhalation of particulate pollutants below 10 μm in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road (Figure 1 c), with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low-temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. XARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 μm. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 μm, with a significant number of iron-rich spherules below 1 μm in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 - 2 m height.
In Situ Characterization of Point-of-Discharge Fine Particulate Emissions
2008-07-01
of Point- of -Discharge Fine Particulate Emissions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6... NUMBER OF PAGES 163 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form... number of weapons systems. A number of Ft. Sill’s training ranges were projected to be in use during the last half of March, 2007 through
Spatial Statistics of atmospheric particulate matter in China
NASA Astrophysics Data System (ADS)
Huang, Yongxiang; Wang, Yangjun; Liu, Yulu
2017-04-01
In this work, the spatial dynamics of the atmospheric particulate matters (resp. PM10 and PM2.5) are studied using turbulence methodologies. The hourly concentrations of particulate matter were released by the Chinese government (http://www.cnemc.cn). We first processed these data into daily average concentrations. Totally, there are 305 monitor stations with an observations period of 425 days. It is found experimentally that the spatial correlation function ρ(r) shows a log-law on the mesoscale range, i.e., 50 ≤ r ≤ 500 km, with an experimental scaling exponent β = 0.45. The spatial structure function shows a power-law behavior on the mesoscale range 90 ≤ r ≤ 500 km. The experimental scaling exponent ζ(q) is convex, showing that the intermittent correction is relevant in characterizing the spatial dynamics of particulate matter. The measured singularity spectrum f(α) also shows its multifractal nature. Experimentally, the particulate matter is more intermittent than the passive scalar, which could be partially due to the mesoscale movements of the atmosphere, and also due to local sources, such as local industry activities.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Al-Hamdan, Mohammad; Estes, Maurice; Crosson, William
2007-01-01
As part of the National Environmental Public Health Tracking Network (EPHTN) the National Center for Environmental Health (NCEH) at the Centers for Disease Control and Prevention (CDC) is leading a project called Health and Environment Linked for Information Exchange (HELiX-Atlanta). The goal of developing the National Environmental Public Health Tracking Network is to improve the health of communities. Currently, few systems exist at the state or national level to concurrently track many of the exposures and health effects that might be associated with environmental hazards. An additional challenge is estimating exposure to environmental hazards such as particulate matter whose aerodynamic diameter is less than or equal to 2.5 micrometers (PM2.5). HELIX-Atlanta's goal is to examine the feasibility of building an integrated electronic health and environmental data network in five counties of Metropolitan Atlanta, GA. NASA Marshall Space Flight Center (NASA/MSFC) is collaborating with CDC to combine NASA earth science satellite observations related to air quality and environmental monitoring data to model surface estimates of PM2.5 concentrations that can be linked with clinic visits for asthma. While use of the Air Quality System (AQS) PM2.5 data alone could meet HELIX-Atlanta specifications, there are only five AQS sites in the Atlanta area, thus the spatial coverage is not ideal. We are using NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Aerosol Optical Depth (AOD) data for estimating daily ground level PM2.5 at 10 km resolution over the metropolitan Atlanta area supplementing the AQS ground observations and filling their spatial and temporal gaps.
Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer
NASA Astrophysics Data System (ADS)
Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.
2013-12-01
We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known, especially at high temperatures. It is important to have this property well constrained as substrate thermal conductivity is the greatest influence on the rate of lava-substrate heat transfer. At Kilauea and Mauna Loa Volcanoes, Hawaii, and other volcanoes that threaten communities, lava may erupt over a variety of substrate materials including cool lava flows, volcanic tephra, soils, sand, and concrete. The composition, moisture, organic content, porosity, and grain size of the substrate dictate the thermophysical properties, thus affecting the transfer of heat from the lava flow into the substrate and flow mobility. Particulate substrate materials act as insulators, subduing the rate of heat transfer from the flow core. Therefore, lava that flows over a particulate substrate will maintain higher core temperatures over a longer period, enhancing flow mobility and increasing the duration and aerial coverage of the resulting flow. Lava flow prediction models should include substrate specification with temperature dependent material property definitions for an accurate understanding of flow hazards.
NASA Astrophysics Data System (ADS)
Dunea, Daniel; Iordache, Stefania; Pohoata, Alin; Lungu, Emil; Ianache, Cornel; Ianache, Radu
2016-04-01
One of the major air quality stressors in the urban area is particulate matter (PM). PM includes dust, dirt, soot, smoke, and liquid droplets emitted into the air by various sources such as vehicles, factories, and construction activities. PM has been linked to asthma and other respiratory illnesses. Inner-city residents need timely access to air quality synthetic indicators for protecting their respiratory health. Access to air quality forecasts and real-time data can allow residents, especially children and elders, to reduce their exposure when PM levels in conjunction with other pollutants are of potential concern. Ploiesti city is an important industrial center, which experienced a rapid economic growth in the last decade. Its industrial activity is concentrated especially on the oil production and refining industry. Ploiesti is the only city in Europe surrounded by four oil refineries. Monitoring campaigns were carried out in 12 sampling points during the "rush" hours (7.00-12.00 a.m. and 3.00-7.00 p.m.) to assess the potential exposure to high PM levels using an optical portable monitoring system, which is measuring fine and submicrometric fractions with a laser beam (DusttrakTM DRX 8533EP with environmental enclosure). Inverse distance weighting algorithm was used to obtain potential isolines of concentrations at town's scale in GIS environment. NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), respectively the backward trajectory type, was used to overview the contribution of long range transport from the most probable source region of the significant episodes characterized by PM rising of concentrations. Extraction of radiometric indicators from historical databases with multispectral images allowed the spatiotemporal characterization of land use and cloud distribution i.e. Sentinel 2 and PROBA-V (allowing specific characterization of NDVI, which provided canopy and surface reflectance in the pilot area). Resulted data were overlapped on the GIS thematic layers of the Ploiesti city area to develop the integrated system of PM movement prediction. All thematic layers were referenced to the same coordinate system using local 1970 stereographic projection and Dealul Piscului 1970 geographic coordinate system. The meteorological inputs used in experiments included long term time series recorded at local station. We combined these multiple datasets to find potential correlations that can be used for improving the prediction of particulate matter pollution episodes in Ploiesti urban area with latest state-of-the-art satellite imagery support. This study received funding from the European Economic Area Financial Mechanism 2009 - 2014 under the project ROKIDAIR "Towards a better protection of children against air pollution threats in the urban areas of Romania" contract no. 20SEE/30.06.2014 (http://www.rokidair.ro/en).
Zhao, Y; Shepherd, T A; Li, H; Xin, H
2015-03-01
To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall mean of 11.5) ppm. The 95% confidence interval values (overall mean) of daily mean PM10 and PM2.5 concentrations, in mg/m3, were, respectively, 0.57 to 0.61 (0.59) and 0.033 to 0.037 (0.035) for the conventional cage house, 3.61 to 4.29 (3.95) and 0.374 to 0.446 (0.410) for the aviary house, and 0.42 to 0.46 (0.44) and 0.054 to 0.059 (0.056) for the enriched colony house. Investigation of mitigation practices to improve indoor air quality of the litter-floor aviary housing system is warranted. © The Author 2015. Published by Oxford University Press on behalf of Poultry Science Association.
Zhao, Y.; Shepherd, T. A.; Li, H.; Xin, H.
2015-01-01
To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens’ activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall mean of 11.5) ppm. The 95% confidence interval values (overall mean) of daily mean PM10 and PM2.5 concentrations, in mg/m3, were, respectively, 0.57 to 0.61 (0.59) and 0.033 to 0.037 (0.035) for the conventional cage house, 3.61 to 4.29 (3.95) and 0.374 to 0.446 (0.410) for the aviary house, and 0.42 to 0.46 (0.44) and 0.054 to 0.059 (0.056) for the enriched colony house. Investigation of mitigation practices to improve indoor air quality of the litter-floor aviary housing system is warranted. PMID:25737567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sale, D.M.; Gibeaut, J.C.; Short, J.W.
Following the Exxon Valdez oil spill, sediment traps were deployed in nearshore subtidal areas of Prince William Sound, Alaska (PWS) to monitor particulate chemistry and mineralogy. Complemented by benthic sediment chemistry and core sample stratigraphy at the study sites, results were compared to historical trends and data from other Exxon Valdez studies. These results clearly indicate the transport of oil-laden sediments from oiled shorelines to adjacent subtidal sediments. The composition of hydrocarbons adsorbed to settling particulates at sites adjacent to oiled shorelines matched the PAH pattern of weathered Exxon Valdez crude oil.
Wilkinson, Kai E; Lundkvist, Johanna; Netrval, Julia; Eriksson, Mats; Seisenbaeva, Gulaim A; Kessler, Vadim G
2013-11-01
Concerns over exposure to airborne particulate matter (PM) are on the rise. Currently monitoring of PM is done on the basis of interpolating a mass of PM by volume (μg/m(3)) but has the drawback of not taking the chemical nature of PM into account. Here we propose a method of collecting PM at its emission source and employing automated analysis with scanning electron microscopy associated with EDS-analysis together with light scattering to discern the chemical composition, size distribution, and time and space resolved structure of PM emissions in a heavily trafficated roundabout in Sweden. Multivariate methods (PCA, ANOVA) indicate that the technogenic marker Fe follows roadside dust in spreading from the road, and depending on time and location of collection, a statistically significant difference can be seen, adding a useful tool to the repertoiré of detailed PM monitoring and risk assessment of local emission sources. Copyright © 2013 Elsevier Ltd. All rights reserved.
OVERVIEW OF THE CLIMATE IMPACT ON REGIONAL AIR QUALITY (CIRAQ) PROJECT
The Climate Impacts on Regional Air Quality (CIRAQ) project will develop model-estimated impacts of global climate changes on ozone and particulate matter (PM) in direct support of the USEPA Global Change Research Program's (GCRP) national air quality assessment. EPA's urban/reg...
Apollo Saturn 511 effluent measurements from the Apollo 16 launch operations: An experiment
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Hulten, W. C.; Wornom, D. E.
1974-01-01
An experiment was performed in conjunction with the Apollo 16 launch to define operational and instrumentational problems associated with launch-vehicle exhaust effluent monitoring. Ground and airborne sampling were performed for CO, CO2, hydrocarbons, and particulates. Sampling systems included filter pads and photometers for particulates and whole-air grab samples for gases. Launch debris was identified in the particulate samples at ground level(taken immediately after launch) and in the airborne measurements (taken 40 to 50 minutes after launch approximately 40 km downwind of the pad). Operational problems were identified and included the need for higher instrumentation mobility and the need for real-time sampling instrumentation as opposed to collection-type samples such as the whole-air grab sample.
Atmospheric Science Data Center
2014-05-15
... Radiance Ellipsoid Product. MISR uses this enhanced sensitivity along with the angular variation in signal to monitor particulate ... of MISR's unique capability of providing moderately high spatial resolution, calibrated imagery at very oblique angles. Gradations ...
40 CFR 62.14690 - What monitoring equipment must I install and what parameters must I monitor?
Code of Federal Regulations, 2011 CFR
2011-07-01
... alarm system that will sound automatically when an increase in relative particulate matter emissions over a preset level is detected. The alarm must be located where it is easily heard by plant operating personnel. (7) For positive pressure fabric filter systems, a bag leak detection system must be installed in...
40 CFR 62.15260 - What other requirements must I meet for continuous monitoring?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What other requirements must I meet for... August 30, 1999 Other Monitoring Requirements § 62.15260 What other requirements must I meet for... waste combustion unit. (b) Temperature of flue gases at the inlet of your particulate matter air...
40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...
40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...
40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...
40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...
40 CFR 60.293 - Standards for particulate matter from glass melting furnace with modified-processes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... container glass, flat glass, and pressed and blown glass with a soda-lime recipe melting furnaces. (2..., maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions... conducted by § 60.8, conduct continuous opacity monitoring during each test run. (3) Calculate 6-minute...
David R. Weise; Timothy J. Johnson; James Reardon
2015-01-01
Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using...
SEPARATED FLOW CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS - Project Summary
The objectives of this research project were to develop and evaluate a method for determining residence times for separated recirculation cavity flow conditions, and to determine the rate of growth and surface ramp contours developed from particulate deposits at obstacles that i...
Downscaler Model for predicting daily air pollution
This model combines daily ozone and particulate matter monitoring and modeling data from across the U.S. to provide improved fine-scale estimates of air quality in communities and other specific locales.
Felsovalyi, Flora; Janvier, Sébastien; Jouffray, Sébastien; Soukiassian, Hervé; Mangiagalli, Paolo
2012-12-01
Recent increased regulatory scrutiny concerning subvisible particulates (SbVPs) in parenteral formulations of biologics has led to the publication of numerous articles about the sources, characteristics, implications, and approaches to monitoring and detecting SbVPs. Despite varying opinions on the level of associated risks and method of regulation, nearly all industry scientists and regulators agree on the need for monitoring and reporting visible and subvisible particles. As prefillable drug delivery systems have become a prominent packaging option, silicone oil, a common primary packaging lubricant, may play a role in the appearance of particles. The goal of this article is to complement the current SbVP knowledge base with new insights into the evolution of silicone-oil-related particulates and their interactions with components in prefillable systems. We propose a "toolbox" for improved silicone-oil-related particulate detection and enumeration, and discuss the benefits and limitations of approaches for lowering and controlling silicone oil release in parenterals. Finally, we present surface cross-linking of silicone as the recommended solution for achieving significant SbVP reduction without negatively affecting functional performance. Copyright © 2012 Wiley Periodicals, Inc.
Aerosol Sampling Experiment on the International Space Station
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2017-01-01
The International Space Station (ISS) is a unique indoor environment which serves as both home and workplace to the astronaut crew. There is currently no particulate monitoring, although particulate matter requirements exist. An experiment to collect particles in the ISS cabin was conducted recently. Two different aerosol samplers were used for redundancy and to collect particles in two size ranges spanning from 10 nm to hundreds of micrometers. The Active Sampler is a battery operated thermophoretic sampler with an internal pump which draws in air and collects particles directly on a transmission electron microscope grid. This commercial-off-the-shelf device was modified for operation in low gravity. The Passive Sampler has five sampling surfaces which were exposed to air for different durations in order to collect at least one sample with an optimal quantity of particles for microscopy. These samples were returned to Earth for analysis with a variety of techniques to obtain long-term average concentrations and identify particle emission sources. Results are compared with the inventory of ISS aerosols which was created based on sparse data and the literature. The goal of the experiment is to obtain data on indoor aerosols on ISS for future particulate monitor design and development.
NASA Astrophysics Data System (ADS)
Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert
2016-04-01
The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.
A black carbon air quality network
NASA Astrophysics Data System (ADS)
Kirchstetter, T.; Caubel, J.; Cados, T.; Preble, C.; Rosen, A.
2016-12-01
We developed a portable, power efficient black carbon sensor for deployment in an air quality network in West Oakland, California. West Oakland is a San Francisco Bay Area residential/industrial community adjacent to regional port and rail yard facilities, and is surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we are collaborating with community members to build and operate a 100-sensor black carbon measurement network for a period of several months. The sensor employs the filter-based light transmission method to measure black carbon. Each sensor node in the network transmits data hourly via SMS text messages. Cost, power consumption, and performance are considered in choosing components (e.g., pump) and operating conditions (e.g., sample flow rate). In field evaluation trials over several weeks at three monitoring locations, the sensor nodes provided black carbon concentrations comparable to commercial instruments and ran autonomously for a week before sample filters and rechargeable batteries needed to be replaced. Buildup to the 100-sensor network is taking place during Fall 2016 and will overlap with other ongoing air monitoring projects and monitoring platforms in West Oakland. Sensors will be placed along commercial corridors, adjacent to freeways, upwind of and within the Port, and throughout the residential community. Spatial and temporal black carbon concentration patterns will help characterize pollution sources and demonstrate the value of sensing networks for characterizing intra-urban air pollution concentrations and exposure to air pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolich, George; Shadel, Craig; Chapman, Jenny
2016-09-01
In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective ofmore » the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.« less
Fine PM measurements: personal and indoor air monitoring.
Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H
2002-12-01
This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.
The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...
The United States Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project is to develop improved methods for modeling the source through...
The first of EPA's Particulate Matter (PM) Supersites projects was established in Atlanta, GA during the summer of 1999 in conjunction with the Southern Oxidants Study. The short-term primary focus was a one month intensive field campaign to evaluate advanced PM measurement me...
The report gives results of a project, in support of the intergared Air Cancer Project (IACP), to provide data on the specific effects of appliance type and operating variables on woodstove emissions. samples of particulate material and volatile organic compounds (VOCs) were coll...
Generic particulate-monitoring system for retrofit to Hanford exhaust stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camman, J.W.; Carbaugh, E.H.
1982-11-01
Evaluations of 72 sampling and monitoring systems were performed at Hanford as the initial phase of a program to upgrade such systems. Each evaluation included determination of theoretical sampling efficiencies for particle sizes ranging from 0.5 to 10 micrometers aerodynamic equivalent diameter, addressing anisokinetic bias, sample transport line losses, and collector device efficiency. Upgrades needed to meet current Department of Energy guidance for effluent sampling and monitoring were identified, and a cost for each upgrade was estimated. A relative priority for each system's upgrade was then established based on evaluation results, current operational status, and future plans for the facilitymore » being exhausted. Common system upgrade requirements lead to the development of a generic design for common components of an exhaust stack sampling and monitoring system for airborne radioactive particulates. The generic design consists of commercially available off-the-shelf components to the extent practical and will simplify future stack sampling and monitoring system design, fabrication, and installation efforts. Evaluation results and their significance to system upgrades are empasized. A brief discussion of the analytical models used and experience to date with the upgrade program is included. Development of the generic stack sampling and monitoring system design is outlined. Generic system design features and limitations are presented. Requirements for generic system retrofitting to existing exhaust stacks are defined and benefits derived from generic system application are discussed.« less
Survey of Aircraft Emissions and Related Instrumentation
DOT National Transportation Integrated Search
1971-03-31
The report presents the preliminary results of a survey of transportation systems emissions monitoring requirements. Emissions of carbon monoxide, hydrocarbons, oxides of nitrogen and particulates from aircraft power plants, with emphasis on gas turb...
Monitoring the soot emissions of passing cars.
Kurniawan, A; Schmidt-Ott, A
2006-03-15
We report on the first application of a novel fast on-road sensing method for measurement of particulate emissions of individual passing passenger cars. The studywas motivated by the shift of interest from gases to particles in connection with strong adverse health effects. The results correspond very much to findings by Beaton et al. (Science, May 19,1995) for gaseous hydrocarbon and CO emissions: A small percentage of "superpolluters" (here 5%) account for a high percentage (here 43%) of the pollution (here elemental carbon). We estimate that up to 50% of the particulate emissions of vehicles could be avoided on the basis of the present legislation, if on-road monitoring would be applied to enforce maintenance. Our fast sensing method for particles is based on photoelectron emission from the emitted airborne soot particles in combination with a CO2 sensor delivering a reference.
Polarimetric Remote Sensing of Atmospheric Particulate Pollutants
NASA Astrophysics Data System (ADS)
Li, Z.; Zhang, Y.; Hong, J.
2018-04-01
Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.
Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area.
