Sample records for particulate trace element

  1. Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").

  2. STATUS OF RESEARCH ON AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER. (R827649)

    EPA Science Inventory

    The Air Quality Conference reviewed the state of science and policy on the pollutants mercury, trace elements, and particulate matter (PM) in the environment. Critical issues dealing with impacts on health and ecosystems, emission prevention and control, measurement methods, a...

  3. Key sources and distribution patterns of particulate material in the South Atlantic: data from the UK GEOTRACES A10 cruise

    NASA Astrophysics Data System (ADS)

    Milne, A.; Palmer, M.; Lohan, M. C.

    2016-02-01

    Particles play a fundamental role in the biogeochemical cycling of both major- and micro-nutrients in marine systems, including trace elements and isotopes. However, knowledge of particulate distributions, and their potential to regulate dissolved elemental concentrations, remains limited and poorly understood. The paradox is, that the oceanic inventory of trace metals is dominated by particulate inputs (e.g. aerosol deposition, shelf sediment resuspension). Moreover the labile fraction of particulate trace elements could be an important regulator of dissolved concentrations. Here we present particulate data from the UK GEOTRACES South Atlantic transect (GA10) from South Africa to Uruguay. Data from a range of elements (e.g. Fe, Al, Mn) revealed a greater input of particulate metals from the Argentine shelf (up to 290 nM of pFe) in comparison to the South African shelf (< 40 nM of pFe). Overall, higher concentrations of all metals were observed in the bottom waters of the Argentine basin and penetrated deeper up the water column (up to 1300 m), a result of intense benthic storms. The imprint of leakage from the Agulhas Current, identified through temperature and salinity, was observed in the upper water column profile of numerous particulate data (e.g. Pb, Ni, Cd). Measured elemental gradients, combined with measurements from a vertical mixing-profiler, will allow estimates of particulate fluxes to be calculated.

  4. CHEMICAL CHARACTERIZATION OF AMBIENT PARTICULATE MATTER NEAR THE WORLD TRADE CENTER: ELEMENTAL CARBON, ORGANIC CARBON, AND MASS RECONSTRUCTION

    EPA Science Inventory

    Concentrations of elemental carbon (EC), organic carbon matter (OM), particulate matter less than 2.5 um (PM2.5), and reconstructed soil, trace element oxides, and sulfate are reported from four locations near the World Trade Center (WTC) complex for airborne particulate matter (...

  5. Size and elemental distributions of nano- to micro-particulates in the geochemically-stratified Great Salt Lake

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.

    2009-01-01

    The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.

  6. Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow.

    PubMed

    Grotti, M; Soggia, F; Ardini, F; Magi, E

    2011-09-01

    In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).

  7. Composition of water and suspended sediment in streams of urbanized subtropical watersheds in Hawaii

    USGS Publications Warehouse

    De Carlo, E. H.; Beltran, V.L.; Tomlinson, M.S.

    2004-01-01

    Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2-3-fold dilution of the particulate concentrations of Pb, Zn and Cu in the Ala Wai canal watershed. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Contributions of trace elements to the sea by small uncontaminated rivers: Effects of a water reservoir and a wastewater treatment plant.

    PubMed

    Álvarez-Vázquez, Miguel Ángel; Prego, Ricardo; Caetano, Miguel; De Uña-Álvarez, Elena; Doval, Maryló; Calvo, Susana; Vale, Carlos

    2017-07-01

    Trace element contributions from small rivers to estuaries is an issue barely addressed in the literature. In this work, freshwater flowing into the Ria of Cedeira (NW Iberian Peninsula) was studied during a hydrological year through the input from three rivers, one considered uncontaminated (the Das-Mestas River), a second affected by urban treated wastewater discharges (the Condomiñas River), and the third containing a water reservoir for urban supply (the Forcadas River). With the objective of assessing the possible influence of human pressure, the annual yields for selected trace elements (Al, Fe, As, Cd, Co, Cr, Cu, Mn, Mo, Ni and Pb) were estimated and compared by normalizing by basin surface. Both dissolved and particulate transported elements were considered. After the data treatment and analysis it can be highlighted that: (i) the Das Mestas River is suitable to be included between the short European pristine baseline of small rivers, at least regarding the transported trace elements; (ii) natural enrichments were identified associated to the lithology of the basin in the Das-Mestas River (i.e. As) and in the Condomiñas River (i.e. Co, Cr and Ni); this fact highlights the importance of considering the local background for a proper assessment; (iii) the impoundment in the Forcadas River is related with a general decrease, even depletion, of the particulate and dissolved transported trace elements, except Mn; (iv) the discharge of sewage to the Condomiñas River is increasing the inputs to the ria of some trace elements in the particulate phase (i.e. Al, Cu and Pb). Both observed human-induced changes can be regarded as typical disturbances of trace element contributions from small rivers to estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Trace element contents in fine particulate matter (PM2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile.

    PubMed

    Mesías Monsalve, Stephanie; Martínez, Leonardo; Yohannessen Vásquez, Karla; Alvarado Orellana, Sergio; Klarián Vergara, José; Martín Mateo, Miguel; Costilla Salazar, Rogelio; Fuentes Alburquenque, Mauricio; Cáceres Lillo, Dante D

    2018-06-01

    Air quality in schools is an important public health issue because children spend a considerable part of their daily life in classrooms. Particulate size and chemical composition has been associated with negative health effects. We studied levels of trace element concentrations in fine particulate matter (PM 2.5 ) in indoor versus outdoor school settings from six schools in Chañaral, a coastal city with a beach severely polluted with mine tailings. Concentrations of trace elements were measured on two consecutive days during the summer and winter of 2012 and 2013 and determined using X-ray fluorescence. Source apportionment and element enrichment were measured using principal components analysis and enrichment factors. Trace elements were higher in indoor school spaces, especially in classrooms compared with outdoor environments. The most abundant elements were Na, Cl, S, Ca, Fe, K, Mn, Ti, and Si, associated with earth's crust. Conversely, an extremely high enrichment factor was determined for Cu, Zn, Ni and Cr; heavy metals associated with systemic and carcinogenic risk effects, whose probably origin sources are industrial and mining activities. These results suggest that the main source of trace elements in PM 2.5 from these school microenvironments is a mixture of dust contaminated with mine tailings and marine aerosols. Policymakers should prioritize environmental management changes to minimize further environmental damage and its direct impact on the health of children exposed.

  10. Preliminary analysis of an extensive one year survey of trace elements and compounds in the suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.; Burr, J. C.; Craig, G. T.; Cornett, C. L.

    1974-01-01

    Beginning in 1971 a cooperative program has been carried on by the City of Cleveland Division of Air Pollution Control and NASA Lewis Research Center to study the trace element and compound concentrations in the ambient suspended particulate matter in Cleveland Ohio as a function of source, monitoring location and meteorological conditions. The major objectives were to determine the ambient concentration levels at representative urban sites and to develop a technique using trace element and compound data in conjunction with meteorological conditions to identify specific pollution sources which could be developed into a practical system that could be readily utilized by an enforcement agency.

  11. Preliminary analysis of an extensive one year survey of trace elements and compounds in the suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.; Burr, J. C.; Craig, G. T.; Cornett, C. L.

    1974-01-01

    Preliminary review of a study of trace elements and compound concentrations in the ambient suspended particulate matter in Cleveland, Ohio, measured from August 1971 through June 1973, as a function of source, monitoring location, and meteorological conditions. The study is aimed at the development of techniques for identifying specific pollution sources which could be integrated into a practical system readily usable by an enforcement agency.

  12. EXHAUST EMISSION PATTERNS FROM TWO LIGHT-DUTY DIESEL AUTOMOBILES

    EPA Science Inventory

    Particulate and gaseous emissions from two light-duty diesel automobiles were examined over six operating cycles. Particulate characterizations included mass emission rate, soluble organic content, and trace element content determinations. The particulate matter was sampled using...

  13. Trace Element Cycling in Lithogenic Particles at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Morton, P. L.; Weisend, R.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Trace element cycling in marine particles is influenced by atmospheric deposition, vertical export, biological uptake and remineralization, scavenging, and lateral transport processes. To investigate the cycling of lithogenic particles in the central North Pacific Ocean, surface and vertical profile samples of marine suspended particulate matter (SPM) were collected July-August 2012 during the HOE-DYLAN cruises at Station ALOHA. In the late summer, atmospheric dust inputs from the Gobi desert (which peak during the spring, April-May) were sparse, as indicated by low surface particulate Ti (pTi) concentrations. In contrast, surface pAl concentrations did not follow pTi trends as expected, but appear to be dominated by scavenging/uptake of dissolved Al during diatom blooms. Surface pMn concentrations were low, but vertical profiles of pMn and pMn/pTi reveal a strong sedimentary source at 200 m, originating from the Hawaiian continental shelf through a combination of redox mobilization and resuspension processes. The redox active elements Ce and Co can have chemistries similar to that of Mn, but in these samples the pCe and pCo distributions were distinct from Mn and each other in both surface trends and vertical profiles. Surface pREE (e.g., La, Ce, Pr) were highest during the earliest sampling events and quickly decreased to consistently low concentrations, while vertical distributions were characterized by scavenging onto biotic particles and mid-depth inputs. The surface particulate Co trend is similar to those of pAl and pP, while the pCo vertical profiles reflect surface enrichment but low concentrations and little variability at depth. A second, complementary poster is also being presented which examines the biological influence over particulate trace element cycling (Weisend et al., "Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA").

  14. Deep-sea fluxes of barium and lithogenic trace elements in the subtropical northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Stern, Judith; Dellwig, Olaf; Waniek, Joanna J.

    2017-04-01

    Total particle flux, Barium and lithogenic trace element fluxes were measured at the mooring Kiel 276 (33°N, 22°W) in the deep-sea of the subtropical Northeast Atlantic. The particulate material was collected between 2002 and 2008 with a sediment trap in 2000 m depth and analyzed with ICP-OES/-MS to determine its geochemical composition. The particle flux is controlled by primary production, lithogenic particle inputs via atmospheric transport and the migration of the Azores Front. We used refractory trace elements (eg. Ti, Zr, and the rare earth elements) to demonstrate the changes in flux and composition of the material due to lithogenic inputs. Shortly after periods of high dust load and enhanced primary production an increase in lithogenic trace element fluxes occurred. Especially the formation of aggregates with biogenic matter seems to have a major impact on the downwards transport of lithogenic particles. The observation of particulate Ba is of great interest since it is known as a proxy for past and present primary production. Ba fluxes ranging between 0.02 mg m-2 d-1 and 1.21 mg m-2 d-1 with biogenic proportions up to 97%. The fluxes of particulate Barium in the water column are mainly attributed to the strength of primary production.

  15. Forms of trace arsenic, cesium, cadmium, and lead transported into river water for the irrigation of Japanese paddy rice fields

    NASA Astrophysics Data System (ADS)

    Nakaya, Shinji; Chi, Hai; Muroda, Kengo; Masuda, Harue

    2018-06-01

    In this study, we focus on the behavior of geogenic, toxic trace elements, particularly As, Cs, Cd, and Pb, during their transportation in two rivers for irrigation commonly used in monsoon Asia; one river originates from an active volcano, Mt. Asama, and the other originates from a currently inactive volcano, Yatsugatake Mountains in Nagano, Japan. These rivers were investigated to understand the role of river water as a pollutant of rice and other aquatic plants (via irrigation) and aquatic animals. The results indicated that the behavior of toxic trace elements in river water are likely controlled by their interactions with particulate Fe, Al, and Ti compounds. The majority of Pb and Cd is transported as particulate matter with Fe, Al, and Ti, while the majority of As is transported in the dissolved form, predominantly as arsenate, with low abundance of particulate matter. Cs is transported either as the dissolved form or as particulate matter in both rivers. The investigated elements are transported in the rivers as particulate and dissolved forms, and the ratio of these forms is controlled by the pH and presence of particulate Fe, Al, and Ti phases in the river water. With respect to Cs in both rivers, the parameter governing the concentration and transportation of Cs, in the bimodal form (i.e., particulate and dissolved forms), through the river possibly shifts from sorption to pH by particulate Fe-Al-Ti, according to the abrupt increase in the concentration of Cs in the river. The chemical attraction of particulate Fe-Al-Ti for Cs is weaker than that for Pb and Cd, indicating that the lower electronegativity of Cs weakens the chemical attraction on a colloid for the competitive sorption with the other trace elements. The different relationships between As and Fe in the river and in the irrigation water and soil water, as well as those in paddy rice, suggested that As in paddy rice is not directly derived from As in the irrigation water from the river under flooding.

  16. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.

  17. Year-round record of dissolved and particulate metals in surface snow at Dome Concordia (East Antarctica).

    PubMed

    Grotti, Marco; Soggia, Francesco; Ardini, Francisco; Magi, Emanuele; Becagli, Silvia; Traversi, Rita; Udisti, Roberto

    2015-11-01

    From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    PubMed

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  19. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.

    2010-01-01

    The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.

  20. Environmental influence on trace element levels in human hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limic, N.; Valkovic, V.

    1986-12-01

    Trace element content of human hair depends on many factors. It has been shown by a large number of investigators that environmental factors play an important role. Elements from air particulates, water, shampoo or other media get incorporated into the hair structure. Here a model is proposed in which different contributions to trace element levels in human hair are factorized and the environmental contribution to the radial and longitudinal concentration profiles can be calculated. With the proper understanding of environmental contamination, hair analysis has better chances of being used as a diagnostic tool.

  1. Emissions Inventory of PM2.5 Trace Elements across the United States

    EPA Science Inventory

    This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM 2.5 emissions in ...

  2. Inductively coupled plasma-mass spectrometry as an element-specific detector for field-flow fractionation particle separation

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, John R.; Murphy, Deirdre M.; Beckett, Ronald

    1992-01-01

    An inductively coupled plasma-mass spectrometer was used for the quantitative measurement of trace elements In specific,submicrometer size-fraction particulates, separated by sedimentation field-flow fractionation. Fractions were collected from the eluent of the field-flow fractionation centrifuge and nebulized, with a Babington-type pneumatic nebulizer, into an argon inductively coupled plasma-mass spectrometer. Measured Ion currents were used to quantify the major, minor, and trace element composition of the size-separated colloidal (< 1-microm diameter) particulates. The composition of surface-water suspended matter collected from the Yarra and Darling rivers in Australia is presented to illustrate the usefulness of this tool for characterizing environmental materials. An adsorption experiment was performed using cadmium lon to demonstrate the utility for studying the processes of trace metal-suspended sediment interactions and contaminant transport in natural aquatic systems.

  3. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.

    2003-11-01

    Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.

  4. Atmospheric mercury and fine particulate matter in coastal New England: implications for mercury and trace element sources in the northeastern United States

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark A.; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas J.; Krabbenhotft, David P.; Bothner, Michael H.; Tate, Michael T.

    2013-01-01

    Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.

  5. Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Betha, Raghu; Tan, Li Yun; Balasubramanian, Rajasekhar

    2016-01-01

    Smoke-haze episodes, caused by uncontrolled peat and forest fires, occur almost every year in the South-East Asian region with increased concentrations of PM2.5 (airborne particulate matter (PM) with diameter ≤ 2.5 μm). Particulate-bound trace elements (TrElems), especially carcinogenic and toxic elements, were measured during smoke haze as well as non-haze periods in 2014 as they are considered to be indicators of potential health effects. The bioaccessibilities of 13 TrElems were investigated using two types of simulated lung fluids (SLFs), Gamble's solution and artificial lysosomal fluid (ALF), instead of the commonly used leaching agent (water). The dissolution kinetics was also examined for these TrElems. Many TrElems showed higher solubility in SLFs, and were more soluble in ALF compared to the Gamble's solution. Cu, Mn and Cd were observed to be the most soluble trace elements in ALF, while in Gamble's solution the most soluble trace elements were Cu, Mn and Zn. The dissolution rates were highly variable among the elements. Health risk assessment was conducted based on the measured concentrations of TrElems and their corresponding toxicities for three possible scenarios involving interactions between carcinogenic and toxic TrElems and SLFs, using the United States Environmental Protection Agency (USEPA) human health risk assessment model. The cumulative cancer risks exceeded the acceptable level (1 in a million i.e. 1 × 10-6). However, the estimation of health quotient (HQ) indicated no significant chronic toxic health effects. The risk assessment results revealed that the assessment of bioaccessibility of particulate-bound TrElems using water as the leaching agent may underestimate the health risk.

  6. Strontium and Trace Metals in the Mississippi River Mixing Zone

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Marcantonio, F.

    2001-12-01

    Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.

  7. Transport and distribution of trace elements and other selected inorganic constituents by suspended particulates in the Salton Sea Basin, California, 2001

    USGS Publications Warehouse

    LeBlanc, L.A.; Schroeder, R.A.

    2008-01-01

    In order to examine the transport of contaminants associated with river-derived suspended particles in the Salton Sea, California, large volume water samples were collected in transects established along the three major rivers emptying into the Salton Sea in fall 2001. Rivers in this area carry significant aqueous and particulate contaminant loads derived from irrigation water associated with the extensive agricultural activity, as well as wastewater from small and large municipalities. A variety of inorganic constituents, including trace metals, nutrients, and organic carbon were analyzed on suspended material isolated from water samples collected at upriver, near-shore, and off-shore sites established on the Alamo, New, and Whitewater rivers. Concentration patterns showed expected trends, with river-borne metals becoming diluted by organic-rich algal particles of lacustrine origin in off-shore stations. More soluble metals, such as cadmium, copper, and zinc showed a more even distribution between sites in the rivers and off-shore in the lake basin. General distributional trends of trace elements between particulate and aqueous forms were discerned by combining metal concentration data for particulates from this study with historical aqueous metals data. Highly insoluble trace metals, such as iron and aluminum, occurred almost entirely in the particulate phase, while major cations and approximately 95% of selenium were transported in the soluble phase. Evidence for greater reducing conditions in the New compared to the Alamo River was provided by the greater proportion of reduced (soluble) manganese in the New River. Evidence of bioconcentration of selenium and arsenic within the lake by algae was provided by calculating "enrichment" concentration ratios from metal concentrations on the algal-derived particulate samples and the off-shore sites. ?? 2008 Springer Science+Business Media B.V.

  8. URBAN SCALE VARIABILITY OF PM 2.5 COMPONENTS

    EPA Science Inventory

    This study is being conducted in a large city in the mid-west U.S. The preliminary spatial analyses for particulate nitrate, selected trace elements, and organic and elemental carbon (OC/EC) will be presented.

  9. Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China.

    PubMed

    Qie, Guanghao; Wang, Yan; Wu, Chen; Mao, Huiting; Zhang, Ping; Li, Tao; Li, Yaxin; Talbot, Robert; Hou, Chenxiao; Yue, Taixing

    2018-06-01

    The concentrations of particulate mercury (PHg) and other trace elements in PM 2.5 and PM 10 in the atmosphere were measured at the summit of Mount Tai during the time period of 15 June - 11 August 2015. The average PHg concentrations were 83.33 ± 119.1 pg/m 3 for PM 2.5 and 174.92 ± 210.5 pg/m 3 for PM 10 . Average concentrations for other trace elements, including Al, Ca, Fe, K, Mg, Na, Pb, As, Se, Cu, Cd, Cr, V, Mo, Co, Ag, Ba, Mn, Zn and Ni ranged from 0.06 ng/m 3 (Ag) to 354.33 ng/m 3 (Ca) in PM 2.5 and 0.11 ng/m 3 (Co) to 592.66 ng/m 3 (Ca) in PM 10 . The average concentrations of PHg were higher than those at other domestic mountain sites and cities in other counties, lower than those at domestic city sites. Other trace elements showed concentrations lower than those at the domestic mountain sites. Due possibly to increased control of emissions and the proportion of new energy, the PHg and trace element concentrations decreased, but the PHg showed concentrations higher than those at the Mountain sites, this showed that the reasons was not only severely affected by anthropogenic emissions, but also associated with other sources. The concentration changed trend of the main trace elements indicated that PHg, trace elements and particle matters present positive correlation and fine particulate matter has a greater surface area which was conductive to adsorption of Hg and trace elements to particles. On June 19, June 27 and July 6, according to the peak of mercury and trace elements, we can predict the potential sources of these three days. The results of principal component analysis (PCA) suggested that, crustal dust, coal combustion, and vehicle emissions were the main emission sources of PHg and other trace elements in Mount Tai. The 24-h backward trajectories and potential source contribution function (PSCF) analysis revealed that air masses arriving at Mount Tai were mainly affected by Shandong province. Mount Tai was subjected to five main airflow trajectories. Clusters 1, 2, 3, and 5 represented four pathways for local and regional sources and cluster 4 originated long-distance transportation. Central Shandong was the main source regions of PHg, Pb, Se, As, Cu and Cd. Southeastern and northwestern Shandong province and northern Jiangsu province were the most polluted source regions of Mn, Zn, and Ni. The crustal elements Fe and Ca had similar distributions of potential source regions, suggested by the highest PSCF values in southeastern Shandong and northern Jiangsu. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Storm-induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea).

    PubMed

    Dumas, C; Aubert, D; Durrieu de Madron, X; Ludwig, W; Heussner, S; Delsaut, N; Menniti, C; Sotin, C; Buscail, R

    2014-10-01

    In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77%), they do not reflect severe enrichment (EFs <4). Most particles originate from the Rhone River. This has been confirmed by two different tracing procedures using rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deep-sea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.

  11. Occurrence and distribution of trace elements in snow, streams, and streambed sediments, Cape Krusenstern National Monument, Alaska, 2002-2003

    USGS Publications Warehouse

    Brabets, Timothy P.

    2004-01-01

    Cape Krusenstern National Monument is located in Northwest Alaska. In 1985, an exchange of lands and interests in lands between the Northwest Alaska Native Association and the United States resulted in a 100-year transportation system easement for 19,747 acres in the monument. A road was then constructed along the easement from the Red Dog Mine, a large zinc concentrate producer and located northeast of the monument, through the monument to the coast and a port facility. Each year approximately 1.3 million tonnes of zinc and lead concentrate are transported from the Red Dog Mine via this access road. Concern about the possible deposition of cadmium, lead, zinc and other trace elements in the monument was the basis of a cooperative project with the National Park Service. Concentrations of dissolved cadmium, dissolved lead, and dissolved zinc from 28 snow samples from a 28 mile by 16 mile grid were below drinking water standards. In the particulate phase, approximately 25 percent of the samples analyzed for these trace elements were higher than the typical range found in Alaska soils. Boxplots of concentrations of these trace elements, both in the dissolved and particulate phase, indicate higher concentrations north of the access road, most likely due to the prevailing southeast wind. The waters of four streams sampled in Cape Krusenstern National Monument are classified as calcium bicarbonate. Trace-element concentrations from these streams were below drinking water standards. Median concentrations of 39 trace elements from streambed sediments collected from 29 sites are similar to the median concentrations of trace elements from the U.S. Geological Survey?s National Water-Quality Assessment database. Statistical differences were noted between trace-element concentrations of cadmium, lead, and zinc at sites along the access road and sites north and south of the access road; concentrations along the access road being higher than north or south of the road. When normalized to 1 percent organic carbon, the concentrations of these trace elements are not expected to be toxic to aquatic life when compared to criteria established by the Canadian government and other recent research.

  12. Particulate air pollution from bushfires: human exposure and possible health effects.

    PubMed

    Karthikeyan, Sathrugnan; Balasubramanian, Rajasekhar; Iouri, Kostetski

    2006-11-01

    Toxicological studies have implicated trace metals adsorbed onto airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. In particular, the water-soluble metal content is considered to be a harmful component of airborne particulate matter. In this work, the trace metal characteristics of airborne particulate matter, PM2.5, collected in Singapore from February to March 2005 were investigated with specific reference to their bioavailability. PM2.5 mass concentrations varied between 20.9 mug/m3 and 46.3 microg/m3 with an average mass of 32.8 microg/m3. During the sampling period, there were several bushfires in Singapore that contributed to sporadic increases in the particulate air pollution, accompanied by an acrid smell and asthma-related allergies. The aerosol samples were subjected to analysis of trace elements for determining their total concentrations as well as their water soluble fractions. Our results showed an increase in concentration of several water-soluble trace metals during bushfires compared to their urban background levels in Singapore. In order to measure the human exposure to particulate air pollution, the daily respiratory uptake (DRU) of several trace metals was calculated and compared between haze and nonhaze periods. The DRU values were significantly higher for several metals, including Zn, Cu, and Fe, during bushfires. Electron paramagnetic resonance (EPR) measurements showed that the particulate samples collected during bush fires generate more toxic hydroxyl radicals (OH.) than those in the background air, due to the presence of more soluble iron ions.

  13. Feasibility of the detection of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salcedo, D.; Laskin, Alexander; Shutthanandan, V.

    The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measuredmore » ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple point sources, probably industrial, in Mexico City which are variable in time and space, in agreement with previous studies.« less

  14. Near-road enhancement and solubility of fine and coarse particulate matter trace elements near a major interstate in Detroit, Michigan

    EPA Science Inventory

    Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physi...

  15. Trace Elements in the Sea Surface Microlayer: Results from a Two Year Study in the Florida Keys

    NASA Astrophysics Data System (ADS)

    Ebling, A. M.; Westrich, J. R.; Lipp, E. K.; Mellett, T.; Buck, K. N.; Landing, W. M.

    2016-02-01

    Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. Opportunistic bacteria have been shown to experience rapid growth during deposition events. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. It has been hypothesized that dust particles would be retained in the sea surface microlayer long enough to undergo chemical and physical changes that would affect the bioavailability of trace elements. In this study, aerosols, sea surface microlayer, and underlying water column samples were collected in the Florida Keys in July 2014 and May 2015 at various locations and analyzed for a suite of dissolved and particulate trace elements. Sea surface microlayer samples ( 50 μm) were collected using a cylinder of ultra-pure quartz glass; a novel adaptation of the glass plate technique. Sampling sites ranged from a more pristine environment approximately ten kilometers offshore to a more anthropogenic environment within a shallow bay a few hundred meters offshore. While it was clear from the results that dust deposition events played a large role in the chemical composition of the sea surface microlayer (elevated concentrations in dissolved and particulate trace elements associated with dust deposition), the location where the samples were collected also had a large impact on the sea surface microlayer as well as the underlying water column. The results were compared with other parameters analyzed such as Vibrio cultures as well as iron speciation, providing an important step towards our goal of understanding of the fate of trace elements in the sea surface microlayer as well as the specific effects of aeolian dust deposition on heterotrophic microbes in the upper ocean.

  16. Pb, Sr and Nd isotopic composition and trace element characteristics of coarse airborne particles collected with passive samplers

    NASA Astrophysics Data System (ADS)

    Hoàng-Hòa, Thi Bich; Stille, Peter; Dietze, Volker; Guéguen, Florence; Perrone, Thierry; Gieré, Reto

    2015-09-01

    Passive samplers for collection of coarse airborne particulate matter have been installed in and around the coal-mining town of Cam Pha, Quang Ninh Province (Vietnam). Analysis of Pb, Sr, and Nd isotope ratios and of major and trace element distribution patterns in atmospheric particulates collected at three stations allowed for the identification of four important dust components: (1) coal dust from an open-pit mine and fly ash particles from a coal-fired power station, (2) diesel soot, (3) traffic dust from metal, tire and pavement abrasion, and (4) limestone-derived dust. Outside of the coal-mining area, traffic-derived dust defines the atmospheric baseline composition of the studied environment.

  17. Tracing water and suspended matter in Raritan and Lower New York Bays using dissolved and particulate elemental concentrations

    USGS Publications Warehouse

    Paulson, A.J.

    2005-01-01

    The concentrations of 22 elements also were measured in the suspended matter of Raritan and Lower New York Bays and brackish water sources. The elemental composition of the suspended matter in surface and bottom waters was correlated with Fe concentrations, which ranged between 50 and 900 μmol g− 1. Statistical differences among the geographical regions were detected in the relationships of Ti, Ni, Co, As, and U with Fe, with particulate As being an especially strong geochemical indicator of Raritan River particles. The geochemical signatures of Lower New York Bay particles were similar to those of Upper New York Bay. The geochemical signatures of Raritan River particles were distinctly different than those of the Upper New York Bay, but the influence of Raritan River particles appeared to be limited to only inner Raritan Bay. This study illustrates the utility of trace elements for characterization of physical processes in complex estuaries.

  18. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    NASA Technical Reports Server (NTRS)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  19. Changes in sediment-associated trace element concentrations in the Seine river basin (1994-2001)

    USGS Publications Warehouse

    Meybeck, Michel; Horowitz, A.J.; Grosbois, C.; Gueguen, Y.; ,

    2003-01-01

    In the 1980's, based on the concentrations of particulate-associated Hg, Cd, Pb, Cu and Zn relative to very low natural background levels, the Seine River Basin was one of the most impacted in the world. Over the past 20 years, there has been a general decline in these elevated concentrations that parallels declines in Paris sewage sludge trace element levels. Within the basin, marked differences in spatial and temporal geochemical patterns have been observed: (1) between major tributaries, (2) between trace elements, and (3) with stream order and population density, all of which illustrate the complexity of the geochemical processes ongoing in the basin.

  20. Distribution patterns of particulate trace metals in the water column and nepheloid layer of the Gulf of Riga.

    PubMed

    Poikāne, Rita; Carstensen, Jacob; Dahllöf, Ingela; Aigars, Juris

    2005-07-01

    The dynamics (fate) of trace metals in suspended particulate matter within the Gulf of Riga has not yet been adequately addressed in the scientific literature. Therefore, during a two year period (2001-2002) samples of suspended particulate matter and surface sediments for trace metal analysis were collected in the Gulf of Riga and the Daugava river, and these data were combined with background information from the national marine monitoring program in Latvia. This paper presents a descriptive study of solid phase trace metals (aluminium, iron, cadmium, chromium, copper, manganese, nickel, lead and zinc) dynamics and their spatial distribution within the Gulf of Riga based on Principal Component Analysis and Cluster analysis. Fluvial particulate matter and particulate Al, Fe, Cr and Ni were brought into the Gulf of Riga mainly during spring flood and thereafter quickly diluted by the water masses of the Gulf of Riga. Fine-grained suspended material and particulate Al and Fe were well mixed and evenly distributed through all deepwater basins of the Gulf of Riga. The increase of particulate Mn below the thermocline in August and a strong negative correlation with dissolved oxygen concentrations suggested that particulate Mn in the water column and the sediments were regulated mainly by changing oxic-anoxic conditions in the sediments of the Gulf of Riga. The observed correlation between Al and Fe in the water column is in contrast to that observed in the nepheloid layer where Fe correlated with Mn, obviously due to fast diagenetic processes on sediment surface. The observed negative correlation of Cd and Zn with total carbon and total nitrogen in the nepheloid layer might indicate different sedimentation mechanisms of these elements, however, this assumption is still inconclusive.

  1. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  2. Quantifying trace elements in the emitted particulate matter during cooking and health risk assessment.

    PubMed

    Gorjinezhad, Soudabeh; Kerimray, Aiymgul; Amouei Torkmahalleh, Mehdi; Keleş, Melek; Ozturk, Fatma; Hopke, Philip K

    2017-04-01

    Particulate matter (PM) measurements were conducted during heating corn oil, heating corn oil mixed with the table salt and heating low fat ground beef meat using a PTFE-coated aluminum pan on an electric stove with low ventilation. The main objectives of this study were to measure the size segregated mass concentrations, emission rates, and fluxes of 24 trace elements emitted during heating cooking oil or oil with salt and cooking meat. Health risk assessments were performed based on the resulting exposure to trace elements from such cooking activities. The most abundant elements (significantly different from zero) were Ba (24.4 ug m -3 ) during grilling meat and Ti during heating oil with salt (24.4 ug m -3 ). The health assessment indicates that the cooking with an electric stove with poor ventilation leading to chronic exposures may pose the risk of significant adverse health effects. Carcinogenic risk exceeded the acceptable level (target cancer risk 1 × 10 -6 , US EPA 2015) by four orders of magnitude, while non-carcinogenic risk exceeded the safe level (target HQ = 1, US EPA 2015) by a factor of 5-20. Cr and Co were the primary contributors to the highest carcinogenic and non-carcinogenic risks, respectively.

  3. Marine Biogeochemistry of Particulate Trace Elements in the Exclusive Economic Zone (eez) of the State of Qatar

    NASA Astrophysics Data System (ADS)

    Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Murray, J. W.; Al-Ansi, M.

    2016-02-01

    We focus on the trace element geochemistry of particulate matter in the Exclusive Economic Zone (EEZ) of Qatar. A main goal of this research was to analyze a complete suite of trace elements on particulate matter samples from the water column from different oceanographic biogeochemical zones of the EEZ around Qatar. The sample set also includes plankton samples which are the main source of biogenic particles, dust samples which are a source of abiological particles to surface seawater and surface sediments which can be a source of resuspended particles and a sink for settling particles. The 15 metals and 2 non-metals analyzed in this study will be Al, Ti, V, Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn, Mo, Ag, Ba, U and P, N. Many factors control the composition of trace elements in marine particles. Most of these are important in the EEZ of Qatar, including:1. Natural sources: These are rivers, atmospheric dust, sediment resuspension and leaks from oil beds. However, due to very limited rainfall rivers play no major role in Qatar but resuspension of shallow carbonate rich sediments and input of atmospheric dust are important due to strong currents and surrounding deserts.2. Adsorption/desorption: These chemical processes occur everywhere in the ocean and transfer metals between particles and the solution phase.3. Biological uptake: This process is likewise a universal ocean process and results in transport of metals from the solution phase to biological particles.4. Redox conditions: These are important chemical reactions in the oxic, suboxic and anoxic zones. This can be the dominant controlling mechanism in the northeastern hypoxic deeper waters of the Qatar EEZ.5. Anthropogenic sources: The eastern part of the Qatar contains numerous industrial sites, petroleum/gas platforms and refineries. There are numerous industrial sources but the main hot spots are the port of Doha and the industrial cities of Mesaieed, Khor Al-Odaid, and Ras Laffan. We aimed to determine the influence of the different current systems, water masses, and terrestrial inputs on the distribution, fractionation, and fate of trace metal contaminants and elemental pollutants. We have also observed the level of anthropogenic enrichments for some of the elements which have not been previously documented. This research should be viewed as the first stage of a complete study.

  4. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to the atmosphere.

  5. High-resolution sampling and analysis of ambient particulate matter in the Pearl River Delta region of southern China: source apportionment and health risk implications

    NASA Astrophysics Data System (ADS)

    Zhou, Shengzhen; Davy, Perry K.; Huang, Minjuan; Duan, Jingbo; Wang, Xuemei; Fan, Qi; Chang, Ming; Liu, Yiming; Chen, Weihua; Xie, Shanju; Ancelet, Travis; Trompetter, William J.

    2018-02-01

    Hazardous air pollutants, such as trace elements in particulate matter (PM), are known or highly suspected to cause detrimental effects on human health. To understand the sources and associated risks of PM to human health, hourly time-integrated major trace elements in size-segregated coarse (PM2.5-10) and fine (PM2.5) particulate matter were collected at the industrial city of Foshan in the Pearl River Delta region, China. Receptor modeling of the data set by positive matrix factorization (PMF) was used to identify six sources contributing to PM2.5 and PM10 concentrations at the site. Dominant sources included industrial coal combustion, secondary inorganic aerosol, motor vehicles and construction dust along with two intermittent sources (biomass combustion and marine aerosol). The biomass combustion source was found to be a significant contributor to peak PM2.5 episodes along with motor vehicles and industrial coal combustion. Conditional probability function (CPF) analysis was applied to estimate the source locations using the PMF-resolved source contribution coupled with the surface wind direction data. Health exposure risk of hazardous trace elements (Pb, As, Si, Cr, Mn and Ni) and source-specific values were estimated. The total hazard quotient (HQ) of PM2.5 was 2.09, higher than the acceptable limit (HQ = 1). The total carcinogenic risk (CR) was 3.37 × 10-3 for PM2.5, which was 3 times higher than the least stringent limit (1.0 × 10-4). Among the selected trace elements, As and Pb posed the highest non-carcinogenic and carcinogenic risks to human health, respectively. In addition, our results show that the industrial coal combustion source is the dominant non-carcinogenic and carcinogenic risk contributor, highlighting the need for stringent control of this source. This study provides new insight for policy makers to prioritize sources in air quality management and health risk reduction.

  6. Trace elements by instrumental neutron activation analysis for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene, filtered air particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was plus or minus 25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%.

  7. Extensive 1-year survey of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio, during 1971 and 1972. Values covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented for 60 elements. A lesser number of values is given for sulfate, nitrate, fluoride, acidity, 10 polynuclear aromatic hydrocarbon compounds, and the aliphatic hydrocarbon compounds as a group. Methods used included instrumental neutron activation, emission spectroscopy, gas chromatography, combustion techniques, and colorimetry. Uncertainties in the concentrations associated with the sampling procedures, the analysis methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data is discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  8. Spatial, temporal, and interspecies patterns in fine particulate matter in Texas.

    PubMed

    Gebhart, Kristi A; Malm, William C; Ashbaugh, Lowell L

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years.

  9. Characterizing mineral dusts and other aerosols from the Middle East--Part 1: ambient sampling.

    PubMed

    Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M; Casuccio, Gary; Gertler, Alan W

    2009-02-01

    The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected over a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). Three collocated low-volume particulate samplers, one each for the total suspended particulate matter, < 10 micro m in aerodynamic diameter (PM(10)) particulate matter, and < 2.5 micro m in aerodynamic diameter (PM(2.5)) particulate matter, were deployed at each of the 15 sites, operating on a '1 in 6' day sampling schedule. Trace-element analysis was performed to measure levels of potentially harmful metals, while major-element and ion-chemistry analyses provided an estimate of mineral components. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze the chemical composition of small individual particles. Secondary electron images provided information on particle size and shape. This study shows the three main air pollutant types to be geological dust, smoke from burn pits, and heavy metal condensates (possibly from metals smelting and battery manufacturing facilities). Non-dust storm events resulted in elevated trace metal concentrations in Baghdad, Balad, and Taji in Iraq. Scanning-electron-microscopy secondary electron images of individual particles revealed no evidence of freshly fractured quartz grains. In all instances, quartz grains had rounded edges and mineral grains were generally coated by clay minerals and iron oxides.

  10. PM2.5 in Urban and Rural Nursery Schools in Upper Silesia, Poland: Trace Elements Analysis.

    PubMed

    Mainka, Anna; Zajusz-Zubek, Elwira; Kaczmarek, Konrad

    2015-07-14

    Indoor air quality (IAQ) in nursery schools is an emerging public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than older children. Among air pollutants, fine particulate matter (PM2.5) is of the greatest interest mainly due to its strong association with acute and chronic effects on children's health. In this paper, we present concentrations of PM2.5 and the composition of its trace elements at naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter and spring seasons. The results indicate there is a problem with elevated concentrations of PM2.5 inside the examined classrooms. The children's exposure to trace elements was different based on localization and season. PM2.5 concentration and its trace element composition have been studied using correlation coefficients between the different trace elements, the enrichment factor (EF) and principal component analysis (PCA). PCA allowed the identification of the three components: anthropogenic and geogenic sources (37.2%), soil dust contaminated by sewage sludge dumping (18.6%) and vehicular emissions (19.5%).

  11. Advanced Hybrid Particulate Collector Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.J.

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less

  12. Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range.

    PubMed

    Juárez, Andrea; Arribére, María A; Arcagni, Marina; Williams, Natalia; Rizzo, Andrea; Ribeiro Guevara, Sergio

    2016-09-01

    Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.

  13. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and major and trace elements in simulated rainfall runoff from parking lots, Austin, Texas, 2003

    USGS Publications Warehouse

    Mahler, Barbara J.; Van Metre, Peter C.; Wilson, Jennifer T.

    2004-01-01

    Samples of creek bed sediment collected near seal-coated parking lots in Austin, Texas, by the City of Austin during 2001–02 had unusually elevated concentrations of polycyclic aromatic hydrocarbons (PAHs). To investigate the possibility that PAHs from seal-coated parking lots might be transported to urban creeks, the U.S. Geological Survey, in cooperation with the City of Austin, sampled runoff and scrapings from four test plots and 13 urban parking lots. The surfaces sampled comprise coal-tar-emulsion-sealed, asphalt-emulsion-sealed, unsealed asphalt, and unsealed concrete. Particulates and filtered water in runoff and surface scrapings were analyzed for PAHs. In addition, particulates in runoff were analyzed for major and trace elements. Samples of all three media from coal-tar-sealed parking lots had concentrations of PAHs higher than those from any other types of surface. The mean total PAH concentration in particulates in runoff from parking lots in use were 3,500,000, 620,000, and 54,000 micrograms per kilogram from coal-tar-sealed, asphalt-sealed, and unsealed (asphalt and concrete combined) lots, respectively. The probable effect concentration sediment quality guideline is 22,800 micrograms per kilogram. The mean total PAH (sum of detected PAHs) concentration in filtered water from parking lots in use was 8.6 micrograms per liter for coal-tar-sealed lots; the one sample analyzed from an asphalt-sealed lot had a concentration of 5.1 micrograms per liter and the one sample analyzed from an unsealed asphalt lot was 0.24 microgram per liter. The mean total PAH concentration in scrapings was 23,000,000, 820,000, and 14,000 micrograms per kilogram from coal-tar-sealed, asphalt-sealed, and unsealed asphalt lots, respectively. Concentrations of lead and zinc in particulates in runoff frequently exceeded the probable effect concentrations, but trace element concentrations showed no consistent variation with parking lot surface type.

  14. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    NASA Astrophysics Data System (ADS)

    Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg

    2017-08-01

    The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected near the oil sands operations.

  15. High-resolution sampling and analysis of air particulate matter in the Pear River Delta region of Southern China: source apportionment and health risk assessment

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Day, P. K.; Wang, X.

    2017-12-01

    Hazardous air pollutants, such as trace elements in particulate matters (PM), are known or highly suspected to cause detrimental effects on human health. To understand the sources and associated risks of PM to human health, hourly time-integrated major trace elements in size-segregated coarse (PM10-2.5) and fine (PM2.5) particulate matter were collected and examined in an industrial city of Foshan in the Pearl River Delta region, China. Receptor modeling of the dataset by positive matrix factorization (PMF) was used to identify six sources contributing to PM2.5 and PM10 concentrations at the site. Dominant sources included industrial coal combustion, secondary inorganic aerosol, motor vehicles and construction dust along with two intermittent sources, biomass combustion and marine aerosol. The biomass combustion source was found to be a significant contributor to peak PM2.5 episodes along with motor vehicles and industrial coal combustion. Conditional probability function (CPF) was applied to estimate the local source effects from wind direction using the PMF-resolved source contribution coupled with the surface wind direction data. Health exposure risk for hazardous trace elements (Pb, As, Cr, Ni, Zn, V, Cu, Mn, Fe) and source-specific values were estimated. The total hazard quotient (total HQ =HI) of PM2.5 was 2.09, which is two times higher than the acceptable limit (HQ = 1). The total carcinogenic risk was 3.37*10-3 for PM2.5, which was three orders higher than the acceptable limit (i.e. 1.0*10-6). Among the selected trace elements, As and Pb posed the highest non-carcinogenic and carcinogenic risks for human health, respectively. In additional, our results showed that industrial coal combustion source was the dominant non-carcinogenic and carcinogenic risks contributor, highlighting the need for stringent control of this source. This study can provide new insight for policy makers to prioritize sources in air quality management and health risk reduction.

  16. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  17. Organic Compounds, Trace Elements, Suspended Sediment, and Field Characteristics at the Heads-of-Tide of the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers, New Jersey, 2000-03

    USGS Publications Warehouse

    Bonin, Jennifer L.; Wilson, Timothy P.

    2006-01-01

    Concentrations of suspended sediment, particulate and dissolved organic carbon, trace elements, and organic compounds were measured in samples from the heads-of-tide of the five tributaries to the Newark and Raritan Bays during June 2000 to June 2003. The samples were collected as part of the New Jersey Department of Environmental Protection Toxics Reduction Workplan/Contaminant Assessment Reduction Program. Samples of streamwater were collected at water-quality sampling stations constructed near U.S. Geological Survey gaging stations on the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers. Sampling was conducted during base-flow conditions and storms. Constituent concentrations were measured to determine the water quality and to calculate the load of sediment and contaminants contributed to the bays from upstream sources. Water samples were analyzed for suspended sediment, dissolved organic carbon, particulate organic carbon, and specific conductance. Samples of suspended sediment and water were analyzed for 98 distinct polychlorinated biphenyl congeners, 7 dioxins, 10 furans, 27 pesticides, 26 polycyclic aromatic hydrocarbons, and the trace elements cadmium, lead, mercury, and methyl-mercury. Measurements of ultra-low concentrations of organic compounds in sediment and water were obtained by collecting 1 to 3 grams of suspended sediment on glass fiber filters and by passing at least 20 liters of filtered water through XAD-2 resin. The extracted sediment and XAD-2 resin were analyzed for organic compounds by high- and low-resolution gas chromatography mass-spectrometry that uses isotope dilution procedures. Trace elements in filtered and unfiltered samples were analyzed for cadmium, lead, mercury, and methyl-mercury by inductively coupled charged plasma and mass-spectrometry. All constituent concentrations are raw data. Interpretation of the data will be completed in the second phase of the study.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prendez, M.; Ortiz, J.L.; Cortes, E.

    In Chile, the State Public Health Office (Ministerio de Salud Publica) is responsible for pollution control and for air quality. This office has been monitoring only toxic gases and total suspended particulate matter. The present work is the first study in Chile designed to determine trace elements and their concentrations in particulate matter in the air. By use of enrichment factors, 25 trace elements were classified according to natural or anthropogenic origin. There were two sampling periods: July (winter) and September (spring) 1976. Four sites were studied, located about 6 km north, south, west and east of downtown Santiago. Themore » south, north and west sites are urban and 55 m above sea level. The east site is suburban and approximately 270 m higher than the others. Twenty-four-hour samples were collected on Whatman-41 cellulose filter paper, in a modified stainless steel Buchner funnel. Approximately 10 m/sup 3/ were used at the urban sites and 200 m/sup 3/ at the suburban site. Instrumental neutron activation analysis (INAA) was used as the analytical technique.« less

  19. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China.

