Improved modelling of independent parton hadronization
NASA Astrophysics Data System (ADS)
Biddulph, Phillip; Thompson, Graham
1989-04-01
A modification is proposed to current versions of the Field-Feynman ansatz for the hadronization of a quark in Monte Carlo models of QCD interactions. This faster-running algorithm has no more parameters and imposes a better degree of energy conservation. It results in naturally introducing a limitation of the transverse momentum distribution, similar to the experimentally observed "seagull" effect. There is now a much improved conservation of quantum numbers between the original parton and resultant hadrons, and the momentum of the emitted parton is better preserved in the summed momentum vectors of the final state particles.
QCD parton model at collider energies
Ellis, R.K.
1984-09-01
Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at ..sqrt..S = 0.54 TeV are compared with data. 21 references.
New model for nucleon generalized parton distributions
Radyushkin, Anatoly V.
2014-01-01
We describe a new type of models for nucleon generalized parton distributions (GPDs) H and E. They are heavily based on the fact nucleon GPDs require to use two forms of double distribution (DD) representations. The outcome of the new treatment is that the usual DD+D-term construction should be amended by an extra term, {xi} E{sub +}{sup 1} (x,{xi}) which has the DD structure {alpha}/{beta} e({beta},{alpha}, with e({beta},{alpha}) being the DD that generates GPD E(x,{xi}). We found that this function, unlike the D-term, has support in the whole -1 <= x <= 1 region. Furthermore, it does not vanish at the border points |x|={xi}.
Generalized Valon Model for Double Parton Distributions
NASA Astrophysics Data System (ADS)
Broniowski, Wojciech; Ruiz Arriola, Enrique; Golec-Biernat, Krzysztof
2016-06-01
We show how the double parton distributions may be obtained consistently from the many-body light-cone wave functions. We illustrate the method on the example of the pion with two Fock components. The procedure, by construction, satisfies the Gaunt-Stirling sum rules. The resulting single parton distributions of valence quarks and gluons are consistent with a phenomenological parametrization at a low scale.
A.V. Efremov, P. Schweitzer, O.V. Teryaev, P. Zavada
2011-03-01
We derive relations between transverse momentum dependent distribution functions (TMDs) and the usual parton distribution functions (PDFs) in the 3D covariant parton model, which follow from Lorentz invariance and the assumption of a rotationally symmetric distribution of parton momenta in the nucleon rest frame. Using the known PDFs f_1(x) and g_1(x) as input we predict the x- and pT-dependence of all twist-2 T-even TMDs.
Standard Model parton distributions at very high energies
NASA Astrophysics Data System (ADS)
Bauer, Christian W.; Ferland, Nicolas; Webber, Bryan R.
2017-08-01
We compute the leading-order evolution of parton distribution functions for all the Standard Model fermions and bosons up to energy scales far above the electroweak scale, where electroweak symmetry is restored. Our results include the 52 PDFs of the unpolarized proton, evolving according to the SU(3), SU(2), U(1), mixed SU(2)×U(1) and Yukawa interactions. We illustrate the numerical effects on parton distributions at large energies, and show that this can lead to important corrections to parton luminosities at a future 100 TeV collider.
Nucleon parton distributions in a light-front quark model
NASA Astrophysics Data System (ADS)
Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan
2017-02-01
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ ˜ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q_v(x) and δ q_v(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN).
Concurrent approaches to Generalized Parton Distribution modeling: the pion's case
NASA Astrophysics Data System (ADS)
Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.
2017-03-01
The concept of Generalized Parton Distributions promises an understanding of the generation of the charge, spin, and energy-momentum structure of hadrons by quarks and gluons. Forthcoming measurements with unprecedented accuracy at Jefferson Lab and at CERN will challenge our quantitative description of the three-dimensional structure of hadrons. To fully exploit these future measurements, new tools and models are currently being developed. We explain the difficulties of Generalized Parton Distribution modeling, and present some recent progresses. In particular we describe the symmetry-preserving Dyson-Schwinger and Bethe-Salpeter framework. We also discuss various equivalent parameterizations and sketch how to combine them to obtain models satisfying a priori all required theoretical constraints. At last we explain why these developments naturally fit in a versatile software framework, named PARTONS, dedicated to the theory and phenomenology of GPDs.
Backward dilepton production in color dipole and parton models
Gay Ducati, Maria Beatriz; Graeve de Oliveira, Emmanuel
2010-03-01
The Drell-Yan dilepton production at backward rapidities is studied in proton-nucleus collisions at Relativistic Heavy Ion Collider and LHC energies by comparing two different approaches: the k{sub T} factorization at next-to-leading order with intrinsic transverse momentum and the same process formulated in the target rest frame, i.e., the color dipole approach. Our results are expressed in terms of the ratio between p(d)-A and p-p collisions as a function of transverse momentum and rapidity. Three nuclear parton distribution functions are used: EKS (Eskola, Kolhinen, and Ruuskanen), EPS08, and EPS09 and, in both approaches, dileptons show sensitivity to nuclear effects, specially regarding the intrinsic transverse momentum. Also, there is room to discriminate between formalisms: the color dipole approach lacks soft effects introduced by the intrinsic k{sub T}. Geometric scaling GBW (Golec-Biernat and Wusthoff) and BUW (Boer, Utermann, and Wessels) color dipole cross section models and also a DHJ (Dumitru, Hayashigaki, and Jalilian-Marian) model, which breaks geometric scaling, are used. No change in the ratio between collisions is observed, showing that this observable is not changed by the particular shape of the color dipole cross section. Furthermore, our k{sub T} factorization results are compared with color glass condensate results at forward rapidities: the results agree at Relativistic Heavy Ion Collider although disagree at LHC, mainly due to the different behavior of target gluon and quark shadowing.
Violation of positivity bounds in models of generalized parton distributions
NASA Astrophysics Data System (ADS)
Tiburzi, Brian C.; Verma, Gaurav
2017-08-01
As with parton distributions, flexible phenomenological parametrizations of generalized parton distributions (GPDs) are essential for their extraction from data. The large number of constraints imposed on GPDs make simple Lorentz covariant models viable; but, such models are often incomplete in that they employ the impulse approximation. Using the GPD of the pion as a test case, we show that the impulse approximation can lead to violation of the positivity bound required of GPDs. We focus on a particular model of the pion bound-state vertex that was recently proposed and demonstrate that satisfying the bound is not guaranteed by Lorentz covariance. Violation of the positivity bound is tied to a problematic mismatch between the behavior of the quark distribution at the end point and the crossover value of the GPD.
Projective symmetry of partons in Kitaev's honeycomb model
NASA Astrophysics Data System (ADS)
Mellado, Paula
2015-03-01
Low-energy states of quantum spin liquids are thought to involve partons living in a gauge-field background. We study the spectrum of Majorana fermions of Kitaev's honeycomb model on spherical clusters. The gauge field endows the partons with half-integer orbital angular momenta. As a consequence, the multiplicities reflect not the point-group symmetries of the cluster, but rather its projective symmetries, operations combining physical and gauge transformations. The projective symmetry group of the ground state is the double cover of the point group. We acknowledge Fondecyt under Grant No. 11121397, Conicyt under Grant No. 79112004, and the Simons Foundation (P.M.); the Max Planck Society and the Alexander von Humboldt Foundation (O.P.); and the US DOE Grant No. DE-FG02-08ER46544 (O.T.).
Multiparticle production in a two-component dual parton model
Aurenche, P. ); Bopp, F.W. ); Capella, A. ); Kwiecinski, J. ); Maire, M. ); Ranft, J.; Tran Thanh Van, J. )
1992-01-01
The dual parton model (DPM) describes soft and semihard multiparticle production. The version of the DPM presented in this paper includes soft and hard mechanisms as well as diffractive processes. The model is formulated as a Monte Carlo event generator. We calculate in this model, in the energy range of the hadron colliders, rapidity distributions and the rise of the rapidity plateau with the collision energy, transverse-momentum distributions and the rise of average transverse momenta with the collision energy, multiplicity distributions in different pseudorapidity regions, and transverse-energy distributions. For most of these quantities we find a reasonable agreement with experimental data.
Implementing the LPM effect in a parton cascade model
NASA Astrophysics Data System (ADS)
Coleman-Smith, C. E.; Bass, S. A.; Srivastava, D. K.
2011-07-01
Parton Cascade Models (PCM [K. Geiger, B. Muller, Nucl. Phys. B369 (1992) 600-654; S. A. Bass, B. Muller, D. K. Srivastava, Phys. Lett. B551 (2003) 277-283; Z. Xu and C. Greiner, Phys. Rev. C 76, 024911 (2007); D. Molnar and M. Gyulassy, Phys. Rev. C 62, 054907 (2000)]), which describe the full time-evolution of a system of quarks and gluons using pQCD interactions are ideally suited for the description of jet production, including the emission, evolution and energy-loss of the full parton shower in a hot and dense QCD medium. The Landau-Pomeranchuk-Migdal (LPM) effect [L. D. Landau, I. J. Pomeranchuk, Dolk. Akad. Nauk. SSSR 92 (92); A. B. Migdal, Phys. Rev. 103 (6) (1956) 1811-1820], the quantum interference of parton wave functions due to repeated scatterings against the background medium, is likely the dominant in-medium effect affecting jet suppression. We have implemented a probabilistic implementation of the LPM effect [K. Zapp, J. Stachel, U. A. Wiedemann, Phys. Rev. Lett. 103 (2009) 152302] within the PCM which can be validated against previously derived analytical calculations by Baier et al (BDMPS-Z) [R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B478 (1996) 577-597; R. Baier, Y. L. Dokshitzer, S. Peigne, D. Schiff, Phys. Lett. B345 (1995) 277-286; R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B483 (1997) 291-320; B. Zakharov, JETP Lett. 63 (1996) 952-957; B. Zakharov, JETP Lett. 65 (1997) 615-620]. Presented at the 6th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2010).
Frederico, T.; Pace, E.; Pasquini, B.; Salme, G.
2010-08-05
Longitudinal and transverse parton distributions for pion and nucleon are calculated from hadron vertexes obtained by a study of form factors within relativistic quark models. The relevance of the one-gluon-exchange dominance at short range for the behavior of the form factors at large momentum transfer and of the parton distributions at the end points is stressed.
Towards a model of pion generalized parton distributions from Dyson-Schwinger equations
Moutarde, H.
2015-04-10
We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.
Review on DTU-parton model for hadron-hadron and hadron-nucleus collisions
Chiu, C.B.
1980-08-01
The parton picture of color separation of dual string and its subsequent breakup is used to motivate the DTU-parton model for high energy small p/sub T/ multiparticle productions in hadron-hadron and hadron-nucleus collisions. A brief survey on phenomenological applications of the model: such as the inclusive spectra for various hh processes and central plateau heights predicted, hA inclusive spectra and the approximate anti v-universalities is presented.
Transverse-momentum-dependent parton distributions in a spectator diquark model
F Conti, A Bacchetta, M Radici
2009-09-01
Within the framework of a spectator diquark model of the nucleon, involving both scalar and axial-vector diquarks, we calculate all the leading-twist transverse-momentum-dependent parton distribution functions (TMDs). Naive Time-odd densities are generated through a one-gluon-loop rescattering mechanism, simulating the final state interactions required for these functions to exist. Analytic results are obtained for all the TMDs, and a connection with the light-cone wave functions formalism is also established. The model parameters are fixed by reproducing the phenomenological parametrizations of unpolarized and helicity parton distributions at the lowest available scale. Predictions for the other parton densities are given and, whenever possible, compared with available parametrizations.
Delayed thresholds and heavy-flavor production in the dual parton model
Capella, A.; Sukhatme, U.; Tan, C.; Tran Thanh Van, J.
1987-07-01
It is shown that the two-chain structure of the cut Pomeron in the dual parton model for low-p/sub T/ multiparticle production provides a natural explanation for the phenomenon of delayed thresholds for heavy-flavor production in proton-proton collisions.
Diphoton production in the ADD model to NLO + parton shower accuracy at the LHC
NASA Astrophysics Data System (ADS)
Frederix, R.; Mandal, Manoj K.; Mathews, Prakash; Ravindran, V.; Seth, Satyajit; Torrielli, P.; Zaro, M.
2012-12-01
In this paper, we present the next-to-leading order predictions for diphoton production in the ADD model, matched to the HERWIG parton shower using the MC@NLO formalism. A selection of the results is presented for d = 2-6 extra dimensions, using generic cuts as well as analysis cuts mimicking the search strategies as pursued by the ATLAS and CMS experiments.
Nonperturbative partonic quasidistributions of the pion from chiral quark models
NASA Astrophysics Data System (ADS)
Broniowski, Wojciech; Ruiz Arriola, Enrique
2017-10-01
We evaluate nonperturbatively the quark quasidistribution amplitude and the valence quark quasidistribution function of the pion in the framework of chiral quark models, namely the Nambu-Jona-Lasinio model and the Spectral Quark Model. We arrive at simple analytic expressions, where the nonperturbative dependence on the longitudinal momentum of the pion can be explicitly assessed. The model results for the quark quasidistribution amplitude of the pion compare favorably to the data obtained from the Euclidean lattice simulations. The quark distribution amplitude, arising in the limit of infinite longitudinal momentum of the pion, agrees, after suitable QCD evolution, to the recent data extracted from Euclidean lattices, as well as to the old data from transverse lattice simulations.
PARTON BUBBLE MODEL FOR TWO PARTICLE ANGULAR CORRELATIONS AT RHIC/LHC.
LINDENBAUM S.J.; LONGACRE, R.S.
2006-06-27
In an earlier paper we developed a bubble model, based on a view we had shared with van Hove for over two decades. Namely, that if a quark-gluon plasma is produced in a high energy heavy ion collider, then its hadronization products would likely be emitted from small bubbles localized in phase space containing plasma. In this paper we refined the model to become a parton bubble model in which each localized bubble contains initially 3-4 partons which are almost entirely gluons forming a gluon hot spot. We greatly expanded the transverse momentum interval investigated, and thus are able to treat recombination effects within each bubble. We again utilize two particle correlations as a sensitive method for detecting the average bubble substructure. In this manuscript we make many predictions for angular correlations detectable at RHIC and which will be later modified to LHC conditions. Some early available low precision correlation analyses is qualitatively explained. However a critical consistency test of the model can be made with high precision data expected in the near future.
NASA Astrophysics Data System (ADS)
Batyunya, B. V.; Boguslavsky, I. V.; Gramenitsky, I. M.; Lednický, R.; Levonian, S. V.; Tikhonova, L. A.; Valkárová, A.; Vrba, V.; Zlatanov, Z.; Boos, E. G.; Samoilov, V. V.; Takibaev, Zh. S.; Temiraliev, T.; Lichard, P.; Mašejová, A.; Dumbrajs, S.; Ervanne, J.; Hannula, E.; Villanen, P.; Dementiev, R. K.; Korzhavina, I. A.; Leikin, E. M.; Rud, V. I.; Herynek, I.; Reimer, P.; Řídký, J.; Sedlák, J.; Šimák, V.; Suk, M.; Khudzadze, A. M.; Kuratashvili, G. O.; Topuriya, T. P.; Tzintzadze, V. D.
1980-03-01
We compare the inclusive characteristics ofbar pp interactions at 22.4 GeV/ c with quark-parton model predictions in terms of collective variables. The model qualitatively agrees with the data in contradiction to the simple cylindrical phase space and randomized charge model. The ways are proposed of a further development of the quark-parton model.
NASA Astrophysics Data System (ADS)
Kofler, Stefan; Pasquini, Barbara
2017-05-01
The unpolarized, helicity and transversity parton distribution functions of the nucleon are studied within a convolution model where the bare nucleon is dressed by its virtual meson cloud. Using light-front time-ordered perturbation theory, the Fock states of the physical nucleon are expanded in a series involving a bare nucleon and two-particle (meson-baryon) states. The bare baryons and mesons are described with light-front wave functions (LFWFs) for the corresponding valence-parton components. Using a representation in terms of overlap of LFWFs, the role of the nonperturbative antiquark degrees of freedom and the valence-quark contribution at the input scale of the model is discussed for the leading-twist collinear parton distributions. After introducing perturbative QCD effects through evolution to experimental scales, the results are compared with available data and phenomenological extractions. Predictions for the nucleon tensor charge are also presented, finding a very good agreement with recent phenomenological extractions.
Accardi, Alberto; Owens, Jeff F.
2013-07-01
Three new sets of next-to-leading order parton distribution functions (PDFs) are presented, determined by global fits to a wide variety of data for hard scattering processes. The analysis includes target mass and higher twist corrections needed for the description of deep-inelastic scattering data at large x and low Q^2, and nuclear corrections for deuterium targets. The PDF sets correspond to three different models for the nuclear effects, and provide a more realistic uncertainty range for the d quark PDF compared with previous fits. Applications to weak boson production at colliders are also discussed.
Charge symmetry at the partonic level
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Nuclear parton distributions and the Drell-Yan process
NASA Astrophysics Data System (ADS)
Kulagin, S. A.; Petti, R.
2014-10-01
We study the nuclear parton distribution functions on the basis of our recently developed semimicroscopic model, which takes into account a number of nuclear effects including nuclear shadowing, Fermi motion and nuclear binding, nuclear meson-exchange currents, and off-shell corrections to bound nucleon distributions. We discuss in detail the dependencies of nuclear effects on the type of parton distribution (nuclear sea vs valence), as well as on the parton flavor (isospin). We apply the resulting nuclear parton distributions to calculate ratios of cross sections for proton-induced Drell-Yan production off different nuclear targets. We obtain a good agreement on the magnitude, target and projectile x, and the dimuon mass dependence of proton-nucleus Drell-Yan process data from the E772 and E866 experiments at Fermilab. We also provide nuclear corrections for the Drell-Yan data from the E605 experiment.
Parton distribution in pseudoscalar mesons with a light-front constituent quark model
NASA Astrophysics Data System (ADS)
de Melo, J. P. B. C.; Ahmed, Isthiaq; Tsushima, Kazuo
2016-05-01
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function [1, 2, 3]. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions (PDFs), we use both the conditions in the light-cone wave function, i.e., when s ¯ quark is on-shell, and when u quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses [4, 5].
Access to generalized parton distributions at COMPASS
Nowak, Wolf-Dieter
2015-04-10
A brief experimentalist's introduction to Generalized Parton Distributions (GPDs) is given. Recent COMPASS results are shown on transverse target-spin asymmetries in hard exclusive ρ{sup 0} production and their interpretation in terms of a phenomenological model as indication for chiral-odd, transverse GPDs is discussed. For deeply virtual Compton scattering, it is briefly outlined how to access GPDs and projections are shown for future COMPASS measurements.
Are partons confined tachyons?
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.
NASA Astrophysics Data System (ADS)
Warmate, Tamuno-Negiyeofori; Gamberg, Leonard; Prokudin, Alexei
2016-09-01
I have performed a phenomenological analysis of pion production data from Jefferson Laboratory in semi-inclusive deep inelastic scattering of electrons on unpolarized nucleons and deuterium using the transverse momentum dependent (TMD) parton model formalism. We parameterize the data in terms of TMD parton distribution functions that describe the three-dimensional (3-D) partonic structure of the nucleon. One of the main enigmas of data analysis is how to reliably estimate the errors of the parameters that describe some particular physical process. A common method is to use Hessian matrix or vary the delta chi-square of the corresponding fits to the data. In this particular project we use the so-called bootstrap method that is very robust for error estimation. This method has not been extensively used in the description of the TMD distributions that describe the 3-D nucleon structure. The reliable estimate of the errors and thus reliable predictions for future experiments is of great scientific interest. We are using Python and modern methods of data analysis in this project. The results of the project will be useful for understanding the effects of internal motion of quarks and gluons inside of the proton and will be reported in a forthcoming publication.
NASA Astrophysics Data System (ADS)
Tuppan, Sam; Budnik, Garrett; Fox, Jordan
2014-09-01
The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. This research has been supported in part by the
Asaturyan, R.; Ent, R.; Mkrtchyan, H.; ...
2012-01-01
A large set of cross sections for semi-inclusive electroproduction of charged pions (π±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W2 > 4 GeV2 and range in four-momentum transfer squared 2 < Q2 < 4 (GeV/c)2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, Pt2 < 0.2 (GeV/c)2. The invariant mass that goes undetected, Mx or W',more » is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark → pion production mechanisms. The x, z and Pt2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π+ and π-) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.« less
NASA Astrophysics Data System (ADS)
Kovalenko, V. N.
2013-10-01
The soft part of proton-proton interaction is considered within a phenomenological model that involves the formation of color strings. Under the assumption that an elementary collision is associated with the interaction of two color dipoles, the total inelastic cross section and the multiplicity of charged particles are estimated in order to fix model parameters. Particular attention is given to modeling of exclusive parton distributions with allowance for the energy-conservation law and for fixing the center of mass, which are necessary for describing correlations. An algorithm that describes the fusion of strings in the transverse plane and which takes into account their finite rapidity width is developed. The influence of string-fusion effects on long-range correlations is found within this mechanism.
Constraints on parton density functions from D0
Hays, Jonathan M.; /Imperial Coll., London
2008-04-01
Five recent results from D0 which either impact or have the potential to impact on uncertainties in parton density functions are presented. Many analyses at D0 are sensitive to the modeling of the partonic structure of the proton. When theoretical and experimental uncertainties are well controlled there exists the possibility for additional constraints on parton density functions (PDF). Five measurements are presented which either have already been included in global parton fits or have the potential to contribute in the future.
Nuclear Parton Distribution Functions
Schienbein, I.; Yu, J.-Y.; Keppel, Cynthia; Morfin, Jorge; Olness, F.; Owens, J.F.
2009-01-01
We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a chi^2 analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x_Bj-dependent and Q^2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x_Bj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.
Nuclear Parton Distribution Functions
I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens
2009-06-01
We study nuclear effects of charged current deep inelastic neutrino-iron scattering in the framework of a {chi}{sup 2} analysis of parton distribution functions (PDFs). We extract a set of iron PDFs which are used to compute x{sub Bj}-dependent and Q{sup 2}-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged-lepton--iron scattering. We find that, except for very high x{sub Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.
PACIAE 2.1: An updated issue of the parton and hadron cascade model PACIAE 2.0
NASA Astrophysics Data System (ADS)
Sa, Ben-Hao; Zhou, Dai-Mei; Yan, Yu-Liang; Dong, Bao-Guo; Cai, Xu
2013-05-01
We have updated the parton and hadron cascade model PACIAE 2.0 (cf. Ben-Hao Sa, Dai-Mei Zhou, Yu-Liang Yan, Xiao-Mei Li, Sheng-Qin Feng, Bao-Guo Dong, Xu Cai, Comput. Phys. Comm. 183 (2012) 333.) to the new issue of PACIAE 2.1. The PACIAE model is based on PYTHIA. In the PYTHIA model, once the hadron transverse momentum pT is randomly sampled in the string fragmentation, the px and py components are originally put on the circle with radius pT randomly. Now it is put on the circumference of ellipse with half major and minor axes of pT(1+δp) and pT(1-δp), respectively, in order to better investigate the final state transverse momentum anisotropy. New version program summaryManuscript title: PACIAE 2.1: An updated issue of the parton and hadron cascade model PACIAE 2.0 Authors: Ben-Hao Sa, Dai-Mei Zhou, Yu-Liang Yan, Bao-Guo Dong, and Xu Cai Program title: PACIAE version 2.1 Journal reference: Catalogue identifier: Licensing provisions: none Programming language: FORTRAN 77 or GFORTRAN Computer: DELL Studio XPS and others with a FORTRAN 77 or GFORTRAN compiler Operating system: Linux or Windows with FORTRAN 77 or GFORTRAN compiler RAM: ≈ 1GB Number of processors used: Supplementary material: Keywords: relativistic nuclear collision; PYTHIA model; PACIAE model Classification: 11.1, 17.8 External routines/libraries: Subprograms used: Catalogue identifier of previous version: aeki_v1_0* Journal reference of previous version: Comput. Phys. Comm. 183(2012)333. Does the new version supersede the previous version?: Yes* Nature of problem: PACIAE is based on PYTHIA. In the PYTHIA model, once the hadron transverse momentum(pT)is randomly sampled in the string fragmentation, thepxandpycomponents are randomly placed on the circle with radius ofpT. This strongly cancels the final state transverse momentum asymmetry developed dynamically. Solution method: Thepxandpycomponent of hadron in the string fragmentation is now randomly placed on the circumference of an ellipse with
Extractions of polarized and unpolarized parton distribution functions
Jimenez-Delgado, Pedro
2014-01-01
An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.
Generalized parton correlation functions for a spin-0 hadron
Meissner, Stephan; Metz, Andreas; Schlegel, Marc; Goeke, Klaus
2008-08-01
The fully unintegrated, off-diagonal quark-quark correlator for a spin-0 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects are of relevance for the phenomenology of certain hard exclusive reactions. In particular, they can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist.
