Removal of particulate matter emitted from a subway tunnel using magnetic filters.
Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun
2014-01-01
We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.
Maniquiz-Redillas, Marla C; Kim, Lee-Hyung
2016-09-01
Low-impact development (LID) and green infrastructure (GI) have recently become well-known methods to capture, collect, retain, and remove pollutants in stormwater runoff. The research was conducted to assess the efficiency of LID/GI systems applied in removing the particulate and dissolved heavy metals (Zn, Pb, Cu, Ni, Cr, Cd, and Fe) from urban stormwater runoff. A total of 82 storm events were monitored over a four-year period (2010-2014) on six LID/GI systems including infiltration trenches, tree box filter, rain garden, and hybrid constructed wetlands employed for the management of road, parking lot, and roof runoff. It was observed that the heavy metal concentration increased proportionally with the total suspended solids concentration. Among the heavy metal constituents, Fe appeared to be highly particulate-bound and was the easiest to remove followed by Zn and Pb; while metals such as Cr, Ni, Cu, and Cd were mostly dissolved and more difficult to remove. The mass fraction ratios of metal constituents at the effluent were increased relative to the influent. All the systems performed well in the removal of particulate-bound metals and were more efficient for larger storms greater than 15 mm wherein more particulate-bound metals were generated compared to smaller storms less than 5 mm that produced more dissolved metals. The efficiency of the systems in removing the particulate-bound metals was restricted during high average/peak flows; that is, high-intensity storms events and when heavy metals have low concentration levels.
Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.
Bandyopadhyay, Amitava; Biswas, Manindra Nath
2008-08-01
The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.
Settling Efficiency of Urban Particulate Matter Transported by Stormwater Runoff.
Carbone, Marco; Penna, Nadia; Piro, Patrizia
2015-09-01
The main purpose of control measures in urban areas is to retain particulate matter washed out by stormwater over impermeable surfaces. In stormwater control measures, particulate matter removal typically occurs via sedimentation. Settling column tests were performed to examine the settling efficiency of such units using monodisperse and heterodisperse particulate matter (for which the particle size distributions were measured and modelled by the cumulative gamma distribution). To investigate the dependence of settling efficiency from the particulate matter, a variant of the evolutionary polynomial regression (EPR), a Microsoft Excel function based on multi-objective EPR technique (EPR-MOGA), called EPR MOGA XL, was used as a data-mining strategy. The results from this study have shown that settling efficiency is a function of the initial total suspended solids (TSS) concentration and of the median diameter (d50 index), obtained from the particle size distributions (PSDs) of the samples.
Advanced particulate matter control apparatus and methods
Miller, Stanley J [Grand Forks, ND; Zhuang, Ye [Grand Forks, ND; Almlie, Jay C [East Grand Forks, MN
2012-01-10
Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.
[Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].
Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo
2011-05-01
An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.
Removal efficiency of particulate matters at different underlying surfaces in Beijing.
Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan
2016-01-01
Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.
Liu, Zhihua; Ge, Yunshan; Tan, Jianwei; He, Chao; Shah, Asad Naeem; Ding, Yan; Yu, Linxiao; Zhao, Wei
2012-01-01
Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere.
Method for improved gas-solids separation
Kusik, C.L.; He, B.X.
1990-11-13
Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.
Method for improved gas-solids separation
Kusik, Charles L.; He, Bo X.
1990-01-01
Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.
Flue gas desulfurization method and apparatus
Madden, Deborah A.; Farthing, George A.
1998-08-18
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.
Flue gas desulfurization method and apparatus
Madden, Deborah A.; Farthing, George A.
1998-09-29
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.
NASA Astrophysics Data System (ADS)
Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.
2017-09-01
Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.
Jimenez, Jose; Miller, Mark; Bott, Charles; Murthy, Sudhir; De Clippeleir, Haydee; Wett, Bernhard
2015-12-15
The high-rate activated sludge (HRAS) process is a technology suitable for the removal and redirection of organics from wastewater to energy generating processes in an efficient manner. A HRAS pilot plant was operated under controlled conditions resulting in concentrating the influent particulate, colloidal, and soluble COD to a waste solids stream with minimal energy input by maximizing sludge production, bacterial storage, and bioflocculation. The impact of important process parameters such as solids retention time (SRT), hydraulic residence time (HRT) and dissolved oxygen (DO) levels on the performance of a HRAS system was demonstrated in a pilot study. The results showed that maximum removal efficiencies of soluble COD were reached at a DO > 0.3 mg O2/L, SRT > 0.5 days and HRT > 15 min which indicates that minimizing the oxidation of the soluble COD in the high-rate activated sludge process is difficult. The study of DO, SRT and HRT exhibited high degree of impact on the colloidal and particulate COD removal. Thus, more attention should be focused on controlling the removal of these COD fractions. Colloidal COD removal plateaued at a DO > 0.7 mg O2/L, SRT > 1.5 days and HRT > 30 min, similar to particulate COD removal. Concurrent increase in extracellular polymers (EPS) production in the reactor and the association of particulate and colloidal material into sludge flocs (bioflocculation) indicated carbon capture by biomass. The SRT impacted the overall mass and energy balance of the high-rate process indicating that at low SRT conditions, lower COD mineralization or loss of COD content occurred. In addition, the lower SRT conditions resulted in higher sludge yields and higher COD content in the WAS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flue gas desulfurization method and apparatus
Madden, D.A.; Farthing, G.A.
1998-08-18
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.
Flue gas desulfurization method and apparatus
Madden, D.A.; Farthing, G.A.
1998-09-29
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.
EVALUATION OF TWO CLEANING METHODS FOR THE REMOVAL OF ASBESTOS FIBERS FROM CARPET
This research study examined the effectiveness of dry vacuuming and wet cleaning for the removal of asbestos fibers from carpet, and evaluated the potential for fiber reentrainment during carpet cleaning activities. outine carpet cleaning operations using high-efficiency particul...
Flocculent Settling of Food Wastes.
Chowdhury, Mohammad Monirul Islam; Kim, Mingu; Haroun, Basem Mikhaeil; Nakhla, George; Keleman, Michael
2016-07-01
This study evaluated the flocculent settling in water and municipal wastewater (MWW) in a 10.6 ft deep column. A total of eight runs at three different testing conditions involving MWW alone, food waste (FW) alone, and FW in MWW (FW+MWW) were conducted. Total suspended solid (TSS), total BOD (TBOD), total COD (TCOD), total nitrogen (TN), and total phosphorous (TP) removal efficiencies after 3 hours of settling were 62%, 46%, 49%, 46% and 62% for FW, and 50%, 43%, 39%, 37% and 24% for MWW. Removal efficiencies of particulate COD (PCOD) and particulate BOD (PBOD) at the lowest surface overflow rate (SOR) of 1.1 m3/m2/hr corresponding to the longest settling time of 3 hours were 59% and 64% for FW, and 65% and 70% for FW with MWW samples. On the other hand, no significant variation between FW and FW with MWW was observed for PN removal after 3 hours of settling.
Ye, Dan; Gao, Dengshan; Yu, Gang; Shen, Xianglin; Gu, Fan
2005-12-09
A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions.
Zhao, Yaqi; Huang, Lei; Chen, Yucheng
2018-07-01
Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.
Day, D B; Xiang, J; Mo, J; Clyde, M A; Weschler, C J; Li, F; Gong, J; Chung, M; Zhang, Y; Zhang, J
2018-05-01
High-efficiency particulate air (HEPA) filtration in combination with an electrostatic precipitator (ESP) can be a cost-effective approach to reducing indoor particulate exposure, but ESPs produce ozone. The health effect of combined ESP-HEPA filtration has not been examined. We conducted an intervention study in 89 volunteers. At baseline, the air-handling units of offices and residences for all subjects were comprised of coarse, ESP, and HEPA filtration. During the 5-week long intervention, the subjects were split into 2 groups, 1 with just the ESP removed and the other with both the ESP and HEPA removed. Each subject was measured for cardiopulmonary risk indicators once at baseline, twice during the intervention, and once 2 weeks after baseline conditions were restored. Measured indoor and outdoor PM 2.5 and ozone concentrations, coupled with time-activity data, were used to calculate exposures. Removal of HEPA filters increased 24-hour mean PM 2.5 exposure by 38 (95% CI: 31, 45) μg/m 3 . Removal of ESPs decreased 24-hour mean ozone exposure by 2.2 (2.0, 2.5) ppb. No biomarkers were significantly associated with HEPA filter removal. In contrast, ESP removal was associated with a -16.1% (-21.5%, -10.4%) change in plasma-soluble P-selectin and a -3.0% (-5.1%, -0.8%) change in systolic blood pressure, suggesting reduced cardiovascular risks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Stay away from asthma triggers
... cleaner with a HEPA (high-efficiency particulate arrestor) filter. Replace wall-to-wall carpet with wood or ... a central air conditioning system, use a HEPA filter to remove pet allergens from indoor air. Use ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottney, T.C.
Filtration systems that are incorrectly selected, installed and maintained can cause excessive particulates in occupied spaces. This article describes how to identify and correct problems. Particulate matter can be removed from ventilation air at several sites within a building. These sites include: on heat exchanger surfaces; inside ductwork, ceiling tiles and diffusers; and in the air filter. The cost associated with removing these unwanted contaminants is unavoidable. However, this removal cost varies depending on where the particulates have been deposited. Not all particulates that are generated by work-related activities are transported to the filter bank by return air currents beforemore » being deposited on other surfaces. Accordingly, walls still have to be repainted at varying intervals and carpeting vacuumed. Ceiling tiles will discolor at a rate that is influenced by their texture, the air outlet velocity, the amount of dirt in the ventilation air and how much contaminant is being generated in the room. It is estimated that 15% of ventilation air escapes the air filtration process. This leakage results in higher utility, janitorial and redecorating costs as well as contributing to employee absenteeism. When building management does not prevent it, air-conditioning coils and ductwork become an unintended part of the building's air filtration system. In time, this is much more expensive both in energy and cleaning costs than the steps available to keep them clean. Good particulate control can lower the total cost of building operation. However, a building operator may not have to upgrade to a higher efficiency filter to achieve higher system efficiency. Simply eliminating the source of leaks and better management of the existing filters may be all that is necessary.« less
NASA Technical Reports Server (NTRS)
Green, Robert D.; Meyer, Marit E.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary
2015-01-01
The ISS presently recovers oxygen from crew respiration via a Carbon Dioxide Reduction Assembly (CRA) that utilizes the Sabatier chemical process to reduce captured carbon dioxide to methane (CH4) and water. In order to recover more of the hydrogen from the methane and increase oxygen recovery, NASA Marshall Space Flight Center (MSFC) is investigating a technology, plasma pyrolysis, to convert the methane to acetylene. The Plasma Pyrolysis Assembly (or PPA), achieves 90% or greater conversion efficiency, but a small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. In this work, we present the experimental results of an initial characterization of the carbon particulates in the PPA exit gas stream. We also present several potential options to remove these carbon particulates via carbon traps and filters to minimize resupply mass and required downtime for regeneration.
Koo, Won-Tae; Jang, Ji-Soo; Qiao, Shaopeng; Hwang, Wontae; Jha, Gaurav; Penner, Reginald M; Kim, Il-Doo
2018-06-13
Here, we propose heterogeneous nucleation-assisted hierarchical growth of metal-organic frameworks (MOFs) for efficient particulate matter (PM) removal. The assembly of two-dimensional (2D) Zn-based zeolite imidazole frameworks (2D-ZIF-L) in deionized water over a period of time produced hierarchical ZIF-L (H-ZIF-L) on hydrophilic substrates. During the assembly, the second nucleation and growth of ZIF-L occurred on the surface of the first ZIF-L, leading to the formation of flowerlike H-ZIF-L on the substrate. The flowerlike H-ZIF-L was easily synthesized on various substrates, namely, glass, polyurethane three-dimensional foam, nylon microfibers, and nonwoven fabrics. We demonstrated H-ZIF-L-assembled polypropylene microfibers as a washable membrane filter with highly efficient PM removal property (92.5 ± 0.8% for PM 2.5 and 99.5 ± 0.2% for PM 10 ), low pressure drop (10.5 Pa at 25 L min -1 ), long-term stability, and superior recyclability. These outstanding particle filtering properties are mainly attributed to the unique structure of the 2D-shaped H-ZIF-L, which is tightly anchored on individual fibers comprising the membrane.
Mukhopadhyay, N; Bose, P K
2009-10-01
Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.
SR-52 PROGRAMMABLE CALCULATOR PROGRAMS FOR VENTURI SCRUBBERS AND ELECTROSTATIC PRECIPITATORS
The report provides useful tools for estimating particulate removal by venturi scrubbers and electrostatic precipitators. Detailed descriptions are given for programs to predict the penetration (one minus efficiency) for each device. These programs are written specifically for th...
Song, Chong-Lin; Bin, Feng; Tao, Ze-Min; Li, Fang-Cheng; Huang, Qi-Fei
2009-07-15
The main target of this work is to characterize the abatements of particulate matter (PM), hydrocarbons (HC) and nitrogen oxides (NO(x)) from an actual diesel exhaust using dielectric barrier discharge technology (DBD). The effects of several parameters, such as peak voltage, frequency and engine load, on the contaminant removals have been investigated intensively. The present study shows that for a given frequency, the removals of PM and HC are enhanced with the increase of peak voltage and level off at higher voltage, while in the range of higher voltages a decline of NO(x) removal efficiency is observed. For a given voltage, the maximums of specific energy density (SED) and removal efficiency are attained at resonance point. The increase of peak voltage will result in a significant decrease of energy utilization efficiency of DBD at most engine loads. Alkanes in soluble organic fraction (SOF) are more readily subjected to removals than polycyclic aromatic hydrocarbons (PAHs).
Bio-Defense Now: 56 Suggestions for Immediate Improvements
2005-05-01
Air Education and Training Command HVAC Heating, Ventilation and Air Conditioning ICAM Improved Chemical Agent Monitor ICD-9-CM Internal...conditioning ( HVAC ) system capabilities, making a big difference in removal of many BW agents. High Efficiency Particulate Air (HEPA) filters are also...agents. This program has developed biological sensor-activated heating, ventilation, and air conditioning ( HVAC ) control sys- tems, high efficiency
PM Removal Efficiency from Diesel Gensets Equipped with Aftermarket Control Devices
Diesel particulate matter (PM) has been associated with adverse health effects in humans and is classified as a human carcinogen. Additionally, diesel PM, particularly the strongly light absorbing fraction, black carbon (BC), is an important climate forcer. These adverse impact...
Emissions Removal Efficiency from Diesel Gensets Using Aftermarket PM Controls
Diesel particulate matter (PM) has been associated with adverse health effects in humans and is classified as a human carcinogen. Additionally, diesel PM, particularly the strongly light absorbing fraction, black carbon (BC), is an important climate forcer. The adverse impacts ...
NASA Technical Reports Server (NTRS)
Hotaling, S. P.
1993-01-01
Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.
TEST QA PLAN FOR THE VERIFICATION TESTING OF BAGHOUSE FILTRATION PRODUCTS
Baghouses and their accompanying filter media are a leading particulate control technique for industrial sources. Increasingly emphasis on higher removal efficiencies has helped the baghouse to be even more competitive when compared to other control devices. At present there is n...
Huang, Hann-Sheng; Gorski, Anthony J.
1999-01-01
An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Vijayakumar, R.
2017-01-01
The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Li, Manqing; Feng, Yingnan; Wang, Kaiyu; Yong, Wai Fen; Yu, Liya; Chung, Tai-Shung
2017-09-05
Severe air pollution has become a global concern, and there is a pressing need to develop effective and efficient air filters for removing airborne particulate matters (PMs). In this work, a highly permeable poly(ether sulfone) (PES) based hollow fiber membrane was developed via a one-step dry-jet wet spinning. For the first time, a hollow fiber membrane was used in removing the ultrafine particles (PMs with aerodynamic equivalent diameters of less than 100 nm) in PM 2.5 . The novel air filter was designed to possess the synergistic advantages of porous filters and fibrous filters with a sievelike outer surface and a fibrouslike porous substrate. A filtration efficiency of higher than 99.995% could be easily achieved when the self-support hollow fiber was challenged with less than 300 nm particulates. Without losses of the structural advantages, we have demonstrated that the permeation properties of the hollow fiber membrane can be facilely tailored via manipulation of the dope and bore fluid formulations. Various cleaning strategies were explored to regenerate the membrane performance after fouling. Both water rinse and backwash showed effectiveness to restore the membrane permeance for repetitive usage.
A new installation for treatment of road runoff: up-flow filtration by porous polypropylene media.
Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T; Tanaka, Y
2005-01-01
We installed a new device on a paved road to treat runoff from a roadway surface. All the stormwater runoff was transferred into the device and the runoff equivalent to 10 mm/hr or less was treated. The treatment method consists of sedimentation and up-flow filtration with porous polypropylene (PPL) processes. The treated runoff was discharged into the existing storm drainage pipe. The average removal efficiency of the initial runoff at the beginning of rainfall which has high pollution intensity was about 90% for SS, about 70% for COD, about 40% for total phosphorus (T-P), about 80% for Pb and Cd, about 70% for Zn, Cu, Mn and Cr, and about 60% for polycyclic aromatic hydrocarbons (PAHs). The overall removal efficiencies of the experiment that ran for four months remained > 60% of SS, > 40% of COD, > 60% of heavy metals, and > 40% of PAHs. The PPL is excellent for removing smaller size particulates of suspended solids, which originate basically from diesel exhaust, as well as larger size particulates from automobile tires, asphalt roads, and other accumulated source(s) of clay and sand, etc.
Lam, K S; Chan, F S; Fung, W Y; Lui, B S S; Lau, L W L
2006-04-01
A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.
Baskaran, M.; Swarzenski, P.W.; Biddanda, B.A.
2009-01-01
[1] Large volume (102-103 L) seawater samples are routinely processed to investigate the partitioning of particle reactive radionuclides and Ra between solution and size-fractionated suspended particulate matter. One of the most frequently used methods to preconcentrate these nuclides from such large volumes involves extraction onto three filter cartridges (a prefilter for particulate species and two MnO2-coated filters for dissolved species) connected in series. This method assumes that the extraction efficiency is uniform for both MnO2-coated cartridges, that no dissolved species are removed by the prefilter, and that any adsorbed radionuclides are not desorbed from the MnO2-coated cartridges during filtration. In this study, we utilized 234Th-spiked coastal seawater and deionized water to address the removal of dissolved Th onto prefilters and MnO2-coated filter cartridges. Experimental results provide the first data that indicate (1) a small fraction of dissolved Th (<6%) can be removed by the prefilter cartridge; (2) a small fraction of dissolved Th (<5%) retained by the MnO2 surface can also be desorbed, which undermines the assumption of uniform extraction efficiency for Th; and (3) the absolute and relative extraction efficiencies can vary widely. These experiments provide insight on the variability of the extraction efficiency of MnO 2-coated filter cartridges by comparing the relative and absolute efficiencies and recommend the use of a constant efficiency on the combined activity from two filter cartridges connected in series for future studies of dissolved 234Th and other radionuclides in natural waters using sequential filtration/extraction methods. ?? 2009 by the American Geophysical Union.
II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.
Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George
2011-08-17
An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well.
Li, Guiying; Yang, Huan; An, Taicheng; Lu, Yujuan
2018-04-20
Safe drinking water is essential for the wellbeing of people around the world. In this work, the occurrence, distribution, and elimination of four groups of antibiotics including fluoroquinolones, sulfonamides, chloramphenicols and macrolides (21 antibiotics total), were studied in two drinking water treatment plants during the wet and dry seasons. In the drinking water source (river), the most abundant group was fluoroquinolones. In contrast, chloramphenicols were all under the limitation of detection. Total concentration of all investigated antibiotics was higher in dissolved phase (62-3.3 × 10 2 ng L -1 ) than in particulate phase (2.3-7.1 ng L -1 ) during both wet and dry seasons in two plants. With the treatment process of flocculation → horizontal flow sedimentation → V type filtration → liquid Cl 2 chlorination, approximately 57.5% (the dry season) and 73.6% (the wet season) of total antibiotics in dissolved phase, and 46.3% (the dry season) and 51.0% (the wet season) in particulate phase were removed. In contrast, the removal efficiencies of total antibiotics were obtained as -49.6% (the dry season) and 52.3% (the wet season) in dissolved phase, and -15.5% (the dry season) and 44.3% (the wet season) in particulate phase, during the process of grille flocculation→ tube settler sedimentation → siphon filtration → ClO 2 chlorination. Sulfonamides were found to be typically easily removed antibiotics from the dissolved and particulate phases during both seasons. Through a human health risk assessment, we found that the former treatment technologies were much better than the later for risk reduction. Overall, it can be concluded that the treatment processes currently used should be modified to increase emerging contaminant elimination efficiency and ensure maintenance of proper water quality. Copyright © 2018. Published by Elsevier Inc.
Detailed Analysis of Alternatives Report. Version 2.0. Technology Descriptions. Volume 7.
1993-07-01
capacity is 25 to 50 tons/hour. Off-gas treatment consists of a partial quench, baghouse, and venturi scrubber . The quench blowdown stream is treated...particulate removal, and a caustic quench step to remove acid gases with a venturi scrubber for additional particulate removal (Figure 7.1-1). The sequence can...quench step to remove acid gases with a venturi scrubber for additional particulate removal. The sequence can be modified to include off gas to stack gas
Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.
Maniquiz-Redillas, Marla C; Kim, Lee-Hyung
2016-01-01
In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
Efficacy of photocatalytic HEPA filter on microorganism removal.
Chuaybamroong, P; Chotigawin, R; Supothina, S; Sribenjalux, P; Larpkiattaworn, S; Wu, C-Y
2010-06-01
This study assessed the application of photocatalytic oxidation (PCO) to the high efficiency particulate air (HEPA) filter for disinfection of airborne microorganisms. Experiments were conducted at two TiO2 loadings (1870 +/- 169 and 3140 +/- 67 mg/m(2)) on the HEPA filter irradiated with UV-A at the intensity of 0.85 +/- 0.18 or 4.85 +/- 0.09 mW/cm(2) under two relative humidity conditions (45 +/- 5% and 75 +/- 5%). Inactivation and penetration of four microorganisms were tested, including Aspergillus niger, Penicillium citrinum, Staphylococcus epidermidis, and Bacillus subtilis. It was found that microorganisms retained on a photocatalytic filter were inactivated around 60-80% and even 100% for S. epidermidis when the PCO reactions occurred. Lower penetration was also found from the photocatalytic filter for all airborne microorganisms. High humidity decreased photocatalysis efficacy. Increasing TiO2 loading or irradiance intensity did not substantially affect its disinfection capability. The high efficiency particulate air filter is used widely to remove particulates and microorganisms from the air stream. However, the filter may become a source of microbes if those retained microorganisms proliferate and re-entrain back into the filtered air. This study demonstrates that such a problem can be handled effectively by using photocatalytic reactions to inactivate those confined microorganisms. A 60-100% microbe reduction can be achieved for a wide variety of microorganisms to provide better indoor air quality for hospitals, offices, and domestic applications.
Analysis of contaminants in factor VIII preparations administered to patients with hemophilia.
Rock, G. A.; Farrah, G.; Rozon, G.; Smiley, R. K.; Cole, R.; Villeneuve, D.; Tittley, P.
1983-01-01
Cryoprecipitate and the more purified factor VIII concentrates are all heterogeneous preparations that contain not only a high concentration of factor VIII but also various other materials, some of which might be injurious, causing liver damage after long-term exposure. The efficiency of three standard cryoprecipitate filters, two microaggregate filters and the appropriate factor VIII concentrate filters in reducing the amount of particulate matter delivered to the patient was assessed. Filtration of cryoprecipitate through the standard filters removed less than 20% of the contaminating microaggregates and very few of the large number of intact platelets, although the total dose of factor VIII was delivered. Microaggregate filters were no better in reducing the platelet contamination, although the total number of particles delivered was halved. However, 25% of the factor VIII was retained in the bed volume of the filter. The concentrate preparations also contained significant amounts of particulate matter that was unrelated to factor VIII and was not removed following filtration through the designated filter. These findings indicate that a new filter should be developed for administration of factor VIII concentrate that would remove the particulate matter while delivering all of the factor VIII to the patient. Images FIG. 1 FIG. 2 FIG. 3 FIG. 5 PMID:6401585
Pulse combusted acoustic agglomeration apparatus and process
Mansour, Momtaz N.
1993-01-01
An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.
Particulate contamination removal from wafers using plasmas and mechanical agitation
Selwyn, G.S.
1998-12-15
Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.
Particulate contamination removal from wafers using plasmas and mechanical agitation
Selwyn, Gary S.
1998-01-01
Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.
2016-01-01
The atmosphere revitalization equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provides the vital functions of maintaining a habitable environment for the crew as well as protecting the hardware from fouling by suspended particulate matter. Providing these functions are challenging in pressurized spacecraft cabins because no outside air ventilation is possible and a larger particulate load is imposed on the filtration system due to lack of sedimentation in reduced gravity conditions. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) filters deployed at multiple locations in each module. These filters are referred to as Bacteria Filter Elements (BFEs). As more experience has been gained with ISS operations, the BFE service life, which was initially one year, has been extended to two to five years, dependent on the location in the U.S. Segment. In previous work we developed a test facility and test protocol for leak testing the ISS BFEs. For this work, we present results of leak testing a sample set of returned BFEs with a service life of 2.5 years, along with particulate removal efficiency and pressure drop measurements. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS to 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
II. Electrodeposition/removal of nickel in a spouted electrochemical reactor
Grimshaw, Pengpeng; Calo, Joseph M.; Shirvanian, Pezhman A.; Hradil, George
2011-01-01
An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well. PMID:22039317
A comparative study on laser induced shock cleaning of radioactive contaminants in air and water
NASA Astrophysics Data System (ADS)
Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.
2018-03-01
Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1995-01-01
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1996-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1995-04-25
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, C.D.
1993-12-14
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1996-02-27
A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, Charles D.
1993-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Pulse combusted acoustic agglomeration apparatus and process
Mansour, Momtaz N.; Chandran, Ravi
1994-01-01
An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.
Wendland, C; Deegener, S; Behrendt, J; Toshev, P; Otterpohl, R
2007-01-01
The objective of this research was mesophilic anaerobic digestion of blackwater from vacuum toilets (BW) and kitchen refuse (KR) in a CSTR within an ecological sanitation system. A detailed investigation of the BW characteristics was carried out. Research on anaerobic digestion was performed with CSTR of 101 volume at HRT of 10, 15 and 20 days. The digestion of BW at 20 days HRT showed stable performance without inhibition effects, in spite of relatively high ammonium concentrations. The removal of total and particulate COD was 61% and 53%, respectively, and the methane yield 10/CH4/cap/day. The addition of kitchen refuse (KR) improved the performance of the CSTR in terms of COD removal efficiency and methane yield. At 20 days HRT the removal of total and particulate COD increased up to 71% and 67%, respectively, and the methane yield to 27/CH4/cap/day. The results at 15 days HRT showed similar performance. At HRT of 10 days, the anaerobic treatment was limited but reached steady state conditions at higher VFA concentrations in the effluent, with a decrease of COD removal of 30 to 33% and of methane yields of 19 to 21%.
Kurella, Swamy; Meikap, Bhim Charan
2016-08-23
In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%.
Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi
2017-09-19
A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.
Process for off-gas particulate removal and apparatus therefor
Carl, D.E.
1997-10-21
In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.
Removal of residual particulate matter from filter media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almlie, Jay C.; Miller, Stanley J.
A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.
Removal of residual particulate matter from filter media
Almlie, Jay C; Miller, Stanley J
2014-11-11
A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.
Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth
2016-01-01
NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.