Zhao, Jian-wei; Shan, Bao-qing; Yin, Cheng-qing
2007-01-01
The pollutant loads of surface runoff in an urban tourist area have been investigated for two years in the Wuhan City Zoo, China. Eight sampling sites, including two woodlands, three animal yards, two roofs and one road, were selected for sampling and study. The results indicate that pollutants ranked in a predictable order of decreasing load (e.g. animal yard > roof > woodland > road), with animal yards acting as the key pollution source in the zoo. Pollutants were transported mainly by particulate form in runoff. Particulate nitrogen and particulate phosphorous accounted on average for 61%, 78% of total pollutant, respectively, over 13 monitored rainfall events. These results indicate the treatment practices should be implemented to improve particulate nutrient removal. Analysis of the M(V) curve indicate that no first flush effect existed in the surface runoff from pervious areas (e.g. woodland, animal ground yard), whereas a first flush effect was evident in runoff from impervious surfaces (e.g. animal cement yard, roof, road).
Determination of biomass burning tracers in air samples by GC/MS
NASA Astrophysics Data System (ADS)
Janoszka, Katarzyna
2018-01-01
Levoglucosan (LG) as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl) trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1).
2018 PM 2.5 Exceedances | Fine Particulate | New England ...
2018-06-11
Exceedances of the 35.5 ug/m3 24-hour average PM 2.5 standard and the dates they occurred for each continuous PM 2.5 monitor in New England. Data from these monitors are not used for official purposes such as determining if an areas meets the PM 2.5 standard. All data are preliminary and subject to change.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the flow sensor and other necessary equipment in a position that provides a representative flow. (2) Use a flow sensor with a measurement sensitivity of no greater than 2 percent of the expected process... sensor(s) in a position that provides a representative measurement of the pressure (e.g., particulate...
Using ZIP code-level mortality data, the association of cardiovascular mortality with PM2.5 and PM10-2.5,measured at a central monitoring site, was determined for three populations at different distances from the monitoring site but with similar numbers of d...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... [mu]g/m\\3\\ for all missing data in 1st quarter of 2008. \\4\\ Macon SE Annual Mean considers data...; Georgia: Macon; Determination of Attaining Data for the 1997 Annual Fine Particulate Standards AGENCY... air monitoring data for the 2007-2009 period showing that the Area has monitored attainment of the...
NASA Astrophysics Data System (ADS)
Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.
2017-11-01
Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.
Tropical river suspended sediment and solute dynamics in storms during an extreme drought
Clark, Kathryn E.; Shanley, James B.; Scholl, Martha A.; Perdrial, Nicolas; Perdrial, Julia N.; Plante, Alain F.; McDowell, William H.
2017-01-01
Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) “new water” dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry.
Environmental monitoring in four European museums
NASA Astrophysics Data System (ADS)
Camuffo, Dario; Van Grieken, Rene; Busse, Hans-Jürgen; Sturaro, Giovanni; Valentino, Antonio; Bernardi, Adriana; Blades, Nigel; Shooter, David; Gysels, Kristin; Deutsch, Felix; Wieser, Monika; Kim, Oliver; Ulrych, Ursula
In a European multidisciplinary research project concerning environmental diagnostics, museums have been selected, having different climate and pollution conditions, i.e.: Correr Museum, Venice (Italy); Kunsthistorisches Museum, Vienna (Austria); Royal Museum of Fine Arts, Antwerp (Belgium); Sainsbury Centre for Visual Arts, Norwich (UK). Some field tests investigated the microclimate, the gaseous and particulate air pollution and the biological contamination to suggest mitigative techniques that may reduce the potential for damage in the long run. Potential risk factors are generated by imbalance in temperature and humidity, generated by heating, air conditioning or ventilating system (HVAC), or the building structures, exchange of outside air, or large visitor numbers. HVAC may also enhance indoor gaseous pollution. Plants and carpets represent potential niches for bacterial colonisation. Pollutants and particles have been recognised having partly external and partly internal origin. Tourism has a direct negative impact, i.e. transport of external particles, release of heat, vapour and CO 2, as well as generation of turbulence, which increases the deposition rate of particulate matter. However, the main problem is that the microclimate has been planned for the well being of visitors during only the visiting time, disregarding the needs of conservation that requires a constant climate by day and by night. In some of these cases, better environmental niches have been obtained with the help of showcases. In other cases, showcases worsened the situation, especially when incandescent lamps were put inside.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, R.A.
1997-05-01
The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systemsmore » has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.« less
Subramanian, R; Winijkul, Ekbordin; Bond, Tami C; Thiansathit, Worrarat; Oanh, Nguyen Thi Kim; Paw-armart, Ittipol; Duleep, K G
2009-06-01
A "piggyback" approach is used to characterize aerosol emissions to obtain input for large-scale models of atmospheric transport. Particulate and gaseous emissions from diesel trucks, light-duty vehicles, and buses were measured by the Bangkok Pollution Control Department as part of the Developing Integrated Emissions Strategies for Existing Land Transport (DIESEL) project. We added filter-based measurements of carbonaceous composition, particulate light absorption, and water uptake. For 88 "normal" diesel vehicles (PM emission rate < 4.7 g/kg), our best estimate of the average PM2.5 emission rate is 2.2 +/- 0.5 g/kg, whereas for 15 high emitters, it is 8.4 +/- 1.9 g/kg. The effect of Euro standards on PM emission rates was apparent for heavy-duty vehicles, but not for light-duty vehicles. Carbonaceous composition appears relatively consistent, with particulate (artifact-corrected) OC at 17 +/- 1% and EC at 40 +/- 8% of PM for 103 pickups, vans, heavy-duty trucks and buses. The median absorption cross-section for EC is 10.5 m2/g at 532 nm. The history of average emission rate and chemical composition during the project suggests that about 25 vehicles can provide a regional PM emission rate for normal vehicles. Other studies such as remote sensing measurements will be required to estimate the important contribution of high-emitting vehicles.
Cox, Louis A; Popken, Douglas A; Ricci, Paolo F
2013-08-01
Recent studies have indicated that reducing particulate pollution would substantially reduce average daily mortality rates, prolonging lives, especially among the elderly (age ≥ 75). These benefits are projected by statistical models of significant positive associations between levels of fine particulate matter (PM2.5) levels and daily mortality rates. We examine the empirical correspondence between changes in average PM2.5 levels and temperatures from 1999 to 2000, and corresponding changes in average daily mortality rates, in each of 100 U.S. cities in the National Mortality and Morbidity Air Pollution Study (NMMAPS) data base, which has extensive PM2.5, temperature, and mortality data for those 2 years. Increases in average daily temperatures appear to significantly reduce average daily mortality rates, as expected from previous research. Unexpectedly, reductions in PM2.5 do not appear to cause any reductions in mortality rates. PM2.5 and mortality rates are both elevated on cold winter days, creating a significant positive statistical relation between their levels, but we find no evidence that reductions in PM2.5 concentrations cause reductions in mortality rates. For all concerned, it is crucial to use causal relations, rather than statistical associations, to project the changes in human health risks due to interventions such as reductions in particulate air pollution. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael
2016-04-01
It is known that a good evaluation and prediction of surface water pollution is mainly limited by the monitoring strategy and the capability of the hydrological water quality model to reproduce the internal processes. To this end, a compromise sampling frequency, which can reflect the dynamical behaviour of leached nutrient fluxes responding to changes in land use, agriculture practices and point sources, and appropriate process-based water quality model are required. The objective of this study was to test the identification of hydrological water quality model parameters (nitrogen and phosphorus) under two different monitoring strategies: (1) regular grab-sampling approach and (2) regular grab-sampling with additional monitoring during the hydrological events using automatic samplers. First, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was successfully calibrated (1994-1998) for discharge (NSE = 0.86), nitrate-N (lowest NSE for nitrate-N load = 0.69), particulate phosphorus and soluble phosphorus in the Selke catchment (463 km2, central Germany) for the period 1994-1998 using regular grab-sampling approach (biweekly to monthly for nitrogen and phosphorus concentrations). Second, the model was successfully validated during the period 1999-2010 for discharge, nitrate-N, particulate-phosphorus and soluble-phosphorus (lowest NSE for soluble phosphorus load = 0.54). Results, showed that when additional sampling during the events with random grab-sampling approach was used (period 2011-2013), the hydrological model could reproduce only the nitrate-N and soluble phosphorus concentrations reasonably well. However, when additional sampling during the hydrological events was considered, the HYPE model could not represent the measured particulate phosphorus. This reflects the importance of suspended sediment during the hydrological events increasing the concentrations of particulate phosphorus. The HYPE model could reproduce the total phosphorus during the period 2011-2013 only when the sediment transport-related model parameters was re-identified again considering the automatic sampling during the high-flow conditions.
Temporal and spatial distribution of particulate carcinogens and mutagens in Bangkok, Thailand.
Pongpiachan, Siwatt; Choochuay, C; Hattayanone, M; Kositanont, C
2013-01-01
To investigate the level of genotoxicity over Bangkok atmosphere, PM10 samples were collected at the Klongchan Housing Authority (KHA), Nonsree High School (NHS), Watsing High School (WHS), Electricity Generating Authority of Thailand (EGAT), Chokchai 4 Police Station (CPS), Dindaeng Housing Authority (DHA) and Badindecha High School (BHS). For all monitoring stations, each sample covered a period of 24 hours taken at a normal weekday every month from January-December 2006 forming a database of 84 individual air samples (i.e. 12?7=84). Atmospheric concentrations of low molecular weight PAHs (i.e. phenanthrene, anthracene, pyrene and fluoranthene) were measured in PM10 at seven observatory sites operated by the pollution control department of Thailand (PCD). The mutagenicity of extracts of the samples was compared in Salmonella according to standard Ames test method. The dependence of the effects on sampling time and on sampling location was investigated with the aid of a calculation of mutagenic index (MI). This MI was used to estimate the increase in mutagenicity above background levels (i.e. negative control) at the seven monitoring sites in urban area of Bangkok due to anthropogenic emissions within that area. Applications of the AMES method showed that the average MI of PM10 collected at all sampling sites were 1.37±0.10 (TA98; +S9), 1.24±0.08 (TA98; -S9), 1.45±0.10 (TA100; +S9) and 1.30±0.09 (TA100; -S9) with relatively less variations. Analytical results reconfirm that the particulate PAH concentrations measured at PCD air quality monitoring stations are moderately low in comparison with previous results observed in other countries. In addition, the concept of incremental lifetime particulate matter exposure (ILPE) was employed to investigate the potential risks of exposure to particulate PAHs in Bangkok atmosphere.
Atmospheric particulate measurements in Norfolk, Virginia
NASA Technical Reports Server (NTRS)
Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.
1975-01-01
Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.
Associations between respiratory illness and PM{sub 10} air pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, A.H.; Gordian, M.E.; Morris, S.S.
In this study, the association between daily morbidity and respirable particulate pollution (i.e., particles with a mass median aerodynamic diameter of {le} 10 microns [PM{sub 10}]) was evaluated in the general population of Anchorage, Alaska. Using insurance claims data for state employees and their dependents who lived in Anchorage, Alaska, the authors determined the number of medical visits for asthma, bronchitis, and upper respiratory infections. The number of visits were related to the level of particulate pollution in ambient air measured at air-monitoring sites. 17 refs., 2 figs., 4 tabs.
Composition of air masses in Fuerteventura (Canary Islands) according to their origins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.
1994-12-31
The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure somemore » atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.« less
NASA Astrophysics Data System (ADS)
Ni, Ji-Qin; Diehl, Claude A.; Chai, Lilong; Chen, Yan; Heber, Albert J.; Lim, Teng-Teeh; Bogan, Bill W.
2017-05-01
Manure-belt layer hen houses are a relatively newer design and are replacing the old high-rise layer hen houses for egg production in USA. However, reliable aerial pollutant emission data from comprehensive and long-term on-farm monitoring at manure-belt houses are scarce. This paper reports the emission factors and characteristics of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), and particulate matter (PM10) from two 250,000-bird capacity manure-belt layer hen houses (B-A and B-B) in northern Indiana, USA. The 2-year continuous field monitoring followed the Quality Assurance Project Plan of the National Air Emission Monitoring Study (NAEMS). Only days with more than 18 h (or 75%) of valid data were reported to avoid biased emission calculation. The results of 2-year average daily mean (ADM) gas emissions per hen from the two houses, excluding emissions from their manure shed, were 0.280 g for NH3, 1.952 mg for H2S, and 103.2 g for CO2. They were 67% lower for NH3, 77% higher for H2S, and 10% higher for CO2 compared with reported emissions from high-rise layer hen houses. Emissions of NH3 and CO2 exhibited evident seasonal variations. They were higher in winter than in summer and followed the NH3 and CO2 concentration seasonal patterns. Annual emission differences were observed for all the four pollutants. Reduced emissions of the three gases were shown during periods of layer hen molting and flock replacement. The 2-year ADM PM10 emission from B-B was 25.2 mg d-1 hen-1. A unique weekly PM10 emission pattern was identified for both houses. It was characterized with much lower Sunday emissions compared with the other single-day emissions of the week and was related to the weekly schedule of in-house production operations, including maintenance and cleaning.
The report gives results of a project, in support of the intergrated Air Canver Project (IACP) to provide data on the specific effects of appliance type and operating variales on woodstove emissions. Samples of particulate material and volatile organic compounds (VOCs) were colle...
Battery condenser system PM2.5 emission factors and rates for cotton gins
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....
Shuttle filter study. Volume 1: Characterization and optimization of filtration devices
NASA Technical Reports Server (NTRS)
1974-01-01
A program to develop a new technology base for filtration equipment and comprehensive fluid particulate contamination management techniques was conducted. The study has application to the systems used in the space shuttle and space station projects. The scope of the program is as follows: (1) characterization and optimization of filtration devices, (2) characterization of contaminant generation and contaminant sensitivity at the component level, and (3) development of a comprehensive particulate contamination management plane for space shuttle fluid systems.
Central-site monitors do not account for factors such as outdoor-to-indoor transport and human activity patterns that influence personal exposures to ambient fine-particulate matter (PM2.5). We describe and compare different ambient PM2.5 exposure estimation...
The effects of fine particulate matter (PM2.5) on human health are well documented (Pope et al., 2002). In order to spatially and temporally assess the impact of PM2.5 on the U.S. population, the U.S. Environmental Protection Agency (U.S. EPA) operates a ne...
Workplace exposure to traffic-derived nanoscaled particulates
NASA Astrophysics Data System (ADS)
Viana, M.; Díez, S.; Alastuey, A.; Querol, X.; Reche, C.
2011-07-01
Workplace exposure to traffic-derived nanoscaled particulates was determined at a chemical research facility. Sub-micron particles were monitored by means of a multi-angle absorption photometer (MAAP) and a laser spectrometer (GRIMM 1107), providing 10-minute black carbon (BC) concentrations and 15-minute PM1 concentrations, respectively, over a 4-month period (22/03/2010 - 28/07/2010). BC levels were simultaneously monitored during 1-day periods using a handheld aethalometer (Magee AE51), with excellent agreement between both techniques (MAAP and AE51, r2 = 0.96, y = 0.84x).The studied laboratory is located on the 5th floor of an 8-storey building in an urban background environment in Barcelona, Spain. The laboratory was not in use during the study period, and both of its doors were kept open at all times in order to ensure air circulation between the study laboratory and the remaining offices and laboratories on the same floor (where workers were exposed). Windows were kept closed at all times. Indoor BC and PM1 concentrations were compared with ambient BC and PM1 levels from an outdoor monitoring station located at <150 m away from the research facility. Results evidenced the major impact of outdoor vehicular traffic emissions on the levels of nanoscale particulates monitored in the workplace, with clear daily cycles coinciding with traffic rush hours, especially during week days. Penetration ratios were calculated for BC which showed that, even ensuring that all windows were closed, at least 82% of indoor BC concentrations originate from outdoor emissions. Outdoor/indoor penetration ratios were stable for BC (ranging between 1.20 and 1.35) but not for PM1 (1.76 to 1.02), suggesting that it is necessary to monitor the variability of penetration factors as a function of time. BC emission sources in the workplace still need to be determined, but could be related to printer/photocopier toner emissions and laboratory work. Potential contamination due to the monitoring instruments (pumps) was discarded through the analysis of daily indoor BC cycles.
Poikāne, Rita; Carstensen, Jacob; Dahllöf, Ingela; Aigars, Juris
2005-07-01
The dynamics (fate) of trace metals in suspended particulate matter within the Gulf of Riga has not yet been adequately addressed in the scientific literature. Therefore, during a two year period (2001-2002) samples of suspended particulate matter and surface sediments for trace metal analysis were collected in the Gulf of Riga and the Daugava river, and these data were combined with background information from the national marine monitoring program in Latvia. This paper presents a descriptive study of solid phase trace metals (aluminium, iron, cadmium, chromium, copper, manganese, nickel, lead and zinc) dynamics and their spatial distribution within the Gulf of Riga based on Principal Component Analysis and Cluster analysis. Fluvial particulate matter and particulate Al, Fe, Cr and Ni were brought into the Gulf of Riga mainly during spring flood and thereafter quickly diluted by the water masses of the Gulf of Riga. Fine-grained suspended material and particulate Al and Fe were well mixed and evenly distributed through all deepwater basins of the Gulf of Riga. The increase of particulate Mn below the thermocline in August and a strong negative correlation with dissolved oxygen concentrations suggested that particulate Mn in the water column and the sediments were regulated mainly by changing oxic-anoxic conditions in the sediments of the Gulf of Riga. The observed correlation between Al and Fe in the water column is in contrast to that observed in the nepheloid layer where Fe correlated with Mn, obviously due to fast diagenetic processes on sediment surface. The observed negative correlation of Cd and Zn with total carbon and total nitrogen in the nepheloid layer might indicate different sedimentation mechanisms of these elements, however, this assumption is still inconclusive.
Gaseous iodine monitoring in Europe after the Fukushima accident
NASA Astrophysics Data System (ADS)
Masson, Olivier; de Vismes-Ott, Anne; Manificat, Guillaume; Gurriaran, Rodolfo; Debayle, Christophe
2014-05-01
After the Fukushima accident and following the worldwide dispersion of contaminated air masses, many monitoring networks have reported airborne levels of emitted radionuclides, namely and mainly cesium isotopes and iodine 131. Most of the values focused on the particulate fraction (i.e. radionuclide-labeled aerosols) and were dedicated to cesium 137, cesium 134 and iodine 131. Iodine-131 was also found under gaseous form that accounted for most part of the total (gaseous + particulate)I-131 throughout the world. This gaseous predominance was also noticed after the Chernobyl accident despite differences in the type of accident. This predominance is due to the high iodine volatility and also by a rather low transfer from the gaseous form to the particulate one by adsorption on ambient airborne particles. Paradoxically, the number of gaseous determinations was rather low compared to the magnitude of data related to the particulate form (around 10 percent). Routine monitoring of airborne radionuclides species have been extensively based on aerosol sampling for decades as this allows the long term characterization of trace levels of remnant anthropogenic radionuclides. Moreover the capability of gaseous sampler equipped with activated charcoal to allow the quantification of 131I gaseous at trace level is limited by the contact time required for the sorption of iodine on the sorbent and thus by the low acceptable flow rate (usually between 3 and 5 m3/h, exceptionally 12 m3/h). In this context and despite the fact that airborne level outside Japan were of no concern for public health, this contribute to the lack of information on the actual levels of gaseous iodine. Other incidents involving iodine determination in the air have been reported in Europe in 2011 and 2012 without any relation with the Fukushima accident. For the same reason as previously mentioned, mainly, if not only, the particulate form was reported whereas it can be supposed that the predominant form was gaseous. In order to cope with these limitations, some improvements can be done 1) to increase the number of iodine samplers, as engaged by IRSN, 2) to have a number of gaseous surveillance station operating on a routine basis, 3) to diminish the detection limit of the gaseous iodine.