Asaturyan, R.; Ent, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Adams, G. S.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, A.; Baker, O. K.; Benmouna, N.; Bertoncini, C.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Breuer, H.; Christy, M. E.; Connell, S. H.; Cui, Y.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Fenker, H. C.; Frolov, V. V.; Gan, L.; Gaskell, D.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Hungerford, E.; Jiang, X.; Jones, M.; Joo, K.; Kalantarians, N.; Kelly, J. J.; Keppel, C. E.; Kubarovsky, V.; Li, Y.; Liang, Y.; Mack, D.; Malace, S. P.; Markowitz, P.; McGrath, E.; McKee, P.; Meekins, D. G.; Mkrtchyan, A.; Moziak, B.; Niculescu, G.; Niculescu, I.; Opper, A. K.; Ostapenko, T.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tang, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Wang, M.; Warren, G.; Wesselmann, F. R.; Wojtsekhowski, B.; Wood, S. A.; Xu, C.; Yuan, L.; Zheng, X.
2012-01-01
A large set of cross sections for semi-inclusive electroproduction of charged pions (π^{±}) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W^{2} > 4 GeV^{2} and range in four-momentum transfer squared 2 < Q^{2} < 4 (GeV/c)^{2}, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, P_{t}^{2} < 0.2 (GeV/c)^{2}. The invariant mass that goes undetected, M_{x} or W', is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark → pion production mechanisms. The x, z and P_{t}^{2} dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π^{+} and π^{-}) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.
Parton Distributions Working Group
de Barbaro, L.; Keller, S. A.; Kuhlmann, S.; Schellman, H.; Tung, W.-K.
2000-07-20
This report summarizes the activities of the Parton Distributions Working Group of the QCD and Weak Boson Physics workshop held in preparation for Run II at the Fermilab Tevatron. The main focus of this working group was to investigate the different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties. In the conclusion, the authors introduce a Manifesto that describes an optimal method for reporting data.
Unraveling hadron structure with generalized parton distributions
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.
From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions
Venugopalan, R.
2010-07-22
We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.
Parton shower Monte Carlo event generators
NASA Astrophysics Data System (ADS)
Webber, Bryan
2011-12-01
A parton shower Monte Carlo event generator is a computer program designed to simulate the final states of high-energy collisions in full detail down to the level of individual stable particles. The aim is to generate a large number of simulated collision events, each consisting of a list of final-state particles and their momenta, such that the probability to produce an event with a given list is proportional (approximately) to the probability that the corresponding actual event is produced in the real world. The Monte Carlo method makes use of pseudorandom numbers to simulate the event-to-event fluctuations intrinsic to quantum processes. The simulation normally begins with a hard subprocess, shown as a black blob in Figure 1, in which constituents of the colliding particles interact at a high momentum scale to produce a few outgoing fundamental objects: Standard Model quarks, leptons and/or gauge or Higgs bosons, or hypothetical particles of some new theory. The partons (quarks and gluons) involved, as well as any new particles with colour, radiate virtual gluons, which can themselves emit further gluons or produce quark-antiquark pairs, leading to the formation of parton showers (brown). During parton showering the interaction scale falls and the strong interaction coupling rises, eventually triggering the process of hadronization (yellow), in which the partons are bound into colourless hadrons. On the same scale, the initial-state partons in hadronic collisions are confined in the incoming hadrons. In hadron-hadron collisions, the other constituent partons of the incoming hadrons undergo multiple interactions which produce the underlying event (green). Many of the produced hadrons are unstable, so the final stage of event generation is the simulation of the hadron decays.
Constructing Parton Convolution in Effective Field Theory
Chen, Jiunn-Wei; Ji, Xiangdong
2001-10-08
Parton convolution models have been used extensively in describing the sea quarks in the nucleon and explaining quark distributions in nuclei (the EMC effect). From the effective field theory point of view, we construct the parton convolution formalism which has been the underlying conception of all convolution models. We explain the significance of scheme and scale dependence of the auxiliary quantities such as the pion distributions in a nucleon. As an application, we calculate the complete leading nonanalytic chiral contribution to the isovector component of the nucleon sea.
Partonic Transverse Momentum Distributions
Rossi, Patrizia
2010-08-04
In recent years parton distributions have been generalized to account also for transverse degrees of freedom and new sets of more general distributions, Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions were introduced. Different experiments worldwide (HERMES, COMPASS, CLAS, JLab-Hall A) have measurements of TMDs in semi-inclusive DIS processes as one of their main focuses of research. TMD studies are also an important part of the present and future Drell-Yan experiments at RICH and JPARC and GSI, respectively, Studies of TMDs are also one of the main driving forces of the Jefferson Lab (JLab) 12 GeV upgrade project. Progress in phenomenology and theory is flourishing as well. In this talk an overview of the latest developments in studies of TMDs will be given and newly released results, ongoing activities, as well as planned near term and future measurements will be discussed.
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei; Chang, Wen-Chen; Cheng, Hai-Yang; Peng, Jen-Chieh
2012-12-01
According to the path-integral formalism of the hadronic tensor, the nucleon sea contains two distinct components called the connected sea (CS) and the disconnected sea (DS). We discuss how the CS and DS are accessed in the lattice QCD calculation of the moments of the parton distributions. We show that the CS and DS components of u¯(x)+d¯(x) can be extracted by using recent data on the strangeness parton distribution, the CT10 global fit, and the lattice result of the ratio of the strange to u(d) moments in the disconnected insertion. The extracted CS and DS for u¯(x)+d¯(x) have a distinct Bjorken x dependence in qualitative agreement with expectation. The analysis also shows that the momentum fraction of u¯(x)+d¯(x) is about equally divided between the CS and DS at Q2=2.5GeV2. Implications for the future global analysis of parton distributions are presented.
Multiple parton scattering in nuclei: Parton energy loss
Wang, Xin-Nian; Guo, Xiao-feng
2001-02-17
Multiple parton scattering and induced parton energy loss are studied in deeply inelastic scattering (DIS) off nuclei. The effect of multiple scattering of a highly off-shell quark and the induced parton energy loss is expressed in terms of the modification to the quark fragmentation functions. The authors derive such modified quark fragmentation functions and their QCD evolution equations in DIS using the generalized factorization of higher twist parton distributions. They consider double-hard and hard-soft parton scattering as well as their interferences in the same framework. The final result, which depends on both the diagonal and off-diagonal twist-four parton distributions in nuclei, demonstrates clearly the Landau-Pomeranchuk-Migdal interference features and predicts a unique nuclear modification of the quark fragmentation functions.
NASA Astrophysics Data System (ADS)
Hino, S.; Kumano, S.
1999-09-01
We analyze the polarized Drell-Yan processes with spin-1/2 and spin-1 hadrons in a parton model. Quark and antiquark correlation functions are expressed in terms of possible combinations of Lorentz vectors and pseudovectors with the constrains of Hermiticity, parity conservation, and time-reversal invariance. Then, we find tensor-polarized distributions for a spin-1 hadron. The naive parton model predicts that there exist 19 structure functions. However, there are only four or five nonvanishing structure functions, depending on whether the cross section is integrated over the virtual-photon transverse momentum Q-->T or the limit QT-->0 is taken. One of the finite structure functions is related to the tensor-polarized distribution b1, and it does not exist in the proton-proton reactions. The vanishing structure functions should be associated with higher-twist physics. The tensor distributions can be measured by the quadrupole polarization measurements. The Drell-Yan process has an advantage over the lepton reaction in the sense that the antiquark tensor polarization could be extracted rather easily.
Generalized parton distributions from deep virtual compton scattering at CLAS
Guidal, M.
2010-04-24
Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less
Dynamics of hot and dense nuclear and partonic matter
Bratkovskaya, E. L.; Cassing, W.; Linnyk, O.; Konchakovski, V. P.; Voronyuk, V.; Ozvenchuk, V.
2012-06-15
The dynamics of hot and dense nuclear matter is discussed from the microscopic transport point of view. The basic concepts of the Hadron-String-Dynamical transport model (HSD)-derived from Kadanoff-Baym equations in phase phase-are presented as well as 'highlights' of HSD results for different observables in heavy-ion collisions from 100 A MeV (SIS) to 21 A TeV(RHIC) energies. Furthermore, a novel extension of the HSD model for the description of the partonic phase-the Parton-Hadron-String-Dynamics (PHSD) approach-is introduced. PHSD includes a nontrivial partonic equation of state-in line with lattice QCD-as well as covariant transition rates from partonic to hadronic degrees of freedom. The sensitivity of hadronic observables to the partonic phase is demonstrated for relativistic heavy-ion collisions from the FAIR/NICA up to the RHIC energy regime.
Prospects For Measurements Of Generalized Parton Distributions At COMPASS
Neyret, Damien
2007-06-13
The concept of Generalized Parton Distributions extends classical parton distributions by giving a '3-dimensional' view of the nucleons, allowing to study correlations between the parton longitudinal momentum and its transverse position in the nucleon. Measurements of such generalized distributions can be done with the COMPASS experiment, in particular using Deeply Virtual Compton Scattering events. They require to modify the set-up of COMPASS by introducing a recoil proton detector, an additional electromagnetic calorimeter and a new liquid hydrogen target. These upgrades are presently under study, and the first data taking could take place in 2010.
NASA Astrophysics Data System (ADS)
Shi, Shusu
2009-10-01
The measurement of event anisotropy, often called v2, provides a powerful tool for studying the properties of hot and dense medium created in high-energy nuclear collisions. The important discoveries of partonic collectivity and the brand-new process for hadronization - quark coalescence were obtained through a systematic analysis of the v2 for 200 GeV Au+Au collisions at RHIC [1]. However, early dynamic information might be masked by later hadronic rescatterings. Multistrange hadrons (φ, ξ and φ) with their large mass and presumably small hadronic cross sections should be less sensitive to hadronic rescattering in the later stage of the collisions and therefore a good probe of the early stage of the collision. We will present the measurement of v2 of π, p, KS^0, λ, ξ, φ and φ in heavy ion collisions. In minimum-bias Au+Au collisions at √sNN = 200 GeV, a significant amount of elliptic flow, almost identical to other mesons and baryons, is observed for φ and φ. Experimental observations of pT dependence of v2 of identified particles at RHIC support partonic collectivity. [4pt] [1] B. I. Abelev et al., (STAR Collaboration), Phys. Rev. C 77, 054901 (2008).
Uphoff, Jan; Senzel, Florian; Fochler, Oliver; Wesp, Christian; Xu, Zhe; Greiner, Carsten
2015-03-20
The quark gluon plasma produced in ultrarelativistic heavy-ion collisions exhibits remarkable features. It behaves like a nearly perfect liquid with a small shear viscosity to entropy density ratio and leads to the quenching of highly energetic particles. We show that both effects can be understood for the first time within one common framework. Employing the parton cascade Boltzmann approach to multiparton scatterings, the microscopic interactions and the space-time evolution of the quark gluon plasma are calculated by solving the relativistic Boltzmann equation. Based on cross sections obtained from perturbative QCD with explicitly taking the running coupling into account, we calculate the nuclear modification factor and elliptic flow in ultrarelativistic heavy-ion collisions. With only one single parameter associated with coherence effects of medium-induced gluon radiation, the experimental data of both observables can be understood on a microscopic level. Furthermore, we show that perturbative QCD interactions with a running coupling lead to a sufficiently small shear viscosity to entropy density ratio of the quark gluon plasma, which provides a microscopic explanation for the observations stated by hydrodynamic calculations.
Nonperturbative parton distributions and the proton spin problem
Simonov, Yu. A.
2016-05-15
The Lorentz contracted form of the static wave functions is used to calculate the valence parton distributions for mesons and baryons, boosting the rest frame solutions of the path integral Hamiltonian. It is argued that nonperturbative parton densities are due to excitedmultigluon baryon states. A simplemodel is proposed for these states ensuring realistic behavior of valence and sea quarks and gluon parton densities at Q{sup 2} = 10 (GeV/c){sup 2}. Applying the same model to the proton spin problem one obtains Σ{sub 3} = 0.18 for the same Q{sup 2}.
Unintegrated double parton distributions - A summary
NASA Astrophysics Data System (ADS)
Golec-Biernat, Krzysztof; Staśto, Anna
2017-03-01
We present main elements of the construction of unintegrated double parton distribution functions which depend on transverse momenta of partons. We follow the method proposed by Kimber, Martin and Ryskin for a construction of unintegrated single parton distributions from the standard parton distribution functions.
Strongly interacting parton matter equilibration
Ozvenchuk, V.; Linnyk, O.; Bratkovskaya, E.; Gorenstein, M.; Cassing, W.
2012-07-15
We study the kinetic and chemical equilibration in 'infinite' parton matter within the Parton-Hadron-String Dynamics transport approach. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.
Nonperturbative evolution of parton quasi-distributions
NASA Astrophysics Data System (ADS)
Radyushkin, A. V.
2017-04-01
Using the formalism of parton virtuality distribution functions (VDFs) we establish a connection between the transverse momentum dependent distributions (TMDs) F (x , k⊥2) and quasi-distributions (PQDs) Q (y ,p3) introduced recently by X. Ji for lattice QCD extraction of parton distributions f (x). We build models for PQDs from the VDF-based models for soft TMDs, and analyze the p3 dependence of the resulting PQDs. We observe a strong nonperturbative evolution of PQDs for small and moderately large values of p3 reflecting the transverse momentum dependence of TMDs. Thus, the study of PQDs on the lattice in the domain of strong nonperturbative effects opens a new perspective for investigation of the 3-dimensional hadron structure.
New parton distributions from large-x and low-Q^{2} data
Alberto Accardi; Christy, M. Eric; Keppel, Cynthia E.; Melnitchouk, Wally; Monaghan, Peter A.; Morfin, Jorge G.; Owens, Joseph F.
2010-02-11
We report results of a new global next-to-leading order fit of parton distribution functions in which cuts on W and Q are relaxed, thereby including more data at high values of x. Effects of target mass corrections (TMCs), higher twist contributions, and nuclear corrections for deuterium data are significant in the large-x region. The leading twist parton distributions are found to be stable to TMC model variations as long as higher twist contributions are also included. Furthermore, the behavior of the d quark as x → 1 is particularly sensitive to the deuterium corrections, and using realistic nuclear smearing models the d-quark distribution at large x is found to be softer than in previous fits performed with more restrictive cuts.
Momentum transfer dependence of generalized parton distributions
NASA Astrophysics Data System (ADS)
Sharma, Neetika
2016-11-01
We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution.
Polarized 3 parton production in inclusive DIS at small x
Ayala, Alejandro; Hentschinski, Martin; Jalilian-Marian, Jamal; ...
2016-08-18
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x using the spinor helicity formalism. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Finally, our analytic expressions can also be used to calculate the real partmore » of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.« less
New parton distributions from large-x and low-Q2 data
Alberto Accardi; Christy, M. Eric; Keppel, Cynthia E.; ...
2010-02-11
We report results of a new global next-to-leading order fit of parton distribution functions in which cuts on W and Q are relaxed, thereby including more data at high values of x. Effects of target mass corrections (TMCs), higher twist contributions, and nuclear corrections for deuterium data are significant in the large-x region. The leading twist parton distributions are found to be stable to TMC model variations as long as higher twist contributions are also included. Furthermore, the behavior of the d quark as x → 1 is particularly sensitive to the deuterium corrections, and using realistic nuclear smearing modelsmore » the d-quark distribution at large x is found to be softer than in previous fits performed with more restrictive cuts.« less
Medium Effects in Parton Distributions
William Detmold, Huey-Wen Lin
2011-12-01
A defining experiment of high-energy physics in the 1980s was that of the EMC collaboration where it was first observed that parton distributions in nuclei are non-trivially related to those in the proton. This result implies that the presence of the nuclear medium plays an important role and an understanding of this from QCD has been an important goal ever since Here we investigate analogous, but technically simpler, effects in QCD and examine how the lowest moment of the pion parton distribution is modified by the presence of a Bose-condensed gas of pions or kaons.
Summing threshold logs in a parton shower
NASA Astrophysics Data System (ADS)
Nagy, Zoltán; Soper, Davison E.
2016-10-01
When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.
Tests of models for parton fragmentation in e e annihilation. [29 GeV center-of-mass energy
Gary, J.W.
1985-11-01
We examine the distribution of particles in the three jet events of e e annihilation. The data was collected with the PEP-4/Time Projection Chamber detector at 29 GeV center-of-mass energy at PEP. The experimental distributions are compared to the predictions of several fragmentation models which describe the transition of quarks and gluons into hadrons. In particular, our study emphasizes the three fragmentation models which are currently in widest use: the Lund string model, the Webber cluster model and the independent fragmentation model. These three models each possess different Lorentz frame structures for the distribution of hadron sources relative to the overall event c.m. in three jet events. The Lund string and independent fragmentation models are tuned to describe global event properties of our multihadronic annihilation event sample. This tuned Lund string model provides a good description of the distribution of particles between jet axes in three jet events, while the independent fragmentation model does not. We verify that the failure of the independent fragmentation model is not a consequence of parameter tuning or of model variant. The Webber cluster model, which is untuned, does not describe the absolute particle densities between jets but correctly predicts the ratios of those densities, which are less sensitive to the tuning. These results provide evidence that the sources of hadrons are boosted with respect to the overall center-of-mass in three jet events, with components of motion normal to the jet axes. The distribution of particles close to jet axes provides additional support for this conclusion. 94 refs.
Cosmic ray air shower characteristics in the framework of the parton-based Gribov-Regge model NEXUS
NASA Astrophysics Data System (ADS)
Bossard, G.; Drescher, H. J.; Kalmykov, N. N.; Ostapchenko, S.; Pavlov, A. I.; Pierog, T.; Vishnevskaya, E. A.; Werner, K.
2001-03-01
The purpose of this paper is twofold: first we want to introduce a new type of hadronic interaction model (NEXUS), which has a much more solid theoretical basis than, for example, presently used models such as QGSJET and VENUS, and ensures therefore a much more reliable extrapolation towards high energies. Secondly, we want to promote an extensive air shower (EAS) calculation scheme, based on cascade equations rather than explicit Monte Carlo simulations, which is very accurate in calculations of main EAS characteristics and extremely fast concerning computing time. We employ the NEXUS model to provide the necessary data on particle production in hadron-air collisions and present the average EAS characteristics for energies 1014-1017 eV. The experimental data of the CASA-BLANCA group are analyzed in the framework of the new model.
First moments of nucleon generalized parton distributions
Wang, P.; Thomas, A. W.
2010-06-01
We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory, and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t=0 does show sensitivity to form factor effects, which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models.
First moments of nucleon generalized parton distributions
Wang, P.; Thomas, A. W.
2010-06-01
We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory, and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t=0 does show sensitivity to form factor effects, which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models.
QCD next-to-leading-order predictions matched to parton showers for vector-like quark models
NASA Astrophysics Data System (ADS)
Fuks, Benjamin; Shao, Hua-Sheng
2017-02-01
Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.
QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.
Fuks, Benjamin; Shao, Hua-Sheng
2017-01-01
Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.
Structure functions and parton distributions
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1995-07-01
The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed.
Generalized parton distributions in nuclei
Vadim Guzey
2009-12-01
Generalized parton distributions (GPDs) of nuclei describe the distribution of quarks and gluons in nuclei probed in hard exclusive reactions, such as e.g. deeply virtual Compton scattering (DVCS). Nuclear GPDs and nuclear DVCS allow us to study new aspects of many traditional nuclear effects (nuclear shadowing, EMC effect, medium modifications of the bound nucleons) as well as to access novel nuclear effects. In my talk, I review recent theoretical progress in the area of nuclear GPDs.
Generalized parton distributions and Deeply Virtual Compton Scattering on proton at CLAS
R. De Masi
2007-12-01
Two measurements of target and beam spin asymmetries for the reaction ep→epγ were performed with CLAS at Jefferson Laboratory. Polarized 5.7 GeV electrons were impinging on a longitudinally polarized ammonia and liquid hydrogen target respectively. These measurements are sensitive to Generalized Parton Distributions. Sizable sin phi azimuthal angular dependences were observed in both experiments, indicating the dominance of leading twist terms and the possibility of extracting combinations of Generalized Parton Distributions on the nucleon.
Emergent phenomena and partonic structure in hadrons
NASA Astrophysics Data System (ADS)
Roberts, Craig D.; Mezrag, Cédric
2017-03-01
Modern facilities are poised to tackle fundamental questions within the Standard Model, aiming to reveal the nature of confinement, its relationship to dynamical chiral symmetry breaking (DCSB) - the origin of visible mass - and the connection between these two, key emergent phenomena. There is strong evidence to suggest that they are intimately connected with the appearance of momentum-dependent masses for gluons and quarks in QCD, which are large in the infrared: mg 500MeV and Mq 350MeV. DCSB, expressed in the dynamical generation of a dressed-quark mass, has an enormous variety of verifiable consequences, including an enigmatic result that the properties of the (almost) massless pion are the cleanest expression of the mechanism which is responsible for almost all the visible mass in the Universe. This contribution explains that these emergent phenomena are expressed with particular force in the partonic structure of hadrons, e.g. in valence-quark parton distribution amplitudes and functions, and, consequently, in numerous hadronic observables, so that we are now in a position to exhibit the consequences of confinement and DCSB in a wide range of hadron observables, opening the way to empirical verification of their expression in the Standard Model.
Generalized parton correlation functions for a spin-1/2 hadron
Stephan Meissner, Andreas Metz, Marc Schlegel
2009-08-01
The fully unintegrated, off-diagonal quark-quark correlator for a spin-1/2 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects, in particular, can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. We find that none of these relations can be promoted to a model-independent status. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist. The present paper is a natural extension of our previous corresponding analysis for spin-0 hadrons.
NUCLEAR MODIFICATION TO PARTON DISTRIBUTION FUNCTIONS AND PARTON SATURATION.
QIU, J.-W.
2006-11-14
We introduce a generalized definition of parton distribution functions (PDFs) for a more consistent all-order treatment of power corrections. We present a new set of modified DGLAP evolution equations for nuclear PDFs, and show that the resummed {alpha}{sub s}A{sup 1/3}/Q{sup 2}-type of leading nuclear size enhanced power corrections significantly slow down the growth of gluon density at small-x. We discuss the relation between the calculated power corrections and the saturation phenomena.
CTEQ5 parton distributions and ongoing studies.
Kuhlmann, S.
1999-09-21
The CTEQ5 parton distributions are described, with emphasis on the changes since CTEQ4. The most significant change is in the quark flavor dependence of the parton distributions. Ongoing studies of large-x parton distributions are discussed. Luminosity estimates are given for HERA in order to improve the present uncertainties of the quark distributions. A discussion of how to improve the gluon uncertainty in the future is presented.
Deeply Virtual Exclusive Processes and Generalized Parton Distributions
,
2011-06-01
The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep {yields} ep{gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 {>=} 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e, e'p{gamma} ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.
Deeply Virtual Exclusive Processes and Generalized Parton Distributions
NASA Astrophysics Data System (ADS)
Hyde, Charles E.; Guidal, Michel; Radyushkin, Anatoly V.
2011-05-01
The goal of the comprehensive program in deeply virtual exclusive scattering at Jefferson Lab is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the generalized parton distributions (GPDs) of the target nucleus. Cross section measurements of the deeply virtual Compton scattering (DVCS) reaction ep → epγ in Hall A support the QCD factorization of the scattering amplitude for Q2 >= 2 GeV2. Quasi-free neutron-DVCS measurements on the deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e,e'pγ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the Jefferson Lab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The ρ and ω channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the ϕ-production channel is dominated by the gluon distribution.
Nuclear modifications of Parton Distribution Functions
NASA Astrophysics Data System (ADS)
Adeluyi, Adeola Adeleke
-called shadowing region. We also investigate the effects of nuclear modifications on observed quantities in ultrarelativistic nucleus-nucleus collisions. Specifically, we consider deuteron-gold collisions and observables which are directly impacted by modifications, such as pseudorapidity asymmetry and nuclear modification factors. A good description of the shadowing region is afforded by Gribov Theory. Gribov related the shadowing correction to the differential diffractive hadron-nucleon cross section. We generalize Gribov theory to include both the real part of the diffractive scattering amplitude and higher order multiple scattering necessary for heavy nuclei. The diffractive dissociation inputs are taken from experiments. We calculate observables in deuteron-gold collisions. Utilizing the factorization theorem, we use the existing parameterizations of nuclear PDFs and fragmentation functions in a pQCD-improved parton model to calculate nuclear modification factors and pseudorapidity asymmetries. The nuclear modification factor is essentially the ratio of the deuteron-gold cross section to that of the proton-proton cross section scaled by the number of binary collisions. The pseudorapidity asymmetry is the ratio of the cross section in the negative rapidity region relative to that in the equivalent positive rapidity region. Both quantities are sensitive to the effects of nuclear modifications on PDFs. Results are compared to experimental data from the BRAHMS and STAR collaborations.