Cocurrent scrubber evaluation TVA's Colbert Lime--Limestone Wet-Scrubbing Pilot Plant. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robards, R.F.; Moore, N.D.; Kelso, T.M.
1979-01-01
The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. The physical size and general arrangement of flue gas scrubbing systems have a major impact on capital investment and operating cost, as do potential operating and maintenance advantages inherent to some systems. The equipment configuration for a cocurrent scrubber reflects some of these advantages. EPRI funded TVA to perform preliminary screening tests of TVA's 1 MW pilot plant (Colbert Steam Plant) to develop operating data on the cocurrent design for usemore » in designing and operating a 10 MW prototype cocurrent scrubber at TVA's Shawnee Scrubber Test Facility. Results of the Colbert tests showed excellent sulfur dioxide removal efficiencies, generally greater than 85%, low pressure drop, and high particulate removal efficiencies. This report covers these screening tests.« less
Development of a Simple Method for Concentrating Enteroviruses from Oysters
Sobsey, Mark D.; Wallis, Craig; Melnick, Joseph L.
1975-01-01
The development of a simple method for concentrating enteroviruses from oysters is described. In this method viruses in homogenized oyster tissues are efficiently adsorbed to oyster solids at pH 5.5 and low salt concentration. After low-speed centrifugation, the supernatant is discarded and viruses are eluted from the sedimented oyster solids by resuspending them in pH 3.5 glycine-buffered saline. The solids are then removed by low-speed centrifugation, and the virus-containing supernatant is filtered through a 0.2-μm porosity filter to remove bacteria and other small particulates without removing viruses. The virus-containing filtrate is then concentrated to a volume of a few milliliters by ultrafiltration, and the concentrate obtained is inoculated directly into cell cultures for virus assay. When tested with pools of oysters experimentally contaminated with small amounts of different enteroviruses, virus recovery efficiency averaged 63%. PMID:234154
Development of a simple method for concentrating enteroviruses from oysters.
Sobsey, M D; Wallis, C; Melnick, J L
1975-01-01
The development of a simple method for concentrating enteroviruses from oysters is described. In this method viruses in homogenized oyster tissues are efficiently absorbed to oyster solids at pH 5.5 and low salt concentration. After low-speed centrifugation, the supernatant is discarded and viruses are eluted from the sedimented oyster solids by resuspending them in pH 3.5 glycine-buffered saline. The solids are then removed by low-speed centrifugation, and the virus-containing supernatant is filtered through a 0.2-micronm porosity filter to remove bacteria and other small particulates without removing viruses. The virus-containing filtrate is then concentrated to a volume of a few milliliters by ultrafiltration, and the concentrate obtained is inoculated directly into cell cultures for virus assay. When tested with pools of oysters experimentally contaminated with small amounts of different enteroviruses, virus recovery efficiency averaged 63%.
Removal of uranium from aqueous HF solutions
Pulley, Howard; Seltzer, Steven F.
1980-01-01
This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.
Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Khang, Soon-Jai; Evans, Douglas E
2006-12-15
Long-term exposures to diesel particulate matter (DPM) emissions are linked to increasing adverse human health effects due to the potential association of DPM with carcinogenicity. Current diesel vehicular particulate emission regulations are based solely upon total mass concentration, albeit it is the submicrometer particles that are highly respirable and the most detrimental to human health. In this study, experiments were performed with a tubular single-stage wet electrostatic precipitator (wESP) to evaluate its performance for the removal of number-based DPM emissions. A nonroad diesel generator utilizing a low sulfur diesel fuel (500 ppmw) operating under varying load conditions was used as a stationary DPM emission source. An electrical low-pressure impactor (ELPI) was used to quantify the number concentration distributions of diesel particles in the diluted exhaust gas at each tested condition. The wESP was evaluated with respect to different operational control parameters such as applied voltage, gas residence time, etc., to determine their effect on overall collection efficiency, as well as particle size dependent collection efficiency. The results show that the total DPM number concentrations in the untreated diesel exhaust are in the magnitude of approximately108/cm(3) at all engine loads with the particle diameter modes between 20 and 40 nm. The measured collection efficiency of the wESP operating at 70 kV based on total particle numbers was 86% at 0 kW engine load and the efficiency decreased to 67% at 75 kW due to a decrease in gas residence time and an increase in particle concentrations. At a constant wESP voltage of 70 kV and at 75 kW engine load, the variation of gas residence time within the wESP from approximately 0.1 to approximately 0.4 s led to a substantial increase in the collection efficiency from 67% to 96%. In addition, collection efficiency was found to be directly related to the applied voltage, with increasing collection efficiency measured for increases in applied voltage. The collection efficiency based on particle size had a minimum for sizes between 20 and 50 nm, but at optimal wESP operating conditions it was possible to remove over 90% of all particle sizes. A comparison of measured and calculated collection efficiencies reveals that the measured values are significantly higher than the predicted values based on the well-known Deutsch equation.
Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, M.
1994-03-01
Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because ofmore » the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.« less
Yao, Juan-Juan; Gao, Nai-Yun; Xia, Sheng-Ji; Chen, Bei-Bei
2009-06-15
The pilot and bench scale studies on pentavalent arsenic removal by coagulation and the strengthening effect of flocs recycling were performed. The results show that above 95% As (V) in the raw water exists in the form of dissolved As (V). Furthermore, the removal efficiencies of dissolved arsenic and total arsenic by mixing, first flocculation, second flocculation, sedimentation, filtration units were 87.92%, 6.18%, 2.38%, 1.55%, 1.23% and 1.10%, 1.83%, 2.20%, 86.42%, 7.38% respectively. Therefore, conversion rate of dissolved As(V) into particulate As(V) and the settlement performance of flocs were strongly dependent on the coagulation effect, which determined the As(V) removal efficiency in the whole system. Flocs have a strong adsorption capacity for As(V) and the adsorption obeys a second order reaction kinetics and well fits the modified Freundlich model. Flocs recycling can obviously promoted the As(V) removal by enhanced coagulation and reduce the dosage of coagulant with recycling point set at rapid mixed site and recycling ratio at 50%.
Yoon, Seong-Hoon; Lee, Sangho
2005-09-01
Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.
Carbon fiber composite molecular sieve electrically regenerable air filter media
Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.
1998-01-01
An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.
Guon, Jerold
1976-04-13
A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.
Filter-based control of particulate matter from a lean gasoline direct injection engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Ilia N.; Simpson, John T.
A method of preparing a network comprises disposing a solution comprising particulate materials in a solvent onto a superhydrophobic surface comprising a plurality of superhydrophobic features and interfacial areas between the superhydrophobic features. The plurality of superhydrophobic features has a water contact angle of at least about 150.degree.. The method of preparing the network also comprises removing the solvent from the solution of the particulate materials, and forming a network of the particulate materials in the interfacial areas, the particulate materials receding to the interfacial areas as the solvent is removed.
Nakada, N; Yasojima, M; Okayasu, Y; Komori, K; Suzuki, Y
2010-01-01
The behavior of antibacterial triclosan, insect-repellent diethyltoluamide (DEET), anticonvulsant carbamazepine, and antipruritic crotamiton was investigated at two sewage treatment plants (STPs) to clarify their complete mass balance. Twenty-four-hour flow-proportional composite samples were collected from the influent and effluent of primary and final sedimentation tanks, a biofiltration tank and disinfection tanks. Sludge samples (i.e., activated and excess sludge) and samples of the return flow from the sludge treatment process were collected in the same manner. The analytes in both the dissolved and particulate phases were individually determined by a gas chromatograph equipped with mass spectrometer. Triclosan was dominantly detected in the particulate phase especially in the early stage of treatment (up to 83%) and was efficiently removed (over 90%) in STPs, mainly by sorption to sewage sludge. Limited removal was observed for DEET (55+/-24%), while no significant removal was demonstrated for crotamiton or carbamazepine. The solid-water distribution coefficients (K(d), n=4) for triclosan (log K(d): 3.7-5.1), DEET (1.3-1.9) and crotamiton (1.1-1.6) in the sludge samples are also determined in this study. These findings indicate the limitations of current sewage treatment techniques for the removal of these water-soluble drugs (i.e. DEET, carbamazepine, and crotamiton).
Performance of point-of-use devices to remove manganese from drinking water.
Carrière, Annie; Brouillon, Manon; Sauvé, Sébastien; Bouchard, Maryse F; Barbeau, Benoit
2011-01-01
A recent epidemiological study reported significant cognitive deficits among children in relation with consumption of water with manganese concentrations in the order of 50-100 ug/L. Concerns for neurotoxic effects of manganese raises the need for evaluating the efficiency of domestic water treatment systems for removal of this metal. The objective of the present study was to determine whether POU devices are efficient at reducing dissolved manganese concentration in drinking water. Various devices were tested according to the NSF 53 protocol for general metals for high pH test water. Based on these assays, the pour-through filters were identified as the most promising POU devices, with dissolved manganese removal greater than 60% at 100% rated capacity, and greater than 45% at 200% rated capacity (influent Mn ≈1,000 μg/L). Under-the-sink filters using cationic exchange resins (i.e., water softeners) were also efficient at removing dissolved manganese but over a shorter operating life. Manganese leaching was also observed beyond their rated capacity, making them less robust treatments. The activated carbon block filters and other proprietary technologies were found to be inappropriate for dissolved manganese removal. Further evaluation of POU devices performance should evaluate the impact of hardness on process performance. The impact of particulate Mn should also be evaluated.
The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies
NASA Astrophysics Data System (ADS)
Gall, H. E.; Schultz, D.; Mejia, A.; Harman, C. J.; Raj, C.; Goslee, S.; Veith, T.; Patterson, P. H.
2017-12-01
Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70 - 95%); however, these values are typically calculated as an average of removal efficiencies observed or simulated for individual events. We argue that due to: (i) positively correlated sediment concentration-discharge relationships; (ii) strong temporal inequality exhibited by sediment transport; and (iii) decreasing VFS performance with increasing flow rates, VFS removal efficiencies over annual time scales may be significantly lower than the per-event values or averages typically reported in the literature and used in decision-making models. By applying a stochastic approach to a two-component VFS model, we investigated the extent of the disparity between two calculation methods: averaging efficiencies from each event over the course of one year, versus reporting the total annual load reduction. We examined the effects of soil texture, concentration-discharge relationship, and VFS slope to reveal the potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that errors can be as low as < 2% and as high as > 20%, with the differences between the two methods of removal efficiency calculations greatest for: (i) soils with high percentage of fine particulates; (ii) VFSs with higher slopes; and (iii) strongly positive concentration-discharge relationships. These results can aid in annual-scale decision making for achieving downstream water quality goals.
Method for removing particulate matter from a gas stream
Postma, Arlin K.
1984-01-01
Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.
Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie
2010-10-01
The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.
Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.
Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie
2010-07-01
The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.
Carbon fiber composite molecular sieve electrically regenerable air filter media
Wilson, K.A.; Burchell, T.D.; Judkins, R.R.
1998-10-27
An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.
Ismail, Sherif; Tawfik, Ahmed
2016-01-01
Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL.
Cantwell, Mark G; Perron, Monique M; Sullivan, Julia C; Katz, David R; Burgess, Robert M; King, John
2014-08-01
In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.
Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui
2018-03-01
Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification abilities. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Adam, Steven J.
1994-01-01
A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.
Tawfik, Ahmed; Wahab, Rifaat Abdel; Al-Asmer, Azza; Matary, Fatma
2011-08-01
Grey wastewater (GW) treatment via down-flow hanging sponge (DHS) system was the subject of the study. The reactor was operated at different hydraulic retention times (HRTs) of 11.7, 5.8 and 2.9 h, corresponding to organic loading rates (OLRs) of 1.9, 3.6 and 6.8 kgCOD/m3 day, respectively. The results obtained revealed that decreasing the HRT from 11.7 to 2.9 h negatively affected on the performance of the DHS system. COD(total), COD(soluble), COD(particulate) and detergent removal efficiency were reduced from 96 ± 2.4 to 90 ± 2.3%, from 83 ± 10 to 69 ± 8%, from 98 ± 2 to 94 ± 3% and from 96 ± 12 to 88 ± 6.9%, respectively. However, the removal efficiency of the distinguished COD fractions and detergent remained unaffected when decreasing the HRT from 11.7 to 5.8 h. The DHS system provided a removal efficiency of 95 ± 1% for COD(total), 79 ± 8% for COD(soluble), 98 ± 2 for COD(particulate) and 94.7% for detergent at an HRT of 5.8 h. Based on these results, it is recommended to operate such a system at an HRT of 5.8 h and OLR not exceeding 3.6 kgCOD/m3 day for producing an effluent quality complying for reuse in unrestricted irrigation purposes. The removal of TKj-N and nitrification efficiency in the DHS system was significantly affected by increasing the OLR from 1.9 to 3.6 kgCOD/m3 day and from 3.6 to 6.8 kgCOD/m3 day. At an OLR of 1.9 kgCOD/m3 day, the DHS system removed 80 ± 12% of TKj-N and 91 ± 22% of ammonia which is significantly higher than that at an OLR of 3.6 (58.5 ± 13%) and 6.8 kgCOD/m3 day (26.8 ± 16%). Similar results were recorded for the removal of total coliform (TC), viz., the efficiencies dropped for TC from 99.8 ± 0.2 to 99.4 ± 0.8% and from 99.4 ± 0.8 to 90.0 ± 7.6%, respectively. DHS profile results showed that the major part of COD was removed in the upper portion of the system while the nitrification process was taken place in the lower part of the DHS system at OLR of 1.9 kgCOD/m3 day and HRT of 11.7 h.
Nonoxidative removal of organics in the activated sludge process
Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte
2016-01-01
ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679
Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Wong, Victor
Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less
Development of the fine-particle agglomerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, P.; Balasic, P.
1999-07-01
This paper presents the current status of the commercial development of a new technology to more efficiently control fine particulate emissions. The technology is based on an invention by Environmental Elements Corporation (EEC) which utilizes laminar flow to promote contact of fine submicron particles with larger particles to form agglomerates prior to their removal in a conventional particulate control device, such as an ESP. As agglomerates the particles are easily captured in the control device, whereas a substantial amount would pass through if allowed to remain as fine particles. EEC has developed the laminar-flow agglomerator technology through the laboratory proof-of-conceptmore » stage, which was funded by a DOE SBIR grant, to pilot-scale and full-scale demonstrations.« less
NASA Technical Reports Server (NTRS)
Perry, J. L.; Agui, J. H.; Vijayakimar, R
2016-01-01
Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.
Liquid additives for particulate emissions control
Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon
1999-01-01
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
Water Processing Assembly Particulate Filter Remove and Replace (R&R)
2013-07-12
ISS036-E-018008 (12 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, removes and replaces the particulate filter for the Water Pump Assembly 2 (WPA2) in Tranquility (also called Node 3) on the International Space Station.
Water Processing Assembly Particulate Filter Remove and Replace (R&R)
2013-07-12
ISS036-E-018007 (12 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, removes and replaces the particulate filter for the Water Pump Assembly 2 (WPA2) in Tranquility (also called Node 3) on the International Space Station.
Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong
2018-07-01
The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate phase, respectively. Moreover, the average emission amount of PAHs for the investigated CFPP was 1016.6 g/day and 371073.6 g/y, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Giorgi, Filippo
A microphysics-removal Atmospheric Aerosol Model (AAM) is developed for use in General Circulation Models (GCM) to study global budgets and effects of particulate material. In this model the particle population is assumed to be composed of a set of log-normal modes whose time evolution due to microphysical processes is described via prognostic equations for an appropriate number of moments of the particle size distribution. This newly devised technique, by making use of a small number of prognostic equations for the aerosol variables and utilizing optimized numerical procedures, renders the model computationally efficient, hence particularly suitable for use in complex 3D GCMs. Detailed parameterizations of particle coagulation, sedimentation, dry deposition, and wet removal are incorporated into the AAM. The coagulation term includes only intramodal Brownian coagulation; the sedimentation term is proportional to the vertical divergence of the gravitational settling flux; dry depositions is calculated in terms of a surface deposition velocity dependent upon surface wind speed, surface drag coefficient, particle size and density, and characteristics of the surface roughness elements; wet removal is included as an in-cloud scavenging term dependent upon the local GCM-produced precipitation rates. The AAM is incorporated into a GCM and is applied to two types of studies: (1) Characteristics of the particle wet and dry removal processes. The rainout-determined lifetimes of soluble particulate (or gaseous) compounds are found to depend, because of the episodic and asymmetric nature of precipitation, not only on the amount of precipitation but also on the characteristics of the storm cycle and the direction of the species' main flow. Calculated dry deposition velocities are sensitive, in a complicated fashion, to both meteorological factors and particle dynamics. (2) Climatic and environmental impact of massive particulate injections following a full-scale nuclear war, with emphasis on the sensitivity of the simulated effects to the inclusion of particle microphysics. Rainout is found to be a crucial element in regulating aerosol loadings and residence times, and consequently in determining global impacts, whereas coagulation and dry deposition introduce only second order effects. A generally milder global impact is predicted than those suggested by previous studies.
Plasma regenerated particulate trap and NO.sub.x reduction system
Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.
2000-01-01
A non-catalytic two-stage process for removal of NO.sub.x and particulates from engine exhaust comprises a first stage that plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, and a second stage, which preferably occurs simultaneously with the first stage, that converts NO.sub.2 and carbon soot particles to respective environmentally benign gases that include N.sub.2 and CO.sub.2. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced while carbon soot from trapped particulates is simultaneously converted to CO.sub.2 when reacting with the NO.sub.2 (that converts to N.sub.2). For example, an internal combustion engine exhaust is connected by a pipe to a chamber where carbon-containing particulates are electrostatically trapped or filtered and a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. Volatile hydrocarbons (C.sub.x H.sub.y) from the trapped particulates are oxidized in the plasma and the remaining soot from the particulates reacts with the NO.sub.2 to convert NO.sub.2 to N.sub.2, and the soot to CO.sub.2. The nitrogen exhaust components remain in the gas phase throughout the process, with no accompanying adsorption.
Walker, Richard J.
1989-01-01
A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.
Propulsion and trapping of microparticles by active cilia arrays.
Bhattacharya, Amitabh; Buxton, Gavin A; Usta, O Berk; Balazs, Anna C
2012-02-14
We model the transport of a microscopic particle via a regular array of beating elastic cilia, whose tips experience an adhesive interaction with the particle's surface. At optimal adhesion strength, the average particle velocity is maximized. Using simulations spanning a range of cilia stiffness and cilia-particle adhesion strength, we explore the parameter space over which the particle can be "released", "propelled", or "trapped" by the cilia. We use a lower-order model to predict parameters for which the cilia are able to "propel" the particle. This is the first study that shows how both stiffness and adhesion strength are crucial for manipulation of particles by active cilia arrays. These results can facilitate the design of synthetic cilia that integrate adhesive and hydrodynamic interactions to selectively repel or trap particulates. Surfaces that are effective at repelling particulates are valuable for antifouling applications, while surfaces that can trap and, thus, remove particulates from the solution are useful for efficient filtration systems.
Kettleson, Eric M.; Schriewer, Jill M.; Buller, R. Mark L.
2013-01-01
Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems. PMID:23263945
Kettleson, Eric M; Schriewer, Jill M; Buller, R Mark L; Biswas, Pratim
2013-02-01
Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.
Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.
Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry
2018-05-15
Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.
Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori
2016-12-01
The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fibrous Filter to Protect Building Environments from Polluting Agents: A Review
NASA Astrophysics Data System (ADS)
Chavhan, Md. Vaseem; Mukhopadhyay, Arunangshu
2016-04-01
This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.
Method for the removal of ultrafine particulates from an aqueous suspension
Chaiko, David J.; Kopasz, John P.; Ellison, Adam J. G.
2000-01-01
A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.
Method for the Removal of Ultrafine Particulates from an Aqueous Suspension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiko, David J.; Kopasz, John P.; Ellison, Adam J.G.
1999-03-05
A method of separating ultra-fine particulate from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel-containing the particulate, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.
A wind tunnel study on the effect of trees on PM2.5 distribution around buildings.
Ji, Wenjing; Zhao, Bin
2018-03-15
Vegetation, especially trees, is effective in reducing the concentration of particulate matter. Trees can efficiently capture particles, improve urban air quality, and may further decrease the introduction of outdoor particles to indoor air. The objective of this study is to investigate the effects of trees on particle distribution and removal around buildings using wind tunnel experiments. The wind tunnel is 18m long, 12m wide, and 3.5m high. Trees were modeled using real cypress branches to mimic trees planted around buildings. At the inlet of the wind tunnel, a "line source" of particles was released, simulating air laden with particulate matter. Experiments with the cypress tree and tree-free models were conducted to compare particle concentrations around the buildings. The results indicate that cypress trees clearly reduce PM 2.5 concentrations compared with the tree-free model. The cypress trees enhanced the PM 2.5 removal rate by about 20%. The effects of trees on PM 2.5 removal and distribution vary at different heights. At the base of the trees, their effect on reducing PM 2.5 concentrations is the most significant. At a great height above the treetops, the effect is almost negligible. Copyright © 2017 Elsevier B.V. All rights reserved.
Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming
2018-03-06
This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.
International Space Station Bacteria Filter Element Service Life Evaluation
NASA Technical Reports Server (NTRS)
Perry, J. L.
2005-01-01
The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.
Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing
2014-09-05
A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study. Copyright © 2014 Elsevier B.V. All rights reserved.
Transparent air filter for high-efficiency PM2.5 capture.
Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi
2015-02-16
Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.
Water reuse systems: A review of the principal components
Lucchetti, G.; Gray, G.A.
1988-01-01
Principal components of water reuse systems include ammonia removal, disease control, temperature control, aeration, and particulate filtration. Effective ammonia removal techniques include air stripping, ion exchange, and biofiltration. Selection of a particular technique largely depends on site-specific requirements (e.g., space, existing water quality, and fish densities). Disease control, although often overlooked, is a major problem in reuse systems. Pathogens can be controlled most effectively with ultraviolet radiation, ozone, or chlorine. Simple and inexpensive methods are available to increase oxygen concentration and eliminate gas supersaturation, these include commercial aerators, air injectors, and packed columns. Temperature control is a major advantage of reuse systems, but the equipment required can be expensive, particularly if water temperature must be rigidly controlled and ambient air temperature fluctuates. Filtration can be readily accomplished with a hydrocyclone or sand filter that increases overall system efficiency. Based on criteria of adaptability, efficiency, and reasonable cost, we recommend components for a small water reuse system.
Transparent air filter for high-efficiency PM2.5 capture
NASA Astrophysics Data System (ADS)
Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi
2015-02-01
Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.
Walker, R.J.
1988-06-16
A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.
Liquid additives for particulate emissions control
Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.
1999-01-05
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.
Process for minimizing solids contamination of liquids from coal pyrolysis
Wickstrom, Gary H.; Knell, Everett W.; Shaw, Benjamin W.; Wang, Yue G.
1981-04-21
In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.
Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor
Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard
2015-01-01
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arndt, T.E., Fluor Daniel Hanford
A previous evaluation documented in report WHC-SD-GN-RPT-30005, Rev. 0, titled ``Evaluation on Self-Contained High Efficiency Particulate Filters,`` revealed that the SCHEPA filters do not have required documentation to be in compliance with the design, testing, and fabrication standards required in ASME N-509, ASME N-510, and MIL-F-51068. These standards are required by DOE Order 6430.IA. Without this documentation, filter adequacy cannot be verified. The existing SCHEPA filters can be removed and replaced with new filters and filter housing which meet current codes and standards.
Behavior of radioactive iodine and technetium in the spray calcination of high-level waste
NASA Astrophysics Data System (ADS)
Knox, C. A.; Farnsworth, R. K.
1981-08-01
The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.
1998-09-08
A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.
1998-01-01
A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.
Pulsed plasma processing for control of diesel engine emissions
NASA Astrophysics Data System (ADS)
Vogtlin, G. E.; Freytag, E. K.; Bardsley, J. N.; Wallman, H.
1993-02-01
Electrical discharges can be used as an after treatment for diesel exhaust. We are presently involved in research to determine the feasibility of this process. These discharges have been shown to remove nitric oxide, sulfur dioxide, particulates, and many organic compounds. A key issue is the efficiency of this removal since it effects both capital and operating costs. These discharges must be of short duration, less than one microsecond, to avoid energy losses due to heating of bulk gas molecules. The voltage must be kept below the voltage breakdown limit where ion heating creates an arc discharge. The basic process is the acceleration of electrons which then collide with gas molecules to form radicals such as O and OH. These radicals then react with and eliminate pollutants. Two basic electrode geometries are used to generate these discharges. The barrier discharge is when one or both of the electrodes is insulated and the pulse length is limited by charging of the insulator. This discharge must be driven by alternating current to permit alternating charging of the insulator. The other geometry is when one electrode has a peak voltage stress five or more times the average stress. We have been investigating the high stress geometry which uses a small wire inside a pipe. The principal experimental apparatus utilized by this effort uses a closed loop gas system. This system permits the production of various gas combinations prior to testing. Analysis can be conducted during or after these tests. The recirculated gas can be heated up to 400 F. This system can measure the energy used and the pollutant removal to determine efficiency. Our primary goal is the simultaneous removal of nitric oxide and particulates typical of diesel exhaust.
International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction
NASA Technical Reports Server (NTRS)
Perry, J. L.; von Jouanne, R. G.; Turner, E. H.
2003-01-01
The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.
40 CFR 92.123 - Test procedure; general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurements of brake specific emissions and smoke opacity at each throttle position and of measurements of... at idle and dynamic brake, all measurements of gaseous, particulate and smoke emissions may be... is removed for gaseous and particulate sampling, measurements of gaseous, and particulate emissions...
Novel Process for Removal and Recovery of Vapor Phase Mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwell, Collin; Roberts, Daryl L; Albiston, Jason
We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Resultsmore » In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task I-1, we found that the particulate and monolith forms of the sorbent were thermally stable and durable and would repeatedly sorb and desorb 100% of the mercury, including mercuric chloride, with low pressure drop and short residence times at realistic flue gas conditions.« less
Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Farasati, Farhad
2012-01-01
Local exhaust ventilation (LEV) systems and integrated collectors were designed and implemented in a mining company in order to control emitted air pollutant from furnaces. The LEV was designed for capture and transition of air pollutants emitted from furnaces to the integrated collectors. The integrated collectors including four high efficiency Stairmand model cyclones for control of particulate matter, a venturi scrubber for control of the fine particles, SO(2) and a part of H(2)S to follow them, and a packed scrubber for treatment of the residual H(2)S and SO(2) were designed. Pollutants concentration were measured to determine system effectiveness. The results showed that the effectiveness of LEV for reducing workplace pollution is 91.83%, 96.32% and 83.67% for dust, SO(2) and H(2)S, respectively. Average removal efficiency of particles by combination of cyclone and venturi scrubber was 98.72%. Average removal efficiency of SO(2) and H(2)S were 95.85% and 47.13% for the venturi scrubber and 68.45% and 92.7% for the packed bed scrubber. The average removal efficiency of SO(2) and H(2)S were increased to 99.1% and 95.95% by the combination of venturi and packed bed scrubbers. According to the results, integrated collectors are a good air pollution control option for industries with economic constraints and ancient technologies.
Systematic Evaluation of Dissolved Lead Sorption Losses to Particulate Syringe Filter Materials
Distinguishing between soluble and particulate lead in drinking water is useful in understanding the mechanism of lead release and identifying remedial action. Typically, particulate lead is defined as the amount of lead removed by a 0.45 µm filter. Unfortunately, there is little...
Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R
2008-07-01
Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.
Cohen, M.R.; Gal, E.
1993-04-13
A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.
Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.
2000-01-01
The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.