    PubMed

    Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong

    2014-08-30

    Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. JV Task 94 - Air Quality V: Mercury, Trace Elements, SO3, and Particulate Matter Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas A. Erickson

    2007-01-31

    This final report summarizes the planning, preparation, facilitation and production, and summary of the conference entitled 'Air Quality V: Mercury, Trace Elements, SO{sub 3}, and Particulate Matter,' held September 18-21, 2005, in Arlington, Virginia. The goal of the conference was to build on the discussions of the first four Air Quality Conferences, providing further opportunity for leading representatives of industry, government, research institutions, academia, and environmental organizations to discuss the key interrelationships between policy and science shaping near-term regulations and controls and to assist in moving forward on emerging issues that will lead to acceptable programs and policies to protectmore » human health, the environment, and economic growth. The conference was extremely timely, as it was the last large conference prior to publication of the U.S. Environmental Protection Agency's final regulations for mercury control from coal-fired utilities, and provided a forum to realistically assess the status of mercury controls in relation to the new regulations.« less

  1. Transport of particle-associated elements in two agriculture-dominated boreal river systems.

    PubMed

    Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn

    2013-09-01

    Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. PM2.5 in Urban and Rural Nursery Schools in Upper Silesia, Poland: Trace Elements Analysis

    PubMed Central

    Mainka, Anna; Zajusz-Zubek, Elwira; Kaczmarek, Konrad

    2015-01-01

    Indoor air quality (IAQ) in nursery schools is an emerging public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than older children. Among air pollutants, fine particulate matter (PM2.5) is of the greatest interest mainly due to its strong association with acute and chronic effects on children’s health. In this paper, we present concentrations of PM2.5 and the composition of its trace elements at naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter and spring seasons. The results indicate there is a problem with elevated concentrations of PM2.5 inside the examined classrooms. The children’s exposure to trace elements was different based on localization and season. PM2.5 concentration and its trace element composition have been studied using correlation coefficients between the different trace elements, the enrichment factor (EF) and principal component analysis (PCA). PCA allowed the identification of the three components: anthropogenic and geogenic sources (37.2%), soil dust contaminated by sewage sludge dumping (18.6%) and vehicular emissions (19.5%). PMID:26184269

  3. Variation in aluminum, iron, and particle concentrations in oxic ground-water samples collected by use of tangential-flow ultrafiltration with low-flow sampling

    USGS Publications Warehouse

    Szabo, Z.; Oden, J.H.; Gibs, J.; Rice, D.E.; Ding, Y.; ,

    2001-01-01

    Particulates that move with ground water and those that are artificially mobilized during well purging could be incorporated into water samples during collection and could cause trace-element concentrations to vary in unfiltered samples, and possibly in filtered samples (typically 0.45-um (micron) pore size) as well, depending on the particle-size fractions present. Therefore, measured concentrations may not be representative of those in the aquifer. Ground water may contain particles of various sizes and shapes that are broadly classified as colloids, which do not settle from water, and particulates, which do. In order to investigate variations in trace-element concentrations in ground-water samples as a function of particle concentrations and particle-size fractions, the U.S. Geological Survey, in cooperation with the U.S. Air Force, collected samples from five wells completed in the unconfined, oxic Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain. Samples were collected by purging with a portable pump at low flow (0.2-0.5 liters per minute and minimal drawdown, ideally less than 0.5 foot). Unfiltered samples were collected in the following sequence: (1) within the first few minutes of pumping, (2) after initial turbidity declined and about one to two casing volumes of water had been purged, and (3) after turbidity values had stabilized at less than 1 to 5 Nephelometric Turbidity Units. Filtered samples were split concurrently through (1) a 0.45-um pore size capsule filter, (2) a 0.45-um pore size capsule filter and a 0.0029-um pore size tangential-flow filter in sequence, and (3), in selected cases, a 0.45-um and a 0.05-um pore size capsule filter in sequence. Filtered samples were collected concurrently with the unfiltered sample that was collected when turbidity values stabilized. Quality-assurance samples consisted of sequential duplicates (about 25 percent) and equipment blanks. Concentrations of particles were determined by light scattering. Variations in concentrations aluminum and iron (1 -74 and 1-199 ug/L (micrograms per liter), respectively), common indicators of the presence of particulate-borne trace elements, were greatest in sample sets from individual wells with the greatest variations in turbidity and particle concentration. Differences in trace-element concentrations in sequentially collected unfiltered samples with variable turbidity were 5 to 10 times as great as those in concurrently collected samples that were passed through various filters. These results indicate that turbidity must be both reduced and stabilized even when low-flow sample-collection techniques are used in order to obtain water samples that do not contain considerable particulate artifacts. Currently (2001) available techniques need to be refined to ensure that the measured trace-element concentrations are representative of those that are mobile in the aquifer water.

  4. [Analysis of primary elemental speciation distribution in mungbean during enzymatic hydrolization].

    PubMed

    Li, Ji-Hua; Huang, Mao-Fang; Zhu, De-Ming; Zheng, Wei-Wan; Zhong, Ye-Jun

    2009-03-01

    In the present paper, trace elements contents of cuprum, zincum, manganese and ferrum in mungbean and their primary speciation distribution during enzymatic hydrolization were investigated with ICP-AES OPTIMA 5300DV plasma emission spectroscopy. The trace elements were separated into two forms, i.e. dissolvable form and particulate form, by cellulose membrane with 0.45 microm of pore diameter. All the samples were digested by strong acid (perchloric acid and nitric acid with 1 : 4 ratio ). The parameters of primary speciations of the four elements were calculated and discussed. The results showed: (1) Contents of cuprum, zincum, manganese and ferrum in mungbean were 12.77, 31.26, 18.14 and 69.38 microg x g(-1) (of dry matter), respectively. Different treatment resulted in different elemental formulation in product, indicating that more attention should be paid to the trace elements pattern when producing mungbean beverage with different processes. (2) Extraction rates of cuprum, zincum, manganese and ferrum in extract were 68.84%, 51.84%, 63.97% and 30.40% with enzymatic treatments and 36.22%, 17.58%, 7.85% and 22.99% with boil treatment, respectively. Both boil and enzymatic treatments led to poor elemental extraction rates, which proved that it was necessary to take deep enzymatic hydrolysis treatment in mungbean beverage process as the trace element utilization rate was concerned. (3) Amylase, protease and cellulose showed different extraction effectiveness of the four trace elements. Generally, protease exhibited highest efficiency for the four elements extraction. All of the four trace elements were mostly in dissolvable form in all hydrolysates and soup. (4) Relative standard deviations and recovery yields are within 0.12%-0.90% (n = 11) and 98.6%-101.4%, respectively. The analysis method in this paper proved to be accurate.

  5. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  6. Elemental composition of airborne particulates and source identification - An extensive one year survey. [in Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 60 chemical elements in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1 year period during 1971 and 1972 (45 to 50 sampling days). Analytical methods used included instrumental neutron activation, emission spectroscopy, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, the analytical methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data are discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  7. INVESTIGATING OXIDATION MECHANISMS OF HGO IN THE FREE TROPOSPHERE AND ITS INFLUENCE ON LONG RANGE MERCURY TRANSPORT

    EPA Science Inventory

    ORD initiated automated speciated mercury measurements at the NOAA Mauna Loa Observatory (MLO), a high altitude research station (~11,500 feet) in 2001. Mercury monitoring at MLO was supplemented with trace element aerosol, criteria gas, and gas and particulate halide measurement...

  8. Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden

    NASA Astrophysics Data System (ADS)

    Wagner, Annemarie; Boman, Johan; Gatari, Michael J.

    2008-12-01

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Göteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 µm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.

  9. Trace element reference values in tissues from inhabitants of the European Community. III. The control of preanalytical factors in the biomonitoring of trace elements in biological fluids.

    PubMed

    Minoia, C; Pietra, R; Sabbioni, E; Ronchi, A; Gatti, A; Cavalleri, A; Manzo, L

    1992-06-09

    In the context of a programme concerning the determination of trace elements in body fluids and tissues to establish trace element reference values, research has been undertaken on the control of preanalytical factors in order to develop sufficiently accurate and precise guidelines to be applied in routine work by using techniques such as graphite furnace atomic absorption spectroscopy (GFAAS). Aspects investigated are related to the risk of contamination during blood collection and the use of anticoagulants; the risk of losses during storage and freeze-drying as well as the possible risk of contamination arising from trace elements in airborne particulates of the laboratory environment. For the analysis of Al, Ba, Cd, Co, Cr, Mn, Mo, Ni, Sb, W, V and Zn in blood, Teflon cannula is the method of choice. The anticoagulants do not introduce disturbing contaminations of Rb, Se, Zn, while contaminations were observed for Co, Cr, Mn. Radiotracers in 'metabolized form' (radiolabelled rat or rabbit tissues from animals administered with radioisotopes) show that samples stored for 1 month at -20 degrees C have no significant trace metal losses. Strict ambient air quality standard has to be respected (continuous monitoring) due to the possibility of element contaminations inside the laboratory. The use of matrix modifiers could represent a toxicological risk to the operators. Critical factors should be considered ('metal sheets') for each element in each matrix. For instance 27 factors for Cr in serum have been suggested.

  10. Heavy metals in Lake Balaton: water column, suspended matter, sediment and biota.

    PubMed

    Nguyen, H L; Leermakers, M; Osán, J; Török, S; Baeyens, W

    2005-03-20

    During the period 1999-2002, five sampling cruises have been carried out on Lake Balaton to assess trace metal distribution in the lake and to identify major sources. Eighteen elements, including Cr, Co, Ni, Cu, Zn, Cd, Pb (trace metals) and Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Sr (major metals), were determined in one or more of the lake's compartments. Lower trace metal concentrations in rainwater were observed in June and February 2000, while much higher levels were present in September 2001 (during a storm event) and in snow (February 2000). In the Northern and Western parts of the lake, especially at the inflow of river Zala and the locations of the yacht harbours, metal concentrations were higher in almost all compartments. Because the lake is very shallow, storm conditions also change significantly the metal distributions in the dissolved and particulate phases. The Kis-Balaton protection system located on Zala river functions very efficiently for retaining suspended particulate matter (SPM; 72% retention) and associated metals. Metal concentrations in surface sediments of the lake showed a high variability. After normalisation for the fine sediment fraction, only a few stations including Zala mouth appeared to be enriched in trace metals. In zooplankton, Zn seemed to be much more elevated compared to the other trace metals. Based on the molar ratios of the trace metals in the various compartments and input flows of the lake, several trends could be deduced. For example, molar ratios of the trace metals in the dissolved and solid (suspended particulate matter and sediments) phases in the lake are fairly similar to those in Zala River.

  11. Rare earth element analysis indicates micropollutants in an urban estuary

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. J.; Johannesson, K. H.; Kolker, A.; Burdige, D. J.; Chevis, D.

    2011-12-01

    Rare earth element analysis of Bayou Bienvenue waters shows anomalously high gadolinium, Gd, concentrations relative to its nearest neighbors in the REE series, europium and terbium. The anomalously high Gd concentrations indicate anthropogenic input from waste-water treatment plants in the area as anthropogenic Gd input can be traced back to its use as a contrast agent in magnetic resonance imaging in hospitals. Others have shown that anomalously high levels of Gd in natural waters are likely to be associated with other micropollutants that also occur in hospital effluent and that are not removed in the wastewater treatment process, including pharmaceuticals in the form of steroids, antihistamines, and antibiotics. Estuaries serve as many important ecological roles and have been shown to act as a filter for pollutants. To better understand the transport, biogeochemical cycling, and ultimate fate of trace elements in estuaries, I collected surface water samples from Bayou Bienvenue, a wetland triangle that covers an area of 427 acres directly adjacent to New Orleans, Louisiana. Water samples from Bayou Bienvenue were collected along the salinity gradient and subsequently filtered through progressively smaller pore-size filters. The resulting fractions were analyzed for trace element concentions, including the REEs, by magnetic sector ICP-MS. The attached figure shows the Gd anomaly present in the particulate (>0.45μm) fraction. Upper continental crust (UCC)-normalized plots of colloidal REEs (0.02μm - 0.45μm) fraction is lacking this anomaly indicating anthropogenic Gd is found chiefly in the particulate fraction in Bayou Bienvenue. No clear relationship between Gd concentration and salinity was apparent.

  12. Characterisation of bed sediments and suspension of the river Po (Italy) during normal and high flow conditions.

    PubMed

    Davide, Vignati; Pardos, Michel; Diserens, Jérôme; Ugazio, Giancarlo; Thomas, Richard; Dominik, Janusz

    2003-07-01

    Grain-size distribution, major elements, nutrients and trace metals were determined in bed sediments and suspension collected at 10 representative sites along the river Po under normal and high flow conditions. Grain-size distribution and major element composition of suspension highlighted the presence of two distinct particle populations in the upper-middle Po (coarser particles, lower carbonate content) and in the lower Po (finer particles, higher carbonate content). This change partly reflects the geological differences between the two parts of the basin, and also the presence of a hydroelectric power plant at Isola Serafini (Piacenza). With respect to environmental quality issues, bed sediments and suspension provide similar results. A moderate nutrient pollution is found in all but the uppermost parts of the river basin, while the most significant inputs of trace metals appear to originate from the urban areas of Turin and Milan. Calculation of sediment enrichment factors identifies Cd, Cu, Hg and Zn as the most impacted elements by human activities. On the other hand, the high levels of Ni and Cr throughout the river seem to derive mainly from the presence of basic rocks in the upper and middle parts of the basin. Both nutrient and trace metal particulate concentrations substantially decrease under high flow conditions possibly due to "flushing" of contaminated bed sediments and resuspension of coarser material. Under normal flow conditions, water hydrochemistry and concentrations of some elements (As, Ca, Cr, Cu, K, Mg, Mn, Na, Ni, and Pb) in the dissolved phase (<0.45 microm) were also determined. Calculation of trace metals partition coefficients shows that the relative importance of the particulate and water phases varies in response to water hydrochemistry and suspended solid content, but that most elements achieve a conditional equilibrium in the lower stretches of the river Po. These results are the first of this kind reported for the whole river course and highlight the factors and mechanisms controlling the origin, mobility and fate of nutrients and trace metals in the river Po.

  13. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere.

    PubMed

    Utsunomiya, Satoshi; Jensen, Keld A; Keeler, Gerald J; Ewing, Rodney C

    2004-04-15

    Exposure to airborne particulates containing low concentrations of heavy metals, such as Pb, As, and Se, may have serious health effects. However, little is known about the speciation and particle size of these airborne metals. Fine- and ultrafine particles with heavy metals in aerosol samples from the Detroit urban area, Michigan, were examined in detail to investigate metal concentrations and speciation. The characterization of individual particles was completed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with conventional high-resolution TEM techniques. The trace elements, Pb, As, La, Ce, Sr, Zn, Cr, Se, Sn, Y, Zr, Au, and Ag, were detected, and the elemental distributions were mapped in situ atthe nanoscale. The crystal structures of the particles containing Pb, Sr, Zn, and Au were determined from their electron diffraction patterns. Based on the characterization of the representative trace element particles, the potential health effects are discussed. Most of the trace element particles detected in this study were within a range of 0.01-1.0 microm in size, which has the longest atmospheric residence time (approximately 100 days). Increased chemical reactivity owing to the size of nanoparticles may be expected for most of the trace metal particles observed.

  14. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants.

    PubMed

    Zajusz-Zubek, Elwira; Radko, Tomasz; Mainka, Anna

    2017-08-01

    Samples of PM1 were collected in the surroundings of coking plants located in southern Poland. Chemical fractionation provided information on the contents of trace elements As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se in all mobile (F1-F3) and not mobile (F4) fractions of PM1 in the vicinity of large sources of emissions related to energochemical processing of coal during the summer. The determined enrichment factors indicate the influence of anthropogenic sources on the concentration of the examined elements contained in PM1 in the areas subjected to investigation. The analysis of health risk for the assumed scenario of inhabitant exposure to the toxic effect of elements, based on the values of the hazard index, revealed that the absorption of the examined elements contained in the most mobile fractions of particulate matter via inhalation by children and adults can be considered potentially harmless to the health of people inhabiting the surroundings of coking plants during the summer (HI < 1). It has been estimated that due to the inhalation exposure to carcinogenic elements, i.e., As, Cd, Co, Cr, Ni and Pb, contained in the most mobile fractions (F1 + F2) of PM1, approximately four adults and one child out of one million people living in the vicinity of the coking plants may develop cancer.

  15. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    The techniques available for source identification are reviewed: remote sensing, injected tracers, and pollutants themselves as tracers. The use of the large number of trace elements in the ambient airborne particulate matter as a practical means of identifying sources is discussed. Trace constituents are determined by sensitive, inexpensive, nondestructive, multielement analytical methods such as instrumental neutron activation and charged particle X-ray fluorescence. The application to a large data set of pairwise correlation, the more advanced pattern recognition-cluster analysis approach with and without training sets, enrichment factors, and pollutant concentration rose displays for each element is described. It is shown that elemental constituents are related to specific source types: earth crustal, automotive, metallurgical, and more specific industries. A field-ready source identification system based on time and wind direction resolved sampling is described.

  16. Mass distribution and elemental analysis of the resultant atmospheric aerosol particles generated in controlled biomass burning processes

    NASA Astrophysics Data System (ADS)

    Ordou, N.; Agranovski, I. E.

    2017-12-01

    Air contamination resulting from bushfires is becoming increasingly important research question, as such disasters frequently occur in many countries. The objectives of this project were focused on physical and chemical characterisations of particulate emission resulting from burning of common representatives of Australian vegetation under controlled laboratory conditions. It was found that leaves are burned mostly with flaming phase and producing black smoke resulting in larger particles compared to white smoke in case of branches and grass, dominated by smouldering phase, producing finer particles. Following elemental analysis determined nine main elements in three different size fractions of particulate matter for each category of burning material, ranging from 14.1 μm to particle sizes below 2.54 μm. Potassium was found to be one of the main biomass markers, and sulphur was the ubiquitous element among the smoke particles followed by less prevalent trace elements like Na, Al, Mg, Zn, Si, Ca, and Fe.

  17. Tracing carbonaceous sources by using particulate carbon and sulfate in precipitation in Calgary, Alberta Canada

    NASA Astrophysics Data System (ADS)

    Ge, C.; Stenhouse, K. J.; Du, K.; Xing, Z.; Norman, A. L.

    2016-12-01

    Carbonaceous matter is often the dominant contributor to Particulate Matter (PM) which has a significant influence on climate, air quality and human health. The measurement of particulate carbon in rainfall in Calgary, Alberta has not been studied. This study reports the sulfate and the first concentrations of particulate carbon (PC) in rainfall in Calgary. It traces seasonal carbonaceous sources for the purpose of understanding sources for air quality control. Precipitation samples are collected twice a day at the University of Calgary. Thermo-optical methods are used to analyze concentrations of PC, including elemental carbon (EC), primary organic carbon (POC) and secondary organic carbon (SOC). Sulfate concentrations are measured using ion chromatography. In this study, sources from long range transport and local emissions are examined. We emphasized the apportionment of OC/EC in oil and gas emissions and diurnal variations in transportation emissions. Weekly average data for dry deposition were calculated to estimate the scavenging ratio of EC/POC/SOC and ions in precipitation. The results of this study will be presented with an emphasis on the relationship of carbonaceous material and sulfate. A range of apportionment methods have been applied to examine limitations in quantifying SOC in fall.

  18. The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility

    NASA Astrophysics Data System (ADS)

    Schuwerack, P.-M. M.; Neal, M.; Neal, C.

    2007-01-01

    Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.

  19. The geochemical cycling of trace elements in a biogenic meromictic lake

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara

    1994-10-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).

  20. The geochemical cycling of trace elements in a biogenic meromictic lake

    USGS Publications Warehouse

    Balistrieri, L.S.; Murray, J.W.; Paul, B.

    1994-01-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.

  1. ASSOCIATIONS BETWEEN TRACE ELEMENTAL COMPOSITION OF PM2.5 AND MORTALITY AND MORBIDITY IN PHILADELPHIA

    EPA Science Inventory

    A large number of studies have reported associations between particulate matter (PM) and mortality and morbidity. Since PM is a chemically non-specific index and a mixture of a variety of chemical components from multiple sources, it is possible that use of the total PM mass as ...

  2. Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50‧N East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Toner, B. M.; Fakra, S. C.; Marcus, M. A.; White, S. N.; Thurnherr, A. M.; German, C. R.

    2012-07-01

    Deep-sea hydrothermal plume particles are known to sequester seawater trace elements and influence ocean-scale biogeochemical budgets. The relative importance of biotic versus abiotic oxidation-reduction and other particle-forming reaction, however, and the mechanisms of seawater trace element sequestration remain unknown. Suspended particulate material was collected from a non-buoyant hydrothermal plume by in situ filtration at 9°50‧N East Pacific Rise during a 3-day, 24 sample, time-series. Twenty-three samples were digested for total elemental analysis. One representative sample was selected for particle-by-particle geochemical analyses including elemental composition by X-ray fluorescence, speciation of Fe, S, and C by 1s X-ray absorption near edge structure spectroscopy, and X-ray diffraction. Consistent with past studies, positive linear correlations were observed for P, V, As, and Cr with Fe in the bulk chemistry. Arsenic was associated with both Fe oxyhydroxides and sulfides but not uniformly distributed among either mineral type. Particle aggregation was common. Aggregates were composed of minerals embedded in an organic matrix; the minerals ranged from <20 nm to >10 μm in diameter. The speciation of major mineral forming elements (Fe, Mn, S) was complex. Over 20 different minerals were observed, nine of which were either unpredicted by thermodynamic modeling or had no close match in the thermodynamic database. Sulfur-bearing phases consisted of polysulfides (S6, S8), and metal sulfides (Fe, Cu, Zn, Mn). Four dominant species, Fe oxyhydroxide, Fe monosulfide, pyrrhotite, and pyrite, accounted for >80% of the Fe present. Particulate Mn was prevalent in both oxidized and reduced minerals. The organic matrix was: (1) always associated with minerals, (2) composed of biomolecules, and (3) rich in S. Possible sources of this S-rich organic matter include entrained near vent biomass and in situ production by S-oxidizing microorganisms. These results indicate that particle aggregation with organic material is prevalent in dispersing hydrothermal plume fluxes, as well as in sinking particulate matter at this site. Particle aggregation and organic coatings can influence the reactivity, transport, and residence time of hydrothermal particles in the water column. Thus a biogeochemical approach is critical to understanding the net effect of hydrothermal fluxes on ocean and sedimentary trace element budgets.

  3. Phytoplankton community indicators of changes associated with dredging in the Tagus estuary (Portugal).

    PubMed

    Cabrita, Maria Teresa

    2014-08-01

    This work reports changes in suspended particulate matter, turbidity, dissolved Cr, Ni, Cu, Cd, Hg and Pb concentrations, and phytoplankton biomass and composition during a 5-month period dredging operation, in a trace element contaminated area of the Tagus estuary (Portugal). Phytoplankton biomass, diatom:other groups ratio, benthic:pelagic diatom ratio, Margalef's, Simpson's diversity, Shannon-Wiever's, and Warwick and Clarke's taxonomic diversity and distinctness indices, and individual taxa were investigated as indicators of dredging induced changes. Significant rise in sediment resuspension and trace element mobilisation caused by dredging influenced the community structure but not the overall biomass. Benthic diatom displacement into the water column maintained species diversity, and therefore, none of the indices highlighted community changes. Contrastingly, diatom:other groups ratio and benthic:pelagic diatom ratio were reliable indicators for the assessment of dredging induced changes. A shift in composition towards species less susceptible to trace elements was observed, disclosing some individual taxa as potential indicators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Diurnal hydrological physicochemical controls and sampling methods for minor and trace elements in an Alpine glacial hydrological system

    NASA Astrophysics Data System (ADS)

    Mitchell, Andrew C.; Brown, Giles H.

    2007-01-01

    SummaryWe present diurnal (i) 0.45 and 0.1 μm pore-size filtered and (ii) operationally defined labile particulate-associated major, minor and trace element concentrations and fluxes in glacial outflow waters draining Haut Glacier d'Arolla, Switzerland. We use speciation modelling (PHREEQCi) and water-suspended sediment interaction experiments are utilised under conditions analogous to the subglacial channellised hydrological system, in order to assess controls on, and the most suitable sampling methods to investigate short-term variations in the mode of major, minor and trace element species export from a glacierised headwater catchment. 0.45 μm pore-size filtered major ions, Sr and U are exported in glacial outflow waters predominately as mobile monovalent or divalent ions or as carbonate complexes, and are controlled by hydrological variations over diurnal cycles, exhibiting an inverse concentration with increasing meltwater discharge. Conversely, 0.45 μm pore-size filtered concentrations of most minor and trace elements ( e.g. Fe, Mn, Co, Ba and Pb) exhibit variations that are not strongly inter-correlated with meltwater discharge or suspended sediment concentrations (SSC) over diurnal periods. The use of 0.45 and 0.1 μm pore-size filter membranes indicates that significant colloidal material is not passing through the 0.45 μm pore-size filters, and these unsystematic variations are not a result of colloid measurement. Speciation modelling applied to meltwaters and observations during water-rock interaction experiments suggest that these unsystematic temporal variations reflect physicochemical controls. This includes sorption, and the oversaturation and precipitation of Fe and Al (oxi)hydroxides, and the co-precipitation of other species. Diurnal pH variations appear important in controlling such short-term physicochemical controls, which limits such species use for hydrological investigations. The percentage of total elemental fluxes exported as the labile particulate-associated flux (%PAF) for each minor and trace element changes dramatically between and during the diurnal cycles, reflecting species-specific sensitivity to hydrological and physicochemical controls. Hydrological interpretations of hydrochemical data must be made carefully when using chemical determinations by ICP-MS, since we demonstrate that measurements will comprise of any material that passes through the filter. This can lead to higher concentration measurements than if determined by ion chromatography, which measures truly ionic dissolved species.

  5. Intertidal geothermal hot springs as a source of trace elements to the coastal zone: A case study from Bahía Concepción, Gulf of California.

    PubMed

    Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Baturina, Elena Lounejeva; Sánchez-Rodríguez, Ignacio; Delgadillo-Hinojosa, Francisco; Borges-Souza, José

    2018-03-01

    We investigated the influence of the intertidal geothermal hot spring (GHS) on the biogeochemistry of trace elements in Santispac Bight, Bahía Concepción (Gulf of California). The geothermal fluids were enriched in As and Hg mainly in ionic form. The suspended particulate matter of the GHS had elevated enrichment factor (EF) >1 of As, Bi, Cd, Co, Cu, Mn, Mo, Sb, Sn, Sr, Ti, U and Zn. The sediment core from GHS1 had high concentration of As, Hg, C org , S, V, Mo, and U and the extremely high EF of these elements at 8cm of the core. The maximum bioaccumulation of As and Hg was in seaweeds Sargassum sinicola collected near the GHS2. The results confirm the input of trace elements to the coastal zone in Bahía Concepción from geothermal fluids and the evident modification of the chemical composition of the adjacent marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Accumulation of trace elements used in semiconductor industry in Formosan squirrel, as a bio-indicator of their exposure, living in Taiwan.

    PubMed

    Suzuki, Yoshinari; Watanabe, Izumi; Oshida, Tatsuo; Chen, Yen-Jean; Lin, Liang-Kong; Wang, Yu-Huang; Yang, Kouh-Cheng; Kuno, Katsuji

    2007-07-01

    Concentrations of 17 trace elements were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) in Formosan squirrels (Callosciurus erythraeus) of Taiwan and Japan to document trace element pollution in Taiwan. High concentrations of elements used to produce semiconductors - Ga, As, Cd, In and Tl - were found in animals captured in Miaoli County, which is the nearest site to Hsinchu City, a chief city of Taiwan's semiconductor industry. Significant correlations between Ga, As, In and Tl were found in the kidney, liver, lung and muscle tissues of Taiwanese squirrels. Hierarchical cluster analysis indicated that Ga, As, In and Tl were of the same clade, indicating that Ga, As, In and Tl were discharged from an identical origin. Molar ratios of Ga/As concentration in lungs of animals captured in Miaoli resembled those of animals after intratracheal administration of particulate gallium arsenide (GaAs). This result might indicate that the higher concentrations of Ga and As in the specimens in Miaoli resulted from atmospheric exposure to GaAs.

  7. Nutrient, suspended sediment, and trace element loads in the Blackstone River Basin in Massachusetts and Rhode Island, 2007 to 2009

    USGS Publications Warehouse

    Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.

    2015-01-01

    Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.

  8. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  9. Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700 km latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir P.; Pokrovsky, Oleg S.; Vorobyev, Sergey N.; Krickov, Ivan V.; Manasypov, Rinat M.; Politova, Nadezhda V.; Kopysov, Sergey G.; Dara, Olga M.; Auda, Yves; Shirokova, Liudmila S.; Kolesnichenko, Larisa G.; Zemtsov, Valery A.; Kirpotin, Sergey N.

    2017-11-01

    In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64-68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.

  10. Direct evidence of the feedback between climate and nutrient, major, and trace element transport to the oceans

    NASA Astrophysics Data System (ADS)

    Eiriksdottir, Eydis Salome; Gislason, Sigurður Reynir; Oelkers, Eric H.

    2015-10-01

    Climate changes affect weathering, denudation and riverine runoff, and therefore elemental fluxes to the ocean. This study presents the climate effect on annual fluxes of 28 dissolved elements, and organic and inorganic particulate fluxes, determined over 26-42 year period in three glacial and three non-glacial river catchments located in Eastern Iceland. Annual riverine fluxes were determined by generating robust correlations between dissolved element concentrations measured from 1998 to 2003 and suspended inorganic matter concentrations measured from 1962 to 2002 with instantaneous discharge measured at the time of sampling in each of these rivers. These correlations were used together with measured average daily discharge to compute daily elemental fluxes. Integration of these daily fluxes yielded the corresponding annual fluxes. As the topography and lithology of the studied glacial and non-glacial river catchments are similar, we used the records of average annual temperature and annual runoff to examine how these parameters and glacier melting influenced individual element fluxes to the oceans. Significant variations were found between the individual elements. The dissolved fluxes of the more soluble elements, such as Mo, Sr, and Na are less affected by increasing temperature and runoff than the insoluble nutrients and trace elements including Fe, P, and Al. This variation between the elements tends to be more pronounced for the glacial compared to the non-glacial rivers. These observations are interpreted to stem from the stronger solubility control on the concentrations of the insoluble elements such that they are less affected by dilution. The dilution of the soluble elements by increasing discharge in the glacial rivers is enhanced by a relatively low amount of water-rock interaction; increased runoff due to glacial melting tend to be collected rapidly into river channels limiting water-rock interaction. It was found that the climate effect on particle transport from the glacial rivers is far higher than all other measured fluxes. This observation, together with the finding that the flux to the oceans of biolimiting elements such as P and Fe is dominated by particulates, suggests that particulate transport by melting glaciers have a relatively strong effect on the feedback between continental weathering, atmospheric chemistry, and climate regulation over geologic time.

  11. ICP-MS determination of trace elements in aerosols using a dynamic reaction cell: first results in PM10 comparing road and aerial traffic in Nice area (France).

    PubMed

    Fabretti, Jean-François; Sauret, Nathalie; Gal, Jean-François; Maria, Pierre-Charles; Schärer, Urs

    2007-09-01

    An analytical methodology was developed for the determination of 21 trace elements in suspended particulate matter (PM) using a microwave digestion procedure associated with an inductively coupled plasma mass spectrometry (ICP-MS). The dynamic reaction cell (DRC) of the instrument was carefully optimized to eliminate polyatomic species causing spectral interferences for three specified elements (Cr, Fe, Mn). With this method, the detection limits based on the analysis of seven quartz fibre filters (QFF) considering a one-week sample (250 m3) varied between 0.2 and 650 pg m(-3) for trace elements and between 2.1 and 5.6 ng m(-3) for major elements (Fe, Ti, Zn). The recovery of the analytes was tested with NIST SRM 1648 urban dust within 10% of the certified values only for 3-4 mg of material. The first results were discussed for a field campaign which was carried out simultaneously in the heaviest traffic road tunnel of the centre of Nice and near the landing-taking-off runways in the international airport of Nice Côte d'Azur. The behaviour of some combustion tracers was especially studied.

  12. Biogenic barite preciptiation at micromolar ambient sulfate

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Pryer, H. V.; Nielsen, S.; Ricketts, R. D.

    2016-12-01

    Earth's early oceans were essentially devoid of sulfate, yet barium sulfate (barite) deposits are common to ancient sediments. Most explanations for this `barite paradox' overlook biogenic barite precipitation—the dominant vector of particulate barium cycling in modern seawater—as the ancient oceans were presumably strongly undersaturated with respect to barite. We tested whether biogenic barite could indeed precipitate at trace sulfate by examining the particulate multi-element and Ba-isotopic geochemistry of one of the largest trace-sulfate ecosystems on Earth: Lake Superior. Despite exceptional levels of barite undersaturation in Lake Superior, we find unambiguous evidence of biogenic barite precipitation that is correlated with the depths of greatest organic matter remineralization in the water column. The overall pattern of particulate barium cycling in Lake Superior is strikingly similar to that seen in the open ocean, supporting the critical role of particle-associated `microenvironments' that become rich in respired sulfate as protected sites of biogenic barite formation. Our observations offer a microbially-mediated mechanism for barite formation at micromolar ambient sulfate and thus also a potential resolution to the barite paradox in the ancient oceans.

  13. SOURCE APPORTIONMENT OF INDOOR, OUTDOOR, AND PERSONAL PM2.5 IN SEATTLE, WASHINGTON, USING POSITIVE MATRIX FACTORIZATION

    EPA Science Inventory

    As part of a large exposure assessment and health effects panel study, 33 trace elements and light-absorbing carbon were measured on 24-hr particulate matter with an aero-dynamic diameter <2.5 um (PM2.5) fixed-site filter samples collected between September 26, 2000, and May 25, ...

  14. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco).

    PubMed

    Hayzoun, H; Garnier, C; Durrieu, G; Lenoble, V; Le Poupon, C; Angeletti, B; Ouammou, A; Mounier, S

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Temporal and spatial variations in the biogeochemical cycling of cobalt in two urban estuaries: Hudson River Estuary and San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Tovar-Sánchez, Antonio; Sañudo-Wilhelmy, Sergio A.; Flegal, A. Russell

    2004-08-01

    Despite the fact that Co is an essential trace element for the growth of marine phytoplankton, there is very limited information on the cycling of this trace metal in the marine environment. We report here the distribution of dissolved (<0.4 μm) and particulate (>0.4 μm) Co in surface waters of the Hudson River Estuary (HRE) and San Francisco Bay (SFB). Samples were collected during several cruises (from 1990 to 1995 in SFB and from 1995 to 1997 in the HRE) along the whole salinity gradient. Dissolved Co concentrations (mean±1 standard deviation) were nearly identical in magnitude in both estuaries despite differences in climate, hydrography, riverine-flow conditions and land-usage (HRE=0.91±0.61 nM; SFB=1.12±0.69 nM). Dissolved Co levels in each system showed non-conservative distributions when plotted as a function of salinity, with increasing concentrations downstream from the riverine end-members. Desorption from suspended particulates and sewage inputs, therefore, seems to be the major processes responsible for the non-conservative behavior of Co observed. Mass balance estimates also indicated that most of the estuarine Co is exported out of both estuaries, indicating that they and other estuarine systems are principal sources of this essential trace element to the open ocean.

  16. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida

    NASA Astrophysics Data System (ADS)

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  17. Characterization and source identification of trace elements in airborne particulates at urban and suburban atmospheres of Tabriz, Iran.

    PubMed

    Gholampour, Akbar; Nabizadeh, Ramin; Hassanvand, Mohammad Sadegh; Taghipour, Hasan; Rafee, Mohammad; Alizadeh, Zahra; Faridi, Sasan; Mahvi, Amir Hossein

    2016-01-01

    Concentration of particulate matter (PM10 and total suspended particulate (TSP)) and their elemental constituents were measured to identify the major sources of elements in urban and industrial suburban sites in Tabriz, Iran, from September 2012 to June 2013. TSP and PM10 samples were collected using high-volume samplers. Concentrations of 31 elements in aerosols and crustal soil were determined by ICPMS. The most abundant detected metals in the urban sampling sites were Al (217.5-4019.9 ng m(-3)), Fe (272.5-7658.0 ng m(-3)), Pt (4.7-1994.4 ng m(-3)), and P (13.6-2054.8 ng m(-3) (for TSP and Al (217.6-3687.3 ng m(-3)), Fe (197.1-3724.9 ng m(-3)), Pt (65.9-2054.5 ng m(-3)), and P (11.0-756.6 ng m(-3)( for PM10. In the suburban sampling site, the most abundant detected metals were Al (2083.0-9664.0 ng m(-3)), Fe (360.0-7221.5 ng m(-3)), P (229.4-870.5 ng m(-3)), and Ti (137.3-849.7 ng m(-3)) for TSP and Al (218.5-4179.6 ng m(-3)), Fe (106.3-2005.1 ng m(-3)), P (251.9-908.4 ng m(-3)), and Ba (10.6-584.9 ng m(-3)) for PM10. For the crustal soil, the most abundant detected elements included Al (60,088-60,694 ppm), Fe (19,886-20,474 ppm), Ti (894-3481 ppm), and Si (365-4246 ppm). Key emission sources were identified, and the concentrations contributed from individual sources were estimated. Enrichment factor (EF) explaining a preponderance of the variance in the data was applied to the datasets. EF calculations revealed that non-crustal trace elements were more enriched in the urban than suburban sampling sites. Results of the factor analysis on the elements showed that emissions from road traffic (involving oil and fuel combustions by vehicles, platinum group elements from vehicle exhaust, and resuspension of particulate matter from polluted soil) and construction dust from nearby construction sites and electricity generation plant were the major contributors of anthropogenic metals at ambient atmosphere in Tabriz. Results of this study elucidated the need for developing pollution control strategy, especially vehicle exhaust control, and creating green spaces around the city.

  18. Trace Element Composition of Phytoplankton Along the US GEOTRACES Pacific Zonal Transect: Comparing Single-Cell SXRF Quotas, Chemical Leaching, and Bulk Particle Digestion

    NASA Astrophysics Data System (ADS)

    Ohnemus, D.; Rauschenberg, S.; Twining, B. S.

    2014-12-01

    The elemental stoichiometries of phytoplankton are critical ecological and chemical parameters due to biological participation in, if not control over, the marine cycles of many GEOTRACES trace elements and isotopes (TEI). Elemental stoichiometries in euphotic zone protists can be used as end-members in biogeochemical models for bioactive elements (e.g. Fe, Si) and can provide insight into relationships found in the deep ocean and sediments (e.g. Cd:P, Zn:Si) due to broad and organism-specific geochemical links. Though sub-euphotic zone (e.g. hydrothermal, margin-sourced lateral) inputs and processes are also interesting aspects of these cycles, biological incorporation of TEIs in the euphotic zone is, fundamentally, where "the rubber meets the road." Using the 2013 Pacific GEOTRACES super stations and Peruvian coastal transect as ecological waypoints, we present and compare results from three methods for studying trace elemental composition of phytoplankton: single-cell synchrotron x-ray fluorescence (SXRF); weak chemical leaching (acetic acid/hydroxylamine); and total chemical digestion (HNO3/HCl/HF). This combination of techniques allows examination of taxon-specific trends in biotic stoichiometry across the Eastern Pacific and also provides traditional bulk chemical metrics for both biotic and bulk shallow particulate composition.

  19. Spatial and temporal variation of particulate matter characteristics within office buildings - The OFFICAIR study.

    PubMed

    Szigeti, Tamás; Dunster, Christina; Cattaneo, Andrea; Spinazzè, Andrea; Mandin, Corinne; Le Ponner, Eline; de Oliveira Fernandes, Eduardo; Ventura, Gabriela; Saraga, Dikaia E; Sakellaris, Ioannis A; de Kluizenaar, Yvonne; Cornelissen, Eric; Bartzis, John G; Kelly, Frank J

    2017-06-01

    In the frame of the OFFICAIR project, office buildings were investigated across Europe to assess how the office workers are exposed to different particulate matter (PM) characteristics (i.e. PM 2.5 mass concentration, particulate oxidative potential (OP) based on ascorbate and reduced glutathione depletion, trace element concentration and total particle number concentration (PNC)) within the buildings. Two offices per building were investigated during the working hours (5 consecutive days; 8h per day) in two campaigns. Differences were observed for all parameters across the office buildings. Our results indicate that the monitoring of the PM 2.5 mass concentration in different offices within a building might not reflect the spatial variation of the health relevant PM characteristics such as particulate OP or the concentration of certain trace elements (e.g., Cu, Fe), since larger differences were apparent within a building for these parameters compared to that obtained for the PM 2.5 mass concentration in many cases. The temporal variation was larger for almost all PM characteristics (except for the concentration of Mn) than the spatial differences within the office buildings. These findings indicate that repeated or long-term monitoring campaigns are necessary to have information about the temporal variation of the PM characteristics. However, spatial variation in exposure levels within an office building may cause substantial differences in total exposure in the long term. We did not find strong associations between the investigated indoor activities such as printing or windows opening and the PNC values. This might be caused by the large number of factors affecting PNC indoors and outdoors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    PubMed Central

    Capannesi, Geraldo; Lopez, Francesco

    2013-01-01

    Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb) the levels measured are only slight lower than those proposed as air ambient standard. PMID:23878525

  1. Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, Southwestern India.

    PubMed

    Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N

    2014-04-01

    The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.

  2. Trace elements in streambed sediments of small subtropical streams on O'ahu, Hawai'i: Results from the USGS NAWQA program

    USGS Publications Warehouse

    De Carlo, E. H.; Tomlinson, M.S.; Anthony, S.S.

    2005-01-01

    Data are presented for trace element concentrations determined in the <63 ??m fraction of streambed sediment samples collected at 24 sites on the island of O'ahu, Hawai'i. Sampling sites were classified as urban, agricultural, mixed (urban/agricultural), or forested based on their dominant land use, although the mixed land use at selected sampling sites consisted of either urban and agricultural or forested and agricultural land uses. Forest dominated sites were used as reference sites for calculating enrichment factors. Trace element concentrations were compared to concentrations from studies conducted in the conterminous United States using identical methods and to aquatic-life guidelines provided by the Canadian Council of Ministers of the Environment. A variety of elements including Pb, Cr, Cu and Zn exceeded the aquatic-life guidelines in selected samples. All of the Cr and Zn values and 16 of 24 Cu values exceeded their respective guidelines. The potential toxicity of elements exceeding guidelines, however, should be considered in the context of strong enrichments of selected trace elements attributable to source rocks in Hawai'i, as well as in the context of the abundance of fine-grained sediment in the streambed of O'ahu streams. Statistical methods including cluster analysis, Kruskal-Wallis non-parametric test, correlation analysis, and principal component analysis (PCA) were used to evaluate differences and elucidate relationships between trace elements and sites. Overall, trace element distributions and abundances can be correlated to three principal sources of elements. These include basaltic rocks of the volcanic edifice (Fe, Al, Ni, Co, Cr, V and Cu), carbonate/seawater derived elements (Mg, Ca, Na and Sr), and elements enriched owing to anthropogenic activity (P, Sn, Cd, Sn, Ba and Pb). Anthropogenic enrichment gradients were observed for Ba, Cd, Pb, Sn and Zn in the four streams in which sediments were collected upstream and downstream. The findings of this study are generally similar to but differ slightly from previous work on sediments and suspended particulate matter in streams, from two urban watersheds of O'ahu, Hawai'i. Inter-element associations in the latter were often stronger and indicated a mixture of anthropogenic, agricultural and basaltic sources of trace elements. Some elements fell into different statistical categories in the two studies, owing in part to differences in study design and the hydrogeological constraints on the respective study areas.

  3. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants.

    PubMed

    Zajusz-Zubek, Elwira; Kaczmarek, Konrad; Mainka, Anna

    2015-10-16

    This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.

  4. Suspended particulate matter determines physical speciation of Fe, Mn, and trace metals in surface waters of Loire watershed.

    PubMed

    Baalousha, Mohamed; Stoll, Serge; Motelica-Heino, Mikaël; Guigues, Nathalie; Braibant, Gilles; Huneau, Frédéric; Le Coustumer, Philippe

    2018-02-10

    This study investigates the spatiotemporal variability of major and trace elements, dissolved organic carbon (DOC), total dissolved solids (TDS), and suspended particulate matter (SPM) in surface waters of several hydrosystems of the Loire River watershed in France. In particular, this study aims to delineate the impact of the abovementioned water physicochemical parameters on natural iron and manganese physical speciation (homoaggregation/heteroaggregation) among fine colloidal and dissolved (< 10 nm), colloidal (10-450 nm) and particulate (> 450 nm) phases in Loire River watershed. Results show that the chemistry of the Loire River watershed is controlled by two end members: magmatic and metamorphic petrographic context on the upper part of the watershed; and sedimentary rocks for the middle and low part of the Loire. The percentage of particulate Fe and Mn increased downstream concurrent with the increase in SPM and major cations concentration, whereas the percentage of colloidal Fe and Mn decreased downstream. Transmission electron microscopy analyses of the colloidal and particulate fractions (from the non-filtered water sample) revealed that heteroaggregation of Fe and Mn rich natural nanoparticles and natural organic matter to the particulate phase is the dominant mechanism. The heteroaggregation controls the partitioning of Fe and Mn in the different fractions, potentially due to the increase in the ionic strength, and divalent cations concentration downstream, and SPM concentration. These findings imply that SPM concentration plays an important role in controlling the fate and behavior of Fe and Mn in various sized fractions. Graphical abstract Physical speciation by heteroaggregation of (Fe-Mn) compounds: high [SPM] → [Fe-Mn] particulate faction; low {SPM] → [Fe-Mn] colloid-dissolved fraction.