Generalized parton distributions: Status and perspectives
Weiss, Christian
2009-01-01
We summarize recent developments in understanding the concept of generalized parton distributions (GPDs), its relation to nucleon structure, and its application to high-Q^2 electroproduction processes. Following a brief review of QCD factorization and transverse nucleon structure, we discuss (a) new theoretical methods for the analysis of deeply-virtual Compton scattering (t-channel-based GPD parametrizations, dispersion relations); (b) the phenomenology of hard exclusive meson production (experimental tests of dominance of small-size configurations, model-independent comparative studies); (c) the role of GPDs in small-x physics and pp scattering (QCD dipole model, central exclusive diffraction). We emphasize the usefulness of the transverse spatial (or impact parameter) representation for both understanding the reaction mechanism in hard exclusive processes and visualizing the physical content of the GPDs.
Parton interpretation of the nucleon spin-dependent structure functions
Mankiewicz, L. ); Ryzak, Z. )
1991-02-01
We discuss the interpretation of the nucleon's polarized structure function {ital g}{sub 2}({ital x}). If the target state is represented by its Fock decomposition on the light cone, the operator-product expansion allows us to demonstrate that moments of {ital g}{sub 2}({ital x}) are related to overlap integrals between wave functions of opposite longitudinal polarizations. In the light-cone formalism such wave functions are related by the kinematical operator {ital scrY}, or light-cone parity. As a consequence, it can be shown that moments of {ital g}{sub 2} give information about the same parton wave function, or probability amplitude to find a certain parton configuration in the target which defines {ital g}{sub 1}({ital x}) or {ital F}{sub 2}({ital x}). Specific formulas are given, and possible applications to the phenomenology of the nucleon structure in QCD are discussed.
Higher twist parton distributions from light-cone wave functions
Braun, V. M.; Lautenschlager, T.; Pirnay, B.; Manashov, A. N.
2011-05-01
We explore the possibility to construct higher-twist parton distributions in a nucleon at some low reference scale from convolution integrals of the light-cone wave functions (WFs). To this end we introduce simple models for the four-particle nucleon WFs involving three valence quarks and a gluon with total orbital momentum zero, and estimate their normalization (WF at the origin) using QCD sum rules. We demonstrate that these WFs provide one with a reasonable description of both polarized and unpolarized parton densities at large values of the Bjorken variable x{>=}0.5. Twist-three parton distributions are then constructed as convolution integrals of qqqg and the usual three-quark WFs. The cases of the polarized structure function g{sub 2}(x,Q{sup 2}) and single transverse spin asymmetries are considered in detail. We find that the so-called gluon pole contribution to twist-three distributions relevant for single spin asymmetry vanishes in this model, but is generated perturbatively at higher scales by the evolution, in the spirit of Glueck-Reya-Vogt parton distributions.
Dynamical parton distributions from DGLAP equations with nonlinear corrections
NASA Astrophysics Data System (ADS)
Wang, Rong; Chen, Xu-Rong
2017-05-01
Determination of proton parton distribution functions is presented under the dynamical parton model assumption by applying DGLAP equations with GLR-MQ-ZRS corrections. We provide two data sets, referred to as IMParton16, which are from two different nonperturbative inputs. One is the naive input of three valence quarks and the other is the input of three valence quarks with flavor-asymmetric sea components. Basically, both data sets are compatible with the experimental measurements at high scale (Q 2 > 2 GeV2). Furthermore, our analysis shows that the input with flavor-asymmetric sea components better reproduces the structure functions at high Q 2. Generally, the parton distribution functions obtained, especially the gluon distribution function, are good options for inputs to simulations of high energy scattering processes. The analysis is performed under the fixed-flavor number scheme for n f = 3, 4, 5. Both data sets start from very low scales, around 0.07 GeV2, where the nonperturbative input is directly connected to the simple picture of the quark model. These results may shed some lights on the origin of the parton distributions observed at high Q 2. Supported by National Basic Research Program (973 Program 2014CB845406) and Century Program of Chinese Academy of Sciences (Y101020BR0)
The parton distribution function library
Plothow-Besch, H.
1995-07-01
This article describes an integrated package of Parton Density Functions called PDFLIB which has been added to the CERN Program Library Pool W999 and is labelled as W5051. In this package all the different sets of parton density functions of the Nucleon, Pion and the Photon which are available today have been put together. All these sets have been combined in a consistent way such that they all have similar calling sequences and no external data files have to be read in anymore. A default set has been prepared, although those preferring their own set or wanting to test a new one may do so within the package. The package also offers a program to calculate the strong coupling constant {alpha}, to first or second order. The correct {Lambda}{sub QCD} associated to the selected set of structure functions and the number of allowed flavours with respect to the given Q{sup 2} is automatically used in the calculation. The selection of sets, the program parameters as well as the possibilities to modify the defaults and to control errors occurred during execution are described.
Jet correlations from unintegrated parton distributions
Hautmann, F.; Jung, H.
2008-10-13
Transverse-momentum dependent parton distributions can be introduced gauge-invariantly in QCD from high-energy factorization. We discuss Monte Carlo applications of these distributions to parton showers and jet physics, with a view to the implications for the Monte Carlo description of complex hadronic final states with multiple hard scales at the LHC.
The neural network approach to parton fitting
Rojo, Joan; Latorre, Jose I.; Del Debbio, Luigi; Forte, Stefano; Piccione, Andrea
2005-10-06
We introduce the neural network approach to global fits of parton distribution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits.
Illuminating the 1/x Moment of Parton Distribution Functions
Brodsky, Stanley J.; Llanes-Estrada, Felipe J.; Szczepaniak, Adam P.; /Indiana U.
2007-10-15
The Weisberger relation, an exact statement of the parton model, elegantly relates a high-energy physics observable, the 1/x moment of parton distribution functions, to a nonperturbative low-energy observable: the dependence of the nucleon mass on the value of the quark mass or its corresponding quark condensate. We show that contemporary fits to nucleon structure functions fail to determine this 1/x moment; however, deeply virtual Compton scattering can be described in terms of a novel F1/x(t) form factor which illuminates this physics. An analysis of exclusive photon-induced processes in terms of the parton-nucleon scattering amplitude with Regge behavior reveals a failure of the high Q2 factorization of exclusive processes at low t in terms of the Generalized Parton-Distribution Functions which has been widely believed to hold in the past. We emphasize the need for more data for the DVCS process at large t in future or upgraded facilities.
Parton shower evolution in a 3D hydrodynamical medium
Renk, Thorsten
2008-09-15
We present a Monte Carlo simulation of the perturbative quantum chromodynamics shower developing after a hard process embedded in a heavy-ion collision. The main assumption is that the cascade of branching partons traverses a medium that (consistent with standard radiative energy loss pictures) is characterized by a local transport coefficient q-circumflex that measures the virtuality per unit length transferred to a parton that propagates in this medium. This increase in parton virtuality alters the development of the shower and in essence leads to extra induced radiation and hence a softening of the momentum distribution in the shower. After hadronization, this leads to the concept of a medium-modified fragmentation function. On the level of observables, this is manifest as the suppression of high-transverse-momentum (P{sub T}) hadron spectra. We simulate the soft medium created in heavy-ion collisions by a 3D hydrodynamical evolution and average the medium-modified fragmentation function over this evolution to compare with data on single inclusive hadron suppression and extract the q-circumflex that characterizes the medium. Finally, we discuss possible uncertainties of the model formulation and argue that the data in a soft momentum show evidence of qualitatively different physics that presumably cannot be described by a medium-modified parton shower.
Parton and valon distributions in the nucleon
Hwa, R.C.; Sajjad Zahir, M.
1981-06-01
Structure functions of the nucleon are analyzed in the valon model in which a nucleon is assumed to be a bound state of three valence quark clusters (valons). At high Q/sup 2/ the structure of the valons is described by leading-order results in the perturbative quantum chromodynamics. From the experimental data on deep-inelastic scattering off protons and neutrons, the flavor-dependent valon distributions in the nucleon are determined. Predictions for the parton distributions are then made for high Q/sup 2/ without guesses concerning the quark and gluon distributions at low Q/sup 2/. The sea-quark and gluon distributions are found to have a sharp peak at very small x. Convenient parametrization is provided which interpolates between different numbers of flavors.
DETAILED COMPARISON BETWEEN PARTON CASCADE AND HADRONIC CASCADE AT SPS AND RHIC.
NARA,Y.
1998-10-23
The authors study the importance of the partonic phase produced in relativistic heavy ion collision by comparing the parton cascade model and the hadronic cascade model. Hadron yield, baryon stopping and transverse momentum distribution are calculated with JAM and discussions are given comparing with VNI. Both of these models give good description of experimental data. They also discuss the strangeness production mechanism and the directed transverse flow.
The effective cross section for double parton scattering within a holographic AdS/QCD approach
NASA Astrophysics Data System (ADS)
Traini, Marco; Rinaldi, Matteo; Scopetta, Sergio; Vento, Vicente
2017-05-01
A first attempt to apply the AdS/QCD framework for a bottom-up approach to the evaluation of the effective cross section for double parton scattering in proton-proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.
Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium
NASA Astrophysics Data System (ADS)
Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming
2016-12-01
We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.
Working Group I: Parton distributions: Summary report for the HERA LHC Workshop Proceedings
Dittmar, M.; Forte, S.; Glazov, A.; Moch, S.; Alekhin, S.; Altarelli, G.; Andersen, Jeppe R.; Ball, R.D.; Blumlein, J.; Bottcher, H.; Carli, T.; Ciafaloni, M.; Colferai, D.; Cooper-Sarkar, A.; Corcella, G.; Del Debbio, L.; Dissertori, G.; Feltesse, J.; Guffanti, A.; Gwenlan, C.; Huston, J.; /Zurich, ETH /DESY, Zeuthen /Serpukhov, IHEP /CERN /Rome III U. /INFN, Rome3 /Cambridge U. /Edinburgh U. /Florence U. /INFN, Florence /Oxford U. /DSM, DAPNIA, Saclay /Michigan State U. /Uppsala U. /Barcelona U., ECM /Podgorica U. /Turin U. /INFN, Turin /Harish-Chandra Res. Inst. /Fermilab /Hamburg U., Inst. Theor. Phys. II
2005-11-01
We provide an assessment of the impact of parton distributions on the determination of LHC processes, and of the accuracy with which parton distributions (PDFs) can be extracted from data, in particular from current and forthcoming HERA experiments. We give an overview of reference LHC processes and their associated PDF uncertainties, and study in detail W and Z production at the LHC.We discuss the precision which may be obtained from the analysis of existing HERA data, tests of consistency of HERA data from different experiments, and the combination of these data. We determine further improvements on PDFs which may be obtained from future HERA data (including measurements of F{sub L}), and from combining present and future HERA data with present and future hadron collider data. We review the current status of knowledge of higher (NNLO) QCD corrections to perturbative evolution and deep-inelastic scattering, and provide reference results for their impact on parton evolution, and we briefly examine non-perturbative models for parton distributions. We discuss the state-of-the art in global parton fits, we assess the impact on them of various kinds of data and of theoretical corrections, by providing benchmarks of Alekhin and MRST parton distributions and a CTEQ analysis of parton fit stability, and we briefly presents proposals for alternative approaches to parton fitting. We summarize the status of large and small x resummation, by providing estimates of the impact of large x resummation on parton fits, and a comparison of different approaches to small x resummation, for which we also discuss numerical techniques.
Pre-equilibrium parton dynamics: Proceedings
Wang, Xin-Nian
1993-12-31
This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base.
Q2-DEPENDENCE of the Statistical Parton Distributions in the Valon Approach
NASA Astrophysics Data System (ADS)
Sohaily, S.; Yazdanpanah, M. M.; Mirjalili, A.
2012-06-01
We employ the statistical approach to obtain the nucleon parton distributions. Statistical distributions are considered as well for partons in the valon model in which a nucleon is assumed to be a state of three valence quark clusters (valon). Analytic expressions of the x-dependent of parton distribution functions (PDFs) in the valon model are obtained statistically in the whole x region [0, 1] in terms of the statistical parameters such as temperature, chemical potential and accessible volume. Since PDFs are obtained by taking the required sum rules including Gottfried sum rule at different energy scales, the Q2-dependence of these parameters can be obtained. Therefore the parton distributions as a function of Q2 will be resulted. To make the calculations more precise, we extend our results to contain three flavors rather than two light u and d quarks.
First JAM results on the determination of polarized parton distributions
Accardi, Alberto; Jimenez-Delgado, Pedro; Melnitchouk, Wally
2014-01-01
The Jefferson Lab Angular Momentum (JAM) Collaboration is a new initiative to study the angular momentum dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions at intermediate and large x from world data on polarized deep-inelastic scattering are presented. Different aspects of global QCD analysis are discussed, including the effects of nuclear structure of deuterium and {sup 3}He targets, target mass corrections and higher twist contributions to the g{sub 1} and g{sub 2} structure functions.
Transverse-momentum-dependent parton distributions (TMDs)
Bacchetta, Alessandro
2011-10-24
Transverse-momentum-dependent parton distributions (TMDs) provide three-dimensional images of the partonic structure of the nucleon in momentum space. We made impressive progress in understanding TMDs, both from the theoretical and experimental point of view. This brief overview on TMDs is divided in two parts: in the first, an essential list of achievements is presented. In the second, a selection of open questions is discussed.
The midpoint between dipole and parton showers
Höche, Stefan; Prestel, Stefan
2015-09-28
We present a new parton-shower algorithm. Borrowing from the basic ideas of dipole cascades, the evolution variable is judiciously chosen as the transverse momentum in the soft limit. This leads to a very simple analytic structure of the evolution. A weighting algorithm is implemented that allows one to consistently treat potentially negative values of the splitting functions and the parton distributions. Thus, we provide two independent, publicly available implementations for the two event generators PYTHIA and SHERPA.
Parton distributions with LHC data
NASA Astrophysics Data System (ADS)
Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria; Nnpdf Collaboration
2013-02-01
We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various standard candle cross-sections, and compare them to those obtained previously using NNPDF2.1, and specifically discuss the impact of ATLAS electroweak data on the determination of the strangeness fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination.
APACIC++ 2.0. A PArton Cascade In C++
NASA Astrophysics Data System (ADS)
Krauss, F.; Schälicke, A.; Soff, G.
2006-06-01
simulate ee-annihilation experiments as well as hadron-hadron collision. The generated events are suitable for direct comparison with experiment. This is achieved by dividing the simulation into well-separated steps. First, the signal process is selected by employing multi-particle matrix elements at tree-level. Then the strong interacting particles experience additional radiation of soft or collinear partons described by means of the parton shower. Finally, the partons are translated into observable hadrons using phenomenological models. The module APACIC++ concentrates on the parton shower evolution of jets, both in the initial and in the final state of the signal process. Suitable interfaces to other modules of the event generator SHERPA are provided. Reasons for the new version: This new version is able to perform not only final state shower but also initial state shower evolutions. Thus the program gives now also a realistic description of proton-proton and proton-anti-proton collisions. It is particularly designed to simulate events at the Tevatron or the LHC. Summary of revisions: The package has been extended by a number of classes for the description of the initial state shower. In order to give optimal support for these new routines, all existing classes of the final state shower have been revised, but the basic structure and concept of the program has been maintained. In addition a new dicing strategy has been introduced in the time-like evolution routine, which substantially improved the performance of the final state shower. Additional comments: The package APACIC++ is used as the parton shower module of the general purpose event generator SHERPA. There it takes full advantage of its capabilities to merge multi-jet matrix element and parton shower evolution. Running time: The example programs take a matter of seconds to run.
Nuclear effects on tetraquark production by double parton scattering
NASA Astrophysics Data System (ADS)
Carvalho, F.; Navarra, F. S.
2017-03-01
In this work we study the nuclear effects in exotic meson production. We estimate the total cross section as a function of the energy for pPb scattering using a version of the color evaporation model (CEM) adapted to Double Parton Scattering (DPS). We fond that the cross section grows significantly with the atomic number, indicating that the hypothesis of tetraquark states can be tested in pA collisions at LHC.
A Review of Target Mass Corrections
I. Schienbein; V. Radescu; G. Zeller; M. E. Christy; C. E. Keppel; K. S. McFarland; W. Melnitchouk; F. I. Olness; M. H. Reno; F. Steffens; J.-Y. Yu
2007-09-06
With recent advances in the precision of inclusive lepton-nuclear scattering experiments, it has become apparent that comparable improvements are needed in the accuracy of the theoretical analysis tools. In particular, when extracting parton distribution functions in the large-x region, it is crucial to correct the data for effects associated with the nonzero mass of the target. We present here a comprehensive review of these target mass corrections (TMC) to structure functions data, summarizing the relevant formulas for TMCs in electromagnetic and weak processes. We include a full analysis of both hadronic and partonic masses, and trace how these effects appear in the operator product expansion and the factorized parton model formalism, as well as their limitations when applied to data in the x -> 1 limit. We evaluate the numerical effects of TMCs on various structure functions, and compare fits to data with and without these corrections.
Air target models for fuzing simulations
NASA Astrophysics Data System (ADS)
Dammann, J. F., Jr.
1982-09-01
Radar backscatter models for air targets suitable for computer simulation of radar fuze-air target encounters are described. These models determine the characteristics of the energy reflected to the fuze when the target is illuminated by a fuze radar. When the target models are coupled with fuze models, the time when the fuze detects the presence of the target can be determined for any arbitrary terminal encounter geometry. Fuze detection times for representative trajectories can be compared with fuze specifications to measure fuze performance or can be used as a part of a simulation of an entire system to determine system performance. Following one basic methodology, target models have been written for the Fishbed, Foxbat, and Flogger fighter aircraft; the Hind-D helicopter; and the Backfire, Blinder, and B-1 bombers. All of the models are specular point models where the major return is assumed to come from a small number of glitter points or specular points on the target.
Charge symmetry breaking in parton distribution functions from lattice QCD
Horsley, R.; Zanotti, J. M.; Nakamura, Y.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Stueben, H.; Thomas, A. W.; Young, R. D.; Winter, F.
2011-03-01
By determining the quark momentum fractions of the octet baryons from N{sub f}=2+1 lattice simulations, we are able to predict the degree of charge symmetry violation in the parton distribution functions of the nucleon. This is of importance, not only as a probe of our understanding of the nonperturbative structure of the proton, but also because such a violation constrains the accuracy of global fits to parton distribution functions and hence the accuracy with which, for example, cross sections at the LHC can be predicted. A violation of charge symmetry may also be critical in cases where symmetries are used to guide the search for physics beyond the standard model.
Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC
L. Frankfurt, M. Strikman, C. Weiss
2011-03-01
We propose a new method to determine at what transverse momenta particle production in high-energy pp collisions is governed by hard parton-parton processes. Using information on the transverse spatial distribution of partons obtained from hard exclusive processes in ep/\\gamma p scattering, we evaluate the impact parameter distribution of pp collisions with a hard parton-parton process as a function of p_T of the produced parton (jet). We find that the average pp impact parameters in such events depend very weakly on p_T in the range 2 < p_T < few 100 GeV, while they are much smaller than those in minimum-bias inelastic collisions. The impact parameters in turn govern the observable transverse multiplicity in such events (in the direction perpendicular to the trigger particle or jet). Measuring the transverse multiplicity as a function of p_T thus provides an effective tool for determining the minimum p_T for which a given trigger particle originates from a hard parton-parton process.
Chiral dynamics and partonic structure at large transverse distances
Strikman, M.; Weiss, C.
2009-12-30
In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲M_{π}/M_{N} and transverse distances b~1/M_{π}. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, R_{core}=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b^{2})_{q+q¯}>(b^{2})_{g}, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general N_{c}-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-N_{c} limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.
First JAM results on the determination of polarized parton distributions
Jimenez-Delgado, Pedro
2013-04-01
The Jefferson Lab Angular Momentum (JAM) collaboration is a new initiative aimed to the study of the angular-momentum-dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering will be presented and compared with previous determinations from other groups. Different aspects of global QCD analysis will be discussed, including effects due to nuclear structure, higher twist, and target-mass corrections, as well as the impact of different data selections.
Micro-review of structure functions and parton distribution functions
Morfin, J.G.
1989-01-01
There has recently been a great deal of discussion concerning the surprising differences in the measurements of the nucleon structure function F/sub 2/(x,Q/sup 2/), off of a hydrogen target, by the high statistics muoproduction experiments EMC and BCDMS. In this short review I will attempt to summarize the status of the experimental measurements of the structure functions and highlight any significant disagreements. At the conclusion I will comment on the status of the extraction of the parton distribution functions from these measurements. 17 refs., 16 figs., 2 tabs.
Nucleon Parton Structure from Continuum QCD
NASA Astrophysics Data System (ADS)
Bednar, Kyle; Cloet, Ian; Tandy, Peter
2017-01-01
The parton structure of the nucleon is investigated using QCD's Dyson-Schwinger equations (DSEs). This formalism builds in numerous essential features of QCD, for example, the dressing of parton propagators and dynamical formation of non-pointlike di-quark correlations. All needed elements of the approach, including the nucleon wave function solution from a Poincaré covariant Faddeev equation, are encoded in spectral-type representations in the Nakanishi style. This facilitates calculations and the necessary connections between Euclidean and Minkowski metrics. As a first step results for the nucleon quark distribution functions will be presented. The extension to the transverse momentum-dependent parton distributions (TMDs) also be discussed. Supported by NSF Grant No. PHY-1516138.
Constraints on parton distribution from CDF
Bodek, A.; CDF Collaboration
1995-10-01
The asymmetry in W{sup -} - W{sup +} production in p{bar p} collisions and Drell-Yan data place tight constraints on parton distributions functions. The W asymmetry data constrain the slope of the quark distribution ratio d(x)/u(x) in the x range 0.007-0.27. The published W asymmetry results from the CDF 1992.3 data ({approx} 20 pb{sup -1}) greatly reduce the systematic error originating from the choice of PDF`s in the W mass measurement at CDF. These published results have also been included in the CTEQ3, MRSA, and GRV94 parton distribution fits. These modern parton distribution functions axe still in good agreement with the new 1993-94 CDF data({approx} 108 pb{sup -1} combined). Preliminary results from CDF for the Drell-Yan cross section in the mass range 11-350 GeV/c{sup 2} are discussed.
Parton Propagation and Fragmentation in QCD Matter
Alberto Accardi, Francois Arleo, William Brooks, David D'Enterria, Valeria Muccifora
2009-12-01
We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.
Evolution of parton fragmentation functions at finitetemperature
Osborne, Jonathan; Wang, Enke; Wang, Xin-Nian
2002-06-12
The first order correction to the parton fragmentation functions in a thermal medium is derived in the leading logarithmic approximation in the framework of thermal field theory. The medium-modified evolution equations of the parton fragmentation functions are also derived. It is shown that all infrared divergences, both linear and logarithmic, in the real processes are canceled among themselves and by corresponding virtual corrections. The evolution of the quark number and the energy loss (or gain) induced by the thermal medium are investigated.
New limits on intrinsic charm in the nucleon from global analysis of parton distributions
Jimenez-Delgado, P.; Hobbs, T. J.; Londergan, J. T.; ...
2015-02-27
We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q2 ≥ 1 GeV2 and W2 ≥ 3.5 GeV2, including fixed-target proton and deuteron deep cross sections at lower energies that were excluded in previously global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with (x)IC at most 0.5% (corresponding to an IC normalization of ~1%) at the 4σ level for ΔX2 = 1.more » We also assess the impact of older EMC measurements of Fc2c at large x, which favor a nonzero IC, but with very large X2 values.« less
Perturbative QCD correlations in multi-parton collisions
NASA Astrophysics Data System (ADS)
Blok, B.; Dokshitzer, Yu.; Frankfurt, L.; Strikman, M.
2014-06-01
We examine the role played in double-parton interactions (DPI) by the parton-parton correlations originating from perturbative QCD parton splittings. Also presented are the results of the numerical analysis of the integrated DPI cross sections at Tevatron and LHC energies. To obtain the numerical results the knowledge of the single-parton GPDs gained by the HERA experiments was used to construct the non-perturbative input for generalized double-parton distributions. The perturbative two-parton correlations induced by three-parton interactions contribute significantly to a resolution of the longstanding puzzle of an excess of multi-jet production events in the back-to-back kinematics observed at the Tevatron.
Applying target shadow models for SAR ATR
NASA Astrophysics Data System (ADS)
Papson, Scott; Narayanan, Ram M.