Lumia, Margaret E.; Gentile, Charles; Gochfeld, Michael; Efthimion, Philip; Robson, Mark
2015-01-01
This study evaluates a new decontamination technique for the mitigation and abatement of hazardous particulates. The traditional decontamination methods used to clean facilities and equipment are time-consuming, prolonging workers' exposure time, may generate airborne hazards, and can be expensive. The use of removable thin film coating as a decontamination technique for surface contamination proved to be a more efficient method of decontamination. This method was tested at three different sites on different hazardous metals. One application of the coating reduced the levels of these metals 90% and had an average reduction of one magnitude. The paired t-tests that were performed for each metal demonstrated that there was a statistically significant reduction of the metal after the use of the coating: lead (p = 0.03), beryllium (p = 0.05), aluminum (p = 0.006), iron (p = 0.0001), and copper (p = 0.004). The Kendall tau-b correlation coefficient demonstrates that there was a positive correlation between the initial levels of contamination and the removal efficiency for all the samples taken from different locations on the floor for each of the three sites. This new decontamination technique worked efficiently, requiring only one application, which decreased exposure time and did not generate any airborne dust. PMID:19437305
[Optimization of Energy Saving Measures with ABR-MBR Integrated Process].
Wu, Peng; Lu, Shuang-jun; Xu, Yue-zhong; Liu, Jie; Shen, Yao-liang
2015-08-01
High energy consumption and membrane fouling are important factors that limit the wide use of membrane bioreactor (MBR). In order to reduce energy consumption and delay the process of membrane fouling, the process of anaerobic baffled reactor (ABR)-MBR was used to treat domestic sewage. The structure of the process and conditions of nitrogen and phosphorus removal were optimized in this study. The results showed that energy consumption was reduced by 43% through optimizing the structure of ABR-MBR process. Meanwhile, the process achieved a high level of COD, NH: -N, TN and TP removal, with the average removal efficiencies of 91%, 85%, 76% and 86%, respectively. In addition, the added particulate media could effectively delay membrane fouling, while the formation process of membrane fouling was changed. The extracted amount of carbohydrates increased while the amount of proteins decreased. Finally, the potential was enhanced for the practical application of MBR.
Wang, Haolun; Lin, Sen; Yang, Shen; Yang, Xudong; Song, Jianan; Wang, Dong; Wang, Haiyang; Liu, Zhenglian; Li, Bo; Fang, Minghao; Wang, Ning; Wu, Hui
2018-05-01
Particulate matter (PM) is a major air pollutant in many regions, jeopardizing ecosystems and public health. Filtration at pollutant source is one of the most important ways to protect the environment, however, considering the high-temperature exhaust gas emissions, effective removal of PM and related pollutants from their sources remains a major challenge. In this study, a resilient, heat-resisting, and high-efficiency PM filter based on yttria-stabilized ZrO 2 (YSZ) nanofiber sponge produced with a scalable solution blow spinning process is reported. The porous 3D sponge composed of YSZ nanofibers is lightweight (density of 20 mg cm -3 ) and resilient at both room temperature and high temperatures. At room-temperature conditions, the YSZ nanofiber sponge exhibits 99.4% filtration efficiency for aerosol particles with size in the range of 20-600 nm, associated with a low pressure drop of only 57 Pa under an airflow velocity of 4.8 cm s -1 . At a high temperature of 750 °C, the ceramic sponge maintains a high filtration efficiency of 99.97% for PM 0.3-2.5 under a high airflow velocity of 10 cm s -1 . A practical vehicle exhaust filter to capture particles with filtration efficiency of >98.3% is also assembled. Hence, the YSZ nanofiber sponge has enormous potential to be applied in industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of permeable pavement responses to urban surface runoff.
Kamali, Meysam; Delkash, Madjid; Tajrishy, Massoud
2017-02-01
The construction of permeable pavement (PP) in sidewalks of urban areas is an alternative low impact development (LID) to control stormwater runoff volume and consequently decrease the discharge of pollutants in receiving water bodies. In this paper, some laboratory experiments were performed to evaluate the efficiency of a PP subjected to sediment loadings during its life span. Simple infiltration models were validated by the laboratory experiments to evaluate the trend and extend of PP infiltration capacity throughout the life of the pavement operation. In addition, performances of the PP in removing total suspended solids (TSS) and selective nutrient pollutants such as NO 3 - ,NH 4 + and PO 4 -3 from the surface runoff have been investigated. Experimental data showed that the PP was completely clogged after seven hydrological years. The model revealed that the ratio of horizontal to vertical hydraulic conductivity is 3.5 for this PP. Moreover, it was found that 20% reduction in hydraulic conductivity occurred after three hydrological years. The PP showed 100%, 23% and 59% efficiencies in sediment retention (TSS removal), (PO 4 -3 ), and N-NH 4 + removal during the entire study, respectively. However, the removal efficiency of (N-NO 3 - ) was -12% and we suspect the increase in effluent (N-NO 3 - ) is due to the nitrification process in subsurface layers. This study demonstrated that when PPs are annually cleaned, it is expected that PPs can function hydraulically and be able to remove particulate pollutants during their life span by a proper maintenance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paulson, Anthony J.; Balistrieri, Laurie S.
1999-01-01
Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkov, N. K.
1998-08-27
Titanium dioxide (TiO{sub 2}) colloidal particles ({approximately}45{angstrom}) whose surfaces were modified with chelating agents for photocatalytic removal of heavy-metal ions and their subsequent reduction to metallic form were investigated. Experiments were performed on nanoparticle TiO{sub 2} colloids derivatized with bidentate and tridentate ligands (thiolactic acid [TLA], cysteine, and alanine [ALA]) in batch mode in a photoreactor with 254nm light. We used catalysts designed and synthesized for selective and efficient removal of Pb and Cu with and without added hole scavenger (methanol). Parallel experiments also have been carried out in the dark to study metal ion adsorption properties. Solutions have beenmore » filtered to remove TiO{sub 2}, and metal particulates. Both the native solution and the metal deposited on the nanocrystalline TiO{sub 2} particles were analyzed. Results demonstrate that for the case of lead, the most effective TiO{sub 2} surface modifier was TLA (>99% Pb(II) removed from solution). Experiments performed to study Cn removal using TiO{sub 2} colloids modified with alanine showed that copper ions were effectively removed and reduced to metallic form in the presence of methanol.« less
Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...
Method for recovering catalytic elements from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE
2012-06-26
A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.
Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, James; Prikhodko, Vitaly Y.; Sappok, Alex
Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on amore » GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.« less
An alternative process to treat boiler feed water for reuse.
Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya
2012-09-01
A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse.
Tian, J Y; Chen, Z L; Liang, H; Li, X; Wang, Z Z; Li, G B
2009-01-01
Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 approximately 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.
Brown, Kathleen Ward; Minegishi, Taeko; Allen, Joseph G; McCarthy, John F; Spengler, John D; MacIntosh, David L
2014-08-01
Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used "each pass removal efficiency" applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients.
Particulate-free porous silicon networks for efficient capacitive deionization water desalination
Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.
2016-01-01
Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809
Particulate-free porous silicon networks for efficient capacitive deionization water desalination.
Metke, Thomas; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L
2016-04-22
Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon - a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Kuhlman, K. R.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J. G.; Burnett, D. S.; Woolum, D. S.
2015-01-01
The recovered Genesis collector fragments are heavily contaminated with crash-derived particulate debris. However, megasonic treatment with ultra-pure-water (UPW; resistivity (is) greater than18 meg-ohm-cm) removes essentially all particulate contamination greater than 5 microns in size [e.g.1] and is thus of considerable importance. Optical imaging of Si sample 60336 revealed the presence of a large C-rich particle after UPW treatment that was not present prior to UPW. Such handling contamination is occasionally observed, but such contaminants are normally easily removed by UPW cleaning. The 60336 particle was exceptional in that, surprisingly, it was not removed by additional UPW or by hot xylene or by aqua regia treatment. It was eventually removed by treatment with NH3-H2O2. Our best interpretation of the origin of the 60336 particle was that it was adhesive from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. It is possible that the insoluble nature of the 60336 particle comes from interaction of the Post-It adhesive with UPW. An occasional bit of Post-It adhesive is not a major concern, but C particulate contamination also occurs from the heat shield of the Sample Return Capsule (SRC) and this is mixed with inorganic contamination from the SRC and the Utah landing site. If UPW exposure also produced an insoluble residue from SRC C, this would be a major problem in chemical treatments to produce clean surfaces for analysis. This paper reports experiments to test whether particulate contamination was removed more easily if UPW treatment was not used.
Ando, Masaki; Imadzu, Sakiyo; Kitagawa, Shinya; Ohtani, Hajime
2010-08-06
A particulate formation-laser scattering detector (PFLSD) was developed and used for evaluating the crystallization efficiency of inorganic polyphosphates (PPs) that reacted with either magnesium or calcium cations. As the solutions for reactive crystallization, 0.5 M ammonium buffer (pH 9.6) containing either 0.15 M MgCl(2) or 0.15 M CaCl(2) (MAP: magnesium ammonium phosphate and HAP: hydroxyapatite solution) were used. In the case of mono- and diphosphate (P1 and P2), the significant dependences of the particulate formation efficiency on various types of both P1/P2 and MAP/HAP reaction solutions were observed with the direct sample injection mode. The PFLSD was hyphenated with the anion-exchange chromatography and the dependence of the particulate formation efficiency on the polymerization degree (n(p)) of PP oligomers, separated chromatographically, was evaluated sequentially. The significant suppression of the particulate formation for PP oligomers was clearly confirmed, i.e., the MAP and HAP reaction solutions did not produce the particulates of the PP oligomers having an n(p) value of more than 3 and 5, respectively. As the overall tendency, the particulate formation efficiency in the case of the HAP solution was superior to that in the case of the MAP solution. Copyright 2010 Elsevier B.V. All rights reserved.
Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications
Roper, Courtney; Chubb, Lauren G.; Cambal, Leah; Tunno, Brett; Clougherty, Jane E.; Mischler, Steven E.
2016-01-01
Research on the health effects of fine particulate matter (PM2.5) frequently disregards the differences in particle composition between that measured on an ambient filter versus that measured in the corresponding extraction solution used for toxicological testing. This study presents a novel method for characterizing the differences, in metallic and organic species, between the ambient samples and the corresponding extracted solutions through characterization of extracted PM2.5 suspended on filters. Removal efficiency was found to be 98.0 ± 1.4% when measured using pre- and post-removal filter weights, however, this efficiency was significantly reduced to 80.2 ± 0.8% when measured based on particle mass in the extraction solution. Furthermore, only 47.2 ± 22.3% of metals and 24.8 ± 14.5% of organics measured on the ambient filter were found in the extraction solution. Individual metallic and organic components were extracted with varying efficiency, with many organics being lost entirely during extraction. Finally, extraction efficiencies of specific PM2.5 components were inversely correlated with total mass. This study details a method to assess compositional alterations resulting from extraction of PM2.5 from filters, emphasizing the need for standardized procedures that maintain compositional integrity of ambient samples for use in toxicology studies of PM2.5. PMID:26446919
Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise
2017-05-01
The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Volatile particles measured by vapor-particle separator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Meng -Dawn; Corporan, Edwin
Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel enginesmore » for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less
Volatile particles measured by vapor-particle separator
Cheng, Meng -Dawn; Corporan, Edwin
2016-08-25
Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel enginesmore » for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less
The effect of primary sedimentation on full-scale WWTP nutrient removal performance.
Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F
2010-06-01
Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.
HIGH-TEMPERATURE AND HIGH-PRESSURE PARTICULATE CONTROL REQUIREMENTS
The report reviews and evaluates high-temperature and high-pressure particulate cleanup requirements of existing and proposed energy processes. The study's aims are to define specific high-temperature and high-pressure particle removal problems, to indicate potential solutions, a...
NASA Astrophysics Data System (ADS)
Haghighat, Fariborz; Lee, Chang-Seo; Pant, Bhuvan; Bolourani, Golnoush; Lakdawala, Ness; Bastani, Arash
There are increased demands for security, sustainability and indoor air quality in today's building design, construction, operation and maintenance. Installation of air cleaning systems can improve the indoor air quality by reducing the air pollution levels, and enhance the building security against sudden release of chemical and/or biological agents. At the same time, air cleaning techniques may reduce the building energy consumption by reducing the outdoor air supply rate, hence lowering the needs for conditioning of outdoor air. While the air filtration of particulate matter is well standardized, the standards against which the performance of air cleaning for gaseous contaminants is measured or classified are still under development. This study examined the performance of various granular activated carbons (GACs) for the removal of volatile organic compounds (VOCs) from mechanically ventilated buildings. Eight different GACs (three virgin and five impregnated) were tested against toluene using a dynamic test system. The virgin GACs showed better performance than impregnated ones, the percentage and the type of impregnation affected the removal efficiencies. Tests were also conducted with selected GACs against toluene, cyclohexane and ethyl acetate at relative humidity (RH) values of 30%, 50% and 70%. The effect of humidity was dependant on the VOC used. Both for toluene and cyclohexane, the removal efficiency decreased as RH increased. However, higher humidity showed a positive impact on the removal of ethyl acetate.
Apparatus for removal of particulate matter from gas streams
Smith, Peyton L.; Morse, John C.
2000-01-01
An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.
Resonant-frequency discharge in a multi-cell radio frequency cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, S; Upadhyay, J; Mammosser, J
2014-11-07
We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problemsmore » related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.« less
Gu, B; DeBusk, T A; Dierberg, F E; Chimney, M J; Pietro, K C; Aziz, T
2001-01-01
The 1994 Everglades Forever Act mandates the South Florida Water Management District and the Florida Department of Environmental Protection to evaluate a series of advanced treatment technologies to reduce total phosphorus (TP) in Everglades Agricultural Area runoff to a threshold target level. A submerged aquatic vegetation/limerock (SAV/LR) treatment system is one of the technologies selected for evaluation. The research program consists of two phases. Phase I examined the efficiency of SAV/LR treatment system for TP removal at the mesocosm scale. Preliminary results demonstrate that this technology is capable of reducing effluent TP to as low as 10 microg/L under constant flows. The SAV component removes the majority of the influent soluble reactive P, while the limerock component removes a portion of the particulate P. Phase II is a multi-scale project (i.e., microcosms, mesocosms, test cells and full-size wetlands). Experiments and field investigations using various environmental scenarios are designed to (1) identify key P removal processes; (2) provide management and operational criteria for basin-scale implementation; and (3) provide scientific data for a standardized comparison of performance among advanced treatment technologies.
Cohen, Mitchell R.; Gal, Eli
1993-01-01
A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.
Kim, Jong-Ho; Yoo, Hee-Jung; Hwang, You-Seong; Kim, Hyeok-Gyu
2012-01-01
As one of the effective control devices of air pollutants, the wet electrostatic precipitator (ESP) is an effective technique to eliminate acid mist and fine particles that are re-entrained in a collection electrode. However, its collection efficiency can deteriorate, as its operation is subject to water-induced corrosion of the collection electrode. To overcome this drawback, we modified the wet ESP system with the installation of a PVC dust precipitator wherein water is supplied as a replacement of the collection electrode. With this modification, we were able to construct a compact wet ESP with a small specific collection area (SCA, 0.83 m2/(m3/min)) that can acquire a high collection efficiency of fine particles (99.7%). PMID:22577353
Retention of particulate lead on foliage and twigs of a white pine windbreak
G. H. Heichel; Lester Hankin
1977-01-01
The removal of particulate lead from the air by a roadside windbreak of white pine containing 8 rows of 25-year-old trees and 27 m in depth was studied. Knowledge of particulate trapping and retention was gained by atomic absorption spectrophotometry of the lead burden of foliage and twigs of various ages adjacent to and far from the road. The effectiveness of the...
Development of super-clean diesel engine and combustor using nonthermal plasma hybrid aftertreatment
NASA Astrophysics Data System (ADS)
Okubo, Masaaki
2015-10-01
One of important and successful environmental applications of atmospheric-pressure corona discharge or plasma is electrostatic precipitator (ESP), which have been widely used for coal- or oil-fired boilers in electric power plants and particulate matter control emitted from industries such as glass melting furnace system, etc. In the ESPs, steady high voltage is usually applied to a pair of electrodes (at least, one of these has sharp edge). Unsteady pulsed high voltage is often applied for the collection of high-resistivity particulate matter (PM) to avoid reverse corona phenomena which reduce the collection efficiency of the ESPs. It was found that unsteady high voltage can treat hazardous gaseous components (NOx, SOx, hydrocarbon, and CO, etc.) in the exhaust gas, and researches were shifted from PM removal to hazardous gases aftertreatment with unsteady corona discharge induced plasmas. In the paper, recent results on diesel engine and industrial boiler emission controls are mainly reviewed among these our research topics.
NASA Astrophysics Data System (ADS)
Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.
2007-10-01
Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.
Particulates and fine dust removal: processes and equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sittig, M.
1977-01-01
Particulates and fine dust created by man's activities contribute significantly to all major aspects of air pollution. While the generation of natural fine dusts is also very large in some parts of the earth, industrially generated, particle-loaded air emissions may push the particulate level to a point where acceptable air quality standards are exceeded continuously. How to reduce such emissions at the source, and what processes and equipment to use, is the subject of this book, which is based on reports of federally-financed air pollution studies as well as U.S. patents. Following an introduction with an overview of industrial particulatemore » emissions, emission data and emission control processes are discussed for the following specific industries: airlines; asphalt; cement; coal; electric utilities; ferrous metals; fertilizer; food; forest products; paper; chemicals; nonferrous metals; nuclear; petroleum refining; stone and clay; and textiles. Conventional and innovative particle removal devices are described. The disposal of collected particles is discussed. The economic and energy consumption aspects of particulate control are presented. (LCL)« less
Decontamination apparatus and method. [Patent applications
Oakley, D.J.
1983-12-16
This invention relates generally to the fabrication of fuel pin elements employed in nuclear reactors and, more particularly, to removing radioactive contamination disposed on the exterior of finally assembled fuel pins. A blast head includes a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.
EFFECT OF METAL REMOVAL ON THE TOXICITY OF AIRBORNE PARTICULATE MATTER FROM THE UTAH VALLEY
Abstract:
Epidemiological studies have linked the inhalation of airborne particulate matter (PM) to increased morbidity and mortality in humans. However, the mechanism(s) of toxicity of these particles remains unclear. Some hypotheses state that the toxicity might stem fro...
EFFECT OF METAL REMOVAL ON THE TOXICITY OF AIRBORNE PARTICULATE MATTER FROM THE UTAH VALLEY
Epidemiological studies have linked the inhalation of airborne particulate matter (PM) to increased morbidity and mortality in humans. However, the mechanisms of toxicity of these particles remains unclear. Several hypotheses state that the toxicity might stem from PM transitio...
R'Mili, Badr; Boréave, Antoinette; Meme, Aurelie; Vernoux, Philippe; Leblanc, Mickael; Noël, Ludovic; Raux, Stephane; D'Anna, Barbara
2018-03-06
Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted. Here, we report new information on particle morphology and chemical composition of fine (FPs) and ultrafine particles (UFPs) measured downstream of the DPF during active regeneration of two Euro 5 passenger cars. The first vehicle was equipped with a close-coupled diesel oxidation catalyst (DOC) and noncatalyzed DPF combined with fuel borne catalyst and the second one with DOC and a catalyzed-diesel particle filter (CDPF). Differences in PM emission profiles of the two vehicles were related to different after treatment design, regeneration strategies, and vehicle characteristics and mileage. Particles in the nucleation mode consisted of ammonium bisulfate, sulfate and sulfuric acid, suggesting that the catalyst desulfation is the key process in the formation of UFPs. Larger particles and agglomerates, ranging from 90 to 600 nm, consisted of carbonaceous material (soot and soot aggregates) coated by condensable material including organics, ammonium bisulfate and sulfuric acid. Particle emission in the accumulation mode was due to the reduced filtration efficiency (soot cake oxidation) throughout the regeneration process.
Minegishi, Taeko; Allen, Joseph G.; McCarthy, John F.; Spengler, John D.; MacIntosh, David L.
2014-01-01
Objective Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. Methods We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used “each pass removal efficiency” applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. Results Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. Conclusions The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients. PMID:24555523
Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A
2017-09-11
The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.
Particulate Removal Using a CO2 Composite Spray Cleaning System
NASA Technical Reports Server (NTRS)
Chen, Nicole; Lin, Ying; Jackson, David; Chung, Shirley
2016-01-01
The Planetary Protection surface cleanliness requirements for potential Mars Sample Return hardware that would come in contact with Martian samples may be stricter than previous missions. The Jet Propulsion Laboratory has developed a new technology that will enable us to remove sub-micron size particles from critical hardware surfaces. A hand-held CO2 composite cleaning system was tested to verify its cleaning capabilities. This convenient, portable device can be used in cleanrooms for cleaning after rework or during spacecraft integration and assembly. It is environmentally safe and easy to use. This cleaning concept has the potential to be further developed into a robotic cleaning device on a Mars Lander to be used to clean sample acquisition or sample handling devices in situ. Contaminants of known sizes and concentrations, such as fluorescent microspheres and spores were deposited on common spacecraft material surfaces. The cleaning efficiency results will be presented and discussed.
A LOW COST CATALYTIC FILTER FOR SIMULTANEOUS VOC AND PARTICULATE REMOVAL - PHASE II
Emissions of VOC's are subject to control by the EPA both because VOC's are regarded as ozone precursors and because many specific VOC's are hazardous air pollutants (HAP's) under the Clean Air Act Amendments. A number of industries generate offgases with both fine particul...
Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals
Hobson, D.O.; Alexeff, I.; Sikka, V.K.
1987-08-10
Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.
Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals
Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.
1988-01-01
Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.
The Effect of Oyster Reef Morphology on Particulate Transfer in a North Carolina Tidal Creek
NASA Astrophysics Data System (ADS)
Lemon, M. G.; Posey, M.; Mallin, M.; Alphin, T.
2014-12-01
The eastern oyster (Crassostrea virginica) is a vital ecosystem engineer species, providing a number of ecosystem services that structure and maintain estuarine environments through the construction of large, hard-bottom reef complexes. Through suspension feeding, oysters clear the water column of particulates, leading to decreased suspended material and enhanced benthic pelagic coupling. Past field studies have indicated the potential importance of the physical reef structure in regulating the transfer of particulate material in the seston. In order to directly assess the existence of the physical reef effect, multiple field experiments were performed in a small tidal creek estuary along the south eastern coast of North Carolina. Comparison of clearance rates derived from two different in situ methods, one accounting for the physical structure of the oyster reef in addition to oyster filtration and one looking at oyster filtration alone, indicate that the reef structure may increase the amount of particulate removal performed by the reef by more than 4 times the removal performed by oyster filtration alone. A defaunation experiment was performed by eliminating the live component of the oyster reef and comparing particulate transfer of this defaunated transect to that of an adjacent faunated transect. The defaunated transect had reduced but not significantly lower material removal when compared to the faunated transect prior to defaunation. Results from short and long term sediment collection and flow velocity measurements indicate that the physical effect of oyster reefs is strong over short temporal scales (days) but is much smaller when evaluated over longer time periods (months). Generally, large silt and small sand sized material is permanently removed from the seston due to the interaction of oyster reef structure and tidal flows, however the transfer of small and medium sized silt grains is only slowed down by the presence of large reef complexes. This effect has important ecological implications for downstream water quality and must be accounted for when modeling water quality improvements performed by oysters.
Zucker, I; Mamane, H; Cikurel, H; Jekel, M; Hübner, U; Avisar, D
2015-11-01
The Shafdan reclamation project facility (Tel Aviv, Israel) practices soil aquifer treatment (SAT) of secondary effluent with hydraulic retention times (HRTs) of a few months to a year for unrestricted agricultural irrigation. During the SAT, the high oxygen demand (>40 mg L(-1)) of the infiltrated effluent causes anoxic conditions and mobilization of dissolved manganese from the soil. An additional emerging problem is the occurrence of persistent trace organic compounds (TrOCs) in reclaimed water that should be removed prior to reuse. An innovative hybrid process based on biofiltration, ozonation and short SAT with ∼22 d HRT is proposed for treatment of the Shafdan secondary effluent to overcome limitations of the existing system and to reduce the SAT's physical footprint. Besides efficient removal of particulate matter to minimize clogging, coagulation/flocculation and filtration (5-6 m h(-1)) operated with the addition of hydrogen peroxide as an oxygen source efficiently removed dissolved organic carbon (DOC, to 17-22%), ammonium and nitrite. This resulted in reduced effluent oxygen demand during infiltration and oxidant (ozone) demand during ozonation by 23 mg L(-1) and 1.5 mg L(-1), respectively. Ozonation (1.0-1.2 mg O3 mg DOC(-1)) efficiently reduced concentrations of persistent TrOCs and supplied sufficient dissolved oxygen (>30 mg L(-1)) for fully oxic operation of the short SAT with negligible Mn(2+) mobilization (<50 μg L(-1)). Overall, the examined hybrid process provided DOC reduction of 88% to a value of 1.2 mg L(-1), similar to conventional SAT, while improving the removal of TrOCs and efficiently preventing manganese dissolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D
2008-11-01
A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan
Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.
Spiral wound extraction cartridge
Wisted, Eric E.; Lundquist, Susan H.
1999-01-01
A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite.
CRADA opportunities with METC`s gasification and hot gas cleanup facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, E N; Rockey, J M; Tucker, M S
1995-06-01
Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}Fmore » and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.« less
NASA Astrophysics Data System (ADS)
Lee, Hyo Jin; Kim, Gi Beum
2017-06-01
Wastewater treatment plants (WWTPs) play an important role in minimizing the release of many pollutants into the environment. Nineteen congeners in two WWTPs in Korea were determined to investigate the occurrence and fate of polybrominated diphenyl ethers (PBDEs) during wastewater treatment processes. The concentration of total PBDEs was 69.6 and 183 ng/L in influent, which declined to 1.59 and 2.34 ng/L in the final effluent, respectively (Tongyeong and Jinhae WWTPs). PBDEs were found to exist mostly in the particulate phase of wastewater, which rendered sedimentation efficient for the removal of PBDEs. BDE-209 was the predominant congener in the influent and sludge. Most of the PBDEs entering the WWTPs presumably ended up in the sludge, with < 2% being discharged with the final effluent. According to the mass loading estimation, every day 2.55-9.29 g PBDEs entered the two WWTPs, 2.8-10.4 g were disposed to landfill sites in sludge form and 0.06-0.12 g were discharged to the surrounding water through final effluent, respectively. Preliminary results indicated that the ecological risk to organisms in soil exposed to PBDEs through the usage of sludge application to agricultural land was relatively low. To our knowledge, this study is the first to report on the removal efficiency of PBDEs in a WWTP in Korea.
Plasma polymer-functionalized silica particles for heavy metals removal.
Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter
2015-02-25
Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.
Subedi, Bikram; Kannan, Kurunthachalam
2014-06-17
Sewage epidemiology is a rapidly expanding field that can provide information on illicit drug usage in communities, based on the measured concentrations in samples from wastewater treatment plants (WWTPs). In this study, select illicit drugs (six drugs and eight metabolites) were determined on a daily basis for a week in wastewater, suspended particulate matter (SPM), and sludge from two WWTPs in the Albany area in New York State. The WWTP that served a larger population (∼100 000, with a flow rate of 83 300 m(3)/d) showed 3.2 (methadone) to 51 (3,4-methylenedioxyamphetamine; MDA) times higher mass flows of illicit drugs than did the WWTP that served a smaller population (∼15 000, with a flow rate of 6850 m(3)/d). The consumption rate of target illicit drugs in the communities served by the two WWTPs was estimated to range from 1.67 to 3510 mg/d/1000 people. Between the dissolved and particulate phases, the fraction of methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), amphetamine, and MDA sorbed to SPM ranged from 34.3% to 41.1% of the total mass in the waste stream. The removal efficiencies of illicit drugs from the two WWTPs ranged from 4% (norcocaine) to 99% (cocaine); however, methamphetamine, methadone, and EDDP showed a negative removal in WWTPs. The environmental emission of illicit drugs from WWTP discharges was calculated to range from 0.38 (MDEA) to 67.5 (EDDP) mg/d/1000 people. Other markers such as caffeine, paraxanthine, nicotine, and cotinine were found to predict the concentrations of select illicit drugs in raw wastewater (r(2) = 0.20-0.79; p ≤ 0.029).