Cauda, Emanuele; Sheehan, Maura; Gussman, Robert; Kenny, Lee; Volkwein, Jon
2015-01-01
Two prototype cyclones were the subjects of a comparative research campaign with a diesel particulate matter sampler (DPMS) that consists of a respirable cyclone combined with a downstream impactor. The DPMS is currently used in mining environments to separate dust from the diesel particulate matter and to avoid interferences in the analysis of integrated samples and direct-reading monitoring in occupational environments. The sampling characteristics of all three devices were compared using ammonium fluorescein, diesel, and coal dust aerosols. With solid spherical test aerosols at low particle loadings, the aerodynamic size-selection characteristics of all three devices were found to be similar, with 50% penetration efficiencies (d50) close to the design value of 0.8 µm, as required by the US Mine Safety and Health Administration for monitoring occupational exposure to diesel particulate matter in US mining operations. The prototype cyclones were shown to have ‘sharp cut’ size-selection characteristics that equaled or exceeded the sharpness of the DPMS. The penetration of diesel aerosols was optimal for all three samplers, while the results of the tests with coal dust induced the exclusion of one of the prototypes from subsequent testing. The sampling characteristics of the remaining prototype sharp cut cyclone (SCC) and the DPMS were tested with different loading of coal dust. While the characteristics of the SCC remained constant, the deposited respirable coal dust particles altered the size-selection performance of the currently used sampler. This study demonstrates that the SCC performed better overall than the DPMS. PMID:25060240
Regions of pollution with particulate matter in Poland
NASA Astrophysics Data System (ADS)
Rawicki, Kacper; Czarnecka, Małgorzata; Nidzgorska-Lencewicz, Jadwiga
2018-01-01
The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February). The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 - 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 - 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method), three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3) and, in the case of PM10, the frequency of excessive daily limit value.
Nayar, S; Goh, B P L; Chou, L M; Reddy, S
2003-08-20
Ponggol estuary, located on the northeastern coast of Singapore, is heavily impacted by reclamation, dredging, construction and shipping. Tin, lead, nickel, cadmium, copper and zinc in the particulate and dissolved fraction and in sediments were monitored biweekly in the estuary from July 1999 to June 2000. The concentrations of tin, lead, nickel, cadmium, copper and zinc were observed to range from ND-92 ppm, ND-303 ppm, ND-2818 ppm, ND-74 ppm, ND-1117 ppm and ND-137000 ppm, respectively, in the dissolved, particulate and sediments fractions. Intensive dredging activity occurred during the monitoring period, and this may have led to the resuspension and increased bioavailability of particulate metals. Periphytic algae were established on glass slides and exposed to previously measured environmental levels of heavy metals using in situ estuarine microcosms. The toxicity of heavy metals in various fractions to periphytic algae was assessed from the changes in their chlorophyll a content. Cadmium had the least significant effect followed by lead, zinc, nickel, tin and copper at all concentrations tested. A reduction in periphyton biomass (with respect to controls) of 95-100% was observed for treatments with metals in particulate form. In addition, exposure to contaminated sediments for 3 days significantly decreased chlorophyll a by 90-99% compared to controls. High concentrations of zinc (9893-17240 mg l(-1)), copper (5-11 mg l(-1)) and cadmium (1-1.8 mg l(-1)) recorded in the aqueous phase of treatment microcosms, and attributed to release from the contaminated sediments, could account for the toxicity to periphyton.
SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH
Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....
ERIC Educational Resources Information Center
Fox, Donald L.
1989-01-01
Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)
Evaluation of Elm and Speck Sensors
Particulate matter (PM) is a pollutant of high public interest regulated by national ambient air quality standards (NAAQS) using Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instrumentation identified for environmental monitoring. The US EPA has been evaluat...
NASA Astrophysics Data System (ADS)
Wei, Wei; Gu, Zhaolin
2015-10-01
Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.
NASA Astrophysics Data System (ADS)
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate matter for regional environmental agencies - Local forecast model evaluation support for local authorities and city bodies. Giving value to the above listed aspects, PASODOBLE objectives are following: - Evolution of existing and development of new sustainable air quality services for Europe on regional and local scales - Development and testing of a generic service framework for coordinated input data acquisition and customizable user-friendly access to services - Utilization of multiple cycles of delivery, use and assessment versus requirements and market planning in cooperation with users - Promotion and harmonisation of best practise tools for air quality communities. Further European multidisciplinary projects should be created to better understand the most prevalent atmospheric factors to be impacted in predictive, preventive and personalised medicine considered as the central concept for future medicine.
SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus
2016-04-01
Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the Czech Republic, and the Gorj County in Romania. All data products shall undergo a quality control, i.e. robust and independent validation. The SAMIRA consortium will further work towards a pre-operational system for improved PM10 forecasts using observational (in situ and satellite) data assimilation. SAMIRA aims to maximize project benefits by liaison with national and regional environmental protection agencies and health institutions, as well as related ESA and European initiatives such as the Copernicus Atmospheric Monitoring Services (CAMS).
Visco, Giovanni; Plattner, Susanne H; Fortini, Patrizia; Sammartino, Mariapia
2017-06-01
In the last decades, the very fast improvement of the analytical instrumentation has led to the possibility of quickly and easily getting a lot of data; in turn, the need of advanced statistical methods suitable to extract the full information furnished by instruments has increased. Such kind of data treatments is particularly important in any case of continuous monitoring of one or more parameters, so the microclimate monitoring is a typical example for this application. Microclimate control is essential in the conservation of Cultural Heritage (CH), but decisions on optimal conservation parameters cannot base only on existing norms that do not take into account the environment's history. Often CH has survived for many centuries in conditions that must be considered risky but also a stable state (equilibrium) resulting from a long adaptation process during which a more or less heavy damage occurred to the materials. Any successive change of microclimate parameters has interrupted this equilibrium conditions and has induced further damage to material until a new equilibrium is reached; dimension and frequency of changes are proportional to the expected damage. This thermodynamic consideration provides the background for a CH conservation project based on microclimate control and highlights the importance of environmental monitoring for the identification of equilibrium parameters to be maintained. In 2010, we monitored the microclimate of an important historical building in Rome, the Mamertino Carcer, before its opening to visitors. One year later, we repeated the monitoring in the presence of visitors, and here, we present a careful choice of multivariate data treatments adopted for an enough, simple and immediate evaluation of the microclimatic changes; this allows an easier understanding also for persons with not too deep scientific background, such as Superintendents and, in turn, really useful information to provide suggestions for a conservation project. Results evidenced the expected loss of isolation of the site that occurred by opening to visitors; this led to wider excursions of both temperature and relative humidity and, in turn, to a worsening of the conservative conditions. Surely, a monitoring of particulate matter, correlated to air fluxes and, in turn, to microclimate, is of fundamental importance for the conservation of frescoes and will be object of one of our future diagnostic interventions in the site.
Estimation of phosphorus flux in rivers during flooding.
Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang
2013-07-01
Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in rivers during flooding should be monitored to evaluate the loading of phosphorus more precisely. The results show that monitoring and controlling phosphorus transport during flooding can help prevent the eutrophication of a reservoir.
NASA Technical Reports Server (NTRS)
Fries, M. D.; Fries, W. D.; McCubbin, F. M.; Zeigler, R. A.
2018-01-01
Mars Sample Return (MSR) requires strict organic contamination control (CC) and contamination knowledge (CK) as outlined by the Mars 2020 Organic Contamination Panel (OCP). This includes a need to monitor surficial organic contamination to a ng/sq. cm sensitivity level. Archiving and maintaining this degree of surface cleanliness may be difficult but has been achieved. MSR's CK effort will be very important because all returned samples will be studied thoroughly and in minute detail. Consequently, accurate CK must be collected and characterized to best interpret scientific results from the returned samples. The CK data are not only required to make accurate measurements and interpretations for carbon-depleted martian samples, but also to strengthen the validity of science investigations performed on the samples. The Opera instrument prototype is intended to fulfill a CC/CK role in the assembly, cleaning, and overall contamination history of hardware used in the MSR effort, from initial hardware assembly through post-flight sample curation. Opera is intended to monitor particulate and organic contamination using quartz crystal microbalances (QCMs), in a self-contained portable package that is cleanroom-compliant. The Opera prototype is in initial development capable of approximately 100 ng/sq. cm organic contamination sensitivity, with additional development planned to achieve 1 ng/sq. cm. The Opera prototype was funded by the 2017 NASA Johnson Space Center Innovation Charge Account (ICA), which provides funding for small, short-term projects.
Triantafyllou, A G; Zoras, S; Evagelopoulos, V
2006-11-01
Lignite mining operations and lignite-fired power stations result in major particulate pollution (fly ash and fugitive dust) problems in the areas surrounding these activities. The problem is more complicated, especially, for urban areas located not far from these activities, due to additional contribution from the urban pollution sources. Knowledge of the distribution of airborne particulate matter into size fraction has become an increasing area of focus when examining the effects of particulate pollution. On the other hand, airborne particle concentration measurements are useful in order to assess the air pollution levels based on national and international air quality standards. These measurements are also necessary for developing air pollutants control strategies or for evaluating the effectiveness of these strategies, especially, for long periods. In this study an attempt is made in order to investigate the particle size distribution of fly ash and fugitive dust in a heavy industrialized (mining and power stations operations) area with complex terrain in the northwestern part of Greece. Parallel total suspended particulates (TSP) and particulate matter with an aerodynamic diameter less than 10 microm (PM10) concentrations are analyzed. These measurements gathered from thirteen monitoring stations located in the greater area of interest. Spatial, temporal variation and trend are analyzed over the last seven years. Furthermore, the geographical variation of PM10 - TSP correlation and PM10/TSP ratio are investigated and compared to those in the literature. The analysis has indicated that a complex system of sources and meteorological conditions modulate the particulate pollution of the examined area.
Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui
The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wallmore » surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.« less
NASA Astrophysics Data System (ADS)
Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.
2011-05-01
Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.
NASA Astrophysics Data System (ADS)
Smith, Craig R.; Mincks, Sarah; DeMaster, David J.
2008-11-01
The impact of the highly seasonal Antarctic primary production cycle on shelf benthic ecosystems remains poorly evaluated. Here we describe a times-series research project on the West Antarctic Peninsula (WAP) shelf designed to evaluate the seafloor deposition, and subsequent ecological and biogeochemical impacts, of the summer phytoplankton bloom along a transect crossing the Antarctic shelf near Anvers Island. During this project, entitled Food for Benthos on the Antarctic Continental Shelf (FOODBANCS), we deployed replicate sediment traps 150-170 m above the seafloor (total water-column depth of 590 m) on the central shelf from December 1999 to March 2001, recovering trap samples every 3-4 months. In addition, we used a seafloor time-lapse camera system, as well as video surveys conducted at 3-4 months intervals, to monitor the presence and accumulation of phytodetritus at the sediment-water interface. The fluxes of particulate organic carbon and chlorophyll- a into sediment traps (binned over 3-4 month intervals) showed patterns consistent with seasonal variability, with average summer fluxes during the first year exceeding winter fluxes by a factor of ˜2-3. However, inter-annual variability in summer fluxes was even greater than seasonal variability, with 4-10-fold differences in the flux of organic carbon and chlorophyll- a between the summer seasons of 1999-2000 and 2000-2001. Phytodetrital accumulation at the shelf floor also exhibited intense inter-annual variability, with no visible phytodetritus from essentially December 1999 to November 2000, followed by pulsed accumulation of 1-2 cm of phytodetritus over a ˜30,000 km 2 shelf area by March 2001. Comparisons with other studies suggest that the levels of inter-annual variability we observed are typical of the Antarctic shelf over decadal time scales. We conclude that fluxes of particulate organic carbon, chlorophyll- a and phytodetritus to WAP-shelf sediments vary intensely on seasonal to inter-annual time scales, yielding dramatic temporal variability in the flux of food for detritivores to the Antarctic shelf floor.
40 CFR Table 2 to Subpart Mmm of... - Standards for New and Existing PAI Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... a HAP Particulate matter concentration not to exceed 0.01 gr/dscf. Heat exchange systems Each heat exchange system used to cool process equipment in PAI manufacturing operations Monitoring and leak repair...
40 CFR Table 2 to Subpart Mmm of... - Standards for New and Existing PAI Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... a HAP Particulate matter concentration not to exceed 0.01 gr/dscf. Heat exchange systems Each heat exchange system used to cool process equipment in PAI manufacturing operations Monitoring and leak repair...
DESIGN OF MINIMUM-WEIGHT DIFFUSION BATTERIES
Until recently, the measurement of particle sizes in aerosols was largely a laboratory exercise. Currently, however, particulates in the atmosphere and in the industrial exhaust gases are being monitored extensively in the field. While the weight and volume of laboratory apparatu...
Evaluation of Field-deployed Low Cost PM Sensors
Background Particulate matter (PM) is a pollutant of high public interest regulated by national ambient air quality standards (NAAQS) using federal reference method (FRM) and federal equivalent method (FEM) instrumentation identified for environmental monitoring. PM is present i...
THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY (DEARS)
Field data collections for the Detroit Exposure and Aerosol Research Study (DEARS) have completed one-half of the planned study design. The DEARS is collecting personal, residential indoor, residential outdoor and central community monitoring data involving particulate matter, v...
The PerkinElmer Elm (formerly the AirBase CanarIT) is a multi-sensor air quality monitoring device that measures particulate matter (PM), total volatile organic compounds (VOCs), nitrogen dioxide (NO2), and several other atmospheric components. PM, VOCs, and NO2
Anjaneyulu, Y; Jayakumar, I; Hima Bindu, V; Sagareswar, G; Mukunda Rao, P V; Rambabu, N; Ramani, K V
2005-08-01
A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad "it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM". These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000-15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced electrochemical sensor systems (sulphur dioxide, oxides of nitrogen, carbon monoxide, hydrocarbons, ozone, mercaptans and hydrogen sulphide) and a particulate matter analyzer (total suspended particulate matter TSPM), PM2.5 and PM10). The sensor and data acquisition systems are programmed to monitor pollution levels at 1/2 hour durations during peak hours and at 1-hour intervals at other times. Presently, extensive statistical and numerical simulations are being carried out at our center to correlate the individuals living in the monitored areas with respiratory infections with air pollution.
Anjaneyulu, Y.; Jayakumar, I.; Bindu, V. Hima; Sagareswar, G.; Rao, P.V. Mukunda; Rambabu, N.; Ramani, K. V.
2005-01-01
A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced electrochemical sensor systems (sulphur dioxide, oxides of nitrogen, carbon monoxide, hydrocarbons, ozone, mercaptans and hydrogen sulphide) and a particulate matter analyzer (total suspended particulate matter TSPM), PM2.5 and PM10). The sensor and data acquisition systems are programmed to monitor pollution levels at ½ hour durations during peak hours and at 1-hour intervals at other times. Presently, extensive statistical and numerical simulations are being carried out at our center to correlate the individuals living in the monitored areas with respiratory infections with air pollution. PMID:16705838
PE Padgett
2010-01-01
Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...
Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor
NASA Astrophysics Data System (ADS)
Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew
2016-04-01
We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.
NASA Astrophysics Data System (ADS)
Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.
Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.
Review of air pollution and health impacts in Malaysia.
Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma
2003-06-01
In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, C.R.; Larsen, I.L.; Lowry, P.D.
Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout /sup 137/Cs; reactor-released /sup 137/Cs, /sup 134/Cs, /sup 65/Zn, /sup 60/Co, and /sup 58/Co; and naturally occurring /sup 7/Be and /sup 210/Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioningmore » among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs.« less
Formation of particulate matter monitoring during combustion of wood pellete with additives
NASA Astrophysics Data System (ADS)
Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef
2016-06-01
Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.
Particulate air pollution and mortality in a cohort of Chinese men.
Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong
2014-03-01
Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990-1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM10, were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM10 and mortality from cardiopulmonary diseases; each 10 μg/m(3) PM10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Müller, Markus; Eichler, Philipp; D'Anna, Barbara; Tan, Wen; Wisthaler, Armin
2017-04-01
We used a novel chemical analytical method for measuring submicron particulate organic matter in the atmosphere of three European cities (Innsbruck, Lyon, Valencia). Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was used in combination with the "chemical analysis of aerosol online" (CHARON) inlet for detecting particulate organic compounds on-line (i.e. without filter pre-collection), in real-time (1-min time resolution), at ng m-3 concentrations, with molecular-level resolution (i.e. obtaining molecular weight and elemental composition information). The CHARON-PTR-ToF-MS system monitored molecular tracers associated with different particle sources including levoglucosan from biomass combustion, PAHs from vehicular traffic, nicotine from cigarette smoking, and monoterpene oxidation products secondarily formed from biogenic emissions. The tracer information was used for interpreting positive matrix factorization (PMF) data which allowed us to apportion the sources of submicron particulate organic matter in the different urban environments. This work was funded through the PIMMS ITN, which was supported by the European Commission's 7th Framework Programme under grant agreement number 287382.
CRADA opportunities with METC`s gasification and hot gas cleanup facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, E N; Rockey, J M; Tucker, M S
1995-06-01
Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}Fmore » and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.« less
Mobile measurements of air pollutants with an instrumented car in populated areas
NASA Astrophysics Data System (ADS)
Weber, Konradin; Scharifi, Emad; Fischer, Christian; Pohl, Tobias; Lange, Martin; Boehlke, Christoph
2017-04-01
Detailed mobile measurement of gases and fine particulate matter has been reported in the literature to be suitable to exhibit the air pollutants concentration in populated areas. This concentration is linked to the increase of number of cars, construction areas, industries and other emission sources. However, fixed measurement stations, mostly operated by environmental agencies, are limited in numbers and cannot cover a large area in monitoring. For this reason, to overcome this drawback, mobile measurements of the variability of gases (such as O3, NO, NO2) and particulate matter concentration were carried out during this study using an instrumented car. This car was able to deliver measurement results of all these compounds in a large area. The experimental results in this work demonstrate a large spatial variability of gases and fine particulate matters mainly depended on the traffic density and the location. These effects are especially obvious in the city core and the high traffic roads. In terms of fine particulate matter, this becomes evident for PM 10 and PM 2.5, where the mass and number concentration increases with arriving these zones.
2006 Children's Health Protection Advisory Committee Letters
These letters to and from Administrator Stephen Johnson are regarding risks from polybrominated biphenyl ethers (PBEs), the Voluntary Children's Chemical Evaluation Project, perchlorate PRG and water contamination, and NAAQS for particulate matter.
Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C
2009-02-01
The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at a reduction of 6 microg/m (3) for PM (2.5) and of 30 microg/m (3) for PM (10). The research projects show, that exposure to particulate matter in schools is high and indicate that, in particular, improved cleaning may be an effective measure to reduce the indoor particulate matter concentration. More and larger studies are needed to prove the efficacy of this measure.
Particle-bound benzene from diesel engine exhaust.