  5. Trace element geochemistry of volcanic gases and particles from 1983--1984 eruptive episodes of Kilauea volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.

    1987-12-10

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 daysmore » after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).« less

  6. Platinum group elements in stream sediments of mining zones: The Hex River (Bushveld Igneous Complex, South Africa)

    NASA Astrophysics Data System (ADS)

    Almécija, Clara; Cobelo-García, Antonio; Wepener, Victor; Prego, Ricardo

    2017-05-01

    Assessment of the environmental impact of platinum group elements (PGE) and other trace elements from mining activities is essential to prevent potential environmental risks. This study evaluates the concentrations of PGE in stream sediments of the Hex River, which drains the mining area of the Bushveld Igneous Complex (South Africa), at four sampling points. Major, minor and trace elements (Fe, Ca, Al, Mg, Mn, V, Cr, Zn, Cu, As, Co, Ni, Cd, and Pb) were analyzed by FAAS and ETAAS in suspended particulate matter and different sediment fractions (<63, 63-500 and 500-2000 μm), and Pt, Pd, Rh, and Ir were measured by ICP-MS after removal of interfering elements (cation exchange resin 50W-DOWEX-X8). Procedures were blank-corrected and accuracy checked using reference materials. Nickel, Cr, Pt, Pd, Rh and Ir show concentrations 3-, 13- 18-, 28-, 48- and 44- fold the typical upper continental crust levels, respectively, although lower than concentrations reported for the parent rocks. The highest concentrations were observed closer to the mining area, decreasing with distance and in the <63 μm fraction, probably derived from atmospheric deposition and surface runoff of PGE-rich particles released from mining activities. Thus, mining activities are causing some disturbance of the surface PGE geochemical cycle, increasing the presence of PGE in the fine fraction of river sediments. We propose that indicators such as airborne particulate matter, and soil and river sediment quality, should be added to the protocols for evaluating the sustainability of mining activities.

  7. Selected trace elements in the Sacramento River, California: occurrence and distribution.

    PubMed

    Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P

    2012-05-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.

  8. Emissions inventory of PM2.5 trace elements across the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Reff; Prakash V. Bhave; Heather Simon

    2009-08-15

    This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM2.5 emissions in the NEI were organized and aggregated into a set of 84 source categories for which chemical speciation profiles are available (e.g., Unpaved Road Dust, Agricultural Soil, Wildfires). Emission estimates for ten metals classified as Hazardous Air Pollutants (HAP) were refined using data from a recent HAP NEI. All emissions were spatially gridded, and U.S. emissions maps for dozens of trace elements (e.g., Fe,more » Ti) are presented for the first time. Nationally, the trace elements emitted in the highest quantities are silicon (3.8 x 10{sup 5} ton/yr), aluminium (1.4 x 10{sup 5} ton/yr), and calcium (1.3 x 10{sup 5} ton/yr). Our chemical characterization of the PM2.5 inventory shows that most of the previously unspeciated emissions are comprised of crustal elements, potassium, sodium, chlorine, and metal-bound oxygen. Coal combustion is the largest source of S, Se, Sr, Hg and primary sulfates. This work also reveals that the largest PM2.5 sources lacking specific speciation data are off-road diesel-powered mobile equipment, road construction dust, marine vessels, gasoline-powered boats, and railroad locomotives. 28 refs., 4 figs.« less

  9. Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.

    PubMed

    Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari

    2006-01-15

    Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.

  10. On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions

    NASA Astrophysics Data System (ADS)

    Kam, Winnie; Liacos, James W.; Schauer, James J.; Delfino, Ralph J.; Sioutas, Constantinos

    2012-12-01

    An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM10-2.5, PM2.5-0.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM10-2.5 while emission factors for PAHs and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of PAHs resulted in higher levels of PAHs in the particulate phase for LDV tunnel studies (Phuleria et al., 2006) and lower levels of PAHs in the particulate phase for freeway studies (Ning et al., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19-C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 1-2, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

  11. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland.

    PubMed

    Tepe, Nathalie; Bau, Michael

    2014-08-01

    Volcanic ashes are often referenced as examples for natural nanoparticles, yet the particle size distribution <1000 nm is only rarely documented. We here report results of a geochemical study of glacial-fed rivers, glacial surface runoff, glacial base flow, and pure glacial meltwater from southern Iceland, that had been sampled 25 days after the explosive eruptions at Eyjafjallajökull in 2010. In addition to the dissolved concentrations of rare earth elements (REE), Zr, Hf, Nb, and Th in the 450 nm-filtered waters, we also studied the respective filter residues (river particulates >450 nm) and volcanic ash. In spite of the low solubilities and high particle-reactivities of the elements studied, most water samples show high dissolved concentrations, such as up to 971 ng/kg of Ce and 501 ng/kg of Zr. Except for the pure glacial meltwater and glacial base flow, all waters display the same shale-normalized REE patterns with pronounced light and heavy REE depletion and positive Eu anomalies. While such patterns are unusual for river waters, they are similar to those of the respective river particulates and the volcanic ash, though at different concentration levels. The distribution of dissolved Zr, Hf, Nb, and Th in the waters also matches that of filter residues and ash. This strongly suggests that in all 450 nm-filtered river waters, the elements studied are associated with solid ash particles smaller than 450 nm. This reveals that volcanic ash-derived nanoparticles and colloids are present in these glacial-fed rivers and that such ultrafine particles control the trace element distribution in the surface runoff. Subsequent to explosive volcanic eruptions, these waters provide terrigenous input from landmasses to estuaries, that is characterized by a unique trace element signature and that subsequent to modification by estuarine processes delivers a pulse of nutrients to coastal seawater in regions not affected by plume fall-out. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis

    USGS Publications Warehouse

    Wang, W.-X.; Fisher, N.S.; Luoma, S.N.

    1996-01-01

    Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.

  13. Concentrations of Trace Elements in Settling Particulate Matter and Particulate Element Fluxes in the Concepción Bay, the Gulf of California during the years 1996-1998

    NASA Astrophysics Data System (ADS)

    Leal Acosta, M. L.; Choumiline, E.; Silverberg, N.

    2009-12-01

    María Luisa Leal Acosta, Evgueni Choumiline y Norman Silverberg National Polytechnic Institute, Interdisciplinary Center of Marine Sciences Av. Instituto Politécnico Nacional s/n Col. Palo de Santa Rita Apdo. Postal 592 23096 La Paz, B.C.S., México. The Concepcion Bay on the Peninsula de Baja California outstands by its high biological productivity and shallow gas-hydrothermal discharges. During a summer season the anoxic and hypoxic conditions frequently appear in the water column. To know the biogeochemistry of elements in this bay, a preliminary study of the composition of settling particulate matter (SPM) was carried out. The samples were collected since May 22, 1996 to January 30, 1997 (first period with low fluxes) and during January 31, 1997 - March 22, 1998 (second period with high fluxes) using a trap, anchored at south of the bay. The major element (Fe and Ca) and 21 trace element contents in SPM were determined by instrumental neutron activation analysis. The average lithogenic contribution in the particulate calculated using Sc is terrigenous indicator 39% and 19% for the first and second period respectively. The As, Br, Cr, Sb, Se, Sr y U average concentrations in the SPM were higher than their average crustal abundances. The principal component analysis shows the existents of three associations of the elements in settling particles: a) lithogenic (As, Co, Cr, Fe, lantanides and Sc); b) biogenic (Sr and Ca); c) authigenic (U and Se). The average element enrichment factors were higher in the first period of SPM sampling from: Se (739)> Zn (523)> Cr(105)> Br(104)> Sb(97)> As (69). The normalization of the rare earth elements contents in SPM with North American Shale Composite allowed to establish the negative europium anomaly in 1996 samples, and second period was characterized by positive europium anomaly, also detected for the sediments beneath the trap. Average fluxes of particulate elements during this period correspond to a following sequence: Fe (8.9 mg m-2 d-1)> Ca (6.9 mg m-2 d-1)> Sb (3.2 μg m-2 d-1)>Cr (2.1 μg m-2 d-1)> Sr (0.3 μg m-2 d-1)> Br (48.2 ng m-2 d-1)> U (27.9 ng m-2 d-1)> As (21.9 ng m-2 d-1) > Co (17.9 ng m-2 d-1)> Ce (17.1 ng m-2 d-1)> Nd (9.8 ng m-2 d-1)> La (7.6 ng m-2 d-1)> Se (7.4 ng m-2 d-1)> Rb (5.7 ng m-2 d-1)> Sc (4.4 ng m-2 d-1)> Sm (3.0 ng m-2 d-1)> Th (2.9 ng m-2 d-1)> Cs (1.8 ng m-2 d-1)> Hf (1.2 ng m-2 d-1)> Tb (0.6 ng m-2 d-1)> Lu (0.4 ng m-2 d-1)> Yb (0.4 ng m-2 d-1)> Eu (0.3 ng m-2 d-1).

  14. Lithogenic sources, composition and intra-annual variability of suspended particulate matter supplied from rivers to the Northern Galician Rias (Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Bernárdez, Patricia; Prego, Ricardo; Filgueiras, Ana Virginia; Ospina-Álvarez, Natalia; Santos-Echeandía, Juan; Álvarez-Vázquez, Miguel Angel; Caetano, Miguel

    2017-12-01

    Scarce research about small European rivers from non-human impacted areas to determine their natural background state has been undertaken. During the annual hydrological cycle of 2008-9 the patterns of particulate supply (SPM, POC, PON, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, V, Zn) from the rivers Sor, Mera Landro, Lourido and Landoi to the Northern Galician Rias (SW Bay of Biscay) were tackled. No differences in the composition of the SPM were detected for the studied rivers regarding Al, Fe and POC but the relative percentage of particulate trace elements (PTE) discriminate the rivers. So, Cr, Co and Ni in the Lourido, and Landoi rivers, and Cu in the Mera River, are controlled by watershed minerals of Ortegal Geological Complex while for the rest rivers PTE are by granitic and Ollo de Sapo bedrock watershed. Therefore, the imprint of PTE in the parental rocks of the river basins is reflected on the coastal sediments of the Rias. The main process controlling the dynamics and variations of chemical elements in the particulate form is the river discharge. This fact exemplifies that these rivers presents a natural behavior not being highly influenced by anthropogenic activities.

  15. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.

  16. A study of uniformity of elements deposition on glass fiber filters after collection of airborne particulate matter (PM-10), using a high-volume sampler.

    PubMed

    Marrero, Julieta; Rebagliati, Raúl Jiménez; Gómez, Darío; Smichowski, Patricia

    2005-12-15

    A study was conducted to evaluate the homogeneity of the distribution of metals and metalloids deposited on glass fiber filters collected using a high-volume sampler equipped with a PM-10 sampling head. The airborne particulate matter (APM)-loaded glass fiber filters (with an active surface of about 500cm(2)) were weighed and then each filter was cut in five small discs of 6.5cm of diameter. Each disk was mineralized by acid-assisted microwave (MW) digestion using a mixture of nitric, perchloric and hydrofluoric acids. Analysis was performed by axial view inductively coupled plasma optical emission spectrometry (ICP OES) and the elements considered were: Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Ti and V. The validation of the procedure was performed by the analysis of the standard reference material NIST 1648, urban particulate matter. As a way of comparing the possible variability in trace elements distribution in a particular filter, the mean concentration for each element over the five positions (discs) was calculated and each element concentration was normalized to this mean value. Scatter plots of the normalized concentrations were examined for all elements and all sub-samples. We considered that an element was homogeneously distributed if its normalized concentrations in the 45 sub-samples were within +/-15% of the mean value ranging between 0.85 and 1.15. The study demonstrated that the 12 elements tested showed different distribution pattern. Aluminium, Cu and V showed the most homogeneous pattern while Cd and Ni exhibited the largest departures from the mean value in 13 out of the 45 discs analyzed. No preferential deposition was noticed in any sub-sample.

  17. Spatial and temporal distribution of metals in suspended particulate matter of the Kali estuary, India

    NASA Astrophysics Data System (ADS)

    Suja, S.; Kessarkar, Pratima M.; Fernandes, Lina L.; Kurian, Siby; Tomer, Arti

    2017-09-01

    Major (Al, Fe, Mn, Ti, Mg) and trace (Cu, Zn, Pb, Cr, Ni, Co, Zr, Rb, Sr, Ba, Li, Be, Sc, V, Ga, Nb, Mo, Sn, Sb, Cs, Hf, Ta, Bi, Th, U) elements and particulate organic carbon (POC) concentrations in surface suspended particulate matter (SPM) of the Kali estuary, (central west coast of India) were studied during the pre-monsoon, monsoon and post monsoon seasons to infer estuarine processes, source of SPM and Geoaccumulation Index (Igeo) assigned pollutionIgeo levels. Distribution of SPM indicates the presence of the estuarine turbidity maximum (ETM) during all three seasons near the river mouth and a second ETM during the post monsoon time in the upstream associated with salinities gradient. The SPM during the monsoon is finer grained (avg. 53 μm), characterized by uniformly low normalized elemental concentration, whereas the post and pre monsoon are characterized by high normalized elemental concentration with coarser grain size (avg. 202 μm and 173 μm respectively) with highest ratios in the upstream estuary. The elemental composition and principal component analysis for the upstream estuary SPM support more contribution from the upstream catchment area rocks during the monsoon season; there is additional contribution from the downstream catchment area during the pre and post monsoon period due to the tidal effect. The Kali estuarine SPM has higher Al, Fe, Mn, Ti, Mg, Ni, Co, Ba, Li and V with respect to Average World River SPM (WRSPM). Igeo values for the SPM indicate Kali Estuary to be severely enriched with Mn and moderately enriched with Cu, Zn, Ni, Co, U and Mo in the upstream estuary during pre and post monsoon seasons. Seasonal changes in salinity gradient (reduced freshwater flow due to closing of the dam gates), reduced velocity at meandering region of the estuary and POC of 1.6-2.3% resulted in co-precipitation of trace elements that were further fortified by flocculation and coagulation throughout the water column resulting in metal trapping in the upstream region.

  18. Trace metal content in inhalable particulate matter (PM2.5-10 and PM2.5) collected from historical mine waste deposits using a laboratory-based approach.

    PubMed

    Martin, Rachael; Dowling, Kim; Pearce, Dora C; Florentine, Singarayer; McKnight, Stafford; Stelcer, Eduard; Cohen, David D; Stopic, Attila; Bennett, John W

    2017-06-01

    Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM 2.5-10 (coarse) and PM 2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4-26.6 and 0.6-7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680-26,100 mg kg -1 ) compared with the coarse fraction (1210-22,000 mg kg -1 ), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.

  19. Environmental assessment of a wood-waste-fired industrial firetube boiler. Volume 1. Technical results. Final report, January 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1987-03-01

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less

  20. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.

  1. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    USGS Publications Warehouse

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production and/or mobile sources (Mo, Cd, Pb, Cu, Zn) and (4) a transient marine source (Sr, Mg). Concentrations of Hg in PM2.5 at background levels in the single pg m-3 were shown by collection and analysis of PM2.5 on filters and by an automated speciation analyser set up at the Big Meadows air quality site. The speciation unit revealed periodic elevation of reactive gaseous mercury (RGM) that co-occurred with peaks in SO2, indicating an anthropogenic source. GC/MS total ion current chromatograms for the two sites were quite similar indicating that organic signatures were regional in extent and/or that the same compounds were present locally at each site. Calculated carbon preference index values for n-alkanes indicated that plant waxes rather than anthropogenic sources, were the dominant alkane source. Polycyclic aromatic hydrocarbons (PAHs) were detected, with a predominance of non-alkylated, and higher molecular weight PAHs in this fraction, suggestive of a combustion source (fossil fuel or forest fires). ?? 2008 The Authors. Journal compilation ?? 2008 International Association of Geoanalysts.

  2. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  3. The Trace Element Composition of Plankton and Dust in the Qatari EEZ

    NASA Astrophysics Data System (ADS)

    Turner, J.; Murray, J. W.; Yigiterhan, O.; Al-Ansari, I. S.; Al-Ansi, M.; Abdel-Moati, M.; Paul, B.; Nelson, A.

    2015-12-01

    We present data on elemental concentrations of plankton net tow samples from the Exclusive Economic Zone (EEZ) of Qatar in the Arabian Gulf as part of a broader study of biogenic and lithogenic influences on particulate trace metal concentrations in the surface ocean. There are relatively few analyses of planktonic trace metals and their associated role in the biogeochemical system. We had the opportunity to investigate the composition of plankton in a region heavily affected by dust, a significant factor for phytoplankton growth. Our samples were collected from 2012 to 2015 using trace metal clean net tows with mesh sizes of 50 and 200 microns for measurements of phytoplankton and zooplankton, respectively. Samples were totally digested and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS). The biogenic portion was determined by subtracting the lithogenic portion from the total concentration. The lithogenic fraction was defined as the concentration of aluminum in the sample multiplied by a [Me]/Al ratio. Using average Qatari dust for these ratios generated a significant amount of overcorrection, so ratios were established using average upper continental crust (UCC). This method still caused some overcorrection for the lithogenic portion resulting in negative excess values for barium, molybdenum, and lead. These same elements showed the least consistency between measurements. For the other elements, a relative stoichiometry for plankton was determined as Fe > Cu ≈ Zn > As ≈ Cr ≈ Mn ≈ Ni ≈ V > Cd ≈ Co. We also found a significant near shore enrichment for 9 out of 13 elements analyzed, indicative of a possible influence of coastal processes.

  4. Cytological stress and element uptake in moss and lichen exposed in bags in urban area.

    PubMed

    Spagnuolo, V; Zampella, M; Giordano, S; Adamo, P

    2011-07-01

    In this study cytological ultrastructure, total content of C, N and S, and cellular location of major and trace elements (K, Ca, Mg, Cu, Pb and Zn) were investigated in the moss Hypnum cupressiforme and in the lichen Pseudevernia furfuracea exposed in bags for a spring-summer 12-weeks period in the urban area of Naples city. In the moss, severe ultrastructural damages, such as membrane interruptions and dehydration, developed after exposure supporting the occurrence of a dead biomonitor. In the lichen, the post-exposure stress marks, such as the development of lysosome-like vesicles and concentric bodies, or the production of melanin, were overall compatible with life. With exposure, N, S, major and trace element contents all increased in both biomonitors, while C remained substantially unchanged. Copper and Pb were mainly retained in extracellular and particulate forms. Intracellular concentration of Zn consistently increased in both biomonitors, irrespective of their vitality. In transplants, cellular location of elements can better reflect the form in which they occur in the environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Environmental assessment of a wood-waste-fired industrial firetube boiler. Volume 2. Data supplement. Final report, January 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1987-03-01

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace-element-content determinations. Emission levels of five polycyclic organicmore » matter species and phenol were quantitated: except for naphthalene, all were emitted at less than 0.4 microgram/dscm.« less

  6. Traffic and catalytic converter - related atmospheric contamination in the metropolitan region of the city of Rio de Janeiro, Brazil.

    PubMed

    da Silva, Lílian Irene Dias; de Souza Sarkis, Jorge Eduardo; Zotin, Fátima Maria Zanon; Carneiro, Manuel Castro; Neto, Arnaldo Alcover; da Silva, Alzira dos Santos Amaral Gomes; Cardoso, Mauri José Baldini; Monteiro, Maria Inês Couto

    2008-03-01

    In this work, 24-h PM10 samples were collected in Rio de Janeiro, Brazil, and analysed for trace elements (Cd, Ce, Cu, La, Mo, Ni, Pb, Pd, Rh, Sb and Sn). The sampling was carried out at five locations (Bonsucesso; Centro, downtown city; Copacabana; Nova Iguaçu and Sumaré) with different traffic densities and anthropogenic activities. An analytical method based on the EPA method for the determination of trace elements in airborne particulate matter (PM), using ultrasonic-assisted extraction and inductively coupled plasma mass spectrometry (ICP-MS) was applied. Our results suggest that vehicular traffic is the most important source of environmental pollution at the studied sites. The presence of Mo, Pd and Rh in the analysed filters reflects an additional source of pollution caused by the erosion and deterioration of automotive catalytic converters.

  7. Significance of floods in metal dynamics and export in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Roussiez, Vincent; Probst, Anne; Probst, Jean-Luc

    2013-08-01

    High-resolution monitoring of water discharge and water sampling were performed between early October 2006 and late September 2007 in the Montoussé River, a permanent stream draining an experimental agricultural catchment in Gascogne region (SW France). Dissolved and particulate concentrations of major elements and trace metals (i.e. Al, Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, Sc and Zn) were examined. Our results showed that contamination levels were deficient to moderate, as a result of sustainable agricultural practices. Regarding dynamics, metal partitioning between particulate and dissolved phases was altered during flood conditions: the particulate phase was diluted by coarser and less contaminated particles from river bottom and banks, whereas the liquid phase was rapidly enriched owing to desorption mechanisms. Soluble/reactive elements were washed-off from soils at the beginning of the rain episode. The contribution of the flood event of May 2007 (by far the most significant episode over the study period) to the annual metal export was considerable for particulate forms (72-82%) and moderate for dissolved elements (0-20%). The hydrological functioning of the Montoussé stream poses dual threat on ecosystems, the consequences of which differ from both temporal and spatial scales: (i) desorption processes at the beginning of floods induce locally a rapid enrichment (up to 3.4-fold the pre-flood signatures on average for the event of May 2007) of waters in bioavailable metals, and (ii) labile metals - enriched by anthropogenic sources - associated to particles (mainly via carbonates and Fe/Mn oxides), were predominantly transferred during floods into downstream-connected rivers.

  8. Arsenic species in atmospheric particulate matter as tracer of the air quality of Doñana Natural Park (SW Spain).

    PubMed

    González-Castanedo, Y; Sanchez-Rodas, D; Sánchez de la Campa, A M; Pandolfi, M; Alastuey, A; Cachorro, V E; Querol, X; de la Rosa, J D

    2015-01-01

    Sampling and chemical analyses, including major compounds and trace elements, of atmospheric particulate matter (PM10 and PM2.5) have been performed during 2006-2007 in a regional background monitoring station located within the Doñana Natural Park (SW of Spain). This region is strategic for air quality and climate change studies, representing a meeting place of the European and African continents, and the Atlantic Ocean and Mediterranean Sea. The present study based on meteorological parameters demonstrated long-range transport and impact of industrial plumes on the Doñana Natural. Inorganic arsenic species (arsenate and arsenite) have been analyzed in particulate matter (PM) to characterize the impact of near Cu-smelter plumes and demonstrated the long-range transport of industrial pollutants. As(V) is the main specie of As and varies between 95% and 98% of total As in PM10 and 96-97% in PM2.5. The As(V)/As(III) ratio measured in emission plumes of a Cu-smelter are similar to the ratio found in the Doñana Natural Park. The application of Positive Matrix Factorization (PMF) to atmospheric particulate matter estimated the contributions and chemical profiles of natural and anthropogenic sources impacting the Natural Park, demonstrating the industrial origin of the As and other toxic elements in the air. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Survey of Instrumentation for the Measurement of Stratospheric Trace Gases and Particulates (CIAP)

    DOT National Transportation Integrated Search

    1971-11-01

    A survey was conducted to determine the applicability of presently available instrumentation to the direct and/or remote measure of trace gases and particulates within the stratosphere. Consideration was also given to techniques under development whe...

  10. Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM10 in the harbor of Volos, Greece: Implications for the impact of harbor activities

    NASA Astrophysics Data System (ADS)

    Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.

    2017-10-01

    Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.

  11. The Trace Element Geochemistry of Marine Biogenic Particulate Matter.

    DTIC Science & Technology

    1981-02-01

    while the sample remains in the sea water suspension due to mechanical, bacterial, or autolytic decomposition, but is accelerated by suspension in the...acid leaching experiments is that which contains a very refractory component which is only partly released by HNO 3 or remains in the residual particles...significant percentages of their total concentrations remaining in the frustules after leaching with O.1N HCl. The residual Fe and Al in the sample are in

  12. Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors.

    PubMed

    Ying, Qi; Feng, Miao; Song, Danlin; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Kleeman, Michael J; Li, Xinghua

    2018-05-15

    Contributions to 15 trace elements in airborne particulate matter with aerodynamic diameters <2.5μm (PM 2.5 ) in China from five major source sectors (industrial sources, residential sources, transportation, power generation and windblown dust) were determined using a source-oriented Community Multiscale Air Quality (CMAQ) model. Using emission factors in the composite speciation profiles from US EPA's SPECIATE database for the five sources leads to relatively poor model performance at an urban site in Beijing. Improved predictions of the trace elements are obtained by using adjusted emission factors derived from a robust multilinear regression of the CMAQ predicted primary source contributions and observation at the urban site. Good correlations between predictions and observations are obtained for most elements studied with R>0.5, except for crustal elements Al, Si and Ca, particularly in spring. Predicted annual and seasonal average concentrations of Mn, Fe, Zn and Pb in Nanjing and Chengdu are also consistently improved using the adjusted emission factors. Annual average concentration of Fe is as high as 2.0μgm -3 with large contributions from power generation and transportation. Annual average concentration of Pb reaches 300-500ngm -3 in vast areas, mainly from residential activities, transportation and power generation. The impact of high concentrations of Fe on secondary sulfate formation and Pb on human health should be evaluated carefully in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Element-specific behaviour and sediment properties modulate transfer and bioaccumulation of trace elements in a highly-contaminated area (Augusta Bay, Central Mediterranean Sea).

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Di Leonardo, Rossella; Vizzini, Salvatrice

    2017-11-01

    High sediment contamination in the coastal area of Priolo Bay, adjacent to the highly-polluted Augusta Harbour, poses serious risks for the benthic communities inhabiting the area. Nevertheless, the transfer of trace elements and consequent bioaccumulation in the biota is an overlooked issue. This study aimed to assess the transfer and bioaccumulation patterns of As, Cd, Ni and Hg to the dominant macroalgae and benthic invertebrates of Priolo Bay. Results revealed different patterns among trace elements (TEs), not driven by sediment contamination but rather by element-specific behaviour coupled with sediment physicochemical properties. Specifically, As accumulated in macroalgae but not in invertebrates, indicating bioavailability of dissolved As only, and a lack of effective trophic transfer. Ni was confined to surface sediment and transfer to biota was not highlighted. Cd and Hg showed the highest concentrations in invertebrates and bioaccumulated especially in filter feeders and carnivores, revealing the importance of suspended particulate and diet as transfer pathways. Total organic carbon (TOC), fine-grained sediments and redox potential were the most important sediment features in shaping the sediment contamination spatial patterns as well as those of TE transfer and bioaccumulation. In particular, As and Cd transfer to macroalgae, and especially Hg bioaccumulation in benthic invertebrates was controlled by sediment properties, resulting in limited transfer and accumulation in the most contaminated stations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Impacts of anthropogenic pressures on the water quality of the Gironde Estuary (SW France) from the Urban Agglomeration of Bordeaux: spatial characterization and inputs of trace metal elements (Ag, As, Cd, Cu, Pb and Zn)

    NASA Astrophysics Data System (ADS)

    Kessaci, Kahina; Coynel, Alexandra; Blanc, Gérard; Deycard, Victoria N.; Derriennic, Hervé; Schäfer, Jörg

    2014-05-01

    Recent European legislation (2000/60/CE) has listed eight trace metal elements as priority toxic substances for water quality. Urban metal inputs into hydrosystems are of increasing interest to both scientists and managers facing restrictive environmental protection policies, population increase and changing metal applications. The Gironde Estuary (SW France; 625 km2) is known for its metal/metalloid pollution originating from industrial (e.g. Cd, Zn, Cu, As, Ag, Hg) or agricultural sources (e.g. Cu) in the main fluvial tributaries (Garonne and Dordogne Rivers). However, little peer-reviewed scientific work has addressed the impact of urban sources on the Gironde Estuary, especially the Urban Agglomeration of Bordeaux (~1 million inhabitants) located on the downstream branch of the Garonne River. In this study, a snapshot sampling campaign was performed in 2011 for characterizing the spatial distribution of dissolved and particulate metal/metalloid (As, Ag, Cd, Pb, Zn, Cu) concentrations in three suburban watersheds: the Jalle of Blanquefort (330 km2), Eau Bourde (140 km2), and Peugue (112 km2). Furthermore, particulate metal Enrichment Factors (EF) were calculated using local geochemical background measured at the bottom of a sediment core (492 cm). Results indicated that metal concentrations displayed a high spatial variability depending on the suburban watershed and the studied element. Local concentrations anomalies were observed for: (i) As in the Eau Bourde River in dissolved (4.2 μg/l) and particulate phases (246 mg/kg; EF= 20) and attributed to a nearby industrial incinerator; (ii) Zn in the Peugue River with maximum dissolved and particulate concentrations of 87 μg/l and 1580 mg/kg (EF=17), respectively, probably due to urban habitation runoff; (iii) Ag in the Jalle of Blanquefort River with high dissolved (74 ng/l) and particulate concentrations (33.7 mg/kg; EF=117) due to industrial activities in the downstream part. Based on hydro-geochemical monitoring of both suburban rivers and local wastewater treatment plants (WWTPs), we present a first estimate of metal/metalloid fluxes and compare them to the respective loads in the Garonne River. Our results suggest that suburban metal inputs may significantly increase metal concentrations and fluxes in the fluvial Gironde Estuary, especially for Ag due to inputs exported by WWTPS and the Jalle of Blanquefort River.

  15. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.

  16. Use of an ultra-clean sampling technique with inductively coupled plasma-mass spectrometry to determine trace-element concentrations in water from the Kirkwood-Cohansey Aquifer system, coastal plain, New Jersey

    USGS Publications Warehouse

    Ivahnenko, Tamara; Szabo, Zoltan; Hall, G.S.

    1996-01-01

    Water samples were collected during 1993 from 22 public supply wells screened in the Kirkwood-Cohansey aquifer system; concentrations of 18 trace elements were determined primarily by using inductively coupled plasma-mass spectrometry (ICP-MS) techniques, though graphite furnace atomic adsorption, hydride generation, and cold- vapor flameless atomic adsorption techniques were used for thallium, arsenic, and mercury, respectively, at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL). In addition, laboratory measurements of alkalinity and turbidity were made. The ground-water samples were collected by using ultra-clean sampling protocols developed by the USGS for collecting ground-water samples in areas with water containing low concentrations of trace elements. This technique is based on recently gained experience in sampling surface water for these elements. Field parameters (water temperature, specific conductance, pH, and dissolved-oxygen concentration) were monitored prior to sample collection. Three equipment blanks were collected to ensure that low-level trace-element contamination did not occur during sample collection. One split sample and a commercially- prepared reference standard were submitted to the NWQL o evaluate laboratory precision and accuracy, respectively. Trace-element concentrations in 10 sample splits and one equipment blank were also determined at the Rutgers University Chemistry Department laboratory. Results of the ICP-MS analyses and cold vapor flameless atomic absorption indicated that five trace elements-- cobalt, copper, lead, mercury, and nickel--were detectable in low concentrations (<0.1-29 mg/L) in most of the samples from the 22 wells, and four elements--aluminum, barium, manganese and zinc--were detected in higher concentrations than the other elements (30-710 mg/L for aluminum; 4-180 mg/L for barium, manganese, and zinc). The remaining nine trace elements were present in concentrations consistently lower than the minimum reporting limit. Turbidity was low (less than 1 nephelometric turbidity unit (NTU)), indicating that the trace-element concentrations were present in the dissolved phase and ideally would be reproducible in the absence of highly variable concentrations of particulates. The concentration of lead in one sample exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 mg/L; concentrations ranged from <1 to 16 mg/L. Mercury was frequently detected; concentrations ranged from <0.1 to 1.1 mg/L but did not exceed the USEPA maximum contaminant level. Results of analyses of the equipment blanks indicated that samples collected by using the new ultra-clean sampling protocols were free of low-level (< 1mg/L) trace-element contamination. The analysis of the split sample sent to the NWQL had a difference of 5 percent or less for all constituents except aluminum, for which the analysis had a difference of 10 percent. Results of ICP-MS analyses of split water samples sent to the Rutgers University Chemistry Department laboratory were, in general, in good agreement (within 10 percent) with those of the NWQL. Results of the analysis of the commercial standard agreed (within 5 percent) with the known concentrations of the trace elements. The quality-assurance data (three blanks, one split sample, and one standard), although not statistically evaluated because of the small data set, indicate that the measured trace-element concentrations are precise and accurate and that the samples were free of contamination at the microgram-per-liter level of contamination.

  17. Trace-element concentrations and water-soluble ions in size-segregated dust-borne and soil samples in Sistan, southeast Iran

    NASA Astrophysics Data System (ADS)

    Behrooz, Reza Dahmardeh; Esmaili-Sari, Abbas; Bahramifar, Nader; Kaskaoutis, D. G.; Saeb, Keivan; Rajaei, Fatemeh

    2017-04-01

    This study analyzes the chemical composition (water-soluble ions and trace elements) of the total suspended particles (TSP) and particulate matter less than 10 and 2.5 μm (PM10 and PM2.5) in the Sistan basin, southeast Iran during the dusty and windy period June - October 2014. Extreme TSP, PM10 and PM2.5 concentrations, means of 1624.8, 433.4 and 320.8 μgm-3, respectively, were recorded in the Zabol sampling site, while the examined water-soluble ions and trace metals constitute small fractions (∼4.1%-17.7%) of the particulate masses. Intense winds on the dust-storm days result in weathering of soil crust and deflation of evaporate minerals from the dried Hamoun lake beds in the Sistan basin. The soil samples are rich in Ca2+, SO42-, Na+ and Cl- revealing the existence of non-sea salts, as well as in Al, Fe and Mg, while the similarity in the chemical composition between soil and airborne samples indicates that the dust events over Sistan are local in origin. In contrast, low concentrations of secondary ions (i.e., nitrate) and heavy metals (i.e., Pb, Cr, Ni, Cu) indicate less anthropogenic and industrial emissions. Enrichment Factor analysis for TSP, PM10 and PM2.5 reveals that the anthropogenic sources contribute a substantial amount in the heavy metals rather than soil crust, while Al, Fe, Sn, Mg are mostly of crustal origin. The results provide essential knowledge in atmospheric chemistry over Sistan and in establishing mitigation strategies for air pollution control.

  18. The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain)

    NASA Astrophysics Data System (ADS)

    Sánchez Bisquert, David; Matías Peñas Castejón, José; García Fernández, Gregorio

    2017-03-01

    It is understood that particulate matter in the atmosphere from metallic mining waste has adverse health effects on populations living nearby. Atmospheric deposition is a process connecting the mining wasteswith nearby ecosystems. Unfortunately, very limited information is available about atmospheric deposition surrounding rural metallic mining areas. This article will focus on the deposition from mining areas, combined with its impact on nearby rural built areas and populations. Particle samples were collected between June 2011 and March 2013. They were collected according to Spanish legislation in ten specialised dust collectors. They were located near populations close to a former Mediterranean mining area, plus a control, to assess the impact of mining waste on these villages. This article and its results have been made through an analysis of atmospheric deposition of these trace elements (Mn, Zn, As, Cd and Pb). It also includes an analysis of total dust flux. Within this analysis it has considered the spatial variations of atmospheric deposition flux in these locations. The average annual level of total bulk deposition registered was 42.0 g m-2 per year. This was higher than most of the areas affected by a Mediterranean climate or in semi-arid conditions around the world. Regarding the overall analysis of trace elements, the annual bulk deposition fluxes of total Zn far exceeded the values of other areas. While Mn, Cd and Pb showed similar or lower values, and in part much lower than those described in other Mediterranean mining areas. This study confirmed some spatial variability of dust and trace elements, contained within the atmospheric deposition. From both an environmental and a public health perspective, environmental managers must take into account the cumulative effect of the deposition of trace elements on the soil and air quality around and within the villages surrounding metallic mining areas.

  19. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    PubMed

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Organic compounds and trace elements in the Pocomoke River and its tributaries

    USGS Publications Warehouse

    Miller, Cherie V.; Foster, Gregory D.; Huff, Thomas B.; Garbarino, John R.

    1999-01-01

    In response to concern about recent blooms of the dinoflagellate, Pfiesteria piscicida, samples of sediment and water were collected from the lower Pocomoke River Basin and were screened for trace elements, pesticides, and other organic compounds. A large group of steroid and fatty acid methyl-ester compounds was detected in streamwater using gas chromatography/mass spectroscopy in scan mode. Some of these steroid compounds have been identified and further quantified in bed-sediment extracts. Spatial patterns of the concentrations of cholesterol suggest that these compounds are linked to the runoff of animal wastes into the river. Many of the organic compounds found in the Pocomoke River sediments have not yet been identified, but at least several are in the class of hormone compounds related to estradiols and have the potential to promote endocrine-disrupting effects in aquatic life. Particulate forms of arsenic and zinc are slightly elevated above normal levels for streams, but the sources for these elements are still undetermined. Several pesticides were found in low, parts-per-trillion concentrations, but were within the ranges commonly found in streams of this region.

  1. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    NASA Astrophysics Data System (ADS)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  2. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1984-04-01

    Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.

  3. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  4. Characterization of exhaust emissions from diesel-powered passenger cars with particular reference to unregulated components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lies, K.H.; Postulka, A.; Gring, H.

    Besides regulated components VW's research program in the field of characterization of diesel emissions comprises a detailed analysis of the particulates and a comprehensive study of a number of unregulated gaseous compounds. The following chemical compounds and classes of compounds are measured: particulates, traces of metals, major elements, sulfates, sulfur dioxide, hydrogen sulfide, hydrogen cyanide, aldehydes, ammonia, phenols, individual hydrocarbons, and odor (DOAS). The test fleet of this investigation included a number of VW and Audi cars equipped with 4-, and 5-cylinder diesel engines (naturally aspirated and turbocharged). All measurements were performed on a chassis dynamometer in accordance with themore » specification of the known US-test-procedures: Federal Test Procedure, Sulfate Emission Test, Fuel Economy Test. For sampling , in principle, the dilution tunnel technique was used combined with an automatically working collection system. This micro-processor controlled system involves 13 individual sample lines, 8 for gaseous and 5 for particulate components.« less

  5. Atmospheric particulate matter intercepted by moss-bags: Relations to moss trace element uptake and land use.

    PubMed

    Di Palma, Anna; Capozzi, Fiore; Spagnuolo, Valeria; Giordano, Simonetta; Adamo, Paola

    2017-06-01

    Particulate matter has to be constantly monitored because it is an important atmospheric transport form of potentially harmful contaminants. The cost-effective method of the moss-bags can be employed to evaluate both loads and chemical composition of PM. PM entrapped by the moss Pseudoscleropodium purum exposed in bags in 9 European sites was characterized for number, size and chemical composition by SEM/EDX. Moreover, moss elemental uptake of 53 elements including rare earth elements was estimated by ICP-MS analysis. All above was aimed to find possible relations between PM profile and moss uptake and to find out eventual element markers of the different land use (i.e. agricultural, urban, industrial) of the selected sites. After exposure, about 12,000 particles, mostly within the inhalable fraction, were counted on P. purum leaves; their number generally increased from the agricultural sites to the urban and industrial ones. ICP analysis indicated that twenty-three elements were significantly accumulated by mosses with different element profile according to the various land uses. The PM from agricultural sites were mainly made of natural/crustal elements or derived from rural activities. Industrial-related PM covered a wider range of sources, from those linked to specific industrial activities, to those related to manufacturing processes or use of heavy-duty vehicles. This study indicates a close association between PM amount and moss element-uptake, which increases in parallel with PM amount. Precious metals and REEs may constitute novel markers of air pollution in urban and agricultural sites, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Constrained Source Apportionment of Coarse Particulate Matter and Selected Trace Elements in Three Cities from the Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Sturtz, Timothy M.; Adar, Sara D.; Gould, Timothy; Larson, Timothy V.

    2016-01-01

    PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. Positive Matrix Factorization (PMF) was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles was used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Brake wear, tire wear, fertilized soil, and re-suspended soil were found to be important sources of copper, zinc, phosphorus, and silicon respectively across all three urban areas. PMID:27468256

  7. Constrained source apportionment of coarse particulate matter and selected trace elements in three cities from the multi-ethnic study of atherosclerosis

    NASA Astrophysics Data System (ADS)

    Sturtz, Timothy M.; Adar, Sara D.; Gould, Timothy; Larson, Timothy V.

    2014-02-01

    PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. Positive Matrix Factorization (PMF) was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles was used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Brake wear, tire wear, fertilized soil, and resuspended soil were found to be important sources of copper, zinc, phosphorus, and silicon, respectively, across all three urban areas.

  8. Evolution of the Lunar Receiving Laboratory to the Astromaterial Sample Curation Facility: Technical Tensions Between Containment and Cleanliness, Between Particulate and Organic Cleanliness

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Zeigler, R. A.; Calaway, M. J.

    2016-01-01

    The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample handling surfaces often generate particles. Further work is needed to achieve both minimal particulate and adventitious carbon contamination. This paper will discuss these facility topics and others in the historical context of nearly 50 years' curation experience for lunar rocks and regolith, meteorites, cosmic dust, comet particles, solar wind atoms, and asteroid particles at Johnson Space Center.

  9. a Baseline Study of Physico-Chemical Parameters and Trace Metals in Waters of Manakudy, South-West Coast of India

    NASA Astrophysics Data System (ADS)

    Subramanian, M.; Muthumanikkam, J.

    2013-05-01

    The transport of trace metals from the land to ocean has a number of different routes and efficiencies. The sources of toxic elements into the rivers to be debouched into the sea through estuaries are either weathered naturally from the soils and rocks or introduced anthropogenically from point or non-point sources, in labile form or in particulate form. However, recent studies indicate that the transport of trace elements to the aquatic environment is much more complex than what has been thought. The chemistry and ecology of an estuarine system are entirely different from the fluvial as well as the marine system. Estuarine environment is characterized by a constantly changing mixture of salt and freshwater. In the present study area Manakudy estuary is situated about 8 kilometres north west of Kanyakumari (Latitude N 08 05 21.8 and Longitude E 077 29 03.7). To gain a better understanding of the geochemical behavior of physico-chemical parameters and trace elements in the estuary and to examine variations in associated chemical changes, 20 water samples were collected throughout the Manakudy estuary, a minor river in south-western India. These samples, collected in typical dry season during 2012, were analyzed for physico-chemical parameters, dissolved major and trace elements. Our results show that dissolved Na, Mg, Ca and Cl behave conservatively along the salinity gradient. The concentration of nutrients is normal and they are due to the higher organic activity in soils as well as faster rates of chemical weathering reaction in the source region. The concentration of major ions is due to tidal influence and it increases with salinity and the nutrients do behave non-conservatively due to biogenic removal. The conservative behaviour of the trace metals with salinity has been strongly affected by the introduction of these metals by external sources. Even though the trace metals in the contaminated water have been removed and incorporated in sediments due to flocculation, the concentration of these metals did not decrease. S.MUTHUSAMY M.sc.,M.phil., RESEARCH SCHOLAR UNIVERSITY OF MADRAS CHENNAI,TAMILNADU INDIA

  10. Modelling and mapping trace element accumulation in Sphagnum peatlands at the European scale using a geomatic model of pollutant emissions dispersion.

    PubMed

    Diaz-de-Quijano, Maria; Joly, Daniel; Gilbert, Daniel; Toussaint, Marie-Laure; Franchi, Marielle; Fallot, Jean-Michel; Bernard, Nadine

    2016-07-01

    Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    NASA Astrophysics Data System (ADS)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  12. Estimating bioaccessibility of trace elements in particles suspended in the Athabasca River using sequential extraction.

    PubMed

    Javed, Muhammad Babar; Shotyk, William

    2018-05-10

    Employing protocols developed for polar snow and ice, water samples were collected upstream, midstream and downstream of open pit bitumen mines and upgraders along the Lower Athabasca River (AR). The purpose was to: i) estimate the bioaccessibility of trace elements associated with particulate matter in the AR using sequential extraction, and ii) determine whether their forms have been measurably impacted by industrial activities. Of the trace metals known to be enriched in bitumen (V, Ni, Mo and Re), a substantial proportion of V (78-93%) and Ni (35-81%) was found in the residual fraction representing stable minerals. In contrast, Mo and Re were partitioned mainly into more reactive forms (water soluble, acid extractable, reducible and oxidisable). Comparing the non-residual fractions in upstream versus downstream sites, only water soluble Re was significantly (P = 0.005) greater downstream of industry. In respect to the potentially toxic chalcophile elements (Cu, Pb and Tl), no measurable change was observed in Cu and Pb distribution in upstream versus downstream sites. Only residual Tl was found at upstream and midstream sites, whereas a significant proportion of Tl was also present in the reducible fraction in downstream sites. Overall, a greater proportion of trace metals in the residual fraction at midstream sites appears to be due to inputs of atmospheric dust, clearly evident in microscopic images: energy dispersive spectroscopy and x-ray diffraction analyses showed that these particles were predominantly silicates, which are assumed to have limited bioaccessibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Lead isotope exchange between dissolved and fluvial particulate matter: a laboratory study from the Johor River estuary

    NASA Astrophysics Data System (ADS)

    Chen, Mengli; Boyle, Edward A.; Lee, Jong-Mi; Nurhati, Intan; Zurbrick, Cheryl; Switzer, Adam D.; Carrasco, Gonzalo

    2016-11-01

    Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  14. Potentially harmful elements released by volcanic ashes: Examples from the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Cangemi, Marianna; Speziale, Sergio; Madonia, Paolo; D'Alessandro, Walter; Andronico, Daniele; Bellomo, Sergio; Brusca, Lorenzo; Kyriakopoulos, Konstantinos

    2017-05-01

    We have performed leaching experiments on the fine (< 2 mm) particulate sampled in seven active and quiescent volcanic systems in the Mediterranean area. We reacted the particulate both in pure water and in a synthetic gastric solution. The amount of As, Mn, Pb, Ba, U and Ni leached by pure water exceeded the MAC limits for drinking water in all the materials under investigation. We defined a tolerable ash intake index (TAI) to evaluate the impact of ash ingestion, and we find that 0.2 g and 12 g of ingested fine ash from Vesuvius and Vulcano are enough to exceed the safety limits for Pb and As. Six grams of fine ashes from Stromboli are sufficient to overstep the safety limits for As. Based on our mineralogical characterisation of the particulate, we expect that the submillimetric ash fraction, with a higher surface/volume ratio, releases a greater relative amount of trace metals, which are concentrated in the thin surface layer produced by the reaction of the pristine volcanic particles with coexisting volcanic gases. This means that our measurements represent lower bounds to the actual amount of metal released in aqueous solutions by the volcanic ashes from the locations under investigation. Our results place the first constraints on the mobilisation of toxic elements from volcanic ash, which are necessary to assess the associated potential health risk of volcanic areas.