75 FR 42132 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...
75 FR 42131 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...
A robust sebum, oil, and particulate pollution model for assessing cleansing efficacy of human skin.
Peterson, G; Rapaka, S; Koski, N; Kearney, M; Ortblad, K; Tadlock, L
2017-06-01
With increasing concerns over the rise of atmospheric particulate pollution globally and its impact on systemic health and skin ageing, we have developed a pollution model to mimic particulate matter trapped in sebum and oils creating a robust (difficult to remove) surrogate for dirty, polluted skin. To evaluate the cleansing efficacy/protective effect of a sonic brush vs. manual cleansing against particulate pollution (trapped in grease/oil typical of human sebum). The pollution model (Sebollution; sebum pollution model; SPM) consists of atmospheric particulate matter/pollution combined with grease/oils typical of human sebum. Twenty subjects between the ages of 18-65 were enrolled in a single-centre, cleansing study comparisons between the sonic cleansing brush (normal speed) compared to manual cleansing. Equal amount of SPM was applied to the centre of each cheek (left and right). Method of cleansing (sonic vs. manual) was randomized to the side of the face (left or right) for each subject. Each side was cleansed for five-seconds using the sonic cleansing device with sensitive brush head or manually, using equal amounts of water and a gel cleanser. Photographs (VISIA-CR, Canfield Imaging, NJ, USA) were taken at baseline (before application of the SPM), after application of SPM (pre-cleansing), and following cleansing. Image analysis (ImageJ, NIH, Bethesda, MD, USA) was used to quantify colour intensity (amount of particulate pollutants on the skin) using a scale of 0 to 255 (0 = all black pixels; 255 = all white pixels). Differences between the baseline and post-cleansing values (pixels) are reported as the amount of SPM remaining following each method of cleansing. Using a robust cleansing protocol to assess removal of pollutants (SPM; atmospheric particulate matter trapped in grease/oil), the sonic brush removed significantly more SPM than manual cleansing (P < 0.001). While extreme in colour, this pollution method easily allows assessment of efficacy through image analysis. © 2016 The Authors. International Journal of Cosmetic Science published by John Wiley & Sons Ltd on behalf of Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Lunar Dust Filtration and Separations Workshop Report
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Stocker, Dennis P.
2009-01-01
NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.
Method and apparatus for a self-cleaning filter
Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael
2013-09-10
A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.
Method and apparatus for a self-cleaning filter
Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael
2010-11-16
A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.
Water washable stainless steel HEPA filter
Phillips, Terrance D.
2001-01-01
The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.
Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues
Lai, Samuel K.; Wang, Ying-Ying; Hanes, Justin
2009-01-01
Mucus is a viscoelastic and adhesive gel that protects the lung airways, gastrointestinal (GI) tract, vagina, eye and other mucosal surfaces. Most foreign particulates, including conventional particle-based drug delivery systems, are efficiently trapped in human mucus layers by steric obstruction and/or adhesion. Trapped particles are typically removed from the mucosal tissue within seconds to a few hours depending on anatomical location, thereby strongly limiting the duration of sustained drug delivery locally. A number of debilitating diseases could be treated more effectively and with fewer side effects if drugs and genes could be more efficiently delivered to the underlying mucosal tissues in a controlled manner. This review first describes the tenacious mucus barrier properties that have precluded the efficient penetration of therapeutic particles. It then reviews the design and development of new mucus-penetrating particles that may avoid rapid mucus clearance mechanisms, and thereby provide targeted or sustained drug delivery for localized therapies in mucosal tissues. PMID:19133304
Gas-phase advanced oxidation for effective, efficient in situ control of pollution.
Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka
2014-01-01
In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.
Elmitwalli, T A; Sayed, S; Groendijk, L; van Lier, J; Zeeman, G; Lettinga, G
2003-01-01
The decentralised treatment of concentrated sewage (about 3,600 mgCOD/l) at low temperature was investigated in a two-step anaerobic system: two-anaerobic hybrid (AH) septic tanks (each 0.575 m3). The two reactors were placed in a temperature controlled-room and the HRT was 2.5 days for each reactor. The system was fed with concentrated domestic sewage, mainly black water from about 40 toilets flushed with only 4 litre of water and a limited amount of grey water. The system showed high removal efficiency for the different COD fractions. Mean removal efficiencies in the two-step AH-septic tank at 5 days HRT and 13 degrees C were 94, 98, 74 and 78% for total COD, suspended COD, colloidal COD and dissolved COD respectively. The results of short run experiments indicated that the presence of reticulated polyurethane foam (RPF) media in the AH-septic tank improved the removal of suspended COD by 22%. The first AH-septic tank was full of sludge after 4 months of operation due to the high removal of particulate COD and the limited hydrolysis at low temperature conditions. Therefore, a simple mathematical model was developed based on ADM1 (the IWA model in 2002). Based on the experimental results and the mathematical model, only a one-step AH septic tank is required. An HRT of 5.5-7.5 days is needed for that one-step AH septic tank to treat concentrated sewage at a low temperature of 13 degrees C. Such a system can provide a total COD removal as high as 87% and will be full of sludge after a period of more than a year.
Removal of cyanobacteria and cyanotoxins through drinking water treatment-full-scale studies?
This presentation covers the control of intact cyanobacterial cells through particulate removal processes such as coagulation, sedimentation and filtration. The control of cyanobacterial toxins through oxidation and adsorption processes including, but not limited to, chlorine, oz...
Decontamination apparatus and method
Oakley, David J.
1987-01-01
A blast head including a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.
Regenerable particulate filter
Stuecker, John N [Albuquerque, NM; Cesarano, III, Joseph; Miller, James E [Albuquerque, NM
2009-05-05
A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.
Decontamination apparatus and method
Oakley, David J.
1987-01-06
A blast head including a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.
Air pollution removal by urban forests in Canada and its effect on air quality and human health
David J. Nowak; Satoshi Hirabayashi; Marlene Doyle; Mark McGovern; Jon Pasher
2018-01-01
Urban trees perform a number of ecosystem services including air pollution removal, carbon sequestration, cooling air temperatures and providing aesthetic beauty to the urban landscape. Trees remove air pollution by intercepting particulate matter on plant surfaces and absorbing gaseous pollutants through the leaf stomata. Computer simulations with local environmental...
29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
CRADA opportunities in removal of particulates from hot-gas streams by filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D H
1995-06-01
Our analyses of samples and operating data from the Pressurized Fluidized Bed Combustion (PFBC), cyclone, and filtration units of the Tidd Clean Coal demonstration facility show that calcined dolomitic sorbent reacted with SO{sub 2} (and O{sub 2}) to form Sulfates (CaSO{sub 4} and CaMgn [SO{sub 4}]n+1) not only in the PFBC bed, but also in the filtration vessel. Analyses of limited data from the journal literature suggest that the filter-vessel reactions may have produced sulfate {open_quotes}necks,{close_quotes} which bonded the particles together, thus substantially increasing the critical angle of repose and shear tensile strengths of the filtered powders. This proposed mechanismmore » rationalizes the {open_quotes}bridging{close_quotes} and other particle-accumulation problems that caused filter breakage. Engineering services potentially available to resolve these problems include elucidation and modeling of ex-situ and in-situ filter-vessel chemistry, measurement and modeling of particulate materials properties, and measurement and modeling of cleaning back-pulse aerodynamics and cleaning efficiencies.« less
USDA-ARS?s Scientific Manuscript database
Particulate matter emitted from tunnel-ventilated animal feeding operations (AFOs) is known to transport malodorous compounds. As a mitigation strategy, vegetative environmental buffers (VEBs) are often installed surrounding AFOs to capture particulates and induce lofting and dispersion. Currently, ...
Method for removing soot from exhaust gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.
A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less
Wang, Lina; Zheng, Xinran; Stevanovic, Svetlana; Xiang, Zhiyuan; Liu, Jing; Shi, Huiwen; Liu, Jing; Yu, Mingzhou; Zhu, Chun
2018-01-01
Mosquito-repellent incense is one of the most popular products used for dispelling mosquitos during summer in China. It releases large amounts of particulate and gaseous pollutants which constitute a potential hazard to human health. We conducted chamber experiment to characterize major pollutants from three types of mosquito-repellent incenses, further assessed the size-fractionated deposition in human respiratory system, and evaluated the indoor removing efficiency by fresh air. Results showed that the released pollutant concentrations were greater than permissible levels in regulations in GB3095-2012, as well as suggested by the World Health Organization (WHO). Formaldehyde accounted for 10-20% of the total amount of pollutants. Fine particles dominated in the total particulate concentrations. Geometric standard deviation (GSD) of particle number size distributions was in the range of 1.45-1.93. Count median diameter (CMD) ranged from 100 to 500 nm. Emission rates, burning rates and emission factors of both particulate and gaseous pollutants were compared and discussed. The deposition fractions in pulmonary airway from the disc solid types reached up to 52.7% of the total deposition, and the largest deposition appeared on juvenile group. Computational Fluid Dynamics (CFD) modellings indicated air-conditioner on and windows closed was the worst case. The highest concentration was 180-200 times over the standard limit. Copyright © 2017 Elsevier Ltd. All rights reserved.
EVALUATING TREATMENT PLANTS FOR PARTICULATE CONTAMINANT REMOVAL
The article is intended to serve as a guide for those who evaluate water treatment plants with the objective of lowering the turbidity of finished water produced from filtration plants in which chemical coagulation is part of the treatment process. Ineffective removal of turbidit...
Gas cleaning system and method
Newby, Richard Allen
2006-06-06
A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.
Removing Pathogens Using Nano-Ceramic-Fiber Filters
NASA Technical Reports Server (NTRS)
Tepper, Frederick; Kaledin, Leonid
2005-01-01
A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its particle size is only 2 nanometers, about the size of a DNA molecule, yet the NanoCeram syringe filter is capable of retaining the dyes as the fluid is passed through the syringe, without much back-pressure. Endotoxins, which are contaminants that are part of the residue of destroyed bacteria, can cause toxic shock and are therefore of major concern in pharmaceutical products. The NanoCeram syringe filter is capable of removing greater than 99.96 percent of the endotoxins.
Control of diesel gaseous and particulate emissions with a tube-type wet electrostatic precipitator.
Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Liang, Fuyan; Khang, Soon-Jai
2008-10-01
In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.
Particle transport in low-energy ventilation systems. Part 1: theory of steady states.
Bolster, D T; Linden, P F
2009-04-01
Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.
Soil separator and sampler and method of sampling
O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID
2010-02-16
A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.
Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.
2013-01-01
Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.
Fu, Wantao; Wu, Yichun; Sun, Liming; Zhang, Wei
2007-08-15
The aim of this study is to investigate the potential of using marine sponge Hymeniacidon perleve to remove total organic carbon (TOC) in integrated aquaculture ecosystems. In sterilized natural seawater (SNSW) with different concentrations of TOC, H. perleve removed approximately 44-61% TOC during 24 h, with retention rates of ca. 0.19-1.06 mg/h .g-fresh sponge, however no particulate selectivity was observed. The highest initial TOC concentration, in which about 2.7 g fresh sponges could remove TOC effectively in 0.5-L SNSW, is 214.3-256.9 mg/L. The highest capacity of TOC removal and clearance rate (CR) by H. perleve is ca. 25.50 mg-TOC/g-fresh sponge and 7.64 mL/h . g-fresh sponge within 24 h, respectively. Until reaching the highest TOC removal capacity, the TOC removal capacity and clearance rate of H. perleve increased with initial TOC concentration, and dropped dramatically thereafter. After reaching the highest removal capacity, H. perleve could only remove relatively lower TOC concentration in seawater in subsequent run. The TOC removal kinetics in SNSW by H. perleve fitted very well with a S-shaped curve and a Logistic model equation (R(2) = 0.999). In different volumes of SNSW with a fixed initial TOC concentration, the weight/volume ratio of sponge biomass and SFNSW was optimized at 1.46 g-fresh sponge/1-L SNSW to achieve the maximum TOC removal. When co-cultured with marine fish Fugu rubripes for 15 days, H. perleve removed TOC excreted by F. rubripes with similar retention rates of ca. 0.15 mg/h . g-fresh sponge, and the sponge biomass increased by 22.8%. (c) 2007 Wiley Periodicals, Inc.
Modeled PM2.5 removal by trees in ten US cities and associated health effects
David J. Nowak; Satoshi Hirabayashi; Allison Bodine; Robert Hoehn
2013-01-01
Urban particulate air pollution is a serious health issue. Trees within cities can remove fine particles from the atmosphere and consequently improve air quality and human health. Tree effects on PM2.5 concentrations and human health are modeled for 10 U.S. cities. The total amount of PM2.5 removed annually by...
Spiral wound extraction cartridge
Wisted, E.E.; Lundquist, S.H.
1999-04-27
A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite. 4 figs.
TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE
The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...
Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.
Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin
2017-08-01
Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.
TREATMENT BY FILTRATION OF STORMWATER RUNOFF PRIOR TO GROUNDWATER RECHARGE
Generally, dry ponds, trenches and swales do not have the same pollutant removal capacity as wet detention ponds. Their pollutant removal ability results from the straining of particulate matter out of the water. However, infiltration ceases when the bottom of the pond, trench or...
Pulse laser-induced particle separation from polymethyl methacrylate: a mechanistic study
NASA Astrophysics Data System (ADS)
Arif, S.; Armbruster, O.; Kautek, W.
2013-04-01
The separation mechanism of opaque and transparent model micro-particles, graphite and polystyrene copolymer spheres, respectively, from polymethyl methacrylate (PMMA) substrates were investigated employing a ns-pulse laser radiating at 532 nm. The particles transparent in the visible wavelength range could be removed from PMMA efficiently in a very narrow fluence range between 1 and 2 J/cm2 according to a simple 1D thermal expansion model. Above this fluence region, with single pulses, the transparent microspheres caused local ablation of the PMMA substrate in the optical microlens nearfield. This process led to removal of the particles themselves due to the expansion of the ablation plasma. The irregularly shaped graphite particles shaded the underlying substrate from the incoming radiation so that no optical nearfield damage mechanism could be observed. Therefore, a substantial cleaning window between 0.5 and more than 16 J/cm2 was provided. The graphite data suggest an ablation mechanism of the particulates themselves due to a high optical absorption coefficient.
Mohammadi Khalfbadam, Hassan; Cheng, Ka Yu; Sarukkalige, Ranjan; Kaksonen, Anna H; Kayaalp, Ahmet S; Ginige, Maneesha P
2016-09-01
This study examined for the first time the use of bioelectrochemical systems (BES) to entrap, decompose and oxidise fresh algal biomass from an algae-laden effluent. The experimental process consisted of a photobioreactor for a continuous production of the algal-laden effluent, and a two-chamber BES equipped with anodic graphite granules and carbon-felt to physically remove and oxidise algal biomass from the influent. Results showed that the BES filter could retain ca. 90% of the suspended solids (SS) loaded. A coulombic efficiency (CE) of 36.6% (based on particulate chemical oxygen demand (PCOD) removed) was achieved, which was consistent with the highest CEs of BES studies (operated in microbial fuel cell mode (MFC)) that included additional pre-treatment steps for algae hydrolysis. Overall, this study suggests that a filter type BES anode can effectively entrap, decompose and in situ oxidise algae without the need for a separate pre-treatment step. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon
2013-11-01
To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D
2015-10-15
Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Environmental Issues in Managing Asthma
Diette, Gregory B; McCormack, Meredith C; Hansel, Nadia N; Breysse, Patrick N; Matsui, Elizabeth C
2008-01-01
Management of asthma requires attention to environmental exposures both indoors and outdoors. Americans spend most of their time indoors, where they have a greater ability to modify their environment. The indoor environment contains both pollutants (eg, particulate matter, nitrogen dioxide, secondhand smoke, and ozone) and allergens from furred pets, dust mites, cockroaches, rodents, and molds. Indoor particulate matter consists of particles generated from indoor sources such as cooking and cleaning activities, and particles that penetrate from the outdoors. Nitrogen dioxide sources include gas stoves, furnaces, and fireplaces. Indoor particulate matter and nitrogen dioxide are linked to asthma morbidity. The indoor ozone concentration is mainly influenced by the outdoor ozone concentration. The health effects of indoor ozone exposure have not been well studied. In contrast, there is substantial evidence of detrimental health effects from secondhand smoke. Guideline recommendations are not specific for optimizing indoor air quality. The 2007 National Asthma Education and Prevention Program asthma guidelines recommend eliminating indoor smoking and improving the ventilation. Though the guidelines state that there is insufficient evidence to recommend air cleaners, air cleaners and reducing activities that generate indoor pollutants may be sound practical approaches for improving the health of individuals with asthma. The guidelines are more specific about allergen avoidance; they recommend identifying allergens to which the individual is immunoglobin E sensitized and employing a multifaceted, comprehensive strategy to reduce exposure. Outdoor air pollutants that impact asthma include particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, and guidelines recommend that individuals with asthma avoid exertion outdoors when these pollutants are elevated. Outdoor allergens include tree, grass, and weed pollens, which vary in concentration by season. Recommendations to reduce exposure include staying indoors, keeping windows and doors closed, using air conditioning and perhaps high-efficiency particulate arrestor (HEPA) air filters, and thorough daily washing to remove allergens from one’s person. PMID:18426614
Sabah, A; Bancon-Montigny, C; Rodier, C; Marchand, P; Delpoux, S; Ijjaali, M; Tournoud, M-G
2016-02-01
The aim of this study was to investigate the fate and behaviour of butyltin pollutants, including monobutyltin (MBT), dibutylin (DBT), and tributyltin (TBT), in waste stabilisation ponds (WSP). The study was conducted as part of a baseline survey and included five sampling campaigns comprising bottom sludge and the water column from each pond from a typical WSP in France. Butyltins were detected in all raw wastewater and effluents, reflecting their widespread use. Our results revealed high affinity between butyltins and particulate matter and high accumulation of butyltins in the sludge taken from anaerobic ponds. The dissolved butyltins in the influent ranged from 21.5 to 28.1 ng(Sn).L(-1) and in the effluent, from 8.8 to 29.3 ng(Sn).L(-1). The butyltin concentrations in the sludge ranged from 45.1 to 164 and 3.6-8.1 ng(Sn).g(-1) respectively in the first and last ponds. Our results showed an average treatment efficiency of 71% for MBT, 47% for DBT, 55% for TBT. Laboratory sorption experiments enabled the calculation of a distribution coefficient (Kd = 75,000 L.kg-1) between TBT and particulate matter from the WSPs. The Kd explained the accumulation and persistence of the TBT in the sludge after settling of particulate matter. The continuous supply of contaminated raw wastewater and the sorption-desorption processes in the ponds led to incomplete bio- and photolytic degradation and to the persistence of butyltins in dissolved and particulate matrices throughout the survey period. It is thus recommended to use shallow ponds and to pay particular attention when sludge is used for soil amendment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Decontamination of combustion gases in fluidized bed incinerators
Leon, Albert M.
1982-01-01
Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. N. Thompson; S. L. Fox; G. A. Bala
2000-05-07
Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.
NASA Technical Reports Server (NTRS)
Berger, Gordon M.; Agui, Juan H.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary W.; West, Philip J.; Mitchell, Karen O.
2017-01-01
Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.
2017-01-01
Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.
Cyclone as a precleaner to ESP--a need for Indian coal based thermal power plants.
George, K V; Manjunath, S; Rao, C V Chalapati; Bopche, A M
2003-11-01
Almost all coal based thermal power plants (CTPP) in India use electrostatic precipitator (ESP) for reduction of particulate matter (PM) in flue gas generated due to the combustion of Indian coal. This coal is characterized by high ash content, low calorific value and low sulfur content resulting in the generation of a very large amount of highly electrically-resistive fly-ash; thereby requiring a very large size ESP to minimize the fly-ash emissions. However, the flue-gas particle size distribution analysis showed that 60% of the particles are above 15 microm size, which can be conveniently removed using a low-cost inertial separator such as a cyclone separator. It is proposed that a cyclone be used, as a pre-cleaner to ESP so that the large size fraction of fly-ash can be removed in the pre-cleaning and the remaining flue-gas entering the ESP will then contain only small size particles with low dust loading, thereby requiring a small ESP, and improving overall efficiency of dust removal. A low efficiency (65%), high throughput cyclone is considered for pre-cleaning flue gas and the ESP is designed for removal of the remaining 35% fly-ash from the flue gas. It is observed that with 100% dust load, the ESP requires six fields per pass, whereas with cyclone as a pre-cleaner, it requires only five fields per pass. Introducing cyclone into the flue gas path results in additional head loss, which needs to be overcome by providing additional power to induced draft (ID) fan. The permissible head loss due to the cyclone is estimated by comparing the power requirement in the bag filter control unit and cyclone-ESP combined unit. It is estimated that a head loss of 10 cm of water can be permitted across the cyclone so as to design the same for 65% efficiency.
Hong, Eunyoung; Seagren, Eric A; Davis, Allen P
2006-02-01
One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.
Alshawa, Ahmad; Russell, Ashley R; Nizkorodov, Sergey A
2007-04-01
Ionization air purifiers are increasingly used to remove aerosol particles from indoor air. However, certain ionization air purifiers also emit ozone. Reactions between the emitted ozone and unsaturated volatile organic compounds (VOC) commonly found in indoor air produce additional respirable aerosol particles in the ultrafine (<0.1 microm) and fine (<2.5 microm) size domains. A simple kinetic model is used to analyze the competition between the removal and generation of particulate matter by ionization air purifiers under conditions of a typical residential building. This model predicts that certain widely used ionization air purifiers may actually increase the mass concentration of fine and ultrafine particulates in the presence of common unsaturated VOC, such as limonene contained in many household cleaning products. This prediction is supported by an explicit observation of ultrafine particle nucleation events caused by the addition of D-limonene to a ventilated office room equipped with a common ionization air purifier.
Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.
2009-01-01
Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.
Improved Electronic Control for Electrostatic Precipitators
NASA Technical Reports Server (NTRS)
Johnston, D. F.
1986-01-01
Electrostatic precipitators remove particulate matter from smoke created by burning refuse. Smoke exposed to electrostatic field, and particles become electrically charged and migrate to electrically charged collecting surfaces. New microprocessor-based electronic control maintains precipitator power at maximum particulate-collection level. Control automatically senses changes in smoke composition due to variations in fuel or combustion and adjusts precipitator voltage and current accordingly. Also, sensitive yet stable fault detection provided.
A review of phosphorus removal structures: How to assess and compare their performance
USDA-ARS?s Scientific Manuscript database
Controlling dissolved phosphorus (P) losses to surface waters is challenging as most conservation practices are only effective at preventing particulate P losses. As a result, P removal structures were developed to filter dissolved P from drainage water before reaching a water body. While many P rem...
In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved PAHs and PCBs in the water column prior...
Electrostatic removal of airborne particulates employing fiber beds
Postma, Arlin Keith; Winegardner, W. Kevin
1977-01-01
A method and apparatus for collecting aerosol particles. The particles are subjected to an electrostatic charge prior to collection in an electrically resistive fiber bed. The method is applicable to particles in a broad size range, including the difficult-to-remove particles having diameters between 0.01 and 2 microns.
40 CFR 63.11607 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...
40 CFR 63.11607 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...
40 CFR 63.11607 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...
40 CFR 63.11607 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... an air pollution control device that uses filtration, impaction, or electrical forces to remove... weight for non-carcinogens, as shown in formulation data provided by the manufacturer or supplier, such... to contact and remove particulate matter in the exhaust stream. [74 FR 63525, Dec. 3, 2009, as...
Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan
2017-07-12
Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, D. E.
2002-02-28
High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less
Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements
NASA Astrophysics Data System (ADS)
Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua
2017-10-01
A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.
Mesoscale behavior study of collector aggregations in a wet dust scrubber.
Li, Xiaochuan; Wu, Xiang; Hu, Haibin; Jiang, Shuguang; Wei, Tao; Wang, Dongxue
2018-01-01
In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers. This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.
Gao, Da-Wen; Wen, Zhi-Dan
2016-01-15
Phthalate esters are one of the most frequently detected persistent organic pollutants in the environment. A better understanding of their occurrence and degradation in the environment and during wastewater treatment processes will facilitate the development of strategies to reduce these pollutants and to bioremediate contaminated freshwater and soil. Phthalate esters occur at measurable levels in different environments worldwide. For example, the concentrations of dimethyl phthalate (DMP) in atmospheric particulate matter, fresh water and sediments, soil, and landfills are N.D.-10.4 ng/m(3), N.D.-31.7 μg/L, N.D.-316 μg/kg dry weight, and N.D.-200 μg/kg dry weight, N.D.-43.27 μg/L, respectively. Bis(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) are primary phthalate ester pollutants. Urbanization has increased the discharge of phthalate esters to atmospheric and aquatic environments, and the use of agricultural plastics has exacerbated soil contamination by phthalate esters in rural areas. Aerobic biodegradation is the primary manner of phthalate ester mineralization in the environment, and this process has been widely studied. Phthalate esters can be removed during wastewater treatment processes. The combination of different wastewater treatment technologies showed greater efficiency in the removal of phthalate esters than individual treatment steps, such as the combination of anaerobic wastewater treatment with a membrane bioreactor would increase the efficiency of phthalate ester removal from 65%-71% to 95%-97%. This review provides a useful framework to identify future research objectives to achieve the mineralization and elimination of phthalate esters in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
A simple and inexpensive method for maintaining a defined flora mouse colony.
Sedlacek, R S; Mason, K A
1977-10-01
The use of autoclaved cages, feed, bedding, water, and filter caps combined with aseptic techniques of animal husbandry in an existing mouse colony was ineffective in maintaining a defined flora colony. The addition of a laminar air flow bench equipped with a high efficiency particulate air filter provided a sterile environment in which to manipulate mice when the filter caps were removed. The installation of a duct to direct all air entering the room through the bench filter reduced the airborne bacterial counts in the room. This modification combined with the culling or marking of infected cages so that no future breeders would be taken from these cages eliminated a number of bacterial contaminants (Staphylococcus aureus, S epidermidis, and streptococci) from the colony.
Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching
2010-10-01
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.
Schantz, Michele M; McGaw, Elizabeth; Wise, Stephen A
2012-10-02
Four particulate matter Standard Reference Materials (SRMs) available from the National Institute of Standards and Technology (NIST) were used to evaluate the effect of solvent, number of static cycles and static times, pressure, and temperature when using pressurized liquid extraction (PLE) for the extraction of polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs. The four materials used in the study were SRM 1648a Urban Particulate Matter, SRM 1649b Urban Dust, SRM 1650b Diesel Particulate Matter, and SRM 2975 Diesel Particulate Matter (Industrial Forklift). The results from the study indicate that the choice of solvent, dichloromethane compared to toluene and toluene/methanol mixtures, had little effect on the extraction efficiency. With three to five extraction cycles, increasing the extraction time for each cycle from 5 to 30 min had no significant effect on the extraction efficiency. The differences in extraction efficiency were not significant (with over 95% of the differences being <10%) when the pressure was increased from 13.8 to 20.7 MPa. The largest increase in extraction efficiency occurred for selected PAHs when the temperature of extraction was increased from 100 to 200 °C. At 200 °C naphthalene, biphenyl, fluorene, dibenzothiophene, and anthracene show substantially higher mass fractions (>30%) than when extracted at 100 °C in all the SRMs studied. For SRM 2975, large increases (>100%) are also observed for some other PAHs including benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, benzo[ghi]perylene, and benzo[b]chrysene when extracted at the higher temperatures; however, similar trends were not observed for the other diesel particulate sample, SRM 1650b. The results are discussed in relation to the use of the SRMs for evaluating analytical methods.