Muzyka, V; Veimer, S; Shmidt, N
1998-12-01
The large surface area of the carbon core of diesel exhaust particles may contribute to the adsorption or condensation of such volatile carcinogenic organic compounds as benzene. The attention of this study focused on determining the distribution of benzene between the gas and particulate phases in the breathing zone of bus garage workers. Benzene and suspended particulate matter were evaluated jointly in the air of a municipal bus garage. Personal passive monitors were used for benzene sampling in the breathing zone of the workers. Active samplers were used for sampling diesel exhaust particles and the benzene associated with them. The benzene levels were measured by gas chromatography. Diesel engine exhaust from buses was the main source of air pollution caused by benzene and particles in this study. The concentration of benzene in the gas and particulate phases showed a wide range of variation, depending on the distance of the workplace from the operating diesel engine. Benzene present in the breathing zone of the workers was distributed between the gas and particulate phases. The amounts of benzene associated with particles were significantly lower in summer than in winter. The particulate matter of diesel exhaust contains benzene in amounts comparable to the concentrations of carcinogenic polycyclic aromatic hydrocarbons (PAH) and the usually found nitro-PAH. The concentration of benzene in the gas phase and in the suspended particulate matter of air can serve as an additional indicator of exposure to diesel exhaust and its carcinogenicity.
EPA scientists develop Federal Reference & Equivalent Methods for measuring key air pollutants
EPA operates a nationwide air monitoring network to measure six primary air pollutants: carbon monoxide, lead, sulfur dioxide, ozone, nitrogen dioxide, and particulate matter as part of its mission to protect human health and the environment.
EVALUATION OF OPTICAL DETECTION METHODS FOR WATERBORNE SUSPENSIONS
Turbidimeters and optical paricle counters (OPCs) are used to monitor particulate matter in water. The response from these instruments is governed by the optical properties of the suspension and the instrument design. The recommended design criteria for turbidimeters allows for l...
The Dylos DC1100 air quality monitor measures particulate matter (PM) to provide a continuous assessment of indoor air quality. The unit counts particles in two size ranges: large and small. According to the manufacturer, large particles have diameters between 2.5 and 10 micromet...
NASA Astrophysics Data System (ADS)
Riddell, Kevin Donald Alexander
The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.
The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less
Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.; ...
2017-01-18
The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less
Watts, Winthrop F.; Gladis, David D.; Schumacher, Matthew F.; Ragatz, Adam C.; Kittelson, David B.
2010-01-01
A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-μm impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated with diesel emissions. The calibration factor corrected correlation coefficient (R2) between the underground TC and photometer measurements was 0.93. The main issues holding back the use of a photometer for real-time estimation of DPM in an underground mine are the removal of non-DPM-associated particulate matter from the aerosol stream using devices, such as a cyclone and/or impactor and calibration of the photometer to mine-specific aerosol. PMID:20410071
Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation
NASA Technical Reports Server (NTRS)
Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron
2016-01-01
Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.
Evaluation of ground-based particulate matter in association with measurements from space
NASA Astrophysics Data System (ADS)
Nakata, Makiko; Yoshida, Akihito; Sano, Itaru; Mukai, Sonoyo
2017-10-01
Air pollution is problem of deep concern to human health. In Japan, the air pollution levels experienced during the recent period of rapid economic growth have been reduced. However, fine particulate matter (PM2.5) has not yet reached the environmental standards at many monitoring stations. The Japanese environmental quality standard for PM2.5 that was ratified in 2009 lags about four decades behind other air pollutants, including sulfur dioxide, nitrogen dioxide, carbon monoxide, photochemical oxidants, and suspended particulate matter. Recently, trans-national air pollutants have been observed to cause high concentrations of PM2.5 in Japan. To obtain wide distribution of PM2.5, the satellite based PM2.5 products are extremely useful. We investigate PM2.5 concentrations measured using ground samplers in Japan and the satellite based PM2.5 products, taking into consideration various geographical and weather conditions.
Sensor Technologies for Particulate Detection and Characterization
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.
2008-01-01
Planned Lunar missions have resulted in renewed attention to problems attributable to fine particulates. While the difficulties experienced during the sequence of Apollo missions did not prove critical in all cases, the comparatively long duration of impending missions may present a different situation. This situation creates the need for a spectrum of particulate sensing technologies. From a fundamental perspective, an improved understanding of the properties of the dust fraction is required. Described here is laboratory-based reference instrumentation for the measurement of fundamental particle size distribution (PSD) functions from 2.5 nanometers to 20 micrometers. Concomitant efforts for separating samples into fractional size bins are also presented. A requirement also exists for developing mission compatible sensors. Examples include provisions for air quality monitoring in spacecraft and remote habitation modules. Required sensor attributes such as low mass, volume, and power consumption, autonomy of operation, and extended reliability cannot be accommodated by existing technologies.
Significant atmospheric aerosol pollution caused by world food cultivation
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron
2016-05-01
Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.
Significant atmospheric aerosol pollution caused by world food cultivation
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron
2017-04-01
Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.
Parkhi, Neha; Chate, Dilip; Ghude, Sachin D; Peshin, Sunil; Mahajan, Anoop; Srinivas, Reka; Surendran, Divya; Ali, Kaushar; Singh, Siddhartha; Trimbake, Hanumant; Beig, Gufran
2016-05-01
A network of air quality and weather monitoring stations was established under the System of Air Quality Forecasting and Research (SAFAR) project in Delhi. We report observations of ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM2.5 and PM10) before, during and after the Diwali in two consecutive years, i.e., November 2010 and October 2011. The Diwali days are characterised by large firework displays throughout India. The observations show that the background concentrations of particulate matter are between 5 and 10 times the permissible limits in Europe and the United States. During the Diwali-2010, the highest observed PM10 and PM2.5 mass concentration is as high as 2070µg/m3 and 1620μg/m(3), respectively (24hr mean), which was about 20 and 27 times to National Ambient Air Quality Standards (NAAQS). For Diwali-2011, the increase in PM10 and PM2.5 mass concentrations was much less with their peaks of 600 and of 390μg/m(3) respectively, as compared to the background concentrations. Contrary to previous reports, firework display was not found to strongly influence the NOx, and O3 mixing ratios, with the increase within the observed variability in the background. CO mixing ratios showed an increase. We show that the large difference in 2010 and 2011 pollutant concentrations is controlled by weather parameters. Copyright © 2015. Published by Elsevier B.V.
Quality assured measurements of animal building emissions: gas concentrations.
Heber, Albert J; Ni, Ji-Qin; Lim, Teng T; Tao, Pei-Chun; Schmidt, Amy M; Koziel, Jacek A; Beasley, David B; Hoff, Steven J; Nicolai, Richard E; Jacobson, Larry D; Zhang, Yuanhui
2006-10-01
Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 microm in diameter, and total suspended particulate from swine and poultry production buildings in the United States. This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies. Air was sampled from multiple locations with each gas analyzed with one high quality commercial gas analyzer that was located in an environmentally controlled on-farm instrument shelter. A nominal 4 L/min gas sampling system was designed and constructed with Teflon wetted surfaces, bypass pumping, and sample line flow and pressure sensors. Three-way solenoids were used to automatically switch between multiple gas sampling lines with > or =10 min sampling intervals. Inside and outside gas sampling probes were between 10 and 115 m away from the analyzers. Analyzers used chemiluminescence, fluorescence, photoacoustic infrared, and photoionization detectors for NH3, H2S, CO2, CH4, and NMHC, respectively. Data were collected using personal computer-based data acquisition hardware and software. This paper discusses the methodology of gas concentration measurements and the unique challenges that livestock barns pose for achieving desired accuracy and precision, data representativeness, comparability and completeness, and instrument calibration and maintenance.
Atmosphere and water quality monitoring on Space Station Freedom
NASA Technical Reports Server (NTRS)
Niu, William
1990-01-01
In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.
Jiang, Ruoting; Bell, Michelle L.
2008-01-01
Background Biomass fuel is the primary source of domestic fuel in much of rural China. Previous studies have not characterized particle exposure through time–activity diaries or personal monitoring in mainland China. Objectives In this study we characterized indoor and personal particle exposure in six households in northeastern China (three urban, three rural) and explored differences by location, cooking status, activity, and fuel type. Rural homes used biomass. Urban homes used a combination of electricity and natural gas. Methods Stationary monitors measured hourly indoor particulate matter (PM) with an aerodynamic diameter ≤ 10 μm (PM10) for rural and urban kitchens, urban sitting rooms, and outdoors. Personal monitors for PM with an aerodynamic diameter ≤ 2.5 μm (PM2.5) were employed for 10 participants. Time–activity patterns in 30-min intervals were recorded by researchers for each participant. Results Stationary monitoring results indicate that rural kitchen PM10 levels are three times higher than those in urban kitchens during cooking. PM10 was 6.1 times higher during cooking periods than during noncooking periods for rural kitchens. Personal PM2.5 levels for rural cooks were 2.8–3.6 times higher than for all other participant categories. The highest PM2.5 exposures occurred during cooking periods for urban and rural cooks. However, rural cooks had 5.4 times higher PM2.5 levels during cooking than did urban cooks. Rural cooks spent 2.5 times more hours per day cooking than did their urban counterparts. Conclusions These findings indicate that biomass burning for cooking contributes substantially to indoor particulate levels and that this exposure is particularly elevated for cooks. Second-by-second personal PM2.5 exposures revealed differences in exposures by population group and strong temporal heterogeneity that would be obscured by aggregate metrics. PMID:18629313
Jiang, Ruoting; Bell, Michelle L
2008-07-01
Biomass fuel is the primary source of domestic fuel in much of rural China. Previous studies have not characterized particle exposure through time-activity diaries or personal monitoring in mainland China. In this study we characterized indoor and personal particle exposure in six households in northeastern China (three urban, three rural) and explored differences by location, cooking status, activity, and fuel type. Rural homes used biomass. Urban homes used a combination of electricity and natural gas. Stationary monitors measured hourly indoor particulate matter (PM) with an aerodynamic diameter < or = 10 microm (PM10) for rural and urban kitchens, urban sitting rooms, and outdoors. Personal monitors for PM with an aerodynamic diameter < or = 2.5 microm (PM2.5) were employed for 10 participants. Time-activity patterns in 30-min intervals were recorded by researchers for each participant. Stationary monitoring results indicate that rural kitchen PM10 levels are three times higher than those in urban kitchens during cooking. PM10 was 6.1 times higher during cooking periods than during noncooking periods for rural kitchens. Personal PM2.5 levels for rural cooks were 2.8-3.6 times higher than for all other participant categories. The highest PM2.5 exposures occurred during cooking periods for urban and rural cooks. However, rural cooks had 5.4 times higher PM2.5 levels during cooking than did urban cooks. Rural cooks spent 2.5 times more hours per day cooking than did their urban counterparts. These findings indicate that biomass burning for cooking contributes substantially to indoor particulate levels and that this exposure is particularly elevated for cooks. Second-by-second personal PM2.5 exposures revealed differences in exposures by population group and strong temporal heterogeneity that would be obscured by aggregate metrics.
Nance, Earthea; King, Denae; Wright, Beverly; Bullard, Robert D
2016-02-01
The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters. Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.
NASA Astrophysics Data System (ADS)
Simpson, W. R.; Nattinger, K.; Hooper, M.
2017-12-01
High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.
Xu, Jia; Zhang, Nan; Han, Bin; You, Yan; Zhou, Jian; Zhang, Jiefeng; Niu, Can; Liu, Yating; He, Fei; Ding, Xiao; Bai, Zhipeng
2016-12-01
Using central site measurement data to predict personal exposure to particulate matter (PM) is challenging, because people spend most of their time indoors and ambient contribution to personal exposure is subject to infiltration conditions affected by many factors. Efforts in assessing and predicting exposure on the basis of associated indoor/outdoor and central site monitoring were limited in China. This study collected daily personal exposure, residential indoor/outdoor and community central site PM filter samples in an elderly community during the non-heating and heating periods in 2009 in Tianjin, China. Based on the chemical analysis results of particulate species, mass concentrations of the particulate compounds were estimated and used to reconstruct the PM mass for mass balance analysis. The infiltration factors (F inf ) of particulate compounds were estimated using both robust regression and mixed effect regression methods, and further estimated the exposure factor (F pex ) according to participants' time-activity patterns. Then an empirical exposure model was developed to predict personal exposure to PM and particulate compounds as the sum of ambient and non-ambient contributions. Results showed that PM mass observed during the heating period could be well represented through chemical mass reconstruction, because unidentified mass was minimal. Excluding the high observations (>300μg/m 3 ), this empirical exposure model performed well for PM and elemental carbon (EC) that had few indoor sources. These results support the use of F pex as an indicator for ambient contribution predictions, and the use of empirical non-ambient contribution to assess exposure to particulate compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Improving hydraulic excavator performance through in line hydraulic oil contamination monitoring
NASA Astrophysics Data System (ADS)
Ng, Felix; Harding, Jennifer A.; Glass, Jacqueline
2017-01-01
It is common for original equipment manufacturers (OEMs) of high value products to provide maintenance or service packages to customers to ensure their products are maintained at peak efficiency throughout their life. To quickly and efficiently plan for maintenance requirements, OEMs require accurate information about the use and wear of their products. In recent decades, the aerospace industry in particular has become expert in using real time data for the purpose of product monitoring and maintenance scheduling. Significant quantities of real time usage data from product monitoring are commonly generated and transmitted back to the OEMs, where diagnostic and prognostic analysis will be carried out. More recently, other industries such as construction and automotive, are also starting to develop capabilities in these areas and condition based maintenance (CBM) is increasing in popularity as a means of satisfying customers' demands. CBM requires constant monitoring of real time product data by the OEMs, however the biggest challenge for these industries, in particular construction, is the lack of accurate and real time understanding of how their products are being used possibly because of the complex supply chains which exist in construction projects. This research focuses on current dynamic data acquisition techniques for mobile hydraulic systems, in this case the use of a mobile inline particle contamination sensor; the aim was to assess suitability to achieve both diagnostic and prognostic requirements of Condition Based Maintenance. It concludes that hydraulic oil contamination analysis, namely detection of metallic particulates, offers a reliable way to measure real time wear of hydraulic components.
A Community Network of 100 Black Carbon Sensors
NASA Astrophysics Data System (ADS)
Preble, C.; Kirchstetter, T.; Caubel, J.; Cados, T.; Keeling, C.; Chang, S.
2017-12-01
We developed a low-cost black carbon sensor, field tested its performance, and then built and deployed a network of 100 sensors in West Oakland, California. We operated the network for 100 days beginning mid-May 2017 to measure spatially resolved black carbon concentrations throughout the community. West Oakland is a San Francisco Bay Area mixed residential and industrial community that is adjacent to regional port and rail yard facilities and surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we deployed the black carbon monitoring network outside of residences and business, along truck routes and arterial streets, and at upwind locations. The sensor employs the filter-based light transmission method to measure black carbon and has good precision and correspondence with current commercial black carbon instruments. Throughout the 100-day period, each of the 100 sensors transmitted data via a cellular network. A MySQL database was built to receive and manage the data in real-time. The database included diagnostic features to monitor each sensor's operational status and facilitate the maintenance of the network. Spatial and temporal patterns in black carbon concentrations will be presented, including patterns around industrial facilities, freeways, and truck routes, as well as the relationship between neighborhood concentrations and the BAAQMD's monitoring site. Lessons learned during this first of its kind black carbon monitoring network will also be shared.
STUDY DESIGN CONSIDERATIONS FOR THE EXPOSURE COMPONENT OF THE NATIONAL CHILDREN'S STUDY
An ideal strategy for the exposure monitoring component of the planned National Children's Study (NCS) is to measure indoor and outdoor concentrations and personal exposures of children to a variety of pollutants, including ambient particulate and gaseous pollutants, biologicals,...
2011-03-15
management, toxicology/health risks (e.g., particulates nanomaterials, radiation, etc.), monitoring disease trends , other areas of preventive medicine...will include hematocrit, hemoglobin, mean corpuscle volume, iron, total iron binding capacity, Ferritin , and soluble transferring receptor. The
Code of Federal Regulations, 2014 CFR
2014-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2013 CFR
2013-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2012 CFR
2012-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Letter from Illinois Senator Durbin to EPA Administrator McCarthy - Nov. 12, 2013
Senator Durbin expresses concern about petroleum coke storage facilities in Chicago. He asks what authorities US EPA has to monitor and regulate pet coke and the actions it is taking to protect air quality, especially from particulate matter.
INTERCOMPARISON OF PERIODIC FINE PARTICLE SULFUR AND SULFATE CONCENTRATION RESULTS
A one-week study was conducted in August 1979 to evaluate the comparative ability of representative aerosol sampling systems to monitor fine particulate sulfur and sulfate concentrations periodically in situ. Participants in the study operated their samplers simultaneously in the...
EVALUATION OF A PERSONAL NEPHELOMETER FOR HUMAN EXPOSURE MONITORING
Current particulate matter (PM) exposure studies are using continuous personal nephelometers (pDR-1000, MIE, Inc.) to measure human exposure to PM. The personal nephelometer is a passive sampler which uses light scattering technology to measure particles ranging in size from 0....
Code of Federal Regulations, 2010 CFR
2010-07-01
... from that process. High-efficiency Particulate Air [HEPA] filter means a filter capable of trapping and...) expected to have the highest cadmium exposures. (2) Specific. (i) Initial monitoring. Except as provided... 1926.354, where applicable. (3) Prohibitions. (i) High speed abrasive disc saws and similar abrasive...
Code of Federal Regulations, 2013 CFR
2013-07-01
... from that process. High-efficiency Particulate Air [HEPA] filter means a filter capable of trapping and...) expected to have the highest cadmium exposures. (2) Specific. (i) Initial monitoring. Except as provided... 1926.354, where applicable. (3) Prohibitions. (i) High speed abrasive disc saws and similar abrasive...
Code of Federal Regulations, 2014 CFR
2014-07-01
... from that process. High-efficiency Particulate Air [HEPA] filter means a filter capable of trapping and...) expected to have the highest cadmium exposures. (2) Specific. (i) Initial monitoring. Except as provided... 1926.354, where applicable. (3) Prohibitions. (i) High speed abrasive disc saws and similar abrasive...
Code of Federal Regulations, 2012 CFR
2012-07-01
... from that process. High-efficiency Particulate Air [HEPA] filter means a filter capable of trapping and...) expected to have the highest cadmium exposures. (2) Specific. (i) Initial monitoring. Except as provided... 1926.354, where applicable. (3) Prohibitions. (i) High speed abrasive disc saws and similar abrasive...
de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa
2016-09-01
Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Belanger, Brigitte; Fougeres, Andre; Talbot, Mario
2001-02-01
12 Over the past few years, INO has developed an Industrial Fiber Lidar (IFL). It enables the particulate pollution monitoring on industrial sites. More particularly, it has been used to take measurements of particulate concentration at Port Facilities of an aluminum plant during boat unloading. It is an eye-safe and portable lidar. It uses a fiber laser also developed at INO emitting 1.7 microJoules at 1534 nm with a pulse repetition frequency of 5 kHz. Given the harsh environment of an industrial site, all the sensitive equipment like the laser source, detector, computer and acquisition electronics are located in a building and connected to the optical module, placed outside, via optical fibers up to 500 m long. The fiber link also offers all the flexibility for placing the optical module at a proper location. The optical module is mounted on a two axis scanning platform, able to perform an azimuth scan of 0 to 355 deg and an elevation scan of +/- 90 deg, which enables the scanning of zones defined by the user. On this industrial site, materials like bauxite, alumina, spathfluor and calcined coke having mass extinction coefficients ranging from 0.53 to 2.7 m2/g can be detected. Data for different measurement configurations have been obtained. Concentration values have been calculated for measurements in a hopper, along a wharf and over the urban area close to the port facilities. The lidar measurements have been compared to high volume samplers. Based on these comparisons, it has been established that the IFL is able to monitor the relative fluctuations of dust concentrations. It can be integrated to the process control of the industrial site for alarm generation when concentrations are above threshold.