2007-04-01
Recent work has suggested that target shadows in synthetic aperture radar (SAR) images can be used effectively to aid in target classification. The method outlined in this paper has four steps - segmentation, representation, modeling, and selection. Segmentation is the process by which a smooth, background-free representation of the target's shadow is extracted from an image chip. A chain code technique is then used to represent the shadow boundary. Hidden Markov modeling is applied to sets of chain codes for multiple targets to create a suitable bank of target representations. Finally, an ensemble framework is proposed for classification. The proposed model selection process searches for an optimal ensemble of models based on various target model configurations. A five target subset of the MSTAR database is used for testing. Since the shadow is a back-projection of the target profile, some aspect angles will contain more discriminatory information then others. Therefore, performance is investigated as a function of aspect angle. Additionally, the case of multiple target looks is considered. The capability of the shadow-only classifier to enhance more traditional classification techniques is examined.
Generalized parton distributions in the deuteron.
Berger, E R; Cano, F; Diehl, M; Pire, B
2001-10-01
We introduce generalized quark and gluon distributions in the deuteron, which can be measured in exclusive processes like deeply virtual Compton scattering and meson electroproduction. We discuss the basic properties of these distributions and point out how they probe the interplay of nucleon and parton degrees of freedom in the deuteron wave function.
Progress in the dynamical parton distributions
Jimenez-Delgado, Pedro
2012-06-01
The present status of the (JR) dynamical parton distribution functions is reported. Different theoretical improvements, including the determination of the strange sea input distribution, the treatment of correlated errors and the inclusion of alternative data sets, are discussed. Highlights in the ongoing developments as well as (very) preliminary results in the determination of the strong coupling constant are presented.
Systematic Improvement of QCD Parton Showers
Winter, Jan; Hoeche, Stefan; Hoeth, Hendrik; Krauss, Frank; Schonherr, Marek; Zapp, Korinna; Schumann, Steffen; Siegert, Frank; /Freiburg U.
2012-05-17
In this contribution, we will give a brief overview of the progress that has been achieved in the field of combining matrix elements and parton showers. We exemplify this by focusing on the case of electron-positron collisions and by reporting on recent developments as accomplished within the SHERPA event generation framework.
Fragmentation of parton jets at small x
Kirschner, R.
1985-08-01
The parton fragmentation function is calculated in the region of small x in the doubly logarithmic approximation of QCD. For this, the method of separating the softest particle, which has hitherto been applied only in the Regge kinematic region, is developed. Simple arguments based on unitarity and gauge invariance are used to derive the well known condition of ordering of the emission angles.
Generalized Parton Distributions: Visions, Basics, and Realities
NASA Astrophysics Data System (ADS)
Müller, D.
2014-06-01
An introductory to generalized parton distributions (GDPs) is given which emphasizes their spectral property and its uses as well as the equivalence of various GDP representations. Furthermore, the status of the theory and phenomenology of hard exclusive processes is shortly reviewed.
Computational modeling of foveal target detection.
Witus, Gary; Ellis, R Darin
2003-01-01
This paper presents the VDM2000, a computational model of target detection designed for use in military developmental test and evaluation settings. The model integrates research results from the fields of early vision, object recognition, and psychophysics. The VDM2000 is image based and provides a criterion-independent measure of target conspicuity, referred to as the vehicle metric (VM). A large data set of human responses to photographs of military vehicles in a field setting was used to validate the model. The VM adjusted by a single calibration parameter accounts for approximately 80% of the variance in the validation data. The primary application of this model is to predict detection of military targets in daylight with the unaided eye. The model also has application to target detection prediction using infrared night vision systems. The model has potential as a tool to evaluate the visual properties of more general task settings.
Probe initial parton density and formation time via jet quenching
Wang, Xin-Nian
2002-09-20
Medium modification of jet fragmentation function due to multiple scattering and induced gluon radiation leads directly to jet quenching or suppression of leading particle distribution from jet fragmentation. One can extract an effective total parton energy loss which can be related to the total transverse momentum broadening. For an expanding medium, both are shown to be sensitive to the initial parton density and formation time. Therefore, one can extract the initial parton density and formation time from simultaneous measurements of parton energy loss and transverse momentum broadening. Implication of the recent experimental data on effects of detailed balance in parton energy loss is also discussed.
Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking
Peter Schweitzer, Mark Strikman, Christian Weiss
2013-01-01
The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions on a distance scale rho ~ 0.3 fm, much smaller than the typical hadronic size R ~ 1 fm. These short-distance interactions influence the intrinsic transverse momentum distributions of partons and their correlations at a low normalization point. We study this phenomenon in an effective description of the low-energy dynamics in terms of chiral constituent quark degrees of freedom, which refers to the large-N_c limit of QCD. The nucleon is obtained as a system of constituent quarks and antiquarks moving in a self-consistent classical chiral field (relativistic mean-field approximation, or chiral quark-soliton model). The calculated transverse momentum distributions of constituent quarks and antiquarks are matched with QCD quarks, antiquarks and gluons at the chiral symmetry--breaking scale rho^{-2}. We find that the transverse momentum distribution of valence quarks is localized at p_T^2 ~ R^{-2} and roughly of Gaussian shape. The distribution of unpolarized sea quarks exhibits a would-be power-like tail ~1/p_T^2 extending up to the chiral symmetry-breaking scale. Similar behavior is observed in the flavor-nonsinglet polarized sea. The high-momentum tails are the result of short-range correlations between sea quarks in the nucleon's light-cone wave function, which are analogous to short-range NN correlations in nuclei. We show that the nucleon's light-cone wave function contains correlated pairs of transverse size rho << R with scalar-isoscalar (Sigma) and pseudoscalar-isovector (Pi) quantum numbers, whose internal wave functions have a distinctive spin structure and become identical at p_T^2 ~ rho^{-2} (restoration of chiral symmetry). These features are model-independent and represent an effect of dynamical chiral symmetry breaking on the nucleon's partonic structure. Our results have numerous implications for the transverse momentum distributions of particles produced in hard
Studies of transverse momentum dependent parton distributions and Bessel weighting
Aghasyan, M.; Avakian, H.; De Sanctis, E.; Gamberg, L.; Mirazita, M.; Musch, B.; Prokudin, A.; Rossi, P.
2015-03-01
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.
Studies of transverse momentum dependent parton distributions and Bessel weighting
Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...
2015-03-01
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less
Examining the Crossover from the Hadronic to Partonic Phase in QCD
Xu Mingmei; Yu Meiling; Liu Lianshou
2008-03-07
A mechanism, consistent with color confinement, for the transition between perturbative and physical vacua during the gradual crossover from the hadronic to partonic phase is proposed. The essence of this mechanism is the appearance and growing up of a kind of grape-shape perturbative vacuum inside the physical one. A percolation model based on simple dynamics for parton delocalization is constructed to exhibit this mechanism. The crossover from hadronic matter to sQGP (strongly coupled quark-gluon plasma) as well as the transition from sQGP to weakly coupled quark-gluon plasma with increasing temperature is successfully described by using this model.
Generalized parton distributions and exclusive processes
Guzey, Vadim
2013-10-01
In last fifteen years, GPDs have emerged as a powerful tool to reveal such aspects of the QCD structure of the nucleon as: - 3D parton correlations and distributions; - spin content of the nucleon. Further advances in the field of GPDs and hard exclusive processes rely on: - developments in theory and new methods in phenomenology such as new flexible parameterizations, neural networks, global QCD fits - new high-precision data covering unexplored kinematics: JLab at 6 and 12 GeV, Hermes with recoil detector, Compass, EIC. This slide-show presents: Nucleon structure in QCD, particularly hard processes, factorization and parton distributions; and a brief overview of GPD phenomenology, including basic properties of GPDs, GPDs and QCD structure of the nucleon, and constraining GPDs from experiments.
Parton distribution benchmarking with LHC data
NASA Astrophysics Data System (ADS)
Ball, Richard D.; Carrazza, Stefano; Del Debbio, Luigi; Forte, Stefano; Gao, Jun; Hartland, Nathan; Huston, Joey; Nadolsky, Pavel; Rojo, Juan; Stump, Daniel; Thorne, Robert S.; Yuan, C.-P.
2013-04-01
We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. We quantify the agreement between data and theory by computing the χ 2 for each data set with all the various PDFs. PDF comparisons are performed consistently for common values of the strong coupling. We also present a benchmark comparison of jet production at the LHC, comparing the results from various available codes and scale settings. Finally, we discuss the implications of the updated NNLO PDF sets for the combined PDF+ α s uncertainty in the gluon fusion Higgs production cross section.
Correlations in double parton distributions: perturbative and non-perturbative effects
NASA Astrophysics Data System (ADS)
Rinaldi, Matteo; Scopetta, Sergio; Traini, Marco; Vento, Vicente
2016-10-01
The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.
Ma, Guo -Liang; Bzdak, Adam
2014-11-04
In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.
Ma, Guo -Liang; Bzdak, Adam
2014-11-04
In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.
The sound generated by a fast parton in the quark-gluon plasma is a crescendo
NASA Astrophysics Data System (ADS)
Neufeld, R. B.; Müller, B.
2009-11-01
The total energy deposited into the medium per unit length by a fast parton traversing a quarkgluon plasma is calculated. We take the medium excitation due to collisions to be given by the well known expression for the collisional drag force. The parton's radiative energy loss contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. In our model, this leads to a length dependence on the differential energy loss due to the interactions of radiated gluons with the medium. The final result, which is a sum of the primary and the secondary contributions, is then treated as the coefficient of a local hydrodynamic source term. Results are presented for energy density wave induced by two fast, back-to-back partons created in an initial hard interaction.
Lindenbaum, S. J.; Longacre, R. S.
2008-11-15
In an earlier paper we developed a QCD-inspired theoretical parton bubble model (PBM) for RHIC/LHC. The motivation for the PBM was to develop a model that would reasonably quantitatively agree with the strong charged particle pair correlations observed by the STAR Collaboration at RHIC in Au+Au central collisions at {radical}(s{sub NN})=200 GeV in the transverse momentum range 0.8 to 2.0 GeV/c. The model was constructed to also agree with the Hanbury Brown and Twiss (HBT) observed small final-state source size {approx}2 fm radii in the transverse momentum range above 0.8 GeV/c. The model assumed a substructure of a ring of localized adjoining {approx}2 fm radius bubbles perpendicular to the collider beam direction, centered on the beam, at midrapidity. The bubble ring was assumed to be located on the expanding fireball surface of the Au+Au collision. These bubbles consist almost entirely of gluons and form gluonic hot spots on the fireball surface. We achieved a reasonable quantitative agreement with the results of both the physically significant charge-independent (CI) and charge-dependent (CD) correlations that were observed. In this paper we extend the model to include the changing development of bubbles with centrality from the most central region where bubbles are very important to the most peripheral where the bubbles are gone. Energy density is found to be related to bubble formation and as centrality decreases the maximum energy density and bubbles shift from symmetry around the beam axis to the reaction plane region, causing a strong correlation of bubble formation with elliptic flow. We find reasonably quantitative agreement (within a few percent of the total correlations) with a new precision RHIC experiment that extended the centrality region investigated to the range 0%-80% (most central to most peripheral). The characteristics and behavior of the bubbles imply they represent a significant substructure formed on the surface of the fireball at kinetic
Modeling target erosion during reactive sputtering
NASA Astrophysics Data System (ADS)
Strijckmans, K.; Depla, D.
2015-03-01
The influence of the reactive sputter conditions on the racetrack and the sputter profile for an Al/O2 DC reactive sputter system is studied by modeling. The role of redeposition, i.e. the deposition of sputtered material back on the target, is therefore taken into account. The used model RSD2013 is capable of simulating the effect of redeposition on the target condition in a spatial resolved way. Comparison between including and excluding redeposition in the RSD2013 model shows that the in-depth oxidation profile of the target differs. Modeling shows that it is important to distinguish between the formed racetrack, i.e. the erosion depth profile, and the sputter profile. The latter defines the distribution of the sputtered atoms in the vacuum chamber. As the target condition defines the sputter yield, it does determine the racetrack and the sputter profile of the planar circular target. Both the shape of the racetrack and the sputter profile change as function of the redeposition fraction as well as function of the oxygen flow change. Clear asymmetries and narrowing are observed for the racetrack shape. Similar effects are noticed for the sputter profile but to a different extent. Based on this study, the often heard misconception that the racetrack shape defines the distribution of the sputtered atoms during reactive sputtering is proven to be wrong.
Time series modeling for automatic target recognition
NASA Astrophysics Data System (ADS)
Sokolnikov, Andre
2012-05-01
Time series modeling is proposed for identification of targets whose images are not clearly seen. The model building takes into account air turbulence, precipitation, fog, smoke and other factors obscuring and distorting the image. The complex of library data (of images, etc.) serving as a basis for identification provides the deterministic part of the identification process, while the partial image features, distorted parts, irrelevant pieces and absence of particular features comprise the stochastic part of the target identification. The missing data approach is elaborated that helps the prediction process for the image creation or reconstruction. The results are provided.
Self-Organizing Maps and Parton Distribution Functions
K. Holcomb, Simonetta Liuti, D. Z. Perry
2011-05-01
We present a new method to extract parton distribution functions from high energy experimental data based on a specific type of neural networks, the Self-Organizing Maps. We illustrate the features of our new procedure that are particularly useful for an anaysis directed at extracting generalized parton distributions from data. We show quantitative results of our initial analysis of the parton distribution functions from inclusive deep inelastic scattering.
Investigation of parton fragmentation with the TPC detector at PEP: recent results
Hofmann, W.
1985-08-01
Long-range correlations are discussed as a new tool to test the parton model and jet universality and are used to determine general properties of quark fragmentation functions. Proton-antiproton correlatiosns and proton rapidity distribution yield information about details of the confinement process, excluding e.g. the decay of heavy mesonic clusters as the dominant source of baryons.
Model-based target and background characterization
NASA Astrophysics Data System (ADS)
Mueller, Markus; Krueger, Wolfgang; Heinze, Norbert
2000-07-01
Up to now most approaches of target and background characterization (and exploitation) concentrate solely on the information given by pixels. In many cases this is a complex and unprofitable task. During the development of automatic exploitation algorithms the main goal is the optimization of certain performance parameters. These parameters are measured during test runs while applying one algorithm with one parameter set to images that constitute of image domains with very different domain characteristics (targets and various types of background clutter). Model based geocoding and registration approaches provide means for utilizing the information stored in GIS (Geographical Information Systems). The geographical information stored in the various GIS layers can define ROE (Regions of Expectations) and may allow for dedicated algorithm parametrization and development. ROI (Region of Interest) detection algorithms (in most cases MMO (Man- Made Object) detection) use implicit target and/or background models. The detection algorithms of ROIs utilize gradient direction models that have to be matched with transformed image domain data. In most cases simple threshold calculations on the match results discriminate target object signatures from the background. The geocoding approaches extract line-like structures (street signatures) from the image domain and match the graph constellation against a vector model extracted from a GIS (Geographical Information System) data base. Apart from geo-coding the algorithms can be also used for image-to-image registration (multi sensor and data fusion) and may be used for creation and validation of geographical maps.
Biological models for automatic target detection
NASA Astrophysics Data System (ADS)
Schachter, Bruce
2008-04-01
Humans are better at detecting targets in literal imagery than any known algorithm. Recent advances in modeling visual processes have resulted from f-MRI brain imaging with humans and the use of more invasive techniques with monkeys. There are four startling new discoveries. 1) The visual cortex does not simply process an incoming image. It constructs a physics based model of the image. 2) Coarse category classification and range-to-target are estimated quickly - possibly through the dorsal pathway of the visual cortex, combining rapid coarse processing of image data with expectations and goals. This data is then fed back to lower levels to resize the target and enhance the recognition process feeding forward through the ventral pathway. 3) Giant photosensitive retinal ganglion cells provide data for maintaining circadian rhythm (time-of-day) and modeling the physics of the light source. 4) Five filter types implemented by the neurons of the primary visual cortex have been determined. A computer model for automatic target detection has been developed based upon these recent discoveries. It uses an artificial neural network architecture with multiple feed-forward and feedback paths. Our implementation's efficiency derives from the observation that any 2-D filter kernel can be approximated by a sum of 2-D box functions. And, a 2-D box function easily decomposes into two 1-D box functions. Further efficiency is obtained by decomposing the largest neural filter into a high pass filter and a more sparsely sampled low pass filter.
Updated lattice results for parton distributions
NASA Astrophysics Data System (ADS)
Alexandrou, Constantia; Cichy, Krzysztof; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2017-07-01
We provide an analysis of the x dependence of the bare unpolarized, helicity, and transversity isovector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
From Bethe-Salpeter Wave functions to Generalised Parton Distributions
NASA Astrophysics Data System (ADS)
Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.
2016-09-01
We review recent works on the modelling of generalised parton distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. Specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation.
From Bethe-Salpeter Wave Functions to Generalised Parton Distributions
Mezrag, C.; Moutarde, H.; Rodriguez-Quintero, J.
2016-06-06
We review recent works on the modelling of Generalised Parton Distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. A specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation
Target & Propagation Models for the FINDER Radar
NASA Technical Reports Server (NTRS)
Cable, Vaughn; Lux, James; Haque, Salmon
2013-01-01
Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.
Target & Propagation Models for the FINDER Radar
NASA Technical Reports Server (NTRS)
Cable, Vaughn; Lux, James; Haque, Salmon
2013-01-01
Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.
Evolutionary Drift Models for Moving Target Defense
Oehmen, Christopher S.; Peterson, Elena S.; Teuton, Jeremy R.
2012-10-31
One of the biggest challenges faced by cyber defenders is that attacks evolve more rapidly than our ability to recognize them. We propose a moving target defense concept in which the means of detection is set in motion. This is done by moving away from static signature-based detection and instead adopting biological modeling techniques that describe families of related sequences. We present here one example for how to apply evolutionary models to cyber sequences, and demonstrate the feasibility of this technique on analysis of a complex, evolving software project. Specifically, we applied sequence-based and profile-based evolutionary models and report the ability of these models to recognize highly volatile code regions. We found that different drift models reliably identify different types of evolutionarily related code regions. The impact is that these (and possibly other) evolutionary models could be used in a moving target defense in which the "signature" being used to detect sequence-based behaviors is not a fixed signature but one that can recognize new variants of a known family based on multiple evolutionary models.
Nucleon Generalized Parton Distributions from Full Lattice QCD
Robert Edwards; Philipp Haegler; David Richards; John Negele; Konstantinos Orginos; Wolfram Schroers; Jonathan Bratt; Andrew Pochinsky; Michael Engelhardt; George Fleming; Bernhard Musch; Dru Renner
2007-07-03
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3.
Excited nucleon as a van der Waals system of partons
Jenkovszky, L. L.; Muskeyev, A. O. Yezhov, S. N.
2012-06-15
Saturation in deep inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) is associated with a phase transition between the partonic gas, typical of moderate x and Q{sup 2}, and partonic fluid appearing at increasing Q{sup 2} and decreasing Bjorken x. We suggest the van der Waals equation of state to describe properly this phase transition.
Studies of partonic transverse momentum and spin structure of the nucleon
NASA Astrophysics Data System (ADS)
Contalbrigo, M.
2014-06-01
The investigation of the partonic degrees of freedom beyond collinear approximation (3D description) has been gained increasing interest in the last decade. The Thomas Jefferson National Laboratory, after the CEBAF upgrade to 12 GeV, will become the most complete facility for the investigation of the hadron structure in the valence region by scattering of polarized electron off various polarized nucleon targets. A compendium of the planned experiments is here presented.
Termites as targets and models for biotechnology.
Scharf, Michael E
2015-01-07
Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.
Parton Charge Symmetry Violation: Electromagnetic Effects and W Production Asymmetries
J.T. Londergan; D.P. Murdock; A.W. Thomas
2006-04-14
Recent phenomenological work has examined two different ways of including charge symmetry violation in parton distribution functions. First, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the magnitude of parton charge symmetry breaking. In a second approach, two groups have included the coupling of partons to photons in the QCD evolution equations. One possible experiment that could search for isospin violation in parton distributions is a measurement of the asymmetry in W production at a collider. In this work we include both of the postulated sources of parton charge symmetry violation. We show that, given charge symmetry violation of a magnitude consistent with existing high energy data, the expected W production asymmetries would be quite small, generally less than one percent.
Parton physics from large-momentum effective field theory
NASA Astrophysics Data System (ADS)
Ji, XiangDong
2014-07-01
Parton physics, when formulated as light-front correlations, are difficult to study non-perturbatively, despite the promise of light-front quantization. Recently an alternative approach to partons have been proposed by re-visiting original Feynman picture of a hadron moving at asymptotically large momentum. Here I formulate the approach in the language of an effective field theory for a large hadron momentum P in lattice QCD, LaMET for short. I show that using this new effective theory, parton properties, including light-front parton wave functions, can be extracted from lattice observables in a systematic expansion of 1/ P, much like that the parton distributions can be extracted from the hard scattering data at momentum scales of a few GeV.
Model of the US CENTCOM Joint Targeting Architecture: Develop Targets
2004-06-01
Shelf CTL Candidate Target List DARS Daily Aerial Reconnaissance and Surveillance DB Database DBS Data Broadcast System DCAP Data Collection...Context, defines the context, systems capabilities, documentations requirements, data collection and analysis plan ( DCAP ), scope, scenarios, and field
NIRATAM-NATO infrared air target model
NASA Astrophysics Data System (ADS)
Noah, Meg A.; Kristl, Joseph; Schroeder, John W.; Sandford, B. P.
1991-08-01
NIRATAM (the NATO Infrared Air Target Model) was developed by the NATO AC 243, Panel IV, Research Study Group 6 (RSG-6). RSG-6 is composed of representatives from Denmark, France, Germany, Italy, the Netherlands, the United Kingdom, the United States of America, and Canada (as an observer). NIRATAM is based on theoretical studies, field measurements, and infrared data analysis performed over many years. The model encompasses all the major signature components required to simulate the infrared signature of an aircraft and the atmosphere. The vehicle fuselage, facet, model includes radiation due to aerodynamic heating, internal heat sources, reflected sky, earth, and solar radiation. Plume combustion gas emissions are calculated for H(subscript 2)O, CO(subscript 2), CO, and other gases as well as solid particles. Lowtran 7 is used for the atmospheric transmission and radiance. The software generates graphical outputs of the target wireframe, plume flowfield, atmospheric transmission, total signature, and plume signature. Imagery data can be used for system development and evaluation. NIRATAM can be used for many applications such as measurement planning, data analysis, systems design, and aircraft development. Ontar has agreed to assist the RSG-6 by being the NIRATAM distribution center in the United States for users approved by the national representatives. Arrangements have also been made to distribute a user-friendly NIRATAM interface. This paper describes the model, presents results, makes comparisons with measured field data, and describes the availability and procedure for obtaining the software.
Parton distributions in nuclei: Quagma or quagmire
Close, F.E.
1988-01-01
The emerging information on the way quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed. Particular emphasis is placed on Drell-Yan and /psi/ production on nuclei and caution against premature use of these as signals for quagma in heavy-ion collisions. If we are to identify the formation of quark-gluon plasma in heavy-ion collisions by changes in the production rates for /psi/ relative to Drell-Yan lepton pairs, then it is important that we first understand the ''intrinsic'' changes in parton distributions in nuclei relative to free nucleons. So, emerging knowledge on how quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed, and the emerging theoretical concensus is briefly summarized.
Quasi parton distributions and the gradient flow
Monahan, Christopher; Orginos, Kostas
2017-03-22
We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernelmore » that relates the smeared quasi PDF and the light-front PDF.« less
Deeply exclusive processes and generalized parton distributions
Marc Vanderhaegen
2005-02-01
We discuss how generalized parton distributions (GPDs) enter into hard exclusive processes, and focuses on the links between GPDs and elastic nucleon form factors. These links, in the form of sum rules, represent powerful constraints on parameterizations of GPDs. A Regge parameterization for the GPDs at small momentum transfer -t is extended to the large-t region and it is found to catch the basic features of proton and neutron electromagnetic form factor data. This parameterization allows to estimate the quark contribution to the nucleon spin. It is furthermore discussed how these GPDs at large-t enter into two-photon exchange processes and resolve the discrepancy between Rosenbluth and polarization experiments of elastic electron nucleon scattering.
Modeling alignment enhancement for solid polarized targets
NASA Astrophysics Data System (ADS)
Keller, D.