Particulate removal processes and hydraulics of porous gravel media filters
NASA Astrophysics Data System (ADS)
Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.
2013-12-01
Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal clogging processes of gravel filters and are a considerable improvement on the inflow/outflow data most often available to monitor removal efficiency and clogging. Sub-section of the MRI derived geometry showing gravel (grey), pore space (blue), deposited particles (red) for 1) prior to clogging and 2) after clogging. The pore network skeleton (green) provided a reference point for comparing pore diameter change with clogging.
Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.
Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari
2006-01-15
Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.
ELECTRIC CURTAIN DEVICE FOR CONTROL AND REMOVAL OF FINE PARTICLES
The report gives results of an evaluation of an electric curtain for the purpose of particulate control and removal. If the particles are charged by corona, the curtain will stop them only in a very slow air flow (less than 2 cm/sec). At these slow flows, a vertical curtain would...
Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stermer, D.L.; Gale, L.G.
1989-03-01
Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less
Apparatus for hot-gas desulfurization of fuel gases
Bissett, Larry A.
1992-01-01
An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.
Laundry Detergency of Solid Non-Particulate Soil Using Microemulsion-Based Formulation.
Chanwattanakit, Jarussri; Chavadej, Sumaeth
2018-02-01
Laundry detergency of solid non-particulate soil on polyester and cotton was investigated using a microemulsion-based formulation, consisting of an anionic extended surfactant (C 12,13 -4PO-SO 4 Na) and sodium mono-and di-methyl naphthalene sulfonate (SMDNS) as the hydrophilic linker, to provide a Winsor Type III microemulsion with an ultralow interfacial tension (IFT). In this work, methyl palmitate (palmitic acid methyl ester) having a melting point around 30°C, was used as a model solid non-particulate (waxy) soil. A total surfactant concentration of 0.35 wt% of the selected formulation (4:0.65 weight ratio of C 12,13 -4PO-SO 4 Na:SMDNS) with 5.3 wt% NaCl was able to form a middle phase microemulsion at a high temperature (40°C),which provided the highest oil removal level with the lowest oil redeposition and the lowest IFT, and was much higher than that with a commercial detergent or de-ionized water. Most of the detached oil, whether in liquid or solid state, was in an unsolubilized form. Hence, the dispersion stability of the detached oil droplets or solidified oil particles that resulted from the surfactant adsorption played an important role in the oil redeposition. For an oily detergency, the lower the system IFT, the higher the oil removal whereas for a waxy (non-particulate) soil detergency, the lower the contact angle, the higher the solidified oil removal. For a liquefied oil, the detergency mechanism was roll up and emulsification with dispersion stability, while that for the waxy soil (solid oil) was the detachment by wettability with dispersion stability.
Environmentally Compliant Disposal Method for Heavy Metal Containing Propellants
NASA Technical Reports Server (NTRS)
Decker, M. W.; Erickson, E. D.; Byrd, E. R.; Crispin, K. W. R.; Ferguson, B. W.
2000-01-01
ABSTRACT An environmentally friendly, cost effective technology has been developed and demonstrated by a team of Naval Air Warfare Center and Lockheed Martin personnel to dispose of Shillelagh solid rocket motor propellants. The Shillelagh is a surface to surface anti-tank weapon approaching the end of its service life. The current demilitarization process employs open detonation, but the presence of lead stearate in the N5 propellant grain motivated the need for the development of an environmentally friendly disposal method. Contained burning of the propellant followed by propellant exhaust processing was chosen as the disposal methodology. The developmental test bed, completed in February 1998, is inexpensive and transportable. Contained burning of Shillelagh propellants posed two technical hurdles: 1) removal of the sub micron lead and cadmium particulate generated during combustion, and 2) secondary combustion of the significant quantifies of carbon monoxide and hydrogen. A firing chamber with a stepped nozzle, air injection, and active ignition was developed to combust the carbon monoxide and hydrogen in real time. The hot gases and particulates from the combustion process are completely contained within a gas holder. The gases are subsequently cooled and routed through a treatment facility to remove the heavy metal particulate. Results indicate that the lead and cadmium particulates are removed below their respective detection limits (2 micro-g/cu m & 0.2 micro-g/cu m) of the analytical procedures employed and that the carbon monoxide and hydrogen levels have been reduced well below the lower flammability limits. Organic concentrations, principally benzene, are I ppm or less. A semi-automated machine has been developed which can rapidly prepare Shillelagh missiles for the contained burn facility. This machine allows the contained burn technology to be more competitive with current open bum open detonation disposal rates.
Grossman, M.W.; Speer, R.; George, W.A.
1991-04-09
The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.
Apparatus for mercury refinement
Grossman, M.W.; Speer, R.; George, W.A.
1991-07-16
The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.
Apparatus for mercury refinement
Grossman, Mark W.; Speer, Richard; George, William A.
1991-01-01
The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.
Grossman, Mark W.; Speer, Richard; George, William A.
1991-01-01
The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schemmel, A.
High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes themore » modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.« less
Escobedo, Francisco J; Wagner, John E; Nowak, David J; De la Maza, Carmen Luz; Rodriguez, Manuel; Crane, Daniel E
2008-01-01
Santiago, Chile has the distinction of having among the worst urban air pollution problems in Latin America. As part of an atmospheric pollution reduction plan, the Santiago Regional Metropolitan government defined an environmental policy goal of using urban forests to remove particulate matter less than 10 microm (PM(10)) in the Gran Santiago area. We used cost effectiveness, or the process of establishing costs and selecting least cost alternatives for obtaining a defined policy goal of PM(10) removal, to analyze this policy goal. For this study, we quantified PM(10) removal by Santiago's urban forests based on socioeconomic strata and using field and real-time pollution and climate data via a dry deposition urban forest effects model. Municipal urban forest management costs were estimated using management cost surveys and Chilean Ministry of Planning and Cooperation documents. Results indicate that managing municipal urban forests (trees, shrubs, and grass whose management is under the jurisdiction of Santiago's 36 municipalities) to remove PM(10) was a cost-effective policy for abating PM(10) based on criteria set by the World Bank. In addition, we compared the cost effectiveness of managing municipal urban forests and street trees to other control policies (e.g. alternative fuels) to abate PM(10) in Santiago and determined that municipal urban forest management efficiency was similar to these other air quality improvement measures.
Cocurrent scrubber evaluation: TVA's Colbert lime-limestone wet-scrubbing pilot plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollinden, G.A.; Robards, R.F.; Moore, N.D.
1979-01-01
The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. The physical size and general arrangement of flue gas scrubbing systems have a major impact on capital investment and operating cost, as do potential operating and maintenance advantages inherent to some systems. The equipment configuration for a cocurrent scrubber reflects some of these advantages. EPRI funded TVA to perform preliminary screening tests at TVA's 1 MW pilot plant (Colbert Steam Plant) to develop operating data on the cocurrent design for usemore » in designing and operating a 10 MW prototype cocurrent scrubber at TVA's Shawnee Scrubber Test Facility. Results of Colbert tests showed excellent sulfur dioxide removal efficiencies, generally greater than 85%, low pressure drop, and high particulate removal efficiencies. This report covers these screening tests. The results indicate that commercial application of the cocurrent scrubber concept may save substantial capital investment by reducing the number of scrubber modules and auxiliary equipment. These evaluation tests provided the basis for the design and construction of the 10 MW cocurrent scrubber at the Shawnee Facility. Operation of this scrubber began in August 1978 to develop the scale-up similarities and differences between the Colbert test program (1 MW) and the Shawnee test program (10 MW). It also demonstrated the practicality and reliability of the 10 MW prototype. Detailed results of the prototype test series will be available in late 1979.« less
NASA Technical Reports Server (NTRS)
Laicer, Castro; Rasimick, Brian; Green, Zachary
2012-01-01
Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of dust particles on the filter surface and to facilitate dust removal with pulse or back airflow.
Dust emission from wet, low-emission coke quenching process
NASA Astrophysics Data System (ADS)
Komosiński, Bogusław; Bobik, Bartłomiej; Konieczny, Tomasz; Cieślik, Ewelina
2018-01-01
Coke plants, which produce various types of coke (metallurgical, foundry or heating), at temperatures between 600 and 1200°C, with limited access to oxygen, are major emitters of particulates and gaseous pollutants to air, water and soils. Primarily, the process of wet quenching should be mentioned, as one of the most cumbersome. Atmospheric pollutants include particulates, tar substances, organic pollutants including B(a)P and many others. Pollutants are also formed from the decomposition of water used to quench coke (CO, phenol, HCN, H2S, NH3, cresol) and decomposition of hot coke in the first phase of quenching (CO, H2S, SO2) [1]. The development of the coke oven technology has resulted in the changes made to different types of technological installations, such as the use of baffles in quench towers, the removal of nitrogen oxides by selective NOx reduction, and the introduction of fabric filters for particulates removal. The BAT conclusions for coke plants [2] provide a methodology for the measurement of particulate emission from a wet, low-emission technology using Mohrhauer probes. The conclusions define the emission level for wet quenching process as 25 g/Mgcoke. The conducted research was aimed at verification of the presented method. For two of three quench towers (A and C) the requirements included in the BAT conclusions are not met and emissions amount to 87.34 and 61.35 g/Mgcoke respectively. The lowest particulates emission was recorded on the quench tower B and amounted to 22.5 g/Mgcoke, therefore not exceeding the requirements.
Further contributions to the understanding of nitrogen removal in waste stabilization ponds.
Bastos, R K X; Rios, E N; Sánchez, I A
2018-06-01
A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.
42 CFR 84.174 - Respirator containers; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except... contamination of respirators which are not removed, and to prevent damage to respirators during transit. ...
Grey water treatment in UASB reactor at ambient temperature.
Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R
2007-01-01
In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.
Petrie, Bruce; McAdam, Ewan J; Hassard, Francis; Stephenson, Tom; Lester, John N; Cartmell, Elise
2014-10-01
The impact of solids retention time (SRT) on estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2) removal in an activated sludge plant (ASP) was examined using a pilot plant to closely control operation. Exsitu analytical methods were simultaneously used to enable discrimination of the dominant mechanisms governing estrogen removal following transitions in SRT from short (3d) to medium (10d) and long (27d) SRTs which broadly represent those encountered at full-scale. Total estrogen (∑EST, i.e., sum of E1, E2, E3 and EE2) removals which account for aqueous and particulate concentrations were 70±8, 95±1 and 93±2% at 3, 10 and 27d SRTs respectively. The improved removal observed following an SRT increase from 3 to 10d was attributable to the augmented biodegradation of the natural estrogens E1 and E2. Interestingly, estrogen biodegradation per bacterial cell increased with SRT. These were 499, 1361 and 1750ng 10(12) viable cells(-1)d(-1). This indicated an improved efficiency of the same group or the development of a more responsive group of bacteria. In this study no improvement in absolute ∑EST removal was observed in the ASP when SRT increased from 10 to 27d. However, batch studies identified an augmented biomass sorption capacity for the more hydrophobic estrogens E2 and EE2 at 27d, equivalent to an order of magnitude. The lack of influence on estrogen removal during pilot plant operation can be ascribed to their distribution within activated sludge being under equilibrium. Consequently, lower wastage of excess sludge inherent of long SRT operation counteracts any improvement in sorption. Copyright © 2014 Elsevier Ltd. All rights reserved.
EVALUATION OF FOUR NOVEL FINE PARTICULATE COLLECTION DEVICES
The report gives results of an experimental performance evaluation of four novel fine particulate control devices: the Johns-Manville Cleanable High-Efficiency Air Filtration (CHEAF) System, the APS Electrostatic Scrubber, the APS Electrotube, and the TRW Charged Droplet Scrubber...
Performance of a Retrofitted Multicyclone for PM2.5 Emission Control
NASA Astrophysics Data System (ADS)
Dewika, M.; Rashid, M.; Ammar, M. R.
2018-03-01
This paper presents on the performance of a retrofitted multicyclone system, which aims to increase the collection efficiency of PM2.5 (i.e. particulate size fraction ≤ 2.5 μm) emission. The multicyclone was retrofitted by extracting 15% and 20% of the total volumetric air flow rate at the dust hopper of the unit using an additional Induced Draft Fan. The total collection efficiency with and without the extraction was measured at various air volumetric flow rates and particulate mass inlet concentration. The results showed that there was a reduction of 12% to 54% depending on the inlet concentration of PM2.5 emission in the stack with compared to without extraction increasing the collection efficiency of the retrofitted multicyclone. The finding suggests that a simple technique of applying gas extraction at the dust hopper of a multicyclone as reported in this study able to increase the overall performance in fine particulate collection.
NASA Astrophysics Data System (ADS)
Muir, G. K. P.; Pates, J. M.; Karageorgis, A. P.; Kaberi, H.
2005-12-01
234Th: 238U disequilibria have been used extensively as tracers of particle dynamics in marine environments. 234Th ( t1/2=24.1 days) can be used as "proxy" for particle reactive pollutants, due to their similar rapid rate of scavenging onto particles and subsequent removal from the water column, to the sediments. Radioactive disequilibrium can be exploited to determine the rates and time-scales of processes occurring over days to months; in this instance the residence times of dissolved and particulate species with the benthic nepheloid layer (BNL). Three sampling cruises were undertaken in Thermaikos Gulf (NW Aegean Sea) during contrasting periods, to examine the impact of natural and anthropogenic activity on sediment resuspension. September and October 2001 represented background and trawling periods, respectively; January 2002 represented a mixed period, of trawling and storms. Dissolved 234Th is scavenged actively at the BNL, in the presence of suspended particulate material (SPM), with a mean residence time of 16 days. There is a weak inverse correlation between dissolved 234Th residence time and SPM concentration in the BNL, with the shortest residence times occurring during October 2001. No relationship was observed between particulate 234Th activities and SPM concentrations, indicating that particles are rapidly removed from the system, either by sinking or advection. The mean particulate 234Th residence time is 5 days.
Particle-bound metal transport after removal of a small dam in ...
The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa
Howe, Alan; Musgrove, Darren; Breuer, Dietmar; Gusbeth, Krista; Moritz, Andreas; Demange, Martine; Oury, Véronique; Rousset, Davy; Dorotte, Michel
2011-08-01
Historically, workplace exposure to the volatile inorganic acids hydrochloric acid (HCl) and nitric acid (HNO(3)) has been determined mostly by collection on silica gel sorbent tubes and analysis of the corresponding anions by ion chromatography (IC). However, HCl and HNO(3) can be present in workplace air in the form of mist as well as vapor, so it is important to sample the inhalable fraction of airborne particles. As sorbent tubes exhibit a low sampling efficiency for inhalable particles, a more suitable method was required. This is the first of two articles on "Evaluation of Sampling Methods for Measuring Exposure to Volatile Inorganic Acids in Workplace Air" and describes collaborative sampling exercises carried out to evaluate an alternative method for sampling HCl and HNO(3) using sodium carbonate-impregnated filters. The second article describes sampling capacity and breakthrough tests. The method was found to perform well and a quartz fiber filter impregnated with 500 μL of 1 M Na(2)CO(3) (10% (m/v) Na(2)CO(3)) was found to have sufficient sampling capacity for use in workplace air measurement. A pre-filter is required to remove particulate chlorides and nitrates that when present would otherwise result in a positive interference. A GSP sampler fitted with a plastic cone, a closed face cassette, or a plastic IOM sampler were all found to be suitable for mounting the pre-filter and sampling filter(s), but care has to be taken with the IOM sampler to ensure that the sampler is tightly closed to avoid leaks. HCl and HNO(3) can react with co-sampled particulate matter on the pre-filter, e.g., zinc oxide, leading to low results, and stronger acids can react with particulate chlorides and nitrates removed by the pre-filter to liberate HCl and HNO(3), which are subsequently collected on the sampling filter, leading to high results. However, although there is this potential for both positive and negative interferences in the measurement, these are unavoidable. The method studied has now been published in ISO 21438-2:2009.
Evaluation of two cleaning methods for the removal of asbestos fibers from carpet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kominsky, J.R.; Freyberg, R.W.; Chesson, J.
The research study examined the effectiveness of dry vacuuming and wet cleaning for the removal of asbestos fibers from carpet, and evaluated the potential for fiber reentrainment during carpet cleaning activities. Routine carpet cleaning operations using high-efficiency particulate air (HEPA) filtered dry vacuum cleaners and HEPA-filtered hot-water extraction cleaners were simulated on carpet artificially contaminated with asbestos fibers. Overall, wet cleaning the carpet with a hot-water extraction cleaner reduced the level of asbestos contamination by approximately 70 percent. There was no significant evidence of either an increase or a decrease in the asbestos concentration after dry vacuuming. The level ofmore » asbestos contamination had no significant effect on the difference between the carpet asbestos concentrations before and after cleaning. Airborne asbestos concentrations were between two and four times greater during the carpet cleaning activities. The level of asbestos contamination in the carpet cleaning activities. The level of asbestos contamination in the carpet and the type of cleaning method used had no statistically significant effect on the difference between the airborne asbestos concentrations before and during cleaning.« less
Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.
Liqiang, Qi; Yajuan, Zhang
2013-07-15
Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. Copyright © 2013 Elsevier B.V. All rights reserved.
Grassed swales for stormwater pollution control during rain and snowmelt.
Bäckström, M
2003-01-01
The retention of suspended solids, particles and heavy metals in different grassed swales during rain events and snowmelt is discussed. The experimental results derived from investigations performed in existing grassed swales in the Luleå region, Northern Sweden. During high pollutant loading rates, grassed swales retain significant amounts of pollutants, mainly due to sedimentation of particulate matter. Low to moderate removal efficiencies could be expected for heavy metals, especially metals in solution (i.e. the dissolved phase). When grassed swales receive urban runoff with low pollutant concentrations, they may release rather than retain pollutants. Swales are important snow deposit areas in the city and particle bound pollutants do to a large extent remain in the swale after snowmelt. However, dissolved pollutants (i.e. dissolved heavy metals) are likely to escape the swale with the melt water. Grassed swales may be regarded as facilities that even out the peaks in pollutant loads without being capable of producing consistent high removal rates. This suggests that swales should be considered as primary treatment devices. Possible design parameters for grassed swales are mean hydraulic detention time, surface loading rate or specific swale area.
Hajizadeh, Solmaz; Xu, Changgang; Kirsebom, Harald; Ye, Lei; Mattiasson, Bo
2013-01-25
In this work, a new macroporous molecularly imprinted cryogel (MIP composite cryogel) was synthesized by glutaraldehyde cross-linking reaction of poly(vinyl alcohol) (PVA) particles and amino-modified molecularly imprinted core-shell nanoparticles. The MIP core-shell nanoparticles were prepared using propranolol as a template by one-pot precipitation polymerization with sequential monomer addition. The characteristics of the MIP composite cryogel were studied by scanning electron microscopy (SEM) and texture analyzer. The macroporous structure of the composite (with the pore size varying from a few micrometers to 100 μm) enabled high mass transfer of particulate-containing fluids. In a solid phase extraction (SPE) process, the efficiency and selectivity of the MIP composite cryogel were investigated, where the cryogel was used as an affinity matrix to remove propranolol from aqueous solution as well as from complex plasma sample without prior protein precipitation. The MIP composite cryogel maintained high selectivity and stability and could be used repeatedly after regeneration. Copyright © 2012 Elsevier B.V. All rights reserved.
Apparatus and method for removing particulate deposits from high temperature filters
Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.
1992-01-01
A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.
Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie
2016-06-01
Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical effects were enhanced for 112.49% for FeZn-LDHs, 111.89% for CoZn-LDHs and 122.67% for AlZn-LDHs. Therefore, the way of coating Zn-LDHs on the bio-ceramic efficiently improved the chemical effects in phosphate removal, supporting that it can use as potential substrates for the removal of phosphorus in CRIS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...
2018-01-03
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
Selenium Partitioning and Removal Across a Wet FGD Scrubber at a Coal-Fired Power Plant.
Senior, Constance L; Tyree, Corey A; Meeks, Noah D; Acharya, Chethan; McCain, Joseph D; Cushing, Kenneth M
2015-12-15
Selenium has unique fate and transport through a coal-fired power plant because of high vapor pressures of oxide (SeO2) in flue gas. This study was done at full-scale on a 900 MW coal-fired power plant with electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. The first objective was to quantify the partitioning of selenium between gas and condensed phases at the scrubber inlet and outlet. The second objective was to determine the effect of scrubber operation conditions (pH, mass transfer, SO2 removal) on Se removal in both particulate and vapor phases. During part of the testing, hydrated lime (calcium hydroxide) was injected upstream of the scrubber. Gas-phase selenium and particulate-bound selenium were measured as a function of particle size at the inlet and outlet of the scrubber. The total (both phases) removal of Se across the scrubber averaged 61%, and was enhanced when hydrated lime sorbent was injected. There was evidence of gas-to-particle conversion of selenium across the scrubber, based on the dependence of selenium concentration on particle diameter downstream of the scrubber and on thermodynamic calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Jeffrey J.
2010-04-30
The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... to monitor relative particulate matter loadings. Battery breaking area means the plant location at which lead-acid batteries are broken, crushed, or disassembled and separated into components. Blast...) Casting operations occur. High efficiency particulate air (HEPA) filter means a filter that has been...
Code of Federal Regulations, 2010 CFR
2010-07-01
... to monitor relative particulate matter loadings. Battery breaking area means the plant location at which lead-acid batteries are broken, crushed, or disassembled and separated into components. Blast...) Casting operations occur. High efficiency particulate air (HEPA) filter means a filter that has been...
Gourdji, Shannon
2018-05-28
In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O 3 ) as well as nitrogen dioxide (NO 2 ) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus 'Nana', Pinus mugho var. pumilio, Pinus mugho 'Slowmound' and Pinus pumila 'Dwarf Blue' are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum 'Shaina' and 'Mikawa-Yatsubusa' are options to reduce O 3 levels. Magnolias are tolerant to NO 2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia 'Genie' is a good option to remove NO 2 in urban settings and to indirectly reduce O 3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM 10 of which 35.10 kg is PM 2.5 . The removal rates are 4.00 g/m 2 and 1.52 g/m 2 for PM 10 and PM 2.5 , respectively. This paper provides insight to addressing air pollution through urban rooftop greening. Copyright © 2018 Elsevier Ltd. All rights reserved.
Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.
Lee, Seyong; Han, Seunghee; Gill, Gary A
2011-06-01
Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.
Method for removal of nitrogen oxides from stationary combustion sources
NASA Technical Reports Server (NTRS)
Cooper, Charles D. (Inventor); Collins, Michelle M. (Inventor); Clausen, III, Christian A. (Inventor)
2004-01-01
A method for removing NO.sub.X from gas streams emanating from stationary combustion sources and manufacturing plants utilizes the injection of hydrogen peroxide into the gas stream for rapid gas-phase oxidation of NO to NO.sub.2 and water-soluble nitrogen acids HNO.sub.2 and HNO.sub.3. The nitrogen acids may be removed from the oxidized gas stream by wet scrubbing or by contact with a particulate alkaline material to form a nitrite/nitrate salt.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.
2017-01-01
The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.
2017-01-01
The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Helenius, Laura K; Aymà Padrós, Anna; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena
2015-01-01
Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community. PMID:26045953
A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter
NASA Astrophysics Data System (ADS)
Eichler, P.; Müller, M.; D'Anna, B.; Wisthaler, A.
2015-03-01
We herein present a novel modular inlet system designed to be coupled to low-pressure gas analyzers for online chemical characterization of semi-volatile submicron particles. The "chemical analysis of aerosol online" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. The denuder was measured to remove gas-phase organics with an efficiency > 99.999% and to transmit particles in the 100-750 nm size range with a 75-90% efficiency. The measured average particle enrichment factor in the subsampling flow from the aerodynamic lens was 25.6, which is a factor of 3 lower than the calculated theoretical optimum. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined CHARON-PTR-ToF-MS setup is thus capable of measuring both the organic and the ammonium fraction in submicron particles in real time. Individual organic compounds can be detected down to levels of 10-20 ng m-3. Two proof-of-principle studies were carried out for demonstrating the analytical power of this new instrumental setup: (i) oxygenated organics and their partitioning between the gas and the particulate phase were observed from the reaction of limonene with ozone and (ii) nicotine was measured in cigarette smoke particles demonstrating that selected organic target compounds can be detected in submicron particles in real time.
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, Brian S.; Gupta, Raghubir P.
2001-01-01
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, Brian S.; Gupta, Raghubir P.
1999-01-01
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.
Toxicity of used drilling fluids to mysids (Mysidopsis bahia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaetz, C.T.; Montgomery, R.; Duke, T.W.
1986-01-01
Static, acute toxicity tests were conducted with mysids (Mysidopsis bahia) and 11 used drilling fluids (also called drilling muds) obtained from active drilling platforms in the Gulf of Mexico, U.S.A. Each whole mud was tested, along with three phases of each mud: a liquid phase with all particulate materials removed; a suspended particulate phase composed of soluble and lighter particulate fractions; and a solid phase composed mainly of drill cuttings and rapidly settling particulates. These muds represented seven of the eight generic mud types described by the U.S. Environmental Protection Agency for use on the U.S. Outer Continental Shelf. Themore » toxicity of the 11 muds tested was apparently enhanced by the presence of aromatics. Furthermore, one mud tested repeatedly showed loss of toxicity with time, possibly from volatilization of aromatic fractions. The data demonstrated that aromatics in the drilling fluids affected their toxicity to M. bahia.« less
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, B.S.; Gupta, R.P.
1999-06-22
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.
Wang, Chih-Yu; Sample, David J
2014-05-01
The application of floating treatment wetlands (FTWs) in point and non-point source pollution control has received much attention recently. Although the potential of this emerging technology is supported by various studies, quantifying FTW performance in urban retention ponds remains elusive due to significant research gaps. Actual urban retention pond water was utilized in this mesocosm study to evaluate phosphorus and nitrogen removal efficiency of FTWs. Multiple treatments were used to investigate the contribution of each component in the FTW system with a seven-day retention time. The four treatments included a control, floating mat, pickerelweed (Pontederia cordata L.), and softstem bulrush (Schoenoplectus tabernaemontani). The water samples collected on Day 0 (initial) and 7 were analyzed for total phosphorus (TP), total particulate phosphorus, orthophosphate, total nitrogen (TN), organic nitrogen, ammonia nitrogen, nitrate-nitrite nitrogen, and chlorophyll-a. Statistical tests were used to evaluate the differences between the four treatments. The effects of temperature on TP and TN removal rates of the FTWs were described by the modified Arrhenius equation. Our results indicated that all three FTW designs, planted and unplanted floating mats, could significantly improve phosphorus and nitrogen removal efficiency (%, E-TP and E-TN) compared to the control treatment during the growing season, i.e., May through August. The E-TP and E-TN was enhanced by 8.2% and 18.2% in the FTW treatments planted with the pickerelweed and softstem bulrush, respectively. Organic matter decomposition was likely to be the primary contributor of nutrient removal by FTWs in urban retention ponds. Such a mechanism is fostered by microbes within the attached biofilms on the floating mats and plant root surfaces. Among the results of the four treatments, the FTWs planted with pickerelweed had the highest E-TP, and behaved similarly with the other two FTW treatments for nitrogen removal during the growth period. The temperature effects described by the modified Arrhenius equation revealed that pickerelweed is sensitive to temperature and provides considerable phosphorus removal when water temperature is greater than 25 °C. However, the nutrient removal effectiveness of this plant species may be negligible for water temperatures below 15 °C. The study also assessed potential effects of shading from the FTW mats on water temperature, DO, pH, and attached-to-substrate periphyton/vegetation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Combustor for fine particulate coal
Carlson, L.W.