Hanley, Kevin W; Andrews, Ronnee; Bertke, Steven; Ashley, Kevin
2015-01-01
The National Institute for Occupational Safety and Health has conducted an occupational exposure assessment study of manganese (Mn) in welding fume of construction workers rebuilding tanks, piping, and process equipment at two oil refineries. The objective of this study was to evaluate exposures to different Mn fractions using a sequential extraction procedure. Seventy-two worker-days were monitored for either total or respirable Mn during stick welding and associated activities both within and outside of confined spaces. The samples were analyzed using an experimental method to separate different Mn fractions by valence states based on selective chemical solubility. The full-shift total particulate Mn time-weighted average (TWA) breathing zone concentrations ranged from 0.013-29 for soluble Mn in a mild ammonium acetate solution; from 0.26-250 for Mn(0,2+) in acetic acid; from non-detectable (ND) - 350 for Mn(3+,4+) in hydroxylamine-hydrochloride; and from ND - 39 micrograms per cubic meter (μg/m(3)) for insoluble Mn fractions in hydrochloric and nitric acid. The summation of all Mn fractions in total particulate TWA ranged from 0.52-470 μg/m(3). The range of respirable particulate Mn TWA concentrations were from 0.20-28 for soluble Mn; from 1.4-270 for Mn(0,2+); from 0.49-150 for Mn(3+,4+); from ND - 100 for insoluble Mn; and from 2.0-490 μg/m(3) for Mn (sum of fractions). For all jobs combined, total particulate TWA GM concentrations of the Mn(sum) were 99 (GSD = 3.35) and 8.7 (GSD = 3.54) μg/m(3) for workers inside and outside of confined spaces; respirable Mn also showed much higher levels for welders within confined spaces. Regardless of particle size and confined space work status, Mn(0,2+) fraction was the most abundant followed by Mn(3+,4+) fraction, typically >50% and ∼30-40% of Mn(sum), respectively. Eighteen welders' exposures exceeded the ACGIH Threshold Limit Values for total Mn (100 μg/m(3)) and 25 exceeded the recently adopted respirable Mn TLV (20 μg/m(3)). This study shows that a welding fume exposure control and management program is warranted, especially for welding jobs in confined spaces.
Hanley, Kevin W.; Andrews, Ronnee; Bertke, Steven; Ashley, Kevin
2015-01-01
The National Institute for Occupational Safety and Health (NIOSH) has conducted an occupational exposure assessment study of manganese (Mn) in welding fume of construction workers rebuilding tanks, piping, and process equipment at two oil refineries. The objective of this study was to evaluate exposures to different Mn fractions using a sequential extraction procedure. Seventy-two worker-days were monitored for either total or respirable Mn during stick welding and associated activities both within and outside of confined spaces. The samples were analyzed using an experimental method to separate different Mn fractions by valence states based on selective chemical solubility. The full-shift total particulate Mn time-weighted average (TWA) breathing zone concentrations ranged from 0.013 – 29 for soluble Mn in a mild ammonium acetate solution; from 0.26 – 250 for Mn0,2+ in acetic acid; from non-detectable (ND) – 350 for Mn3+,4+ in hydroxylamine-hydrochloride; and from ND – 39 micrograms per cubic meter (μg/m3) for insoluble Mn fractions in hydrochloric and nitric acid. The summation of all Mn fractions in total particulate TWA ranged from 0.52 to 470 μg/m3. The range of respirable particulate Mn TWA concentrations were from 0.20 – 28 for soluble Mn; from 1.4 – 270 for Mn0,2+; from 0.49 – 150 for Mn3+,4+; from ND – 100 for insoluble Mn; and from 2.0 – 490 μg/m3 for Mn (sum of fractions). For all jobs combined, total particulate TWA GM concentrations of the Mn(sum) were 99 (GSD=3.35) and 8.7 (GSD=3.54) μg/m3 for workers inside and outside of confined spaces; respirable Mn also showed much higher levels for welders within confined spaces. Regardless of particle size and confined space work status, Mn0,2+ fraction was the most abundant followed by Mn3+,4+ fraction, typically >50% and ~30-40% of Mn(sum), respectively. Eighteen welders’ exposures exceeded the ACGIH Threshold Limit Values for total Mn (100 μg/m3) and 25 exceeded the recently adopted respirable Mn TLV (20 μg/m3). This study shows that a welding fume exposure control and management program is warranted, especially for welding jobs in confined spaces. PMID:26011602
NASA Astrophysics Data System (ADS)
Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.
Methodological issues in studies of air pollution and reproductive health
In the past decade there have been an increasing number of scientific studies describing possible effects of air pollution on perinatal health. These papers have mostly focused on commonly monitored air pollutants, primarily ozone (O3), particulate matter (PM), sulfur dioxide (S...
PM: RESEARCH METHODS FOR PM TOXIC COMPOUNDS - PARTICLE METHODS EVALUATION AND DEVELOPMENT
The Federal Reference Method (FRM) for Particulate Matter (PM) developed by EPA's National Exposure Research Laboratory (NERL) forms the backbone of the EPA's national monitoring strategy. It is the measurement that defines attainment of the National Ambient Air Quality Standard...
A Bivariate Space-time Downscaler Under Space and Time Misalignment
Ozone and particulate matter PM2:5 are co-pollutants that have long been associated with increased public health risks. Information on concentration levels for both pollutants come from two sources: monitoring sites and output from complex numerical models that produce...
Chronic particulate exposure, mortality and cardiovascular outcomes in the nurses health study
Adverse health effects of exposures to acute air pollution have been well studied. Fewer studies have examined effects of chronic exposure. Previous studies used exposure estimates for narrow time periods and were limited by the geographic distribution of pollution monitors. This...
RECRUITING AND RETAINING PARTICIPANTS FOR AN EXPOSURE STUDY IN SOUTHEAST RALEIGH
The U.S. Environmental Protection Agency (EPA) recently completed a study of African-Americans' exposure to particulate matter (PM) in Southeast Raleigh. A primary goal was to compare PM levels measured at ambient and residential sites with those from personal exposure monitors...
EXPOSURE TO VOLATILE ORGANIC COMPOUNDS MEASURED IN A SOURCE IMPACTED AIRSHED
A three-year exposure monitoring study is being conducted in a large city in the Midwestern U.S. The study is aimed at determining the factors influencing exposures to air pollutants of outdoor origin, including volatile organic compounds (VOCs) and particulate matter.
Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis
Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...
Many structural BMPs, when appropriately designed and constructed, capture and treat urban runoff to remove particulate-associated pollutants. However, field monitoring programs show these same structures provide relatively little reduction in the loadings of dissolved constitue...
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent... samplers are also subject to a test for possible deposition of particulate matter on inactive filters...
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent... samplers are also subject to a test for possible deposition of particulate matter on inactive filters...
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent... samplers are also subject to a test for possible deposition of particulate matter on inactive filters...
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent... samplers are also subject to a test for possible deposition of particulate matter on inactive filters...
NASA Astrophysics Data System (ADS)
Paladino, J. D.; Hagen, D. E.; Whitefield, P. D.; Hopkins, A. R.; Schmid, O.; Wilson, M. R.; Schlager, H.; Schulte, P.
2000-02-01
This paper discusses participate concentration and size distribution data gathered using the University of Missouri-Rolla Mobile Aerosol Sampling System (UMR-MASS), and used to investigate the southern extent of the eastern end of the North Atlantic Flight Corridor (NAFC) during project Pollution From Aircraft Emissions in the North Atlantic Flight Corridor/Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (POLINAT 2/SONEX) from September 19 to October 23, 1997. The analysis presented in this paper focuses on "the corridor effect," or enhancement of pollutants by jet aircraft combustion events. To investigate the phenomena, both vertical and horizontal profiles of the corridor, and regions immediately adjacent to the corridor, were performed. The profiles showed a time-dependent enhancement of particulates within the corridor, and a nonvolatile (with respect to thermal volatilization at 300°C) aerosol enhancement at corridor altitudes by a factor of 3.6. The southern extent of the North Atlantic Flight Corridor was established from a four flight average of the particulate data and yielded a boundary near 42.5°N during the study period. A size distribution analysis of the nonvolatile particulates revealed an enhancement in the <40 nm particulates for size distributions recorded within the flight corridor.
Kim, J; Nagano, Y; Furumai, H
2012-01-01
Easy-to-measure surrogate parameters for water quality indicators are needed for real time monitoring as well as for generating data for model calibration and validation. In this study, a novel linear regression model for estimating total nitrogen (TN) based on two surrogate parameters is proposed based on evaluation of pollutant loads flowing into a eutrophic lake. Based on their runoff characteristics during wet weather, electric conductivity (EC) and turbidity were selected as surrogates for particulate nitrogen (PN) and dissolved nitrogen (DN), respectively. Strong linear relationships were established between PN and turbidity and DN and EC, and both models subsequently combined for estimation of TN. This model was evaluated by comparison of estimated and observed TN runoff loads during rainfall events. This analysis showed that turbidity and EC are viable surrogates for PN and DN, respectively, and that the linear regression model for TN concentration was successful in estimating TN runoff loads during rainfall events and also under dry weather conditions.
Wang, Dongbin; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos
2015-04-01
This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5-10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2-4 h) without obvious shortcomings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Size and chemical characterization of airborne particulate matter in Spokane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haller, L.; Claiborn, C.; Westberg, H.
1996-12-31
Recent health effects studies suggest that the present air quality standard for aerosols, which is based upon respirable particles, does not adequately protect public health; Thus the standard is currently under review. In July, 1994, a comprehensive study was initiated in Spokane to study the relationship between various size fractions and chemical components of atmospheric aerosol and health effects. This study is one of the most comprehensive particulate matter studies conducted to date, and is one of a limited number of studies that have been conducted in the and west, where presumably a significant portion of the aerosol will bemore » derived from geological materials. Continuous fine and coarse particulate matter measurements are made at two location (one is in industrial area, and the other in residential area). At the residential site, particulate matter smaller than 1.0 {mu}m, and ultra fine particles are also continuously monitored, and analyzed for a variety of chemical species including elemental components, ionic species, soluble iron, elemental and organic carbon and acidity. Preliminary results indicate that the windblown dust enhances both the fine and coarse fractions of particulate matter in Spokane. Seasonal trends in chemical composition and size characterization will be examined. The relationships between the 24-hour average values and peak hourly values, as well as differences between weekday and weekend levels, will also be discussed.« less
Modeling and Calculator Tools for State and Local Transportation Resources
Air quality models, calculators, guidance and strategies are offered for estimating and projecting vehicle air pollution, including ozone or smog-forming pollutants, particulate matter and other emissions that pose public health and air quality concerns.
Characterizing the Lunar Particulate Atmosphere with the Autonomous Lunar Dust Observer (ALDO)
NASA Astrophysics Data System (ADS)
Grund, C. J.; Colwell, J. A.
2008-07-01
Photoelectric effects and solar wind charge the lunar surface, levitating particles. ALDO maps suspended dust in 3D using lidar. Phenomenology and instrument modeling, applications, projected performance and concepts of operation are discussed.
Climate change, tropospheric ozone and particulate matter, and health impacts.
Ebi, Kristie; McGregor, Glenn
2009-01-01
We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.
NASA Technical Reports Server (NTRS)
Van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Hsu, N. Christina; Kahn, Ralph A.; Levy, Robert C.; Lyapustin, Alexei; Sayer, Andrew M.; Winker, David M.
2016-01-01
We estimated global fine particulate matter (PM(sub 2.5)) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically-based satellite-derived PM(sub 2.5) estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM(sub 2.5) estimates were highly consistent (R(sup 2) equals 0.81) with out-of-sample cross-validated PM(sub 2.5) concentrations from monitors. The global population-weighted annual average PM(sub 2.5) concentrations were 3-fold higher than the 10 micrograms per cubic meter WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM(sub 2.5) data sources can yield valuable improvements to PM(sub 2.5) characterization on a global scale.
NASA Astrophysics Data System (ADS)
van Vliet, E. D. S.; Kinney, P. L.
2007-10-01
Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA). However, the lack of ambient monitoring data, and particularly urban roadside concentrations for particulate matter in SSA cities severely hinders our ability to describe temporal and spatial patterns of concentrations, characterize exposure response relationships for key health outcomes, estimate disease burdens, and promote policy initiatives to address air quality. As part of a collaborative transportation planning exercise between Columbia University and the University of Nairobi, air monitoring was carried out in February 2006 in Nairobi, Kenya. The objective of the monitoring was to collect pilot data on air concentrations (PM2.5 and black carbon) encountered while driving in the Nairobi metropolitan area, and to compare those data to simultaneous 'urban background' concentrations measured in Nairobi but away from roadways. For both the background and roadway monitoring, we used portable air sampling systems that collect integrated filter samples. Results from this pilot study found that roadway concentrations of PM2.5 were approximately 20-fold higher than those from the urban background site, whereas black carbon concentrations differed by 10-fold. If confirmed by more extensive sampling, these data would underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution.
Chen, Yi; Ho, Kin Fai; Ho, Steven Sai Hang; Ho, Wing Kei; Lee, Shun Cheng; Yu, Jian Zhen; Sit, Elber Hoi Leung
2007-12-01
Commercial cooking emissions are important air pollution sources in a heavily urbanized city. Exhaust samples were collected in six representative commercial kitchens including Chinese restaurants, Western restaurants, and Western fast-food restaurants in Hong Kong during peak lunch hours. Both gaseous and particulate emissions were evaluated. Eight gaseous and twenty-two particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in this study. In the gaseous phase, naphthalene (67-89%) was the most abundant PAH in all of the exhaust samples. The contribution of acenaphthylene in the gaseous phase was significantly higher in emissions from the Chinese restaurants, whereas fluorene was higher in emissions from the Western cooking style restaurants (i.e., Western restaurants and Western fast-food restaurants). Pyrene is the most abundant particulate PAH in the Chinese restaurants (14-49%) while its contribution was much lower in the Western cooking style restaurants (10-22%). Controlled cooking conditions were monitored in a staff canteen to compare the emissions from several different local cooking styles, including deep frying, steaming, and mixed cooking styles (combination of steaming and frying). Deep frying produced the highest amount of total gaseous PAHs, 6 times higher than the steaming. However, steaming produced the highest particulate emissions. The estimated annual gaseous PAH emissions for the Chinese restaurants, Western restaurants, and Western fast-food restaurants were 255, 173, and 20.2 t y(-1) whereas 252, 1.9, and 0.4 t y(-1) were estimated for particulate phase PAH emissions. The study provides useful information and estimates for PAH emissions from commercial cooking exhaust in Hong Kong.
T.J. Johnson; R.J. Yokelson; S.K. Akagi; I.R. Burling; D.R. Weise; S.P. Urbanski; C.E. Stockwell; J. Reardon; E.N. Lincoln; L.T.M. Profeta; A. Mendoza; M.D.W. Schneider; R.L. Sams; S.D. Williams; C.E. Wold; D.W.T. Griffith; M. Cameron; J.B. Gilman; C. Warneke; J.M. Roberts; P. Veres; W.C. Kuster; J de Gouw
2014-01-01
Project RC-1649, "Advanced Chemical Measurement of Smoke from DoD-prescribed Burns" was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement...
Tonne, Cathryn; Salmon, Maëlle; Sanchez, Margaux; Sreekanth, V; Bhogadi, Santhi; Sambandam, Sankar; Balakrishnan, Kalpana; Kinra, Sanjay; Marshall, Julian D
2017-08-01
While there is convincing evidence that fine particulate matter causes cardiovascular mortality and morbidity, little of the evidence is based on populations outside of high income countries, leaving large uncertainties at high exposures. India is an attractive setting for investigating the cardiovascular risk of particles across a wide concentration range, including concentrations for which there is the largest uncertainty in the exposure-response relationship. CHAI is a European Research Council funded project that investigates the relationship between particulate air pollution from outdoor and household sources with markers of atherosclerosis, an important cardiovascular pathology. The project aims to (1) characterize the exposure of a cohort of adults to particulate air pollution from household and outdoor sources (2) integrate information from GPS, wearable cameras, and continuous measurements of personal exposure to particles to understand where and through which activities people are most exposed and (3) quantify the association between particles and markers of atherosclerosis. CHAI has the potential to make important methodological contributions to modeling air pollution exposure integrating outdoor and household sources as well as in the application of wearable camera data in environmental exposure assessment. Copyright © 2017 Elsevier GmbH. All rights reserved.
Evaluation of near surface ozone and particulate matter in air ...
In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields without correcting toward higher-resolution observations. The Weather Research and Forecasting model and the Community Multiscale Air Quality model are used to simulate regional climate and air quality over the contiguous United States for 2000–2010. The air quality simulations for that historical period are then compared to observations from four national networks. Comparisons are drawn between defined performance metrics and other published modeling results for predicted ozone, fine particulate matter, and speciated fine particulate matter. The results indicate that the historical air quality simulations driven by dynamically downscaled meteorology are typically within defined modeling performance benchmarks and are consistent with results from other published modeling studies using finer-resolution meteorology. This indicates that the regional climate and air quality modeling framework utilized here does not introduce substantial bias, which provides confidence in the method’s use for future air quality projections. This paper shows that if emissions inputs and coarse-scale meteorological inputs are reasonably accurate, then air quality can be simulated with acceptable accuracy even wi
Evaluation of the Impact of Indoor Smoking Bans on Air Quality in Australian Licensed Clubs
NASA Astrophysics Data System (ADS)
Davidson, Margaret Elissa
The quality of indoor air in Australian buildings is unknown due to limited published data. The assessment of indoor air quality (IAQ) in hospitality environments is of special concern because they are frequented by sensitive populations such as the elderly, children, and people with pre-existing health conditions, who may be at risk of developing adverse health reactions if the IAQ is poor. As of 2010, all Australian states and territories have introduced legalisation banning smoking in enclosed public places, including licensed clubs. This project has evaluated the impact of indoor smoking bans on air quality inside and outside of Australian licensed clubs. In doing this it has identified emerging IAQ issues in post smoking ban environments, and documented the airborne concentrations of previously unstudied air contaminants such as particulate matter with a 50% cut-point diameter of 1.0 ?m (PM1.0) and particulate polycyclic aromatic hydrocarbons (PPAH) in the indoor smoking areas of Australian licensed clubs. The study involved collecting approximately 400 hours of air quality data, of which 200 hours was collected before bans and 200 hrs was collected after smoking bans were introduced in licensed clubs located within two local government districts of South Eastern Australia. Clubs 1 to 7 were located in the one district and Clubs 8 to 11 in the other district. Club 4 dropped out following the pre ban monitoring, and the results were omitted from analysis. The air quality parameters measured inside include particulate matter with a 50% cut-point diameter of 2.5 mum (PM2.5), PPAH, carbon monoxide (CO), carbon dioxide mu(CO2), temperature and humidity. The air quality parameters measured outside were PM2.5, CO2, temperature and humidity. Each of the parameters were monitored for 4 hour periods on 4 occasions in each club both before, and after the introduction of indoor smoking bans. Additional monitoring of indoor concentrations of PM1.0, nicotine and PM2.5 particulates with a special calibration factor for environmental tobacco smoke calibration factor of 0.32 (PM2.5 (0.32)) was undertaken in the second group of clubs and monthly monitoring following the bans was undertaken in Clubs 9 and 11. There was a significant reduction in the mean airborne concentrations of PM2.5, PM1.0, PM2.5 (0.32), PPAH, CO and nicotine at all clubs following the implementation of the smoking bans. Of note was the increase in the mean outdoor PM2.5 concentrations at 6 clubs, and the significant increase in the number of outdoor smokers at 8 venues. The greatest change was an increase in the frequency of outdoor PM2.5 concentrations exceeding 25 mum m-3 which is the Australian PM2.5 advisory standard for ambient air (24 hours). Weak to strong significant correlations (R2=0.402-0.757 p=0.000-0.022) were identified between outdoor smokers and indoor PM2.5 concentrations (3 clubs), and a significant correlation (R2=1.000 p=0.000) between nicotine and indoor pollutants at one club. The results of this study indicate that indoor smoking bans may not fully protect the health of the public and workers in venues because of the possible infiltration of environmental tobacco smoke (ETS) identified at three clubs, as well as outdoor exposure to ETS associated with an increase in smoking activity. The lack of current indoor air quality standards makes the interpretation of the post ban air quality data difficult. Although, the mean concentration of contaminants were all below recommended limits for ambient air. The potential infiltration of ETS inside some clubs indicates that air quality may still represent both an occupational and public health risk because ETS has no safe exposure limit (WHO, 2000). (Abstract shortened by ProQuest.).