2017-07-01
A model of dynamic orientation using optimized radiofrequency (RF) irradiation produced perpendicular to the holding field is developed for the spin-1 system required for tensor-polarized fixed-target experiments. The derivation applies to RF produced close to the Larmor frequency of the nucleus and requires the electron spin-resonance linewidth to be much smaller than the nuclear magnetic resonance frequency. The rate equations are solved numerically to study a semi-saturated steady-state resulting from the two sources of irradiation: microwave from the DNP process and the additional RF used to manipulate the tensor polarization. The steady-state condition and continuous-wave NMR lineshape are found that optimize the spin-1 alignment in the polycrystalline materials used as solid polarized targets in charged-beam nuclear and particle physics experiments.
Sketching the Pion's Valence-Quark Generalised Parton Distribution
Mezrag, C.; Chang, L.; Moutarde, H.; Roberts, C. D.; Rodriguez-Quintero, J.; Sabatie, F.; Schmidt, S. M.
2015-02-04
In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD's Dyson-Schwinger equations and exemplified via the pion's valence dressed-quark GPD, H-pi(V)(chi, xi, t). Our analysis focuses primarily on xi = 0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting H-pi(V)(chi, xi = +/- 1, t) with the pion's valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto to define the pion's valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for H(pi)(V)p(chi, 0, t), expressed as the Radon transform of a single amplitude. Therewith we obtain results for H pi V(chi, 0, t) and the associated impact-parameter dependent distribution, q(pi)(V)(chi, vertical bar(b) over right arrow (perpendicular to)vertical bar), which provide a qualitatively sound picture of the pion's dressed-quark structure at a hadronic scale. We evolve the distributions to a scale zeta = 2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods. (C) 2014 Published by Elsevier B. V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Impact of hadronic and nuclear corrections on global analysis of spin-dependent parton distributions
Jimenez-Delgado, Pedro; Accardi, Alberto; Melnitchouk, Wally
2014-02-01
We present the first results of a new global next-to-leading order analysis of spin-dependent parton distribution functions from the most recent world data on inclusive polarized deep-inelastic scattering, focusing in particular on the large-x and low-Q^2 regions. By directly fitting polarization asymmetries we eliminate biases introduced by using polarized structure function data extracted under nonuniform assumptions for the unpolarized structure functions. For analysis of the large-x data we implement nuclear smearing corrections for deuterium and 3He nuclei, and systematically include target mass and higher twist corrections to the g_1 and g_2 structure functions at low Q^2. We also explore the effects of Q^2 and W^2 cuts in the data sets, and the potential impact of future data on the behavior of the spin-dependent parton distributions at large x.
Lappi, T.; Venugopalan, R.; Mantysaari, H.
2015-02-25
We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multi-parton Fock states in the nuclear wavefunctions. In particular, the saturation scale that characterizes this multi-parton dynamics is significantly larger in central events relative to minimum bias events. As an application, we examine the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.
Modeling unmanned system collaborative target engagement
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Hicklen, Michael L.
2007-04-01
This paper describes a novel algorithm for collaborative target engagement by unmanned systems (UMS) resulting in emergent behavior. We demonstrate UMS collaborative engagement using a simulation testbed model of a road, convoy vehicles traveling along the road, a squadron of unmanned aerial vehicles (UAVs), and multiple unmanned ground vehicles (UGVs) which are set to detonate when within close proximity to a convoy vehicle. No explicit artificial intelligence or swarming algorithms were used. Collision avoidance was an intrinsic phenomena. All entities acted independently throughout the simulation, but were given similar local instructions for possible courses of action (COAs) depending on current situations. Our algorithm and results are summarized in this paper.
New limits on intrinsic charm in the nucleon from global analysis of parton distributions
Jimenez-Delgado, P.; Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.
2015-02-27
We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q^{2} ≥ 1 GeV_{2} and W^{2} ≥ 3.5 GeV^{2}, including fixed-target proton and deuteron deep cross sections at lower energies that were excluded in previously global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with (x)_{IC} at most 0.5% (corresponding to an IC normalization of ~1%) at the 4σ level for Δ_{X2} = 1. We also assess the impact of older EMC measurements of F^{c}_{2}c at large x, which favor a nonzero IC, but with very large X^{2} values.
Improved quasi parton distribution through Wilson line renormalization
NASA Astrophysics Data System (ADS)
Chen, Jiunn-Wei; Ji, Xiangdong; Zhang, Jian-Hui
2017-02-01
Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a "mass" counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Inclusive parton cross sections in photoproduction and photon structure
NASA Astrophysics Data System (ADS)
Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Salesch, S. G.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration
1995-02-01
Photoproduction of 2-jet events is studied with the H1 detector at HERA. Parton cross sections are extracted from the data by an unfolding method using leading order parton-jet correlations of a QCD generator. The gluon distribution in the photon is derived in the fractional momentum range 0.04 ⩽ xγ ⩽ 1 at the average factorization scale 75 GeV 2.
Reweighting QCD matrix-element and parton-shower calculations
NASA Astrophysics Data System (ADS)
Bothmann, Enrico; Schönherr, Marek; Schumann, Steffen
2016-11-01
We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full α _s and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates.
A Search Model for Imperfectly Detected Targets
NASA Technical Reports Server (NTRS)
Ahumada, Albert
2012-01-01
Under the assumptions that 1) the search region can be divided up into N non-overlapping sub-regions that are searched sequentially, 2) the probability of detection is unity if a sub-region is selected, and 3) no information is available to guide the search, there are two extreme case models. The search can be done perfectly, leading to a uniform distribution over the number of searches required, or the search can be done with no memory, leading to a geometric distribution for the number of searches required with a success probability of 1/N. If the probability of detection P is less than unity, but the search is done otherwise perfectly, the searcher will have to search the N regions repeatedly until detection occurs. The number of searches is thus the sum two random variables. One is N times the number of full searches (a geometric distribution with success probability P) and the other is the uniform distribution over the integers 1 to N. The first three moments of this distribution were computed, giving the mean, standard deviation, and the kurtosis of the distribution as a function of the two parameters. The model was fit to the data presented last year (Ahumada, Billington, & Kaiwi, 2 required to find a single pixel target on a simulated horizon. The model gave a good fit to the three moments for all three observers.
Multiple parton interaction studies at DØ
Lincoln, D.
2016-04-01
Here, we present the results of studies of multiparton interactions done by the DØ collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. We also present three analyses, involving three distinct final signatures: (a) a photon with at least 3 jets ( γ + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets ( γ + b/c + 2jets), and (c) two J/ ψ mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events inmore » which two J/ ψ mesons were produced is 30 ± 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. Finally, this speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ ψ events are produced preferentially by a gluonic initial state.« less
Multiple parton interaction studies at DØ
Lincoln, D.
2016-04-01
Here, we present the results of studies of multiparton interactions done by the DØ collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. We also present three analyses, involving three distinct final signatures: (a) a photon with at least 3 jets ( γ + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets ( γ + b/c + 2jets), and (c) two J/ ψ mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events in which two J/ ψ mesons were produced is 30 ± 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. Finally, this speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ ψ events are produced preferentially by a gluonic initial state.
The ABM parton distributions tuned to LHC data
NASA Astrophysics Data System (ADS)
Alekhin, S.; Blümlein, J.; Moch, S.
2014-03-01
We present a global fit of parton distributions at next-to-next-to-leading order (NNLO) in QCD. The fit is based on the world data for deep-inelastic scattering, fixed-target data for the Drell-Yan process and includes, for the first time, data from the Large Hadron Collider (LHC) for the Drell-Yan process and the hadroproduction of top-quark pairs. The analysis applies the fixed-flavor number scheme for nf=3, 4, 5, uses the MS¯ scheme for the strong coupling αs and the heavy-quark masses and keeps full account of the correlations among all nonperturbative parameters. At NNLO this returns the values of αs(MZ)=0.1132±0.0011 and mt(pole)=171.2±2.4 GeV for the top-quark pole mass. The fit results are used to compute benchmark cross sections for the Higgs production at the LHC to NNLO accuracy. We compare our results to those obtained by other groups and show that differences can be linked to different theoretical descriptions of the underlying physical processes.
Modelling nutrient reduction targets - model structure complexity vs. data availability
NASA Astrophysics Data System (ADS)
Capell, Rene; Lausten Hansen, Anne; Donnelly, Chantal; Refsgaard, Jens Christian; Arheimer, Berit
2015-04-01
In most parts of Europe, macronutrient concentrations and loads in surface water are currently affected by human land use and land management choices. Moreover, current macronutrient concentration and load levels often violate European Water Framework Directive (WFD) targets and effective measures to reduce these levels are sought after by water managers. Identifying such effective measures in specific target catchments should consider the four key processes release, transport, retention, and removal, and thus physical catchment characteristics as e.g. soils and geomorphology, but also management data such as crop distribution and fertilizer application regimes. The BONUS funded research project Soils2Sea evaluates new, differentiated regulation strategies to cost-efficiently reduce nutrient loads to the Baltic Sea based on new knowledge of nutrient transport and retention processes between soils and the coast. Within the Soils2Sea framework, we here examine the capability of two integrated hydrological and nutrient transfer models, HYPE and Mike SHE, to model runoff and nitrate flux responses in the 100 km2 Norsminde catchment, Denmark, comparing different model structures and data bases. We focus on comparing modelled nitrate reductions within and below the root zone, and evaluate model performances as function of available model structures (process representation within the model) and available data bases (temporal forcing data and spatial information). This model evaluation is performed to aid in the development of model tools which will be used to estimate the effect of new nutrient reduction measures on the catchment to regional scale, where available data - both climate forcing and land management - typically are increasingly limited with the targeted spatial scale and may act as a bottleneck for process conceptualizations and thus the value of a model as tool to provide decision support for differentiated regulation strategies.
1996-12-10
Phase I Final Report Rapid Target Modeling Through Genetic Inheritance Mechanism Genetically Evolved Target Prototyping (GETP) Pbiai Dat December 10...COVERED 12/10/96 Final Report 5/7/96-12/10/96 A. TITE AND SUBTITU S. FUNDING NUMBERS Rapid Target Modeling Through Genetic Inheritance Mechanism... Genetically Evolved Target Prototyping (GETP) 6. AUTHOR(S) Dr. Jerzy Bala (P1) Dr. Peter Pachowicz (Co-P1) B.K. Gogia (PM) 7. PERFORMING ORGANIZATION
Huston, Joey [Co-Spokesperson; Ownes, Joseph [Co-Spokesperson
The Coordinated Theoretical-Experimental Project on QCD is a multi-institutional collaboration devoted to a broad program of research projects and cooperative enterprises in high-energy physics centered on Quantum Chromodynamics (QCD) and its implications in all areas of the Standard Model and beyond. The Collaboration consists of theorists and experimentalists at 18 universities and 5 national laboratories. More than 65 sets of Parton Distribution Functions are available for public access. Links to many online software tools, information about Parton Distribution Functions, papers, and other resources are also available.
On the internal target model in a tracking task
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Baron, S.
1981-01-01
An optimal control model for predicting operator's dynamic responses and errors in target tracking ability is summarized. The model, which predicts asymmetry in the tracking data, is dependent on target maneuvers and trajectories. Gunners perception, decision making, control, and estimate of target positions and velocity related to crossover intervals are discussed. The model provides estimates for means, standard deviations, and variances for variables investigated and for operator estimates of future target positions and velocities.
NASA Astrophysics Data System (ADS)
Radyushkin, A. V.
2017-08-01
We show that quasi-parton distribution functions (quasi-PDFs) may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p3≳3 GeV momenta to get reasonably close to the PDF limit. As an alternative approach, we propose using pseudo-PDFs P (x ,z32) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M (ν ,z32), the functions of the Ioffe time ν =p3z3 and the distance parameter z32 with respect to which it displays perturbative evolution for small z3. In this form, one may divide out the z32 dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The ν dependence remains intact and determines the shape of PDFs.
Cucinotta, Francis A; Cacao, Eliedonna
2017-05-12
Cancer risk is an important concern for galactic cosmic ray (GCR) exposures, which consist of a wide-energy range of protons, heavy ions and secondary radiation produced in shielding and tissues. Relative biological effectiveness (RBE) factors for surrogate cancer endpoints in cell culture models and tumor induction in mice vary considerable, including significant variations for different tissues and mouse strains. Many studies suggest non-targeted effects (NTE) occur for low doses of high linear energy transfer (LET) radiation, leading to deviation from the linear dose response model used in radiation protection. Using the mouse Harderian gland tumor experiment, the only extensive data-set for dose response modelling with a variety of particle types (>4), for the first-time a particle track structure model of tumor prevalence is used to investigate the effects of NTEs in predictions of chronic GCR exposure risk. The NTE model led to a predicted risk 2-fold higher compared to a targeted effects model. The scarcity of data with animal models for tissues that dominate human radiation cancer risk, including lung, colon, breast, liver, and stomach, suggest that studies of NTEs in other tissues are urgently needed prior to long-term space missions outside the protection of the Earth's geomagnetic sphere.
Cucinotta, Francis A.; Cacao, Eliedonna
2017-05-12
Cancer risk is an important concern for galactic cosmic ray (GCR) exposures, which consist of a wide-energy range of protons, heavy ions and secondary radiation produced in shielding and tissues. Relative biological effectiveness (RBE) factors for surrogate cancer endpoints in cell culture models and tumor induction in mice vary considerable, including significant variations for different tissues and mouse strains. Many studies suggest non-targeted effects (NTE) occur for low doses of high linear energy transfer (LET) radiation, leading to deviation from the linear dose response model used in radiation protection. Using the mouse Harderian gland tumor experiment, the only extensive data-setmore » for dose response modelling with a variety of particle types (>4), for the first-time a particle track structure model of tumor prevalence is used to investigate the effects of NTEs in predictions of chronic GCR exposure risk. The NTE model led to a predicted risk 2-fold higher compared to a targeted effects model. The scarcity of data with animal models for tissues that dominate human radiation cancer risk, including lung, colon, breast, liver, and stomach, suggest that studies of NTEs in other tissues are urgently needed prior to long-term space missions outside the protection of the Earth’s geomagnetic sphere.« less
Dual parametrization of generalized parton distributions in two equivalent representations
NASA Astrophysics Data System (ADS)
Müller, D.; Polyakov, M. V.; Semenov-Tian-Shansky, K. M.
2015-03-01
The dual parametrization and the Mellin-Barnes integral approach represent two frameworks for handling the double partial wave expansion of generalized parton distributions (GPDs) in the conformal partial waves and in the t-channel SO(3) partial waves. Within the dual parametrization framework, GPDs are represented as integral convolutions of forward-like functions whose Mellin moments generate the conformal moments of GPDs. The Mellin-Barnes integral approach is based on the analytic continuation of the GPD conformal moments to the complex values of the conformal spin. GPDs are then represented as the Mellin-Barnes-type integrals in the complex conformal spin plane. In this paper we explicitly show the equivalence of these two independently developed GPD representations. Furthermore, we clarify the notions of the J = 0 fixed pole and the D-form factor. We also provide some insight into GPD modeling and map the phenomenologically successful Kumerički-Müller GPD model to the dual parametrization framework by presenting the set of the corresponding forward-like functions. We also build up the reparametrization procedure allowing to recast the double distribution representation of GPDs in the Mellin-Barnes integral framework and present the explicit formula for mapping double distributions into the space of double partial wave amplitudes with complex conformal spin.
Automating ground-fixed target modeling with the smart target model generator
NASA Astrophysics Data System (ADS)
Verner, D.; Dukes, R.
2007-04-01
The Smart Target Model Generator (STMG) is an AFRL/MNAL sponsored tool for generating 3D building models for use in various weapon effectiveness tools. These tools include tri-service approved tools such as Modular Effectiveness/Vulnerability Assessment (MEVA), Building Analysis Module in Joint Weaponeering System (JWS), PENCRV3D, and WinBlast. It also supports internal dispersion modeling of chemical contaminants. STMG also has capabilities to generate infrared or other sensor images. Unlike most CAD-models, STMG provides physics-based component properties such as strength, density, reinforcement, and material type. Interior components such as electrical and mechanical equipment, rooms, and ducts are also modeled. Buildings can be manually created with a graphical editor or automatically generated using rule-bases which size and place the structural components using rules based on structural engineering principles. In addition to its primary purposes of supporting conventional kinetic munitions, it can also be used to support sensor modeling and automatic target recognition.
Target Recognition Using Neural Networks for Model Deformation Measurements
NASA Technical Reports Server (NTRS)
Ross, Richard W.; Hibler, David L.
1999-01-01
Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.
Tradeoffs among watershed model calibration targets for parameter estimation
Hydrologic models are commonly calibrated by optimizing a single objective function target to compare simulated and observed flows, although individual targets are influenced by specific flow modes. Nash-Sutcliffe efficiency (NSE) emphasizes flood peaks in evaluating simulation f...
Tradeoffs among watershed model calibration targets for parameter estimation
Hydrologic models are commonly calibrated by optimizing a single objective function target to compare simulated and observed flows, although individual targets are influenced by specific flow modes. Nash-Sutcliffe efficiency (NSE) emphasizes flood peaks in evaluating simulation f...
A Brownian Bridge Movement Model to Track Mobile Targets
2016-09-01
BRIDGE MOVEMENT MODEL TO TRACK MOBILE TARGETS by Chun Chieh Cheng September 2016 Thesis Advisor: Dashi I. Singham Second Reader: Michael P...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE A BROWNIAN BRIDGE MOVEMENT MODEL TO TRACK MOBILE TARGETS 5. FUNDING NUMBERS 6. AUTHOR(S...is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The Brownian bridge movement model (BBMM) models target movement between
Jimenez-Delgado, P.; Reya, E.
2009-12-01
Based on our recent next-to-next-to-leading order (NNLO) dynamical parton distributions as obtained in the 'fixed flavor number scheme', we generate radiatively parton distributions in the 'variable flavor number scheme' where the heavy-quark flavors (c,b,t) also become massless partons within the nucleon. Only within this latter factorization scheme are NNLO calculations feasible at present, since the required partonic subprocesses are only available in the approximation of massless initial-state partons. The NNLO predictions for gauge boson production are typically larger (by more than 1{sigma}) than the next-to-leading order (NLO) ones, and rates at LHC energies can be predicted with an accuracy of about 5%, whereas at Tevatron they are more than 2{sigma} above the NLO ones. The NNLO predictions for standard model Higgs-boson production via the dominant gluon fusion process have a total (parton distribution function and scale) uncertainty of about 10% at LHC which almost doubles at the lower Tevatron energies; they are typically about 20% larger than the ones at NLO but the total uncertainty bands overlap.
Medium Modifications of Hadron Properties and Partonic Processes
Brooks, W. K.; Strauch, S.; Tsushima, K.
2011-06-01
Chiral symmetry is one of the most fundamental symmetries in QCD. It is closely connected to hadron properties in the nuclear medium via the reduction of the quark condensate
Modeling projectile impact onto prestressed ceramic targets
NASA Astrophysics Data System (ADS)
Holmquist, T. J.; Johnson, G. R.
2003-09-01
This work presents computed results for the responses of ceramic targets, with and without prestress, subjected to projectile impact. Also presented is a computational technique to include prestress. Ceramic materials have been considered for armor applications for many years because of their high strength and low density. Many researchers have demonstrated that providing confinement enhances the ballistic performance of ceramic targets. More recently, prestressing the ceramic is being considered as an additional enhancement technique. This work investigates the effect of prestressing the ceramic for both thin and thick target configurations subjected to projectile impact. In all cases the targets with ceramic prestress provided enhanced ballistic performance. The computed results indicate that prestressed ceramic reduces and/or delays failure, resulting in improved ceramic performance and ballistic efficiency.
Systematic improvement of parton showers with effective theory
Baumgart, Matthew; Marcantonini, Claudio; Stewart, Iain W.
2011-02-01
We carry out a systematic classification and computation of next-to-leading order kinematic power corrections to the fully differential cross section in the parton shower. To do this we devise a map between ingredients in a parton shower and operators in a traditional effective field theory framework using a chain of soft-collinear effective theories. Our approach overcomes several difficulties including avoiding double counting and distinguishing approximations that are coordinate choices from true power corrections. Branching corrections can be classified as hard-scattering, that occur near the top of the shower, and jet-structure, that can occur at any point inside it. Hard-scattering corrections include matrix elements with additional hard partons, as well as power suppressed contributions to the branching for the leading jet. Jet-structure corrections require simultaneous consideration of potential 1{yields}2 and 1{yields}3 branchings. The interference structure induced by collinear terms with subleading powers remains localized in the shower.
Reconstruction of Monte Carlo replicas from Hessian parton distributions
NASA Astrophysics Data System (ADS)
Hou, Tie-Jiun; Gao, Jun; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Stump, Daniel; Wang, Bo-Ting; Xie, Ke Ping; Dulat, Sayipjamal; Pumplin, Jon; Yuan, C. P.
2017-03-01
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.
Analysis of microRNA-target interactions by a target structure based hybridization model.
Long, Dang; Chan, Chi Yu; Ding, Ye
2008-01-01
MicroRNAs (miRNAs) are small non-coding RNAs that repress protein synthesis by binding to target messenger RNAs (mRNAs) in multicellular eukaryotes. The mechanism by which animal miRNAs specifically recognize their targets is not well understood. We recently developed a model for modeling the interaction between a miRNA and a target as a two-step hybridization reaction: nucleation at an accessible target site, followed by hybrid elongation to disrupt local target secondary structure and form the complete miRNA-target duplex. Nucleation potential and hybridization energy are two key energetic characteristics of the model. In this model, the role of target secondary structure on the efficacy of repression by miRNAs is considered, by employing the Sfold program to address the likelihood of a population of structures that co-exist in dynamic equilibrium for a specific mRNA molecule. This model can accurately account for the sensitivity to repression by let-7 of both published and rationally designed mutant forms of the Caenorhabditis elegans lin-41 3' UTR, and for the behavior of many other experimentally-tested miRNA-target interactions in C. elegans and Drosophila melanogaster. The model is particularly effective in accounting for certain false positive predictions obtained by other methods. In this study, we employed this model to analyze a set of miRNA-target interactions that were experimentally tested in mammalian models. These include targets for both mammalian miRNAs and viral miRNAs, and a viral target of a human miRNA. We found that our model can well account for both positive interactions and negative interactions. The model provides a unique explanation for the lack of function of a conserved seed site in the 3' UTR of the viral target, and predicts a strong interaction that cannot be predicted by conservation-based methods. Thus, the findings from this analysis and the previous analysis suggest that target structural accessibility is generally important
MMW turntable data collection, data analysis, and target model development
NASA Astrophysics Data System (ADS)
Saylor, Annie V.; Barr, Douglas P.; Mobley, Scott B.; Leonard, Wayne
2000-07-01
Turntable data collection on ground targets using an instrumentation W-band monopulse radar is reported. The data collection site, instrumentation, and test methodology are described. Preliminary analysis results showing target RCS comparisons are reported. The turntable measurements are used to generate point scatterer target models for all-digital and real-time hardware-in-the-loop (HWIL) simulations. Model development techniques are described. The models are validated against measured data utilizing generic high range resolution acquisition and tracking algorithms.
Echo signal modeling of imaging LADAR target simulator
NASA Astrophysics Data System (ADS)
Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhuo
2014-11-01
LADAR guidance technology is one of the most promising precision guidance technologies. In the aim of simulating the return waveform of the target, a 3D geometrical model of a target is built and mathematical model of target echo signal for imaging LADAR target simulator is established by using the coordinate transformation, radar equation and ranging equation. First, the 3D geometrical data of the object model is obtained by 3D geometrical modeling. Then, target coordinate system and viewpoint coordinate system are created respectively. 3D geometrical model is built in the target coordinate system. The 3D geometrical model is transformed to the viewpoint coordinate system based on the derived relationship between the two coordinate systems. Furthermore, the range information of the target could be obtained under viewpoint coordinate system. Thus, the data of the target echo signal can be obtained by using radar equation and ranging equation. Finally, the echo signal can be exported through corresponding data interface. In order to validate the method proposed in this paper, the echo signal generated by a typical target is computed and compared with the theory solutions. The signals can be applied to drive target simulator to generate a physical target LADAR image.
Transorbital target localization in the porcine model
NASA Astrophysics Data System (ADS)
DeLisi, Michael P.; Mawn, Louise A.; Galloway, Robert L.
2013-03-01
Current pharmacological therapies for the treatment of chronic optic neuropathies such as glaucoma are often inadequate due to their inability to directly affect the optic nerve and prevent neuron death. While drugs that target the neurons have been developed, existing methods of administration are not capable of delivering an effective dose of medication along the entire length of the nerve. We have developed an image-guided system that utilizes a magnetically tracked flexible endoscope to navigate to the back of the eye and administer therapy directly to the optic nerve. We demonstrate the capabilities of this system with a series of targeted surgical interventions in the orbits of live pigs. Target objects consisted of NMR microspherical bulbs with a volume of 18 μL filled with either water or diluted gadolinium-based contrast, and prepared with either the presence or absence of a visible coloring agent. A total of 6 pigs were placed under general anesthesia and two microspheres of differing color and contrast content were blindly implanted in the fat tissue of each orbit. The pigs were scanned with T1-weighted MRI, image volumes were registered, and the microsphere containing gadolinium contrast was designated as the target. The surgeon was required to navigate the flexible endoscope to the target and identify it by color. For the last three pigs, a 2D/3D registration was performed such that the target's coordinates in the image volume was noted and its location on the video stream was displayed with a crosshair to aid in navigation. The surgeon was able to correctly identify the target by color, with an average intervention time of 20 minutes for the first three pigs and 3 minutes for the last three.