1988-01-26
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.
Combustor for fine particulate coal
Carlson, Larry W.
1988-01-01
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.
Combustor for fine particulate coal
Carlson, L.W.
1988-11-08
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.
Fuel agglomerates and method of agglomeration
Wen, Wu-Wey
1986-01-01
Solid fuel agglomerates are prepared of particulate coal or other carbonaceous material with a binder having a high humic acid or humate salt content. The humic acid is extracted from oxidized carbonaceous material with a mild aqueous alkali solution of, for instance, ammonia. The particulate material is blended with the extract which serves as the binder for the agglomerates. The water-resistant agglomerates are formed such as by pelletizing, followed by drying to remove moisture and solidify the humic acid binder throughout the agglomerate.
First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.
Shanableh, A; Imteaz, M
2008-09-01
This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical (< 374 degrees C) and supercritical (> 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.
NASA Astrophysics Data System (ADS)
Zhang, X.; PAN, X.; MA, M.; Li, W.; Cui, L.
2016-12-01
N-fixing cyanobacteria can create extra nitrogen for aquatic ecosystems. Previous studies reported inconsistence patterns of the contribution of biological nitrogen fixation to the nitrogen pools in aquatic ecosystems. However, there were few studies concerning the effect of fixed nitrogen by cyanobacteria on the nitrogen removal efficiency in constructed wetlands. This study was performed at the Beijing Wildlife Rescue and Rehabilitation Centre, where a constructed lake for the habitation of waterfowls and a constructed wetland for purifying sewage from the lake are located. The composition of phytoplankton communities, the concentrations of particulate organic nitrogen (PON) and nitrogen fixation rates (Rn) in the constructed lake and the constructed wetland were compared throughout a growing season. We counted the densities of genus Anabaena and Microcystis cells, and explored their relationships with PON and Rn in water. The proportions of PON from various sources, including the ambient N2, waterfowl faeces, wetland sediments and the nitrates, were calculated by the natural abundance of 15N with the IsoSource software. The result revealed that the constructed lake was alternately dominated by Anabaena and Microcystis throughout the growing season, and the Rn was positively correlated with PON and the cell density of Anabaena (P < 0.05). This implied that the fixed nitrogen by N-fixing Anabaena might be utilized by non-N-fixing Microcystis, maintaining the fixed nitrogen with PON form. The ambient N2 composed 0.5 82% and 50.0 84.7% to the PON in the constructed lake and wetland respectively during the growing season. The proportions of PON from N2 increased to more than 80% when the Rn reached the highest in September. The result demonstrated that the nitrogen fixed by Anabaena might be utilized by non-N-fixing Microcystis which formed water blooms in summer. Therefore, the decline of the removal efficiency of PON in the constructed wetland in summer might indirectly result from the nitrogen fixation, since the proliferated algal were difficult to sediment in surface flow wetlands.
Removal of metal ions from aqueous solution
Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement
1990-01-01
A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.
Removal of metal ions from aqueous solution
Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement
1990-11-13
A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.
Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian
2016-07-01
Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for respirator users against DPM under all circumstances of diesel generated particles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Technical Reports Server (NTRS)
Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)
2000-01-01
To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.
Alkaline sorbent injection for mercury control
Madden, Deborah A.; Holmes, Michael J.
2003-01-01
A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.
Alkaline sorbent injection for mercury control
Madden, Deborah A.; Holmes, Michael J.
2002-01-01
A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.
Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; Arafa, Anwar I; El-Sebaie, Olfat D
2015-10-01
The current study investigated the effects of S2O8(2-) and S2O8(2-)/H2O2 oxidation processes on the biodegradable characteristics of an anaerobic stabilized leachate. Total COD removal efficiency was found to be 46% after S2O8(2-) oxidation (using 4.2 g S2O8(2-)/1g COD0, at pH 7, for 60 min reaction time and at 350 rpm shaking speed), and improved to 81% following S2O8(2-)/H2O2 oxidation process (using 5.88 g S2O8(2-) dosage, 8.63 g H2O2 dosage, at pH 11 and for 120 min reaction time at 350 rpm). Biodegradability in terms of BOD5/COD ratio of the leachate enhanced from 0.09 to 0.1 and to 0.17 following S2O8(2-) and S2O8(2-)/H2O2 oxidation processes, respectively. The fractions of COD were determined before and after each oxidation processes (S2O8(2-) and S2O8(2-)/H2O2). The fraction of biodegradable COD(bi) increased from 36% in raw leachate to 57% and 68% after applying S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. As for soluble COD(s), its removal efficiency was 39% and 78% following S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. The maximum removal for particulate COD was 94% and was obtained after 120 min of S2O8(2-)/H2O2 oxidation. As a conclusion, S2O8(2-)/H2O2 oxidation could be an efficient method for improving the biodegradability of anaerobic stabilized leachate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants
NASA Astrophysics Data System (ADS)
Sengupta, Ishita
Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.
On the dense water spreading off the Ross Sea shelf (Southern Ocean)
NASA Astrophysics Data System (ADS)
Budillon, G.; Gremes Cordero, S.; Salusti, E.
2002-07-01
In this study, current meter and hydrological data obtained during the X Italian Expedition in the Ross Sea (CLIMA Project) are analyzed. Our data show a nice agreement with previous data referring to the water masses present in this area and their dynamics. Here, they are used to further analyze the mixing and deepening processes of Deep Ice Shelf Water (DISW) over the northern shelf break of the Ross Sea. In more detail, our work is focused on the elementary mechanisms that are the most efficient in removing dense water from the shelf: either classical mixing effects or density currents that interact with some topographic irregularity in order to drop to deeper levels, or also the variability of the Antarctic Circumpolar Current (ACC) which, in its meandering, can push the dense water off the shelf, thus interrupting its geostrophic flow. We also discuss in detail the (partial) evidence of dramatic interactions of the dense water with bottom particulate, of geological or biological origin, thus generating impulsive or quasi-steady density-turbidity currents. This complex interaction allows one to consider bottom particular and dense water as a unique self-interacting system. In synthesis, this is a first tentative analysis of the effect of bottom particulate on the dense water dynamics in the Ross Sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Huifang; Lam, William; Remias, Joseph
Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less
Ma, Li; Yates, Scott R
2018-06-03
This review summarizes the characterization and quantification of interactions between dissolved organic matter (DOM) and estrogens as well as the effects of DOM on aquatic estrogen removal. DOM interacts with estrogens via binding or sorption mechanisms like π-π interaction and hydrogen bonding. The binding affinity is evaluated in terms of organic-carbon-normalized sorption coefficient (Log K OC ) which varies with types and composition of DOM. DOM has been suggested to be a more efficient sorbent compared with other matrices, such as suspended particulate matter, sediment and soil; likely associated with its large surface area and concentrated carbon content. As a photosensitizer, DOM enhanced estrogen photodegradation when the concentration of DOM was below a threshold value, and when above, the acceleration effect was not observed. DOM played a dual role in affecting biodegradation of estrogens depending on the recalcitrance of the DOM and the nutrition status of the degraders. DOM also acted as an electron shuttle (redox mediator) mediating the degradation of estrogens. DOM hindered enzyme-catalyzed removal of estrogens while enhanced their transformation during the simultaneous photo-enzymatic process. Membrane rejection of estrogens was pronounced for hydrophobic DOM with high aromaticity and phenolic moiety content. Elimination of estrogens via photolysis, biodegradation, enzymolysis and membrane rejection in the presence of DOM is initiated by sorption, accentuating the role of DOM as a mediator in regulating aquatic estrogen removal. Published by Elsevier B.V.
Ballester-Moltó, M; Sanchez-Jerez, P; Aguado-Giménez, F
2017-09-01
Particulate wastes derived from cage fish farming are a trophic resource used by wild fish. This study assesses waste consumption by wild fish and the impact on the final balance of wastes. Consumption was determined according to the difference between the particulate matter exiting the cages and that reaching 5 m away at three different depths, in the presence and absence of wild fish. Wild fish around the experimental cages were counted during feeding and non-feeding periods. A weighted abundance of 1057 fish 1000 m -3 consumed 17.75% of the particulate wastes exiting the cages, on average. Consumption was higher below the cages, where waste outflow was greater. However, waste removal by wild fish was noteworthy along the shallow and deep sides of the cages. Wild fish diminished the net particulate wastes by about 14%, transforming them into more easily dispersible and less harmful wastes. This study demonstrates the mitigating potential of wild fish in reducing environmental impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas stream clean-up filter and method for forming same
Mei, Joseph S.; DeVault, James; Halow, John S.
1993-01-01
A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.
Advanced Hybrid Particulate Collector Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.J.
As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less
Case study, comparison of trial burn results from similar sulfuric acid regeneration plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milaszewski, M.; Johns, T.; Dickerson, W.F.
The primary business of Rhodia Eco Services (Rhodia) is the regeneration of sulfuric acid. Sulfuric acid regeneration requires thermal decomposition of acid to sulfur dioxide, and remaking the acid through chemical reaction. The sulfuric acid regeneration furnace is the ideal place to process pumpable wastes for energy recovery and for thermal destruction. Rhodia is regulated by the Boiler and Industrial Furnace (BIF) regulations (40 CFR 266, Subpart H). The Hammond, Indiana plant is an interim status BIF facility and the Houston, Texas facility is renewing its RCRA incineration permit as a BIF facility. Both plants have conducted BIF Trial Burnsmore » with very similar results. The performance levels demonstrated were at levels better than RCRA/BIF standards for destruction and removal efficiency, metal, HCl/Cl, particulate, dioxin/furan, and organic emissions.« less
Qiao, Meng; Qi, Wei-xiao; Zhao, Xu; Liu, Hui-juan; Qu, Jiu-hui
2016-04-15
Substituted polycyclic aromatic hydrocarbons (SPAHs) can be emitted to the environment not only through the incomplete combustion, but also through the transformation from parent polycyclic aromatic hydrocarbons (PAHs) by photo chemical and biological processes. The toxicities of some SPAHs are higher than their corresponding PAHs. Samples were collected from the wastewater treatment plants in Beijing. Three types of SPAHs, including oxy-PAHs (OPAHs), methyl-PAHs (MPAHs) and nitro-PAHs (NPAHs), as well as 16 PAHs were analyzed, in order to study the occurrence and behavior of these compounds during the wastewater biological treatment process. MPAHs, OPAHs and PAHs were detected in the influent and effluent, but no NPAHs. The concentrations of PAHs in the influent in both the aquatic and particulate phases ranged from 1.94 to 4.34 µg · L⁻¹, and SPAHs from 1.16 to 2.20 µg · L⁻¹. The concentrations of PAHs in the effluent were between 0.77 and 0.98 µg · L⁻¹, and SPAHs from 0.39 to 0.45 µg · L⁻¹. The concentrations of the MPAHs were lower than their corresponding PAHs, while OPAHs were higher. The removal efficiencies of all the compounds ranged from 53% to 83%. PAHs and SPAHs were mainly removed by adsorption and biodegradation during the activated sludge treatment processes. Some OPAHs could be transformed from PAHs, and could be accumulated. The PAHs were mainly originated from incomplete combustion of wood and coal, and some from combustion of petroleum, while only a little from the discharge of petroleum. The concentrations of PAHs and SPAHs in the effluent were higher in autumn than summer and winter. Most of the SPAHs and PAHs were discharged to the agriculture area through the river-water irrigation, which might pose potential risk to the humans. As a result, it is necessary to upgrade the wastewater treatment process to improve the removal efficiency of PAHs and SPAHs.
Compositions containing poly (.gamma.-glutamylcysteinyl)glycines
Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement
1992-01-01
A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.
NASA Astrophysics Data System (ADS)
Gérin, C.; Goutx, M.
1994-08-01
The Chromarod-Iatroscan system was used to measure dissolved and particulate lipids at six sites representative of the main hydrological zones of the Almeria-Oran frontal system in May 1991. Concentrations ranged from 9 to 113 μg 1 -1 and from 3 to 84 μg 1 -1 respectively. Particulate carbon was estimated on a CHN Leco analyzer. Dissolved lipid concentrations were highly variable with depth and exhibited clear signatures of phytoplankton degradation throughout the profiles. In the 300-400 m layer, particulate wax esters denoted the presence of deep zooplankton which may be benefit from the downward fluxes of organic matter from the frontal zone. In surface water, high concentrations of dissolved lipids and particulate carbon marked the presence of the jet front. Particulate lipid classes in samples were related to the presence of zooplankton and to the physiological state of cells rather than to phytoplankton biomass. Particulate triglyceride concentrations (storage lipids in phytoplankton) increased from the left to the right border of the jet core and further southwards, culminating in the Atlantic anticyclonic gyre. The distribution of particulate lipids to carbon and chlorophyllatios and the increasing level of triglycerides from the jet and southwards suggested a rapid removal of the frontal production by physical transports. The ability of anticyclonic structures to enhance accumulations of energetically rich compounds and thus to play a role as fertilizers of the oligotrophic waters of the Mediterranean Sea is discussed.
Casentini, Barbara; Falcione, Fabiano Teo; Amalfitano, Stefano; Fazi, Stefano; Rossetti, Simona
2016-12-01
Different countries in Europe still suffer of elevated arsenic (As) concentration in groundwaters used for human consumption. In the case of households not connected to the distribution system, decentralized water supply systems, such as Point of Use (POU) and Point of Entry (POE), offer a direct benefit for the consumers. Field scale ex-situ treatment systems based on metallic iron (ZVI) are already available for the production of reduced volumes of drinking water in remote areas (village scale). To address drinking water needs at larger scale, we designed a pilot unit able to produce an elevated daily volume of water for human consumption. We tested the long-term As removal efficiency of a two steps ZVI treatment unit for the production of 400 L/day clean water based on the combination of ZVI corrosion process with sedimentation and retention of freshly formed Fe precipitates. The system treated 100 μg/L As(V)-contaminated oxic groundwater in a discontinuous operation mode at a flow rate of 1 L/min for 31 days. Final removal was 77-96% and the most performing step was aeration/sedimentation (A/S) tank with a 60-94% efficiency. Arsenic in the outflow slightly exceeded the drinking water limit of 10 μg/L only after 6000 L treated and Fe concentration was always below 0.2 mg/L. Under proposed operating conditions ZVI passivation readily occurred and, as a consequence, Fe production sharply decreased. Arsenic mobility attached to particulate was 13-60% after ZVI column and 37-100% after A/S tank. Uniform amorphous cluster of Fe nanoparticles (100 nm) formed during aeration drove As removal process with an adsorption capacity corresponding to 20.5 mg As /g Fe . Research studies often focus only on chemico-physical aspects disregarding the importance of biological processes that may co-occur and interfere with ZVI corrosion, As removal and safe water production. We explored the microbial transport dynamics by flow cytometry, proved as a suitable tool to monitor the fate of both single cells and bioactive particles along the treatment train of the pilot unit. A net release of bioactive particles, representing on average 26.5% of flow cytometric events, was promoted by the ZVI filter, with densities 10 times higher than those found in the inflow. In conclusion, the proposed system was efficient to treat large daily volumes of As contaminated groundwater. However, filter design and operating conditions should be carefully adapted to specific situation, since several key factors affect As removal efficiency. An effort in the optimization of ZVI filter design should be made to reduce fast observed ZVI passivation and low As adsorption capacity of the whole filter. More attention to biomass retention and bioactive particles travelling within the unit should be given in order to elucidate bacteria influences on As removal efficiency and related sanitary risks on long term basis. Copyright © 2016 Elsevier Ltd. All rights reserved.
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2013 CFR
2013-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2014 CFR
2014-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). ...
8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). BOX FLUME DROPS SLIGHTLY INTO CHAMBER ON LEFT SIDE. CHAMBER IS A SERIES OF BAFFLES DESIGNED TO SLOW THE FLOW OF WATER. FLOW IS REDUCED TO ALLOW PARTICULATES TO SETTLE TO THE BOTTOM. TWO SCREENS (NOT SHOWN) FILTER LARGER DEBRIS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
2017-01-01
Particulate matter and NOx emissions from diesel exhaust remains one of the most pressing environmental problems. We explore the use of hierarchically ordered mixed Fe–Ce–Zr oxides for the simultaneous capture and oxidation of soot and reduction of NOx by ammonia in a single step. The optimized material can effectively trap the model soot particles in its open macroporous structure and oxidize the soot below 400 °C while completely removing NO in the 285–420 °C range. Surface characterization and DFT calculations emphasize the defective nature of Fe-doped ceria. The isolated Fe ions and associated oxygen vacancies catalyze facile NO reduction to N2. A mechanism for the reduction of NO with NH3 on Fe-doped ceria is proposed involving adsorbed O2. Such adsorbed O2 species will also contribute to the oxidation of soot. PMID:28603656
Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.; Kobak, J. A.
1980-01-01
The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.
Emissions from prescribed burning of timber slash piles in Oregon
NASA Astrophysics Data System (ADS)
Aurell, Johanna; Gullett, Brian K.; Tabor, Dennis; Yonker, Nick
2017-02-01
Emissions from burning piles of post-harvest timber slash (Douglas-fir) in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5), black carbon, ultraviolet absorbing PM, elemental/organic carbon, filter-based metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins/dibenzofurans (PCDD/PCDF), and volatile organic compounds (VOCs) were sampled to determine emission factors, the amount of pollutant formed per amount of biomass burned. The effect on emissions from covering the piles with polyethylene (PE) sheets to prevent fuel wetting versus uncovered piles was also determined. Results showed that the uncovered ("wet") piles burned with lower combustion efficiency and higher emission factors for VOCs, PM2.5, PCDD/PCDF, and PAHs. Removal of the PE prior to ignition, variation of PE size, and changing PE thickness resulted in no statistical distinction between emissions. Results suggest that dry piles, whether covered with PE or not, exhibited statistically significant lower emissions than wet piles due to better combustion efficiency.
Janney, Mark A.; Kiggans, Jr., James O.
1999-01-01
A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.R.; Gregory, W.S.
1985-04-01
Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the samemore » (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.« less
Jabari, P; Yuan, Q; Oleszkiewicz, J A
2016-11-01
The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Process for the combined removal of SO.sub.2 and NO.sub.x from flue gas
Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David
1988-01-01
The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqueous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla
The state-of-the-art multiscale modeling of GPFs including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtration on a singlemore » channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. The microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-02-18
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-01-01
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700
Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area.
Zhao, Jian-wei; Shan, Bao-qing; Yin, Cheng-qing
2007-01-01
The pollutant loads of surface runoff in an urban tourist area have been investigated for two years in the Wuhan City Zoo, China. Eight sampling sites, including two woodlands, three animal yards, two roofs and one road, were selected for sampling and study. The results indicate that pollutants ranked in a predictable order of decreasing load (e.g. animal yard > roof > woodland > road), with animal yards acting as the key pollution source in the zoo. Pollutants were transported mainly by particulate form in runoff. Particulate nitrogen and particulate phosphorous accounted on average for 61%, 78% of total pollutant, respectively, over 13 monitored rainfall events. These results indicate the treatment practices should be implemented to improve particulate nutrient removal. Analysis of the M(V) curve indicate that no first flush effect existed in the surface runoff from pervious areas (e.g. woodland, animal ground yard), whereas a first flush effect was evident in runoff from impervious surfaces (e.g. animal cement yard, roof, road).
Subedi, Bikram; Kannan, Kurunthachalam
2015-05-01
The fates of psychoactive pharmaceuticals, including two antischizophrenics, six sedative-hypnotic-anxiolytics, four antidepressants, four antihypertensives, and their select metabolites, were determined in two wastewater treatment plants (WWTPs) in the Albany area of New York. All target psychoactive pharmaceuticals and their metabolites were found at a mean concentration that ranged from 0.98 (quetiapine) to 1220 ng/L (atenolol) in wastewater and from 0.26 (lorazepam) to 1490 ng/g dry weight (sertraline) in sludge. In this study, the fraction of psychoactive pharmaceuticals that was sorbed to suspended particulate matter (SPM) was calculated for the first time. Over 50% of the total mass of aripiprazole, norquetiapine, norsertraline, citalopram, desmethyl citalopram, propranolol, verapamil, and norverapamil was found sorbed to SPM in the influent. The mass loadings, i.e., influx, of target psychoactive pharmaceuticals in WWTPs ranged from 0.91 (diazepam) to 347 mg/d/1000 inhabitants (atenolol), whereas the environmental emissions ranged from 0.01 (dehydro-aripiprazole) to 316 mg/d/1000 inhabitants (atenolol). The highest calculated removal efficiencies were found for antischizophrenics (quetiapine=88%; aripiprazole=71%). However, the removal of some psychoactive pharmaceuticals through adsorption onto sludge was minimal (<1% of the initial mass load), which suggests that bio-degradation and/or chemical-transformation are the dominant mechanisms of removal of these pharmaceuticals in WWTPs. Copyright © 2015 Elsevier B.V. All rights reserved.
Lange, J H; Lange, P R; Reinhard, T K; Thomulka, K W
1996-08-01
Data were collected and analysed on airborne concentrations of asbestos generated by abatement of different asbestos-containing materials using various removal practices. Airborne concentrations of asbestos are dramatically variable among the types of asbestos-containing material being abated. Abatement practices evaluated in this study were removal of boiler/pipe insulation in a crawl space, ceiling tile, transite, floor tile/mastic with traditional methods, and mastic removal with a high-efficiency particulate air filter blast track (shot-blast) machine. In general, abatement of boiler and pipe insulation produces the highest airborne fibre levels, while abatement of floor tile and mastic was observed to be the lowest. A comparison of matched personal and area samples was not significantly different, and exhibited a good correlation using regression analysis. After adjusting data for outliers, personal sample fibre concentrations were greater than area sample fibre concentrations. Statistical analysis and sample distribution of airborne asbestos concentrations appear to be best represented in a logarithmic form. Area sample fibre concentrations were shown in this study to have a larger variability than personal measurements. Evaluation of outliers in fibre concentration data and the ability of these values to skew sample populations is presented. The use of personal and area samples in determining exposure, selecting personal protective equipment and its historical relevance as related to future abatement projects is discussed.
Feng, Yawei; Ling, Lili; Nie, Jinhui; Han, Kai; Chen, Xiangyu; Bian, Zhenfeng; Li, Hexing; Wang, Zhong Lin
2017-12-26
Recently, atmospheric pollution caused by particulate matter or volatile organic compounds (VOCs) has become a serious issue to threaten human health. Consequently, it is highly desirable to develop an efficient purifying technique with simple structure and low cost. In this study, by combining a triboelectric nanogenerator (TENG) and a photocatalysis technique, we demonstrated a concept of a self-powered filtering method for removing pollutants from indoor atmosphere. The photocatalyst P25 or Pt/P25 was embedded on the surface of polymer-coated stainless steel wires, and such steel wires were woven into a filtering network. A strong electric field can be induced on this filtering network by TENG, while both electrostatic adsorption effect and TENG-enhanced photocatalytic effect can be achieved. Rhodamine B (RhB) steam was selected as the pollutant for demonstration. The absorbed RhB on the filter network with TENG in 1 min was almost the same amount of absorption achieved in 15 min without using TENG. Meanwhile, the degradation of RhB was increased over 50% under the drive of TENG. Furthermore, such a device was applied for the degradation of formaldehyde, where degradation efficiency was doubled under the drive of TENG. This work extended the application for the TENG in self-powered electrochemistry, design and concept of which can be possibly applied in the field of haze governance, indoor air cleaning, and photocatalytic pollution removal for environmental protection.
NASA Astrophysics Data System (ADS)
Biswas, Subhasis; Hu, Shaohua; Verma, Vishal; Herner, Jorn D.; Robertson, William H.; Ayala, Alberto; Sioutas, Constantinos
Emission control technologies designed to meet the 2007 and 2010 emission standards for heavy-duty diesel vehicles (HDDV) remove effectively the non-volatile fraction of particles, but are comparatively less efficient at controlling the semi-volatile components. A collaborative study between the California Air Resources Board (CARB) and the University of Southern California was initiated to investigate the physicochemical and toxicological characteristics of the semi-volatile and non-volatile particulate matter (PM) fractions from HDDV emissions. This paper reports the physical properties, including size distribution, volatility (in terms of number and mass), surface diameter, and agglomeration of particles emitted from HDDV retrofitted with advanced emission control devices. Four vehicles in combination with six after-treatment devices (V-SCRT ®, Z-SCRT ®, CRT ®, DPX, Hybrid-CCRT ®, EPF) were tested under three driving cycles: steady state (cruise), transient (urban dynamometer driving schedule, UDDS), and idle. An HDDV without any control device is served as the baseline vehicle. Substantial reduction of PM mass emissions (>90%) was accomplished for the HDDV operating with advanced emission control technologies. This reduction was not observed for particle number concentrations under cruise conditions, with the exceptions of the Hybrid-CCRT ® and EPF vehicles, which were efficient in controlling both—mass and number emissions. In general, significant nucleation mode particles (<50 nm) were formed during cruise cycles in comparison with the UDDS cycles, which emit higher PM mass in the accumulation mode. The nucleation mode particles (<50 nm) were mainly internally mixed, and evaporated considerably between 150 and 230 °C. Compared to the baseline vehicle, particles from vehicles with controls (except of the Hybrid-CCRT ®) had a higher mass specific surface area.
SURFACE PLASMA ELECTRODE FOR ELECTROSTATIC PRECIPITATORS - PHASE I
Electrostatic precipitators are widely used for the removal of particulate matter from boiler exhaust gases. The U.S. Environmental Protection Agency (EPA) promulgation of National Emissions Standards for Hazardous Air Pollutants (NESHAP) from Industrial, Commercial, and Insti...
PLASMA DISCHARGE ELECTRODE FOR ELECTROSTATIC PRECIPITATORS - PHASE II
Electrostatic precipitators are widely used for removal of particulate matter form boiler exhaust gases. The EPA promulgation of National emission Standards for Hazardous Air Pollutants (NESHAP) from Industrial, Commercial and Institutional Boilers and Process Heater will req...
Assessment of biodiesel scenarios for Midwest freight transport emission reduction.
DOT National Transportation Integrated Search
2010-04-01
There are trade-offs when attempting to reduce both greenhouse gas and criteria air pollutants for freight transport, as the control : strategies are not necessarily complimentary. While emission controls can remove ozone precursors and particulate f...
TREATMENT PLANT EVALUATION FOR PARTICULATE CONTAMINANT REMOVAL
A general procedure is suggested for evaluating performance of water filtration plants. Plant operating records should be reviewed. Plant hydraulics should be evaluated. Chemical feed pumps, measuring, and additional points, plus control of chemical doses, are discussed. Rapid mi...
Compositions containing poly ([gamma]glutamylcysteinyl)glycines
Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.
1992-02-18
A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.
Indirect latex glove contamination and its inhibitory effect on vinyl polysiloxane polymerization.