Gaseous and particulate emissions from thermal power plants operating on different technologies.
Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain
2010-07-01
This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel.
Enhanced representation of soil NO emissions in the ...
Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12 km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and
NASA Astrophysics Data System (ADS)
Yu, X.; Salama, S.; Shen, F.
2016-08-01
During the Dragon-3 project (ID: 10555) period, we developed and improved the atmospheric correction algorithms (AC) and retrieval models of suspended sediment concentration ( ) and diffuse attenuation coefficient ( ) for the Yangtze estuarine and coastal waters. The developed models were validated by measurements with consistently stable and fairly accurate estimations, reproducing reasonable distribution maps of and over the study area. Spatial-temporal variations of were presented and the mechanisms of the sediment transport were discussed. We further examined the compatibility of the developed AC algorithms and retrieval model and the consistency of satellite products for multi-sensor such as MODIS/Terra/Aqua, MERIS/Envisat, MERSI/ FY-3 and GOCI. The inter-comparison of multi- sensor suggested that different satellite products can be combined to increase revisit frequency and complement a temporal gap of time series satellites that may exist between on-orbit and off- orbit, facilitating a better monitor on the spatial- temporal dynamics of .
Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR
NASA Astrophysics Data System (ADS)
Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.
2013-12-01
Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.
RECRUITING AND RETAINING AFRICAN-AMERICANS FOR AN EXPOSURE STUDY IN SOUTHEAST RALEIGH
The U.S. Environmental Protection Agency (EPA) recently completed a study of African-Americans' exposure to particulate matter (PM) in Southeast Raleigh. A primary goal was to compare PM levels measured at ambient and residential sites with those from personal exposure monitors...
The National Near-Road Mobile Source Air Toxics Study: Las Vegas
EPA, in collaboration with FHWA, has been involved in a large-scale monitoring research study in an effort to characterize highway vehicle emissions in a near-road environment. The pollutants of interest include particulate matter with aerodynamic diameter less than 2.5 microns ...
29 CFR 1910.124 - General requirements for dipping and coating operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 1910.124 Section 1910.124 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials...) Free of any solid particulate that poses a health or safety hazard for employees; and (ii) Monitored by...
EFFECT OF THE PITTSBURGH AIR POLLUTION EPISODE UPON PULMONARY FUNCTION IN SCHOOL CHILDREN
Due to increasing atmospheric concentrations of particulates, five of Allegheny County's seven monitoring areas were placed on first stage air pollution alert by November 18, 1975. The Liberty Borough area reached second stage alert, and then emergency stage the morning of Novemb...
Background Adverse cardiovascular events have been linked with PM2.5 exposure obtained primarily from air quality monitors, which rarely co-locate with participant residences. Modeled PM2.5 predictions at finer resolution may more accurately predict residential exposure; however...
Hazardous waste site remediation workers or neighboring residents may be exposed to particulates during the remediation of lead contaminated soil sites. An industrial hygiene survey and air monitoring program for both lead and dust were performed during initial soil sampling acti...
Air Pollutants and Health: An Epidemiologic Approach
ERIC Educational Resources Information Center
Ember, Lois R.
1977-01-01
A ten year study, being conducted by the Harvard School of Public Health in six cities since 1974, is a survey of children and adults for the health effects of pollutant levels. The environment is being monitored for: (1) sulfur dioxide, (2) sulfates, and (3) respirable particulates. (BT)
Method to Select Metropolitan Areas of Epidemiologic Interest for Enhanced Air Quality Monitoring
The U.S. Environmental Protection Agency’s current Speciation Trends Network (STN) covers most major U.S. metropolitan areas and a wide range of particulate matter (PM) constituents and gaseous co-pollutants. However, using filter-based methods, most PM constituents are measured ...
Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...
MEASUREMENT OF FINE PARTICULATE MATTER (NONVOLATILE AND SEMIVOLATILE FRACTIONS) IN FRESNO, CA
Semi-volatile material, including ammonium nitrate and semi-volatile organic material, is often not measured by traditionally used sampling methods including the FRM and the R&P TEOM Monitor. An intensive sampling campaign was performed at the EPA Fresno, CA Supersite during D...
Veira, Andreas; Jackson, Peter L; Ainslie, Bruce; Fudge, Dennis
2013-07-01
This study investigates the development and application of a simple method to calculate annual and seasonal PM2.5 and PM10 background concentrations in small cities and rural areas. The Low Pollution Sectors and Conditions (LPSC) method is based on existing measured long-term data sets and is designed for locations where particulate matter (PM) monitors are only influenced by local anthropogenic emission sources from particular wind sectors. The LPSC method combines the analysis of measured hourly meteorological data, PM concentrations, and geographical emission source distributions. PM background levels emerge from measured data for specific wind conditions, where air parcel trajectories measured at a monitoring station are assumed to have passed over geographic sectors with negligible local emissions. Seasonal and annual background levels were estimated for two monitoring stations in Prince George, Canada, and the method was also applied to four other small cities (Burns Lake, Houston, Quesnel, Smithers) in northern British Columbia. The analysis showed reasonable background concentrations for both monitoring stations in Prince George, whereas annual PM10 background concentrations at two of the other locations and PM2.5 background concentrations at one other location were implausibly high. For those locations where the LPSC method was successful, annual background levels ranged between 1.8 +/- 0.1 microg/m3 and 2.5 +/- 0.1 microg/m3 for PM2.5 and between 6.3 +/- 0.3 microg/m3 and 8.5 +/- 0.3 microg/m3 for PM10. Precipitation effects and patterns of seasonal variability in the estimated background concentrations were detectable for all locations where the method was successful. Overall the method was dependent on the configuration of local geography and sources with respect to the monitoring location, and may fail at some locations and under some conditions. Where applicable, the LPSC method can provide a fast and cost-efficient way to estimate background PM concentrations for small cities in sparsely populated regions like northern British Columbia. In rural areas like northern British Columbia, particulate matter (PM) monitoring stations are usually located close to emission sources and residential areas in order to assess the PM impact on human health. Thus there is a lack of accurate PM background concentration data that represent PM ambient concentrations in the absence of local emissions. The background calculation method developed in this study uses observed meteorological data as well as local source emission locations and provides annual, seasonal and precipitation-related PM background concentrations that are comparable to literature values for four out of six monitoring stations.
NASA Astrophysics Data System (ADS)
Huff, A. K.; Weber, S.; Braggio, J.; Talbot, T.; Hall, E.
2012-12-01
Fine particulate matter (PM2.5) is a criterion air pollutant, and its adverse impacts on human health are well established. Traditionally, studies that analyze the health effects of human exposure to PM2.5 use concentration measurements from ground-based monitors and predicted PM2.5 concentrations from air quality models, such as the U.S. EPA's Community Multi-scale Air Quality (CMAQ) model. There are shortcomings associated with these datasets, however. Monitors are not distributed uniformly across the U.S., which causes spatially inhomogeneous measurements of pollutant concentrations. There are often temporal variations as well, since not all monitors make daily measurements. Air quality model output, while spatially and temporally uniform, represents predictions of PM2.5 concentrations, not actual measurements. This study is exploring the potential of combining Aerosol Optical Depth (AOD) data from the MODIS instrument on NASA's Terra and Aqua satellites with PM2.5 monitor data and CMAQ predictions to create PM2.5 datasets that more accurately reflect the spatial and temporal variations in ambient PM2.5 concentrations on the metropolitan scale, with the overall goal of enhancing capabilities for environmental public health decision-making. AOD data provide regional information about particulate concentrations that can fill in the spatial and temporal gaps in the national PM2.5 monitor network. Furthermore, AOD is a measurement, so it reflects actual concentrations of particulates in the atmosphere, in contrast to PM2.5 predictions from air quality models. Results will be presented from the Battelle/U.S. EPA statistical Hierarchical Bayesian Model (HBM), which was used to combine three PM2.5 concentration datasets: monitor measurements, AOD data, and CMAQ model predictions. The study is focusing on the Baltimore, MD and New York City, NY metropolitan regions for the period 2004-2006. For each region, combined monitor/AOD/CMAQ PM2.5 datasets generated by the HBM are being correlated with data on inpatient hospitalizations and emergency room visits for seven respiratory and cardiovascular diseases using statistical case-crossover analyses. Preliminary results will be discussed regarding the potential for the addition of AOD data to increase the correlation between PM2.5 concentrations and health outcomes. Environmental public health tracking programs associated with the Maryland Department of Health and Mental Hygiene, the New York State Department of Health, the CDC, and the U.S. EPA have expressed interest in using the results of this study to enhance their existing environmental health surveillance activities.
Atmospheric Science Data Center
2013-04-16
article title: Aerosols over India View Larger Image ... particulates, over the low-lying plains of northeastern India appear in dramatic contrast with the relatively pristine air of the ... October 15, 2001 - High concentrations of aerosols over India. project: MISR category: gallery ...
Development of ambient PM 2.5 management strategies.
DOT National Transportation Integrated Search
2009-10-01
"Using analyzed and modeled field data on air quality and meteorology, researchers identified major contributors of fine particulate matter (PM2.5) in Fairbanks. This : project was an effort to help the city meet U.S. Environmental Protection Agency ...
Murari, Vishnu; Kumar, Manish; Mhawish, Alaa; Barman, S C; Banerjee, Tirthankar
2017-04-01
The variation in particulate mass and particulate types (PM 2.5 and PM 10 ) with respect to local/regional meteorology was analyzed from January to December 2014 (n = 104) for an urban location over the middle Indo-Gangetic Plain (IGP). Both coarser (mean ± SD; PM 10 161.3 ± 110.4 μg m -3 , n = 104) and finer particulates (PM 2.5 81.78 ± 66.4 μg m -3 ) revealed enormous mass loading with distinct seasonal effects (range: PM 10 12-535 μg m -3 ; PM 2.5 8-362 μg m -3 ). Further, 56% (for PM 2.5 ) to 81% (for PM 10 ) of monitoring events revealed non-attainment national air quality standard especially during winter months. Particulate types (in terms of PM 2.5 /PM 10 0.49 ± 0.19) also exhibited temporal variations with high PM 2.5 loading particularly during winter (0.62) compared to summer months (0.38). Local meteorology has clear distinguishing trends in terms of dry summer (March to June), wet winter (December to February), and monsoon (July to September). Among all the meteorological variables (average temperature, rainfall, relative humidity (RH), wind speed (WS)), temperature was found to be inversely related with particulate loading (r PM10 -0.79; r PM2.5 -0.87) while RH only resulted a significant association with PM 2.5 during summer (r PM10 0.07; r PM2.5 0.55) and with PM 10 during winter (r PM10 0.53; r PM2.5 0.24). Temperature, atmospheric boundary layer (ABL), and RH were cumulatively recognized as the dominant factors regulating particulate concentration as days with high particulate loading (PM 2.5 >150 μg m -3 ; PM 10 >260 μg m -3 ) appeared to have lower ABL (mean 660 m), minimum temperature (<22.6 °C), and high RH (∼79%). The diurnal variations of particulate ratio were mostly insignificant except minor increases during night having a high wintertime ratio (0.58 ± 0.07) over monsoon (0.34 ± 0.05) and summer (0.30 ± 0.07). Across the region, atmospheric visibility appeared to be inversely associated with particulate (r PM2.5 -0.84; r PM10 -0.79) for all humid conditions, while at RH ≥80%, RH appeared as the most dominant factor in regulating visibility compared to particulate loading. The Lagrangian particle dispersion model was further used to identify possible regions contributing particulate loading through regional/transboundary movement.
Low-background gamma-ray spectrometry for the international monitoring system
Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...
2016-12-28
PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.
Apparatus and method for quantitative determination of materials contained in fluids
Radziemski, Leon J.; Cremers, David A.
1985-01-01
Apparatus and method for near real-time in-situ monitoring of particulates and vapors contained in fluids. Initial filtration of a known volume of the fluid sample is combined with laser-induced dielectric breakdown spectroscopy of the filter employed to obtain qualitative and quantitative information with high sensitivity. Application of the invention to monitoring of beryllium, beryllium oxide, or other beryllium-alloy dusts is demonstrated. Significant shortening of analysis time is achieved from those of the usual chemical techniques of analysis.
Apparatus and method for quantitative determination of materials contained in fluids
Radziemski, L.J.; Cremers, D.A.
1982-09-07
Apparatus and method for near real-time in-situ monitoring of particulates and vapors contained in fluids are described. Initial filtration of a known volume of the fluid sample is combined with laser-induced dielectric breakdown spectroscopy of the filter employed to obtain qualitative and quantitative information with high sensitivity. Application of the invention to monitoring of beryllium, beryllium oxide, or other beryllium-alloy dusts is shown. Significant shortening of analysis time is achieved from the usual chemical techniques of analysis.
Integrated Real Time Contamination Monitor IRTCM
NASA Technical Reports Server (NTRS)
Luttges, W. E.
1976-01-01
Engineering and design work was performed on a monitoring device for particulate and gas contamination to be used in the space shuttle cargo area during launch at altitudes up to 50 km and during return phases of the flight. The gas sampling device consists of ampules filled with specific absorber materials which are opened and/or sealed at preprogrammed intervals. The design eliminates the use of valves which, according to experiments, are never sealing properly at hard vacuum. Methods of analysis including in-flight measuring possibilities are discussed.
Using Advanced Monitoring Tools to Evaluate PM PM2.5 2.5 in San Joaquin Valley
One of the primary data deficiencies that prevent the advance of policy relevant research on particulate matter, ozone, and associated precursors is the lack of measurement data and knowledge on the true vertical profile and synoptic-scale spatial distributions of the pollutants....
Objective: A repeated measures study was used to assess the effect of work tasks on select proinflammatory biomarkers in firefighters working at prescribed burns. Methods: Ten firefighters and two volunteers were monitored for particulate matter and carbon monoxide on workdays, ...
MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH
Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...
Can Cities Sustain Life in the Greenhouse?
ERIC Educational Resources Information Center
Byrne, John; Hughes, Kristen; Toly, Noah; Wang, Young-Doo
2006-01-01
Data from the Global Environmental Monitoring System indicate that pollutants such as sulphur dioxide and total suspended particulate routinely appear in the lower atmosphere of major cities at concentrations well above health guidelines set by the World Health Organization. As well, cities are major contributors to the build-up of greenhouse…
2007-09-01
should be operated periodically to replenish inhibitor and bio- cide concentrations and prevent particulate matter from settling and pro- moting under... Cotton , Irvin J. (2000). “On-Line Dissolved Oxygen Monitoring in Boiler Feedwater Systems.” Paper No. 00661. Corrosion 2000. NACE International
The report explains the basic concepts of in-stack opacity as measured by in-stack opacity monitors. Also included are calculator programs that model the performance of venturi scrubbers and electrostatic precipitators. The effect of particulate control devices on in-stack opacit...
ORD initiated automated speciated mercury measurements at the NOAA Mauna Loa Observatory (MLO), a high altitude research station (~11,500 feet) in 2001. Mercury monitoring at MLO was supplemented with trace element aerosol, criteria gas, and gas and particulate halide measurement...
A combination of in-situ PM2.5, sunphotometers, upward pointing lidar and satellite aerosol optical depth (AOD) instruments have been employed to better understand variability in the correlation between AOD and PM2.5 at the surface. Previous studies have shown good correlation be...
40 CFR 63.1350 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... alkali bypass PMCDs. (i) The temperature recorder response range must include zero and 1.5 times the... provide output of relative or absolute particulate matter loadings. (v) The bag leak detection system must... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration...
40 CFR 60.58b - Compliance and performance testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... is combusting fossil fuel or other nonmunicipal solid waste fuel, and no municipal solid waste is... performance compliance tests. (i) The fuel factor equation in Method 3B shall be used to determine the... monitoring particulate matter emissions discharged to the atmosphere and record the output of the system. The...
One proposed method for reducing exposure to mobile-source air pollution is the construction or preservation of vegetation barriers between major roads and nearby populations. This study combined stationary and mobile monitoring approaches to determine the effects of an existing,...
FIELD PERFORMANCE OF WOODBURNING STOVES IN CRESTED BUTTE DURING THE 1991-92 HEATING SEASON
The report gives results of an evaluation of the 1991-92 field performance of 11 woodburning stoves in and around Crested Butte, CO. Measurements included particulate matter (PM), carbon monoxide, total unburned hydrocarbons, and weekly average burn rates. The monitored stoves in...
Microenvironmental and biological/personal monitoring information were collected during the National Human Exposure Assessment Survey (NHEXAS), conducted in the six states comprising U.S. EPA Region Five. They have been analyzed by multivariate analysis techniques with general ...
Multi-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates. These studies typically use ambient monitoring data as a surrogate for exposure leading to potential exposure misclass...
Results of the air emission research study
USDA-ARS?s Scientific Manuscript database
Air quality was monitored in beef mono-slope barns. The objectives of the study were 1) to gather baseline data for the levels of gas emissions and particulate matter from beef mono-slope facilities, 2) evaluate the effect of two different manure handling systems on air quality, and 3) provide infor...