  15. Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsh

    USGS Publications Warehouse

    Lion, Leonard W.

    1982-01-01

    The relative contributions of adsorption to particulate surfaces, complexation with surface-active organic ligands and uptake by micro-organisms were evaluated with respect to their importance in the surface microlayer enrichment (‘partitioning’) of Cd, Pb and Cu. The contributions of each process were inferred from field data in which partitioning of the dissolved and particulate forms of Cd, Pb and Cu, total and dissolved organic carbon, particles and total bacteria were observed. In the South San Francisco Bay estuary, particle enrichment appears to control trace metal partitioning. Trace metal association with the particulate phase and the levels of partitioning observed were in the order Pb > Cu > Cd and reflect the calculated equilibrium chemical speciation of these metals in computer-simulated seawater matrices.

  16. Shielded regeneration heating element for a particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  17. Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Cheng, Tiantao; Zhang, Renjian; Cao, Junji; Zhu, Lihua; Wang, Qiyuan; Luo, Lei; Zhang, Leiming

    2013-07-01

    PM2.5 aerosols were sampled in urban Chengdu from April 2009 to January 2010, and their chemical compositions were characterized in detail for elements, water soluble inorganic ions, and carbonaceous matter. The annual average of PM2.5 was 165 μg m-3, which is generally higher than measurements in other Chinese cities, suggesting serious particulate pollution issues in the city. Water soluble ions contributed 43.5% to the annual total PM2.5 mass, carbonaceous aerosols including elemental carbon and organic carbon contributed 32.0%, and trace elements contributed 13.8%. Distinct daily and seasonal variations were observed in the mass concentrations of PM2.5 and its components, reflecting the seasonal variations of different anthropogenic and natural sources. Weakly acidic to neutral particles were found for PM2.5. Major sources of PM2.5 identified from source apportionment analysis included coal combustion, traffic exhaust, biomass burning, soil dust, and construction dust emissions. The low nitrate: sulfate ratio suggested that stationary emissions were more important than vehicle emissions. The reconstructed masses of ammonium sulfate, ammonium nitrate, particulate carbonaceous matter, and fine soil accounted for 79% of the total measured PM2.5 mass; they also accounted for 92% of the total measured particle scattering.

  18. Reprint Of: Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.

    2018-01-01

    Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.

  19. Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.

    2017-11-01

    Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.

  20. Assessment of both environmental cytotoxicity and trace metal pollution using Populus simonii Carr. as a bioindicator.

    PubMed

    Sluchyk, Victor; Sluchyk, Iryna; Shyichuk, Alexander

    2014-10-01

    The level of environmental pollution in the city of Ivano-Frankivsk (Western Ukraine) has been assessed by means of roadside poplar trees as bioindicators. Dividable apical meristem cells of rudimentary leaves were quantitatively analysed for mitotic activity and distribution. Anaphases were further examined for chromosomal aberrations. Male catkins were also examined for sterile pollens. Accumulation of trace elements in vegetative buds was also evaluated in order to reveal source(s) of environmental pollution. Poplar trees growing in the urban environment proved to have increased chromosomal aberrations (up to 4-fold) and increased pollen sterility (up to 4-fold) as well as decreased mitotic activity (by factor 1.5) as compared to control sampling site. The biomarker data correlate moderately with increased (up to 4-fold) concentrations of Ni, Zn, Pb, Cd and Cu in vegetative tissues suggesting that probable cause of the environmental cytotoxicity may be vehicle emissions. The maximum increase in chromosomal aberrations (7-fold) and the minimum mitotic activity (half of the control one) were recorded in poplar trees growing in industrial suburb in vicinity of large cement production plant. Taking in mind insignificant bioaccumulation of trace elements in the industrial suburb, the high environmental toxicity has been ascribed to contamination in cement and asbestos particulates.

  1. In vitro and in vivo toxicity of urban and rural particulate matter from California

    NASA Astrophysics Data System (ADS)

    Mirowsky, Jaime E.; Jin, Lan; Thurston, George; Lighthall, David; Tyner, Tim; Horton, Lori; Galdanes, Karen; Chillrud, Steven; Ross, James; Pinkerton, Kent E.; Chen, Lung Chi; Lippmann, Morton; Gordon, Terry

    2015-02-01

    Particulate matter (PM) varies in chemical composition and mass concentration based on location, source, and particle size. This study sought to evaluate the in vitro and in vivo toxicity of coarse (PM10-2.5) and fine (PM2.5) PM samples collected at 5 diverse sites within California. Coarse and fine PM samples were collected simultaneously at 2 rural and 3 urban sites within California during the summer. A human pulmonary microvascular endothelial cell line (HPMEC-ST1.6R) was exposed to PM suspensions (50 μg/mL) and analyzed for reactive oxygen species (ROS) after 5 h of treatment. In addition, FVB/N mice were exposed by oropharyngeal aspiration to 50 μg PM, and lavage fluid was collected 24 h post-exposure and analyzed for total protein and %PMNs. Correlations between trace metal concentrations, endotoxin, and biological endpoints were calculated, and the effect of particle size range, locale (urban vs. rural), and location was determined. Absolute principal factor analysis was used to identify pollution sources of PM from elemental tracers of those sources. Ambient PM elicited an ROS and pro-inflammatory-related response in the cell and mouse models, respectively. These responses were dependent on particle size, locale, and location. Trace elements associated with soil and traffic markers were most strongly linked to the adverse effects in vitro and in vivo. Particle size, location, source, and composition of PM collected at 5 locations in California affected the ROS response in human pulmonary endothelial cells and the inflammatory response in mice.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empiricallymore » determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.« less

  3. Trace element geochemistry of volcanic gases and particles from 1983-1984 eruptive episodes of Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Crowe, Bruce M.; Finnegan, David L.; Zoller, William H.; Boynton, William V.

    1987-12-01

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (7LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 days after episode 11 (cooling vent samples) and (2) the waning stage of episode 13 (active vent samples). Additional samples were collected by aircraft from the gas plume released during the lava fountaining phase of episode 17 (aircraft samples). Element concentrations in the vent gases were > 104 μg m-3 for S, Cl, and F. Enrichment factors (EFs) for the volcanic fume versus the source magma were calculated using the volatile element Br as the reference element for normalization and the U.S. Geological Survey standard BHVO-1 as the magma standard. This removes the ash dilution effect obtained by using an ash constituent (Al, Sc, or Mg) as the reference element. Bromine-normalized EFs (× 105) range from 101 to 102 for Na, K, and Cu; 102 to 105 for Zn, W, Sb, In, Ir, Ag, F, and As; and > 105 for Au, Cd, Re, Cl, Se, and S. The highest enrichment factors are for aircraft samples collected during the most gas-rich phase of an eruption cycle. Metal and volatile-element data form two groups: (1) elements showing little or no variation in abundance ratios with sample type (group 1: Cl, Br, and Re) and (2) elements that show significant variation in abundance ratios by sample type (group 2: Zn, W, Sb, In, Ir, Au, and Cd). Bivariate plots of elements of the first group versus elements of the second group separate by sample type. The separation corresponds to samples collected during eruptive activity versus samples collected during repose periods. Monitoring trace metal ratios in volcanic fume could provide an additional tool for predicting volcanic eruptions. The F/Cl ratio of cooling vent samples is higher than those of active vent or aircraft samples, and the ratio is inversely correlated with EFs for most volatile metals.

  4. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan.

    PubMed

    Hsu, Chin-Yu; Chiang, Hung-Che; Lin, Sheng-Lun; Chen, Mu-Jean; Lin, Tzu-Yu; Chen, Yu-Cheng

    2016-01-15

    This study investigated seasonal variations in PM10 and PM2.5 mass and associated trace metal concentrations in a residential area in proximity to the crude oil refinery plants and industrial parks of central Taiwan. Particle measurements were conducted during winter, spring and summer in 2013 and 2014. Twenty-six trace metals in PM10 and PM2.5 were analyzed using ICP-MS. Multiple approaches of the backward trajectory model, enrichment factor (EF), Lanthanum enrichment and positive matrix fraction (PMF) were used to identify potential sources of particulate metals. Mean concentrations of PM10 in winter, spring and summer were 76.4 ± 22.6, 33.2 ± 9.9 and 37.4 ± 17.0 μg m(-3), respectively, while mean levels of PM2.5 in winter, spring and summer were 47.8 ± 20.0, 23.9 ± 11.2 and 16.3 ± 8.2 μg m(-3), respectively. The concentrations of carcinogenic metals (Ni, As and adjusted Cr(VI)) in PM10 and PM2.5 exceeded the guideline limits published by WHO. The result of EF analysis confirmed that Mo, Sb, Cd, Zn, Mg, Cr, As, Pb, Cu, Ni and V were attributable to anthropogenic emission. PMF analysis demonstrated that trace metals in PM10 and PM2.5 were from the similar sources, such as coal combustion, oil combustion and traffic-related emission, except for soil dust and crustal element emissions only observed in PM10 and secondary aluminum smelter only observed in PM2.5. Considering health-related particulate metals, the traffic-related emission and coal combustion for PM10 and PM2.5, respectively, are important to control for reducing potential carcinogenic risk. The results could aid efforts to clarify the impact of source-specific origins on human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.

  6. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging issues and specific recommendations have been included which need to be considered for a scientific apportionment of particulate sources in different geographical regions of India.

  7. Sediment Quality and Comparison to Historical Water Quality, Little Arkansas River Basin, South-Central Kansas, 2007

    USGS Publications Warehouse

    Juracek, Kyle E.; Rasmussen, Patrick P.

    2008-01-01

    The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects. The largest copper, lead, silver, and zinc concentrations, measured for a sample collected from Sand Creek downstream from Newton, Kansas, likely were related to urban sources of contamination. Radionuclide activities and bacterial densities in the streambed sediment varied throughout the basin. Variability in the former may be indicative of subbasin differences in the contribution of sediment from surface-soil and channel-bank sources. Streambed sediment may be useful for reconnaissance purposes to determine sources of particulate nitrogen, phosphorus, organic carbon, and other sediment-associated constituents in the basin. If flow conditions prior to streambed-sediment sampling and during water-quality sampling are considered, it may be possible to use streambed sediment as an indicator of water quality for nitrogen, phosphorus, and organic carbon. Flow conditions affect sediment-associated constituent concentrations in streambed-sediment and water samples, in part, because the sources of sediment (surface soils, channel banks) can vary with flow as can the size of the particles transported.

  8. Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations.

    PubMed

    Rovira, Joaquim; Sierra, Jordi; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2018-05-01

    Particulate matter (PM) composition has a key role in a wide range of health outcomes, such as asthma, chronic obstructive pulmonary disease, lung cancer, cardiovascular disease, and death, among others. Montcada i Reixac, a municipality located in the Barcelona metropolitan area (Catalonia, Spain), for its location and orography, is an interesting case- study to investigate air pollution. The area is also characterized by the presence of different industrial emission sources, including a cement factory and a large waste management plant, as well as an intense traffic. In this study, PM 10 levels, trace elements, ions, and carbonaceous particles were determined for a long time period (2013-2016) in this highly polluted area. PM 10 samples were collected during six consecutive days in two campaigns (cold and warm) per year. A number of elements (As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, K, La, Li, Hg, Mg, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Th, Ti, Tl, U, V, W, Y, Yb, and Zr), ions (Cl - , SO 4 2- , NO 3 - , and NH 4 + ), and carbonaceous content (total carbon, organic plus elemental carbon, and CO 3 2- ), were analysed. These data were used to identify the PM 10 main components: mineral matter, sea spray, secondary inorganic aerosols, organic matter plus elemental carbon, trace elements or indeterminate fraction. Although a clear seasonality (cold vs. warm periods) was found, there were no differences between working days and weekends. Obviously, the cement plant influences the surrounding environment. However, no differences in trace elements related with the cement plant activity (Al, Ca, Ni and V) between weekdays and weekends were noted. However, some traffic-related elements (i.e., Co, Cr, Mn, and Sb) showed significantly higher concentrations in weekdays. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Characterization of metals emitted from motor vehicles.

    PubMed

    Schauer, James J; Lough, Glynis C; Shafer, Martin M; Christensen, William F; Arndt, Michael F; DeMinter, Jeffrey T; Park, June-Soo

    2006-03-01

    A systematic approach was used to quantify the metals present in particulate matter emissions associated with on-road motor vehicles. Consistent sampling and chemical analysis techniques were used to determine the chemical composition of particulate matter less than 10 microm in aerodynamic diameter (PM10*) and particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5), including analysis of trace metals by inductively coupled plasma mass spectrometry (ICP-MS). Four sources of metals were analyzed in emissions associated with motor vehicles: tailpipe emissions from gasoline- and diesel-powered vehicles, brake wear, tire wear, and resuspended road dust. Profiles for these sources were used in a chemical mass balance (CMB) model to quantify their relative contributions to the metal emissions measured in roadway tunnel tests in Milwaukee, Wisconsin. Roadway tunnel measurements were supplemented by parallel measurements of atmospheric particulate matter and associated metals at three urban locations: Milwaukee and Waukesha, Wisconsin, and Denver, Colorado. Ambient aerosol samples were collected every sixth day for one year and analyzed by the same chemical analysis techniques used for the source samples. The two Wisconsin sites were studied to assess the spatial differences, within one urban airshed, of trace metals present in atmospheric particulate matter. The measurements were evaluated to help understand source and seasonal trends in atmospheric concentrations of trace metals. ICP-MS methods have not been widely used in analyses of ambient aerosols for metals despite demonstrated advantages over traditional techniques. In a preliminary study, ICP-MS techniques were used to assess the leachability of trace metals present in atmospheric particulate matter samples and motor vehicle source samples in a synthetic lung fluid.

  10. Heavy Metals in the Environment-Historical Trends

    NASA Astrophysics Data System (ADS)

    Callender, E.

    2003-12-01

    These six metals, commonly classified as heavy metals, are a subset of a larger group of trace elements that occur in low concentration in the Earth's crust. These heavy metals were mined extensively for use in the twentieth century Industrial Society. Nriagu (1988a) estimated that between 0.5 (Cd) and 310 (Cu) million metric tons of these metals were mined and ultimately deposited in the biosphere. In many instances, the inputs of these metals from anthropogenic sources exceed the contributions from natural sources (weathering, volcanic eruptions, forest fires) by several times ( Adriano, 1986). In this chapter, heavy metals (elements having densities greater than 5) and trace elements (elements present in the lithosphere in concentrations less than 0.1%) are considered synonymous.It has been observed in the past that the rate of emission of these trace metals into the atmosphere is low due to their low volatility. However, with the advent of large-scale metal mining and smelting as well as fossil-fuel combustion in the twentieth century, the emission rate of these metals has increased dramatically. As most of these emissions are released into the atmosphere where the mammals live and breathe, we see a great increase in the occurrence of health problems such as lead (Pb) poisoning, cadmium (Cd) Itai-itai disease, chromium (Cr), and nickel (Ni) carcinogenesis.In this chapter, the author has attempted to present a synopsis of the importance of these metals in the hydrocycle, their natural and anthropogenic emissions into the environment, their prevalent geochemical form incorporated into lacustrine sediments, and their time-trend distributions in watersheds that have been impacted by urbanization, mining and smelting, and other anthropogenic activities. These time trends are reconstructed from major-minor-trace-element distributions in age-dated sediment cores, mainly from reservoirs where the mass sedimentation rates (MSRs) are orders of magnitude greater than those in natural lakes, the consequences of which tend to preserve the heavy-metal signatures and minimize the metal diagenesis (Callender, 2000). This chapter focuses mainly on the heavy metals in the terrestrial and freshwater environments whilst the environmental chemistry of trace metals in the marine environment is discussed in Volume 6, Chapter 3 of the Treatise on Geochemistry.The data presented in Table 2, Table 3, Table 4 and Table 5 are updated as much as possible, with many of the references postdate the late 1980s. Notable exceptions are riverine particulate matter chemistry ( Table 2), some references in Table 3, and references concerning the geochemical properties of the six heavy metals discussed in this chapter. There appears to be no recent publication that updates the worldwide average for riverine particulate matter trace metal chemistry ( Martin and Whitfield, 1981; Martin and Windom, 1991). This is supported by the fact that two recent references ( Li, 2000; Chester, 2000) concerning marine chemistry still refer to this 1981 publication. As for references in Table 3, there is a very limited data available concerning the pathways of heavy-metal transport to lakes. Some of the important works have been considered and reviewed in this chapter. In addition, the analytical chemistry of the sedimentary materials has changed little over the past 30 years until the advent and use of inductively coupled plasma/mass spectrometry (ICP/MS) in the late 1990s. Extensive works concerning the geochemical properties of heavy metals have been published during the past 40 years and to the author's knowledge these have survived the test of time.

  11. Chemometrics in biomonitoring: Distribution and correlation of trace elements in tree leaves.

    PubMed

    Deljanin, Isidora; Antanasijević, Davor; Bjelajac, Anđelika; Urošević, Mira Aničić; Nikolić, Miroslav; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2016-03-01

    The concentrations of 15 elements were measured in the leaf samples of Aesculus hippocastanum, Tilia spp., Betula pendula and Acer platanoides collected in May and September of 2014 from four different locations in Belgrade, Serbia. The objective was to assess the chemical characterization of leaf surface and in-wax fractions, as well as the leaf tissue element content, by analyzing untreated, washed with water and washed with chloroform leaf samples, respectively. The combined approach of self-organizing networks (SON) and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) aided by Geometrical Analysis for Interactive Aid (GAIA) was used in the interpretation of multiple element loads on/in the tree leaves. The morphological characteristics of the leaf surfaces and the elemental composition of particulate matter (PM) deposited on tree leaves were studied by using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) detector. The results showed that the amounts of retained and accumulated element concentrations depend on several parameters, such as chemical properties of the element and morphological properties of the leaves. Among the studied species, Tilia spp. was found to be the most effective in the accumulation of elements in leaf tissue (70% of the total element concentration), while A. hippocastanum had the lowest accumulation (54%). After water and chloroform washing, the highest percentages of removal were observed for Al, V, Cr, Cu, Zn, As, Cd and Sb (>40%). The PROMETHEE/SON ranking/classifying results were in accordance with the results obtained from the GAIA clustering techniques. The combination of the techniques enabled extraction of additional information from datasets. Therefore, the use of both the ranking and clustering methods could be a useful tool to be applied in biomonitoring studies of trace elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    USGS Publications Warehouse

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  13. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, fingerprinting metal ratio, and emission factor

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C.

    2014-05-01

    Traffic emissions are a significant source of airborne particulate matter (PM) in ambient environments. These emissions contain high abundance of toxic metals and thus pose adverse effects on human health. Size-fractionated aerosol samples were collected from May to September 2013 by using micro-orifice uniform deposited impactor (MOUDI). Sample collection was conducted simultaneously at the inlet and outlet sites of Hsuehshan Tunnel in northern Taiwan, which is the second longest freeway tunnel (12.9 km) in Asia. Such endeavor aims to characterize the chemical constituents, size distributions, and fingerprinting ratios, as well as the emission factors of particulate metals emitted by vehicle fleets. A total of 36 metals in size-resolved aerosols were determined through inductively coupled plasma mass spectrometry. Three major groups, namely, tailpipe emissions (Zn, Pb, and V), wear debris (Cu, Cd, Fe, Ga, Mn, Mo, Sb, and Sn), and resuspended dust (Ca, Mg, K, and Rb), of airborne PM metals were categorized on the basis of the results of enrichment factor, correlation matrix, and principal component analysis. Size distributions of wear-originated metals resembled the pattern of crustal elements, which were predominated by super-micron particulates (PM1-10). By contrast, tailpipe exhaust elements such as Zn, Pb, and V were distributed mainly in submicron particles. By employing Cu as a tracer of wear abrasion, several inter-metal ratios, including Fe/Cu (14), Ba/Cu (1.05), Sb/Cu (0.16), Sn/Cu (0.10), and Ga/Cu (0.03), served as fingerprints for wear debris. Emission factor of PM10 mass was estimated to be 7.7 mg vkm-1. The metal emissions were mostly predominated in super-micron particles (PM1-10). Finally, factors that possibly affect particulate metal emissions inside Hsuehshan Tunnel are discussed.

  14. Anomalies in Trace Metal and Rare-Earth Loads below a Waste-Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Writer, J. H.; Murphy, S.

    2013-12-01

    The changes in chemical loads were examined for 54 inorganic elements and compounds in a 5.4-km reach of Boulder Creek, Colorado downstream of a waste water treatment plant (WWTP) outfall. Elements were partitioned into three categories: those showing a decrease in loading downstream, those showing an increase, and those which were conservative, at least over the length of the study reach. Dissolved loads which declined - generally indicative of in-stream loss via precipitation or sorption - were typically rapid (occurring largely before the first sampling site, 2.3 km downstream); elements showing this behavior were Bi, Cr, Cs, Ga, Ge, Hg, Se and Sn. These results were as expected before the experiment was performed. However, a large group (28 elements, including all the rare-earth elements, REE, except Gd) exhibited dissolved load increases indicating in-stream gains. These gains may be due to particulate matter dissolving or disaggregating, or that desorption is occurring below the WWTP. As with the in-stream loss group, the processes tended to be rapid, typically occurring before the first sampling site. Whole-water samples collected concurrently also had a large group of elements which showed an increase in load downstream of the WWTP. Among these were most of the group which had increases in the dissolved load, including all the REE (except Gd). Because whole-water samples include both dissolved and suspended particulates within them, increases in loads cannot be accounted for by invoking desorption or disaggregation mechanisms; thus, the only source for these increases is from the bed load of the stream. Further, the difference between the whole-water and dissolved loads is a measure of the particulate load, and calculations show that not only did the dissolved and whole-water loads increase, but so did the particulate loads. This implies that at the time of sampling the bed sediment was supplying a significant contribution to the suspended load. In general, it seems untenable as a hypothesis to suppose that the stream bed material can permanently supply the source of the in-stream load increases of a large group of inorganic elements. We propose that the anomalous increase in loads was more a function of the time of sampling (both diurnally and seasonally) and that sampling at different times of day or different seasons during the year would give contradictory results to those seen here. If this is so, inorganic loading studies must include multiple sampling both over the course of a day and during different seasons and flow regimes.

  15. Coherent Backscattering by Particulate Planetary Media of Nonspherical Particles

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri; Penttila, Antti; Wilkman, Olli; Videen, Gorden

    2014-11-01

    The so-called radiative-transfer coherent-backscattering method (RT-CB) has been put forward as a practical Monte Carlo method to compute multiple scattering in discrete random media mimicking planetary regoliths (K. Muinonen, Waves in Random Media 14, p. 365, 2004). In RT-CB, the interaction between the discrete scatterers takes place in the far-field approximation and the wave propagation faces exponential extinction. There is a significant constraint in the RT-CB method: it has to be assumed that the form of the scattering matrix is that of the spherical particle. We aim to extend the RT-CB method to nonspherical single particles showing significant depolarization characteristics. First, ensemble-averaged single-scattering albedos and phase matrices of nonspherical particles are matched using a phenomenological radiative-transfer model within a microscopic volume element. Second, the phenomenologial single-particle model is incorporated into the Monte Carlo RT-CB method. In the ray tracing, the electromagnetic phases within the microscopic volume elements are omitted as having negligible lengths, whereas the phases are duly accounted for in the paths between two or more microscopic volume elements. We assess the computational feasibility of the extended RT-CB method and show preliminary results for particulate media mimicking planetary regoliths. The present work can be utilized in the interpretation of astronomical observations of asteroids and other planetary objects. In particular, the work sheds light on the depolarization characteristics of planetary regoliths at small phase angles near opposition. The research has been partially funded by the ERC Advanced Grant No 320773 entitled “Scattering and Absorption of Electromagnetic Waves in Particulate Media” (SAEMPL), by the Academy of Finland (contract 257966), NASA Outer Planets Research Program (contract NNX10AP93G), and NASA Lunar Advanced Science and Exploration Research Program (contract NNX11AB25G).

  16. The Air Pollution Exposure Laboratory (APEL) for controlled human exposure to diesel exhaust and other inhalants: characterization and comparison to existing facilities.

    PubMed

    Birger, Nicholas; Gould, Timothy; Stewart, James; Miller, Mark R; Larson, Timothy; Carlsten, Chris

    2011-03-01

    The Air Pollution Exposure Laboratory (APEL) was designed for the controlled inhalation of human subjects to aged and diluted diesel exhaust (DE) to mimic "real-world" occupational and environmental conditions. An EPA Tier 3-compliant, 6.0 kW diesel generator is operated under discrete cyclic loads to simulate diesel on-road emissions. The engine accepts standard ultra-low sulfur diesel or a variety of alternative fuels (such as biodiesel) via a partitioned tank. A portion of raw exhaust is drawn into the primary dilution system and is diluted 9:1 with compressed air at standard temperature (20°C) and humidity (40%) levels. The exhaust is further diluted approximately 25:1 by high efficiency particulate air (HEPA)-filtered air (FA) and then aged for 4 min before entering the 4 × 6 × 7-foot exposure booth. An optional HEPA filter path immediately proximal to the booth can generate a particle-reduced (gas-enriched) exposure. In-booth particulate is read by a nephelometer to provide an instantaneous light scattering coefficient for closed-loop system control. A Scanning Mobility Particle Sizer and multi-stage impactor measures particle size distribution. Filter sampling allows determination of sessional average concentrations of size-fractionated and unfractionated particulate oxidative potential, elemental carbon, organic carbon and trace elements. Approximately 300 μg/m(3) PM(2.5) is routinely achievable at APEL and is well characterized in terms of oxidative potential and elemental components. APEL efficiently creates fresh DE, appropriately aged and diluted for human experimentation at safe yet realistic concentrations. Description of exposure characteristics allows comparison to other international efforts to deepen the current evidence base regarding the health effects of DE.

  17. Particulate and trace gas emissions from prescribed burns in southeastern U.S. fuel types: Summary of a 5-year project

    Treesearch

    David R. Weise; Timothy J. Johnson; James Reardon

    2015-01-01

    Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using...

  18. Atmospheric emission inventory of hazardous trace elements from China's coal-fired power plants--temporal trends and spatial variation characteristics.

    PubMed

    Tian, Hezhong; Liu, Kaiyun; Zhou, Junrui; Lu, Long; Hao, Jiming; Qiu, Peipei; Gao, Jiajia; Zhu, Chuanyong; Wang, Kun; Hua, Shenbing

    2014-03-18

    Coal-fired power plants are the important sources of anthropogenic atmospheric releases of various hazardous trace elements (HTE) because a large quantity of emissions can cause wide dispersion and possible long-distance transportation. To obtain the temporal trends and spatial variation characteristics of various HTE discharged from coal-fired power plants of China, a multiple-year comprehensive emission inventory of HTE including Hg, As, Se, Pb, Cd, Cr, Ni, and Sb has been established for the period 2000-2010. Thanks to the cobenefit removal effects of conventional particulate matter/sulfur dioxide/nitrogen oxides (PM/SO2/NOx) control devices, emissions of these 8 toxic elements have shown a gradual decline since the peak in 2006. The total emissions of Hg, As, Se, Pb, Cd, Cr, Ni, and Sb are substantial and are estimated at about 118.54, 335.45, 459.4, 705.45, 13.34, 505.03, 446.42, and 82.33 tons (t), respectively, in 2010. Shandong, Jiangsu, Shanxi, and Hebei always rank among the top ten provinces with the highest emissions. Further, future emissions for 2015 and 2020 are projected with scenario analysis. Advanced technologies and integrated management strategies to control HTE are in great need.

  19. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien

    The characterization of trace elements in nanomaterials using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities or dopants affect the properties of the host phase. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic contaminants. The reductive transformation of ferrihydrite (Fe(OH)3) to nano-particulate iron oxyhydroxide minerals in the presencemore » of uranyl (UO2)2+(aq) resulted in the preferential incorporation of U into goethite (a-FeOOH) over lepidocrocite (g-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. Using this model system, we demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations of traditional shell-by-shell EXAFS modeling, enabling the detailed analysis of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multi-phase nano-systems.« less

  20. Deep investigation on inorganic fraction of atmospheric PM in Mediterranean area by neutron and photon activation analysis

    PubMed Central

    2013-01-01

    Background Anthropogenic activities introduce materials increasing levels of many dangerous substances for the environmental quality and being hazardous to human health. Major attention has been given to those elements able to alter the environment and endanger human health. The airborne particulate matter pollutant is considered one of the most difficult task in environmental chemistry for its complex composition and implications complicating notably the behavior comprehension. So, for investigating deeply the elemental composition we used two nuclear techniques, Neutron Activation Analysis and Photon Activation Analysis, characterized by high sensitivity, precision and accuracy. An important task has been devoted to the investigation of Quality Control (QC) and Quality Assurance (QA) of the methodology used in this study. This study was therefore extended as far back as possible in time (from 1965 until 2000) in order to analyze the trend of airborne concentration of pollutant elements in connection with the industrial and lifestyle growth during the entire period. Results Almost all the elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources: this behavior is common to all the periods studied even if a very light decreasing trend can be evidenced from 1970 to 2002. Finally, in order to investigate a retrospective study of elements in PM10 and their evolution in relationship with the natural or anthropogenic origins, we have investigated the Enrichment Factors. The study shows the EF trends for some elements in PM10 during four decades. Conclusions The two nuclear techniques have allowed to reach elevated sensibility/accuracy levels for determining elements at very low concentrations (trace and ultra-trace levels). The element concentrations determined in this study do not basically show a significant level of attention from a toxicological point of view. PMID:24196275

  1. Trace metals partitioning between particulate and dissolved phases along a tropical mangrove estuary (Can Gio, Vietnam).

    PubMed

    Thanh-Nho, Nguyen; Strady, Emilie; Nhu-Trang, Tran-Thi; David, Frank; Marchand, Cyril

    2018-04-01

    Mangroves can be considered as biogeochemical reactors along (sub)tropical coastlines, acting both as sinks or sources for trace metals depending on environmental factors. In this study, we characterized the role of a mangrove estuary, developing downstream a densely populated megacity (Ho Chi Minh City, Vietnam), on the fate and partitioning of trace metals. Surface water and suspended particulate matter were collected at four sites along the estuarine salinity gradient during 24 h cycling in dry and rainy seasons. Salinity, pH, DO, TSS, POC, DOC, dissolved and particulate Fe, Mn, Cr, As, Cu, Ni, Co and Pb were measured. TSS was the main trace metals carrier during their transit in the estuary. However, TSS variations did not explain the whole variability of metals distribution. Mn, Cr and As were highly reactive metals while the other metals (Fe, Ni, Cu, Co and Pb) presented stable log K D values along the estuary. Organic matter dynamic appeared to play a key role in metals fractioning. Its decomposition during water transit in the estuary induced metal desorption, especially for Cr and As. Conversely, dissolved Mn concentrations decreased along the estuary, which was suggested to result from Mn oxidative precipitation onto solid phase due to oxidation and pH changes. Extra sources as pore-water release, runoff from adjacent soils, or aquaculture effluents were suggested to be involved in trace metal dynamic in this estuary. In addition, the monsoon increased metal loads, notably dissolved and particulate Fe, Cr, Ni and Pb. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Trace metals in Antarctica related to climate change and increasing human impact.

    PubMed

    Bargagli, R

    2000-01-01

    Metals are natural constituents of the abiotic and biotic components of all ecosystems, and under natural conditions they are cycled within and between the geochemical spheres--the atmosphere, lithosphere, hydrosphere, and biosphere--at quite steady fluxes. In the second half of the twentieth century, the huge increase in energy and mineral consumption determined anthropogenic emissions of several metals exceeding those from natural sources, e.g., volcanoes and windborne soil particles. In the Northern Hemisphere, the biogeochemical cycles of Pb, Cd, Zn, Cu, and other metals were significantly altered, even in Arctic regions. On the contrary, available data on trace metal concentrations in abiotic matrices from continental Antarctica, summarized in this review, suggest that the biogeochemical cycle of Pb is probably the only one that has been significantly altered by anthropogenic emissions in Antarctica and elsewhere in the Southern Hemisphere, especially in the period 1950-1975. Environmental contamination by other metals from anthropogenic sources in Antarctica itself can generally only be detected in snow samples taken within a range of a few kilometers or several hundred meters from scientific stations. Local metal pollution from human activities in Antarctica may compromise studies aimed at assessing the biogeochemical cycle of trace elements and the effects of global climate change. Thus, this review focuses on concentrations of metals in atmospheric particulate, snow, surface soils, and freshwater from the Antarctic continent and surface sediments and seawater from the Southern Ocean, which can plausibly be regarded as global background values of trace elements. These baselines are also necessary in view of the construction of new stations, the expansion of existing facilities to support research, and the growth of tourism and fisheries. Despite difficulties in making comparisons with data from other remote areas of the world, concentrations of trace metals in most samples of atmospheric particulates, snow, ice, soils, and marine sediments from Antarctica can be taken as global background levels. Comparison between the results of trace element surveys in marine waters of the Southern Ocean and in other seas is practically impossible. The upwelling or subduction of water masses, the seasonality in ice cover and in phytoplankton biomass, the low fallout of atmospheric dust, and many other peculiar characteristics of the Southern Ocean make concentrations of trace metals in surface waters quite variable in space and time. The depletion of nutrients in surface waters, which is a regular feature of many marine environments, rarely occurs in the Southern Ocean. Waters in some regions are characterized by very low concentrations of Fe and Mn, whereas in others the content of Cd is relatively high at the beginning of summer and may decrease about one order of magnitude during the phytoplankton bloom. Although in most Antarctic coastal ecosystems the input of metals from geochemical and anthropogenic sources and from long-range transport is negligible, concentrations of Cd in the waters and biota may be higher than in waters and related species of organisms from polluted coastal areas. Like the Southern Ocean, Antarctic lakes have many peculiar characteristics. They are often perennially ice covered and without outlet, and their water, which is gained only from short-term melting of snow and glaciers in summer, is lost mainly by sublimation of surface ice. Several lakes are distinctly stratified: the water under the ice may be cool, rich in oxygen, and among the cleanest and clearest of natural waters, whereas water near the bottom becomes anoxic, tepid, and richer in major and trace elements. Considering the specificity of Antarctic environments, to evaluate the extent and consequences of global changes and increasing human activities in Antarctica itself, research on the biogeochemistry of trace metals and monitoring programs

  3. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS

    NASA Astrophysics Data System (ADS)

    González, Lucy T.; Longoria Rodríguez, F. E.; Sánchez-Domínguez, M.; Cavazos, Aleyda; Leyva-Porras, C.; Silva-Vidaurri, L. G.; Askar, Karim Acuña; Kharissov, B. I.; Villarreal Chiu, J. F.; Alfaro Barbosa, J. M.

    2017-11-01

    The concentration levels of trace metals of toxicological importance were evaluated in the total suspended particles (TSP) and particulate matter smaller than 2.5 μm (PM2.5) collected in the Metropolitan Area of Monterrey (MAM) in Mexico. Samples were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with an energy-dispersive spectroscopy system (SEM-EDS). In addition, the data were statistically treated by the methodology of Pearson Correlation (PC) and Principal Components Analysis (PCA) to identify the possible emitting sources. Surface analysis of the particulate matter (PM) by XPS revealed that the most abundant elements were Ca, Al, Na, Zn, Cu and Mg. The deconvolution of the Ca2p, Zn2p and Cu2p signals showed that the main contributors were CaCO3, ZnO and Cu/Cu2O, respectively. The bulk analysis of the PM by ICP-AES showed Fe, Cu and Zn as the most abundant elements. Fe-rich particles presented two different morphologies: the prismatic particles were associated with a natural origin, while the spherical particles with anthropogenic sources. The Zn and Cu were predominantly observed in the sampling stations with high vehicular traffic, and the emitting sources were associated with the burning of fuels from automobiles and the wear of the tires and brakes. The highest concentration of Pb was detected in the sampling station located near the industrial zones, and its cause was associated with the ceramic and glass industries, the burning of fuel oil in power plants and the production of lead-based batteries for automobiles.

  4. Diesel emissions significantly influence composition and mutagenicity of ambient particles: a case study in São Paulo, Brazil.

    PubMed

    Carvalho-Oliveira, R; Pozo, R M K; Lobo, D J A; Lichtenfels, A J F C; Martins-Junior, H A; Bustilho, J O W V; Saiki, M; Sato, I M; Saldiva, P H N

    2005-05-01

    In 2003, a bus strike paralyzed the fleet of buses in Sao Paulo, Brazil during 3 days, from 6 to 8 of April, the complete interruption of services being achieved on the 7th. We evaluated the effect of the absence of this source of pollution on the composition, mutagenicity, and toxicity of the fine particulate material collected during this period. Particles were sampled in glass fiber filters on days 7 and 15 of April of 2003 (strike and nonstrike days, respectively), using a high-volume sampler. Trace element determinations (As, Br, Co, Cl, Fe, La, Mn, Sb, Sc, and Th) of particulate material samples were carried out by neutron activation analysis. Sulfur determination was done by X-ray fluorescence analysis. The ratio between nonstrike/strike concentrations of hydrocarbons associated with automotive emissions (benzene, toluene, ethyl-benzene, and xylenes; BTEX) was determined by gas chromatography/mass spectrometry. Mutagenesis of testing solutions was determined by means of the Tradescantia micronucleus assay in early tetrads of Tradescantia pallida. The inhibition of mitosis of the cells of the primary meristema of the root tips of Allium cepa was used as an index of the toxicity. Fine particle trace element contents were lower during the strike. The concentrations of sulfur and BTEX were 50% and 39.3% lower, respectively, on the strike day. A significant (P=0.038) reduction of micronuclei induced by fine particles sampled during the strike was observed. No effect of the strike on toxicity was detected. These results indicate that a program aiming to reduce emissions of the bus fleet in our town may impact positively the air quality by reducing the mutagenic potential of ambient particles.

  5. Oxidative potential of coarse particulate matter (PM10–2.5) and its relation to water solubility and sources of trace elements and metals in the Los Angeles Basin

    PubMed Central

    Shirmohammadi, Farimah; Hasheminassab, Sina; Wang, Dongbin; Saffari, Arian; Schauer, James J.; Shafer, Martin M.; Delfino, Ralph J.; Sioutas, Constantinos

    2015-01-01

    In this study, potential sources of water-soluble (WS) and water-insoluble (WI) fractions of metals and trace elements in coarse particulate matter (CPM) (PM10–2.5, 2.5

  6. Trace element levels in mollusks from clean and polluted coastal marine sites in the Mediterranean, Red and North Seas

    NASA Astrophysics Data System (ADS)

    Herut, Barak; Kress, Nurit; Shefer, Edna; Hornung, Hava

    1999-12-01

    The trace element contamination levels in mollusks were evaluated for different marine coastal sites in the Mediterranean (Israeli coast), Red (Israeli coast) and North (German coast) Seas. Three bivalve species (Mactra corallina, Donax sp, and Mytilus edulis) and two gastropod species (Patella sp.and Cellana rota) were sampled at polluted and relatively clean sites, and their soft tissue analyzed for Hg, Cd, Zn, Cu, Mn and Fe concentrations. Representative samples were screened for organic contaminants [(DDE), polychlorinated biphenyls PCBs and polycyclic aromatic hydrocarbons (PAHs)] which exhibited very low concentrations at all sites. In the Red Sea, the gastropod C. rota showed low levels of Hg (below detection limit) and similar Cd concentrations at all the examined sites, while other trace elements (Cu, Zn, Mn, Fe) were slightly enriched at the northern beach stations. Along the Mediterranean coast of Israel, Hg and Zn were enriched in two bivalves (M. corallina and Donax sp.) from Haifa Bay, both species undergoing a long-term decrease in Hg based on previous studies. Significant Cd and Zn enrichment was detected in Patella sp. from the Kishon River estuary at the southern part of Haifa Bay. In general, Patella sp. and Donax sp. specimens from Haifa Bay exhibited higher levels of Cd compared to other sites along the Israeli Mediterranean coast, attributed to the enrichment of Cd in suspended particulate matter. Along the German coast (North Sea) M. edulis exhibited higher concentrations of Hg and Cd at the Elbe and Eider estuaries, but with levels below those found in polluted sites elsewhere.

  7. Lead isotope exchange between dissolved and fluvial particulate matter: a laboratory study from the Johor River estuary

    PubMed Central

    Chen, Mengli; Lee, Jong-Mi; Nurhati, Intan; Zurbrick, Cheryl; Switzer, Adam D.; Carrasco, Gonzalo

    2016-01-01

    Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035266

  8. Trace gas and particulate emissions from biomass burning in temperate ecosystems

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1991-01-01

    Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.

  9. Geochemical evidence for the origin of vanadium in an urban environment.

    PubMed

    Hernandez, Hector; Rodriguez, Ramiro

    2012-09-01

    The city of Salamanca in central Mexico is surrounded by heavy industry, i.e., a refinery, a thermoelectric plant and chemical industries. Variable concentrations of vanadium (V) have been reported in the groundwater, and their presence has been related to particulates so this hypothesis was tested by sampling soil in the urban area and the surrounding uncontaminated country site. The 0-10-cm soil layer in the industrial and rural area was analyzed for V and other metal trace elements found in hydrocarbons, i.e., chromium (Cr), lead (Pb), zinc (Zn), and nickel (Ni). The concentrations of V were higher in the urban rather than in the rural soil, reaching values of >600 mg kg(-1) in the urban soils. In the rural area, V in the soil was related to regional geology, i.e., volcanic rocks such as basalts and rhyolites but not in the urban area where it was related to particulate distribution mostly emitted from the industries burning fuel oil number 6.

  10. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    PubMed

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive.

  11. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    PubMed

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass. Source profile data for an eastern U.S. coal show good agreement with those reported from a similar study done in the United States. Based on the inadequacies identified in the initial sampling equipment, a new, plume-simulating fine PM measurement system with modular components for field use is being developed for determining coal combustion PM source profiles from utility boiler stacks.

  12. The CCRUSH study: Characterization of coarse and fine particulate matter in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas Steven

    Particulate matter in the troposphere adversely impacts human health when inhaled and alters climate through cloud formation processes and by absorbing/scattering light. Particles smaller than 2.5 mum in diameter (fine particulate matter; PM2.5), are typically emitted from combustion-related sources and can form and grow through secondary processing in the atmosphere. Coarse particles (PM10-2.5), ranging 2.5 to 10 mum, are typically generated through abrasive processes, such as erosion of road surfaces, entrained via resuspension, and settle quickly out of the atmosphere due to their large size. After deciding against regulating PM10-2.5 in 2006 citing, among other reasons, mixed results from epidemiological studies of the pollutant and lack of knowledge on health impacts in rural areas, the United States Environmental Protection Agency (US EPA) funded a series of studies that investigated the ambient composition, toxicology, and epidemiology of PM10-2.5. One such study, The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study, aimed to characterize the composition, sources, and health effects of PM10-2.5 in semi-arid northeastern Colorado and consisted of two field campaigns and an epidemiological study. Summarized here are the results from the two field campaigns, the first of which included over three years of continuous PM10-2.5 and PM2.5 mass concentration monitoring at multiple sites in urban-Denver and rural-Greeley, Colorado. This data set was used to characterize the spatiotemporal variability of PM10-2.5 and PM2.5. During the second year of continuous monitoring, PM 10-2.5 and PM2.5 filter samples were collected for compositional analyses that included: elemental composition, bulk elemental and organic carbon concentrations, water-soluble organic carbon concentrations, UV-vis absorbance, fluorescence spectroscopy, and endotoxin content. Elemental composition was used to understand enrichment of trace elements in atmospheric particles and to identify sources via positive matrix factorization (PMF). The organic fraction of both particulate size ranges was explored with a variety of bulk characterization techniques commonly utilized in analysis of soil and aquatic natural organic matter. To date, the CCRUSH study is one of the largest research efforts devoted to understanding PM10-2.5 and provides the US EPA with vital information that will be used in future policy making decisions regarding the regulation of this pollutant.

  13. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping

    NASA Astrophysics Data System (ADS)

    Dubosq, R.; Lawley, C. J. M.; Rogowitz, A.; Schneider, D. A.; Jackson, S.