Kimoto, Katsuhiko; Tanaka, Kinya; Toyoda, Minoru; Ochiai, Kent T
2005-05-01
The inhibitory effect of indirect latex contamination on the polymerization of vinyl polysiloxane (VPS) impression material has been previously reported. However, the transfer of specific elements that cause inhibition has not been confirmed, nor has the removal of such contaminants been reported. This study examined the surfaces of materials commonly used in restorative procedures that were contaminated by indirect latex glove contact and then evaluated for inhibition of polymerization of VPS. The effect of selected cleansing procedures was then studied. Four experimental groups (n = 8) were prepared: (1) clean vinyl gloves (control), (2) clean gingival retraction cords (control), (3) contaminated vinyl gloves, and (4) contaminated gingival retraction cord. Microscopic evaluation of the appearance and the characterization of surface particulate contamination were performed for each. Three cleansing protocols were then evaluated for efficacy in cleaning vinyl glove surfaces contaminated by latex contact (n = 10): (1) brushing with water, (2) brushing with soap/rinsing with water, (3) cleansing with rubbing alcohol. The subsequent degree of VPS polymerization inhibition was evaluated subjectively. A chi-square test was used for data analysis (alpha=.05). Particulate sulfur elements and sulfur-chloride compounds were present on the contaminated substrates. None of the 3 cleansing procedures eliminated polymerization inhibition (P =.33). Residual elemental sulfur remained on all tested surfaces. Particulate sulfur and sulfur-chloride compounds were identified as the particulate contamination that resulted in polymerization inhibition of the tested VPS dental impression material. Removal of these contaminants from the tested vinyl gloves and gingival retraction cord was not possible with the 3 cleansing protocols tested in this study.
Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.
Clack, Herek L
2017-08-01
Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.
Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin
2016-09-06
The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.
Wang, Yu; Pleasant, Saraya; Jain, Pradeep; Powell, Jon; Townsend, Timothy
2016-07-01
High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Two in situ permeable reactive barriers (PRBs), comprised of limestone and crushed concrete, were installed downgradient of a closed, unlined landfill in Florida, USA, to remediate groundwater containing high concentrations of these metals. Influent groundwater to the PRBs contained mean Fe and Mn concentrations of approximately 30mg/L and 1.62mg/L, respectively. PRBs were constructed in the shallow aquifer (maximum depth 4.6m below land surface) and groundwater was sampled from a network of nearby monitoring wells to evaluate barrier performance in removing these metals. PRBs significantly (p<0.05) removed dissolved Fe and Mn from influent groundwater; Fe was removed from influent water at average rates of 91% and 95% (by mass) for the limestone and crushed concrete PRBs, respectively, during the first year of the study. The performance of the PRBs declined after 3years of operation, with Fe removal efficiency decreasing to 64% and 61% for limestone and concrete PRBs, respectively. A comparison of water quality in shallow and deep monitoring wells showed a more dramatic performance reduction in the deeper section of the concrete PRB, which was attributed to an influx of sediment into the barrier and settling of particulates from the upper portions of the PRBs. Although removal of Fe and Mn from redox impacts was achieved with the PRBs, the short time frame of effectiveness relative to the duration of a full-scale remediation effort may limit the applicability of these systems at some landfills because of the construction costs required. Copyright © 2016 Elsevier Ltd. All rights reserved.
Clack, Herek L
2012-07-03
The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.
Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.
1984-01-01
The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.
PERFORMANCE AND DURABILITY OF THE PSA PEUGEOT CITROEN'S DPF SYSTEM ON A TAXI FLEET IN THE PARIS AREA
DOE Office of Scientific and Technical Information (OSTI.GOV)
COROLLER, P; PLASSAT, G
The use of Diesel engines has strongly increased during the last years and now represents 40% of the sales in Europe and up to 50% of the number of cars in circulation for some countries. This success is linked not only to the economical aspect of the use of such vehicles, but also to the recent technological improvements of these engines. The new technical solutions (high pressure direct injection, turbocharger) have indeed allowed the increase of these engine performances while decreasing their fuel consumption, pollutant emissions and noise level. From an environment point of view, Diesel engines are nevertheless penalizedmore » by their particulates and NOx emissions. The study and the treatment of the particulate, highly criticized for their potential impact on health, are the subject of numerous works of characterizations and developments. PSA Peugeot Citroen has recently (2000) launched its particulate filter technology on several types of vehicles (500,000 vehicles with DPF have been sold today). In order to evaluate the durability of this technology over a long period of time, a study program has been set-up by ADEME (French Environmental Agency), IFP Powertrain, PSA Peugeot Citroen and Taxis G7 (a Parisian taxis Company). The objective is to study the evolution of five taxis and their after-treatment system performances over 80,000km mileage--which corresponds to the recommended mileage before the first DPF maintenance--in hard urban driving conditions, as well over 120,000km, after the DPF maintenance and remanufacturing. More specifically, the following evaluations are being performed at regular intervals (around 20,000km): regulated gaseous pollutant emissions on NEDC cycle, particulate emissions and unregulated pollutant emissions. The results obtained until now have not shown any degradation of the particulate filter efficiency (more than 90%). This paper presents the methodology set-up, and the explanation of the first results obtained. Indeed, a more specific study has shown that most of the aerosols, measured with SMPS are composed of liquid fractions, mainly sulfates due to the sulphur coming from the fuel but also from the lubricant. The impact of sulfates stored on the catalyst surface during low temperature running phases and removed during high temperature running phases has been also outlined.« less
Rivera, A.L.; Fowler, V.L.; Justice, G.V.
1983-12-29
Transport of nuclear fuel microspheres through a wash liquid is facilitated by feeding a slurry containing the microspheres into the wash liquid via a column having a vibrating tubular screen located under its lower end.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (c) Control device means the air pollution control equipment used to remove particulate matter... air pollution control device. (e) Charge means the addition of iron and steel scrap or other materials... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...
Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee
2017-10-17
Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melody, M.
Waste Technologies Industries (WTI; East Liverpool, Ohio) is trying to wing what it hopes will be its final battle in a 13-year, $160 million war with the government, and community and environmental groups. The company since 1980 has sought EPA approval to operate a hazardous waste incinerator in East Liverpool, Ohio. WTI late last year conducted a pre-test burn, or shakedown, during which the incinerator burned certain types of hazardous waste. The test demonstrates the incinerator's performance under normal operating conditions, Regulatory authorities, including EPA and the Ohio Environmental Protection Agency (OEPA), monitored activity during the shakedown, which was limitedmore » to 720 hours of operation. In accordance with RCRA requirements, the company in March conducted a trial burn to demonstrate that the incinerator meets permit standards. WTI's permit specifies three performance parameters the incinerator must meet -- particulate and hydrogen chloride emissions limits, and destruction removal efficiencies (DREs).« less
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Lamarque, Jean-François
2018-03-01
Particulate matter with the diameter smaller than 2.5 μm (PM2.5) poses health threats to human population. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5%-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause of the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Our results suggest climate change impact needs to be accounted for to define the future emission standards necessary to meet air quality standard.
Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.
Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung
2015-03-17
NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution.
NASA Astrophysics Data System (ADS)
Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.
2011-12-01
Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.
40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions
Code of Federal Regulations, 2014 CFR
2014-07-01
... for decay Xenon 0.5/wk Based on xenon half-life of 5.3 days; Douglas bags: Released within one week Xenon 1 Provides no reduction of exposure to general public. Venturi scrubbers ParticulatesGases 0.051... precipitators Particulates 0.05 Not applicable for gaseous radionuclides Xenon traps Xenon 0.1 Efficiency is...
40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions
Code of Federal Regulations, 2012 CFR
2012-07-01
... for decay Xenon 0.5/wk Based on xenon half-life of 5.3 days; Douglas bags: Released within one week Xenon 1 Provides no reduction of exposure to general public. Venturi scrubbers ParticulatesGases 0.051... precipitators Particulates 0.05 Not applicable for gaseous radionuclides Xenon traps Xenon 0.1 Efficiency is...
Effects of Aftermarket Control Technologies on Gas and ...
Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with varying power output (230 kW, 400 kW, and 600 kW) at 50% and 90% load to determine concentrations of gaseous (GROS) and PM reactive oxygen species (PMROS). In addition, the influence of three modern emission control technologies on ROS emissions was evaluated: active and passive diesel particulate filters (A-DPF and P-DPF) and a diesel oxidation catalyst (DOC). PMROS made up 30-50% of the total ROS measured without aftermarket controls. All applied controls removed PMROS by more than 75% on average. However, the oxidative potential of PM downstream of these devices was not diminished at the same rate and particles surviving the A-PDF had an even higher oxidative potential on a per PM mass basis compared to the particles emitted by uncontrolled gensets. Further, the GROS as compared to PMROS emissions were not reduced with the same efficiency (<36%). GROS concentrations were highest with the DOC in use, indicating continued formation of GROS with this control. Correlation analyses showed that PMROS and to a lesser extent GROS have a good correlation with semi-volatile organic carbon (OC1) sub-fraction. In addition, results suggest that chemical composition, rather than PM size, is re
Heredia Rivera, Birmania; Gerardo Rodriguez, Martín
2016-10-01
Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74-10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city.
Heredia Rivera, Birmania; Gerardo Rodriguez, Martín
2016-01-01
Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city. PMID:27706087
Gan, Zhiwei; Sun, Hongwen; Yao, Yiming; Zhao, Yangyang; Li, Yan; Zhang, Yanwei; Hu, Hongwei; Wang, Ruonan
2014-08-01
A nationwide investigation on the occurrence of artificial sweeteners (ASs) was conducted by collecting 98 paired outdoor dust and soil samples from mainland China. The ASs were widely detected in Chinese atmospheric dry deposition and soil samples, at concentrations up to 6450 and 1280 ng/g, respectively. To give a picture on AS distribution and source in the whole environment, the concentrations and seasonal variations of ASs in Tianjin were studied, including atmosphere, soil, and water samples. The AS levels were significantly higher in Haihe river at TJW (a sampling site in central city) in winter, while no obviously seasonal trends were obtained at BYL (close to a AS factory) and the site at a wastewater treatment plant. Saccharin, cyclamate, and acesulfame were the dominant ASs in both gas and particulate phase, with concentrations varying from 0.02 to 1940 pg/m(3). Generally, gas phase concentrations of the ASs were relatively higher in summer, while opposite results were acquired for particulate phase. Wet and dry deposition fluxes were calculated based on the measured AS levels. The results indicated that both wet and dry deposition could efficiently remove ASs in the atmosphere and act as important pollutant sources for the ASs in surface environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Fluidizable particulate materials and methods of making same
Gupta, Raghubir P.
1999-01-01
The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.
Advanced hybrid particulate collector and method of operation
Miller, Stanley J.
1999-01-01
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.
Advanced hybrid particulate collector and method of operation
Miller, S.J.
1999-08-17
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.
Optimizing the milling characteristics of Al-SiC particulate composites
NASA Astrophysics Data System (ADS)
Karthikeyan, R.; Raghukandan, K.; Naagarazan, R. S.; Pai, B. C.
2000-12-01
The present investigation focuses on the face milling characteristics of LM25Al-SiC particulate composites produced through stir casting. Experiments were conducted according to an L27 orthogonal array and mathematical models were developed for such machining characteristics as flank wear, specific energy and surface roughness whose adequacy was checked. The insignificant effects present in the models were eliminated using a t-test. Goal programming was employed to optimize the cutting conditions by considering such primary objectives as maximizing the metal removal rate and minimizing tool wear, specific energy and surface roughness.
Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6
Jones, Robert L.; Otey, Milton G.; Perkins, Roy W.
1982-01-01
This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.
NASA Technical Reports Server (NTRS)
Wu, Jun-ru (Inventor); Hitt, Darren (Inventor); Vachon, Nicholas M. (Inventor); Chen, Di (Inventor); Marshall, Jeffrey S. (Inventor)
2016-01-01
The invention disclosed herein provides for high particle removal rate and/or heat transfer from surfaces. The device removes particulate matter from a surface using a bounded vortex generated over the surface, with suction in the vortex center and jets for blowing air along the periphery. The jets are tilted in the tangential direction to induce vortex motion within the suction region. The vortex is said to be bounded because streamlines originating in the downward jets are entrained back into the central vortex.
Drying of pulverized material with heated condensible vapor
Carlson, Larry W.
1986-01-01
Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.
METAL RECOVERY/REMOVAL USING NON-ELECTROLYTIC METAL RECOVERY
Radiator repair shops most commonly use hot caustic solutions to clean radiator sections prior to resoldering. he hot caustic, or "boil-out" solutions as they are cabled in the trade, become contaminated with dirt, rust flakes, paint flakes and miscellaneous particulate debris. n...
D'Agostino, H B; Park, Y; Moyers, J P; vanSonnenberg, E; Sanchez, R B; Goodacre, B W; Kim, Y H; Vieira, M V
1992-08-01
The effects of stopcocks on percutaneous fluid drainage were tested in a laboratory model by using a standard stopcock (6-French inner diameter) and a prototype stopcock (9-French inner diameter) connected to 8-, 10-, 12-, 14-, and 16-French catheters. Catheters were immersed in water alone or in viscous fluid with particulate matter, and the system was connected to low wall suction or gravity drainage. The average volume of fluid aspirated in a given period with and without a stopcock was compared for each catheter. The standard stopcock decreased drainage efficiency for these catheters by 13-42%. This decreased drainage efficiency was worse with the larger catheters. Particulate fluid blocked the stopcock connection for all catheters. With the prototype stopcock, drainage of water alone was reduced by 0-9% for the catheters of different sizes. Particulate fluid did not obstruct the prototype stopcock with any size catheter. With gravity drainage, the volume of water aspirated was reduced by 12-42% with the standard stopcock and by 3-6% with the prototype stopcock. These data suggest that stopcock connections greatly influence the efficiency of the percutaneous drainage systems. Stopcocks with larger inner diameters may improve drainage over that achievable with the stopcocks that are currently available.
Characterization of Dust on Solar Devices in Southern Nevada =
NASA Astrophysics Data System (ADS)
Sylva, Jason R.
Dust can impact the efficiency of solar energy collection devices, and in some arid environments, dust can reduce solar energy efficiency up to 30%. Reducing the impact of dust is therefore critical in the expansion of solar technology throughout regions where solar energy is utilized. Characterization of suspended and settled particulate matter can assist in developing strategies for dust mitigation. With the characterization of suspended and settled particulate in remote, rural, and urban environments, more informed decisions can be made regarding the selection of coating material on solar panels as well as developing cleaning and maintenance procedures. Particulate matter that deposits on a solar surface can potentially interact with solar radiation, precipitation, or even directly with the surface material itself. These interactions could lead to the formation of coatings that reduce/block radiation and/or degrade the integrity of the surface. When you extrapolate these possibilities to a larger scale preliminary characterization of dust will play a vital role when planning the construction of a solar energy facility. A variety of sampling techniques were employed to obtain particulate matter for characterization. These included direct collection of particulates from solar surfaces: via vacuum and wipe sample collection on panels, tacky dot adhesive slides and plain slides that were exposed at different intervals, desert vugs that are natural particulate collectors, as well as high volume air sampling for collection of suspended particulates. High volume air sampling was performed using glass fiber filters and 2 micron stainless steel screens. Direct collection of settled particulates was performed by sampling from solar surfaces, vugs, and by collection on exposed glass surfaces. Collection onto glass surfaces was achieved by setting up a plain microscope slide, tacky dot slides, and panes of glass. The sampling methodology allowed for the collection of samples for analyses using various analytical methods that included Raman microspectroscopy, pyrolysis gas chromatography mass spectrometry, ion chromatography and inductively coupled plasma mass spectrometry. These various methods allow for identification of organic and inorganic components as well the mineral distribution of suspended and settled particulate material. None None None None None
Technology Base Enhancement Program. Metal Matrix Composites
1993-08-30
efficiency, improved structural reliability, and reduced maintenance when compared to carbon fiber reinforced composites . Aerospace engines (in particular...different materials. The composite consists of a metal matrix reinforced with particulates, flakes, whiskers,3 continuous fibers , filaments, wires, or...graphite and carbon to metals. They come in three general forms: particulates (or particles) with a length to diameter ratio of about 1; chopped fibers or
Fumigation of Alcohol in a Light Duty Automotive Diesel Engine
NASA Technical Reports Server (NTRS)
Broukhiyan, E. M. H.; Lestz, S. S.
1981-01-01
A light-duty automotive Diesel engine was fumigated with methanol in amounts up to 35% and 50% of the total fuel energy respectively in order to determine the effect of alcohol fumigation on engine performance at various operating conditons. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific nitrogen oxide concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears that ethanol fumigation, like methanol fumigation, while lowering the mass of particulated emitted, does enhance the biological activity of that particulate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... control system designed to remove gaseous and particulate flourides from exhaust gases which are captured... means a building unit which houses a group of electrolytic cells in which aluminum is produced. Potroom group means an uncontrolled potroom, a potroom which is controlled individually, or a group of potrooms...
Code of Federal Regulations, 2013 CFR
2013-07-01
... control system designed to remove gaseous and particulate flourides from exhaust gases which are captured... means a building unit which houses a group of electrolytic cells in which aluminum is produced. Potroom group means an uncontrolled potroom, a potroom which is controlled individually, or a group of potrooms...
Code of Federal Regulations, 2012 CFR
2012-07-01
... control system designed to remove gaseous and particulate flourides from exhaust gases which are captured... means a building unit which houses a group of electrolytic cells in which aluminum is produced. Potroom group means an uncontrolled potroom, a potroom which is controlled individually, or a group of potrooms...
Code of Federal Regulations, 2014 CFR
2014-07-01
... control system designed to remove gaseous and particulate flourides from exhaust gases which are captured... means a building unit which houses a group of electrolytic cells in which aluminum is produced. Potroom group means an uncontrolled potroom, a potroom which is controlled individually, or a group of potrooms...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control system designed to remove gaseous and particulate flourides from exhaust gases which are captured... means a building unit which houses a group of electrolytic cells in which aluminum is produced. Potroom group means an uncontrolled potroom, a potroom which is controlled individually, or a group of potrooms...
Many structural BMPs, when appropriately designed and constructed, capture and treat urban runoff to remove particulate-associated pollutants. However, field monitoring programs show these same structures provide relatively little reduction in the loadings of dissolved constitue...
NASA Astrophysics Data System (ADS)
Fong, A. L.; Khandoker, N. A. N.; Debnath, S.
2018-04-01
This paper presents an experimental study on the mechanical performance of sugarcane bagasse fiber reinforced epoxy composite. Tensile and flexural properties of the composites were investigated in this research. Different weightage of short fiber and fiber particulates were utilized to study their effects on the mechanical performance of the composites in terms of tensile and flexural properties. 1% of nano-silica was reinforced to investigate its effect on the mechanical performance of the composites. Hand lay-up composite molding process was used to fabricate the composite samples. During fabrication, ultrasonic mixing was carried out to study the effects on mechanical performance of the fiber particulate reinforced composites. In overall, ultrasonic mixing and addition of nano-silica particles has improved the mechanical performance of the fiber particulate composites. Morphology analysis on surface of composites has shown the removal of air bubbles and deagglomeration. 1wt% of short fiber reinforced composite exhibits the highest tensile and flexural properties among all the samples. Sugarcane bagasse particulates reinforced composites were shown to have better performance compared to short fiber reinforced composites when the wt% of the fiber increase.
NASA Technical Reports Server (NTRS)
Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy
1999-01-01
The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.
36. VIEW OF SOUTH END OF EAST BOILER ROOM LOOKING ...
36. VIEW OF SOUTH END OF EAST BOILER ROOM LOOKING SOUTHWEST. THE CYLINDRICAL TANKS IN THE FOREGROUND CONTAIN AN ION-EXCHANGE RESIN FOR REMOVING CALCIUM FROM THE BOILER FEED TO REDUCE WATER "HARDNESS". THE SHALLOW TANK IN THE RIGHT BACKGROUND IS A DIATOMACEOUS EARTH FILTER TO REMOVE PARTICULATE MATTER FROM THE BOILER FEED. THE ION-EXCHANGE WATER SOFTENING SYSTEM WAS INSTALLED IN 1977. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
Jones, R.L.; Otey, M.G.; Perkins, R.W.
1980-11-24
This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.
Apparatus and process for controlling fluidized beds
Rehmat, Amirali G.; Patel, Jitendra G.
1985-10-01
An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.
Apparatus for controlling fluidized beds
Rehmat, Amirali G.; Patel, Jitendra G.
1987-05-12
An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.
NASA Astrophysics Data System (ADS)
Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi
2017-03-01
Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.
NASA Astrophysics Data System (ADS)
Li, Guiying; Sun, Hongwei; Zhang, Zhengyong; An, Taicheng; Hu, Jianfang
2013-09-01
Semi-volatile organic compounds (SVOCs) air pollution caused by municipal garbage compressing process was investigated at a garbage compressing station (GCS). The most abundant contaminants were phthalate esters (PAEs), followed by polycyclic aromatic hydrocarbons (PAHs) and organic chlorinated pesticides (OCPs). ∑16PAHs concentrations ranged from 58.773 to 68.840 ng m-3 in gas and from 6.489 to 17.291 ng m-3 in particulate phase; ∑20OCPs ranged from 4.181 to 5.550 ng m-3 and from 0.823 to 2.443 ng m-3 in gas and particulate phase, respectively; ∑15PAEs ranged from 46.498 to 87.928 ng m-3 and from 414.765 to 763.009 ng m-3 in gas and particulate phase. Lung-cancer risk due to PAHs exposure was 1.13 × 10-4. Both non-cancer and cancer risk levels due to OCPs exposure were acceptable. Non-cancer hazard index of PAEs was 4.57 × 10-3, suggesting safety of workers as only exposure to PAEs at GCS. At pilot scale, 60.18% of PAHs, 70.89% of OCPs and 63.2% of PAEs were removed by an integrated biotrickling filter-photocatalytic reactor at their stable state, and health risk levels were reduced about 50%, demonstrating high removal capacity of integrated reactor.
Watts, Winthrop F.; Gladis, David D.; Schumacher, Matthew F.; Ragatz, Adam C.; Kittelson, David B.
2010-01-01
A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-μm impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated with diesel emissions. The calibration factor corrected correlation coefficient (R2) between the underground TC and photometer measurements was 0.93. The main issues holding back the use of a photometer for real-time estimation of DPM in an underground mine are the removal of non-DPM-associated particulate matter from the aerosol stream using devices, such as a cyclone and/or impactor and calibration of the photometer to mine-specific aerosol. PMID:20410071
Characterizing dry deposition of mercury in urban runoff
Fulkerson, M.; Nnadi, F.N.; Chasar, L.S.
2007-01-01
Stormwater runoff from urban surfaces often contains elevated levels of toxic metals. When discharged directly into water bodies, these pollutants degrade water quality and impact aquatic life and human health. In this study, the composition of impervious surface runoff and associated rainfall was investigated for several storm events at an urban site in Orlando, Florida. Total mercury in runoff consisted of 58% particulate and 42% filtered forms. Concentration comparisons at the start and end of runoff events indicate that about 85% of particulate total mercury and 93% of particulate methylmercury were removed from the surface before runoff ended. Filtered mercury concentrations showed less than 50% reduction of both total and methylmercury from first flush to final flush. Direct comparison between rainfall and runoff at this urban site indicates dry deposition accounted for 22% of total inorganic mercury in runoff. ?? 2007 Springer Science+Business Media B.V.
Apparatus for measuring surface particulate contamination
Woodmansee, Donald E.
2002-01-01
An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.
Analysis of Particulate and Fiber Debris Samples Returned from the International Space Station
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Coston, James E.
2014-01-01
During the period of International Space Station (ISS) Increments 30 and 31, crewmember reports cited differences in the cabin environment relating to particulate matter and fiber debris compared to earlier experience as well as allergic responses to the cabin environment. It was hypothesized that a change in the cabin atmosphere's suspended particulate matter load may be responsible for the reported situation. Samples were collected and returned to ground-based laboratories for assessment. Assessments included physical classification, optical microscopy and photographic analysis, and scanning electron microscopy (SEM) evaluation using energy dispersive X-ray spectrometry (EDS) methods. Particular points of interest for assessing the samples were for the presence of allergens, carbon dioxide removal assembly (CDRA) zeolite dust, and FGB panel fibers. The results from the physical classification, optical microscopy and photographic analysis, and SEM EDS analysis are presented and discussed.
Quantifying particulate and colloidal release of radionuclides in waste-weathered hanford sediments.
Perdrial, Nicolas; Thompson, Aaron; LaSharr, Kelsie; Amistadi, Mary Kay; Chorover, Jon
2015-05-01
At the Hanford Site in the state of Washington, leakage of hyperalkaline, high ionic strength wastewater from underground storage tanks into the vadose zone has induced mineral transformations and changes in radionuclide speciation. Remediation of this wastewater will decrease the ionic strength of water infiltrating to the vadose zone and could affect the fate of the radionuclides. Although it was shown that radionuclide host phases are thermodynamically stable in the presence of waste fluids, a decrease in solution ionic strength and pH could alter aggregate stability and remobilize radionuclide-bearing colloids and particulate matter. We quantified the release of particulate, colloidal, and truly dissolved Sr, Cs, and I from hyperalkaline-weathered Hanford sediments during a low ionic strength pore water leach and characterized the released particles and colloids using electron microscopy and X-ray diffraction. Although most of the Sr, Cs, and I was released in dissolved form, between 3 and 30% of the Sr and 4 to 18% of the Cs was associated with a dominantly zeolitic mobile particulate fraction. Thus, the removal of hyperalkaline wastewater will likely induce Sr and Cs mobilization that will be augmented by particulate- and colloid-facilitated transport. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Performance of particulate containment at nanotechnology workplaces
NASA Astrophysics Data System (ADS)
Lo, Li-Ming; Tsai, Candace S.-J.; Dunn, Kevin H.; Hammond, Duane; Marlow, David; Topmiller, Jennifer; Ellenbecker, Michael
2015-11-01
The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These control assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37 % reduction on the particle concentration in the worker's breathing zone, and produce a 42 % lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15-20 % higher ultrafine (<500 nm) particle concentrations at the source and at the worker's breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored.
NASA Astrophysics Data System (ADS)
Azzam, Ahmed M.; Shenashen, Mohamed A.; Selim, Mahmoud M.; Yamaguchi, Hitoshi; El-Sewify, Islam M.; Kawada, Satoshi; Alhamid, Abdulaziz A.; El-Safty, Sherif A.
2017-10-01
Mesoporous nanospherical necklaces (NSN) of inorganic α-Fe core-organic shell and ethylenediaminetetraacetic acid (EDTA) were fabricated. The necklaces were 1 μm in length and 50 nm in thickness, with massive nanospherical particles connecting and overlapping in a neat micro-/nano-necklace archery cage for capturing/trapping of As(V) and Cr(VI) species from water sources. The α-Fe core and the dressing shell of EDTA provided numerous active sites for adsorption, which led to 100% adsorption uptake of these toxic ions. The adsorption isotherms revealed that NSN adsorbent with mesoporous caves and organic-decorated surfaces was promising and effective for the spontaneous and endothermic removal of both ions from contaminated water. The NSN structure exhibited long-term stability. The adsorption efficiency and uptake of the deleterious arsenic and chromium species were achieved after multi-particulate processing of reuse cycles. The pH-dependent removal of As(V) and Cr(VI) species is an emerging topic in selective adsorption assays among competitive ions. Furthermore, the ion-selective conditions at pH 5 for As(V) and pH 7 for Cr(VI) significantly affected the adsorption capacity and affinity of 306.7 and 406.5 mg g-1 into NSN cages, respectively. The obtained results could be used as a basis to provide effective and low-cost products for the purification of wastewater resources from toxic metals.