Justifying the naive partonic sum rule for proton spin
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2015-04-01
We provide a theoretical basis for understanding the spin structure of the proton in terms of the spin and orbital angular momenta of free quarks and gluons in Feynman’s parton picture. We show that each term in the Jaffe–Manohar spin sum rule can be related to the matrix element of a gauge-invariant, but frame-dependent operator through a matching formula in large-momentum effective field theory. We present all the matching conditions for the spin content at one-loop order in perturbation theory, which provide a basis to calculate parton orbital angular momentum in lattice QCD at leading logarithmic accuracy.
Double Parton Interactions in pp and pA Collisions
NASA Astrophysics Data System (ADS)
Treleani, Daniele; Calucci, Giorgio; Salvini, Simona
2016-11-01
As a consequence of the increasingly large flux of partons at small x, Double Parton Interactions (DPI) play an increasingly important role at high energies. A detail understanding of DPI dynamics is therefore mandatory, for a reliable subtraction of the background in the search of new physics. On the other hand, DPI are an interesting topic of research by themselves, as DPI probe the hadron structure in a rather different way, as compared with the large pt processes usually considered. In this note we will make a short illustration of some of the main features characterizing DPI in pp and in pA collisions.
Implications of current constraints on parton charge symmetry
J. T. Londergan; A. W. Thomas
2005-11-01
For the first time, charge symmetry breaking terms in parton distribution functions have been included in a global fit to high energy data. We review the results obtained for both valence and sea quark charge symmetry violation and compare these results with the most stringent experimental upper limits on charge symmetry violation for parton distribution functions, as well as with theoretical estimates of charge symmetry violation. The limits allowed in the global fit would tolerate a rather large violation of charge symmetry. We discuss the implications of this for various observables, including extraction of the Weinberg angle in neutrino DIS and the Gottfried and Adler sum rules.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; ...
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum qT spectra of Higgs and vector bosons for low qT, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMDLIB, to parton density fits and parameterizations.
The role of the input scale in parton distribution analyses
Pedro Jimenez-Delgado
2012-08-01
A first systematic study of the effects of the choice of the input scale in global determinations of parton distributions and QCD parameters is presented. It is shown that, although in principle the results should not depend on these choices, in practice a relevant dependence develops as a consequence of what is called procedural bias. This uncertainty should be considered in addition to other theoretical and experimental errors, and a practical procedure for its estimation is proposed. Possible sources of mistakes in the determination of QCD parameter from parton distribution analysis are pointed out.
Delineating the polarized and unpolarized partonic structure of the nucleon
Jimenez-Delgado, Pedro
2015-03-01
Our latest results on the extraction of parton distribution functions of the nucleon are reported. First an overview of the recent JR14 upgrade of our unpolarized PDFs, including NNLO determinations of the strong coupling constant and a discussion of the role of the input scale in parton distribution analysis. In the second part of the talk recent results on the determination of spin-dependent PDFs from the JAM collaboration are given, including a careful treatment of hadronic and nuclear corrections, as well as results on the impact of present and future data in our understanding of the spin of the nucleon.
Delineating the polarized and unpolarized partonic structure of the nucleon
Jimenez-Delgado, Pedro
2015-03-01
Reports on our latest extractions of parton distribution functions of the nucleon are given. First an overview of the recent JR14 upgrade of our unpolarized PDFs, including NNLO determinations of the strong coupling constant and a discussion of the role of the input scale in parton distribution analysis. In the second part of the talk recent results on the determination of spin-dependent PDFs from the JAM collaboration are reported, including a careful treatment of hadronic and nuclear corrections, as well as reports on the impact of present and future data in our understanding of the spin of the nucleon.
Interference effect in elastic parton energy loss in a finitemedium
Wang, Xin-Nian
2005-04-18
Similar to the radiative parton energy loss due to gluonbremsstrahlung, elastic energy loss of a parton undergoing multiplescattering in a finite medium is demonstrated to be sensitive tointerference effect. The interference between amplitudes of elasticscattering via a gluon exchange and that of gluon radiation reduces theeffective elastic energy loss in a finite medium and gives rise to anon-trivial length dependence. The reduction is most significant for apropagation length L<4/\\pi T in a medium with a temperature T. Thoughthe finite size effect is not significant for the average partonpropagation in the most central heavy-ion collisions, it will affect thecentrality dependence of its effect on jet quenching.
Parton distribution functions in Monte Carlo factorisation scheme
NASA Astrophysics Data System (ADS)
Jadach, S.; Płaczek, W.; Sapeta, S.; Siódmok, A.; Skrzypek, M.
2016-12-01
A next step in development of the KrkNLO method of including complete NLO QCD corrections to hard processes in a LO parton-shower Monte Carlo is presented. It consists of a generalisation of the method, previously used for the Drell-Yan process, to Higgs-boson production. This extension is accompanied with the complete description of parton distribution functions in a dedicated, Monte Carlo factorisation scheme, applicable to any process of production of one or more colour-neutral particles in hadron-hadron collisions.
In-Medium Parton Branching Beyond Eikonal Approximation
NASA Astrophysics Data System (ADS)
Apolinário, Liliana
2017-03-01
The description of the in-medium modifications of partonic showers has been at the forefront of current theoretical and experimental efforts in heavy-ion collisions. It provides a unique laboratory to extend our knowledge frontier of the theory of the strong interactions, and to assess the properties of the hot and dense medium (QGP) that is produced in ultra-relativistic heavy-ion collisions at RHIC and the LHC. The theory of jet quenching, a commonly used alias for the modifications of the parton branching resulting from the interactions with the QGP, has been significantly developed over the last years. Within a weak coupling approach, several elementary processes that build up the parton shower evolution, such as single gluon emissions, interference effects between successive emissions and corrections to radiative energy loss of massive quarks, have been addressed both at eikonal accuracy and beyond by taking into account the Brownian motion that high-energy particles experience when traversing a hot and dense medium. In this work, by using the setup of single gluon emission from a color correlated quark-antiquark pair in a singlet state (qbar{q} antenna), we calculate the in-medium gluon radiation spectrum beyond the eikonal approximation. The results show that we are able to factorize broadening effects from the modifications of the radiation process itself. This constitutes the final proof that a probabilistic picture of the parton shower evolution holds even in the presence of a QGP.
Unbiased determination of polarized parton distributions and their uncertainties
NASA Astrophysics Data System (ADS)
Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2013-09-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations.
Recent progress in the statistical approach of parton distributions
Soffer, Jacques
2011-07-15
We recall the physical features of the parton distributions in the quantum statistical approach of the nucleon. Some predictions from a next-to-leading order QCD analysis are compared to recent experimental results. We also consider their extension to include their transverse momentum dependence.
Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng
2016-05-01
Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .
NASA Astrophysics Data System (ADS)
Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng
2016-05-01
Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.
Parallelizing the track-target model for the MIMD machine
Zhong Xiong, W.; Swietlik, C.
1992-09-01
Military Tracking-Target systems are important analysis tools for modelling the major functions of a strategic defense system operating against a ballistic missile threat during a simulated end-to-end scenario. As demands grow for modelling more trajectories with increasing numbers of missile types, so have demands for more processing power. Argonne National Laboratory has developed the parallel version of this Tracking-Target model. The parallel version has exhibited speedups of up to a factor of 6.3 resulting from a shared memory multiprocessor machine. This paper documents a project to implement the Tracking-Target model on a parallel processing environment.
Radyushkin, Anatoly V.
2017-08-28
Here, we show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p3≳ 3 GeV momenta to get reasonably close to the PDF limit. Furthemore, as an alternative approach, we propose to use pseudo-PDFs P(x, zmore » $$2\\atop{3}$$) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M (v, z$$2\\atop{3}$$), the functions of the Ioffe time v = p3 z3 and the distance parameter z$$2\\atop{3}$$ with respect to which it displays perturbative evolution for small z3. In this form, one may divide out the z$$2\\atop{3}$$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The v-dependence remains intact and determines the shape of PDFs.« less
Rotating Shape Model of Rosetta Comet Target
2014-07-24
Images of comet 67P/Churyumov-Gerasimenko taken on July 14, 2014, by the OSIRIS imaging system aboard ESA Rosetta spacecraft have allowed scientists to create this three-dimensional shape model of the nucleus.
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; ...
2016-02-03
We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
Maltoni, Fabio; Mawatari, Kentarou; Zaro, Marco
Vector-boson fusion and associated production at the LHC can provide key information on the strength and structure of the Higgs couplings to the Standard Model particles. Using an effective field theory approach, we study the effects of next-to-leading order (NLO) QCD corrections matched to a parton shower on selected observables for various spin-0 hypotheses. We find that inclusion of NLO corrections is needed to reduce the theoretical uncertainties on the total rates as well as to reliably predict the shapes of the distributions. Our results are obtained in a fully automatic way via FeynRules and MadGraph5_aMC@NLO.
Analytical characterization of a Bruderhedral calibration target model
NASA Astrophysics Data System (ADS)
Cremona-Simmons, Peter M.
1996-06-01
The Army Research Laboratory (ARL) has constructed a variation of the bruderhedral calibration and radar cross section (RCS) target model and measured its radar characteristics in the field. A computer version of the same model was generated, and later characterized in both elevation and azimuth for validation. Our goal is to develop a millimeter-wave (MMW) signature generation tool for guidance integrated fuzing (GIF) systems and applications. Before realizing this goal, one must develop a test-bed of tools and approaches upon which to build. ARL has identified approaches to developing generic analytical target-signature models based on some existing electromagnetic scattering codes. A high-frequency RCS and signature prediction software model was selected to perform the radar analysis and provide a mechanism, a synthetic aperture radar (SAR) model, for recognizing prominent scatterers off high-fidelity target models. This method will assist us in creating suitable far- to near-field 3-D transitional models at MMW frequencies. Two target model descriptions were used in the signature prediction model: a flat facet format and a curved surface format. This paper introduces these software models, and some optics and SAR considerations relating to the test wavelength and the size of the target. Also, the simulated azimuthal and elevation response patterns, along with some results from the SAR model, are presented.
Monte Carlo modeling of spallation targets containing uranium and americium
NASA Astrophysics Data System (ADS)
Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter
2014-09-01
Neutron production and transport in spallation targets made of uranium and americium are studied with a Geant4-based code MCADS (Monte Carlo model for Accelerator Driven Systems). A good agreement of MCADS results with experimental data on neutron- and proton-induced reactions on 241Am and 243Am nuclei allows to use this model for simulations with extended Am targets. It was demonstrated that MCADS model can be used for calculating the values of critical mass for 233,235U, 237Np, 239Pu and 241Am. Several geometry options and material compositions (U, U + Am, Am, Am2O3) are considered for spallation targets to be used in Accelerator Driven Systems. All considered options operate as deep subcritical targets having neutron multiplication factor of k∼0.5. It is found that more than 4 kg of Am can be burned in one spallation target during the first year of operation.
Modeling Natural Killer Cell Targeted Immunotherapies
Lopez-Lastra, Silvia; Di Santo, James P.
2017-01-01
Animal models have extensively contributed to our understanding of human immunobiology and to uncover the underlying pathological mechanisms occurring in the development of diseases. However, mouse models do not reproduce the genetic and molecular complexity inherent in human disease conditions. Human immune system (HIS) mouse models that are susceptible to human pathogens and can recapitulate human hematopoiesis and tumor immunobiology provide one means to bridge the interspecies gap. Natural killer cells are the founding member of the innate lymphoid cell family. They exert a rapid and strong immune response against tumor and pathogen-infected cells. Their antitumor features have long been exploited for therapeutic purposes in the context of cancer. In this review, we detail the development of highly immunodeficient mouse strains and the models currently used in cancer research. We summarize the latest improvements in adoptive natural killer (NK) cell therapies and the development of novel NK cell sources. Finally, we discuss the advantages of HIS mice to study the interactions between human NK cells and human cancers and to develop new therapeutic strategies. PMID:28405194
The Sender-Receiver Model and the Targeting Process.
ERIC Educational Resources Information Center
Larson, Mark A.
The goal of this paper is to describe how one classroom teacher uses the Sender-Receiver Communications Model to illustrate for students in a lively and memorable way the process of "targeting your audience" with medium and message. Students are used as examples of Receivers, or target audience, illustrating the potential range of…
VBFNLO: A parton level Monte Carlo for processes with electroweak bosons
NASA Astrophysics Data System (ADS)
Arnold, K.; Bähr, M.; Bozzi, G.; Campanario, F.; Englert, C.; Figy, T.; Greiner, N.; Hackstein, C.; Hankele, V.; Jäger, B.; Klämke, G.; Kubocz, M.; Oleari, C.; Plätzer, S.; Prestel, S.; Worek, M.; Zeppenfeld, D.
2009-09-01
VBFNLO is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order in the strong coupling constant. VBFNLO includes Higgs and vector boson decays with full spin correlations and all off-shell effects. In addition, VBFNLO implements CP-even and CP-odd Higgs boson via gluon fusion, associated with two jets, at the leading-order one-loop level with the full top- and bottom-quark mass dependence in a generic two-Higgs-doublet model. A variety of effects arising from beyond the Standard Model physics are implemented for selected processes. This includes anomalous couplings of Higgs and vector bosons and a Warped Higgsless extra dimension model. The program offers the possibility to generate Les Houches Accord event files for all processes available at leading order. Program summaryProgram title:VBFNLO Catalogue identifier: AEDO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL version 2 No. of lines in distributed program, including test data, etc.: 339 218 No. of bytes in distributed program, including test data, etc.: 2 620 847 Distribution format: tar.gz Programming language: Fortran, parts in C++ Computer: All Operating system: Linux, should also work on other systems Classification: 11.1, 11.2 External routines: Optionally Les Houches Accord PDF Interface library and the GNU Scientific library Nature of problem: To resolve the large scale dependence inherent in leading order calculations and to quantify the cross section error induced by uncertainties in the determination of parton distribution functions, it is necessary to include NLO corrections. Moreover, whenever stringent cuts are required on decay products and/or identified jets the question arises whether the scale dependence and a k-factor, defined
Physicochemical model for reactive sputtering of hot target
NASA Astrophysics Data System (ADS)
Shapovalov, Viktor I.; Karzin, Vitaliy V.; Bondarenko, Anastasia S.
2017-02-01
A physicochemical model for reactive magnetron sputtering of a metal target is described in this paper. The target temperature in the model is defined as a function of the ion current density. Synthesis of the coating occurs due to the surface chemical reaction. The law of mass action, the Langmuir isotherm and the Arrhenius equation for non-isothermal conditions were used for mathematical description of the reaction. The model takes into consideration thermal electron emission and evaporation of the target surface. The system of eight algebraic equations, describing the model, was solved for the tantalum target sputtered in the oxygen environment. It was established that the hysteresis effect disappears with the increase of the ion current density.
Target signature modeling and bistatic scattering measurement studies
NASA Technical Reports Server (NTRS)
Burnside, W. D.; Lee, T. H.; Rojas, R.; Marhefka, R. J.; Bensman, D.
1989-01-01
Four areas of study are summarized: bistatic scattering measurements studies for a compact range; target signature modeling for test and evaluation hardware in the loop situation; aircraft code modification study; and SATCOM antenna studies on aircraft.
Georeferenced model simulations efficiently support targeted monitoring
NASA Astrophysics Data System (ADS)
Berlekamp, Jürgen; Klasmeier, Jörg
2010-05-01
The European Water Framework Directive (WFD) demands the good ecological and chemical status of surface waters. To meet the definition of good chemical status of the WFD surface water concentrations of priority pollutants must not exceed established environmental quality standards (EQS). Surveillance of the concentrations of numerous chemical pollutants in whole river basins by monitoring is laborious and time-consuming. Moreover, measured data do often not allow for immediate source apportionment which is a prerequisite for defining promising reduction strategies to be implemented within the programme of measures. In this context, spatially explicit model approaches are highly advantageous because they provide a direct link between local point emissions (e.g. treated wastewater) or diffuse non-point emissions (e.g. agricultural runoff) and resulting surface water concentrations. Scenario analyses with such models allow for a priori investigation of potential positive effects of reduction measures such as optimization of wastewater treatment. The geo-referenced model GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers) has been designed to calculate spatially resolved averaged concentrations for different flow conditions (e.g. mean or low flow) based on emission estimations for local point source emissions such as treated effluents from wastewater treatment plants. The methodology was applied to selected pharmaceuticals (diclofenac, sotalol, metoprolol, carbamazepin) in the Main river basin in Germany (approx. 27,290 km²). Average concentrations of the compounds were calculated for each river reach in the whole catchment. Simulation results were evaluated by comparison with available data from orienting monitoring and used to develop an optimal monitoring strategy for the assessment of water quality regarding micropollutants at the catchment scale.
Automated target recognition using passive radar and coordinated flight models
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.; Lanterman, Aaron D.
2003-09-01
Rather than emitting pulses, passive radar systems rely on illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. These systems are particularly attractive since they allow receivers to operate without emitting energy, rendering them covert. Many existing passive radar systems estimate the locations and velocities of targets. This paper focuses on adding an automatic target recognition (ATR) component to such systems. Our approach to ATR compares the Radar Cross Section (RCS) of targets detected by a passive radar system to the simulated RCS of known targets. To make the comparison as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. The estimated positions become inputs for an algorithm that uses a coordinated flight model to compute probable aircraft orientation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of several potential target classes as they execute the estimated maneuvers. The RCS is then scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so that the RCS can be further scaled. The Rician model compares the RCS of the illuminated aircraft with those of the potential targets. This comparison results in target identification.
Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering
Frankfurt, L.; Hyde, C. E.; Strikman, M.; Weiss, C.
2007-03-01
We study rapidity gap survival (RGS) in the production of high-mass systems (H=dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp{yields}p+(gap)+H+(gap)+p. Our approach is based on the idea that hard and soft interactions are approximately independent because they proceed over widely different time and distance scales. We implement this idea in a partonic description of proton structure, which allows for a model-independent treatment of the interplay of hard and soft interactions. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons, whose amplitude is calculable in terms of the gluon generalized parton distribution (GPD), measured in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate neglecting correlations between hard and soft interactions (independent interaction approximation). We obtain an analytic expression for the RGS probability in terms of the phenomenological pp elastic scattering amplitude, without reference to the eikonal approximation. Contributions from inelastic intermediate states are suppressed. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons ('diffraction pattern'). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the
Nuclear Parton Distributions with the LHeC
NASA Astrophysics Data System (ADS)
Klein, Max
2016-03-01
Nuclear parton distributions are far from being known today because of an infant experimental base. Based on design studies of the LHeC and using new simulations, of the inclusive neutral and charged current cross section measurements and of the strange, charm and beauty densities in nuclei, it is demonstrated how that energy frontier electron-ion collider would unfold the complete set of nuclear PDFs in a hugely extended kinematic range of deep inelastic scattering, extending in Bjorken x down to values near to 10-6 in the perturbative domain. Together with a very precise and complete set of proton PDFs, the LHeC nPDFs will thoroughly change the theoretical understanding of parton dynamics and structure inside hadrons.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F. A.; Cherednikov, I. O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Grados Luyando, J.; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J. P.; Lykasov, G.; Madrigal Martinez, J. D.; Mulders, P. J.; Nocera, E. R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Signori, A.; Szymanowski, L.; Taheri Monfared, S.; Van der Veken, F. F.; van Haevermaet, H. J.; Van Mechelen, P.; Vladimirov, A. A.; Wallon, S.
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q_{T} spectra of Higgs and vector bosons for low q_{T}, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMD_{LIB}, to parton density fits and parameterizations.
Combining states without scale hierarchies with ordered parton showers
Fischer, Nadine; Prestel, Stefan
2017-09-12
Here, we present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This then requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. Our algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHCmore » data.« less
Parton Distributions in the pion from lattice QCD
W. Detmold; Wally Melnitchouk; Anthony Thomas
2003-03-01
We analyze the moments of parton distribution functions in the pion calculated in lattice QCD, paying particular attention to their chiral extrapolation. Using the lowest three non-trivial moments calculated on the lattice, we assess the accuracy with which the x-dependence of both the valence and sea quark distributions in the pion can be extracted. The resulting valence quark distributions at the physical pion mass are in fair agreement with existing Drell-Yan data, but the statistical errors are such that one cannot yet confirm (or rule out) the large-x behavior expected from hadron helicity conservation in perturbative QCD. One can expect, however, that the next generation of calculations in lattice QCD will allow one to extract parton distributions with a level of accuracy comparable with current experiments.
Study of Generalized Parton Distributions at Jefferson Lab
NASA Astrophysics Data System (ADS)
Kim, Andrey
2017-07-01
The quark-gluon dynamics manifests itself in a set of non-perturbative functions describing all possible spin-spin and spin-orbit correlations. The Generalized Parton Distributions (GPDs) carry information not only on the longitudinal momentum but also on the transverse position of partons, providing rich and direct information on the orbital motion of quarks. The hard exclusive production of photons and pions provide a variety of spin and azimuthal angle dependent observables, sensitive to the dynamics of quark-gluon interactions. The study of the GPDs is one of the main goals of Jefferson Lab 12 GeV upgrade. In this talk, we present an overview of the current status and some future measurements of hard exclusive processes and extraction of underlying GPDs at Jefferson Lab.
Deeply Pseudoscalar Meson Electroproduction with CLAS and Generalized Parton Distributions
Guidal, Michel; Kubarovsky, Valery P.
2015-06-01
We discuss the recent data of exclusive $\\pi^0$ (and $\\pi^+$) electroproduction on the proton obtained by the CLAS collaboration at Jefferson Lab. It is observed that the cross sections, which have been decomposed in $\\sigma_T+\\epsilon\\sigma_L$, $\\sigma_{TT}$ and $\\sigma_{LT}$ structure functions, are dominated by transverse amplitude contributions. The data can be interpreted in the Generalized Parton Distribution formalism provided that one includes helicity-flip transversity GPDs.
Evolution equations for connected and disconnected sea parton distributions
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
2017-08-01
It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.
Squark production and decay matched with parton showers at NLO
NASA Astrophysics Data System (ADS)
Gavin, R.; Hangst, C.; Krämer, M.; Mühlleitner, M.; Pellen, M.; Popenda, E.; Spira, M.
2015-01-01
Extending previous work on the predictions for the production of supersymmetric (SUSY) particles at the LHC, we present the fully differential calculation of the next-to-leading order (NLO) SUSY-QCD corrections to the production of squark and squark-antisquark pairs of the first two generations. The NLO cross sections are combined with the subsequent decay of the final state (anti)squarks into the lightest neutralino and (anti)quark at NLO SUSY-QCD. No assumptions on the squark masses are made, and the various subchannels are taken into account independently. In order to obtain realistic predictions for differential distributions the fixed-order calculations have to be combined with parton showers. Making use of the Powheg method we have implemented our results in the Powheg-Box framework and interfaced the NLO calculation with the parton shower Monte Carlo programs Pythia6 and Herwig++. The code is publicly available and can be downloaded from the Powheg-Box webpage. The impact of the NLO corrections on the differential distributions is studied and parton shower effects are investigated for different benchmark scenarios.
Parton distributions in the LHC era: MMHT 2014 PDFs.
Harland-Lang, L A; Martin, A D; Motylinski, P; Thorne, R S
We present LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data. These MMHT2014 PDFs supersede the 'MSTW2008' parton sets, but they are obtained within the same basic framework. We include a variety of new data sets, from the LHC, updated Tevatron data and the HERA combined H1 and ZEUS data on the total and charm structure functions. We also improve the theoretical framework of the previous analysis. These new PDFs are compared to the 'MSTW2008' parton sets. In most cases the PDFs, and the predictions, are within one standard deviation of those of MSTW2008. The major changes are the [Formula: see text] valence quark difference at small [Formula: see text] due to an improved parameterisation and, to a lesser extent, the strange quark PDF due to the effect of certain LHC data and a better treatment of the [Formula: see text] branching ratio. We compare our MMHT PDF sets with those of other collaborations; in particular with the NNPDF3.0 sets, which are contemporary with the present analysis.
Parton distributions in the LHC era: MMHT 2014 PDFs
NASA Astrophysics Data System (ADS)
Harland-Lang, L. A.; Martin, A. D.; Motylinski, P.; Thorne, R. S.