    2018-06-01

    The metamorphic transition of pyrite to pyrrhotite results in the liberation of lattice-bound and nano-particulate metals initially hosted within early sulphide minerals. This process forms the basis for the metamorphic-driven Au-upgrading model applied to many orogenic Au deposits, however the role of syn-metamorphic pyrite deformation in controlling the retention and release of Au and related pathfinder elements is poorly understood. The lower amphibolite facies metamorphic mineral assemblage (Act-Bt-Pl-Ep-Alm ± Cal ± Qz ± Ilm; 550 °C) of Canada's giant Detour Lake deposit falls within the range of pressure-temperature conditions (450 °C) for crystal plastic deformation of pyrite. We have applied a complementary approach of electron backscatter diffraction (EBSD) mapping and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 2D element mapping on pyrite from the Detour Lake deposit. Chemical element maps document an early generation of Au-rich sieve textured pyrite domains and a later stage of syn-metamorphic oscillatory-zoned Au-poor pyrite. Both pyrite types are cut by Au-rich fractures as a consequence of remobilization of Au with trace element enrichment of first-row transition elements, post-transition metals, chalcogens and metalloids during a late brittle deformation stage. However, similar enrichment in trace elements and Au can be observed along low-angle grain boundaries within otherwise Au-poor pyrite, indicating that heterogeneous microstructural misorientation patterns and higher strain domains are also relatively Au-rich. We therefore propose that the close spatial relationship between pyrite and Au at the microscale, features typical of orogenic Au deposits, reflects the entrapment of Au within deformation-induced microstructures in pyrite rather than the release of Au during the metamorphic transition from pyrite to pyrrhotite. Moreover, mass balance calculations at the deposit scale suggest that only a small percentage of Au could have been sourced from pyrite and instead point to the role of substructures in pyrite as depositional traps for Au during syn-metamorphic deformation- and fluid-assisted diffusion Au-upgrading.

  14. Trace Elemental Characterization of Chalk Dust and Their Associated Health Risk Assessment.

    PubMed

    Maruthi, Y A; Ramprasad, S; Lakshmana Das, N

    2017-02-01

    It is evident that chalk produces dust on use, i.e., particulate matter, which will alter the air quality of classrooms and can cause health hazards in teachers. The possible causes for health effects of chalk dust on teachers are still unclear. Hence, the aim of this study is to estimate the concentration of trace elements (Al, Cr, Mn, Fe, Co, Ni, Si, Pb) in chalk dust collected from classrooms by using ICP-MS. Both suspended and settled chalk dust was collected from selected classrooms. Suspended chalk dust was collected with PM2.5 filter paper using fine dust sampler, and settled chalk dust was collected by placing petriplates at a distance of 3 m from the board for a duration period of 30 min. Scanning electron microscopy images of chalk dust were taken up. Potential health risk analysis was also assessed. Results showed that Al, Fe, and Mn are in higher concentration (>1000 μg kg -1 ) in both settled and suspended chalk dust. Cr, Mn, Fe, Co, and Ni were beyond the minimal risk levels in both settled and suspended chalk dust. There are no minimal risk levels for the elements Al, Si, and Pb. The concentration of trace elements in suspended chalk dust was higher than that in settled chalk dust. The SEM images of PM2.5 filter papers (suspended chalk dust) showed that all pores of the sampled filter papers are clogged with chalk dust. The few SEM images of the settled chalk dust showed fibrous shape which is associated with good-quality chalk whereas others showed circular and more aggregated nature of chalk dust from low-quality chalk from which the dust production will be very high. As observed from the result that the trace elements concentration was high in the suspended chalk dust, the fact can be correlated with the SEM images which have shown high density of absorbed chalk dust. With reference to human health risk, dermal exposure was the main route of exposure followed by inhalation and ingestion. Al (aluminum), Fe (iron), Si (silicon), and Mn (manganese) are the major contributors for the non-carcinogenic effects. For all the elements, the carcinogenic effect calculated (LADD) is within the global acceptable limit (10 -6 -10 -4 ).

  15. Paleo-environmental conditions of the Early Cambrian Niutitang Formation in the Fenggang area, the southwestern margin of the Yangtze Platform, southern China: Evidence from major elements, trace elements and other proxies

    NASA Astrophysics Data System (ADS)

    Li, Jin; Tang, Shuheng; Zhang, Songhang; Xi, Zhaodong; Yang, Ning; Yang, Guoqiao; Li, Lei; Li, Yanpeng

    2018-06-01

    The Precambrian/Cambrian transition was a key time in Earth history, especially for marine biological evolution and oceanic chemistry. The redox-stratification with oxic shallow water and anoxic (even euxinic) deeper water in the Early Cambrian Yangtze Sea, which gradually became completely oxygenated, has been suggested as a possible trigger for the "Cambrian explosion" of biological diversity. However, for some areas in northern Guizhou where the exploration and research are lacking, identifying this pattern of redox-stratification by paleo-environmental analysis from borehole data is still in need. Here, we report a remarkable variation range in trace elements (Mo, V, U, Ni, Th, Co, Sc, Zn and Cu), molar Corg:P ratios and pyrite morphology from 27 core samples from one new drill hole (XY1, located in the Fenggang area, northern Guizhou) on the Yangtze Platform, South China. High levels of Ba (from 3242 ppm to 33,800 ppm) and total organic carbon (TOC; from 4% to 9.36%) in 15 core samples in the Lower Member (LM) of the Niutitang Formation indicated elevated primary productivity in the study area. Redox change was recorded based on enrichment factors (EFs) for RSTEs (Mo, U, and V), redox proxies (V/(V + Ni), Ni/Co, V/Sc and Th/U), Corg:P ratios and particle size of framboidal pyrite. These signatures demonstrate that the LM was deposited under anoxic conditions with sulfidic episodes, whereas the Upper Member (UM) of the Niutitang Formation was deposited under suboxic/oxic conditions with intermittently anoxic episodes. Mo/TOC ratios (from 3.72 to 39.86, mean 18.76) suggest weak-moderate water mass restriction. Mo-U covariation patterns (strong but variable enrichment of Mo and U; MoEF ranging from 31.45 to 257.97; UEF ranging from 4.68 to 39.07) in the LM show alternation of particulate shuttling and redox conditions occurred in the Early Cambrian Yangtze Sea, whereas Mo-U covariation patterns (moderate Mo enrichment but depletion or non-enrichment of U; mean MoEF: 7.29; mean UEF: 0.95) in the UM may indicate the combined influence of particulate shuttling and diagenetic diffusion of U via bioactivities, which result in low U values and an anoxic signature from frambiodal pyrite particle size (mean: 4.556 μm; median: 4.41 μm). Additionally, excess Ba (Baxs) concentration (33,800 ppm and 32,500 ppm) and association patterns of trace-metal enrichment in the LM indicate the existence of submarine hydrothermal events. In addition, during deposition of the UM, bioactivities indicated by Mo-U systematics and oxic conditions indicated by redox sensitive trace elements (RSTEs) and multiple-proxies, may be a cause of biological diversification recorded in the Early Cambrian. Finally, data in this record a progressive transition from anoxic bottom waters with euxinic episodes to overwhelming oxic conditions during Early Cambrian.

  16. DPF heater attachment mechanisms

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-04-26

    An exhaust filter system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A fastener limits expansion movement of the heating element relative to the PF.

  17. Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Fang, Guor-Cheng; Wu, Yuh-Shen; Chang, Shih-Yu; Huang, Shih-Han; Rau, Jui-Yeh

    2006-10-01

    This work attempts to characterize metallic elements associated with atmospheric particulate matter on a dry deposition plate, a TE-PUF high-volume air sampler and a universal air sampler. Dry deposition fluxes of particulates and concentrations of total suspended particulate, fine (PM 2.5) and coarse (PM 2.5-10) particulate matters were collected at Taichung harbor sampling sites from August 2004 to January 2005. Chemical analyses of metallic elements were made using a flame atomic absorption spectrophotometer coupled with hollow cathode lamps. Concentrations of metal elements in the forms of coarse particles and fine particles as well as the coarse/fine particulate ratios were presented. Statistical methods such as correlation analysis, principal component analysis and enrichment factor analysis were performed to compare the chemical components and identify possible emission sources at the sampling sites. Metallic elements of Cu, Zn, Pb, Cr, Ni and Mg had higher EF crust ratios in winter and spring than in summer and autumn. Diurnal and nocturnal variations of metallic element concentrations in fine and coarse particles were also discussed.

  18. A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments

    NASA Astrophysics Data System (ADS)

    Cole, Devon B.; Zhang, Shuang; Planavsky, Noah J.

    2017-10-01

    The enrichment and depletion of redox sensitive trace metals in marine sediments have been used extensively as paleoredox proxies. The trace metals in shale are comprised of both detrital (transported or particulate) and authigenic (precipitated, redox-driven) constituents, potentially complicating the use of this suite of proxies. Untangling the influence of these components is vital for the interpretation of enrichments, depletions, and isotopic signals of iron (Fe), chromium (Cr), uranium (U), and vanadium (V) observed in the rock record. Traditionally, a single crustal average is used as a cutoff for detrital input, and concentrations above or below this value are interpreted as redox derived authigenic enrichment or depletion, while authigenic isotopic signals are frequently corrected for an assumed detrital contribution. Building from an extensive study of soils across the continental United States - which upon transport will become marine sediments - and their elemental concentrations, we find large deviations from accepted crustal averages in redox-sensitive metals (Fe, Cr, U, V) compared to typical detrital tracers (Al, Ti, Sc, Th) and provide new estimates for detrital contributions to the ocean. The variability in these elemental ratios is present over large areas, comparable to the catchment-size of major rivers around the globe. This heterogeneity in detrital flux highlights the need for a reevaluation of how the detrital contribution is assessed in trace metal studies, and the use of confidence intervals rather than single average values, especially in local studies or in the case of small authigenic enrichments.

  19. Tellurium in active volcanic environments: Preliminary results

    NASA Astrophysics Data System (ADS)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First estimates of volcanic flux of tellurium from Etna range from 1 to 5 tons per year, confirming that this volcano is one of the biggest point sources of trace elements to the atmosphere. Analysis of tellurium in soils and plants close to active vents allowed to highlight the impact of this toxic elements, particularly evident close to the craters. Especially, the leaves of plants used as bioaccumulators of trace metals, showed also high enrichment of tellurium in comparison with other toxic elements.

  20. Design of a Thermal Precipitator for the Characterization of Smoke Particles from Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Meyer, Marit Elisabeth

    2015-01-01

    A thermal precipitator (TP) was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Modeling of the thermal precipitator throughout the design process was performed with the COMSOL Multiphysics finite element software package, including the Eulerian flow field and thermal gradients in the fluid. The COMSOL Particle Tracing Module was subsequently used to determine particle deposition. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. The thermal precipitator was built and testing verified the performance of the first iteration of the device. The thermal precipitator was successfully operated and provided quality particle samples for microscopic analysis, which furthered the body of knowledge on smoke particulates. This information is a key element of smoke characterization and will be useful for future spacecraft fire detection research.

  1. Environmental assessment of a watertube boiler firing a coal-water slurry. Volume 1. Technical results. Final report, January 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1986-02-01

    The report describes results from field testing a watertube industrial boiler firing a coal/water slurry (CWS) containing about 60% coal. Emission measurements included continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue-gas, with subsequent analysis of samples to obtain total flue-gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 73 trace elements: EPA Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; and grab sampling of fuel and ash for inorganic composition. NOx, SO/sub 2/, CO, andmore » TUHC emissions were in the 230-310, 880-960, 170-200, and 1-3 ppm ranges (corrected to 3% 02), respectively, over the two tests performed. Particulate levels at the boiler outlet (upstream of the unit's baghouse) were 7.3 g/dscm in the comprehensive test. Coarse particulate (>3 micrometers) predominated. Total organic emissions were almost 50 mg/dscm, with about 70% of the organic matter in the nonvolatile (>300 C) boiling point range. The bottom ash organic content was 8 mg/g, 80% of which was in the nonvolatile range. Of the PAHs, only naphthalene was detected in the flue gas particulate, with emission levels of 8.6 micrograms/dscm. Several PAHs were found in the bottom ash.« less

  2. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    PubMed

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  3. Neodymium in the oceans: a global database, a regional comparison and implications for palaeoceanographic research

    PubMed Central

    Griffiths, Alexander M.; Lambelet, Myriam; Little, Susan H.; Stichel, Torben; Wilson, David J.

    2016-01-01

    The neodymium (Nd) isotopic composition of seawater has been used extensively to reconstruct ocean circulation on a variety of time scales. However, dissolved neodymium concentrations and isotopes do not always behave conservatively, and quantitative deconvolution of this non-conservative component can be used to detect trace metal inputs and isotopic exchange at ocean–sediment interfaces. In order to facilitate such comparisons for historical datasets, we here provide an extended global database for Nd isotopes and concentrations in the context of hydrography and nutrients. Since 2010, combined datasets for a large range of trace elements and isotopes are collected on international GEOTRACES section cruises, alongside classical nutrient and hydrography measurements. Here, we take a first step towards exploiting these datasets by comparing high-resolution Nd sections for the western and eastern North Atlantic in the context of hydrography, nutrients and aluminium (Al) concentrations. Evaluating those data in tracer–tracer space reveals that North Atlantic seawater Nd isotopes and concentrations generally follow the patterns of advection, as do Al concentrations. Deviations from water mass mixing are observed locally, associated with the addition or removal of trace metals in benthic nepheloid layers, exchange with ocean margins (i.e. boundary exchange) and/or exchange with particulate phases (i.e. reversible scavenging). We emphasize that the complexity of some of the new datasets cautions against a quantitative interpretation of individual palaeo Nd isotope records, and indicates the importance of spatial reconstructions for a more balanced approach to deciphering past ocean changes. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035258

  4. Concentrations and loads of suspended sediment and trace element pollutants in a small semi-arid urban tributary, San Francisco Bay, California.

    PubMed

    McKee, Lester J; Gilbreath, Alicia N

    2015-08-01

    Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.

  5. Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program

    NASA Astrophysics Data System (ADS)

    Lamborg, C. H.; Buesseler, K. O.; Lam, P. J.

    2008-07-01

    As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we collected and analyzed sinking particles using sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). In this paper, we present the results of minor and trace element determinations made on these samples. Minor and trace elements in the sinking material showed 2 trends in flux with depth: increasing and constant. The sinking particulate phase of some elements (Al, Fe, Mn) was dominated by material of lithogenic origin and exhibited flux that was constant with depth and consistent with eolian dust inputs (ALOHA), or increasing in flux with depth as a result of lateral inputs from a shelf (K2). This shelf-derived material also appears to have been confined to very small particles, whose inherent sinking rates are slow, and residence time within the mesopelagic "twilight zone" would be consequently long. Furthermore, the flux of this material did not change with substantial changes in the rain of biogenic material from the surface (K2), suggesting mechanistic decoupling from the flux of organic carbon and macronutrients. Micronutrient (Fe, Co, Zn and Cu) fluxes examined in a 1-D mass balance suggest widely differing sources and sinks in the water column as well as impacts from biological uptake and regeneration. For example, total Fe fluxes into and out of the euphotic zone appeared to be dominated by lithogenic material and far exceed biological requirements. The export flux of Fe, however, appeared to be balanced by the eolian input of soluble Fe. For Zn and Cu, the situation is reversed, with atmospheric inputs insufficient to support fluxes, and the cycling therefore dominated by the draw down of an internal pool. For Co, the situation lies in between, with important, but ultimately insufficient atmospheric inputs.

  6. Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments

    NASA Astrophysics Data System (ADS)

    Audry, S.; Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Dupré, B.

    2011-11-01

    This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m-2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions was suggested. This shift was likely promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the sediments were a source of dissolved Co, Ni and As to the water column. However, the concentrations of these trace elements remained low in the bottom waters, indicating that sorption processes on Fe-bounding particles and/or large-size organo-mineral colloids could mitigate the impact of post-depositional redistribution of toxic elements on the water column.

  7. Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments

    NASA Astrophysics Data System (ADS)

    Audry, S.; Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Dupré, B.

    2011-08-01

    This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m-2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways was evidenced from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions. This shift was promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the sediments were a source of dissolved Co, Ni and As to the water column. However, the concentrations of these trace elements remained low in the bottom waters, indicating that sorption processes on Fe-bounding particles and/or large-size organo-mineral colloids could mitigate the impact of post-depositional redistribution of toxic elements on the water column.

  8. Assessment of metal contamination in a small mining- and smelting-affected watershed: high resolution monitoring coupled with spatial analysis by GIS.

    PubMed

    Coynel, Alexandra; Blanc, Gérard; Marache, Antoine; Schäfer, Jörg; Dabrin, Aymeric; Maneux, Eric; Bossy, Cécile; Masson, Matthieu; Lavaux, Gilbert

    2009-05-01

    The Riou Mort River watershed (SW France), representative of a heavily polluted, small, heterogeneous watershed, represents a major source for the polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system due to former mining and ore-treatment activities. In order to assess spatial distribution of the metal/metalloid contamination in the watershed, a high resolution hydrological and geochemical monitoring were performed during one year at four permanent observation stations. Additionally, thirty-five stream sediment samples were collected at representative key sites and analyzed for metal/metalloid (Cd, Zn, Cu, Pb, As, Sb, Mo, V, Cr, Co, Ni, Th, U and Hg) concentrations. The particulate concentrations in water and stream sediments show high spatial differences for most of the studied elements suggesting strong anthropogenic and/or lithogenic influences; for stream sediments, the sequence of the highest variability, ranging from 100% to 300%, is the following: Mo < Cu < Hg < As < Sb < Cd < Zn < Pb. Multidimensional statistical analyses combined with metal/metalloid maps generated by GIS tool were used to establish relationships between elements, to identify metal/metalloid sources and localize geochemical anomalies attributed to local geochemical background, urban and industrial activities. Finally, this study presents an approach to assess anthropogenic trace metal inputs within this watershed by combining lithology-dependent geochemical background values, metal/metalloid concentrations in stream sediments and mass balances of element fluxes at four key sites. The strongest anthropogenic contributions to particulate element fluxes are 90-95% for Cd, Zn and Hg in downstream sub-catchments. The localisation of anthropogenic metal/metalloid sources in restricted areas offers a great opportunity to further significantly reduce metal emissions and restore the Lot-Garonne-Gironde fluvial-estuarine ecosystem.

  9. Particulate matter concentration and chemical composition in the metro system of Rome, Italy.

    PubMed

    Perrino, C; Marcovecchio, F; Tofful, L; Canepari, S

    2015-06-01

    Air quality at the main station of the metro system of Rome (Termini hub) has been characterized by the point of view of particulate matter (PM) concentration and chemical composition. Indoor air in different environments (underground train platform and shopping center, metro carriages with and without air conditioning system) has been studied and compared with outdoor air at a nearby urban site. Air quality at the railway station, located outdoor at surface level, has been also considered for comparison. PM chemical characterization included ions, elemental carbon, organic carbon, macro-elements, and the bio-accessible and residual fractions of micro- and trace elements. Train platform and carriages without air conditioning resulted to be the most polluted environments, with indoor/outdoor ratio up to two orders of magnitude for many components. PM mass concentration was determined on filter membranes by the gravimetric procedure as well as from the optical particle counter (OPC) number concentration measurements. The OPC results, taken with the original calibration factor, were below 40 % of the value obtained by the gravimetric measurements. Only a chemical and morphological characterization of the collected dust could lead to a reconciliation of the results yielded by the two methods. Macro-components were used to estimate the strength of the main macro-sources. The most significant contribution is confirmed to derive from wheels, rails, and brakes abrasion; from soil re-suspension (over 50 % at the subway platform); and from organics (about 25 %). The increase in the concentration of elements was mostly due to the residual fraction, but also the bio-accessible fraction showed a remarkable enrichment, particularly in the case of Ba, Zn, Cd, and Ni.

  10. Characterizing mineral dusts and other aerosols from the Middle East--Part 2: grab samples and re-suspensions.

    PubMed

    Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M Jay; Casuccio, Gary; Gertler, Alan W

    2009-02-01

    The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected during a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). To fully understand mineral dusts, their chemical and physical properties, as well as mineralogical inter-relationships, were accurately established. In addition to the ambient samples, bulk soil samples were collected at each of the 15 sites. In each case, approximately 1 kg of soil from the top 10 mm at a previously undisturbed area near the aerosol sampling site was collected. The samples were air-dried and sample splits taken for soil analysis. Further sample splits were sieved to separate the < 38 micro m particle fractions for mineralogical analysis. Examples of major-element and trace-element chemistry, mineralogy, and other physical properties of the 15 grab samples are presented. The purpose of the trace-element analysis was to measure levels of potentially harmful metals while the major-element and ion-chemistry analyses provided an estimate of mineral components. X-ray diffractometry provided a measure of the mineral content of the dust. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze chemical composition of small individual particles. From similarities in the chemistry and mineralogy of re-suspended and ambient sample sets, it is evident that portions of the ambient dust are from local soils.

  11. Atmospheric inorganic trace contaminants in Finland, especially in the Gulf of Finland area

    NASA Astrophysics Data System (ADS)

    Jalkanen, Liisa Maria

    Atmospheric aerosol samples were collected at Utö and Virolahti in the Gulf of Finland area and Ähtäri in Central Finland using a filter pack. The samples were analysed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass-spectrometry (ICP-MS) for 34 elements including halogens and heavy metals. A very simple and quantitative acid digestion method was developed for the dissolution of the aerosol samples for ICP-MS analysis. Analysis of the elemental data is given using trajectories, principal component analysis and long-range transport modelling. The average total (fine + coarse) atmospheric concentrations range at Utö from 0.083 ng m -3 for Cd to 730 ng m-3 for Na. The sea areas (Utö, Virolahti, Hailuoto) have most of the heavy metal air pollution in Finland, as witnessed by the aerosol concentration and wet deposition data. There is a clear decreasing gradient in the deposition of As, Cd, Cr, Pb, and V from South to North in Finland. In general, the trace element concentrations and deposition are lower in Finland than in Central Europe. The effect of large particulate emission sources in Estonia can be seen in the elemental concentrations of atmospheric particles and in the deposition around the eastern Gulf of Finland region. There has been a remarkable decrease in heavy metal emissions in Finland during the 1990s. However, due to long-range transport, the decrease in deposition as witnessed by analysis of these concentrations in precipitation and moss is much less than would be expected.

  12. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece.

    PubMed

    Petaloti, Christina; Triantafyllou, Athanasios; Kouimtzis, Themistoklis; Samara, Constantini

    2006-12-01

    Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000-November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47+/-33 microg m(-3) and 110+/-50 microg m(-3) at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210+/-97 microg m(-3)) exceeding the European standard (150 microg m(-3), 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P<0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities.

  13. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achariya Suriyawong; Rogan Magee; Ken Peebles

    2009-05-15

    This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), mercury (Hg), vanadium (V), and zinc (Zn)) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter (d{sub p}) > 0.5 {mu}m), a submicrometer-mode ash (d{sub p} < 0.5more » {mu}m), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion. 27 refs., 6 figs., 5 tabs.« less

  14. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C.

    2015-04-01

    Traffic emissions are a significant source of airborne particulate matter (PM) in ambient environments. These emissions contain an abundance of toxic metals and thus pose adverse effects on human health. Size-fractionated aerosol samples were collected from May to September 2013 by using micro-orifice uniform deposited impactors (MOUDIs). Sample collection was conducted simultaneously at the inlet and outlet sites of Hsuehshan Tunnel in northern Taiwan, which is the second-longest freeway tunnel (12.9 km) in Asia. This endeavor aims to characterize the chemical constituents and size distributions, as well as fingerprinting ratios of particulate metals emitted by vehicle fleets. A total of 36 metals in size-resolved aerosols were determined through inductively coupled plasma mass spectrometry. Three major groups - namely, tailpipe emissions (Zn, Pb, and V in fine mode), wear debris (Cu, Cd, Fe, Ga, Mn, Mo, Sb, and Sn), and resuspended dust (Ca, Mg, K, and Rb) - of airborne PM metals were categorized on the basis of the results of enrichment factor, correlation matrix, and principal component analysis. Size distributions of wear-originated metals resembled the pattern of crustal elements, which were predominated by super-micron particulates (PM1-10). By contrast, tailpipe exhaust elements such as Zn, Pb, and V were distributed mainly in submicron particles. By employing Cu as a tracer of wear abrasion, several inter-metal ratios - including Fe / Cu (14), Ba / Cu (1.05), Sb / Cu (0.16), Sn / Cu (0.10), and Ga / Cu (0.03) - served as fingerprints for wear debris. However, the data set collected in this work is useful for further studies on traffic emission inventory and human health effects of traffic-related PM.

  15. Trace element distributions in the water column near the Deepwater Horizon well blowout.

    PubMed

    Joung, DongJoo; Shiller, Alan M

    2013-03-05

    To understand the impact of the Deepwater Horizon well blowout on dissolved trace element concentrations, samples were collected from areas around the oil rig explosion site during four cruises in early and late May 2010, October 2010, and October 2011. In surface waters, Ba, Fe, Cu, Ni, Mn, and Co were relatively well correlated with salinity during all cruises, suggesting mixing with river water was the main influence on metal distributions in these waters. However, in deep oil/gas plumes (1000-1400 m depth), modestly elevated concentrations of Co and Ba were observed in late May, compared with postblowout conditions. Analysis of the oil itself along with leaching experiments confirm the oil as the source of the Co, whereas increased Ba was likely due to drilling mud used in the top kill attempt. Deep plume dissolved Mn largely reflected natural benthic input, though some samples showed slight elevation probably associated with the top kill. Dissolved Fe concentrations were low and also appeared largely topographically controlled and reflective of benthic input. Estimates suggest that microbial Fe demand may have affected the Fe distribution but probably not to the extent of Fe becoming a growth-limiting factor. Experiments showed that the dispersant can have some limited impact on dissolved-particulate metal partitioning.

  16. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    PubMed

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion.

  17. Distribution of Some Rare and Trace Elements in Ice-Rafted Sediments in the Yermak Plateau Area, the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. P.; Maslov, A. V.; Stein, R.

    2017-11-01

    The distribution of V, Co, Ni, Sr, Nb and rare earth elements (REE) in ice-rafted sediments (IRS) collected in the Yermak Plateau area (the Arctic Ocean) during cruise ARK-XX/3 of the R/V Polarstern in September 2004 has been analyzed. It was determined that the Nb/V ratio in these IRS has an intermediate value between the average ratio values in suspended particulate matter of the Yenisei and Khatanga rivers and Mesozoic-Cenozoic basalts, on the one hand, and suspended matter of the Ob and Lena rivers and post-Archean Australian Shale (PAAS), on the other hand. The REE distribution demonstrates the same pattern. The IRS data points in Nb-Sr, Ni-Co, and Co-Sr and some other diagrams are close mainly to the average chemical composition of suspended particulate matter of the Ob and Lena rivers, i.e., waterways draining watersheds composed predominantly of sedimentary rocks. The Nb, Sr, Ni, and Co contents in the studied IRS samples are close to those in the PAAS. In accordance with this, we were able to conclude that the main provenance areas of the studied IRS samples are situated in the eastern part of the Laptev Sea and the East Siberian Sea, on shelf of which the erosion products of sedimentary and metamorphic rocks of the Verkhoyansk Fold Belt dominate.

  18. Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations

    PubMed Central

    2015-01-01

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007

  19. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    PubMed

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  20. Variation in aluminum, iron, and particle concentrations in oxic groundwater samples collected by use of tangential-flow ultrafiltration with low-flow sampling

    NASA Astrophysics Data System (ADS)

    Szabo, Zoltan; Oden, Jeannette H.; Gibs, Jacob; Rice, Donald E.; Ding, Yuan

    2002-02-01

    Particulates that move with ground water and those that are artificially mobilized during well purging could be incorporated into water samples during collection and could cause trace-element concentrations to vary in unfiltered samples, and possibly in filtered samples (typically 0.45-um (micron) pore size) as well, depending on the particle-size fractions present. Therefore, measured concentrations may not be representative of those in the aquifer. Ground water may contain particles of various sizes and shapes that are broadly classified as colloids, which do not settle from water, and particulates, which do. In order to investigate variations in trace-element concentrations in ground-water samples as a function of particle concentrations and particle-size fractions, the U.S. Geological Survey, in cooperation with the U.S. Air Force, collected samples from five wells completed in the unconfined, oxic Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain. Samples were collected by purging with a portable pump at low flow (0.2-0.5 liters per minute and minimal drawdown, ideally less than 0.5 foot). Unfiltered samples were collected in the following sequence: (1) within the first few minutes of pumping, (2) after initial turbidity declined and about one to two casing volumes of water had been purged, and (3) after turbidity values had stabilized at less than 1 to 5 Nephelometric Turbidity Units. Filtered samples were split concurrently through (1) a 0.45-um pore size capsule filter, (2) a 0.45-um pore size capsule filter and a 0.0029-um pore size tangential-flow filter in sequence, and (3), in selected cases, a 0.45-um and a 0.05-um pore size capsule filter in sequence. Filtered samples were collected concurrently with the unfiltered sample that was collected when turbidity values stabilized. Quality-assurance samples consisted of sequential duplicates (about 25 percent) and equipment blanks. Concentrations of particles were determined by light scattering.

  1. Trace element distribution in waters of the northern catchment area of Lake Linneret, northern Israel

    NASA Astrophysics Data System (ADS)

    Sandler, A.; Brenner, I. B.; Halicz, L.

    1988-02-01

    Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.

  2. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions.

    PubMed

    Pan, Yuepeng; Tian, Shili; Li, Xingru; Sun, Ying; Li, Yi; Wentworth, Gregory R; Wang, Yuesi

    2015-12-15

    Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 μm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (<1.1 μm). These toxic metals were enriched by over 100-fold relative to the Earth's crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 μm and 4.7-5.8 μm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Near-real-time trace element measurements in a rural, traffic-influenced environment with some fireworks

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Slowik, Jay G.; Cruz Minguillón, María; Hueglin, Christoph; Koch, Chris; Prévôt, André S. H.; Baltensperger, Urs

    2016-04-01

    Aerosol-bound trace elements can affect the environment in significant ways especially when they are toxic. Characterizing the trace element spatial and temporal variability is a prerequisite for human exposure studies. The requirement for high time resolution and consequently the low sample masses asked for analysis methods not easily accessible, such as synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). In recent years, instrumentation that samples and analyzes airborne particulate matter with time resolutions of less than an hour in near real time has entered the market. We present the results of a three-week campaign in a rural environment close to a freeway. The measurement period included the fireworks of the Swiss National Day. The XRF instrument was set up at the monitoring station Härkingen of the Swiss Monitoring Network for Air Pollution (NABEL). It was configured to sample and analyze ambient PM10 aerosols in 1-hour intervals. Sample analysis with XRF was performed by the instrument immediately after collection, i.e. during the next sampling interval. 24 elements were analyzed and quantified (Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sn, Sb, Ba, Pt, Hg, Pb, Bi). The element concentrations obtained by the XRF instrument were compared to those determined by ICP-AES and ICP-MS in PM10 samples collected by NABEL high volume samplers. The results demonstrate the capability of the instrument to measure over a wide range of concentrations, from a few ng m-3 to μg m-3, under ambient conditions. The time resolution allows for the characterization of diurnal variations of element concentrations, which provides information on the contribution of emission sources, such as road traffic, soil, or fireworks. Some elements (V, Co, As, Pt) were below their detection limit during most of the time, but As could be quantified during the fireworks. Transition metals Cr, Mn, Fe, Cu, Zn could be attributed to freeway traffic. K, S, Ba, and Bi were strongly linked to the fireworks. The field test provided good evidence for the applicability and ease of use of the instrument. It provided also an idea on the sensitivity of the method in realistic, ambient conditions, although the 3-week period was too short for a thorough assessment, e.g. for different weather conditions.

  4. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste.

    PubMed

    Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K

    2014-08-19

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.

  5. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    PubMed

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  6. Numerical simulation of trace element transport on subsurface environment pollution in coal mine spoil.

    PubMed

    Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu

    2006-01-01

    An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.

  7. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. FATE AND TRANSPORT OF EMISSIONS FOR SEVERAL TRACE METALS OVER THE UNITED STATES

    EPA Science Inventory

    A regional model for atmospheric photochemistry and particulate matter is used to predict the fate and transport of five trace metals: lead, manganese, total chromium, nickel, and cadmium over the continental United States during January and July 2001. Predicted concentrations of...

  9. Health impact assessment from building life cycles and trace metals in coarse particulate matter in urban office environments.

    PubMed

    Othman, Murnira; Latif, Mohd Talib; Mohamed, Ahmad Fariz

    2018-02-01

    This study intends to determine the health impacts from two office life cycles (St.1 and St.2) using life cycle assessment (LCA) and health risk assessment of indoor metals in coarse particulates (particulate matter with diameters of less than 10µm). The first building (St.1) is located in the city centre and the second building (St.2) is located within a new development 7km away from the city centre. All life cycle stages are considered and was analysed using SimaPro software. The trace metal concentrations were determined by inductively couple plasma-mass spectrometry (ICP-MS). Particle deposition in the human lung was estimated using the multiple-path particle dosimetry model (MPPD). The results showed that the total human health impact for St.1 (0.027 DALY m -2 ) was higher than St.2 (0.005 DALY m -2 ) for a 50-year lifespan, with the highest contribution from the operational phase. The potential health risk to indoor workers was quantified as a hazard quotient (HQ) for non-carcinogenic elements, where the total values for ingestion contact were 4.38E-08 (St.1) and 2.59E-08 (St.2) while for dermal contact the values were 5.12E-09 (St.1) and 2.58E-09 (St.2). For the carcinogenic risk, the values for dermal and ingestion routes for both St.1 and St.2 were lower than the acceptable limit which indicated no carcinogenic risk. Particle deposition for coarse particles in indoor workers was concentrated in the head, followed by the pulmonary region and tracheobronchial tract deposition. The results from this study showed that human health can be significantly affected by all the processes in office building life cycle, thus the minimisation of energy consumption and pollutant exposures are crucially required. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Influence of exposure sites on trace element enrichment in moss-bags and characterization of particles deposited on the biomonitor surface.

    PubMed

    Tretiach, M; Pittao, E; Crisafulli, P; Adamo, P

    2011-01-15

    The hypothesis that exposure environment and land use influence element accumulation and particulate size composition in transplants of Hypnum cupressiforme has been tested using moss-bags containing oven-devitalized material. The samples were exposed for three months in ten green sites and ten roadsides in two areas with different land use (A, residential; B, residential/industrial) in the Trieste conurbation (NE Italy). Observations by SEM and EDX-ray microanalysis revealed that particle density was smaller in samples exposed in A than in B, with prevalence of particles containing Al, Ca, Fe and Si, and in good accordance with the element contents measured by acid digestion and ICP-MS. Moss-bags were generally less contaminated in green sites than in roadsides, apparently due to the different enrichment in coarse particles. In both environments, however, the majority of entrapped particles (up to 98.2%) belongs in the inhalable, small size classes (≤PM(10)). The need for careful selection of the exposure sites during the phase of biomonitoring planning is discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  12. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  13. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution impact studies require knowledge of the natural background concentrations and knowledge of pollutant behavior. For example, it is generally accepted that rare earth elements (REEs) in waters behave as good analogues for the actinides, whose natural levels are quite low and rarely measured. Water quality investigations have clearly been a stimulus for measurement of toxic heavy metals in order to understand their behavior in natural systems.From a more fundamental point of view, it is crucial to understand the behavior of trace elements in geological processes, in particular during chemical weathering and transport by waters. Trace elements are much more fractionated by weathering and transport processes than major elements, and these fractionations give clues for understanding the nature and intensity of the weathering+transport processes. This has not only applications for weathering studies or for the past mobilization and transport of elements to the ocean (potentially recorded in the sediments), but also for the possibility of better utilization of trace elements in the aqueous environment as an exploration tool.In this chapter, we have tried to review the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements. We have favored a "field approach" by focusing on studies of natural hydrosystems. The basic questions which we want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering+transport system? Are trace elements, like major elements in rivers, essentially controlled by source-rock abundances? What do we know about the chemical speciation of trace elements in water? To what extent do colloids and interaction with solids regulate processes of trace elements in river waters? Can we relate the geochemistry of trace elements in aquatic systems to the periodic table? And finally, are we able to satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?An impressive literature has dealt with experimental works on aqueous complexation, uptake of trace elements by surface complexation (inorganic and organic), uptake by living organisms (bioaccumulation) that we have not reported here, except when the results of such studies directly explain natural data. As continental waters encompass a greater range of physical and chemical conditions, we focus on river waters and do not discuss trace elements in groundwaters, lakes, and the ocean. In lakes and in the ocean, the great importance of life processes in regulating trace elements is probably the major difference from rivers.Section 5.09.2 of this chapter reports data. We will review the present-day literature on trace elements in rivers to show that our knowledge is still poor. By comparing with the continental abundances, a global mobility index is calculated for each trace element. The spatial and temporal variability of trace-element concentrations in rivers will be shown to be important. In Section 5.09.3, sources of trace elements in river waters are indicated. We will point out the great diversity of sources and the importance of global anthropogenic contamination for a number of elements. The question of inorganic and organic speciation of trace elements in river water will then be addressed in Section 5.09.4, considering some general relationships between speciation and placement in the periodic table. In Section 5.09.5, we will show that studies on organic-rich rivers have led to an exploration of the "colloidal world" in rivers. Colloids are small particles, passing through the conventional filters used to separate dissolved and suspended loads in rivers. They appear as major carriers of trace elements in rivers and considerably complicate aqueous-speciation calculation. Finally, in Section 5.09.6, the significance of interactions between solutes and solid surfaces in river waters will be reviewed. Regulation by surfaces is of major importance for a great range of elements. Although for both colloids and surface interactions, some progress has been made, we are still far from a unified model that can accurately predict trace-element concentrations in natural water systems. This is mainly due to our poor physical description of natural colloids, surface site complexation, and their interaction with solutes.

  14. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-03-01

    The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  15. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  16. Trace Elements and Healthcare: A Bioinformatics Perspective.

    PubMed

    Zhang, Yan

    2017-01-01

    Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.

  17. Atmospheric transport of trace elements and nutrients to the oceans

    PubMed Central

    Chance, R.

    2016-01-01

    This paper reviews atmospheric inputs of trace elements and nutrients to the oceans in the context of the GEOTRACES programme and provides new data from two Atlantic GEOTRACES cruises. We consider the deposition of nitrogen to the oceans, which is now dominated by anthropogenic emissions, the deposition of mineral dust and related trace elements, and the deposition of other trace elements which have a mixture of anthropogenic and dust sources. We then consider the solubility (as a surrogate for bioavailability) of the various elements. We consider briefly the sources, atmospheric transport and transformations of these elements and how this results in strong spatial deposition gradients. Solubility of the trace elements also varies systematically between elements, reflecting their sources and cycling, and for some trace elements there are also systematic gradients in solubility related to dust loading. Together, these effects create strong spatial gradients in the inputs of bioavailable trace elements to the oceans, and we are only just beginning to understand how these affect ocean biogeochemistry. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035252

  18. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils

    PubMed Central

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W.; Fallmann, Katharina; Puschenreiter, Markus

    2013-01-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant–bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils. PMID:23645938

  19. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    PubMed

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  20. Concentrations and Loads of Organic Compounds and Trace Elements in Tributaries to Newark and Raritan Bays, New Jersey

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2007-01-01

    A study was undertaken to determine the concentrations and loads of sediment and chemicals delivered to Newark and Raritan Bays by five major tributaries: the Raritan, Passaic, Rahway, Elizabeth, and Hackensack Rivers. This study was initiated by the State of New Jersey as Study I-C of the New Jersey Toxics Reduction Workplan for the New York-New Jersey Harbor, working under the NY-NJ Harbor Estuary Program (HEP) Contaminant Assessment and Reduction Program (CARP). The CARP is a comprehensive effort to evaluate the levels and sources of toxic contaminants to the tributaries and estuarine areas of the NY-NJ Harbor, including Newark and Raritan Bays. The Raritan and Passaic Rivers are large rivers (mean daily discharges of 1,189 and 1,132 cubic feet per second (ft3/s), respectively), that drain large, mixed rural/urban basins. The Elizabeth and Rahway Rivers are small rivers (mean daily discharges of 25.9 and 49.1 ft3/s, respectively) that drain small, highly urbanized and industrialized basins. The Hackensack River drains a small, mixed rural/urban basin, and its flow is highly controlled by an upstream reservoir (mean daily discharge of 90.4 ft3/s). These rivers flow into urbanized estuaries and ultimately, to the Atlantic Ocean. Each of these tributaries were sampled during two to four storm events, and twice each during low-flow discharge conditions. Samples were collected using automated equipment installed at stations adjacent to U.S. Geological Survey streamflow-gaging stations near the heads-of-tide of these rivers. Large-volume (greater than 50 liters of water and a target of 1 gram of sediment), flow-weighted composite samples were collected for chemical analysis using filtration to collect suspended particulates and exchange resin (XAD-2) to sequester dissolved contaminants. Composite whole-water samples were collected for dissolved polycyclic aromatic hydrocarbons (PAH) and for trace element analysis. Additional discrete grab samples were collected throughout each event for trace-element analysis, and multiple samples were collected for suspended sediment (SS), particulate carbon (POC), and dissolved organic carbon (DOC) analysis. The suspended sediment and exchange resin were analyzed for 114 polychlorinated biphenyls (PCBs, by US EPA method 1668A, modified), seven 2,3,7,8-substituted chlorinated dibenzo-p-dioxins (CDD) and 10 dibenzo-p-difurans (CDF) (by US EPA method 1613), 24 PAHs (by low-resolution isotope dilution/mass-spectral methods), 27 organo-chlorine pesticides (OCPs) (by high resolution isotope dilution/mass-spectral methods), and the trace elements mercury (Hg), methyl-mercury (MeHg), lead (Pb), and cadmium (Cd). Isotope dilution methods using gas chromatography and high-and low-resolution mass spectral (GC/MS) detection were used to accurately identify and quantify organic compounds in the sediment and water phases. Trace elements were measured using inductively coupled plasma-mass spectrometry and cold-vapor atomic fluorescence spectrometry methods. The loads of sediment, carbon, and chemicals were calculated for each storm and low-flow event sampled. Because only a few storm events were sampled, yearly loads of sediment were calculated from rating curves developed using historical SS and POC data. The average annual loads of sediment and carbon were calculated for the period 1975-2000, along with the loads for the selected water years being modeled as part of the New York New Jersey Harbor Estuary Program CARP. Comparison of loads calculated using the rating curve method to loads measured during the sampled storm events indicated that the rating curve method likely underpredicts annual loads. Average annual loads of suspended sediment in the tributaries were estimated to be 395,000 kilograms per year (kg/yr) in the Hackensack River, 417,000 kg/yr in the Elizabeth River, 882,000 kg/yr in the Rahway River, 22,700,000 kg/yr in the Passaic River, and 93,100,000 kg/yr in the Raritan River. Averag

  1. Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon

    PubMed Central

    van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.

    2010-01-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062

  2. Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.

    PubMed

    Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W

    2010-10-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.

  3. Source apportionment revisited for long-term measurements of fine aerosol trace elements at two locations in southern Norway

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy

    2018-02-01

    Five-year-long (1991-1996) aerosol trace element data sets for the fine (PM2) size fraction from the sites of Birkenes and Skreådalen in southern Norway were reanalysed by US EPA positive matrix factorization PMF5 in order to assess the sources and their contribution to the PM2 aerosol. The data sets contained the concentrations of the particulate mass (PM), black carbon (BC) and 21 elements in over 700 samples for each of the two sites. The PM was obtained from weighing with a microbalance and BC was determined with a light reflectance technique. The data for the elements were obtained by a combination of particle-induced X-ray emission and instrumental neutron activation analysis. Eight source factors were retained for each site, i.e., (i) secondary sulfate, which accounted for around 40% of the average measured PM2 mass, (ii) wood burning, with BC, K, Zn and As, which accounted for about 17%, (iii) an iodine factor (with also Br and Se), which is probably related to a marine biogenic source and was responsible for about 6.5%, (iv) aged sea salt with Na, Mg, Cl and Ca, but heavily depleted in Cl; (v) a crustal factor containing Al, Si, Ca, Ti and Fe; (vi) a heavy oil burning factor with V and Ni in a ratio of 3-4; (vii) a general pollution factor (with Cu, Zn, As, Se, Sb and Pb), and (viii) an almost pure manganese factor, which is attributed to Mn and FeMn industries in southern Norway. The results were substantially different from those of an earlier PMF analysis, in which use was made of PMF2.

  4. Apparatus and method for removing particulate deposits from high temperature filters

    DOEpatents

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.

    1992-01-01

    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

  5. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  6. Surface-water-quality assessment of the Yakima River basin in Washington; spatial and temporal distribution of trace elements in water, sediment, and aquatic biota, 1987-91; with a section on geology

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.

    1999-01-01

    The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.

  7. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion.

    PubMed

    Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-09-01

    Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Dissolved and Colloidal Trace Elements in the Mississippi River Delta Outflow after Hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Shim, M.; Swarzenski, P. W.; Shiller, A. M.

    2010-12-01

    The Mississippi River (MR) plays an important role as a major fluvial source of dissolved and particulate materials for the Gulf of Mexico (GOM). This region is periodically disturbed by tropical weather systems including major hurricanes. Such storms have the potential to stir up the normally stratified water column of the Louisiana Shelf and thus can serve as a mechanism for the abrupt termination of seasonal bottom water hypoxia. Additionally, strong tropical systems can cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, two major hurricanes, Katrina and Rita, passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we participated in a survey of the waters of the Mississippi River delta outflow, examining the distributions of trace elements (including Ba, Co, Cr, Cs, Cu, Fe, Mn, Ni, Re, U, V, and Zn) in a comparison with previous results in this area. We indeed observed that there was limited stratification on the shelf and that bottom waters were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 µm) from colloidal (0.02 - 0.45 µm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity of the Fe in estuarine systems.

  9. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    PubMed Central

    Borell, Esther M.; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A. viridis regulates its internal trace element concentrations by compartmentalization and excretion and that these features contribute to its resilience and potential success at the trace element-rich high pCO2 vent. PMID:25250210

  10. The flux of organic matter through a peatland ecosystem: The role of cellulose, lignin, and their control of the ecosystem oxidation state

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine S.; Clay, Gareth D.; Burt, Tim P.; Rose, Rob

    2017-07-01

    This study used thermogravimetric analysis (TGA) to study the transit of organic C through a peatland ecosystem. The biomass, litter, peat soil profile, particulate organic matter (POM), and dissolved organic matter (DOM) fluxes were sampled from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and carbon budget for the catchment were known. The study showed that although TGA traces showed distinct differences between organic matter reservoirs and fluxes, the traces could not readily be associated with particular functionalities or elemental properties. The TGA trace shows that polysaccharides are preferentially removed by humification and degradation with residual peat being dominated by lignin compositions. The DOM is derived from the degradation of lignin while the POM is derived from erosion of the peat profile. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 92 to 95% polysaccharide carbon. The composition of the organic matter lost from the peat ecosystem means that the oxidative ratio (OR) of the ecosystem experienced by the atmosphere was between 0.96 and 0.99: currently, the Intergovernmental Panel on Climate Change uses an OR value of 1.1 for all ecosystems.