NASA Astrophysics Data System (ADS)
Jiao, Wan; Hagler, Gayle; Williams, Ronald; Sharpe, Robert; Brown, Ryan; Garver, Daniel; Judge, Robert; Caudill, Motria; Rickard, Joshua; Davis, Michael; Weinstock, Lewis; Zimmer-Dauphinee, Susan; Buckley, Ken
2016-11-01
Advances in air pollution sensor technology have enabled the development of small and low-cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low-cost, continuous, and commercially available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ˜ 2 km area in the southeastern United States. Collocation of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as the degree to which multiple identical sensors produced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, -0.25 to 0.76, and -0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r < 0.5) with a reference monitor and erroneously high concentration values. A wide variety of particulate matter (PM) sensors were tested with variable results - some sensors had very high agreement (e.g., r = 0.99) between identical sensors but moderate agreement with a reference PM2.5 monitor (e.g., r = 0.65). For select sensors that had moderate to strong correlation with reference monitors (r > 0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in number of sampling days could be used in a correction algorithm to improve the agreement. Maximum improvement in agreement with a reference, incorporating all factors, was observed for an NO2 sensor (multiple correlation coefficient R2adj-orig = 0.57, R2adj-final = 0.81); however, other sensors showed no apparent improvement in agreement. A four-node sensor network was successfully able to capture ozone (two nodes) and PM (four nodes) data for an 8-month period of time and show expected diurnal concentration patterns, as well as potential ozone titration due to nearby traffic emissions. Overall, this study demonstrates the performance of emerging air quality sensor technologies in a real-world setting; the variable agreement between sensors and reference monitors indicates that in situ testing of sensors against benchmark monitors should be a critical aspect of all field studies.
MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND
Depositional flux of particulate organic matter in bottom sediments affects nutrients cycling at the sediment-water interface and consumes oxygen from the overlying water in streams, lakes, and estuaries. This project deals with analytical modeling of nitrogen and carbon producti...
Development of Advanced Modeling Tools for Hotpot Analysis of Transportation Emissions
DOT National Transportation Integrated Search
2009-07-29
Hot-spot analysis, also known as project-level analysis, assesses impacts of transportation emissions on local air pollution of carbon monoxide (CO), air toxics and particulate matter (PM). It is required for regional transportation plans (RTP), tran...
Locomotive emissions test stand with particulate matter measurement integration : final report.
DOT National Transportation Integrated Search
2015-10-01
This project builds upon previous research efforts, in which a complete instruction manual and bill of materials was developed for : a blueprint that allows any organization in the railroad industry to build their own locomotive emissions measurement...
ALVEOLAR MACROPHAGE INTERACTION WITH AIR POLLUTION PARTICULATES. (R824790)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Development of ambient PM 2.5 management strategies
DOT National Transportation Integrated Search
2009-10-01
Using analyzed and modeled field data on air quality and meteorology, researchers identified major contributors of fine particulate matter (PM2.5) in Fairbanks. This : project was an effort to help the city meet U.S. Environmental Protection Agency a...
Yu, Yu-xian; Chen, Jin-sheng; Ren, Yin; Li, Fang-yi; Cui, Sheng-hui
2010-05-01
With the development of urbanization, total suspended particulate (TSP) pollution is getting serious, and the normal physiological processes of urban vegetation are profoundly affected while adsorbing and purifying the particulates. In this study, four areas were selected, i.e., Tingxi reservoir (clean control area), Xiamen University (cultural and educational area), Xianyue (business area), and Haicang (industrial area), with their atmospheric TSP concentrations and the photosynthetic parameters of street Mango (Mangifera indica) trees monitored in April and May, 2009. The daily average concentration of TSP in Tingxi, Xiamen University, Xianyue, and Haicang was 0.061, 0.113, 0.120 and 0.205 mg x m(-3), respectively, and the impact of TSP stress on M. indica was in the sequence of Haicang > Xianyue > Xiamen University > Tingxi. TSP pollution negatively affected the net photosynthetic rate, stomatal conductance, and transpiration rate of M. indica, and induced intercellular CO2 concentration changed significantly. High TSP concentration could cause the decline of net photosynthetic rate via stomatal limitation.
Air quality status of an open pit mining area in India.
Chaulya, S K
2005-06-01
This investigation presents the assessment of ambient air quality carried out at an open pit coal mining area in Orissa state of India. The 24-h average concentrations of suspended particulate matter (SPM), respirable particulate matter (RPM, particles of less than 10 microm aerodynamic diameter), sulphur dioxide (SO2) and oxides of nitrogen (NO(x)) were determined at regular interval throughout one year at 13 monitoring stations in residential area and four stations in mining/industrial area. During the study period, the 24-h and annual average SPM and RPM concentrations exceeded the respective standards set in the Indian ambient air quality standard (NAAQS) protocol in most of the residential and industrial areas. However, the 24-h and annual average concentrations of SO2 and NO(x) were well within the prescribed limit of the NAAQS in both residential and industrial areas. A management strategy is formulated for effective control of particulate matter at source and other mitigative measures are recommended including implementation of green belts around the sensitive areas.
Upwelled spectral radiance distribution in relation to particulate matter in sea water
NASA Technical Reports Server (NTRS)
Clark, D. K.; Strong, A. E.; Baker, E. T.
1980-01-01
Spectral analysis of water color and concurrent measurements of the relative concentration of various particulate and dissolved constituents within a broad range of water types are necessary to quantify ocean color observations and successfully relate them to various biological and physical processes that can be monitored by remote sensing. Some of the results of a Nimbus-G prelaunch cruise in connection with the Coastal Zone Color Scanner (CZCS) experiment, which was carried out in the Gulf of Mexico in October 1977, are presented and discussed. Based upon a small but diverse sample of near-surface measurements, it appears possible to estimate total suspended particulate matter (SPM) to useful accuracies by forming ratios of the spectral radiances measured at wavelengths falling near the centers of certain CZCS bands, viz., 440 nm:550 nm and 440 nm:520 nm. Furthermore, the analysis suggests a very high degree of covariation between SPM and phytoplankton pigments except for certain well-defined special cases.
Zaromb, Solomon
2004-07-13
Air is sampled at a rate in excess of 100 L/min, preferably at 200-300 L/min, so as to collect therefrom a substantial fraction, i.e., at least 20%, preferably 60-100%, of airborne particulates. A substance of interest (analyte), such as lead, is rapidly solubilized from the the collected particulates into a sample of liquid extractant, and the concentration of the analyte in the extractant sample is determined. The high-rate air sampling and particulate collection may be effected with a high-throughput filter cartridge or with a recently developed portable high-throughput liquid-absorption air sampler. Rapid solubilization of lead is achieved by a liquid extractant comprising 0.1-1 M of acetic acid or acetate, preferably at a pH of 5 or less and preferably with inclusion of 1-10% of hydrogen peroxide. Rapid determination of the lead content in the liquid extractant may be effected with a colorimetric or an electroanalytical analyzer.
Spyratos, Dionisios; Sioutas, Constantinos; Tsiotsios, Anastasios; Haidich, Anna-Bettina; Chloros, Diamantis; Triantafyllou, Georgios; Sichletidis, Lazaros
2015-01-01
The aim was to investigate respiratory symptoms, lung function and nasal airflow development among a cohort of children who were exposed to particulate air pollution. We used questionnaires, spirometry and rhinomanometry, while central-monitored PM10 concentrations were used for exposure assessment. We initially examined 1046 children (10-12 year old) in the heavily polluted town of Ptolemaida, Greece, and 379 children in the cleaner town of Grevena (control group). We re-evaluated 312 of the former and 119 of the latter after 19 years. PM10 concentrations were above permissible levels in Ptolemaida during all study period. At both visits, nasal flow was significantly lower in the study sample. At the follow-up visit, 34.3% had severe nasal obstruction (< 500 ml/s) and 38.5% reported chronic nasal symptoms. Spirometric parameters did not differ compared to the control group. Particulate air pollution had significant and negative effects on nasal but not on lung function development.
Interdigitated Pt-GaN Schottky interfaces for high-temperature soot-particulate sensing
NASA Astrophysics Data System (ADS)
So, Hongyun; Hou, Minmin; Jain, Sambhav R.; Lim, Jongwoo; Senesky, Debbie G.
2016-04-01
A microscale soot-particulate sensor using interdigitated platinum-gallium nitride (Pt-GaN) Schottky interfaces was developed to monitor fine soot particles within high-temperature environments (e.g., combustion exhausts and flues). Upon exposure to soot particles (30 to 50 nm in diameter) from an experimental chimney, an increased current (∼43.6%) is observed through the back-to-back Schottky contact to n-type GaN. This is attributed to a reduction in the effective Schottky barrier height (SBH) of ∼10 meV due to the electric field from the charged soot particles in the depletion region and exposed GaN surface. Furthermore, the microfabricated sensor was shown to recover sensitivity and regenerate the sensing response (∼11 meV SBH reduction) after exposure to temperature as high as 550 °C. This study supports the feasibility of a simple and reliable soot sensor to meet the increasing market demand for particulate matter sensing in harsh environments.
NASA Technical Reports Server (NTRS)
King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.; Burr, J. C.; Craig, G. T.; Cornett, C. L.
1974-01-01
Beginning in 1971 a cooperative program has been carried on by the City of Cleveland Division of Air Pollution Control and NASA Lewis Research Center to study the trace element and compound concentrations in the ambient suspended particulate matter in Cleveland Ohio as a function of source, monitoring location and meteorological conditions. The major objectives were to determine the ambient concentration levels at representative urban sites and to develop a technique using trace element and compound data in conjunction with meteorological conditions to identify specific pollution sources which could be developed into a practical system that could be readily utilized by an enforcement agency.
Optical effects module and passive sample array
NASA Technical Reports Server (NTRS)
Linton, R. C.
1983-01-01
The Optical Effects Module (OEM) has the objective to monitor the effects of the deposition and adhesion of both molecular species and particles on optical surfaces in the Shuttle cargo bay environment. The OEM performs inflight measurements of the ultraviolet (253.7 nm) transmittance and diffuse reflectance of five optical samples at regular intervals throughout the orbital mission. Most of the obtained results indicates or implies the absence of a significant accumulation of contamination other than particulates on the samples. The contaminant species (or particulates) adhering to the samples of the Passive Sample Array (PSA) were identified by means of Auger and X-ray energy dispersive analyses. The elements silicon, chlorine, and phosphorus were discovered.
Conductometric Soot Sensor for Automotive Exhausts: Initial Studies
Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf
2010-01-01
In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction. PMID:22294888
Conductometric soot sensor for automotive exhausts: initial studies.
Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf
2010-01-01
In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction.
Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Brackx, Melanka; Samson, Roeland
2014-09-01
Biomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m(-2)) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3-10 μm and 0.2-3 μm) and the SIRM of the leaf-encapsulated particles. Results showed that throughout the in-leaf season, the trees accumulated on average 747 mg m(-2) of dust on their leaves, of which 74 mg m(-2) was within the 0.2-10 μm (∼PM10) size range and 40 mg m(-2) within the 0.2-3 μm (∼PM3) size range. A significant correlation between the SIRM and weight of the surface-deposited particles confirms the potential of biomagnetic monitoring as a proxy for the amount of leaf-deposited particles. Spatial variation of both SIRM and weight throughout the street canyon suggests traffic and wind as key factors for respectively the source and distribution of urban particulates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.
2014-01-01
This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709
Spatial analysis of air pollution and mortality in California.
Jerrett, Michael; Burnett, Richard T; Beckerman, Bernardo S; Turner, Michelle C; Krewski, Daniel; Thurston, George; Martin, Randall V; van Donkelaar, Aaron; Hughes, Edward; Shi, Yuanli; Gapstur, Susan M; Thun, Michael J; Pope, C Arden
2013-09-01
Although substantial scientific evidence suggests that chronic exposure to ambient air pollution contributes to premature mortality, uncertainties exist in the size and consistency of this association. Uncertainty may arise from inaccurate exposure assessment. To assess the associations of three types of air pollutants (fine particulate matter, ozone [O3], and nitrogen dioxide [NO2]) with the risk of mortality in a large cohort of California adults using individualized exposure assessments. For fine particulate matter and NO2, we used land use regression models to derive predicted individualized exposure at the home address. For O3, we estimated exposure with an inverse distance weighting interpolation. Standard and multilevel Cox survival models were used to assess the association between air pollution and mortality. Data for 73,711 subjects who resided in California were abstracted from the American Cancer Society Cancer Prevention II Study cohort, with baseline ascertainment of individual characteristics in 1982 and follow-up of vital status through to 2000. Exposure data were derived from government monitors. Exposure to fine particulate matter, O3, and NO2 was positively associated with ischemic heart disease mortality. NO2 (a marker for traffic pollution) and fine particulate matter were also associated with mortality from all causes combined. Only NO2 had significant positive association with lung cancer mortality. Using the first individualized exposure assignments in this important cohort, we found positive associations of fine particulate matter, O3, and NO2 with mortality. The positive associations of NO2 suggest that traffic pollution relates to premature death.
Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants
NASA Astrophysics Data System (ADS)
Sengupta, Ishita
Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.
NASA Astrophysics Data System (ADS)
Zeng, C.
2015-12-01
The North China Plain is one of the main grain producing areas of China, but is also a severe straw burning zone. Winter wheat and summer corn harvests in this area usually occur from the beginning of Jun and Oct, respectively. After harvest, farmers usually burn out the remaining straw for convenience. However, straw burning can release a large quantity of air pollutants and can consequently result in a significant deterioration in regional air quality. To monitor the impact of straw burning on particulate pollution, daily MODIS thermal anomaly products (MOD14 and MYD14) were used to identify dates and regions of straw burning. Then the corresponding MODIS AOD products (MOD04 and MYD04) and particulate matter (PM) concentration observations from ground stations were integrated using a geostatistical method. By combining the accurate station-based PM observations and satellite data of well spatial coverage, PM concentration distribution maps were generated. Meanwhile, NCEP reanalysis data were used to obtain the corresponding surface wind pattern maps. Preliminary results show that satellite and station-based observations can indicate the impact of straw burning on PM pollution during harvest time. Air qualities during these times are obviously affected by the straw burning and surface wind field. Moreover, the air quality of the southeast study region is susceptible to the straw burning in adjacent areas due to the characteristic of the terrain.
Automatic localization of backscattering events due to particulate in urban areas
NASA Astrophysics Data System (ADS)
Gaudio, P.; Gelfusa, M.; Malizia, Andrea; Parracino, Stefano; Richetta, M.; Murari, A.; Vega, J.
2014-10-01
Particulate matter (PM), emitted by vehicles in urban traffic, can greatly affect environment air quality and have direct implications on both human health and infrastructure integrity. The consequences for society are relevant and can impact also on national health. Limits and thresholds of pollutants emitted by vehicles are typically regulated by government agencies. In the last few years, the interest in PM emissions has grown substantially due to both air quality issues and global warming. Lidar-Dial techniques are widely recognized as a costeffective alternative to monitor large regions of the atmosphere. To maximize the effectiveness of the measurements and to guarantee reliable, automatic monitoring of large areas, new data analysis techniques are required. In this paper, an original tool, the Universal Multi-Event Locator (UMEL), is applied to the problem of automatically indentifying the time location of peaks in Lidar measurements for the detection of particulate matter emitted by anthropogenic sources like vehicles. The method developed is based on Support Vector Regression and presents various advantages with respect to more traditional techniques. In particular, UMEL is based on the morphological properties of the signals and therefore the method is insensitive to the details of the noise present in the detection system. The approach is also fully general, purely software and can therefore be applied to a large variety of problems without any additional cost. The potential of the proposed technique is exemplified with the help of data acquired during an experimental campaign in the field in Rome.
Mercury Emission Measurement at a CFB Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Pavlish; Jeffrey Thompson; Lucinda Hamre
2009-02-28
In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years ofmore » mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.« less
A laboratory comparison of evacuation devices on aerosol reduction.
Jacks, Mary E
2002-01-01
Aerosols are defined as airborne particles that range in size from 0.5 to 10 microns (micron). They are produced during ultrasonic instrumentation, but they can be reduced. Irrigant solutions, which produce the therapeutic effects of lavage, also combine with blood, saliva, and bacteria to produce potentially harmful airborne particulates. The American Dental Association (ADA) and the Centers for Disease Control and Prevention (CDC) recommend utilization of high volume evacuation, rubber dam, and patient positioning for aerosol control. But for the non-assisted dental hygienist, these recommendations are difficult to implement. This study was designed to compare the concentration of airborne particulates from ultrasonic scaling, utilizing three different methods of evacuation. In a laboratory setting, ultrasonic airborne particulates were generated utilizing a 25,000 cps magnetostrictive ultrasonic scaling instrument. Three evacuation devises were compared for effectiveness: a standard saliva ejector intraorally positioned; and two extraorally positioned, hands-free high-volume evacuation (HFHVE) techniques. One of these devices had a standard attachment, and, the other had a funnel-shaped attachment. Measurement of airborne particles was performed with a DataRAM Real-Time Aerosol Monitor. This study (N = 21) found a significant reduction in the number of airborne particulates with either form of extraoral HFHVE attachment in place. Standard attachments and funnel-shaped attachments to HFHVE resulted in reduction of particulates by 90.8% and 89.7%, respectively, when compared to the intraorally positioned standard saliva ejector. Utilizing either form of HFHVE during ultrasonic instrumentation significantly reduced the number of aerosolized particulates that reached the breathing space of the client and clinician. This lends support for the ADA and CDC recommendation that HVE be used during aerosol producing procedures. Currently, no preventive measure is 100% effective; therefore, clinicians are encouraged to use additional methods to minimize the number of airborne particulates produced during intraoral instrumentation.
DIESEL NOX CONTROL APPLICATION
The paper gives results of a project to design, develop, and demonstrate a diesel engine nitrogen oxide (NOx) and particulate matter (PM) control package that will meet the U.S. Navy's emission control requirements. (NOTE: In 1994, EPA issued a Notice for Proposed Rule Making (NP...
NARSTO EPA SS NEW YORK AIR CHEM PM MET DATA
Atmospheric Science Data Center
2018-04-09
NARSTO EPA SS NEW YORK AIR CHEM PM MET DATA Project Title: NARSTO ... Nitrogen Oxides Ozone Surface Winds Air Temperature Humidity Solar Irradiance Particulate Matter ... Data Guide Documents: New York Air Chem Guide CPM Summary Report (PDF) Nitrate ...
VASCULAR RESPONSE TO TRAFFIC-DERIVED INHALATION IN HUMANS
By coordinating closely with Center Projects 1-3, we will determine whether specific aspects of traffic-derived exposure (primary vs. secondary organics, particulate vs. gases, spark-ignition vs. diesel engine vs. a mixture) enhance the human vascular response to pollutants. W...
Creep behavior of soil nail walls in high plasticity index (PI) soils : project summary.
DOT National Transportation Integrated Search
2015-08-31
Soil nailing is a convenient and economic : stabilization method for the reinforcement of existing : excavations by installing threaded steel bars into cuts : or slopes as wall construction progresses from top : down (Figure 1). An aspect of particul...
NASA Technical Reports Server (NTRS)
Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.
2012-01-01
A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.
Fine urban and precursor emissions control for diesel urban transit buses.
Lanni, Thomas
2003-01-01
Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled "Clean Diesel Air Quality Demonstration Program" has been initiated by the New York City Metropolitan Transit Authority (MTA) under the supervision of New York State Department of Environmental Conservation and with active participation from Johnson Matthey, Corning, Equilon, Environment Canada and RAD Energy. Under this program, several MTA transit buses with DDC Series 50 engines were equipped with Continuously Regenerating Technology (CRTTM) particulate filter systems and have been operated with ultra low sulfur diesel (<30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9-month period for durability and maintainability of the particulate filter. In addition, an extensive emissions testing program was carried out using transient cycles on a chassis dynamometer to evaluate the emissions reductions obtained with the particle filter. In this paper, the emissions testing data from the Clean Diesel Air Quality Demonstration Program are discussed in detail.