2015-05-01
We present LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data. These MMHT2014 PDFs supersede the `MSTW2008' parton sets, but they are obtained within the same basic framework. We include a variety of new data sets, from the LHC, updated Tevatron data and the HERA combined H1 and ZEUS data on the total and charm structure functions. We also improve the theoretical framework of the previous analysis. These new PDFs are compared to the `MSTW2008' parton sets. In most cases the PDFs, and the predictions, are within one standard deviation of those of MSTW2008. The major changes are the valence quark difference at small due to an improved parameterisation and, to a lesser extent, the strange quark PDF due to the effect of certain LHC data and a better treatment of the branching ratio. We compare our MMHT PDF sets with those of other collaborations; in particular with the NNPDF3.0 sets, which are contemporary with the present analysis.
Glueck, M.; Reya, E.; Pisano, C.
2008-04-01
Recent measurements for F{sub 2}(x,Q{sup 2}) have been analyzed in terms of the 'dynamical' and 'standard' parton model approach at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) of perturbative QCD. Having fixed the relevant NLO and NNLO parton distributions, we present the implications and predictions for the longitudinal structure function F{sub L}(x,Q{sup 2}). It is shown that the previously noted extreme perturbative NNLO/NLO instability of F{sub L}(x,Q{sup 2}) is an artifact of the commonly utilized 'standard' gluon distributions. In particular it is demonstrated that using the appropriate--dynamically generated--parton distributions at NLO and NNLO, F{sub L}(x,Q{sup 2}) turns out to be perturbatively rather stable already for Q{sup 2}{>=}O(2-3 GeV{sup 2})
Predicting target displacements using ultrasound elastography and finite element modeling.
op den Buijs, Jorn; Hansen, Hendrik H G; Lopata, Richard G P; de Korte, Chris L; Misra, Sarthak
2011-11-01
Soft tissue displacements during minimally invasive surgical procedures may cause target motion and subsequent misplacement of the surgical tool. A technique is presented to predict target displacements using a combination of ultrasound elastography and finite element (FE) modeling. A cubic gelatin/agar phantom with stiff targets was manufactured to obtain pre- and post-loading ultrasound radio frequency (RF) data from a linear array transducer. The RF data were used to compute displacement and strain images, from which the distribution of elasticity was reconstructed using an inverse FE-based approach. The FE model was subsequently used to predict target displacements upon application of different boundary and loading conditions to the phantom. The influence of geometry was investigated by application of the technique to a breast-shaped phantom. The distribution of elasticity in the phantoms as determined from the strain distribution agreed well with results from mechanical testing. Upon application of different boundary and loading conditions to the cubic phantom, the FE model-predicted target motion were consistent with ultrasound measurements. The FE-based approach could also accurately predict the displacement of the target upon compression and indentation of the breast-shaped phantom. This study provides experimental evidence that organ geometry and boundary conditions surrounding the organ are important factors influencing target motion. In future work, the technique presented in this paper could be used for preoperative planning of minimally invasive surgical interventions.
Zebrafish: predictive model for targeted cancer therapeutics from nature.
Zulkhernain, Nursafwana Syazwani; Teo, Soo Hwang; Patel, Vyomesh; Tan, Pei Jean
2014-01-01
Targeted therapy, the treatment of cancer based on an underlying genetic alteration, is rapidly gaining favor as the preferred therapeutic approach. To date, although natural products represent a rich resource of bio-diverse drug candidates, only a few have been identified to be effective as targeted cancer therapies largely due to the incompatibilities to current high-throughput screening methods. In this article, we review the utility of a zebrafish developmental screen for bioactive natural product-based compounds that target signaling pathways that are intimately shared with those in humans. Any bioactive compound perturbing signaling pathways identified from phenotypic developmental defects in zebrafish embryos provide an opportunity for developing targeted therapies for human cancers. This model provides a promising tool in the search for targeted cancer therapeutics from natural products.
Generating target system specifications from a domain model using CLIPS
NASA Technical Reports Server (NTRS)
Sugumaran, Vijayan; Gomaa, Hassan; Kerschberg, Larry
1991-01-01
The quest for reuse in software engineering is still being pursued and researchers are actively investigating the domain modeling approach to software construction. There are several domain modeling efforts reported in the literature and they all agree that the components that are generated from domain modeling are more conducive to reuse. Once a domain model is created, several target systems can be generated by tailoring the domain model or by evolving the domain model and then tailoring it according to the specified requirements. This paper presents the Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain model is created using multiple views, namely, aggregation hierarchy, generalization/specialization hierarchies, object communication diagrams and state transition diagrams. The architecture of the Knowledge Based Requirements Elicitation Tool (KBRET) which is used to generate target system specifications is also presented. The preliminary version of KBRET is implemented in the C Language Integrated Production System (CLIPS).
NASA Astrophysics Data System (ADS)
Pincetti, M.; Pasquini, B.; Boffi, S.
2007-04-01
Within the framework of light-cone quantization we derive the overlap representation of generalized parton distributions for transversely polarized quarks using the Fock-state decomposition in the transverse-spin basis. We apply this formalism to the case of light-cone wave functions in a constituent quark model giving numerical results for the four chiral-odd generalized parton distributions in a region where they describe the emission and reabsorption of a quark by the nucleon. With the transversity distribution obtained in the forward limit of the generalized distribution, we provide some predictions for the double transverse-spin asymmetry in Drell-Yan dilepton production in the kinematics of the \\cal {PAX} experiment.
Target model and simulation for laser imaging fuze
NASA Astrophysics Data System (ADS)
Li, Weiheng; Song, Chengtian
2013-09-01
Image detection is an important direction of fuze development nowadays, and laser imaging fuze is one of the main technologies. This paper carries out the research in simulation technology of the process with detection, scan and imaging, which is used in laser imaging fuze for tank target, and get the simulation images information of different intersection conditions, including tank spot information，distance information and power information. The target coordinate system is established with the movement characteristics，physical characteristics and existing coordinate system of tank target. And through transferring missile coordinates to the target coordinate system as well as the relative movement between the different time intervals, the model of missile-target in time and space is build up. The model is build up according to the tank target and diffusion properties of different background, including desert, soil, vegetation, and buildings. The relations of scattering power and bidirectional reflectance distribution function deduced the laser echo power calculation formula, which can calculate the echoes incidence to each surface of the laser.The design of laser imaging fuze simulation system is complicated ,which contains the technology of the process with detection, scan and imaging used in laser imaging fuze for tank target. The simulation system products the tank spot picture, the distance gradation picture, and the power gradation picture. The latter two contains two-dimensional information, the scanning distance as well as the value of echo power to meet the expected design effects.
Rapid SAR target modeling through genetic inheritance mechanism
NASA Astrophysics Data System (ADS)
Bala, Jerzy; Pachowicz, Peter W.; Vafaie, Halleh
1997-07-01
The paper presents a methodology and GETP experimental system for rapid SAR target signature generation from limited initial sensory data. The methodology exploits and integrates the following four processes: (1) analysis of initial SAR image signatures and their transformation into higher-level blob representation, (2) blob modeling, (3) genetic inheritance modeling to generate new instances of a target model in blob representation, and (4) synthesis of new SAR signatures from genetically evolved blob data. The GETP system takes several SAR signatures of the target and transforms each signature into more general scattered blob graphs, where each blob represents local energy cluster. A single graph node is describe by blob relative position, confidence, and iconic data. Graph data is forwarded to the genetic modeling process while blob image is stored in a catalog. Genetic inheritance is applied to the initial population of graph data. New graph models of the target are generated and evaluated. Selected graph variations are forwarded to the synthesis process. The synthesis process restores target signature from a given graph and a catalog of blobs. The background is synthesized to complement the signature. Initial experimental results are illustrated with 64 X 32 image sections of a tank.
A Mathematical Model for Assessing Target Vulnerability Research Efforts
1978-10-31
cookie cutter 17 Usinq a c-ircular Gaussian distribution to model weapon place- ment error, a targeter would visualize the targeting scenario as...exercise does provide a tentative solution hypothesis for the engineer to support, or reject and reformulate, as he proceeds through the metho - dology. In...reasoning. Each conclusion is to be weighted according to its degree of known validity, on a scale of "guess" to "high." The conclusion matrix would
Discovering Molecular Targets in Cancer with Multiscale Modeling
Wang, Zhihui; Bordas, Veronika; Deisboeck, Thomas S.
2011-01-01
Multiscale modeling is increasingly being recognized as a promising research area in computational cancer systems biology. Here, exemplified by two pioneering studies, we attempt to explain why and how such a multiscale approach paired with an innovative cross-scale analytical technique can be useful in identifying high-value molecular therapeutic targets. This novel, integrated approach has the potential to offer a more effective in silico framework for target discovery and represents an important technical step towards systems medicine. PMID:21572568
Airborne IRST target range: modelling and flight trials
NASA Astrophysics Data System (ADS)
Engvall, Asa
2003-01-01
A method for calculation of the target range of an airborne IRST has been verified with data from flight trials. The calculation method includes modelling of sensor performance, atmospheric transmission and infrared radiation from target and background. The flight trials were performed with the IR-OTIS system mounted on a Saab JA37 Viggen fighter aircraft, and a similar aircraft serving as target. Detection range was measured at various flight altitudes, for front and rear aspect. The correspondence between measured and predicted range is very good, with a deviation of less than 10 %.
Triple Parton Scatterings in High-Energy Proton-Proton Collisions
NASA Astrophysics Data System (ADS)
d'Enterria, David; Snigirev, Alexander M.
2017-03-01
A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (p p ) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS . The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5 ±4.5 mb . Estimates for triple charm (c c ¯) and bottom (b b ¯) production in p p collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single c c ¯ , b b ¯ cross sections. At √{s }≈100 TeV , about 15% of the p p collisions produce three c c ¯ pairs from three different parton-parton scatterings.
Multi-parton interactions and rapidity gap survival probability in jet-gap-jet processes
NASA Astrophysics Data System (ADS)
Babiarz, Izabela; Staszewski, Rafał; Szczurek, Antoni
2017-08-01
We discuss an application of dynamical multi-parton interaction model, tuned to measurements of underlying event topology, for a description of destroying rapidity gaps in the jet-gap-jet processes at the LHC. We concentrate on the dynamical origin of the mechanism of destroying the rapidity gap. The cross section for jet-gap-jet is calculated within LL BFKL approximation. We discuss the topology of final states without and with the MPI effects. We discuss some examples of selected kinematical situations (fixed jet rapidities and transverse momenta) as distributions averaged over the dynamics of the jet-gap-jet scattering. The colour-singlet ladder exchange amplitude for the partonic subprocess is implemented into the PYTHIA 8 generator, which is then used for hadronisation and for the simulation of the MPI effects. Several differential distributions are shown and discussed. We present the ratio of cross section calculated with and without MPI effects as a function of rapidity gap in between the jets.
Performance of binoculars: Berek's model of target detection.
Merlitz, Holger
2015-01-01
A model of target detection thresholds, first presented by Max Berek of Leitz, is fitted into a simple set of closed equations. These are combined with a recently published universal formula for the human eye's pupil size to yield a versatile formalism that is capable of predicting binocular performance gains. The model encompasses target size, contrast, environmental luminance, binocular's objective diameter, magnification, angle of view, transmission, stray light, and the observer's age. We analyze performance parameters of various common binocular models and compare the results with popular approximations to binocular performance, like the well-known twilight index. The formalisms presented here are of interest in military target detection as well as in civil applications such as hunting, surveillance, object security, law enforcement, and astronomy.
a Target Aware Texture Mapping for Sculpture Heritage Modeling
NASA Astrophysics Data System (ADS)
Yang, C.; Zhang, F.; Huang, X.; Li, D.; Zhu, Y.
2017-08-01
In this paper, we proposed a target aware image to model registration method using silhouette as the matching clues. The target sculpture object in natural environment can be automatically detected from image with complex background with assistant of 3D geometric data. Then the silhouette can be automatically extracted and applied in image to model matching. Due to the user don't need to deliberately draw target area, the time consumption for precisely image to model matching operation can be greatly reduced. To enhance the function of this method, we also improved the silhouette matching algorithm to support conditional silhouette matching. Two experiments using a stone lion sculpture of Ming Dynasty and a potable relic in museum are given to evaluate the method we proposed. The method we proposed in this paper is extended and developed into a mature software applied in many culture heritage documentation projects.
Limited persistence models for SAR automatic target recognition
NASA Astrophysics Data System (ADS)
Sugavanam, Nithin; Ertin, Emre
2017-04-01
We consider the task of estimating the scattering coefficients and locations of the scattering centers that exhibit limited azimuthal persistence for a wide-angle synthetic aperture radar (SAR) sensor operating in spotlight mode. We exploit the sparsity of the scattering centers in the spatial domain as well as the slow-varying structure of the scattering coefficients in the azimuth domain to solve the ill-posed linear inverse problem. Furthermore, we utilize this recovered model as a template for the task of target recognition and pose estimation. We also investigate the effects of missing pulses in the initial recovery step of the model on the performance of the proposed method for target recognition. We empirically establish that the recovered model can be used to estimate the target class and pose simultaneously for the case of missing measurements.
Wee partons in large nuclei: From virtual dream to hard reality
Venugopalan, R.
1995-06-01
We construct a weak coupling, many body theory to compute parton distributions in large nuclei for x {much_lt} A{sup {minus} 1/3}. The wee partons are highly coherent, non-Abelian Weizsaecker-Williams fields. Radiative corrections to the classical results axe discussed. The parton distributions for a single nucleus provide the initial conditions for the dynamical evolution of matter formed in ultrarelativistic nuclear collisions.
Theoretical model of HZE particle fragmentation by hydrogen targets
NASA Technical Reports Server (NTRS)
Townsend, L.W.; Cucinotta, F. A; Bagga, R.; Tripathi, R. K.
1996-01-01
The fragmenting of high energy, heavy ions (HZE particles) by hydrogen targets is an important, physical process in several areas of space radiation research. In this work quantum mechanical optical model methods for estimating cross sections for HZE particle fragmentation by hydrogen targets are presented. The cross sections are calculated using a modified abrasion-ablation collision formalism adapted from a nucleus-nucleus collision model. Elemental and isotopic production cross sections are estimated and compared with reported measurements for the breakup of neon, sulphur, and iron, nuclei at incident energies between 400 and 910 Mev/nucleon. Good agreement between theory and experiment is obtained.
Higher order cumulants in colorless partonic plasma
Cherif, S.; Ahmed, M. A. A.; Ladrem, M.
2016-06-10
Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to the thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.
Using habitat suitability models to target invasive plant species surveys.
Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey
2013-01-01
Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less
Global Numerical Modeling of the Muon Collider Target
NASA Astrophysics Data System (ADS)
Roman, Samulyak; Glimm, James
2000-11-01
The problem of free surface instabilities is the major concern in the study of the Muon Collider target. The target is in the form of a mercury jet interacting with high energy proton beams in the presence of a strong magnetic field. Strong pressure waves caused by the target - proton beam interaction lead to strong disturbances of the jet surface and to the jet breakup into droplets. The global numerical simulation of the Muon Collider target was done by using FronTier, a compressible fluid dynamics code. FronTier is capable to work with free surfaces and, in particular, to model the propagation of free jets. The code is based on the method of front tracking, a numerical technique for solving systems of conservation laws in which the evolution of discontinuities is determined through the solution of the associated Riemann problem. To model the behavior of the real material (mercury) under the influence of proton beams a SESAME type tabulated equation of state for mercury was created in a wide temperature - density domain which includes the fluid state of mercury, the vapor state and the state above the critical point. The numerical simulation of the target evolution driven by strong pressure waves is important for the optimal target design.
Precision Modeling Of Targets Using The VALUE Computer Program
NASA Astrophysics Data System (ADS)
Hoffman, George A.; Patton, Ronald; Akerman, Alexander
1989-08-01
The 1976-vintage LASERX computer code has been augmented to produce realistic electro-optical images of targets. Capabilities lacking in LASERX but recently incorporated into its VALUE successor include: •Shadows cast onto the ground •Shadows cast onto parts of the target •See-through transparencies (e.g.,canopies) •Apparent images due both to atmospheric scattering and turbulence •Surfaces characterized by multiple bi-directional reflectance functions VALUE provides not only realistic target modeling by its precise and comprehensive representation of all target attributes, but additionally VALUE is very user friendly. Specifically, setup of runs is accomplished by screen prompting menus in a sequence of queries that is logical to the user. VALUE also incorporates the Optical Encounter (OPEC) software developed by Tricor Systems,Inc., Elgin, IL.
CARROLL,J.
1999-09-10
The RIKEN-BNL center workshop on ''Hard parton physics in high energy nuclear collisions'' was held at BNL from March 1st-5th! 1999. The focus of the workshop was on hard probes of nucleus-nucleus collisions that will be measured at RHIC with the PHENIX and STAR detectors. There were about 45 speakers and over 70 registered participants at the workshop, with roughly a quarter of the speakers from overseas. About 60% of the talks were theory talks. A nice overview of theory for RHIC was provided by George Sterman. The theoretical talks were on a wide range of topics in QCD which can be classified under the following: (a) energy loss and the Landau-Pomeranchuk-Migdal effect; (b) minijet production and equilibration; (c) small x physics and initial conditions; (d) nuclear parton distributions and shadowing; (e) spin physics; (f) photon, di-lepton, and charm production; and (g) hadronization, and simulations of high pt physics in event generators. Several of the experimental talks discussed the capabilities of the PHENIX and STAR detectors at RHIC in measuring high pt particles in heavy ion collisions. In general, these talks were included in the relevant theory sessions. A session was set aside to discuss the spin program at RHIC with polarized proton beams. In addition, there were speakers from 08, HERA, the fixed target experiments at Fermilab, and the CERN fixed target Pb+Pb program, who provided additional perspective on a range of issues of relevance to RHIC; from jets at the Tevatron, to saturation of parton distributions at HERA, and recent puzzling data on direct photon production in fixed target experiments, among others.
Disease modeling by gene targeting using microRNAs.
Lan, C-C; Leong, I U S; Lai, D; Love, D R
2011-01-01
Zebrafish have proved to be a popular species for the modeling of human disease. In this context, there is a need to move beyond chemical-based mutagenesis and develop tools that target genes that are orthologous to those that are implicated in human heritable diseases. Targeting can take the form of creating mutations that are nonsense or mis-sense, or to mimic haploinsufficiency through the regulated expression of RNA effector molecules. In terms of the latter, we describe here the development and investigation of microRNA (miRNA)-based directed gene silencing methods in zebrafish. Unlike small interfering RNAs (siRNAs), miRNA-based methods offer temporal and spatial regulation of gene silencing. Proof-of-concept experiments demonstrate the efficacy of the method in zebrafish embryos, which provide the foundation for developing disease models using miRNA-based gene-targeting.
Optical model calculations of heavy-ion target fragmentation
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Norbury, J. W.
1986-01-01
The fragmentation of target nuclei by relativistic protons and heavy ions is described within the context of a simple abrasion-ablation-final-state interaction model. Abrasion is described by a quantum mechanical formalism utilizing an optical model potential approximation. Nuclear charge distributions of the excited prefragments are calculated by both a hypergeometric distribution and a method based upon the zero-point oscillations of the giant dipole resonance. Excitation energies are estimated from the excess surface energy resulting from the abrasion process and the additional energy deposited by frictional spectator interactions of the abraded nucleons. The ablation probabilities are obtained from the EVA-3 computer program. Isotope production cross sections for the spallation of copper targets by relativistic protons and for the fragmenting of carbon targets by relativistic carbon, neon, and iron projectiles are calculated and compared with available experimental data.
Pion and kaon valence-quark parton distribution functions.
Nguyen, T.; Bashir, A.; Roberts, C. D.; Tandy, P. C.
2011-06-16
A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.
Transverse momentum dependent parton distributions at small-x
NASA Astrophysics Data System (ADS)
Xiao, Bo-Wen; Yuan, Feng; Zhou, Jian
2017-08-01
We study the transverse momentum dependent (TMD) parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky-Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins-Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
Transverse Momentum-Dependent Parton Distributions From Lattice QCD
Michael Engelhardt, Bernhard Musch, Philipp Haegler, Andreas Schaefer
2012-12-01
Starting from a definition of transverse momentum-dependent parton distributions for semi-inclusive deep inelastic scattering and the Drell-Yan process, given in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection, a scheme to determine such observables in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are presented, focusing in particular on their dependence on the staple extent and the Collins-Soper evolution parameter.
APFELgrid : A high performance tool for parton density determinations
NASA Astrophysics Data System (ADS)
Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.
2017-03-01
We present a new software package designed to reduce the computational burden of hadron collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid package converts interpolated weight tables provided by APPLgrid files into a more efficient format for PDF fitting by the combination with PDF and αs evolution factors provided by APFEL. This combination significantly reduces the number of operations required to perform the calculation of hadronic observables in PDF fits and simplifies the structure of the calculation into a readily optimised scalar product. We demonstrate that our technique can lead to a substantial speed improvement when compared to existing methods without any reduction in numerical accuracy.
A framework for second-order parton showers
NASA Astrophysics Data System (ADS)
Li, Hai Tao; Skands, Peter
2017-08-01
A framework is presented for including second-order perturbative corrections to the radiation patterns of parton showers. The formalism allows to combine O (αs2)-corrected iterated 2 → 3 kernels for ;ordered; gluon emissions with tree-level 2 → 4 kernels for ;unordered; ones. The combined Sudakov evolution kernel is thus accurate to O (αs2). As a first step towards a full-fledged implementation of these ideas, we develop an explicit implementation of 2 → 4 shower branchings in this letter.
Experimental Evidence for Partonic Orbital Angular Momentum at RHIC
Fields, Douglas E.
2011-12-14
Although one might naively anticipate that the proton, being the lowest baryonic energy state, would be in a L = 0 state, the current theoretical understanding is that it must carry orbital angular momentum in order, for example, to have a non-zero anomalous magnetic moment. I will review the experimental evidence linked theoretically to orbital angular momentum of the proton's constituents from the RHIC experiments and summarize by presenting a challenge to the theory community--to develop a consistent framework which can explain the spin polarization asymmetries seen at RHIC and elsewhere, and give insight to the partonic wave-functions including orbital angular momentum.
Measurement of Proton Structure and Parton Density Functions from HERA
Raicevic, Natasa
2010-01-21
A preliminary result is reported of the charged current and neutral current inclusive cross sections from e{sup +}p and e{sup -}p scattering obtained from a combination of published measurements from H1 and ZEUS. Taking into account the systematic error correlations in a coherent approach, a reduction of experimental uncertainties for combined results is achieved compared to the separate results of the H1 and ZEUS experiments. The combined results are used as input for a next-to-leading order (NLO) QCD parton distribution determination.
Pion and kaon valence-quark parton distribution functions
Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.
2011-06-15
A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.
Coins as intermediate targets: reconstructive analysis with synthetic body models.
Thali, Michael J; Kneubuehl, Beat P; Rodriguez, William R; Smirniotopoulos, James G; Richardson, A Charles; Fowler, David; Godwin, Michael; Jurrus, Aaron; Fletcher, Douglas; Mallak, Craig
2009-06-01
The phenomenon of intermediate targets is well known in wound ballistics. In forensic science, models are used to reconstruct injury patterns to answer questions regarding the dynamic formation of these unusual injuries. Soft-tissue substitutes or glycerin soap and ordnance gelatin have been well established. Recently, based on previous experiences with artificial bone, a skull-brain model was developed. The goal of this study was to create and analyze a model-supported reconstruction of a real forensic case with a coin as an intermediate target. It was possible not only to demonstrate the "bullet-coin interaction," but also to recreate the wound pattern found in the victim. This case demonstrates that by using ballistic models, gunshot cases can be reproduced simply and economically, without coming into conflict with ethical guidelines.
Mouse model phenotypes provide information about human drug targets
Hoehndorf, Robert; Hiebert, Tanya; Hardy, Nigel W.; Schofield, Paul N.; Gkoutos, Georgios V.; Dumontier, Michel
2014-01-01
Motivation: Methods for computational drug target identification use information from diverse information sources to predict or prioritize drug targets for known drugs. One set of resources that has been relatively neglected for drug repurposing is animal model phenotype. Results: We investigate the use of mouse model phenotypes for drug target identification. To achieve this goal, we first integrate mouse model phenotypes and drug effects, and then systematically compare the phenotypic similarity between mouse models and drug effect profiles. We find a high similarity between phenotypes resulting from loss-of-function mutations and drug effects resulting from the inhibition of a protein through a drug action, and demonstrate how this approach can be used to suggest candidate drug targets. Availability and implementation: Analysis code and supplementary data files are available on the project Web site at https://drugeffects.googlecode.com. Contact: leechuck@leechuck.de or roh25@aber.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24158600
Using habitat suitability models to target invasive plant species surveys
Crall, Alycia W.; Jarnevich, Catherine S.; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey
2013-01-01
Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P 2) = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be
Killing Sections and Sigma Models with Lie Algebroid Targets
NASA Astrophysics Data System (ADS)
Bruce, Andrew James
2016-08-01
We define and examine the notion of a Killing section of a Riemannian Lie algebroid as a natural generalisation of a Killing vector field. We show that the various expression for a vector field to be Killing naturally generalise to the setting of Lie algebroids. As an application we examine the internal symmetries of a class of sigma models for which the target space is a Riemannian Lie algebroid. Critical points of these sigma models are interpreted as generalised harmonic maps.