  11. Trace elements as quantitative probes of differentiation processes in planetary interiors

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1980-01-01

    The characteristic trace element signature that each mineral in the source region imparts on the magma constitutes the conceptual basis for trace element modeling. It is shown that abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. Although compatible and incompatible trace elements are useful in modeling, the present review focuses primarily on examples involving the rare-earth elements.

  12. Parenteral trace element provision: recent clinical research and practical conclusions

    PubMed Central

    Stehle, P; Stoffel-Wagner, B; Kuhn, K S

    2016-01-01

    The aim of this systematic review (PubMed, www.ncbi.nlm.nih.gov/pubmed and Cochrane, www.cochrane.org; last entry 31 December 2014) was to present data from recent clinical studies investigating parenteral trace element provision in adult patients and to draw conclusions for clinical practice. Important physiological functions in human metabolism are known for nine trace elements: selenium, zinc, copper, manganese, chromium, iron, molybdenum, iodine and fluoride. Lack of, or an insufficient supply of, these trace elements in nutrition therapy over a prolonged period is associated with trace element deprivation, which may lead to a deterioration of existing clinical symptoms and/or the development of characteristic malnutrition syndromes. Therefore, all parenteral nutrition prescriptions should include a daily dose of trace elements. To avoid trace element deprivation or imbalances, physiological doses are recommended. PMID:27049031

  13. Trace Elements Characteristic Based on ICP-AES and the Correlation of Flavonoids from Sparganii rhizoma.

    PubMed

    Wang, Xinsheng; Wu, Yanfang; Wu, Chengying; Wu, Qinan; Niu, Qingshan

    2018-04-01

    The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.

  14. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  15. Inductively heated particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  16. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  17. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula).

    PubMed

    Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric

    2016-10-01

    In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology

    PubMed Central

    Ragimov, Aligejdar; Faizullin, Rashat; Valiev, Vsevolod

    2017-01-01

    Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water. PMID:29065586

  19. Assessment of trace element impacts on agricultural use of water from the Dan River following the Eden coal ash release.

    PubMed

    Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E

    2016-04-01

    Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.

  20. Atmospheric trace element concentrations in total suspended particles near Paris, France

    NASA Astrophysics Data System (ADS)

    Ayrault, Sophie; Senhou, Abderrahmane; Moskura, Mélanie; Gaudry, André

    2010-09-01

    To evaluate today's trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m 3, compared to the 500 ng/m 3 guideline level and to the 200 ng/m 3 observed value in 1994. The typical urban background TSP values of 1-2, 0.2-1, 4-6, 10-30 and 3-5 ng/m 3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.

  1. Resuspension of soil as a source of airborne lead near industrial facilities and highways.

    PubMed

    Young, Thomas M; Heeraman, Deo A; Sirin, Gorkem; Ashbaugh, Lowell L

    2002-06-01

    Geologic materials are an important source of airborne particulate matter less than 10 microm aerodynamic diameter (PM10), but the contribution of contaminated soil to concentrations of Pb and other trace elements in air has not been documented. To examine the potential significance of this mechanism, surface soil samples with a range of bulk soil Pb concentrations were obtained near five industrial facilities and along roadsides and were resuspended in a specially designed laboratory chamber. The concentration of Pb and other trace elements was measured in the bulk soil, in soil size fractions, and in PM10 generated during resuspension of soils and fractions. Average yields of PM10 from dry soils ranged from 0.169 to 0.869 mg of PM10/g of soil. Yields declined approximately linearly with increasing geometric mean particle size of the bulk soil. The resulting PM10 had average Pb concentrations as high as 2283 mg/kg for samples from a secondary Pb smelter. Pb was enriched in PM10 by 5.36-88.7 times as compared with uncontaminated California soils. Total production of PM10 bound Pb from the soil samples varied between 0.012 and 1.2 mg of Pb/kg of bulk soil. During a relatively large erosion event, a contaminated site might contribute approximately 300 ng/m3 of PM10-bound Pb to air. Contribution of soil from contaminated sites to airborne element balances thus deserves consideration when constructing receptor models for source apportionment or attempting to control airborne Pb emissions.

  2. The sources of trace element pollution of dry depositions nearby a drinking water source.

    PubMed

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  3. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  4. Source apportionment of major and trace elements in aerosols during smog episodes in large cities in China

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Rai, Pragati; Visser, Suzanne; Elser, Miriam; Canonaco, Francesco; Slowik, Jay G.; Huang, Ru-Jin; Prévôt, André S. H.; Baltensperger, Urs

    2017-04-01

    Air pollution in Chinese cities is one of the environmental problems China has to address to mitigate the impacts on human health, air quality and climate. Average concentrations of particulate matter exceed 100 μg m-3 in many places in China, and the government is developing and implementing strategies to reduce the load of pollutants by various measures. A characterization of airborne particulate matter (PM), especially its composition and sources, will help in optimizing reduction and mitigation strategies for air pollution. We collected PM10 aerosols with a rotating drum impactor (RDI) in Xi'an in December 2013 and in Beijing in January 2014 with 30-min time resolution and for three size ranges (cut-off sizes 10, 2.5 and 1 μm). Each campaign encompassed one or more high pollution episodes in the respective city. Elements from Na to Pb were analyzed with synchrotron radiation induced X-ray fluorescence spectrometry (SR-XRF), and the resulting time series were used for source apportionment performed with the Multilinear-Engine 2 (ME-2) implementation of the Positive Matrix Factorization algorithm. The preliminary computations yielded 5 factors for Beijing, namely road dust, sea salt, traffic-related, industrial, coal combustion. For Xi'an an additional desert dust factor was found. Further refinement could be expected from including the smaller size fractions, e.g. a sulfur-rich factor for secondary sulfate or a reacted chlorine factor in the fine mode fraction.

  5. New Perspectives on the Essential Trace Elements.

    ERIC Educational Resources Information Center

    Frieden, Earl

    1985-01-01

    Provides a comprehensive overview of the 19 essential trace elements, examining: the concept of essentiality; evolution of these elements; possible future essential elements; the lanthanides and actinides; how essential trace elements work; the metalloenzymes; the nonmetals; iodine and the thyroid hormones; and antagonism among these elements. (JN)

  6. Method 440.0 Determination of Carbon and Nitrogen in Sediments and Particulatesof Estuarine/Coastal Waters Using Elemental Analysis

    EPA Science Inventory

    Elemental analysis is used to determine particulate carbon (PC) and particulate nitrogen (PN) in estuarine and coastal waters and sediment. The method measures the total carbon and nitrogen irrespective of source (inorganic or organic).

  7. Sources and Chemical Composition of Atmospheric Fine Particles in Rabigh, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Nayebare, S. R.; Aburizaiza, O. S.; Siddique, A.; Hussain, M. M.; Zeb, J.; Khwaja, H. A.

    2014-12-01

    Air pollution research in Saudi Arabia and the whole of Middle East is at its inception, making air pollution in the region a significant problem. This study presents the first detailed data on fine particulate matter (PM2.5) concentrations of Black Carbon (BC), ions, and trace metals at Rabigh, Saudi Arabia, and assesses their sources. Results showed several characteristic aspects of air pollution at Rabigh. Daily levels of PM2.5 and BC showed significant temporal variability ranging from 12.2 - 75.9 µg/m3 and 0.39 - 1.31 µg/m3, respectively. More than 90% of the time, the daily PM2.5 exceeded the 24 h WHO guideline of 20 µg/m3. Sulfate, NO3-, and NH4+ dominated the identifiable components. Trace metals with significantly higher concentrations included Si, S, Ca, Al, Fe, Na, Cl, Mg, K, and Ti, with average concentrations of 3.1, 2.2, 1.6, 1.2, 1.1, 0.7, 0.7, 0.5, 0.4 and 0.1 µg/m3, respectively. Based on the Air Quality Index (AQI), there were 44% days of moderate air quality, 33% days of unhealthy air quality for sensitive groups, and 23% days of unhealthy air quality throughout the study period. Two categories of aerosol trace metal sources were defined: anthropogenic (S, V, Cr, Ni, Cu, Zn, Br, Cd, Sb, and Pb) and naturally derived elements (Si, Al, and Fe). The extent of anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the crustal composition. Soil resuspension and/or mobilization is an important source of "natural" elements, while "anthropogenic" elements originate primarily from fossil fuel combustion and industries. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. A positive matrix factorization (PMF) was used to obtain information about possible sources. Our study highlights the need for stringent laws on PM2.5 emission control to protect human health and the environment.

  8. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  9. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  10. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  11. [Proposal of new trace elements classification to be used in nutrition, oligotherapy and other therapeutics strategies].

    PubMed

    Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María

    2014-12-17

    1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  12. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J [Grand Forks, ND

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  13. Trace elements have limited utility for studying migratory connectivity in shorebirds that winter in Argentina

    USGS Publications Warehouse

    Torres-Dowdall, J.; Farmer, A.H.; Abril, M.; Bucher, E.H.; Ridley, I.

    2010-01-01

    Trace-element analysis has been suggested as a tool for the study of migratory connectivity because (1) trace-element abundance varies spatially in the environment, (2) trace elements are assimilated into animals' tissues through the diet, and (3) current technology permits the analysis of multiple trace elements in a small tissue sample, allowing the simultaneous exploration of several elements. We explored the potential of trace elements (B, Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, As, Sr, Cs, Hg, Tl, Pb, Bi, Th, and U) to clarify the migratory connectivity of shorebirds that breed in North America and winter in southern South America. We collected 66 recently replaced secondary feathers from Red Knots (Calidris canutus) at three sites in Patagonia and 76 from White-rumped Sandpipers (C. fuscicollis) at nine sites across Argentina. There were significant differences in trace-element abundance in shorebird feathers grown at different nonbreeding sites, and annual variability within a site was small compared to variability among sites. Across Argentina, there was no large-scale gradient in trace elements. The lack of such a gradient restricts the application of this technique to questions concerning the origin of shorebirds to a small number of discrete sites. Furthermore, our results including three additional species, the Pectoral Sandpiper (C. melanotos), Wilson's Phalarope (Phalaropus tricolor), and Collared Plover (Charadrius collaris), suggest that trace-element profiles change as feathers age. Temporal instability of trace-element values could undermine their application to the study of migratory connectivity in shorebirds. ?? The Cooper Ornithological Society 2010.

  14. Mass loads of dissolved and particulate mercury and other trace elements in the Mt. Amiata mining district, Southern Tuscany (Italy)

    USGS Publications Warehouse

    Rimondi, V.; Costagliola, P.; Gray, J.E.; Lattanzi, P.; Nannucci, M.; Paolieri, M.; Salvadori, A.

    2014-01-01

    Total dissolved and particulate mercury (Hg), arsenic (As), and antimony (Sb) mass loads were estimated in different seasons (March and September 2011 and March 2012) in the Paglia River basin (PRB) (central Italy). The Paglia River drains the Mt. Amiata Hg district, one of the largest Hg-rich regions worldwide. Quantification of Hg, As, and Sb mass loads in this watershed allowed (1) identification of the contamination sources, (2) evaluation of the effects of Hg on the environment, and (3) determination of processes affecting Hg transport. The dominant source of Hg in the Paglia River is runoff from Hg mines in the Mt. Amiata region. The maximum Hg mass load was found to be related to runoff from the inactive Abbadia San Salvatore Mine (ASSM), and up to 30 g day−1 of Hg, dominantly in the particulate form, was transported both in high and low flow conditions in 2011. In addition, enrichment factors (EFs) calculated for suspended particulate matter (SPM) were similar in different seasons indicating that water discharge controls the quantities of Hg transported in the PRB, and considerable Hg was transported in all seasons studied. Overall, as much as 11 kg of Hg are discharged annually in the PRB and this Hg is transported downstream to the Tiber River, and eventually to the Mediterranean Sea. Similar to Hg, maximum mass loads for As and Sb were found in March 2011, when as much as 190 g day−1 each of As and Sb were measured from sites downstream from the ASSM. Therefore, the Paglia River represents a significant source of Hg, Sb, and As to the Mediterranean Sea.

  15. Emissions of particulate-bound elements from biodiesel and ultra low sulfur diesel: size distribution and risk assessment.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2013-01-01

    Use of waste cooking oil derived biodiesel (WCOB) as an alternative fuel in diesel engines has increased significantly in recent years. The impact of WCOB on particulate emissions from diesel engines needs to be investigated thoroughly. This study was conducted to make a comparative evaluation and size-differentiated speciation of the particulate bound elements from ultra low sulfur diesel (ULSD) and WCOB and a blend of both of the fuels (B50). Particle mass and their elemental size distributions ranging from 0.01-5.6 μm were measured. It was observed that more ultrafine particles (UFPs, <100 nm) were emitted when the engine was fueled with WCOB. Fifteen particulate-bound elements such as K, Al, Mg, Co, Cr, Cu, Fe, Mn, Cd, Ni, As, Ba, Pb, Zn and Sr were investigated and reported in this study. Potential health risk associated with these particulate bound elements upon inhalation was also evaluated based on dose-response assessments for both adults and children. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to that of ULSD. Also, investigations on human health risk due to exposure to UFPs indicate that UFPs contribute a major fraction (>70%) of the total estimated health risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Level 1 environmental assessment performance evaluation. Final report jun 77-oct 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, E.D.; Smith, F.; Wagoner, D.E.

    1979-02-01

    The report gives results of a two-phased evaluation of Level 1 environmental assessment procedures. Results from Phase I, a field evaluation of the Source Assessment Sampling System (SASS), showed that the SASS train performed well within the desired factor of 3 Level 1 accuracy limit. Three sample runs were made with two SASS trains sampling simultaneously and from approximately the same sampling point in a horizontal duct. A Method-5 train was used to estimate the 'true' particulate loading. The sampling systems were upstream of the control devices to ensure collection of sufficient material for comparison of total particulate, particle sizemore » distribution, organic classes, and trace elements. Phase II consisted of providing each of three organizations with three types of control samples to challenge the spectrum of Level 1 analytical procedures: an artificial sample in methylene chloride, an artificial sample on a flyash matrix, and a real sample composed of the combined XAD-2 resin extracts from all Phase I runs. Phase II results showed that when the Level 1 analytical procedures are carefully applied, data of acceptable accuracy is obtained. Estimates of intralaboratory and interlaboratory precision are made.« less

  17. Dimethylamine as a major alkyl amine species in particles and cloud water: Observations in semi-arid and coastal regions.

    PubMed

    Youn, J-S; Crosbie, E; Maudlin, L C; Wang, Z; Sorooshian, A

    2015-12-01

    Aerosol and cloud water measurements of dimethylamine (DMA), the most abundant amine in this study, were conducted in semi-arid (Tucson, Arizona) and marine (Nucleation in California Experiment, NiCE; central coast of California) areas. In both regions, DMA exhibits a unimodal aerosol mass size distribution with a dominant peak between 0.18 and 0.56 μm. Particulate DMA concentrations increase as a function of marine biogenic emissions, sulfate, BVOC emissions, and aerosol-phase water. Such data supports biogenic sources of DMA, aminium salt formation, and partitioning of DMA to condensed phases. DMA concentrations exhibit positive correlations with various trace elements and most especially vanadium, which warrants additional investigation. Cloud water DMA levels are enhanced significantly during wildfire periods unlike particulate DMA levels, including in droplet residual particles, due to effective dissolution of DMA into cloud water and probably DMA volatilization after drop evaporation. DMA:NH + 4 molar ratios peak between 0.18 and 1.0 μm depending on the site and time of year, suggesting that DMA competes better with NH 3 in those sizes in terms of reactive uptake by particles.

  18. FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER. VOLUME 1. TECHNICAL RESULTS.

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  19. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER - VOLUME II: APPENDICES

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  20. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.

  1. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  2. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  3. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  4. Reconstruction of doses and deposition in the western trace from the Chernobyl accident.

    PubMed

    Sikkeland, T; Skuterud, L; Goltsova, N I; Lindmo, T

    1997-05-01

    A model is presented for the explosive cloud of particulates that produced the western trace of high radioactive ground contamination in the Chernobyl accident on 26 April 1986. The model was developed to reproduce measured dose rates and nuclide contamination and to relate estimated doses to observed changes in: (1) infrared emission from the foliage and (2) morphological and histological structures of individual pines. Dominant factors involved in ground contamination were initial cloud shape, particle size distribution, and rate of particle fallout. At time of formation, the cloud was assumed to be parabolical and to contain a homogeneous distribution of spherically shaped fuel particulates having a log-normal size distribution. The particulates were dispersed by steady winds and diffusion that produced a straight line deposition path. The analysis indicates that two clouds, denoted by Cloud I and Cloud II, were involved. Fallout from the former dominated the far field region and fallout from latter the region near the reactor. At formation they had a full width at half maximum of 1800 m and 500 m, respectively. For wind velocities of 5-10 m s(-1) the particulates' radial distribution at formation had a standard deviation and mode of 1.8 microm and 0.5 microm, respectively. This distribution corresponds to a release of 390 GJ in the runaway explosion. The clouds' height and mass are not uniquely determined but are coupled together. For an initial height of 3,600 m, Cloud I contained about 400 kg fuel. For Cloud II the values were, respectively, 1,500 m and 850 kg. Loss of activities from the clouds is found to be small. Values are obtained for the rate of radionuclide migration from the deposit. Various types of biological damage to pines, as reported in the literature, are shown to be mainly due to ionizing radiation from the deposit by Cloud II. A formula is presented for the particulate size distribution in the trace area.

  5. Nuclear microscopy in trace-element biology — from cellular studies to the clinic

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1993-05-01

    The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.

  6. Factors affecting trace element content in periurban market garden subsoil in Yunnan Province, China.

    PubMed

    Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan

    2011-01-01

    Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.

  7. Trace elements at the intersection of marine biological and geochemical evolution

    USGS Publications Warehouse

    Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.

    2016-01-01

    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.

  8. Trace element exposure of whooper swans (Cygnus cygnus) wintering in a marine lagoon (Swan Lake), northern China.

    PubMed

    Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei

    2017-06-30

    Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Environmental assessment of a firetube boiler firing coal/oil/water mixtures. Volume 1. Technical results. Final report, February 1981-November 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.

    1984-09-01

    This volume describes emission results from sampling of flue-gas from a firetube boiler burning a coal/oil/water (COW) mixture and COW with soda ash added (COW+SA) to control SO/sub 2/ emissions. Measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of the samples to give total flue gas organics in two boiling point ranges, specific quantitation of the semivolatile organic priority pollutant species, and flue gas concentrations of 73 trace elements; Method 5 sampling for total particulate; and controlled condensation system sampling for SO/sub 2/ and SO/sub 3/ emissions.more » Flue-gas SO/sub 2/ emissions decreased almost 99% with soda ash addition from 1,089 to 13.6 ppm (3% O2). NOx emissions decreased slightly from 477 to 427 ppm, while CO emissions increased significantly from an average of 25 to 426 ppm (all at 3% O2). Particulate loading at the boiler outlet almost doubled (from 1,970 to 3,715 pg/dscm) with the additive. The size distribution of particulate also shifted to a much smaller mean diameter. Total organic emissions increased from 6.7 to 13.1 mg/dscm; most of the increase were nonvolatile (C16+) organics. Of the semivolatile organic priority pollutant species, only fluoranthene and phenanthrene were detected with the COW fuel, and phenanthrene with the COW+SA fuel.« less

  10. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  11. The geochemistry of Seine River Basin particulate matter: Distribution of an integrated metal pollution index

    USGS Publications Warehouse

    Meybeck, Michel; Horowitz, A.J.; Grosbois, C.

    2004-01-01

    Spatial analysis (1994-2001) and temporal trends (1980-2000) for particulate-associated metals at key stations in the Seine River Basin have been determined using a new metal pollution index (MPI). The MPI is based on the concentrations of Cd, Cu, Hg, Pb and Zn, normalized to calculated background levels estimated for each particulate matter samples for four fractions (clays and other aluminosilicates, carbonates, organic matter, and quartz). Background levels ascribed to each fraction were determined from a specific set of samples collected from relatively pristine areas in the upper Seine basin and validated on prehistoric samples. The unitless MPI is designed to vary between 0 for pristine samples to 100 for the ones extremely impacted by human activities and to assess the trends of general metal contamination and its mapping. Throughout the Seine basin, MPI currently range from 1 to 40, but values exceeding 100 have been found in periurban streams and the Eure tributary. Based on the MPI spatial distribution, the Seine River Basin displays a wide range of anthropogenic impacts linked to variations in population density, stream order, wastewater discharges and industrial activities. Correlations between the MPI and other trace elements indicate that anthropogenic impacts also strongly affect the concentrations of Ag, Sb, and P, marginally affect the concentrations of Ba, Ni, and Cr, and appear to have little effect on the concentrations of Li, Be, V, Co, and the major elements. Temporal MPI trends can also be reconstituted from past regulatory surveys. In the early 1980s, MPI were 2-5 times higher than nowadays at most locations, particularly downstream of Greater Paris where it reached levels as high as 250 (now 40), a value characteristic of present Paris urban sewage. The exceptional contamination of the Seine basin is gradually improving over the last 20 years but remains very high. ?? 2004 Elsevier B.V. All rights reserved.

  12. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may havemore » persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.« less

  13. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1997-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  14. ICAN/PART: Particulate composite analyzer, user's manual and verification studies

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Murthy, Pappu L. N.; Mital, Subodh K.

    1996-01-01

    A methodology for predicting the equivalent properties and constituent microstresses for particulate matrix composites, based on the micromechanics approach, is developed. These equations are integrated into a computer code developed to predict the equivalent properties and microstresses of fiber reinforced polymer matrix composites to form a new computer code, ICAN/PART. Details of the flowchart, input and output for ICAN/PART are described, along with examples of the input and output. Only the differences between ICAN/PART and the original ICAN code are described in detail, and the user is assumed to be familiar with the structure and usage of the original ICAN code. Detailed verification studies, utilizing dim dimensional finite element and boundary element analyses, are conducted in order to verify that the micromechanics methodology accurately models the mechanics of particulate matrix composites. ne equivalent properties computed by ICAN/PART fall within bounds established by the finite element and boundary element results. Furthermore, constituent microstresses computed by ICAN/PART agree in average sense with results computed using the finite element method. The verification studies indicate that the micromechanics programmed into ICAN/PART do indeed accurately model the mechanics of particulate matrix composites.

  15. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Gislason, Sigurður R.; Burton, Kevin W.; Pearce, Christopher R.; Mavromatis, Vasileios; Pogge von Strandmann, Philip A. E.; Oelkers, Eric H.

    2014-06-01

    The quantification of the sources and sinks of elements to the oceans forms the basis of our understanding of global geochemical cycles and the chemical evolution of the Earth's surface. There is, however, a large imbalance in the current best estimates of the global fluxes to the oceans for many elements. In the case of strontium (Sr), balancing the input from rivers would require a much greater mantle-derived component than is possible from hydrothermal water flux estimates at mid-ocean ridges. Current estimates of riverine fluxes are based entirely on measurements of dissolved metal concentrations, and neglect the impact of riverine particulate dissolution in seawater. Here we present 87Sr/86Sr isotope data from an Icelandic estuary, which demonstrate rapid Sr release from the riverine particulates. We calculate that this Sr release is 1.1-7.5 times greater than the corresponding dissolved riverine flux. If such behaviour is typical of volcanic particulates worldwide, this release could account for 6-45% of the perceived marine Sr budget imbalance, with continued element release over longer timescales further reducing the deficit. Similar release from particulate material will greatly affect the marine budgets of many other elements, changing our understanding of coastal productivity, and anthropogenic effects such as soil erosion and the damming of rivers.

  17. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  18. INAA Application for Trace Element Determination in Biological Reference Material

    NASA Astrophysics Data System (ADS)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  19. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin

    2015-02-01

    Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.

  20. Concentration and movement of neonicotinoids as particulate matter downwind during agricultural practices using air samplers in southwestern Ontario, Canada.

    PubMed

    Forero, Luis Gabriel; Limay-Rios, Victor; Xue, Yingen; Schaafsma, Arthur

    2017-12-01

    Atmospheric emissions of neonicotinoid seed treatment insecticides as particulate matter in field crops occur mainly for two reasons: 1) due to abraded dust of treated seed generated during planting using vacuum planters, and 2) as a result of disturbances (tillage or wind events) in the surface of parental soils which release wind erodible soil-bound residues. In the present study, concentration and movement of neonicotinoids as particulate matter were quantified under real conditions using passive and active air samplers. Average neonicotinoid concentrations in Total Suspended Particulate (TSP) using passive samplers were 0.48 ng/cm 2 , trace, trace (LOD 0.80 and 0.04 ng/cm 2 for clothianidin and thiamethoxam, respectively), and using active samplers 16.22, 1.91 and 0.61 ng/m 3 during planting, tillage and wind events, respectively. There was a difference between events on total neonicotinoid concentration collected in particulate matter using either passive or active sampling. Distance of sampling from the source field during planting of treated seed had an effect on total neonicotinoid air concentration. However, during tillage distance did not present an effect on measured concentrations. Using hypothetical scenarios, values of contact exposure for a honey bee were estimated to be in the range from 1.1% to 36.4% of the reference contact LD 50 value of clothianidin of 44 ng/bee. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO₃ radical chemistry, and N₂O₅ heterogeneous hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, Rahul A.; Berkowitz, Carl M.; Brechtel, Fred J.

    Chemical evolution of aerosols and trace gases in the Salem Harbor power plant plume was monitored with the DOE G-1 aircraft on the night of July 30-31, 2002. Quasi-Lagrangian sampling in the plume at increasing downwind distances/processing times was guided by a constant-volume tetroon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the nearby background air. These species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organicmore » nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred to be as secondary organic aerosol, possibly formed from the NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. The enhanced particulate sulfate concentrations observed in the plume were attributed to direct emissions of gaseous SO3/H2SO4 from the power plant. Furthermore, concentration of nucleation mode particles was significantly higher in the plume than in background air, suggesting that some of the emitted H2SO4 had nucleated to form new particles. Spectromicroscopic analyses of particle samples suggested that some sulfate was likely in the form of organosulfates. Constrained Lagrangian model analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several scientific and regulatory issues related to the impacts of power plant emissions on atmospheric chemistry, air quality, visibility, and climate.« less

  2. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  3. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    NASA Astrophysics Data System (ADS)

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.

  4. The effect of tissue structure and soil chemistry on trace element uptake in fossils

    NASA Astrophysics Data System (ADS)

    Hinz, Emily A.; Kohn, Matthew J.

    2010-06-01

    Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.

  5. A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins.

    PubMed

    Espejo, Winfred; Celis, José E; GonzÃlez-Acuña, Daniel; Banegas, Andiranel; Barra, Ricardo; Chiang, Gustavo

    2018-01-01

    Trace elements are chemical contaminants that can be present almost anywhere on the planet. The study of trace elements in biotic matrices is a topic of great relevance for the implications that it can have on wildlife and human health. Penguins are very useful, since they live exclusively in the Southern Hemisphere and represent about 90% of the biomass of birds of the Southern Ocean. The levels of trace elements (dry weight) in different biotic matrices of penguins were reviewed here. Maps of trace element records in penguins were included. Data on exposure and effects of trace elements in penguins were collected from the literature. The most reported trace elements in penguins are aluminum, arsenic, cadmium, lead, mercury, copper, zinc, and manganese. Trace elements have been measured in 11 of the 18 species of penguins. The most studied biotic matrices are feathers and excreta. Most of the studies have been performed in Antarctica and subantarctic Islands. Little is known about the interaction among metals, which could provide better knowledge about certain mechanisms of detoxification in penguins. Future studies of trace elements in penguins must incorporate other metals such as vanadium, cobalt, nickel, and chromium. Data of metals in the species such as Eudyptes pachyrhynchus, Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes are urged. It is important to correlate levels of metals in different biotic matrices with the effects on different species and in different geographic locations.

  6. Trace element supplementation in the biogas production from wheat stillage--optimization of metal dosing.

    PubMed

    Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen

    2014-09-01

    A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Characterization of metal and trace element contents of particulate matter (PM10) emitted by vehicles running on Brazilian fuels-hydrated ethanol and gasoline with 22% of anhydrous ethanol.

    PubMed

    Ferreira da Silva, Moacir; Vicente de Assunção, João; de Fátima Andrade, Maria; Pesquero, Célia R

    2010-01-01

    Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM(10)) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM(2.5)), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM(10) emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.

  8. CHARACTERIZATION OF PARTICULATE MATTER FROM PHOENIX, ARIZONA, USING RAY FLUORESCENCE AND COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY

    EPA Science Inventory

    Numerous epidemiological studies have found associations between airborne particulate matter measured at community monitors and increased mortality and morbidity. Chemical and physical characteristics of particulate matter (e.g., elemental composition, size) and source identifi...

  9. Loess as an environmental archive of atmospheric trace element deposition

    NASA Astrophysics Data System (ADS)

    Blazina, T.; Winkel, L. H.

    2013-12-01

    Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.

  10. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    PubMed Central

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-01-01

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334

  11. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    de P. Pereira, Pedro A.; Lopes, Wilson A.; Carvalho, Luiz S.; da Rocha, Gisele O.; de Carvalho Bahia, Nei; Loyola, Josiane; Quiterio, Simone L.; Escaleira, Viviane; Arbilla, Graciela; de Andrade, Jailson B.

    Respiratory system is the major route of entry for airborne particulates, being the effect on the human organism dependent on chemical composition of the particles, exposure time and individual susceptibility. Airborne particulate trace metals are considered to represent a health hazard since they may be absorbed into human lung tissues during breathing. Fossil fuel and wood combustion, as well as waste incineration and industrial processes, are the main anthropic sources of metals to the atmosphere. In urban areas, vehicular emissions—and dust resuspension associated to road traffic—become the most important manmade source. This work investigated the atmospheric concentrations of TSP, PM 10 and elements such as iron, manganese, copper and zinc, from three different sites around Salvador Region (Bahia, Brazil), namely: (i) Lapa Bus Station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, including metal ores and concentrates and near industrial centers and; (iii) Bananeira Village located on Maré Island, a non-vehicle-influenced site, with activities such as handcraft work and fishery, although placed near the port. Results have pointed out that TSP concentrations ranged between 16.9 (Bananeira) and 354.0 μg m -3 (Aratu#1), while for PM 10 they ranged between 30.9 and 393.0 μg m -3, both in the Lapa Bus Station. Iron was the major element in both Lapa Station and Aratu (#1 and #2), with average concentrations in the PM 10 samples of 148.9, 79.6 and 205.0 ng m -3, respectively. Zinc, on the other hand, was predominant in samples from Bananeira, with an average concentration of 145.0 ng m -3 in TSP samples, since no PM 10 sample was taken from this site. The main sources of iron in the Lapa Station and Aratu harbor were, respectively, soil resuspension by buses and discharge of solid granaries, as fertilizers and metal ores. On the other hand, zinc and copper in the bus station were mainly from anthropic contributions, probably heavy-duty vehicle ageing and wearing actions releasing off Zn from tires and Cu from brake linings. In the Aratu harbor, the high copper concentrations found were probably due to the port's activities, as discharges of copper concentrate on its terminal, although other sources could be possible, as burning of diesel fuel on ships and heavy oil in heaters. Finally, the Bananeira site has been presented as a different profile, since this remote site has shown zinc as the most abundant element, demonstrating to have an unexpected anthropic contribution. On a mass-to-mass basis, both zinc and manganese were in high levels in the Bananeira site and their presence strongly suggest the impact of other sources, such as the Industrial Center of Aratu and/or a siderurgy plant, not far away from that location.

  12. [Contents of ten trace elements in Epimedium acuminatum Franch. and its different processed products].

    PubMed

    Chen, H L; Wang, J K; Ren, Y Q; Wu, Z Y

    2001-03-01

    Determine and compare the contents of ten trace elements in crude E. acuminatum and its three different processed products. Using flame atomic absorption spectrometry. The ten trace elements were found in both the crude drug and its three processed products, and in terms of contents some of the trace elements in all the three processed products are higher than those in the crude drug. According to the trace element contents, the three processed products of E. acuminatum have their own advantages. It is thus suggested that thoroughgoing clinical and experimental researches be performed anew for the long-shelved processing methods.

  13. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index

    PubMed Central

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687

  14. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  15. Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China.

    PubMed

    Zhang, Li; Zhang, Dawen; Wei, Yihua; Luo, Linguan; Dai, Tingcan

    2014-04-01

    The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.

  16. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  17. Methods for detecting the mobility of trace elements during medium-temperature pyrolysis

    USGS Publications Warehouse

    Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola

    1983-01-01

    The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.

  18. PIXE analysis of sand and soil from Ulaanbaatar and Karakurum, Mongolia

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Barry, B.; Shagjjamba, D.

    2008-09-01

    Twenty-one sand and soil samples were collected at the surface from 22 to 25 June 2007 at sampling sites from Ulaanbaatar to Karakurum, Mongolia. The sand samples were collected from constantly changing sand dunes which may still contain salt from prehistoric oceans. The dry sand and soil samples were processed for PIXE and PIGE analyses. A clear division between soils and sand become apparent in the silicon results. Concentrations of all bulk elements in human habitation samples and of Si, Al, K and Fe in dry lake/flood plain samples are similar to those in the soils and sands. Among elements which could be regarded as being at trace concentrations the average S concentration in the soils is 0.9 g kg-1 whereas it is not detected in the sand samples. Zinc and Cu concentrations are both higher in the soils than the sands and are strongly correlated. A surprising presence of uranium at a concentration of 350 mg kg-1 was detected in the PIXE measurement on one of the dry lake samples. Gamma spectrometry confirmed the presence of U in this sample and also at a lower level in a sample from the lake shore, but in none of the other samples. Further, the gamma spectrometry showed that 238U decay products were present only at a level corresponding to about 3 mg kg-1 U for a system in radioactive equilibrium, a figure which is typical for U in the earth's crust. Disequilibria between 238U and its decay products occur naturally but such a high degree of separation at high concentration would be unique if confirmed. PIXE and PIGE measurements of these samples highlight the difficulty in correlating trace element measurements with occurrence of indicators of sea salt in air particulate samples.

  19. The role of high-energy synchrotron radiation in biomedical trace element research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pounds, J.G.; Long, G.J.; Kwiatek, W.M.

    1987-01-01

    This paper will present the results of an investigation of the distribution of essential elements in the normal hepatic lobule. the liver is the organ responsible for metabolism and storage of most trace elements. Although parenchymal hepatocytes are rather uniform histologically, morphometry, histochemistry, immunohistochemistry, and microdissection with microchemical investigations have revealed marked heterogeneity on a functional and biochemical level. Hepatocytes from the periportal and perivenous zones of the liver parrenchyma differ in oxidative energy metabolism, glucose uptake and output, unreagenesis, biotransformation, bile acid secretion, and palsma protein synthesis and secretion. Although trace elements are intimately involved in the regulation andmore » maintenance of these functions, little is known regarding the heterogeneity of trace element localization of the liver parenchyma. Histochemical techniques for trace elements generally give high spatial resolution, but lack specificity and stoichiometry. Microdissection has been of marginal usefulness for trace element analyses due to the very small size of the dissected parenchyma. The characteristics of the high-energy x-ray microscope provide an effective approach for elucidating the trace element content of these small biological structures or regions. 5 refs., 1 fig., 1 tab.« less

  20. The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys

    NASA Astrophysics Data System (ADS)

    Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.

    2014-12-01

    Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.

  1. Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).

    PubMed

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2017-01-01

    The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.

  2. Remediation using trace element humate surfactant

    DOEpatents

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  3. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  4. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada.

    PubMed

    English, Matthew D; Robertson, Gregory J; Mallory, Mark L

    2015-12-15

    The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Long-term dynamics of organic matter and elements exported as coarse particulates from two Caribbean montane watersheds

    Treesearch

    T. Heartsill Scalley; F.N. Scatena; S. Moya; A.E. Lugo

    2012-01-01

    In heterotrophic streams the retention and export of coarse particulate organic matter and associated elements are fundamental biogeochemical processes that influence water quality, food webs and the structural complexity of forested headwater streams. Nevertheless, few studies have documented the quantity and quality of exported organic matter over multiple years and...

  6. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal.

    PubMed

    Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A

    2018-10-15

    The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. NARSTO EPA SS ST LOUIS AIR CHEM PM MET DATA

    Atmospheric Science Data Center

    2018-04-09

    ... Winds Precipitation Amount Surface Pressure Solar Radiation Surface Air Temperature Particulates Trace Metals ... Earth Related Data:  Environmental Protection Agency Supersites St. Louis SCAR-B Block:  ...

  8. Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines.

    PubMed

    Shah, Sandip D; Cocker, David R; Miller, J Wayne; Norbeck, Joseph M

    2004-05-01

    Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.

  9. Complex anthropogenic sources of platinum group elements in aerosols on Cape Cod, USA.

    PubMed

    Sen, Indra S; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas

    2013-09-17

    Platinum group elements (PGE) of anthropogenic origin have been reported in rainwater, snow, roadside soil and vegetation, industrial waste, and urban airborne particles around the world. As recent studies have shown that PGE are bioavailable in the environment and pose health risks at chronic levels, the extent of PGE pollution is of global concern. In this study, we report PGE concentrations and osmium isotope ((187)Os/(188)Os) ratios of airborne particles (particulate matter, PM10) collected in Woods Hole, a small coastal village on Cape Cod, Massachusetts, U.S.A. The sampling site is more than 100 km away from the nearest urban centers (Boston, Providence) and has no large industrial emission center within a 30 km radius. The study reveals that, although PGE concentrations in rural airborne particulate matter are orders of magnitude lower than in urban aerosols, 69% of the total osmium is of anthropogenic origin. Anthropogenic PGE signatures in airborne particles are thus not restricted to large cities with high traffic flows and substantial industries; they can also be found in rural environments. We further conclude that the combination of Pt/Rh concentration ratios and (187)Os/(188)Os composition can be used to trace PGE sources. The Pt/Rh and (187)Os/(188)Os composition of Woods Hole aerosols indicate that the anthropogenic PGE fraction is primarily sourced from ore smelting processes, with possible minor contributions from fossil fuel burning and automobile catalyst-derived materials. Our results further substantiate the use of (187)Os/(188)Os in source apportionment studies on continental scales.

  10. Seasonal and long-term changes in elemental concentrations and ratios of marine particulate organic matter

    NASA Astrophysics Data System (ADS)

    Talarmin, Agathe; Lomas, Michael W.; Bozec, Yann; Savoye, Nicolas; Frigstad, Helene; Karl, David M.; Martiny, Adam C.

    2016-11-01

    What is the temporal variability of the elemental stoichiometry of marine microbial communities across ocean regions? To answer this question, we present an analysis of environmental conditions, particulate organic carbon, nitrogen, and phosphorus concentrations and their ratios across 20 time series (3-25 years duration) representing estuarine, coastal, and open ocean environments. The majority of stations showed significant seasonal oscillations in particulate organic elemental concentrations and ratios. However, shorter-term changes contributed most to overall variance in particulate organic matter concentrations and ratios. We found a correlation between the seasonal oscillations of environmental conditions and elemental ratios at many coastal but not open ocean and estuarine stations. C:N peaked near the seasonal temperature minimum and nutrient maximum, but some stations showed other seasonal links. C:N ratios declined with time over the respective observation periods at all open ocean and estuarine stations as well as at five coastal station but increased at the nine other coastal stations. C:P (but not N:P) declined slightly at Bermuda Atlantic Time-series Study but showed large significant increases at Hawaii Ocean Time-series and Arendal stations. The relationships between long-term changes in environmental conditions and particulate organic matter concentrations or ratios were ambiguous, but interactions between changes in temperature and nutrient availability were important. Overall, our analysis demonstrates significant changes in elemental ratios at long-term and seasonal time scales across regions, but the underlying mechanisms are currently unclear. Thus, we need to better understand the detailed mechanisms driving the elemental composition of marine microbial ecosystems in order to predict how oceans will respond to environmental changes.

  11. Constraints on the bioavailability of trace elements to terrestrial fauna at mining and smelting sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.; Schoof, R.; LaTier, A.

    1995-12-31

    At mining and smelting sites, the bioavailability of waste-related trace elements to terrestrial wildlife is limited by mineralogy of the waste material and the geochemistry of the waste-soil mixture. For example, encapsulation of trace elements in inert mineral matrices limits the assimilation of particle-associated trace elements that are ingested by wildlife. The bioavailability of arsenic, cadmium, copper, lead, silver, and zinc at mining and smelting sites in Oklahoma and Montana was evaluated based on analysis of waste material, soil chemistry, and concentrations of trace elements in whole-body samples of key food web species. Concentrations of trace elements were generally elevatedmore » relative to reference area values for selected species of vegetation, insects, spiders, and small mammals. Soil-to-tissue bioconcentration factors derived from field data at these sites were generally low (< 1), with the exception of cadmium in vegetation. For all of the trace elements evaluated, wildlife exposure models indicate that the potential for transfer of contaminants to wildlife species of public concern and high trophic-level predators is limited. Moreover, laboratory feeding experiments conducted with cadmium and lead indicate that the assimilation of waste-related trace elements by mammals is relatively low (24--47 percent for lead in blood and bone; 22--44 percent for cadmium in kidney). The relatively low bioavailability of trace elements at mining and smelting sites should be considered when estimating exposure of ecological receptors and when deriving soil cleanup criteria based on measured or modeled ecological risk.« less

  12. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-09-01

    The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  14. Time series of suspended-solids concentration, salinity, temperature, and total mercury concentration in San Francisco Bay during water year 1998

    USGS Publications Warehouse

    Ruhl, Catherine A.; Schoellhamer, David H.

    2001-01-01

    The transport and fate of suspended sediments are important factors in determining the transport and fate of constituents adsorbed on the sediments. For example, the concentration of suspended particulate chromium in the bay appears to be controlled primarily by sediment resuspension (Abu-Saba and Flegal, 1995). Concentrations of dissolved trace elements are greater in South Bay than elsewhere in San Francisco Bay, and bottom sediments are believed to be a significant source (Flegal et al., 1991). The sediments on the bay bottom provide habitat for benthic communities that can ingest these substances and introduce them into the food web (Luoma et al., 1985; Brown and Luoma, 1995, Luoma 1996). Bottom sediments also are a reservoir of nutrients that contribute to the maintenance of estuarine productivity (Hammond et al., 1985).

  15. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  16. Origin and distribution of trace elements in high-elevation precipitation in southern China.

    PubMed

    Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing

    2012-09-01

    During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.

  17. Trends in Trace Element Fractionation Between Foraminiferal Species and the Role of Biomineralization

    NASA Astrophysics Data System (ADS)

    Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.

    2017-12-01

    Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.

  18. Development of a microbalance suitable for space application. [mass measurement device for particulate and vapor deposition measurements

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Rupprecht, G.

    1977-01-01

    The tapered element oscillating microbalance (TEOM), an ultrasensitive mass measurement device which is suitable for both particulate and vapor deposition measurements is described. The device can be used in contamination measurements, surface reaction studies, particulate monitoring systems or any microweighing activity where either laboratory or field monitoring capability is desired. The active element of the TEOM consists of a tube or reed constructed of a material with high mechanical quality factor and having a special taper. The element is firmly mounted at the wide end while the other end supports a substrate surface which can be composed of virtually any material. The tapered element with the substrate at the free (narrow) end is set into oscillation in a clamped free mode. A feedback system maintains the oscillation whose natural frequency will change in relation to the mass deposited on the substrate.

  19. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    PubMed

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-02-21

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically.

  20. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  1. Size-resolved trace metal characterization of aerosols emitted by four important source types in Switzerland

    NASA Astrophysics Data System (ADS)

    Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.

    In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.

  2. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  4. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  6. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  7. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, Karen C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  8. Nickel and vanadium in air particulates at Dhahran (Saudi Arabia) during and after the Kuwait oil fires

    NASA Astrophysics Data System (ADS)

    Sadiq, M.; Mian, A. A.

    Air particulates, both the total suspended (TSP) and inhalable (PM 10, smaller than 10 microns in size), were collected during and after the Kuwait oil fires (from March 1991 to July 1992) using Hi-Vol samplers. These samples were wet-digested at 120°C in an aqua regia and perchloric acids mixture for 3 h. Air particulate samples collected in 1982 at the same location were prepared similarly. Concentrations of nickel and vanadium were determined in the aliquot samples using an inductively coupled argon plasma analyser (ICAP). The monthly mean concentrations of nickel and vanadium, on volume basis, increased rapidly from March to June and decreased sharply during July-August in 1991. The minimum mean concentrations of these elements were found in the particulate samples collected in December 1991 which gradually increased through May 1992. Like 1991, nickel and vanadium concentrations in the air particulates spiked in June and decreased again in July 1992. This distribution pattern of nickel and vanadium concentrations was similar to that of the predominant wind from the north (Kuwait). In general, concentrations of these elements were higher in the air particulates collected during April-July 1991 as compared with those collected in 1992 during the same period. The TSPs contained higher concentrations of nickel and vanadium than those found in the PM 10 samples. However, this trend was reversed when concentrations of nickel and vanadium, on were expressed on particulate weight basis. The monthly mean concentrations of nickel and vanadium, on weight basis, decreased gradually through 1991 and increased slightly from March to July 1992. Concentrations of these elements were significantly higher in the air particulate samples collected in 1991 than those samples collected during 1982 at the same location. The data of this study suggest a contribution of the Kuwait oil fires in elevating nickel and vanadium concentrations in the air particulates at Dhahran during April-July 1991. Concentrations of these elements were largely below their proposed limits in the ambient air (for nickel-50 μg m -3, air; for vanadium—1 μg m -3 air). It is, therefore, anticipated that concentrations of nickel and vanadium in the air particulate samples were not a health concern during Kuwait oil fires at Dhahran, Saudi Arabia.