Fujita, Eric M; Campbell, David E; Arnott, W Patrick; Lau, Virginia; Martien, Philip T
2013-12-01
The Bay Area Air Quality Management District (BAAQMD) sponsored the West Oakland Monitoring Study (WOMS) to provide supplemental air quality monitoring that will be used by the BAAQMD to evaluate local-scale dispersion modeling of diesel emissions and other toxic air contaminants for the area within and around the Port of Oakland. The WOMS was conducted during two seasonal periods of 4 weeks in summer 2009 and winter 2009/2010. Monitoring data showed spatial patterns of pollutant concentrations that were generally consistent with proximity to vehicle traffic. Concentrations of directly emitted pollutants were highest on heavily traveled roads with consistently lower concentrations away from the roadways. Pollutants that have higher emission rates from diesel trucks (nitric oxide, black carbon) tended to exhibit sharper gradients than pollutants that are largely associated with gasoline vehicles, such as carbon monoxide and volatile organic compounds, including benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX concentrations in West Oakland were similar to those measured at the three air toxics monitoring network sites in the Bay Area (San Francisco, Fremont, and San Jose). Aldehyde levels were higher in Fremont and San Jose than in West Oakland, reflecting greater contributions from photo-oxidation of hydrocarbons downwind of the Bay Area. A 2005 modeling-based health risk assessment of diesel particulate matter concentrations is consistent with aerosol carbon concentrations measured during the WOMS after adjusting for recent mitigation measures and improved estimates of heavy-duty truck traffic volumes.
Satellite remote sensing of particulate matter air quality: the cloud-cover problem.
Christopher, Sundar A; Gupta, Pawan
2010-05-01
Satellite assessments of particulate matter (PM) air quality that use solar reflectance methods are dependent on availability of clear sky; in other words, mass concentrations of PM less than 2.5 microm in aerodynamic diameter (PM2.5) cannot be estimated from satellite observations under cloudy conditions or bright surfaces such as snow/ice. Whereas most ground monitors measure PM2.5 concentrations on an hourly basis regardless of cloud conditions, space-borne sensors can only estimate daytime PM2.5 in cloud-free conditions, therefore introducing a bias. In this study, an estimate of this clear-sky bias is provided from monthly to yearly time scales over the continental United States. One year of the Moderate Resolution Imaging Spectroradiometer (MODIS) 550-nm aerosol optical depth (AOD) retrievals from Terra and Aqua satellites, collocated with 371 U.S. Environmental Protection Agency (EPA) ground monitors, have been analyzed. The results indicate that the mean differences between PM2.5 reported by ground monitors and PM2.5 calculated from ground monitors during the satellite overpass times during cloud-free conditions are less than +/- 2.5 microg m(-3), although this value varies by season and location. The mean differences are not significant as calculated by t tests (alpha = 0.05). On the basis of this analysis, it is concluded that for the continental United States, cloud cover is not a major problem for inferring monthly to yearly PM2.5 from space-borne sensors.
Probing and monitoring aerosol and atmospheric clouds with an electro-optic oscillator.
Arnon, S; Kopeika, N S
1996-09-20
Monitoring, probing, and sensing characteristics of aerosol clouds is difficult and complicated. Probing the characteristics of aerosols is most useful in the chemical and microelectronic industry for processing control of aerosols and emulsion, decreasing bit error rate in adaptive optical communication systems, and in acquiring data for atmospheric science and environment quality. We present a new mathematical and optical engineering model for monitoring characteristics of aerosol clouds. The model includes the temporal transfer function of aerosol clouds as a variable parameter in an electro-optic oscillator. The frequency of the oscillator changes according to changes in the characteristics of the clouds (density, size distribution, physical thickness, the medium and the particulate refractive indices, and spatial distribution). It is possible to measure only one free characteristic at a given time. An example of a practical system for monitoring the density of aerosol clouds is given. The frequency of the oscillator changes from 1.25 to 0.43 MHz for changes in aerosol density from 2000 to 3000 particulates cm(-3). The advantages of this new method compared with the transmissometer methods are (a) no necessity for line-of-sight measurement geometry, (b) accurate measurement of high optical thickness media is possible, (c) under certain conditions measurements can include characteristics of aerosol clouds related to light scatter that cannot be or are difficult to measure with a transmissometer, and (d) the cloud bandwidth for free space optical communication is directly measurable.
NASA Astrophysics Data System (ADS)
Goyal, Radha; Khare, Mukesh
2009-12-01
A study on indoor-outdoor RSPM (PM 10, PM 2.5 and PM 1.0) mass concentration monitoring has been carried out at a classroom of a naturally ventilated school building located near an urban roadway in Delhi City. The monitoring has been planned for a year starting from August 2006 till August 2007, including weekdays (Monday, Wednesday and Friday) and weekends (Saturday and Sunday) from 8:0 a.m. to 2:0 p.m., in order to take into account hourly, daily, weekly, monthly and seasonal variations in pollutant concentrations. Meteorological parameters, including temperature, rH, pressure, wind speed and direction, and traffic parameters, including its type and volume has been monitored simultaneously to relate the concentrations of indoor-outdoor RSPM with them. Ventilation rate has also been estimated to find out its relation with indoor particulate concentrations. The results of the study indicates that RSPM concentrations in classroom exceeds the permissible limits during all monitoring hours of weekdays and weekends in all seasons that may cause potential health hazards to occupants, when exposed. I/O for all sizes of particulates are greater than 1, which implies that building envelop does not provide protection from outdoor pollutants. Further, a significant influence of meteorological parameters, ventilation rate and of traffic has been observed on I/O. Higher I/O for PM 10 is indicating the presence of its indoor sources in classroom and their indoor concentrations are strongly influenced by activities of occupants during weekdays.
NASA Astrophysics Data System (ADS)
Wang, Wanshun; Chen, Zhuo; Li, Xiuwen
2018-03-01
The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.
Processing and Analysis of Multibeam Sonar Data and Images near the Yellow River Estuary
NASA Astrophysics Data System (ADS)
Tang, Q.
2017-12-01
Yellow River Estuary is a typical high-suspended particulate matter estuary in the world. A lot of sediments from Yellow River and other substances produced by human activity cause high-concentration suspended matter and depositional system in the estuary and adjacent water area. Multibeam echo sounder (MBES) was developed in the 1970s, and it not only provided high-precision bathymetric data, but also provided seabed backscatter strength data and water column data with high temporal and spatial resolution. Here, based on high-precision sonar data of the seabed and water column collected by SeaBat7125 MBES system near the Yellow River Estuary, we use advanced data and image processing methods to generate seabed sonar images and water suspended particulate matter acoustic images. By analyzing these data and images, we get a lot of details of the seabed and whole water column features, and we also acquire their shape, size and basic physical characteristics of suspended particulate matters in the experiment area near the Yellow River Estuary. This study shows great potential for monitoring suspended particulate matter use MBES, and the research results will contribute to a comprehensive understanding of sediment transportation, evolution of river trough and shoal in Yellow River Estuary.
NASA Astrophysics Data System (ADS)
Kaulfus, A. S.; Nair, U.; Jaffe, D. A.; Christopher, S. A.; Goodrick, S.
2017-12-01
Biomass burning smoke is a significant contributor to the degradation of air quality with well-documented impacts on the human respiratory system. Despite this, documentation of the distribution of smoke and assessing environmental impacts is largely limited to individual or seasonal events. This study presents a 12-year satellite based distribution of smoke across the Continental United States and describes seasonal and regional differences. The impact of smoke on surface fine particulate matter (PM2.5) concentrations is quantified by the enhancement in PM2.5 over "smoke free" conditions and the relative number of Environmental Protection Agency standard exceedances in the presence of smoke. Smoke occurrence frequency is at a maximum during the summer over the northern Great Plains region of the US and least frequent over the Southwest. Approximately 20% of exceedances of the 24-hour federal standard for particulate matters occur in the presences of smoke. Particulate impacts are at a maximum in the spring and summer in the southeast and northwest respectively corresponding to regional maximums in smoke occurrence. Air quality monitor specific climatological documentation of smoke and corresponding PM2.5 has relevance in EPA exceptional event data exclusion. Near real time evaluation of the dataset can aid in impact mitigation and regulation compliance.
Monitoring of cotton dust and health risk assessment in small-scale weaving industry.
Tahir, Muhammad Wajid; Mumtaz, Muhammad Waseem; Tauseef, Shanza; Sajjad, Muqadas; Nazeer, Awais; Farheen, Nazish; Iqbal, Muddsar
2012-08-01
The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).
Emission and atmospheric transport of particulate PAHs in Northeast Asia.
Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime
2012-05-01
The emission, concentration levels, and transboundary transport of particulate polycyclic aromatic hydrocarbons (PAHs) in Northeast Asia were investigated using particulate PAH measurements, the newly developed emission inventory (Regional Emission inventory in ASia for Persistent Organic Pollutants version, REAS-POP), and the chemical transport model (Regional Air Quality Model ver2 for POPs version, RAQM2-POP). The simulated concentrations of the nine particulate PAHs agreed well with the measured concentrations, and the results firmly established the efficacy of REAS/RAQM2-POP. It was found that the PAH concentrations in Beijing (China, source region), which were emitted predominantly from domestic coal, domestic biofuel, and other transformations of coal (including coke production), were approximately 2 orders of magnitude greater than those monitored at Noto (Japan, leeward region). In Noto, the PAH concentrations showed seasonal variations; the PAH concentrations were high from winter to spring due to contributions from domestic coal, domestic biofuel, and other transformations of coal, and low in summer. In summer, these contribution were decrease, instead, other sources, such as the on-road mobile source, were relatively increased compared with those in winter. These seasonal variations were due to seasonal variations in emissions from China, as well as transboundary transport across the Asian continent associated with meteorological conditions. © 2012 American Chemical Society
Can Particulate Air Sampling Predict Microbial Load in Operating Theatres for Arthroplasty?
Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda
2012-01-01
Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m3; the mean particle count was 4,194,569 no./m3 for particles of diameter ≥0.5 µm and 13,519 no./m3 for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of evaluating the quality of air in operating theatres. PMID:23285189
Can particulate air sampling predict microbial load in operating theatres for arthroplasty?
Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda
2012-01-01
Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m(3); the mean particle count was 4,194,569 no./m(3) for particles of diameter ≥0.5 µm and 13,519 no./m(3) for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of evaluating the quality of air in operating theatres.
NASA Astrophysics Data System (ADS)
Roldán Henao, N.; Hoyos Ortiz, C. D.; Herrera, L.
2017-12-01
Wet deposition, including in-cloud scavenging (ICS) and below-cloud scavenging (BCS), is one of the most important processes of particulate matter (PM) removal from the atmosphere. ICS mainly refers to the growth of particulates into cloud droplets, whereas BCS consists of collisions and coalescence between raindrops and pollutants. The overall influence of precipitation in the concentration of fine particulate matter less than 2.5 microns in size (PM2.5) in the Medellín metropolitan area located in the narrow Aburrá Valley within the Colombian Andes is assessed using weather radar derived precipitation with 5 minutes resolution and hourly data from air quality monitoring stations from the Medellín Early Warning System ( Sistema de Alerta Temprana de Medellin y el Valle de Aburra -SIATA-) monitoring network. A non-parametric probabilistic analysis is proposed in order to understand the net influence of precipitation within the diurnal cycle. Probability density functions (PDF) of PM2.5 concentration during precipitations events as well as under dry conditions are analyzed for every hour of the day. The overlapping coefficient for these distributions was used, along with the Wilcoxon Mann-Whitney test, in order to summarized the net effect of precipitation in aerosol concentration. Evidence suggests that, while there is a clear and significant role of precipitation in aerosol concentration, the net effect is contrasting and strongly depends on the diurnal cycle of atmospheric stability. During stable conditions in the lower troposphere, typically occurring during the night and before midmorning, evidence suggest that precipitation reduces the near-surface PM2.5 concentration due to an effective BCS resulting in net negative forcing. On the other hand, when a precipitation event takes place during the day, when the lower troposphere is typically unstable, the PM2.5 concentration increases, suggesting an net positive forcing given that the BCS is offset by the atmospheric stabilization effect of precipitation, which in turns results in near-surface PM accumulation.
Measurements of particulate semi-volatile material
NASA Astrophysics Data System (ADS)
Pang, Yanbo
2000-10-01
A new innovative sampling system, PC-BOSS, was developed by the combination of particle concentrator and BOSS denuder techniques in response to the new EPA PM2.5 standard and to meet top research priorities for particulate matter that were identified by the National Research Council. The PC-BOSS (P_article C_oncentrator- B_righam Young University O_rganic S_ampling S_ystem) can accurately determine not only PM2.5 stable mass and species such as sulfate, but also particulate semi- volatile material. Several field comparison studies of the PC-BOSS with the EPA PM2.5 reference method and state-of-the-art fine particle measurement methods confirm the capability of the PC-BOSS to accurately determine particulate semi-volatile material, especially organic compounds. This is the first routine sampling system for the determination of both particulate semi-volatile inorganic and organic material. Two other denuder system samplers for the determination of PM2.5 total mass including semi-volatile material were also developed for PM2.5 research and exposure monitoring. Results of studies around the United States indicate that the EPA PM2.5 FRM (Federal Reference Method) under- measured PM2.5 mass by 20-30% compared to PC-BOSS results due to the loss of particulate nitrate and semi-volatile organic compounds during sampling. Organic material is mostly responsible for this under- measurement by the FRM. Using our new sampling system in epidemiological and exposure studies will be essential to providing answers to some top research priorities for particulate matter and promote a better PM2.5 standard for the protection of human health because some fractions of particulate semi-volatile organic compounds are toxic and are possibly responsible for health effects associated with exposure to particulate matter. The atmospheric chemistry of organic aerosols in the troposphere and stratosphere is still largely unknown because of the lack of detailed organic aerosol information. The importance of organic aerosols might also be underestimated because current data on organic aerosols in the troposphere and stratosphere were mostly obtained by traditional methods, like the FRM method. Using PC-BOSS to study organic aerosols in the troposphere and stratosphere will provide not only more but also more accurate information about organic aerosols, and significantly improve the understanding of the role of aerosols in global warming, ozone depletion, and atmospheric heterogenous chemistry.
Habermacher, Jonathan; Benetti, Antonio Domingues; Derlon, Nicolas; Morgenroth, Eberhard
2016-07-01
One strategy for the management of excess sludge in small wastewater treatment plants (WWTPs) consists in minimizing the excess sludge production by operating the WWTP at very long solids retention times (SRTs > 30 days). A number of recent studies have suggested that sludge minimization at very long SRT results from the degradation of the unbiodegradable particulate fraction (XU) (influent unbiodegradable compounds and endogenous decay products). But the biodegradability of the unbiodegradable particulate fraction has only been evaluated during batch digestion test performed at ambient temperature with sludge fed with synthetic wastewaters. It is not clear to what extent observations made for sludge fed with synthetic influents can be transposed to sludge fed with real influent. The current study thus focused on evaluating the biodegradability of the unbiodegradable particulate fraction for sludge fed with real wastewater. Batch digestion tests (400 days, ambient temperature) were conducted with three different sludges fed with either synthetic or real influents and exposed to aerobic or intermittent aeration conditions. Our results indicate that volatile suspended solids (VSS) decreased even after complete decay of the active biomass (i.e., after 30 days of aerobic batch digestion) indicating that the unbiodegradable particulate fraction is biodegradable. However, very low degradation rates of the unbiodegradable particulate fraction were monitored after day 30 of digestion (0.7-1.7·10(-3) d(-1)). These values were in the lower range of previously published values for synthetic wastewaters (1-7.5·10(-3) d(-1)). The low values determined in our study indicate that the rate could decrease over time or that sludge composition influences the degradability of the unbiodegradable particulate fraction. But our results also demonstrate that extracellular polymeric substances (EPS) have a minor impact on the biodegradability of the unbiodegradable particulate fraction. Overall bound EPS were indeed biodegradable under all conditions and thus did not accumulate in the unbiodegradable particulate fraction. Different bound EPS pools (e.g., cation bound EPS) were associated with specific degradation behaviors. Besides improved mechanistic understanding of sludge degradation processes, our results have implications for the development of decentralized wastewater treatment technologies with on-site reduction of excess sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
78 FR 40000 - Method for the Determination of Lead in Total Suspended Particulate Matter
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
.... Purpose of the New Reference Method B. Rationale for Selection of the New Reference Method C. Comments on.../files/ambient/criteria/reference-equivalent-methods-list.pdf . C. Comments on the Proposed Rule On... information collection requirements beyond those imposed by the existing Pb monitoring requirements. C...
Epidemiological studies have observed between city heterogeneity in PM2.5-mortality risk estimates. These differences could potentially be due to the use of central-site monitors as a surrogate for exposure which do not account for an individual's activities or ambient pollutant ...
40 CFR 60.4870 - How do I establish my operating limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sewage Sludge Incineration Units Initial Compliance Requirements § 60.4870 How do I establish my... compliance with the emission limit for particulate matter, cadmium, and lead. (4) For an activated carbon... limit and monitor sorbent injection rate and carrier gas flow rate (or carrier gas pressure drop) if you...
40 CFR 60.4870 - How do I establish my operating limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Sewage Sludge Incineration Units Initial Compliance Requirements § 60.4870 How do I establish my... compliance with the emission limit for particulate matter, cadmium, and lead. (4) For an activated carbon... limit and monitor sorbent injection rate and carrier gas flow rate (or carrier gas pressure drop) if you...
40 CFR 60.4870 - How do I establish my operating limits?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sewage Sludge Incineration Units Initial Compliance Requirements § 60.4870 How do I establish my... compliance with the emission limit for particulate matter, cadmium, and lead. (4) For an activated carbon... limit and monitor sorbent injection rate and carrier gas flow rate (or carrier gas pressure drop) if you...
40 CFR 60.4870 - How do I establish my operating limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sewage Sludge Incineration Units Initial Compliance Requirements § 60.4870 How do I establish my... compliance with the emission limit for particulate matter, cadmium, and lead. (4) For an activated carbon... limit and monitor sorbent injection rate and carrier gas flow rate (or carrier gas pressure drop) if you...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... ozone precursor gases during the winter and summer months, respectively. The revisions also allow for... dioxide, ozone, lead (Pb), particulate matter (PM), and sulfur dioxide (SO 2 ). A SIP is a set of air... supporting information such as emissions inventories, monitoring networks, and modeling demonstrations. Each...
76 FR 74708 - National Emission Standards for Hazardous Air Pollutants for Source Categories
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... as follows: Bag leak detection system means a monitoring device for a fabric filter that identifies an increase in particulate matter emissions resulting from a broken filter bag or other malfunction... thermoset a binder on the mineral wool fiber used to make bonded products. Fabric filter means an air...
This technical note documents changes in the standard operating procedures used at the Environmental Protection Agency's (U.S. EPA) aerosol testing wind tunnel facility for testing of particulate matter monitoring methods of PM2.5 and PM10. These changes are relative to the op...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... Station Unit 7. The scrubber adds moisture to the exhaust gas, which condenses as the gas stream cools. According to Indiana Department of Environmental Management (IDEM), the condensation causes unreliable... impairment caused by particulate and light impairment caused by moisture. The scrubber also removes some PM...
40 CFR 63.11224 - What are my monitoring, installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... include a daily calibration drift assessment, a quarterly performance audit, and an annual zero alignment... performance audit, or an annual zero alignment audit. (7) You must calculate and record 6-minute averages from... absolute particulate matter loadings. (5) The bag leak detection system must be equipped with a device to...