NASA Astrophysics Data System (ADS)
Wu, Qingru; Gao, Wei; Wang, Shuxiao; Hao, Jiming
2017-09-01
Iron and steel production (ISP) is one of the significant atmospheric Hg emission sources in China. Atmospheric mercury (Hg) emissions from ISP during 2000-2015 were estimated by using a technology-based emission factor method. To support the application of this method, databases of Hg concentrations in raw materials, technology development trends, and Hg removal efficiencies of air pollution control devices (APCDs) were constructed through national sampling and literature review. Hg input to ISP increased from 21.6 t in 2000 to 94.5 t in 2015. In the various types of raw materials, coking coal and iron concentrates contributed 35-46 and 25-32 % of the total Hg input. Atmospheric Hg emissions from ISP increased from 11.5 t in 2000 to 32.7 t in 2015 with a peak of 35.6 t in 2013. Pollution control promoted the increase in average Hg removal efficiency, from 47 % in 2000 to 65 % in 2015. During the study period, sinter/pellet plants and blast furnaces were the largest two emission processes. However, emissions from roasting plants and coke ovens cannot be ignored, which accounted for 22-34 % of ISP's emissions. Overall, Hg speciation shifted from 50/44/6 (gaseous elemental Hg (Hg0)/gaseous oxidized Hg (HgII)/particulate-bound Hg (Hgp)) in 2000 to 40/59/1 in 2015, which indicated a higher proportion of Hg deposition around the emission points. Future emissions of ISP were expected to decrease based on the comprehensive consideration crude-steel production, steel scrap utilization, energy saving, and pollution control measures.
Developing particulate thin filter using coconut fiber for motor vehicle emission
NASA Astrophysics Data System (ADS)
Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.
2016-03-01
Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.
Martin, Frank S.; Silver, Gary L.
1991-04-30
A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.
The EUWP was developed to treat challenging water sources with variable turbidity, chemical contamination, and very high total dissolved solids (TDS), including seawater, during emergency situations when other water treatment facilities are incapacitated. The EUWP components incl...
40 CFR 63.9631 - What are my monitoring requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintain a bag leak detection system to monitor the relative change in particulate matter loadings... of ensuring the proper functioning of removal mechanisms. (3) Check the compressed air supply of... interior for air leaks. (8) Inspect fans for wear, material buildup, and corrosion through quarterly visual...
40 CFR 467.02 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...
40 CFR 467.02 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...
40 CFR 467.02 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... includes air pollution control scrubbers which are sometimes used to control fumes from chemical solution... cool. (s) Wet scrubbers are air pollution control devices used to remove particulates and fumes from... every plant in a subcategory, but when present is an integral part of the aluminum forming process. (c...
Time- and cost-saving apparatus for analytical sample filtration
William R. Kenealy; Joseph C. Destree
2005-01-01
Simple and cost-effective protocols were developed for removing particulates from samples prior to analysis by high performance liquid chromatography and gas chromatography. A filter and vial holder were developed for use with a 96-well filtration plate. The device saves preparation time and costs.
The Partitioning of Triclosan between Aqueous and Particulate Phases in the Hudson River Estuary
The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Tricl...
Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari
2017-02-01
Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie
This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.
Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters
NASA Astrophysics Data System (ADS)
Meyers, Philip A.; Owen, Robert M.
1980-11-01
Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contribute organic components which partially replace potamic materials removed by sinking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research
Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less
Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.
Park, Jeongmin; Lee, Sang-Sup
2018-04-25
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.
GHG warming impact on the removal and transport of particulate matter: mean and extreme pollution
NASA Astrophysics Data System (ADS)
Xu, Y.; Lamarque, J. F.
2016-12-01
Particulate matter with a diameter smaller than 2.5 micrometers (PM2.5) poses health threats to human populations. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with a chemistry-climate model, we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the main cause for the increase in the PM2.5 column burden. Regionally, over North America and East Asia, the shift of future precipitation toward heavy intensity events, contributes to weakened wet removal flux. With the daily PM2.5 output, we also find that the well-known poleward shift of jet stream under global warming contributes to more frequent stagnation events (and less frequent cyclone passages) in northern hemispheric mid-latitude, which further enhances the occurrence of extreme pollution events.
Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K
2012-04-01
Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. <0.45 μm) iron. Since coagulation and sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH < 4.4, activities of Fe(iii) are strongly and negatively correlated with pH. Geochemical modelling suggests that the activity of Fe(iii) is controlled by the solubility of hydrous ferric oxides and oxyhydroxysulfates, supported by scanning and transmission electron microscopic analysis of solids. Nevertheless, the waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete iron retention in individual systems and can thus inform future design criteria. The successful application of this low cost and rapid electrochemical method demonstrates its significant potential for real-time, on-site monitoring of iron-enriched waters and may in future substitute traditional analytical methods.
Drying of pulverized material with heated condensible vapor
Carlson, L.W.
1984-08-16
Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.
Weed seed spread and its prevention: The role of roadside wash down.
Bajwa, Ali Ahsan; Nguyen, Thi; Navie, Sheldon; O'Donnell, Chris; Adkins, Steve
2018-02-15
Vehicles are one of the major vectors of long-distance weed seed spread. Viable seed removed from vehicles at roadside wash down facilities was studied at five locations in central Queensland, Australia over a 3-year period. Seed from 145 plant species, belonging to 34 different families, were identified in the sludge samples obtained from the wet particulate matter collection pit of the wash down facilities. Most of the species were annual forbs (50%) with small or very small seed size (<2 mm in diameter). A significant amount of seed from the highly invasive, parthenium weed was observed in these samples. More parthenium weed seed were found in the Rolleston facility and in the spring, but its seed was present in all facilities and in all seasons. The average number of viable seed found within every ton of dry particulate matter removed from vehicles was ca. 68,000. Thus, a typical wash down facility was removing up to ca. 335,000 viable seed from vehicles per week, of which ca. 6700 were parthenium weed seed. Furthermore, 61% of these seed (ca. 200,000) were from introduced species, and about half of these (35% of total) were from species considered to be weeds. Therefore, the roadside wash down facilities found throughout Queensland can remove a substantial amount of viable weed seed from vehicles, including the invasive parthenium weed, and the use of such facilities should be strongly encouraged. Copyright © 2017 Elsevier Ltd. All rights reserved.
Engineering evaluation of the use of the Timberline condensing economizer for particulate collection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, T.; Serry, H.
1980-12-01
The possible use of the Timberline Industries condensing economizer as a particulate collection device on commercial sector boilers which are being converted to coal-oil mixture (COM) firing has been considered. The saturation temperature of the water vapor in the flue gas has been estimated as a function of excess air and ambient relative humidity. Also, boiler stack losses have been estimated for a variety of operating conditions including stack temperatures below the dew point. The condensing economizer concept will be limited to applications which can use the low temperature heat including water heating and forced air space heating. The potentialmore » particulate collection efficiency, water disposal, and similar heat recovery devices are discussed. A cost analysis is presented which indicates that the economizer system is not competitive with a cyclone but is competitive with a baghouse. The use of the cyclone is limited by collection efficiency. The measurement of COM flyash particle size distribution is recommended.« less
Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine
NASA Technical Reports Server (NTRS)
Heisey, J. B.; Lestz, S. S.
1981-01-01
A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.
Water softening by induced crystallization in fluidized bed.
Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel
2016-12-01
Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process. Copyright © 2016. Published by Elsevier B.V.
del Pozo, R; Diez, V; Salazar, G
2002-01-01
A pilot-scale anaerobic fixed film reactor (AFFR) with vertically arranged PVC tubes as biomass carrier, treating poultry slaughterhouse wastewater was started-up in 74 days at temperatures between 20-24 degrees C. The start-up process consisted of a long acclimatization phase followed by a low loaded growth phase, a gradual increase of OLR upto 9.2 kg COD/m3d, and a final maturation phase at moderated loads of 2.7 kg COD/m3d at which total COD removal efficiencies of 57% were achieved. Alkalinity ratio IA:PA was found to be the best control parameter to avoid VFA accumulation. OLR increase based on pH control was not satisfactory because changes in CO2 solubility caused daily by temperature and flow variations led to pH oscillations of 0.2 units. The low wastewater alkalinity, 260 mg/l CaCO3 was insufficient to buffer the pH system, therefore the pH decrease associated with the VFA accumulation was not easily detected and could not be used as a way of OLR control. Organic matter removal took place by accumulation and biodegradation processes. Limitation in the reactor hydrodynamics and particulate fraction hydrolysis was detected at high flow rates.
Data collected between January to December, 1999 were polled from the USEPA Aerometric Information Retrieval System. For the purpose of this analysis, data which were flagged with qualifiers related to laboratory and monitor malfunctions were removed from the data set. Analys...
Martin, F.S.; Silver, G.L.
1991-04-30
A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.
In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...
Yang, Ralph T.; Shen, Ming-Shing
1981-01-01
A method for removing sulfurous gases such as H.sub.2 S and COS from a fuel gas is disclosed wherein limestone particulates containing iron sulfide provide catalytic absorption of the H.sub.2 S and COS by the limestone. The method is effective at temperatures of 400.degree. C. to 700.degree. C. in particular.
This report evaluates the DuPont/Oberlin microfiltration technology’s ability to remove metals (present in soluble or insoluble form) and particulates from liquid wastes while producing a dry filter cake and a filtrate that meet applicable disposal requirements. This report also ...
Huq, A; Xu, B; Chowdhury, M A; Islam, M S; Montilla, R; Colwell, R R
1996-07-01
Plankton to which cells of Vibrio cholerae O1 and/or O139 were attached was introduced into 0.5% Instant Ocean microcosms maintained at 25 degrees C. The bulk of the plankton and associated particulates was removed with a filter constructed from either nylon net and one of several different types of sari material, the latter being very inexpensive and readily available in villages in Bangladesh, where V. cholerae is endemic. V. cholerae was enumerated before and after filtration to evaluate the efficiency of the filtration procedure. The results obtained indicate that 99% of V. cholerae, i.e., those cells attached to plankton, were removed from the water samples. Epidemic strains of V. cholerae O1 and O139 from various geographical sources, including Bangladesh, Brazil, India, and Mexico, were included in the experiments. Removal of vibrios from water by this simple filtration method was found to yield consistent results with all strains examined in this study. Thus, it is concluded that a simple filtration procedure involving the use of domestic sari material can reduce the number of cholera vibrios attached to plankton in raw water from ponds and rivers commonly used for drinking. Since untreated water from such sources serves as drinking water for millions of people living in developing countries (e.g., Bangladesh), filtration should prove effective at reducing the incidence and severity of outbreaks, especially in places that lack fuel wood for boiling water and/or municipal water treatment plants. The results of this study provide the basis for determining such reductions, which are to be carried out in the near future.
Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui
2013-01-01
This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.
Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Derenne; Robin Stewart
2009-09-30
This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{submore » x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.« less
The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300
Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
Precipitation scavenging of polychlorinated biphenyl congeners in the great lakes region
NASA Astrophysics Data System (ADS)
Murray, Michael W.; Andren, Anders W.
Ten precipitation events were sampled in the fall of 1986 in Madison, WI and analyzed for individual congener and total polychlorinated biphenyl (PCB) levels in both the dissolved and particulate phases. Total PCB concentrations were generally at the lower end of ranges recently reported for precipitation. Operationally defined dissolved and particulate phase congener distribution patterns for the two events of highest concentration were qualitatively similar to gas-phase and particle-bound patterns for northern Wisconsin air samples. Higher than predicted dissolved-phase concentrations may indicate non-equilibrium processes during scavenging and/or sample processing, the presence of colloids and micro-particulates, and/or more efficient gas-phase transfer to hydrometeors with organic coatings. Observed organic carbon-normalized distribution coefficients increased slightly with increasing octanol-water partition coefficient, giving the relationship log Koc = 0.22 log Kow + 4.64. The data indicate that a third organic-rich colloidal phase could be influencing partitioning, and could explain the higher than expected apparent gas scavenging efficiency for PCBs from the atmosphere. Precipitation-weighted mean fluxes of PCBs in the dissolved and particulate phases were 1.2 and 1.4 μg m -2 year -1, respectively, indicating that precipitation remains a significant source of PCBs to the upper Great Lakes.
Pavlovic, Jelica; Holder, Amara L; Yelverton, Tiffany L B
2015-09-01
Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) and varying power output (230 kW, 400 kW, and 600 kW) at 50% and 90% load to determine concentrations of gaseous (GROS) and PM reactive oxygen species (PMROS). In addition, the influence of three modern emission control technologies on ROS emissions was evaluated: active and passive diesel particulate filters (A-DPF and P-DPF) and a diesel oxidation catalyst (DOC). PMROS made up 30-50% of the total ROS measured without aftermarket controls. All applied controls removed PMROS by more than 75% on average. However, the oxidative potential of PM downstream of these devices was not diminished at the same rate and particles surviving the A-PDF had an even higher oxidative potential on a per PM mass basis compared to the particles emitted by uncontrolled gensets. Further, the GROS as compared to PMROS emissions were not reduced with the same efficiency (<36%). GROS concentrations were highest with the DOC in use, indicating continued formation of GROS with this control. Correlation analyses showed that PMROS and to a lesser extent GROS have a good correlation with semivolatile organic carbon (OC1) subfraction. In addition, results suggest that chemical composition, rather than PM size, is responsible for differences in the PM oxidative potential.
Sensitivity of aerosol loading and properties to cloudiness
NASA Astrophysics Data System (ADS)
Iversen, T.; Seland, O.; Kirkevag, A.; Kristjansson, J. E.
2005-12-01
Clouds influence aerosols in various ways. Sulfate is swiftly produced in liquid phase provided there is both sulfur dioxide and oxidants available. Nucleation and Aitken mode aerosol particles efficiently grow in size by collision and coagulation with cloud droplets. When precipitation is formed, aerosol and precursor gases may be quickly removed bay rainout. The dynamics associated with clouds in some cases may swiftly mix aerosols deeply into the troposphere. In some cases Aitken-mode particles may be formed in cloud droplets by splitting agglomerates of particulate matter such as black carbon In this presentation we will discuss how global cloudiness may influence the burden, residence time, and spatial distribution of sulfate, black carbon and particulate organic matter. A similar physico-chemical scheme for there compounds has been implemented in three generations of the NCAR community climate model (CCM3, CAM2 and CAM3). The scheme is documented in the literature and is a part of the Aerocom-intercomparison. There are many differences between these models. With respect to aerosols, a major difference is that CAM3 has a considerably higher global cloud volume and more then twice the amount of cloud water than CAM2 and CCM3. Atmospheric simulations have been made with prescribed ocean temperatures. It is slightly surprising to discover that certain aspects of the aerosols are not particularly sensitive to these differences in cloud availability. This sensitivity will be compared to sensitivities with respect to processing in deep convective clouds.
Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D
2009-09-01
Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems.
Conductometric Soot Sensor for Automotive Exhausts: Initial Studies
Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf
2010-01-01
In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction. PMID:22294888
Conductometric soot sensor for automotive exhausts: initial studies.
Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf
2010-01-01
In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction.
Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman
2011-01-15
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.
PCB-Caulk Replacement Project Johnson Space Center Houston, TX
NASA Technical Reports Server (NTRS)
Young, William M.; Stanch, Penney M.; Molenda, William
2011-01-01
Wet method reduced exposure by minimizing overall respirable particulate release. Dry method didn't introduce delays for primer/caulk application. Removed caulks came in many forms, from dry powdery to tarry sticky. Varying textures were not sampled or packaged differently. During the course of the project, EPA modified recommended practices to include full containment for exterior caulk removal. Changes are ongoing. Initial recommendations were directed to school buildings. EPA is researching risks due to caulk. Exposure guidance lacking except for 2 of 209 PCB congeners. Work was safely completed on schedule and under budget.
Apparatus for controlling fluidized beds
Rehmat, A.G.; Patel, J.G.
1987-05-12
An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.
Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan
2012-03-01
The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.
NASA Astrophysics Data System (ADS)
Tapias, Josefina C.; Vila, Marta; Himi, Mahjoub; Salvadó, Victoria; Casas, Albert; Hidalgo, Manuela
2017-04-01
The presence of emerging organic contaminants (EOC) such as pharmaceutical and personal care products, pesticides or antiseptics in wastewater is an increasing concern worldwide due to their potential toxicological effects for humans and other living organisms. Because of their low concentration and persistence their removal using conventional treatment technologies is often incomplete and for this reason there is a growing interest for assessing the efficiency of alternative wastewater treatment technologies such as constructed wetlands (CWs). CWs are engineered systems for wastewater treatment plant (WWTP) designed to take advantage of many of the same processes that occur in natural wetlands, but within a more controlled environment. CWs are a cost-effective alternative to conventional wastewater treatment plants especially in the context of small communities with less than 2000 people equivalent. Our study has been conducted at the Verdú WWTP (Lleida, Catalonia, NE Spain). This system has a primary treatment consisting on three septic tanks in parallel with a volume of 50 m3 and three chambers each one. The primary effluent is distributed to four parallel horizontal subsurface flow (HSSF) CWs. Originally the system was planted with common reed (Phragmites australis), but currently after twelve years of service the system show evidences of clogging and then gravel bed was replaced and plants removed. After the HSSF CWs, there are two wastewater stabilization ponds (WSPs) followed by two smaller polishing horizontal HSSF CWs. Excellent overall treatment performance was exhibited on the elimination of conventional water quality parameters (93-98% average removal efficiency for TSS, COD, BOD5 and NTK), and its final effluent proved to comply with existing Spanish guidelines. Sampling has been conducted along two years at different seasons and examined EOC substances included analgesic and anti-inflammatory drugs (ibuprofen, diclofenac, and naproxene), antidepressants (sertraline, paroxetine, fluoxetine and citalopram) and in addition carbamazepine and triclosan. For the analysis of water samples, a 200 mL volume was filtrated through 0.45µm nylon filters, acidified, and extracted with Oasis HLB cartridges. The analytes were recovered with 3mL methanol followed by 3 mL acetonitrile. The extract was evaporated under a gentle nitrogen stream, reconstituted with 500 µL MeOH:ACN (1:1) and analyzed by LC/MS/MS. Highest influent concentrations of studied EOCs in raw wastewater were for naproxene (ranging 2.1 - 24.76µg/L) and iboprufene (ranging 4.2 - 11.74 µg/L) and final effluent concentrations of these same compounds showed high but variable removal efficiencies depending on environmental temperature. Additionally to the reductions within the wetland beds attributed to sorption by particulate matter and biofilm, further reduction was completed at the waste water stabilization ponds by photodegradation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.9323 Section 63.9323 Protection of Environment... determine the add-on control device emission destruction or removal efficiency? You must use the procedures... removal efficiency as part of the performance test required by § 63.9310. You must conduct three test runs...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.9323 Section 63.9323 Protection of Environment... determine the add-on control device emission destruction or removal efficiency? You must use the procedures... removal efficiency as part of the performance test required by § 63.9310. You must conduct three test runs...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4166 Section 63.4166 Protection of Environment....4166 How do I determine the add-on control device emission destruction or removal efficiency? (a) For... device organic emissions destruction or removal efficiency, using Equation 2 of this section. ER23JY02...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.3966 Section 63.3966 Protection of Environment... or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4965 Section 63.4965 Protection of Environment....4965 How do I determine the add-on control device emission destruction or removal efficiency? You must... destruction or removal efficiency as part of the performance test required by § 63.4960. You must conduct...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.3966 Section 63.3966 Protection of Environment... or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test...
Solids precipitation and polymerization of asphaltenes in coal-derived liquids
Kydd, Paul H.
1984-01-01
The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.
Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J
2017-10-03
Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... coatings, side dressing, lawn application and starter ground cover) and applications in the fields of soil... particulate removal, metal and inorganic chelation in soils and water, soil erosion, road stabilizer, and dust... synthetic, petroleum-based polymers for soil amendment applications to achieve increased soil strength...
Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination
ERIC Educational Resources Information Center
Ladner, David Allen
2009-01-01
Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…
This work was motivated by the need to better reconcile emission factors for fugitive dust with the amount of geologic material found on ambient filter samples. The deposition of particulate matter with aerodynamic diameter less than or equal to 10 µm (PM10), generated...
40 CFR 63.11516 - What are my standards and management practices?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Testing Air-Cleaning Devices Used in General Ventilation for Removing Particulate Matter, June 4, 1992... requirements of this section and be re-certified every 5 years. (e) [Reserved] (f) Standards for welding. If you own or operate a new or existing welding affected source, you must comply with the requirements in...
The EUWP was developed to treat challenging water sources with variable turbidity, chemical contamination, and very high total dissolved solids (TDS) including seawater, during emergency situations when other water treatment facilities are incapacitated. The EUWP components are ...
20. View of sand filtration bed. Wheelbarrow was used to ...
20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... Station Unit 7. The scrubber adds moisture to the exhaust gas, which condenses as the gas stream cools. According to Indiana Department of Environmental Management (IDEM), the condensation causes unreliable... impairment caused by particulate and light impairment caused by moisture. The scrubber also removes some PM...
Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.
ERIC Educational Resources Information Center
Wheeler, Arthur E.
Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…
Particulate matter concentrations for mono-slope beef cattle facilities in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region of the United States. Producers may maintain a deep-bedded manure pack (Pack), they may remove all bedding/manure material from the pens weekly (Scrape), or use a combination of management styles...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
....18.03.03B(2)b (requirement that particulate matter (PM) not exceed 0.03 grains per dry standard cubic foot (gr/dscf)); COMAR 10.18.03.03B(2)c(2) (requirement for dust collectors); and COMAR 10.18.03.06D(2...
Self-Cleaning Particulate Prefilter Media
NASA Technical Reports Server (NTRS)
Weber, Olivia; Lalwani, San-jiv; Sharma, Anjal
2012-01-01
A long-term space mission requires efficient air revitalization performance to sustain the crew. Prefilter and particulate air filter media are susceptible to rapid fouling that adversely affects their performance and can lead to catastrophic failure of the air revitalization system, which may result in mission failure. For a long-term voyage, it is impractical to carry replacement particulate prefilter and filter modules due to the usual limitations in size, volume, and weight. The only solution to this problem is to reagentlessly regenerate prefilter and filter media in place. A method was developed to modify the particulate prefilter media to allow them to regenerate reagentlessly, and in place, by the application of modest thermocycled transverse or reversed airflows. The innovation may allow NASA to close the breathing air loop more efficiently, thereby sustaining the vision for manned space exploration missions of the future. A novel, self-cleaning coatings technology was developed for air filter media surfaces that allows reagentless in-place regeneration of the surface. The technology grafts thermoresponsive and nonspecific adhesion minimizing polymer nanolayer brush coatings from the prefilter media. These polymer nanolayer brush architectures can be triggered to contract and expand to generate a "pushing-off" force by the simple application of modestly thermocycled (i.e. cycling from ambient cabin temperature to 40 C) air streams. The nonspecific adhesion-minimizing properties of the coatings do not allow the particulate foulants to adhere strongly to the filter media, and thermocycled air streams applied to the media allow easy detachment and in-place regeneration of the media with minimal impact in system downtime or astronaut involvement in overseeing the process.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2010-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities at varying pressure environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waterland, L.; Lee, J.W.
1989-04-01
A series of demonstration tests of the American Combustion, Inc., Thermal Destruction System was performed under the SITE program. This oxygen-enhanced combustion system was retrofit to the rotary-kiln incinerator at EPA's Combustion Research Facility. The system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a coal tar waste (KO87). Comparative performance with conventional incinerator operation was also tested. Compliance with the incinerator performance standards of 99.99% principal organic hazardous constituents (POHC) destruction and removal efficiency and particulate emissions of less than 180 mg/dscm at 7% O2 was measured for all tests. Themore » Pyretron system was capable of in-compliance performance at double the mixed waste feedrate and at a 60% increase in batch waste charge mass than possible with conventional incineration. Scrubber blowdown and kiln ash contained no detectable levels of any of the POHCs chosen.« less
Umaiyakunjaram, R; Shanmugam, P
2016-09-01
This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pressurized fluidized-bed component test program shows good promise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-04-01
The test program described has involved extensive theoretical and laboratory work since 1976, which culminated in a series of PFBC rig tests at the Coal Utilization Research Laboratories (CURL) in Leatherhead, England, and eventually in the design and construction of a component test facility (CTF) at the Oresund Power Station of Sydkraft in Malmo, Sweden. The rig tests are listed. Those preceding the 1000-hr test in 1979 were carried out with and without cooling tubes in the bed, and with different bed characteristics; the main emphasis was on gas clean-up, combustion efficiency, and emission of sulfur and nitrogen oxides. Inmore » these tests, the exhaust gases from the PFBC were passed through a cyclone train containing two cyclones to remove particulate matter, and then through a static cascade that contained parts of turbine blades from an ASEA STAL GT-120 machine. Good performance data, for the most part, are reported. 4 references, 3 figures.« less
Transparent exopolymer particle removal in different drinking water production centers.
Van Nevel, Sam; Hennebel, Tom; De Beuf, Kristof; Du Laing, Gijs; Verstraete, Willy; Boon, Nico
2012-07-01
Transparent exopolymer particles (TEP) have recently gained interest in relation to membrane fouling. These sticky, gel-like particles consist of acidic polysaccharides excreted by bacteria and algae. The concentrations, expressed as xanthan gum equivalents L⁻¹ (μg X(eq) L⁻¹), usually reach hundred up to thousands μg X(eq) L⁻¹ in natural waters. However, very few research was performed on the occurrence and fate of TEP in drinking water, this far. This study examined three different drinking water production centers, taking in effluent of a sewage treatment plant (STP), surface water and groundwater, respectively. Each treatment step was evaluated on TEP removal and on 13 other chemical and biological parameters. An assessment on TEP removal efficiency of a diverse range of water treatment methods and on correlations between TEP and other parameters was performed. Significant correlations between particulate TEP (>0.4 μm) and viable cell concentrations were found, as well as between colloidal TEP (0.05-0.4 μm) and total COD, TOC, total cell or viable cell concentrations. TEP concentrations were very dependent on the raw water source; no TEP was detected in groundwater but the STP effluent contained 1572 μg X(eq) L⁻¹ and the surface water 699 μg X(eq) L⁻¹. Over 94% of total TEP in both plants was colloidal TEP, a fraction neglected in nearly every other TEP study. The combination of coagulation and sand filtration was effective to decrease the TEP levels by 67%, while the combination of ultrafiltration and reverse osmosis provided a total TEP removal. Finally, in none of the installations TEP reached the final drinking water distribution system at significant concentrations. Overall, this study described the presence and removal of TEP in drinking water systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji
2011-01-01
The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.3166 Section 63.3166 Protection of Environment... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.3160. You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.3166 Section 63.3166 Protection of Environment... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.3160. You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4766 Section 63.4766 Protection of Environment... Option § 63.4766 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.4760. You must...
Virus removal efficiency of Cambodian ceramic pot water purifiers.
Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph
2011-06-01
Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.
Cometary particulate analyzer. [mass spectrometry of laser plasmas
NASA Technical Reports Server (NTRS)
Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.
1979-01-01
A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.
NASA Astrophysics Data System (ADS)
Nji, Jones; Li, Guoqiang
2012-02-01
The purpose of this study is to investigate the potential of a shape-memory-polymer (SMP)-based particulate composite to heal structural-length scale damage with small thermoplastic additive contents through a close-then-heal (CTH) self-healing scheme that was introduced in a previous study (Li and Uppu 2010 Comput. Sci. Technol. 70 1419-27). The idea is to achieve reasonable healing efficiencies with minimal sacrifice in structural load capacity. By first closing cracks, the gap between two crack surfaces is narrowed and a lesser amount of thermoplastic particles is required to achieve healing. The particulate composite was fabricated by dispersing copolyester thermoplastic particles in a shape memory polymer matrix. It is found that, for small thermoplastic contents of less than 10%, the CTH scheme followed in this study heals structural-length scale damage in the SMP particulate composite to a meaningful extent and with less sacrifice of structural capacity.