  9. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  10. The effects of trace element content on pyrite oxidation rates

    NASA Astrophysics Data System (ADS)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the variability of trace element content from the pyrite samples. These data were then used to select areas of interest for NanoSIMS analyses, which in turn was used to select areas for TEM and APT. These analyses show that the trace element content of pyrite can be highly variable, which may significantly affect the rate of pyrite oxidation.

  11. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  12. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    PubMed Central

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  13. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  14. Surface-Water Hydrology and Quality at the Pike Hill Superfund Site, Corinth, Vermont, October 2004 to December 2005

    USGS Publications Warehouse

    Kiah, Richard G.; Deacon, Jeffrey R.; Piatak, Nadine M.; Seal, Robert R.; Coles, James F.; Hammarstrom, Jane M.

    2007-01-01

    The hydrology and quality of surface water in and around the Pike Hill Brook watershed, in Corinth, Vermont, was studied from October 2004 to December 2005 by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (USEPA). Pike Hill was mined intermittently for copper from 1847 to 1919 and the site is known to be contributing trace elements and acidity to Pike Hill Brook and an unnamed tributary to Cookville Brook. The site has been listed as a Superfund site since 2004. Streamflow, specific conductance, pH, and water temperature were measured continuously and monthly at three sites on Pike Hill Brook to determine the variation in these parameters over an annual cycle. Synoptic water-quality sampling was done at 10 stream sites in October 2004, April 2005, and June 2005 and at 13 stream sites in August 2005 to characterize the quality of surface water in the watershed on a seasonal and spatial basis, as well as to assess the effects of wetlands on water quality. Samples for analysis of benthic macroinvertebrate populations were collected at 11 stream sites in August 2005. Water samples were analyzed for 5 major ions and 32 trace elements. Concentrations of trace elements at sites in the Pike Hill Brook watershed exceeded USEPA National Recommended Water Quality Criteria acute and chronic toxicity standards for aluminum, iron, cadmium, copper, and zinc. Concentrations of copper exceeded the chronic criteria in an unnamed tributary to Cookville Brook in one sample. Concentrations of sulfate, calcium, aluminum, iron, cadmium, copper, and zinc decreased with distance from a site directly downstream from the mine (site 1), as a result of dilution and through sorption and precipitation of the trace elements. Maximum concentrations of aluminum, iron, cadmium, copper, and zinc were observed during spring snowmelt. Concentrations of sulfate, calcium, cadmium, copper, and zinc, and instantaneous loads of calcium and aluminum were statistically different (p<0.05) among the three continuously monitored sites (sites 1, 4, and 5). Instantaneous loads of aluminum, iron, and copper decreased by one to three orders of magnitude from site 1 to a site 1.1 mi downstream (site 4). Instantaneous loads of sulfate were similar between sites 1, 4, and at a site 3 mi downstream (site 5). Instantaneous loads of cadmium and zinc were similar between sites 1 and 4, and loads of iron and copper were similar between sites 4 and 5. Loads of chemical constituents were compared at site 1 (closest to the mine waste piles) and site 5 (near the mouth of Pike Hill Brook and below a majority of the wetlands). Annually, the loads of dissolved cadmium and zinc at site 1 were about five times greater than loads at site 5, and the load of dissolved copper at site 1 was about 17 times greater than at site 5. The ratio of loads for dissolved cadmium, copper, and zinc to total cadmium, copper, and zinc at site 1 was about 1. Samples collected in Pike Hill Brook upstream and downstream from the wetlands during low flows in August 2005 showed that oxidation of ferrous iron and precipitation of iron-hydroxides were probably not affecting trace metals in the wetlands through sorption; however, a significant portion of the iron entering the wetlands was in particulate form and may have transported sorbed copper and other trace metals. Thus, aerobic activity in the wetlands was probably not affecting metal cycling in the watershed. Concentrations and loads of sulfate may be unlikely to define unequivocally the role of the wetlands with regard to anaerobic bacterial sulfate reduction; however, bacterial sulfate removal may have affected loads of sulfate. Loads of copper increased downstream from the wetlands and may reflect the reductive dissolution of ferric hydroxide particulates in anaerobic parts of the wetlands.Concentrations of dissolved iron increased downstream from the wetlands. The most apparent effects on the macroinvertebr

  15. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous concentric annuli towards crystal rims. Conversely, the medium rare earth elements (e.g. Gd, Eu and Sm) exhibit bowl-shaped zoning from core to rim, with no annuli, and core and rim compositions of the medium rare earth elements are the same throughout the population within crystals of differing size. Cr exhibits pronounced spiral zoning, and the average Cr content increases towards garnet rims. In all cases, spirals are centered on the geometric core of the crystals. These LA-ICP-MS maps highlight the complexity of garnet growth over a single prograde event, and indicate that there is still much to be learnt from the analysis of garnet using ever-improving analytical methods. We explore the potential causes of the variations in the distribution of trace elements in garnet, and assess how these zoning patterns may be used to refine our understanding of the intricacies of garnet crystallisation and the spatial and temporal degree of trace element equilibration during metamorphism.

  16. Trace elements in Mediterranean seagrasses and macroalgae. A review.

    PubMed

    Bonanno, Giuseppe; Orlando-Bonaca, Martina

    2018-03-15

    This review investigates the current state of knowledge on the levels of the main essential and non-essential trace elements in Mediterranean vascular plants and macroalgae. The research focuses also on the so far known effects of high element concentrations on these marine organisms. The possible use of plants and algae as bioindicators of marine pollution is discussed as well. The presence of trace elements is overall well known in all five Mediterranean vascular plants, whereas current studies investigated element concentrations in only c. 5.0% of all native Mediterranean macroalgae. Although seagrasses and macroalgae can generally accumulate and tolerate high concentrations of trace elements, phytotoxic levels are still not clearly identified for both groups of organisms. Moreover, although the high accumulation of trace elements in seagrasses and macroalgae is considered as a significant risk for the associated food webs, the real magnitude of this risk has not been adequately investigated yet. The current research provides enough scientific evidence that seagrasses and macroalgae may act as effective bioindicators, especially the former for trace elements in sediments, and the latter in seawater. The combined use of seagrasses and macroalgae as bioindicators still lacks validated protocols, whose application should be strongly encouraged to biomonitor exhaustively the presence of trace elements in the abiotic and biotic components of coastal ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  18. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  19. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation.

    PubMed

    Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong

    2017-03-01

    The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  1. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013

    PubMed Central

    Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019

  2. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013.

    PubMed

    Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.

  3. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465

  4. Contamination Analysis Tools

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.

  5. Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude.

    PubMed

    Pereira, Victor; Carbajales, Paloma; López-Alonso, Marta; Miranda, Marta

    2018-02-24

    Animal feed has traditionally been supplemented with trace elements at dietary concentrations well above physiological needs. However, environmental concerns have led to calls for better adjustment of mineral supplementation to actual physiological needs and, in this context, consideration of breed-related differences in trace element requirements. The aim of this study was to analyze trace element concentrations in the main breeds used for intensive beef production in northern Spain (Holstein-Friesian [HF], Galician Blonde [GB], and GB × HF cross). Samples of blood, internal organs, and muscle were obtained at slaughter from 10 HF, GB, and GB × HF cross calves in the same feedlot. Overall, trace element concentrations in serum and internal organs were within adequate ranges and did not differ between those of breeds, suggesting that trace mineral supplementation was adequate in all groups. The only exception to this was copper, and hepatic copper concentrations were above adequate levels in all calves. This was particularly evident in the HF calves, and the maximum recommended level for human consumption was exceeded in 90% of these animals. Copper, iron, manganese, selenium, and zinc concentrations in muscle were significantly higher in the HF than those in the GB calves, with intermediate values for the crosses. These breed-related differences in trace element concentrations in the muscle may be related to lower muscle mass and/or higher hepatic activity in the HF (dairy) calves than in GB (beef) calves. As meat is an essential source of highly available trace elements in human diets, breed-related differences in trace element concentrations in meat deserve further investigation.

  6. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician

    PubMed Central

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-01-01

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized. PMID:28452962

  7. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients.

    PubMed

    Fessler, Theresa A

    2013-12-01

    Parenteral nutrition (PN) is a life-sustaining therapy for hundreds of thousands of people who have severe impairment of gastrointestinal function. Trace elements are a small but very important part of PN that can be overlooked during busy practice. Serious complications can result from trace element deficiencies and toxicities, and this is especially problematic during times of product shortages. Practical information on parenteral trace element use can be gleaned from case reports, some retrospective studies, and very few randomized controlled trials. A general knowledge of trace element metabolism and excretion, deficiency and toxicity symptoms, products, optimal dosages, and strategies for supplementation, restriction, and monitoring will equip practitioners to provide optimal care for their patients who depend on PN.

  8. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician.

    PubMed

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-04-28

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized.

  9. Source tracing of fluvial suspended sediments by magnetic and geochemical particle characterization: example of the Canche watershed (Nord-Pas-de-Calais, France)

    NASA Astrophysics Data System (ADS)

    Patault, Edouard; Alary, Claire; Franke, Christine; Gauthier, Arnaud; Abriak, Nor-Edine

    2016-04-01

    In France, erosion by water run-off is estimated to 1.5 t ha-1yr-1 and can exceed 10 t ha-1yr-1 in large growing areas, such as the North of France (Nord-Pas-de-Calais). In this region, the Canche watershed (1294 km2) sustains heavy loss of fertile soils. The land use is mainly dominated by arable lands (80%) and in 2013, 104 kt of suspended sediment transited to the estuary. As demonstrated in literature, agricultural soil erosion leads to the gradual disappearance and depletion of fertile soil, which constitute a non-renewable resource at human time scale. Additionally, water erosion can significantly damage the aquatic habitat and can be responsible for the input of nutrients, bacteria, pesticides, heavy metals and radionuclides into surface waters. Conscious of these effects, many programs have emerged in the Nord-Pas-de-Calais to reduce erosion. This study presents a combination of environmental magnetic proxy parameters and geochemical analyses on sediments and suspended particulate matter. The aim is to develop effective tools to trace erosion by water run-off and quantify this process. In order to identify the respective sediment sources in the Canche watershed, sediment trap samples of suspended particulate matter were recovered at key positions along the Canche watershed. The preliminary results show that magnetic concentration (Mrs) shows typical values for the agricultural soils in the region, but these variations in magnetic concentrations and total irons concentrations are not always correlated, which may be explained by the iron speciation. In calculating the so-called S-ratio for each sample we can distinguish changes in magneto-mineralogy (and thus iron speciation) from magnetite-dominated assemblages in the mainstream Canche (naturel background signal) to high-coercivity-dominated assemblages in the tributaries, typical for soil erosion material rich in hematite/goethite. In combination with the element concentrations from ICP analyses, this proxy parameter may give valuable insight into the tracing of the suspended sediment sources. In perspective, the seasonal variability and the discharge in the Canche watershed have to be taken into account.

  10. Studying the atmospheric chemistry: Statististical study of epiphyte plant Spanish Moss in Florida, USA

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Parker, W.; Odom, L.

    2003-04-01

    The detrimental influence which airborne contaminants has on vegetation in many parts of the world has become of increasing interest and concern in recent years. The use of suitable plants such as epiphytes (vegetation which grows on another plant) for measuring concentrations of airborne materials provides the advantages of (a) an integration of the periodic fluctuations in amounts of these materials that occur over relatively long periods of time and (b) economy in sampling. This class of plants, which are mosses and lichens, are somewhat less dependent on their substrates and may act more purely as air indicators. The epiphytes do not derive nutrients from soil, but depend on airborne moisture and particulates for elemental sources. The way with which they absorb nutrients from these external sources gives rise to an uncommon sensitivity to the harmful effects of air pollution. Also in addition, plants of this class absorb constituents of airborne particulates which may not be directly toxic to the plant but of environmental concern to humans. In particular, trace element accumulation in epiphytic Tillandsia usneoides L. (Spanish Moss) common in Atlantic and Gulf Coastal plains has been used in air pollution studies. Recent studies have also evaluated Spanish moss as an indicator of contamination of pesticides and other organic aromatic compounds. Two hundred and six samples of Spanish moss (Tillandsia usneoides L.) were collected from over its geographic range in Florida for this study. The samples were analyzed for a variety of major and minor elements, and the resulting data were statistically analyzed for pertinent geochemical associations. Three statistical methods have been used on the geochemical data of Spanish moss to evaluate the nature of probable sources for each of the elements. This kind of work is being done because the exact nature and location of each specimen is unknown. So, the three different statistical methods have been used to classify or determine where the elements came in from based on the following study done by HT Shacklette and JJ Connor in 1973. The first method used, R mode Cluster Analysis (CA) in this report has resulted in some specific group of elements that tend to be coming from the same kind of sources. The Rare Earth Elements (REEs) show an excellent grouping. Their probable source maybe from samples, which had lots of intake of soil dust and rock dust. The grouping of elements Co-Pb-V-Ni-W-Ba probably is because they are all from samples collected near highway where there is a lot of automotive exhaust. Again, clustering of Zn-Sn-Mo-In-Sb probably show that they are from samples, which came from some industrial sites. Samples probably collected from and around sea beaches will have the following elements clustering together: Na-Mg-Li-B. The second method, Principal Component Analysis (PCA) in this project has resulted in a specific descriptive model of chemical variation in Spanish moss. The model appears to be mathematically adequate, in that 4 components describe nearly 64% of the total observed variation and also informative in identifying some major probable sources for the different elements analyzed. Two kinds of sources have been identified: one is natural particulates from soil and rock dust and agricultural sources &the other being technological metals from automotive exhaust and industrial output. The first two components have been labeled as "natural particulates" and the remaining as "technological metals" after Connor and Shacklette. The elements with highest loadings on first and second component are lithium, boron, sodium, magnesium, aluminum, calcium, scandium, titanium, iron, selenium, strontium, yttrium, molybdenum, indium, antimony, lanthanum, uranium and bismuth and Rare earth elements (REE) which in general have mainly agricultural and natural sources. The elements with highest loadings on third and fourth component are potassium, copper, arsenic, barium, vanadium, manganese, cobalt, nickel, copper, zinc, arsenic, rubidium, cadmium, tin, cesium, tungsten, barium, mercury and lead, mostly having industrial and automotive sources. Discriminant Function Analysis (DFA) has been used as verification to the results obtained from CA and PCA. There is some factor, which has a strong effect on some of the elements, and this factor is unidentified yet in the project. Overall, most of the elements are behaving as expected based on the earlier work of Shacklette and Connor (1973) and results from CA and PCA.

  11. Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, Torba yoghurt and whey.

    PubMed

    Sanal, Hasan; Güler, Zehra; Park, Young W

    2011-01-01

    The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.

  12. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  13. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes

    PubMed Central

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051

  14. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    Treesearch

    I. R. Burling; R. J. Yokelson; S. K. Akagi; Shawn Urbanski; Cyle Wold; D. W. T. Griffith; T. J. Johnson; J. Reardon; D. R. Weise

    2011-01-01

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada 5 mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass...

  15. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya

    PubMed Central

    Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinneym, Patrick L.

    2015-01-01

    Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi’s low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern. PMID:26034383

  16. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya

    NASA Astrophysics Data System (ADS)

    Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinney, Patrick L.

    2015-06-01

    Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi's low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern.

  17. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya.

    PubMed

    Ngo, Nicole S; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N; Bouhamam, Kheira; Kinneym, Patrick L

    2015-06-01

    Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM 2.5 ), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM 2.5 levels for all study populations, particularly among bus drivers, while PM 2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi's low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern.

  18. Investigating the hydrological significance of stalagmite geochemistry (Mg, Sr) using Sr isotope and particulate element records across the Late Glacial-to-Holocene transition

    NASA Astrophysics Data System (ADS)

    Belli, R.; Borsato, A.; Frisia, S.; Drysdale, R.; Maas, R.; Greig, A.

    2017-02-01

    The trace element and Sr isotope records in two coeval stalagmites characterized by different growth rates and flow regimes at Savi cave (Grotta Savi, NE Italy) reveal different sources and incorporation mechanisms for Mg and Sr. Mg is sourced primarily from dissolved cave host rock while particulate Mg derived from soil plays a subordinate role. The presence of particulate-borne Mg is inferred from the co-variation of Mg and particle-associated elements (Th, Al and Mn) which are preferentially concentrated in open columnar calcite layers. Variation in Mg concentrations corrected for particle-influenced components, the Mgc parameter, is controlled by water-rock interaction, with higher and lower Mgc during dry and wet phases, respectively. This is thought to reflect incongruent dissolution of Mg-rich phases. Correction of Sr concentrations for contributions from airborne exogenic Sr, based on 87Sr/86Sr ratios, yields the bedrock-only contribution (Src). Src variation in stalagmite calcite is influenced by speleothem growth rate and by variation of the calcite-water Sr partitioning in wet and dry phases, and only to a minor extent by incongruent dissolution of Mg-rich phases. Concentration profiles for Mgc and Srcg (corrected for growth rate effects) show inverse correlations and are inferred to show hydrological significance which is captured in a hydrological index, HI. We suggest HI provides robust information on water-rock interaction related to hydrological changes and can be utilized in both wet and semi-arid environments, provided the corrections for soil Mg and exogenic Sr can be applied with confidence. Application of the HI index allows correction of Grotta Savi oxygen isotope data, to yield a δ18Oc time series that shows when changes in moisture sources and atmospheric reorganization, or changes in moisture amount, were significant. This is especially evident during the Younger Dryas (YD). The Savi record supports the concept of a two-phase YD, marked by an increase of moisture and stronger impact of Adriatic and Mediterranean Sea influences over the northern Adriatic region from 12.3 ka onwards. Then, a large-scale atmospheric reorganization and gradual northward shift of the Polar Front caused a progressive reduction of sea influence over the region from 12.1 ka, supporting the concept of a hemispheric change.

  19. Streamflow, dissolved solids, suspended sediment, and trace elements, San Joaquin River, California, June 1985-September 1988

    USGS Publications Warehouse

    Hill, B.R.; Gilliom, R.J.

    1993-01-01

    The 1985-88 study period included hydrologic extremes throughout most of central California. Except for an 11-month period during and after the 1986 flood, San Joaquin River streamflows during 1985-88 were generally less than median for 1975-88. The Merced Tuolumne, and Stanislaus Rivers together comprised 56 to 69 percent of the annual San Joaquin River flow, Salt and Mud Sloughs together comprised 6 to 19 percent, the upper San Joaquin River comprised 2 to 25 percent, and unmeasured sources from agricultural discharges and ground water accounted for 13 to 20 percent. Salt and Mud Sloughs and the unmeasured sources contribute most of the dissolved-solids load. The Merced, Tuolumne, and Stanislaus Rivers greatly dilute dissolved-solids concentrations. Suspended-sediment concentration peaked sharply at more than 600 milligrams per liter during the flood of February 1986. Concentrations and loads varied seasonally during low-flow conditions, with concentrations highest during the early summer irrigation season. Trace elements present primarily in dissolved phases are arsenic, boron, lithium, molybdenum, and selenium. Boron concentrations exceeded the irrigation water-quality criterion of 750 micrograms per liter more than 75 percent of the time in Salt and Mud Sloughs and more than 50 percent of the time at three sites on the San Joaquin River. Selenium concentrations exceeded the aquatic-life criterion of 5 micrograms per liter more than 75 percent of the time in Salt Slough and more than 50 percent of the time in Mud Slough and in the San Joaquin River from Salt Slough to the Merced River confluence. Concentrations of dissolved solids, boron, and selenium usually are highest during late winter to early spring, lower in early summer, higher again in mid-to-late summer, and the lowest in autumn, and generally correspond to seasonal inflows of subsurface tile-drain water to Salt and Mud Sloughs. Trace elements present primarily in particulate phases are aluminum, chromium, copper, iron, manganese, nickel, and zinc, none of which cause significant water-quality problems in the river.

  20. Fine particulate matter (PM2.5) in Edmonton, Canada: Source apportionment and potential risk for human health.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2016-11-01

    To design effective PM 2.5 control strategies in urban centers, there is a need to better understand local and remote sources influencing PM 2.5 levels and associated risk to public health. An investigation of PM 2.5 levels, sources and potential human health risk associated with trace elements in the PM 2.5 was undertaken in Edmonton over a 6-year period (September 2009-August 2015). The geometric mean PM 2.5 concentration of was 7.11 μg/m 3 (interquartile range, IQR = 4.83-10.08 μg/m 3 ). Positive matrix factorization (PMF) receptor modeling identified secondary organic aerosol (SOA) as the major contributor (2.2 μg/m 3 , 27%), followed by secondary nitrate (1.3 μg/m 3 , 17%) and secondary sulfate (1.2 μg/m 3 , 15%). Other local sources included transportation (1.1 μg/m 3 , 14%) and industry-related emissions (0.26 μg/m 3 , 3.4%), biomass burning (1.0 μg/m 3 , 13%) and soil (0.54 μg/m 3 , 6.8%). Five factors (i.e., SOA, secondary nitrate, secondary sulfate, transportation and biomass burning) contributed more than 85% to PM 2.5 for the 2009-2015 period. Geometric (arithmetic) mean and maximum ambient air concentrations for hazardous trace elements of public health concern in PM 2.5 during the study period were below United States regulatory agency chronic and acute health risk screening criteria. Carcinogenic and non-carcinogenic risk of trace elements and source-specific risk values were well below acceptable and safe levels of risks recommended by regulatory agencies. More work is needed to understand the origin of potential SOA and wintertime wood burning sources in Edmonton and the surrounding region and to apply source-risk apportionment using all available hazardous air pollutants (HAPs) including organic compounds to better interpret the potential health risk posed by various sources in urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  2. The geographic distribution of trace elements in the environment: the REGARDS study.

    PubMed

    Rembert, Nicole; He, Ka; Judd, Suzanne E; McClure, Leslie A

    2017-02-01

    Research on trace elements and the effects of their ingestion on human health is often seen in scientific literature. However, little research has been done on the distribution of trace elements in the environment and their impact on health. This paper examines what characteristics among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study are associated with levels of environmental exposure to arsenic, magnesium, mercury, and selenium. Demographic information from REGARDS participants was combined with trace element concentration data from the US Geochemical Survey (USGS). Each trace element was characterized as either low (magnesium and selenium) or high (arsenic and mercury) exposure. Associations between demographic characteristics and trace element concentrations were analyzed with unadjusted and adjusted logistic regression models. Individuals who reside in the Stroke Belt have lower odds of high exposure (4th quartile) to arsenic (OR 0.33, CI 0.31, 0.35) and increased exposure to mercury (OR 0.65, CI 0.62, 0.70) than those living outside of these areas, while the odds of low exposure to trace element concentrations were increased for magnesium (OR 5.48, CI 5.05, 5.95) and selenium (OR 2.37, CI 2.22, 2.54). We found an association between levels of trace elements in the environment and geographic region of residence, among other factors. Future studies are needed to further examine this association and determine whether or not these differences may be related to geographic variation in disease.

  3. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race.

    PubMed

    Jablan, Jasna; Inić, Suzana; Stosnach, Hagen; Hadžiabdić, Maja Ortner; Vujić, Lovorka; Domijan, Ana-Marija

    2017-05-01

    The aim of the present study was to explore impact of endurance exercise on urinary level of minerals and trace elements as well as on some oxidative stress and biochemical parameters. Urine samples were collected from participants (n=21) of mountain ultra-marathon race (53km; Medvednica, Zagreb, Croatia), before (baseline value), immediately after, 12h and 24h after the race. In urine samples level of minerals (Ca, P, K and Na) and trace elements (Se, Zn, Mn, Cu, Fe and Co) were assessed using the bench top Total reflection X-ray Fluorescence (TXRF) spectrometer. Oxidative stress was determined as level of malondialdehyde (MDA). Immediately after the race level of minerals, trace elements, MDA, creatinine, ketones, erythrocytes and specific gravity increased compared to their baseline value. In 24h follow-up trace elements involved in antioxidant defence, MDA and biochemical parameters returned to their baseline values, Cu and Co remained increased as after the race, Fe and K tended to return to baseline values while Ca, P and Na continued to increase. Mountain ultra-marathon resulted in alteration of physiologically important minerals and trace elements that for some minerals and trace elements persist, indicating their involvement in recovery processes. However, due to their loss in urine, level of minerals and trace elements in athletes participating in endurance exercise should be monitored. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  5. Near-road enhancement and solubility of fine and coarse ...

    EPA Pesticide Factsheets

    Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physical/chemical properties of PM in the near-road environment. To investigate the spatial profile and water solubility of elemental PM species near a major roadway, filter-based measurements of fine (PM2.5) and coarse (PM10-2.5) PM were simultaneously collected at multiple distances (10 m, 100 m, and 300 m) from Interstate I-96 in Detroit, Michigan during September–November 2010. Filters were extracted in water, followed by a hot acid extraction, and analyzed by magnetic sector field high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) to quantify water-soluble and acid-soluble trace elements for each PM size fraction. PM2.5 and PM10-2.5 species measured in the near-road samples included elements associated with traffic activity, local industrial sources, and regional pollution. Metals indicative of brake wear (Ba, Cu) were dramatically enriched near the roadway during downwind conditions (factor of 5 concentration increase), with the largest increase within 100 m of the roadway. Moderate near-roadway increases were observed for crustal elements and other traffic-related PM (Fe, Ca), and the lowest increases observed for regional PM species (S). Water solubility varied

  6. Combining multitracing and 2D-modelling to identify the dynamic of heavy metals during flooding.

    NASA Astrophysics Data System (ADS)

    Hissler, C.; Hostache, R.; Matgen, P.; Tosheva, Z.; David, E.; Bates, P.; Stille, P.

    2012-04-01

    Recent years have seen a growing awareness of the wider environmental significance of the sediment loads transported by rivers and streams. This includes the importance of suspended sediment in transporting heavy metals and the potential for these trace elements to be desorbed from the particles to the solution. That threaten the water quality and can cause severe impacts in downstream areas like wetlands and floodplains. Contemporary data on the sediment loads of rivers provide clear evidence of significant recent changes in the sediment fluxes and of several rivers in response to human activities. For instance, Trace elements (including heavy metals) that are currently considered to be undisturbed by human activities and used as tracers of continental crust derived material have become more and more involved in industrial processes. Mathematical models validated by in situ experimentations are the only available tool to predict the consequences of natural as well as man-induced environmental changes and impacts on sediment dynamics. They are approximate representations of complex natural systems and the evaluation of a model with respect to its ability to reproduce multiple criteria and behaviour of a real system is still problematic. Interactions between modellers and experimentalists improve significantly the interpretation of the modelling output and led to formulate more realistic assumptions on the behaviour of natural systems. The geochemical information, which appeared to be non-correlated with the hydrological standard parameters, provides new information and contributes to give an "orthogonal view" on the hydrologic system behaviour. Regarding the recent development in geochemical tracer applications in models, the multi-tracer approach (natural vs anthropogenic; elemental concentration-isotopic signature-radionuclide activity) may be a necessity to decrease significantly the uncertainties in sediment transport modelling. The objective of this study is to assess the risk of floodplain contamination in heavy metal due to river sediment deposition and to heavy metal partitioning between particulate and dissolved phases. We focus on a multidisciplinary approach combining environmental geochemistry (multitracing) and hydraulic modelling (using TELEMAC-2D). One important single flood event was selected to illustrate this innovative approach. During the entire flood, the river water was sampled every hour in order to collect the particulate and the dissolved fractions. All the tracers were analyzed in both fractions. An important set of hydrological and sedimentological data are used to reach a more efficient calibration of the TELEMAC modelling system. In addition to standard techniques of hydrochemistry, new approaches of in situ suspended sediment transport monitoring will help getting new insights on the hydraulic system behaviour.

  7. Progress of pharmacogenomic research related to minerals and trace elements.

    PubMed

    Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-10-01

    Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.

  8. Stability of hydrophilic vitamins mixtures in the presence of electrolytes and trace elements for parenteral nutrition: a nuclear magnetic resonance spectroscopy investigation.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza

    2015-03-25

    In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Toxic effects of trace elements on newborns and their birth outcomes.

    PubMed

    Tang, Mengling; Xu, Chenye; Lin, Nan; Yin, Shanshan; Zhang, Yongli; Yu, Xinwei; Liu, Weiping

    2016-04-15

    Some trace elements are essential for newborns, their deficiency may cause abnormal biological functions, whereas excessive intakes due to environmental contamination may create adverse health effects. This study was conducted to measure the levels of selected trace elements in Chinese fish consumers by assessing their essentiality and toxicity via colostrum intake in newborns, and evaluated the effects of these trace elements on birth outcomes. Trace elements in umbilical cord serum and colostrum of the studied population were relatively high compared with other populations. The geometric means (GM) of estimated daily intake (EDI, mgday(-1)) of the trace elements were in the safe ranges for infant Dietary Reference Intakes (DRIs) recommended by the United States Food and Drug Administration (FDA). When using total dietary intake (TDI, mgkg(-1)bwday(-1)), zinc (Zn) (0.880mgkg(-1)bwday(-1)) and selenium (Se) (6.39×10(-3)mgkg(-1)bwday(-1)) were above the Reference Doses (RfD), set by the United States Environmental Protection Agency (EPA). Multivariable linear regression analyses showed that Se was negatively correlated with birth outcomes. Our findings suggested that overloading of trace elements due to environmental contamination may contribute to negative birth outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  11. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  12. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    PubMed

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  13. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis.

    PubMed

    Badran, M; Morsy, R; Soliman, H; Elnimr, T

    2016-01-01

    The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    USGS Publications Warehouse

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  15. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  16. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  17. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    USGS Publications Warehouse

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace elements and other sources of bias and variability in the sampling process. Trace elements have both natural and anthropogenic sources that may affect the sampling process, including the sample-collection and handling materials used in many trace-element monitoring studies. Trace elements also react with these materials within the timescales typical for collection, processing and analysis of runoff samples. To study the characteristics and potential effects of trace elements in highway and urban runoff, investigators typically sample one or more operationally defined matrixes including: whole water, dissolved (filtered water), suspended sediment, bottom sediment, biological tissue, and contaminant sources. The sampling and analysis of each of these sample matrixes can provide specific information about the occurrence and distribution of trace elements in runoff and receiving waters. There are, however, technical concerns specific to each matrix that must be understood and addressed through use of proper collection and processing protocols. Valid protocols are designed to minimize inherent problems and to maximize the accuracy, precision, comparability, and representativeness of data collected. Documentation, including information about monitoring protocols, quality assurance and quality control efforts, and ancillary data also is necessary to establish data quality. This documentation is especially important for evaluation of historical traceelement monitoring data, because trace-element monitoring protocols and analysis methods have been constantly changing over the past 30 years.

  18. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways

    USGS Publications Warehouse

    Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.

    1992-01-01

    Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.

  19. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  20. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  1. The Distribution between the Dissolved and the Particulate Forms of 49 Metals across the Tigris River, Baghdad, Iraq

    PubMed Central

    Hamad, Samera Hussein; Schauer, James Jay; Shafer, Martin Merrill; Abed Al-Raheem, Esam; Satar, Hyder

    2012-01-01

    The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world) within Baghdad city and in its major tributary (Diyala River) from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt) in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40) > Th(35) > Fe(15) > Al(13) > Pb(4.5)] ∗ 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L). A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris. PMID:23304083

  2. Method of dispersing particulate aerosol tracer

    DOEpatents

    O'Holleran, Thomas P.

    1988-01-01

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  3. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    USGS Publications Warehouse

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.

  4. Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha

    NASA Astrophysics Data System (ADS)

    Mahapatra, Parth Sarathi; Ray, Sanak; Das, Namrata; Mohanty, Ayusman; Ramulu, T. S.; Das, Trupti; Chaudhury, G. Roy; Das, S. N.

    2013-04-01

    Acid- and water-soluble component of suspended particulate matter was studied from January 2009 to December 2009 at Bhubaneshwar, an urban coastal location of eastern India, by high-volume sampler, environmental dust monitor using GRIMM®, and scanning electron microscope and energy dispersive X-ray spectrometer. The water-soluble components accounted for 30-45 % of the total suspended particulate matter, and the major elements were observed to be ammonium and nitrate as the cationic and anionic species, respectively. The acid-soluble component like copper, nickel, cobalt, iron, and lead accounted for 5-15 % of the total particulate matter concentration. The composition of particulate matter shows a clear seasonal variation in relation to wind speed, wind direction, and trajectories of the air mass movement. The GRIMM spectrometer analysis shows higher concentration of fine particulate matter. Source apportionment and enrichment factor analysis indicated that except sodium and chloride, all other elements have emerged from different sources such as crustal as well as anthropogenic.

  5. Evaluation of trace element status of organic dairy cattle.

    PubMed

    Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M

    2018-06-01

    The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.

  6. Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy.

    PubMed

    Turconi, Giovanna; Minoia, Claudio; Ronchi, Anna; Roggi, Carla

    2009-04-01

    The significant role of trace elements in human health is well documented. Trace elements are those compounds that need to be present in the human diet to maintain normal physiological functions. However, some microelements may become harmful at high levels of exposure, or, on the other hand, may give rise to malnutrition, when their exposure is too low. The aim of the present study was to provide a reliable estimate of the dietary exposure of twenty-one trace elements in a Northern Italian area. For this purpose, trace element analyses were undertaken on total diet samples collected from a university cafeteria in Pavia, Northern Italy. The average daily exposure for the adult people was calculated on the basis of food consumption frequency, portion size and trace element levels in foodstuffs. The mean exposure values satisfy the Italian RDA for all the essential trace elements, except for Fe exposure in females, and are well below the Provisional Tolerable Daily Intake for all the toxic compounds, showing that the probability of dietary exposure to health risks is overall small. As far as Fe exposure is concerned, a potential risk of anaemia in the female adult population should be considered, then studies aimed at evaluating the Fe nutritional status of adult Italian women should be addressed. In conclusion, while not excluding the possibility that the daily exposure determined in the present study may not be representative of the population as a whole, this study provides a good estimate of the Italian adult consumer exposure to twenty-one trace elements.

  7. The effect of pasteurization on trace elements in donor breast milk.

    PubMed

    Mohd-Taufek, N; Cartwright, D; Davies, M; Hewavitharana, A K; Koorts, P; McConachy, H; Shaw, P N; Sumner, R; Whitfield, K

    2016-10-01

    Premature infants often receive pasteurized donor human milk when mothers are unable to provide their own milk. This study aims to establish the effect of the pasteurization process on a range of trace elements in donor milk. Breast milk was collected from 16 mothers donating to the milk bank at the Royal Brisbane and Women's Hospital. Samples were divided into pre- and post-pasteurization aliquots and were Holder pasteurized. Inductively coupled plasma mass spectrometry was used to analyze the trace elements zinc (Zn), copper (Cu), selenium (Se), manganese (Mn), iodine (I), iron (Fe), molybdenum (Mo) and bromine (Br). Differences in trace elements pre- and post-pasteurization were analyzed. No significant differences were found between the trace elements tested pre- and post-pasteurization, except for Fe (P<0.05). The median (interquartile range, 25 to 75%; μg l(-1)) of trace elements for pre- and post- pasteurization aliquots were-Zn: 1639 (888-4508), 1743 (878-4143), Cu: 360 (258-571), 367 (253-531), Se: 12.34 (11.73-17.60), 12.62 (11.94-16.64), Mn: (1.48 (1.01-1.75), 1.49 (1.11-1.75), I (153 (94-189), 158 (93-183), Fe (211 (171-277), 194 (153-253), Mo (1.46 (0.37-2.99), 1.42 (0.29-3.73) and Br (1066 (834-1443), 989 (902-1396). Pasteurization had minimal effect on several trace elements in donor breast milk but high levels of inter-donor variability of trace elements were observed. The observed decrease in the iron content of pasteurized donor milk is, however, unlikely to be clinically relevant.

  8. Chemical analysis and geochemical associations in Devonian black shale core samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.

  9. Study on elemental fingerprint of traditional marine Chinese medicine oysters from Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Zheng, Yongjun; Zheng, Kang; Li, Yantuan

    2012-09-01

    In order to investigate the relationship between the trace elements and the characteristics of the oysters, we analyzed the trace elements present in the germplasm of oysters from different producing areas in the Jiaozhou Bay. The element fingerprints were established to reflect the elemental characteristics of the oysters. Concentration patterns of the elements were deciphered by principle component analysis (PCA) and hierarchical cluster analysis (HCA). The six regions were discriminated with accuracy using HCA and PCA based on the concentration of 16 trace elements. The elements were viewed as characteristic elements of the oysters and the fingerprints of these elements could be used to distinguish the quality of the oysters.

  10. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota

    USGS Publications Warehouse

    Piper, David Z.; Skorupa, J.P.; Presser, T.S.; Hardy, M.A.; Hamilton, S.J.; Huebner, M.; Gulbrandsen, R.A.

    2000-01-01

    Major-element oxides and trace elements in the Phosphoria Formation at the Hot Springs Mine, Idaho were determined by a series of techniques. In this report, we examine the distribution of trace elements between the different solid components aluminosilicates, apatite, organic matter, opal, calcite, and dolomite that largely make up the rocks. High concentrations of several trace elements throughout the deposit, for example, As, Cd, Se, Tl, and U, at this and previously examined sites have raised concern about their introduction into the environment via weathering and the degree to which mining and the disposal of mined waste rock from this deposit might be accelerating that process. The question addressed here is how might the partitioning of trace elements between these solid host components influence the introduction of trace elements into ground water, surface water, and eventually biota, via weathering? In the case of Se, it is partitioned into components that are quite labile under the oxidizing conditions of subaerial weathering. As a result, it is widely distributed throughout the environment. Its concentration exceeds the level of concern for protection of wildlife at virtually every trophic level.

  11. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. I. FIFTEEN TRACE ELEMENTS IN NEW YORK, N.Y. (1971-72)

    EPA Science Inventory

    Previous studies have revealed that hair trace element concentrations can reflect exposure in cases of frank poisoning and deficiency. Correlations have been found also in some populations living in regions where metallurgic processes are conducted. This study reports significant...

  12. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  13. Measurement of Trace Elements During the Development and Immune Response of Heliothis virescens Larvae

    USDA-ARS?s Scientific Manuscript database

    While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...

  14. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  15. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  17. [Measurement of the status of trace elements in cattle using liver biopsy samples].

    PubMed

    Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M

    2007-02-01

    Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.

  18. Element ratios between digestive gland and gill tissues of the Antarctic bivalve Laternula elliptica as a proxy for element uptake from different environmental sources

    NASA Astrophysics Data System (ADS)

    Poigner, H.; Monien, D.; Monien, P.; Kriews, M.; Brumsack, H.-J.; Wilhelms-Dick, D.; Abele, D.

    2012-04-01

    Trace metals in bivalve carbonate shells are frequently used as environmental or paleoclimate proxies. Carbonate mineralogy and animals' physiology affect the incorporation of elements from different environmental sources into bivalve shells. Generally, metals from particulate matter are assimilated via the digestive tract; whereas dissolved metals are absorbed via gills. Therefore, measurements of element concentrations deposited in the shell matrix do not necessarily allow inference with respect to the assimilation pathways. In this study, we used element ratios between digestive gland (DG) and gills (cDG/cGill) of the Circum-Antarctic clam Laternula elliptica to identify predominating assimilation pathways and potential sources of bio-available metals. This normalization between tissues of each individual eliminates the effects of individual age and physiological condition (e.g. accumulation over lifetime, metabolic activity) on metal assimilation. These effects also minimize the reproducibility, when absolute element concentrations are compared between individuals from different locations. Therefore, an additional normalization is required. We favored "ellipsoid shell volume" over shell length or soft tissue weight as more conservative approximation for intra- and intersite comparisons. Metal concentrations in DG, gills, and hemolymph of the bivalve L. elliptica, collected at Potter Cove (King George Island, Antarctic Peninsula), were analyzed by means of inductively coupled plasma - optical emission spectroscopy and mass spectrometry after total acid digestion. The element ratios (cDG/cGill) indicate a predominant assimilation of Al, Ca, Fe, K, Mn, and Mg from the dissolved phase. These high Al and Fe concentrations in gill tissues and hemolymph are in contrast to the low solubility of Al and Fe in seawater. But high dissolved Fe concentrations in pore waters (up to 1400 μg L-1 due to suboxic sediment conditions) and glacial melt waters enriched in dissolved Al (of approx. 54 μg L-1 due to weathering processes) with respect to seawater concentrations (5.4-13.5 μg L-1) are likely bio-available sources at Potter Cove. In contrast, Cd, Cu, and Sr are mainly assimilated via the digestion of particulates. Since most studies on metal incorporation into bivalve shells have provided mathematical correlations to environmental data, this proxy-based approach provides a more causal relationship between sources and assimilation pathways. It improves the interpretation of element variations (if independent from shell mineralogy) in bivalve shells, especially, where a full characterization of the biogeochemical environment of the bivalves is lacking.

  19. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, R.A.; Kleinman, L.; Berkowitz, C. M.

    2010-06-01

    Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H{sub 2}SO{submore » 4}, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO{sub 3} radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp{sup 2} hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N{sub 2}O{sub 5} was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate.« less

  20. Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.

    1992-01-01

    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.

  1. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors.

    PubMed

    Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland

    2017-06-20

    Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.

  2. Chromium fractionation and speciation in natural waters.

    PubMed

    Pereira, Catarinie Diniz; Techy, João Gabriel; Ganzarolli, Edgard Moreira; Quináia, Sueli Pércio

    2012-05-01

    It is common for leather industries to dump chromium-contaminated effluent into rivers and other bodies of water. Thus, it is crucial to know the impacts caused by this practice to the environment. A study on chromium partitioning and speciation, with determination at trace levels, was carried out in a potentially contaminated creek. Chromium fractionation and speciation was performed using a flow-injection preconcentration system and detection by flame atomic absorption spectrometry. High levels of this element were found in the particulate material (449-9320 mg kg(-1)), which indicates its compatibility with this fraction. The concentration of Cr(iii) in the water samples collected ranged from 5.2-105.2 μg L(-1). Cr(vi) was always below of the DL (0.3 μg L(-1)). Chromium accumulation observed in the sediment (873-1691 mg kg(-1)) may confirm contamination due to the long term release of contaminated effluents in the creek.

  3. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Maki, Teruya; Ishikawa, Akira; Mastunaga, Tomoki; Pointing, Stephen B.; Saito, Yuuki; Kasai, Tomoaki; Watanabe, Koichi; Aoki, Kazuma; Horiuchi, Amane; Lee, Kevin C.; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2016-12-01

    Atmospheric aerosols contain particulates that are deposited to oceanic surface waters. These can represent a major source of nutrients, trace metals, and organic compounds for the marine environment. The Japan Sea and the western Pacific Ocean are particularly affected by aerosols due to the transport of desert dust and industrially derived particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from continental Asia. We hypothesized that supplementing seawater with aerosol particulates would lead to measurable changes in surface water nutrient composition as well as shifts in the marine microbial community. Shipboard experiments in the Pacific Ocean involved the recovery of oligotrophic oceanic surface water and subsequent supplementation with aerosol particulates obtained from the nearby coastal mountains, to simulate marine particulate input in this region. Initial increases in nitrates due to the addition of aerosol particulates were followed by a decrease correlated with the increase in phytoplankton biomass, which was composed largely of Bacillariophyta (diatoms), including Pseudo-nitzschia and Chaetoceros species. This shift was accompanied by changes in the bacterial community, with apparent increases in the relative abundance of heterotrophic Rhodobacteraceae and Colwelliaceae in aerosol particulate treated seawater. Our findings provide empirical evidence revealing the impact of aerosol particulates on oceanic surface water microbiology by alleviating nitrogen limitation in the organisms.

  4. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  5. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  6. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.

    2004-08-01

    Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.

  7. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).

  8. Investigation of the roles of trace elements during hepatitis C virus infection using protein-protein interactions and a shortest path algorithm.

    PubMed

    Zhu, LiuCun; Chen, XiJia; Kong, Xiangyin; Cai, Yu-Dong

    2016-11-01

    Hepatitis is a type of infectious disease that induces inflammation of the liver without pinpointing a particular pathogen or pathogenesis. Type C hepatitis, as a type of hepatitis, has been reported to induce cirrhosis and hepatocellular carcinoma within a very short amount of time. It is a great threat to human health. Some studies have revealed that trace elements are associated with infection with and immune rejection against hepatitis C virus (HCV). However, the mechanism underlying this phenomenon is still unclear. In this study, we aimed to expand our knowledge of this phenomenon by designing a computational method to identify genes that may be related to both HCV and trace element metabolic processes. The searching procedure included three stages. First, a shortest path algorithm was applied to a large network, constructed by protein-protein interactions, to identify potential genes of interest. Second, a permutation test was executed to exclude false discoveries. Finally, some rules based on the betweenness and associations between candidate genes and HCV and trace elements were built to select core genes among the remaining genes. 12 lists of genes, corresponding to 12 types of trace elements, were obtained. These genes are deemed to be associated with HCV infection and trace elements metabolism. The analyses indicate that some genes may be related to both HCV and trace element metabolic processes, further confirming the associations between HCV and trace elements. The method was further tested on another set of HCV genes, the results indicate that this method is quite robustness. The newly found genes may partially reveal unknown mechanisms between HCV infection and trace element metabolism. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment.

    PubMed

    Doig, Lorne E; Carr, Meghan K; Meissner, Anna G N; Jardine, Tim D; Jones, Paul D; Bharadwaj, Lalita; Lindenschmidt, Karl-Erich

    2017-11-01

    Across the circumpolar world, intensive anthropogenic activities in the southern reaches of many large, northward-flowing rivers can cause sediment contamination in the downstream depositional environment. The influence of ice cover on concentrations of inorganic contaminants in bed sediment (i.e., sediment quality) is unknown in these rivers, where winter is the dominant season. A geomorphic response unit approach was used to select hydraulically diverse sampling sites across a northern test-case system, the Slave River and delta (Northwest Territories, Canada). Surface sediment samples (top 1 cm) were collected from 6 predefined geomorphic response units (12 sites) to assess the relationships between bed sediment physicochemistry (particle size distribution and total organic carbon content) and trace element content (mercury and 18 other trace elements) during open-water conditions. A subset of sites was resampled under-ice to assess the influence of season on these relationships and on total trace element content. Concentrations of the majority of trace elements were strongly correlated with percent fines and proxies for grain size (aluminum and iron), with similar trace element grain size/grain size proxy relationships between seasons. However, finer materials were deposited under ice with associated increases in sediment total organic carbon content and the concentrations of most trace elements investigated. The geomorphic response unit approach was effective at identifying diverse hydrological environments for sampling prior to field operations. Our data demonstrate the need for under-ice sampling to confirm year-round consistency in trace element-geochemical relationships in fluvial systems and to define the upper extremes of these relationships. Whether contaminated or not, under-ice bed sediment can represent a "worst-case" scenario in terms of trace element concentrations and exposure for sediment-associated organisms in northern fluvial systems. Environ Toxicol Chem 2017;36:2916-2924. © 2017 SETAC. © 2017 SETAC.

  10. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  11. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOEpatents

    Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  12. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  13. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients

    NASA Astrophysics Data System (ADS)

    Morel, F. M. M.; Milligan, A. J.; Saito, M. A.

    2003-12-01

    The bulk of living biomass is chiefly made up of only a dozen "major" elements - carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, chlorine, calcium, magnesium, sulfur (and silicon in diatoms) - whose proportions vary within a relatively narrow range in most organisms. A number of trace elements, particularly first row transition metals - manganese, iron, nickel, cobalt, copper, and zinc - are also "essential" for the growth of organisms. At the molecular level, the chemical mechanisms by which such elements function as active centers or structural factors in enzymes and by which they are accumulated and stored by organisms is the central topic of bioinorganic chemistry. At the scale of ocean basins, the interplay of physical, chemical, and biological processes that govern the cycling of biologically essential elements in seawater is the subject of marine biogeochemistry. For those interested in the growth of marine organisms, particularly in the one-half of the Earth's primary production contributed by marine phytoplankton, bioinorganic chemistry and marine biogeochemistry are critically linked by the extraordinary paucity of essential trace elements in surface seawater, which results from their biological utilization and incorporation in sinking organic matter. How marine organisms acquire elements that are present at nano- or picomolar concentrations in surface seawater; how they perform critical enzymatic functions when necessary metal cofactors are almost unavailable are the central topics of "marine bioinorganic chemistry." The central aim of this field is to elucidate at the molecular level the metal-dependent biological processes involved in the major biogeochemical cycles.By examining the solutions that emerged from the problems posed by the scarcity of essential trace elements, marine bioinorganic chemists bring to light hitherto unknown ways to take up or utilize trace elements, new molecules, and newer "essential" elements. Focusing on molecular mechanisms involved in such processes as inorganic carbon fixation, organic carbon respiration, or nitrogen transformation, they explain how the cycles of trace elements are critically linked to those of major nutrients such as carbon or nitrogen. But we have relatively little understanding of the binding molecules and the enzymes that mediate the biochemical role of trace metals in the marine environment. In this sense, this chapter is more a "preview" than a review of the field of marine bioinorganic chemistry. To exemplify the concepts and methods of this field, we have chosen to focus on one of its most important topics: the potentially limiting role of trace elements in primary marine production. As a result we center our discussion on particular subsets of organisms, biogeochemical cycles, and trace elements. Our chief actors are marine phytoplankton, particularly eukaryotes, while heterotrophic bacteria make only cameo appearances. The biogeochemical cycles that will serve as our plot are those of the elements involved in phytoplankton growth, the major algal nutrients - carbon, nitrogen, phosphorus, and silicon - leaving aside, e.g., the interesting topic of the marine sulfur cycle. Seven trace metals provide the intrigue: manganese, iron, nickel, cobalt, copper, zinc, and cadmium. But several other trace elements such as selenium, vanadium, molybdenum, and tungsten (and, probably, others not yet identified) will assuredly add further twists in future episodes.We begin this chapter by discussing what we know of the concentrations of trace elements in marine microorganisms and of the relevant mechanisms and kinetics of trace-metal uptake. We then review the biochemical role of trace elements in the marine cycles of carbon, nitrogen, phosphorus, and silicon. Using this information, we examine the evidence, emanating from both laboratory cultures and field measurements, relevant to the mechanisms and the extent of control by trace metals of marine biogeochemical cycles. Before concluding with a wistful glimpse of the future of marine bioinorganic chemistry we discuss briefly some paleoceanographic aspects of this new field: how the chemistry of the planet "Earth" - particularly the concentrations of trace elements in the oceans - has evolved since its origin, chiefly as a result of biological processes and how the evolution of life has, in turn, been affected by the availability of essential trace elements.

  14. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    PubMed

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  15. PIXE analysis of ancient Chinese Qing dynasty porcelain

    NASA Astrophysics Data System (ADS)

    Cheng, Huansheng; He, Wenquan; Tang, Jiayong; Yang, Fujia; Wang, Jianhua

    1996-09-01

    The major and minor chemical compositions and trace element content of white glaze made in Qing dynasty at kuan kiln have been determined by PIXE. Experimental results show that trace element contents RbSrZr are useful to distinguish the place of production of ancient porcelain. In the porcelain from different kilns situated in a same province, the trace element contents can be different from each other. Determining and comparing the major and minor compositions and trace elemental concentrations in white glaze by PIXE technique, we can distinguish a precious Qing dynasty porcelain made at kuan kiln from a fake.

  16. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin: Trace elements in streambed sediment and fish livers, 1995-96

    USGS Publications Warehouse

    Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.

    2000-01-01

    In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.

  17. Mobilization of lead and other trace elements following shock chlorination of wells

    USGS Publications Warehouse

    Seiler, R.L.

    2006-01-01

    Many owners of domestic wells shock chlorinate their wells to treat for bacterial contamination or control bad odors from sulfides. Analysis of well water with four wells from Fallon, Nevada, showed that following recommended procedures for shock chlorinating wells can cause large, short-lasting increases in trace-element concentrations in ground water, particularly for Cu, Fe, Pb, and Zn. Lead concentrations increased up to 745 fold between samples collected just before the well was shock chlorinated and the first sample collected 22-24??h later; Zn concentrations increased up to 252 fold, Fe concentrations increased up to 114 fold, and Cu concentrations increased up to 29 fold. Lead concentrations returned to near background levels following pumping of about one casing volume, however, in one well an estimated 120??mg of excess Pb were pumped before concentrations returned to prechlorination levels. Total Pb concentrations were much greater than filtered (0.45????m) concentrations, indicating the excess Pb is principally particulate. Recommended procedures for purging treated wells following shock chlorination may be ineffective because a strong NaOCl solution can remain in the casing above the pump even following extended pumping. Only small changes in gross alpha and beta radioactivity occurred following shock chlorination. USEPA has not promulgated drinking-water standards for 210Pb, however, measured 210Pb activities in the study area typically were less than the Canadian Maximum Acceptable Concentration of 100??mBq/L. By consuming well water shortly after shock chlorination the public may inadvertently be exposed to levels of Pb, and possibly 210Pb, that exceed drinking-water standards.

  18. The effect of acidified sample storage time on the determination of trace element concentration in ice cores by ICP-SFMS

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.

    2012-12-01

    Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.

  19. Trace element storage capacity of sediments in dead Posidonia oceanica mat from a chronically contaminated marine ecosystem.

    PubMed

    Di Leonardo, Rossella; Mazzola, Antonio; Cundy, Andrew B; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2017-01-01

    Posidonia oceanica mat is considered a long-term bioindicator of contamination. Storage and sequestration of trace elements and organic carbon (C org ) were assessed in dead P. oceanica mat and bare sediments from a highly polluted coastal marine area (Augusta Bay, central Mediterranean). Sediment elemental composition and sources of organic matter have been altered since the 1950s. Dead P. oceanica mat displayed a greater ability to bury and store trace elements and C org than nearby bare sediments, acting as a long-term contaminant sink over the past 120 yr. Trace elements, probably associated with the mineral fraction, were stabilized and trapped despite die-off of the overlying P. oceanica meadow. Mat deposits registered historic contamination phases well, confirming their role as natural archives for recording trace element trends in marine coastal environments. This sediment typology is enriched with seagrass-derived refractory organic matter, which acts mainly as a diluent of trace elements. Bare sediments showed evidence of inwash of contaminated sediments via reworking; more rapid and irregular sediment accumulation; and, because of the high proportions of labile organic matter, a greater capacity to store trace elements. Through different processes, both sediment typologies represent a repository for chemicals and may pose a risk to the marine ecosystem as a secondary source of contaminants in the case of sediment dredging or erosion. Environ Toxicol Chem 2017;36:49-58. © 2016 SETAC. © 2016 SETAC.

  20. Long term atmospheric aerosol characterization in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Gerab, Fábio; Yamasoe, Marcia A.

    This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

  1. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.

  2. Trace element levels and cognitive function in rural elderly Chinese.

    PubMed

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W; Ma, Feng; Hall, Kathleen S; Murrell, Jill R; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C

    2008-06-01

    Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Three trace elements-calcium, cadmium, and copper-were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p <.0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p =.0044 and p =.0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population.

  3. Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds.

    PubMed

    Guyot, Hugues; Saegerman, Claude; Lebreton, Pascal; Sandersen, Charlotte; Rollin, Frédéric

    2009-01-01

    Selenium (Se), iodine (I), zinc (Zn) and copper (Cu) deficiencies in cattle have been reported in Europe. These deficiencies are often associated with diseases. The aim of the study was to assess trace element status in Belgian cattle herds showing pathologies and to compare them to healthy cattle herds. Eighty-two beef herds with pathologies, 11 healthy beef herds, 65 dairy herds with pathologies and 20 healthy dairy herds were studied during barn period. Blood and/or milk samples were taken in healthy animals. Plasma Zn, Cu, inorganic I (PII) and activity of glutathione peroxidase in erythrocytes (GPX) were assayed. In milk, I concentration was measured. Data about pathologies and nutrition in the herds were collected. According to defined thresholds, it appeared that a large proportion of deficient herds belonged to "sick" group of herds. This conclusion was supported by the mean value of trace elements and by the fact that a majority of individual values of trace elements was below the threshold. Dairy herds had mean values of trace elements higher than beef herds. More concentrates and minerals were used in healthy herds versus "sick" herds. These feed supplements were also used more often in dairy herds, compared to beef herds. Trace elements deficiencies are present in cattle herds in Belgium and are linked to diseases. Nutrition plays a major role in the trace elements status.

  4. Long-term anaerobic digestion of food waste stabilized by trace elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lei, E-mail: wxzyfx@yahoo.com; Jahng, Deokjin, E-mail: djahng@mju.ac.kr

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achievedmore » for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.« less

  5. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies

    USGS Publications Warehouse

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.

    2011-01-01

    Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.

  6. Using column experiments to examine transport of As and other trace elements released from poultry litter: Implications for trace element mobility in agricultural watersheds.

    PubMed

    Oyewumi, Oluyinka; Schreiber, Madeline E

    2017-08-01

    Trace elements are added to poultry feed to control infection and improve weight gain. However, the fate of these trace elements in poultry litter is poorly understood. Because poultry litter is applied as fertilizer in many agricultural regions, evaluation of the environmental processes that influence the mobility of litter-derived trace elements is critical for predicting if trace elements are retained in soil or released to water. This study examined the effect of dissolved organic carbon (DOC) in poultry litter leachate on the fate and transport of litter-derived elements (As, Cu, P and Zn) using laboratory column experiments with soil collected from the Delmarva Peninsula (Mid-Atlantic, USA), a region of intense poultry production. Results of the experiments showed that DOC enhanced the mobility of all of the studied elements. However, despite the increased mobility, 60-70% of Zn, As and P mass was retained within the soil. In contrast, almost all of the Cu was mobilized in the litter leachate experiments, with very little retention in soil. Overall, our results demonstrate that the mobility of As, Cu, Zn and P in soils which receive poultry litter application is strongly influenced by both litter leachate composition, specifically organic acids, and adsorption to soil. Results have implications for understanding fate and transport of trace elements released from litter application to soil water and groundwater, which can affect both human health and the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spatial distribution and potential sources of trace metals in insoluble particles of snow from Urumqi, China.

    PubMed

    Li, Xiaolan; Jiang, Fengqing; Wang, Shaoping; Turdi, Muyesser; Zhang, Zhaoyong

    2015-01-01

    The purpose of this work is to characterize trace elements in snow in urban-suburb gradient over Urumqi city, China. The spatial distribution patterns of 11 trace metals in insoluble particulate matters of snow were revealed by using 102 snow samples collected in and around urban areas of Urumqi, a city suffering from severe wintertime air pollution in China. Similar spatial distribution for Mn, Cu, Zn, Ni, and Pb was found and their two significant high-value areas located in the west and east, respectively, and a high-value area in the south, which were correlated with factory emissions, traffic activities, and construction fugitive dust. The high-value areas of Cr, Ni, and V occurred in the northeast corner and along main traffic paths, which were linked to oil refinery and vehicular emissions. High value of Be presented in the west of the city. The high-value area of Co in the northeast could be related to local soil. Cd and U displayed relatively even spatial patterns in the urban area. In view of distance from the urban center, e.g., from the first circular belt to the fourth circular belt, except Be, V, Cd, and U, the contents of other metals generally decreased from the first circular belt to the forth circular belt, implying the effect of human activity clearly. Additionally, prevailing northwesterly winds and occasionally southeasterly winds in winter were associated with decreased, generally, concentrations of trace metal in snow from the urban center to the southern suburb along a northwest and southeast transect. The information on concentrations and spatial distributions of these metals in insoluble particles of snow in winter will be valuable for further environmental protection and planning.

  8. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  9. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health.

    PubMed

    Li, Peimiao; Gao, Xuelu

    2014-11-01

    One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The occurrence and distribution of selected trace elements in the upper Rio Grande and tributaries in Colorado and Northern New Mexico

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, D.A.; Brinton, T.I.; Peart, D.B.; Healy, D.F.

    2001-01-01

    Two sampling trips were undertaken in 1994 to determine the distribution of trace elements in the Upper Rio Grande and several of its tributaries. Water discharges decreased in the main stem of the Rio Grande from June to September, whereas dissolved concentrations of trace elements generally increased. This is attributed to dilution of base flow from snowmelt runoff in the June samples. Of the three major mining districts (Creede, Summitville, and Red River) in the Upper Rio Grande drainage basin, only the Creede District appears to impact the Rio Grande in a significant manner, with both waters and sediments having elevated concentrations of some trace elements considerably downriver. For example, dissolved zinc concentrations upriver of Willow Creek, which primarily drains the Creede District, were about 2-3 μg/L; immediately downstream of the Willow Creek confluence, concentrations were above 20 μg/L; and elevated concentrations occurred in the Rio Grande for the next 100 km. The Red River District does not significantly impact the Upper Rio Grande for most trace elements. Because of current water management practices, it is difficult to assess the impact of the Summitville District on the Upper Rio Grande. There are, however, large increases in many dissolved trace element concentrations as the Rio Grande passes through the San Luis Valley, coincident with elevated concentrations of those same trace elements in tributaries. Among these elements are As, B, Cr, Li, Mn, Mo, Ni, Sr, U, and V. None of the trace elements exceeded U.S. EPA primary drinking water standards in either survey, with the exception of cadmium in Willow Creek. Secondary drinking water standards were frequently violated, especially in tributaries draining areas where mining has occurred. Dissolved zinc (in Willow Creek in both June and September) was the only element that exceeded the EPA Water Quality Criteria for aquatic life of 120 μg/L.

  11. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.

  12. Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia

    NASA Astrophysics Data System (ADS)

    Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe

    2008-02-01

    Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.

  13. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-09-01

    There has been an increasing concern about the emissions of airborne particulate matter (PM) from diesel engines because of their close association with adverse health and environmental impacts. Among the alternative fuels being considered, biodiesel made by the transesterification of waste cooking oil has received wide attention in recent years because of its low cost and the added advantage of reducing waste oil disposal. This study was conducted to make a comparative evaluation of the particulate-bound elements emitted from ultra low sulphur diesel (ULSD) and waste cooking oil-derived biodiesel (B100) and a blend of both the fuels (B50). It was observed that the PM mass concentrations were reduced by about 36% when B100 was used. Crustal elements such as Mg, K and Al were found to be in higher concentrations compared to other elements emitted from both B100 and ULSD. Zn, Cr, Cu, Fe, Ni, Mg, Ba, K were found to be higher in the biodiesel exhaust while Co, Pb, Mn, Cd, Sr, and As were found to be higher in the ULSD exhaust. To evaluate the potential health risk due to inhalation of PM emitted from diesel engines running on ULSD and B100, health risk estimates based on exposure and dose-response assessments of particulate-bound elements were calculated assuming exposure for 24 h. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to ULSD.

  14. Long-term anaerobic digestion of food waste stabilized by trace elements.

    PubMed

    Zhang, Lei; Jahng, Deokjin

    2012-08-01

    The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements. Copyright © 2012. Published by Elsevier Ltd.

  15. Concentrations of mercury and other trace elements in walleye, smallmouth bass, and rainbow trout in Franklin D. Roosevelt Lake and the upper Columbia River, Washington, 1994

    USGS Publications Warehouse

    Munn, M.D.; Cox, S.E.; Dean, C.J.

    1995-01-01

    Three species of sportfish--walleye, smallmouth bass, and rainbow trout--were collected from Franklin D. Roosevelt Lake and the upstream reach of the Columbia River within the state of Washington, to determine the concentrations of mercury and other selected trace elements in fish tissue. Concentrations of total mercury in walleye fillets ranged from 0.11 to 0.44 milligram per kilogram, with the higher concentrations in the larger fish. Fillets of smallmouth bass and rainbow trout also contained mercury, but generally at lower concentrations. Other selected trace elements were found in fillet samples, but the concentrations were generally low depending on species and the specific trace element. The trace elements cadmium, copper, lead, and zinc were found in liver tissue of these same species with zinc consistently present in the highest concentration.

  16. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    PubMed

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  17. Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy).

    PubMed

    Frontalini, Fabrizio; Buosi, Carla; Da Pelo, Stefania; Coccioni, Rodolfo; Cherchi, Antonietta; Bucci, Carla

    2009-06-01

    In order to assess the response of benthic foraminifera to trace element pollution, a study of benthic foraminiferal assemblages was carried out into sediment samples collected from the Santa Gilla lagoon (Sardinia, Italy). The lagoon has been contaminated by industrial waste, mainly trace elements, as well as by agricultural and domestic effluent. The analysis of surficial sediment shows enrichment in trace elements, including Cr, Cu, Hg, Ni, Pb and Zn. Biotic and abiotic data, analyzed with multivariate techniques of statistical analysis, reveal a distinct separation of both the highly polluted and less polluted sampling sites. The innermost part of the lagoon, comprising the industrial complex at Macchiareddu, is exposed to a high load of trace elements which are probably enhanced by their accumulation in the finer sediment fraction. This area reveals lower diversity and higher percentages of abnormalities when compared to the outermost part of the lagoon.

  18. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  19. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  20. Portable detection of trace metals in airborne particulates and sediments via μPADs and smartphone.

    PubMed

    Jia, Yuan; Dong, Hui; Zheng, Jianping; Sun, Hao

    2017-11-01

    Particulate matter (PM), a key indicator of air pollution by natural and anthropogenic activities, contributes to a wide spectrum of diseases that lead to a shortening of life expectancy. It has been recognized that trace metals in airborne PM are highly toxic and can be correlated with lesion in respiratory, gastrointestinal, immunological, and hematological systems. Traditional methods for trace metal assay require sophisticated instrumentations and highly trained operators in centralized laboratories. In this work, by integrating the technologies of microfluidic paper-based analytical devices, additive manufacturing, smartphone, and colorimetric sensing, we developed the first smartphone based paper microfluidic platform for portable, disposable, and quantitative measurements of cobalt (Co), copper (Cu), and iron (Fe) in ambient air and street sediments. On a single A4-sized paper, 48 devices were fabricated in under 30 s with a total cost of ∼$1.9. On each device, 12 reaction units were patterned and used for colorimetric tests. Particulate samples from urban ambient air and street sediments were collected, processed, and analyzed. Signals of the on-chip complexation product were recorded using a smartphone camera and processed by a self-developed app on an iOS system. For precisely controlling the object distance, chip position, and luminance, a hand-held 3D cellphone housing was designed and printed. The detection limits of Co, Cu, and Fe were determined to be 8.2, 45.8, and 186.0 ng, while the linear dynamic ranges were calculated to be 8.2-81.6, 45.8-4.58 × 10 2 , and 1.86 × 10 2 -1.86 × 10 3  ng, representing a practically relevant device performance with a significant reduction in the detection cost and time consumption. Trace metals in ambient air and sediments of two cities in China have been quantified portably, thus demonstrating the utility of our system in improving strategies for air pollution control in low-resource settings.

  1. Assessment of dust exposure in a steel plant in the eastern coast of peninsular Malaysia.

    PubMed

    Nurul, Ainun Hamzah; Shamsul, Bahri Mohd Tamrin; Noor Hassim, Ismail

    2016-11-22

    Steel manufacturing produces dust, fumes, and pollutant gases that may give adverse health effects to the respiratory function of workers. Improper occupational hygiene practice in the workplace will affect both workers wellbeing and productivity. To assess the level of particulate matter [(PM2.5, PM10, and Total Particulate Matter (TPM)], and trace metal dust concentrations in different sections of a steel plant and compare with the occupational exposure values. The work environmental parameters of the particulate matters were evaluated using Indoor Air Quality, while metal dust concentrations were measured using portable personal air sampler. A total of 184 personal samples were randomly collected from workers in three major sections; steel making plant, direct reduced plant, and support group. Trace metal dust concentrations were subjected to wet mineral acid mixture digestion and analysed by atomic absorption spectrophotometer (AAS). The overall average PM2.5 concentration observed was varied according to the section: steel making plant was 0.18 mg/m3, direct reduced iron plant was 0.05 mg/m3, and support plant was 0.05 mg/m3. Average PM 10 concentration in steel making shop (SMS) plant, direct reduced (DR) plant, and support plant were 0.70 mg/m3, 0.84 mg/m3, and 0.58 mg/m3, respectively. The average TWA8 of trace metal dusts (cobalt and chromium) in all the sections exceeded 1 to 3 times the ACGIH prescribed values, OSHA PELs, NIOSH RELs as well as USECHH OSHA, whereas TWA8 concentration of nickel for each section did not exceed the occupational exposure values. The average PM2.5, PM10 and TPM did not exceed the prescribed values, while average trace metal dust concentration TWA8 for cobalt and chromium in all plants exceeded occupational exposure prescribed values. However, the nickel found did not exceed the prescribed values in all the plants except for NIOSH RELs.

  2. Cometary particulate analyzer. [mass spectrometry of laser plasmas

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.

    1979-01-01

    A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.

  3. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility.

    PubMed

    Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-10-01

    The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.

  4. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    PubMed

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  5. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review

    PubMed Central

    Hussain, Mohsina

    2016-01-01

    Human body requires certain essential elements in small quantities and their absence or excess may result in severe malfunctioning of the body and even death in extreme cases because these essential trace elements directly influence the metabolic and physiologic processes of the organism. Rapid urbanization and economic development have resulted in drastic changes in diets with developing preference towards refined diet and nutritionally deprived junk food. Poor nutrition can lead to reduced immunity, augmented vulnerability to various oral and systemic diseases, impaired physical and mental growth, and reduced efficiency. Diet and nutrition affect oral health in a variety of ways with influence on craniofacial development and growth and maintenance of dental and oral soft tissues. Oral potentially malignant disorders (OPMD) are treated with antioxidants containing essential trace elements like selenium but even increased dietary intake of trace elements like copper could lead to oral submucous fibrosis. The deficiency or excess of other trace elements like iodine, iron, zinc, and so forth has a profound effect on the body and such conditions are often diagnosed through their early oral manifestations. This review appraises the biological functions of significant trace elements and their role in preservation of oral health and progression of various oral diseases. PMID:27433374

  6. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  7. Phytoaccumulation of trace elements by wetland plants. 2: Water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.L.; Zayed, A.M.; Qian, J.H.

    Wetland plants are being used successfully for the phytoremediation of trace elements in natural and constructed wetlands. This study demonstrates the potential of water hyacinth (Eichhornia crassipes), an aquatic floating plant, for the phytoremediation of six trace elements. The ability of water hyacinth to take up and translocate six trace elements--As(V), Cd(II), Cr(VI), Cu(II), Ni(II), and Se(VI)--was studied under controlled conditions. Water hyacinth accumulated Cd and Cr best, Se and Cu at moderate levels, and was a poor accumulator of As and Ni. The highest levels of Cd found in shoots and roots were 371 and 6103 mg kg[sup [minus]1]more » dry wt., respectively, and those of Cr were 119 and 32951 mg kg[sup [minus]1] dry wt, respectively. Cadmium, Cr, Cu, Ni, and As were more highly accumulated in roots than in shoots. In contrast, Se was accumulated more in shoots than in roots at most external concentrations. Water hyacinth had high trace element bioconcentration factors when supplied with low external concentrations of all six elements, particularly Cd, Cr, and Cu. Therefore, water hyacinth will be very efficient at phytoextracting trace elements from wastewater containing low concentrations of these elements. The authors conclude that water hyacinth is a promising candidate for phytoremediation of wastewater polluted with Cd, Cr, Cu, and Se.« less

  8. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  9. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    NASA Astrophysics Data System (ADS)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  10. The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Kornacki, Alan S.; Fegley, Bruce, Jr.

    1986-01-01

    The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.

  11. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  12. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    NASA Astrophysics Data System (ADS)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  13. Geochemistry of the suspended sediment in the estuaries of the Mandovi and Zuari rivers, central west coast of India.

    PubMed

    Kessarkar, Pratima M; Shynu, R; Rao, V Purnachandra; Chong, Feng; Narvekar, Tanuja; Zhang, Jing

    2013-05-01

    The geochemistry of the suspended particulate matter (SPM) collected during the monsoon was determined to identify the sources of SPM and to understand the physicochemical processes in the Mandovi and Zuari river estuaries. The concentrations of SPM decrease seaward in both estuaries, but are relatively high at bay stations. Kaolinite is the most dominant clay mineral in the upstream of both rivers. Smectite increases seaward in both estuaries and is abundant in the bay. Upstream stations of Mandovi, where ore deposits are stored on the shore, exhibit high Fe, Mn, total rare earth elements (∑REE), and middle REE- and heavy REE-enriched patterns. Channel stations of both estuaries exhibit middle REE- and light REE-enriched patterns, which gradually changed seaward to middle REE- and heavy REE-enriched patterns. Canal stations exhibit the highest concentrations of major and trace metals. High metal/Al ratios occur at stations in the upstream of Zuari and at the confluence of canals in the Mandovi estuary. Enrichment factors of metals indicate that Mn is significantly polluted while other metals are moderately polluted. The δ(13)C and δ(15)N of organic matter indicate that the terrigenous organic matter at the upstream is diluted seaward by marine organic matter. Organic matter at bay stations is largely marine and altered-type. The compositions of SPM are controlled by the particulates from ore dust, the geology of the drainage basins, and the physicochemical processes in the estuaries. Particulates resuspended from the bay are dominated by ore dust, which are advected into the channels of both estuaries during the lull periods of the monsoon.

  14. Co-occurrence profiles of trace elements in potable water systems: a case study.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Charisiadis, Pantelis; Costa, Costas N

    2014-11-01

    Potable water samples (N = 74) from 19 zip code locations in a region of Greece were profiled for 13 trace elements composition using inductively coupled plasma mass spectrometry. The primary objective was to monitor the drinking water quality, while the primary focus was to find novel associations in trace elements occurrence that may further shed light on common links in their occurrence and fate in the pipe scales and corrosion products observed in urban drinking water distribution systems. Except for arsenic at two locations and in six samples, rest of the analyzed elements was below maximum contaminant levels, for which regulatory values are available. Further, we attempted to hierarchically cluster trace elements based on their covariances resulting in two groups; one with arsenic, antimony, zinc, cadmium, and copper and the second with the rest of the elements. The grouping trends were partially explained by elements' similar chemical activities in water, underscoring their potential for co-accumulation and co-mobilization phenomena from pipe scales into finished water. Profiling patterns of trace elements in finished water could be indicative of their load on pipe scales and corrosion products, with a corresponding risk of episodic contaminant release. Speculation was made on the role of disinfectants and disinfection byproducts in mobilizing chemically similar trace elements of human health interest from pipe scales to tap water. It is warranted that further studies may eventually prove useful to water regulators from incorporating the acquired knowledge in the drinking water safety plans.

  15. A simple model for closure temperature of a trace element in cooling bi-mineralic systems

    NASA Astrophysics Data System (ADS)

    Liang, Yan

    2015-09-01

    Closure temperature is defined as the lower temperature limit at which the element of interest effectively ceases diffusive exchange with its surrounding medium during cooling. Here we generalize the classic equation of Dodson (1973) for cooling mono-mineralic systems to cooling bi-mineralic aggregates by considering diffusive exchange of a trace element between the two minerals in a closed system. We present a simple analytical model that includes key parameters affecting the closure temperature of a trace element in cooling bi-mineralic systems: cooling rate, temperature-dependent diffusion coefficients for the trace element in the two minerals, temperature-dependent partition coefficient of the trace element between the two minerals, effective grain sizes of the two minerals, and volume proportions of the minerals in the system. We show that closure temperatures of a trace element in cooling bi-mineralic systems are bounded by the closure temperatures of the trace element in the two mono-mineralic systems and that our generalized model reduces to Dodson's equation when one of the mineral serves as "an effective infinite" reservoir to the other mineral. Application to closure temperatures of REE in orthopyroxene and clinopyroxene bi-mineralic systems highlights the importance of REE diffusion and partitioning in the pyroxenes as well as clinopyroxene modal abundance and grain size in the systems. Closure temperatures for REE in two-pyroxene bearing equigranular rocks are controlled primarily by diffusion in orthopyroxene unless the modal abundance of clinopyroxene is very small. This has important bearings on the interpretation of temperatures derived from the REE-in-two-pyroxene thermometer.

  16. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  18. Sequential patterns of essential trace elements composition in Gracilaria verrucosa and its generated products

    NASA Astrophysics Data System (ADS)

    Izzati, Munifatul; Haryanti, Sri; Parman, Sarjana

    2018-05-01

    Gracilaria widely known as a source of essential trace elements. However this red seaweeds also has great potential for being developed into commercial products. This study examined the sequential pattern of essential trace elements composition in fresh Gracilaria verrucosa and a selection of its generated products, nemely extracted agar, Gracilaria salt and Gracilaria residue. The sample was collected from a brackish water pond, located in north part Semarang, Central Java. The collected sample was then dried under the sun, and subsequently processed into aformentioned generated products. The Gracilaria salt was obtain by soaking the sun dried Gracilaria overnight in fresh water overnight. The resulted salt solution was then boiled leaving crystal salt. Extracted agar was obtained with alkali agar extraction method. The rest of remaining material was considered as Gracilaria residue. The entire process was repeated 3 times. The compositin of trace elements was examined using ICP-MS Spectrometry. Collected data was then analyzed by ANOVA single factor. Resulting sequential pattern of its essential trace elements composition was compared. A regular table salt was used as controls. Resuts from this study revealed that Gracilaria verrucosa and its all generated products all have similarly patterned the composition of essential trace elements, where Mn>Zn>Cu>Mo. Additionally this pattern is similar to different subspecies of Gracilaria from different location and and different season. However, Gracilaria salt has distinctly different pattern of sequential essential trace elements composition compared to table salt.

  19. Autonomous water sampling for long-term monitoring of trace metals in remote environments.

    PubMed

    Kim, Hyojin; Bishop, James K B; Wood, Todd J; Fung, Inez Y

    2012-10-16

    A remotely controlled autonomous method for long-term high-frequency sampling of environmental waters in remote locations is described. The method which preserves sample integrity of dissolved trace metals and major ions for month-long periods employs a gravitational filtration system (GFS) that separates dissolved and particulate phases as samples are collected. The key elements of GFS are (1) a modified "air-outlet" filter holder to maximize filtration rate and thus minimize filtration artifacts; and (2) the direct delivery of filtrate to dedicated bottle sets for specific analytes. Depth and screen filter types were evaluated with depth filters showing best performance. GFS performance is validated using ground, stream, and estuary waters. Over 30 days of storage, samples with GFS treatment had average recoveries of 95 ± 19% and 105 ± 7% of Fe and Mn, respectively; without GFS treatment, average recoveries were only 16% and 18%. Dissolved major cations K, Mg, and Na were stable independent of collection methodology, whereas Ca in some groundwater samples decreased up to 42% without GFS due to CaCO(3) precipitation. In-field performance of GFS equipped autosamplers is demonstrated using ground and streamwater samples collected at the Angelo Coast Range Reserve, California from October 3 to November 4 2011.

  20. Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic

    NASA Astrophysics Data System (ADS)

    Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.

    2017-12-01

    Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.

  1. Trace elements: implications for nursing.

    PubMed

    Hayter, J

    1980-01-01

    Although most were unknown a few years ago, present evidence indicates that at least 25 trace elements have some pertinence to health. Unlike vitamins, they cannot be synthesized. Some trace elements are now considered important only because of their harmful effects but traces of them may be essential. Zinc is especially important during puberty, pregnancy and menopause and is related to protein metabolism. Both fluoride and cadmium accumulate in the body year after year. Cadmium is positively correlated with several chronic diseases, especially hypertension. It is obtained from smoking and drinking soft water. Silicon, generally associated with silicosis, may be necessary for healthy bone and connective tissue. Chromium, believed to be the glucose tolerance factor, is obtained from brewer's yeast, spices, and whole wheat products. Copper deficiency may be implicated in a wide range of cardiovascular and blood related disorders. Either marginal deficiencies or slight excesses of most trace elements are harmful. Nurses should instruct patients to avoid highly refined foods, fad diets, or synthetic and fabricated foods. A well balanced and varied diet is the best safeguard against trace element excesses or deficiencies.

  2. Evolution and current understanding of physicochemical characterization of particulate matter from reactivity controlled compression ignition combustion on a multicylinder light-duty engine

    DOE PAGES

    Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.; ...

    2016-08-04

    Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less

  3. Evolution and current understanding of physicochemical characterization of particulate matter from reactivity controlled compression ignition combustion on a multicylinder light-duty engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.

    Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less

  4. Trace element diffusion and kinetic fractionation in wet rhyolitic melt

    NASA Astrophysics Data System (ADS)

    Holycross, Megan E.; Watson, E. Bruce

    2018-07-01

    Piston-cylinder experiments were run to determine the chemical diffusivities of 21 trace elements (Sc, V, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Th and U) in hydrous rhyolitic melts at 1 GPa pressure and temperatures from 850 to 1250 °C. Diffusion couple glasses were doped with trace elements in low concentrations to characterize the diffusivities of all cations in a single experiment. Laser ablation ICP-MS was used to evaluate the trace element concentration gradients that developed in the silicate glasses. All calculated diffusion coefficients correspond to the temperature dependence D = D0exp(-Ea/RT). Rhyolite liquids contained either ∼4.1 wt% or ∼6.2 wt% dissolved H2O; separate Arrhenius relationships are produced for each melt composition. Trace element diffusivities in the melt with 6.2 wt% H2O are roughly two times higher than those in the less hydrous melt. Calculated trace element diffusion coefficients cover nearly two orders of magnitude at a given temperature. The high field strength elements are the slowest diffusers, followed by the transition metals and heavy rare earth elements. The light rare earth elements have the fastest diffusion rates in hydrous rhyolitic melt. The measured diffusion coefficients range down to values sufficiently low to preclude diffusive homogenization over geochemically realistic time scales in some cases. The substantial differences in the diffusivities of individual cations may result in fractionated trace element signatures in rhyolite melt pockets. A simple model is used to explore the potential for kinetic fractionation of REE during growth of an apatite crystal in a diffusive boundary layer locally saturated in P2O5. The faster-diffusing light REE are more efficiently transported away from the crystal interface than the slower-moving heavy REE. Diffusion effects will enrich the melt boundary layer in slow-moving HREE relative to the faster LREE. The kinetic fractionation of REE in the melt growth medium will result in a precipitated apatite crystal with a disequilibrium trace element composition.

  5. Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico

    NASA Astrophysics Data System (ADS)

    Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo

    2017-04-01

    The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the analyzed trace elements in groundwater do not pose any significant threat to the population living in this area.

  6. NEUROSENSORY LINKS BETWEEN BRONCHOCONSTRICTION AND CARDIAC RHYTHM

    EPA Science Inventory

    Reports in the literature have attributed altered heart rate, heart rate variability, and rhythm to inhaled particulate matter (PM) in humans. Whereas the changes in heart rate are very small, analysis of ECG tracings indicate changes in HRV suggesting altered autonomic balance. ...

  7. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  8. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  9. Trace Element Levels and Cognitive Function in Rural Elderly Chinese

    PubMed Central

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W.; Ma, Feng; Hall, Kathleen S.; Murrell, Jill R.; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C.

    2009-01-01

    Background Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. Methods The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Results Three trace elements—calcium, cadmium, and copper—were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p < .0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p = .0044 and p = .0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Conclusions Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population. PMID:18559640

  10. Transport of trace metals in runoff from soil and pond ash feedlot surfaces

    USGS Publications Warehouse

    Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.

    2011-01-01

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.

  11. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    PubMed

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  12. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    PubMed Central

    Herndon, J. Marvin

    2015-01-01

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction. PMID:26270671

  13. Sources of PM10 Air Pollution in Rural Area in the Vicinity of a Highway In Žilina Selfgoverning Region, Slovakia

    NASA Astrophysics Data System (ADS)

    Jandačka, Dušan

    2015-05-01

    Particulate matter results as an aftermath of numerous distinctive processes in the atmosphere and they become a part of everyday life. Their harmful effect and impact on the ambient environment is determined predominantly by the presence of various chemical substances and elements. The chemical composition of these particles (organic and elemental carbon, mineral dust, sea aerosols, secondary particles, especially sulphates and nitrates, heavy metals and further elements) is mainly impacted on by their origin, whereas the primary source of the particulate matter is determined and specified by the profile of chemical elements and substances. Particulate Matter (PM) may originate in various natural resources or anthropogenic sources. Among the natural sources sea salt is to be counted on, dust of the earth crust, pollen and volcanic ashes. Anthropogenic sources do include, predominantly, burning fossil fuels in the fossil-fuel power plants, local heating of households, burning liquefied fossil fuels in the combustion engines of vehicles, noncombustion related emissions as a result of vehicular traffic, resuspension of the road-traffic-related dust.

  14. Igneous fractionation and subsolidus equilibration of diogenite meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1993-01-01

    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.

  15. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from garbage burning, wood and dung cooking fires, motorcycles and brick kilns

    NASA Astrophysics Data System (ADS)

    Jayarathne, T. S.; Rathnayake, C.; Stockwell, C.; Daugherty, K.; Islam, R. M.; Christian, T. J.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Adhikari, S.; Rasmi, M.; Goetz, D.; DeCarlo, P. F.; Saikawa, E.; Yokelson, R. J.; Stone, E. A.

    2016-12-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in-situ characterization of widespread and under-sampled combustion sources in South Asia by determining emission factors (EF) for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon, inorganic ions, trace metals, and organic species. Garbage burning had the highest EF PM2.5 among the sampled sources ranging 7-124 g kg-1, with maximum EFs for garbage burned under higher moisture conditions. Garbage burning emissions contained high concentrations of polycyclic aromatic compounds (PAHs) and heavy metals (Pb, Cd, Zn) that are associated with acute and chronic health effects. Triphenylbenzene and antimony (Sb) were unique to garbage burning are good candidates for tracing this source. Cook stove emissions varied largely by stove technology (traditional mud stove, 3-stone cooking fire, chimney stove, etc.) and biomass fuel (dung, hardwood, twigs, and mixtures thereof). Burning dung consistently emitted more PM2.5 than burning wood and contained characteristic fecal sterols and stanols. Motorcycle emissions were evaluated before and after servicing, which decreased EF PM2.5 from 8.8 g kg-1 to 0.7 g kg-1. Organic species analysis indicated that this reduction in PM2.5­ is largely due to a decrease in emission of motor oil. For brick kilns, the forced draft zig-zag kilns had higher EF PM2.5 (12-19 g kg-1) compared to clamp kilns (8-13 g kg-1) and also exhibited chemical differences. PM2.5 emitted from the zig-zag kiln were mainly OC (7%), sulfate (32%) and uncharacterized chemical components (60%), while clamp kiln emissions were dominated by OC (64%) and ammonium sulfate (36%). The quantitative emission factors developed in this study may be used for source apportionment and to update regional emission inventories.

  16. Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India

    NASA Astrophysics Data System (ADS)

    Vreeland, Heidi; Schauer, James J.; Russell, Armistead G.; Marshall, Julian D.; Fushimi, Akihiro; Jain, Grishma; Sethuraman, Karthik; Verma, Vishal; Tripathi, Sachi N.; Bergin, Michael H.

    2016-12-01

    Roadside trash burning is largely unexamined as a factor that influences air quality, radiative forcing, and human health even though it is ubiquitously practiced across many global regions, including throughout India. The objective of this research is to examine characteristics and redox activity of fine particulate matter (PM2.5) associated with roadside trash burning in Bangalore, India. Emissions from smoldering and flaming roadside trash piles (n = 24) were analyzed for organic and elemental carbon (OC/EC), brown carbon (BrC), and toxicity (i.e. redox activity, measured via the dithiothreitol "DTT" assay). A subset of samples (n = 8) were further assessed for toxicity by a cellular assay (macrophage assay) and also analyzed for trace organic compounds. Results show high variability of chemical composition and toxicity between trash-burning emissions, and characteristic differences from ambient samples. OC/EC ratios for trash-burning emissions range from 0.8 to 1500, while ambient OC/EC ratios were observed at 5.4 ± 1.8. Trace organic compound analyses indicate that emissions from trash-burning piles were frequently composed of aromatic di-acids (likely from burning plastics) and levoglucosan (an indicator of biomass burning), while the ambient sample showed high response from alkanes indicating notable representation from vehicular exhaust. Volume-normalized DTT results (i.e., redox activity normalized by the volume of air pulled through the filter during sampling) were, unsurprisingly, extremely elevated in all trash-burning samples. Interestingly, DTT results suggest that on a per-mass basis, fresh trash-burning emissions are an order of magnitude less redox-active than ambient air (13.4 ± 14.8 pmol/min/μgOC for trash burning; 107 ± 25 pmol/min/μgOC for ambient). However, overall results indicate that near trash-burning sources, exposure to redox-active PM can be extremely high.

  17. Characterization of Particulate Matter from a Heavily Industrial Environment

    NASA Astrophysics Data System (ADS)

    Valarini, Simone; Ynoue, Rita Yuri

    2011-01-01

    A characterization of PM aerosols collected in Cubatão, Brazil is presented. Throughout 2009, 5 sampling campaings were carried out at CEPEMA (Centro de Capacitação e Pesquisa em Meio Ambiente da Universidade de São Paulo), in the vicinity of PETROBRAS oil refinery. Mini-vol portable air sampler was deployed to collect coarse and fine particles. Size-fractionated particle samples were collected by a Micro-Orifice Uniform Deposition Impactor (MOUDI) device. Gravimetric analysis showed three peaks for mass size distributions: the After-Filter stage (cut point diameter of less than 0,1μm), stage 7A (d=0,32μm) and stage 3A (d= 3,2μm). Fine particle matter (FPM) concentrations were almost always lower than coarse particle matter (CPM) concentrations. Comparison between the PM2.5 (particulate matter lower than 2.5μg.m-3) measurements by the MOUDI and Mini-Vol sampler reveals good agreement. However, MOUDI underestimates CPM. Reflectance analysis showed that almost all the Black Carbon is found in the Mini-Vol FPM and lower stages of the MOUDI, with higher concentrations at the After-Filter. The atmospheric loading of PM 2.5 was elevated at night, mainly due to more stable atmospheric conditions. Aerosol samples were analyzed for water- soluble ions, black carbon (BC), and trace elements using a number of analytical techniques.

  18. Identification of possible sources of particulate matter in the personal cloud using SEM/EDX

    NASA Astrophysics Data System (ADS)

    Conner, Teri L.; Williams, Ronald W.

    2004-10-01

    The United States Environmental Protection Agency (US EPA) conducted the Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly during the summer of 1998. The study design included PM2.5 samples obtained from elderly (65+ years of age) retirement facility residents using personal exposure sampling devices. These sampling devices were also used to obtain PM2.5 samples at fixed locations within the personal monitoring subjects' apartments. Selected personal and apartment samples were examined using scanning electron microscopy with individual-particle X-ray analysis (SEM/EDX), providing a qualitative assessment of the chemical and physical characteristics of geological and trace element particles collected within these micro-environments at the retirement facility. This information was used to identify possible indoor source particles. The manual surveys of the personal samples revealed that some particles larger than 2.5 μm reached the filter surface. Using SEM/EDX, several particle types with possible indoor origins were identified. The Al-Zr-Cl particle is likely to have originated from a personal antiperspirant product. Particles with a talc or alumino-silicate composition point to cosmetics as a possible source. Large cadmium-containing particles were also found, which may indicate the use of art pigments or ceramic glazes, or emissions from television screen phosphors. A greater variety of particles was observed in a personal sample compared with its corresponding fixed-location apartment sample.

  19. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  20. The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks.

    PubMed

    Deljanin, Isidora; Antanasijević, Davor; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-10-01

    To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.

Top