Method calibration of the model 13145 infrared target projectors
NASA Astrophysics Data System (ADS)
Huang, Jianxia; Gao, Yuan; Han, Ying
2014-11-01
The SBIR Model 13145 Infrared Target Projectors ( The following abbreviation Evaluation Unit ) used for characterizing the performances of infrared imaging system. Test items: SiTF, MTF, NETD, MRTD, MDTD, NPS. Infrared target projectors includes two area blackbodies, a 12 position target wheel, all reflective collimator. It provide high spatial frequency differential targets, Precision differential targets imaged by infrared imaging system. And by photoelectricity convert on simulate signal or digital signal. Applications software (IR Windows TM 2001) evaluate characterizing the performances of infrared imaging system. With regards to as a whole calibration, first differently calibration for distributed component , According to calibration specification for area blackbody to calibration area blackbody, by means of to amend error factor to calibration of all reflective collimator, radiance calibration of an infrared target projectors using the SR5000 spectral radiometer, and to analyze systematic error. With regards to as parameter of infrared imaging system, need to integrate evaluation method. According to regulation with -GJB2340-1995 General specification for military thermal imaging sets -testing parameters of infrared imaging system, the results compare with results from Optical Calibration Testing Laboratory . As a goal to real calibration performances of the Evaluation Unit.
Nonlinear sigma models with compact hyperbolic target spaces
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; ...
2016-06-23
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less
Nonlinear sigma models with compact hyperbolic target spaces
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James
2016-06-23
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Nonlinear sigma models with compact hyperbolic target spaces
NASA Astrophysics Data System (ADS)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James
2016-06-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Modeling astatine production in liquid lead-bismuth spallation targets
NASA Astrophysics Data System (ADS)
David, J. C.; Boudard, A.; Cugnon, J.; Ghali, S.; Leray, S.; Mancusi, D.; Zanini, L.
2013-03-01
Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite
Jo, H S; Girod, F X; Avakian, H; Burkert, V D; Garçon, M; Guidal, M; Kubarovsky, V; Niccolai, S; Stoler, P; Adhikari, K P; Adikaram, D; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dupre, R; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Garillon, B; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Goetz, J T; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Harrison, N; Hattawy, M; Hicks, K; Hirlinger Saylor, N; Ho, D; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Joo, K; Joosten, S; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Kuhn, S E; Kuleshov, S V; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; McKinnon, B; Meziani, Z E; Mirazita, M; Mokeev, V; Montgomery, R A; Moutarde, H; Movsisyan, A; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Net, L A; Niculescu, G; Osipenko, M; Ostrovidov, A I; Paolone, M; Park, K; Pasyuk, E; Phillips, J J; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Puckett, A J R; Raue, B A; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Simonyan, A; Skorodumina, Iu; Smith, G D; Sokhan, D; Sparveris, N; Stepanyan, S; Strakovsky, I I; Strauch, S; Sytnik, V; Tian, Ye; Tkachenko, S; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I
2015-11-20
Unpolarized and beam-polarized fourfold cross sections (d^{4}σ/dQ^{2}dx_{B}dtdϕ) for the ep→e^{'}p^{'}γ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 (Q^{2},x_{B},t) bins over the widest phase space ever explored in the valence-quark region. Several models of generalized parton distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD H, expected to be the dominant contributor to these observables. Through a leading-twist extraction of Compton form factors, these results support the model predictions of a larger nucleon size at lower quark-momentum fraction x_{B}.
NASA Astrophysics Data System (ADS)
Jo, H. S.; Girod, F. X.; Avakian, H.; Burkert, V. D.; Garçon, M.; Guidal, M.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Hirlinger Saylor, N.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; McKinnon, B.; Meziani, Z. E.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-11-01
Unpolarized and beam-polarized fourfold cross sections (d4σ /d Q2d xBd t d ϕ ) for the e p →e'p'γ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 (Q2,xB,t ) bins over the widest phase space ever explored in the valence-quark region. Several models of generalized parton distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD H , expected to be the dominant contributor to these observables. Through a leading-twist extraction of Compton form factors, these results support the model predictions of a larger nucleon size at lower quark-momentum fraction xB.
Tradeoffs among watershed model calibration targets for parameter estimation
NASA Astrophysics Data System (ADS)
Price, Katie; Purucker, S. Thomas; Kraemer, Stephen R.; Babendreier, Justin E.
2012-10-01
Hydrologic models are commonly calibrated by optimizing a single objective function target to compare simulated and observed flows, although individual targets are influenced by specific flow modes. Nash-Sutcliffe efficiency (NSE) emphasizes flood peaks in evaluating simulation fit, while modified Nash-Sutcliffe efficiency (MNS) emphasizes lower flows, and the ratio of the simulated to observed standard deviations (RSD) prioritizes flow variability. We investigated tradeoffs of calibrating streamflow on three standard objective functions (NSE, MNS, and RSD), as well as a multiobjective function aggregating these three targets to simultaneously address a range of flow conditions, for calibration of the Soil and Water Assessment Tool (SWAT) daily streamflow simulations in two watersheds. A suite of objective functions was explored to select a minimally redundant set of metrics addressing a range of flow characteristics. After each pass of 2001 simulations, an iterative informal likelihood procedure was used to subset parameter ranges. The ranges from each best-fit simulation set were used for model validation. Values for optimized parameters vary among calibrations using different objective functions, which underscores the importance of linking modeling objectives to calibration target selection. The simulation set approach yielded validated models of similar quality as seen with a single best-fit parameter set, with the added benefit of uncertainty estimations. Our approach represents a novel compromise between equifinality-based approaches and Pareto optimization. Combining the simulation set approach with the multiobjective function was demonstrated to be a practicable and flexible approach for model calibration, which can be readily modified to suit modeling goals, and is not model or location specific.
Data modeling for nonlinear track prediction of targets through obscurations
NASA Astrophysics Data System (ADS)
Jaenisch, Holger; Handley, James
2012-05-01
A novel algorithm for predicting target tracks through obscurations is introduced. This prediction method uses radar ground track indicators and the hidden transfer function (HTF) to predict future target locations. The HTF method is described in detail, and results provided that quantify track accuracy, forecast accuracy, and the percentage of tracks exiting an obscuration occurring that occur within the forecasted region. Five different classifier methods are shown for labeling short segments of track history. Each classifier method is scored and significance testing used to determine that the Data Model and SMART lookup table (LUT) were significantly better than the other classifier approaches.
LHAPDF6: parton density access in the LHC precision era
NASA Astrophysics Data System (ADS)
Buckley, Andy; Ferrando, James; Lloyd, Stephen; Nordström, Karl; Page, Ben; Rüfenacht, Martin; Schönherr, Marek; Watt, Graeme
2015-03-01
The Fortran LHAPDF library has been a long-term workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond.
Proton structure and parton distribution functions from HERA
NASA Astrophysics Data System (ADS)
Chekelian, Vladimir
2016-11-01
The H1 and ZEUS collaborations at the electron-proton collider HERA collected e± p scattering data corresponding to an integrated luminosity of about 1 fb-1. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV, with different electric charges and longitudinal polarisation of the electron beam. Using these data inclusive neutral and charged current deep inelastic cross sections were measured over six orders of magnitude in negative four-momentum-transfer squared, Q2, and Bjorken x. A combination of all inclusive cross sections, published by the H1 and ZEUS collaborations at HERA, was performed. Using these combined HERA data and the individual H1 and ZEUS data taken using the polarised electron beams, the proton structure functions F2, FγZ2, xFγZ3 and FL were obtained, and scaling violations, electroweak unification, and polarisation effects in the charged current process were demonstrated. The combined cross sections were used as a sole input to QCD analyses at leading, next-to-leading and next-to-next-to-leading orders, providing a new set of parton distribution functions, denoted as HERAPDF2.0. An extension of the analysis by including HERA data on charm and jet production allowed a simultaneous determination of parton distributions and the strong coupling.
Non-dipolar Wilson Links for Parton Densities
NASA Astrophysics Data System (ADS)
Li, Hsiang-nan
We propose a new definition of a transverse-momentum-dependent wave function with simpler soft subtraction. The unsubtracted wave function involves two pieces of non-light-like Wilson links oriented in different directions, so that the rapidity singularity appearing in usual kT factorization is regularized, and the pinched singularity from Wilson-link self-energy corrections is alleviated to a logarithmic one. We show explicitly at one-loop level that the simpler definition with the non-dipolar Wilson links exhibits the same infrared behavior as the one with the dipolar Wilson links. The non-dipolar Wilson links are also introduced to the quasi-parton distribution function (QPDF) with an equal-time correlator in the large momentum limit, which can remove the involved linear divergence, and allow perturbative matching to the standard light-cone parton distribution function. The latter can then be extracted reliably from Euclidean lattice data for the QPDF with the non-dipolar Wilson links.
NUCLEAR REACTION MODELING FOR RIA ISOL TARGET DESIGN
S. MASHNIK; ET AL
2001-03-01
Los Alamos scientists are collaborating with researchers at Argonne and Oak Ridge on the development of improved nuclear reaction physics for modeling radionuclide production in ISOL targets. This is being done in the context of the MCNPX simulation code, which is a merger of MCNP and the LAHET intranuclear cascade code, and simulates both nuclear reaction cross sections and radiation transport in the target. The CINDER code is also used to calculate the time-dependent nuclear decays for estimating induced radioactivities. They give an overview of the reaction physics improvements they are addressing, including intranuclear cascade (INC) physics, where recent high-quality inverse-kinematics residue data from GSI have led to INC spallation and fission model improvements; and preequilibrium reactions important in modeling (p,xn) and (p,xnyp) cross sections for the production of nuclides far from stability.
Inducible Mouse Models for Cancer Drug Target Validation
Jeong, Joseph H.
2016-01-01
Genetically-engineered mouse (GEM) models have provided significant contributions to our understanding of cancer biology and developing anticancer therapeutic strategies. The development of GEM models that faithfully recapitulate histopathological and clinical features of human cancers is one of the most pressing needs to successfully conquer cancer. In particular, doxycycline-inducible transgenic mouse models allow us to regulate (induce or suppress) the expression of a specific gene of interest within a specific tissue in a temporal manner. Leveraging this mouse model system, we can determine whether the transgene expression is required for tumor maintenance, thereby validating the transgene product as a target for anticancer drug development (target validation study). In addition, there is always a risk of tumor recurrence with cancer therapy. By analyzing recurrent tumors derived from fully regressed tumors after turning off transgene expression in tumor-bearing mice, we can gain an insight into the molecular basis of how tumor cells escape from their dependence on the transgene (tumor recurrence study). Results from such studies will ultimately allow us to predict therapeutic responses in clinical settings and develop new therapeutic strategies against recurrent tumors. The aim of this review is to highlight the significance of doxycycline-inducible transgenic mouse models in studying target validation and tumor recurrence. PMID:28053958
Modeling intent for a target tracking and identification scenario
NASA Astrophysics Data System (ADS)
Blasch, Erik P.
2004-08-01
The tracking goal is to reduce positional uncertainty. There are many ways to reduce tracking uncertainty: including classification data, using trafficability maps, and employing behavior information. We seek to extend tracking and identification modeling by incorporating intent to update prediction velocity vectors. A hybrid state space approach is formulated to deal with continuous-valued kinematics and discrete-valued target type, pose (inherently continuous but quantized), and intent behavior. The coupled tracker design is illustrated within the context of using ground moving target indicator (GMTI) and high range-resolution (HRRR) measurements as well as digital terrain elevation data (DTED), road map, and estimated goal states. The resulting Intent Coupled Tracking and Identification (ICTI) system is expected to outperform separately designed systems particularly during target maneuvers and recovering from temporary data dropout.
How large is the gluon polarization in the statistical parton distributions approach?
Soffer, Jacques; Bourrely, Claude; Buccella, Franco
2015-04-10
We review the theoretical foundations of the quantum statistical approach to parton distributions and we show that by using some recent experimental results from Deep Inelastic Scattering, we are able to improve the description of the data by means of a new determination of the parton distributions. We will see that a large gluon polarization emerges, giving a significant contribution to the proton spin.
Partonic Equations of State in High-Energy Nuclear Collisions atRHIC
Xu, Nu
2006-10-01
The authors discuss the recent results on equation of state for partonic matter created at RHIC. Issues of partonic collectivity for multi-strange hadrons and J/{psi} from Au + Au collisions at {radical}s{sub NN} = 200 GeV are the focus of this paper.
Target characterization using hidden Markov models and classifiers
Kil, D.H.; Shin, F.B.; Fricke, J.R.
1996-06-01
We investigate various projection spaces and extract key parameters or features from each space to characterize low-frequency active (LFA) target returns in a low-dimensional space. The projection spaces encompass (1) time-embedded phase map, (2) segmented matched filter output, (3) various time-frequency distribution functions, such as Reduced Interference Distribution, to capture time-varying echo signatures, and (4) principal component inversion for signal cleaning and characterization. We utilize both dynamic and static features and parameterize them with a hybrid classification methodology consisting of hidden Markov models, classifiers, and data fusion. This clue identification and evaluation process is complemented by concurrent work on target physics to enhance our understanding of the target echo formation process. As a function of target aspect, we can observe (1) back scatter dominated by axial n=0 modes propagating back and forth along the length of the shell, (2) direct scatter from shell discontinuities, (3) helical or creeping waves from phase matching between the acoustic waves and membrane waves (both shear and compressional), and (4) the ``array response`` of the shell, with coherent superposition of elemental scattering sites along the shell leading to a peak response near broadside. As a function of target structures (the empty shell and the ribbed/complex shells), we see considerable complexity brought about by multiple reflections of the membrane waves between the rings. We show the merit of fusing parameters estimated from these projection spaces in characterizing LFA target returns using the MIT/NRL scaled model data. Our hybrid classifiers outperform the matched filter-based recognizer by an average of 5-25%;. This improvement can be attributed to a combination of good features that maximize inter-class discrimination and appropriate classifier topologies that exploit the underlying multi-dimensional feature probability density function.
Multivariate screening in food adulteration: untargeted versus targeted modelling.
López, M Isabel; Trullols, Esther; Callao, M Pilar; Ruisánchez, Itziar
2014-03-15
Two multivariate screening strategies (untargeted and targeted modelling) have been developed to compare their ability to detect food fraud. As a case study, possible adulteration of hazelnut paste is considered. Two different adulterants were studied, almond paste and chickpea flour. The models were developed from near-infrared (NIR) data coupled with soft independent modelling of class analogy (SIMCA) as a classification technique. Regarding the untargeted strategy, only unadulterated samples were modelled, obtaining 96.3% of correct classification. The prediction of adulterated samples gave errors between 5.5% and 2%. Regarding targeted modelling, two classes were modelled: Class 1 (unadulterated samples) and Class 2 (almond adulterated samples). Samples adulterated with chickpea were predicted to prove its ability to deal with non-modelled adulterants. The results show that samples adulterated with almond were mainly classified in their own class (90.9%) and samples with chickpea were classified in Class 2 (67.3%) or not in any class (30.9%), but no one only as unadulterated.
Designing Multi-target Compound Libraries with Gaussian Process Models.
Bieler, Michael; Reutlinger, Michael; Rodrigues, Tiago; Schneider, Petra; Kriegl, Jan M; Schneider, Gisbert
2016-05-01
We present the application of machine learning models to selecting G protein-coupled receptor (GPCR)-focused compound libraries. The library design process was realized by ant colony optimization. A proprietary Boehringer-Ingelheim reference set consisting of 3519 compounds tested in dose-response assays at 11 GPCR targets served as training data for machine learning and activity prediction. We compared the usability of the proprietary data with a public data set from ChEMBL. Gaussian process models were trained to prioritize compounds from a virtual combinatorial library. We obtained meaningful models for three of the targets (5-HT2c , MCH, A1), which were experimentally confirmed for 12 of 15 selected and synthesized or purchased compounds. Overall, the models trained on the public data predicted the observed assay results more accurately. The results of this study motivate the use of Gaussian process regression on public data for virtual screening and target-focused compound library design. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Target normal sheath acceleration analytical modeling, comparative study and developments
Perego, C.; Batani, D.; Zani, A.; Passoni, M.
2012-02-15
Ultra-intense laser interaction with solid targets appears to be an extremely promising technique to accelerate ions up to several MeV, producing beams that exhibit interesting properties for many foreseen applications. Nowadays, most of all the published experimental results can be theoretically explained in the framework of the target normal sheath acceleration (TNSA) mechanism proposed by Wilks et al. [Phys. Plasmas 8(2), 542 (2001)]. As an alternative to numerical simulation various analytical or semi-analytical TNSA models have been published in the latest years, each of them trying to provide predictions for some of the ion beam features, given the initial laser and target parameters. However, the problem of developing a reliable model for the TNSA process is still open, which is why the purpose of this work is to enlighten the present situation of TNSA modeling and experimental results, by means of a quantitative comparison between measurements and theoretical predictions of the maximum ion energy. Moreover, in the light of such an analysis, some indications for the future development of the model proposed by Passoni and Lontano [Phys. Plasmas 13(4), 042102 (2006)] are then presented.
Jo, Hyon -Suk
2015-11-17
Unpolarized and beam-polarized four-fold cross sectionsmore » $$\\frac{d^4 \\sigma}{dQ^2 dx_B dt d\\phi}$$ for the $$ep\\to e^\\prime p^\\prime \\gamma$$ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 ($$Q^2,x_B,t$$) bins over the widest phase space ever explored in the valence-quark region. Several models of Generalized Parton Distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD $H$, expected to be the dominant contributor to these observables. Thus, through a leading-twist extraction of Compton Form Factors, these results reveal a tomographic image of the nucleon.« less
Jo, Hyon -Suk
2015-11-17
Unpolarized and beam-polarized four-fold cross sections $\\frac{d^4 \\sigma}{dQ^2 dx_B dt d\\phi}$ for the $ep\\to e^\\prime p^\\prime \\gamma$ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 ($Q^2,x_B,t$) bins over the widest phase space ever explored in the valence-quark region. Several models of Generalized Parton Distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD $H$, expected to be the dominant contributor to these observables. Thus, through a leading-twist extraction of Compton Form Factors, these results reveal a tomographic image of the nucleon.
VALIDATION OF THE CORONAL THICK TARGET SOURCE MODEL
Fleishman, Gregory D.; Xu, Yan; Nita, Gelu N.; Gary, Dale E.
2016-01-10
We present detailed 3D modeling of a dense, coronal thick-target X-ray flare using the GX Simulator tool, photospheric magnetic measurements, and microwave imaging and spectroscopy data. The developed model offers a remarkable agreement between the synthesized and observed spectra and images in both X-ray and microwave domains, which validates the entire model. The flaring loop parameters are chosen to reproduce the emission measure, temperature, and the nonthermal electron distribution at low energies derived from the X-ray spectral fit, while the remaining parameters, unconstrained by the X-ray data, are selected such as to match the microwave images and total power spectra. The modeling suggests that the accelerated electrons are trapped in the coronal part of the flaring loop, but away from where the magnetic field is minimal, and, thus, demonstrates that the data are clearly inconsistent with electron magnetic trapping in the weak diffusion regime mediated by the Coulomb collisions. Thus, the modeling supports the interpretation of the coronal thick-target sources as sites of electron acceleration in flares and supplies us with a realistic 3D model with physical parameters of the acceleration region and flaring loop.
Validation of the Coronal Thick Target Source Model
NASA Astrophysics Data System (ADS)
Fleishman, Gregory D.; Xu, Yan; Nita, Gelu N.; Gary, Dale E.
2016-01-01
We present detailed 3D modeling of a dense, coronal thick-target X-ray flare using the GX Simulator tool, photospheric magnetic measurements, and microwave imaging and spectroscopy data. The developed model offers a remarkable agreement between the synthesized and observed spectra and images in both X-ray and microwave domains, which validates the entire model. The flaring loop parameters are chosen to reproduce the emission measure, temperature, and the nonthermal electron distribution at low energies derived from the X-ray spectral fit, while the remaining parameters, unconstrained by the X-ray data, are selected such as to match the microwave images and total power spectra. The modeling suggests that the accelerated electrons are trapped in the coronal part of the flaring loop, but away from where the magnetic field is minimal, and, thus, demonstrates that the data are clearly inconsistent with electron magnetic trapping in the weak diffusion regime mediated by the Coulomb collisions. Thus, the modeling supports the interpretation of the coronal thick-target sources as sites of electron acceleration in flares and supplies us with a realistic 3D model with physical parameters of the acceleration region and flaring loop.
A computational framework for modeling targets as complex adaptive systems
NASA Astrophysics Data System (ADS)
Santos, Eugene; Santos, Eunice E.; Korah, John; Murugappan, Vairavan; Subramanian, Suresh
2017-05-01
Modeling large military targets is a challenge as they can be complex systems encompassing myriad combinations of human, technological, and social elements that interact, leading to complex behaviors. Moreover, such targets have multiple components and structures, extending across multiple spatial and temporal scales, and are in a state of change, either in response to events in the environment or changes within the system. Complex adaptive system (CAS) theory can help in capturing the dynamism, interactions, and more importantly various emergent behaviors, displayed by the targets. However, a key stumbling block is incorporating information from various intelligence, surveillance and reconnaissance (ISR) sources, while dealing with the inherent uncertainty, incompleteness and time criticality of real world information. To overcome these challenges, we present a probabilistic reasoning network based framework called complex adaptive Bayesian Knowledge Base (caBKB). caBKB is a rigorous, overarching and axiomatic framework that models two key processes, namely information aggregation and information composition. While information aggregation deals with the union, merger and concatenation of information and takes into account issues such as source reliability and information inconsistencies, information composition focuses on combining information components where such components may have well defined operations. Since caBKBs can explicitly model the relationships between information pieces at various scales, it provides unique capabilities such as the ability to de-aggregate and de-compose information for detailed analysis. Using a scenario from the Network Centric Operations (NCO) domain, we will describe how our framework can be used for modeling targets with a focus on methodologies for quantifying NCO performance metrics.
Phototoxic target lipid model of single polycyclic aromatic hydrocarbons.
Marzooghi, Solmaz; Finch, Bryson E; Stubblefield, William A; Dmitrenko, Olga; Neal, Sharon L; Di Toro, Dominic M
2017-04-01
A phototoxic target lipid model (PTLM) is developed to predict phototoxicity of individual polycyclic aromatic hydrocarbons (PAHs) measured either as median lethal concentration (LC50) or median lethal time (LT50) for a 50% toxic response. The model is able to account for the differences in the physical/chemical properties of PAHs, test species sensitivities, and variations in light source characteristics, intensity, and length of exposure. The PTLM is based on the narcotic target lipid model (NTLM) of PAHs. Both models rely on the assumption that mortality occurs when the toxicant concentration in the target lipid of the organism reaches a threshold concentration. The PTLM is applied to observed LC50s and LT50s for 20 individual PAHs, 15 test species-including arthropods, fishes, amphibians, annelids, mollusks, and algae-exposed to simulated solar and various UV light sources, for exposure times varying from less than 1 h to 100 h, a total of 333 observations. The LC50 concentrations range from less than 0.1 µg/L to greater that 10(4) µg/L. The model has 2 fitting parameters that are constant and apply to all PAHs and organisms. The root mean square errors of prediction for log(LC50) and log(LT50) are 0.473 and 0.382, respectively. The results indicate that the PTLM can predict the phototoxicity of single PAHs over a wide range of exposure conditions and to organisms with a wide range of sensitivities. Environ Toxicol Chem 2017;36:926-937. © 2016 SETAC. © 2016 SETAC.
Model-based HSF using by target point control function
NASA Astrophysics Data System (ADS)
Kim, Seongjin; Do, Munhoe; An, Yongbae; Choi, Jaeseung; Yang, Hyunjo; Yim, Donggyu
2015-03-01
As the technology node shrinks, ArF Immersion reaches the limitation of wafer patterning, furthermore weak point during the mask processing is generated easily. In order to make strong patterning result, the design house conducts lithography rule checking (LRC). Despite LRC processing, we found the weak point at the verification stage of optical proximity correction (OPC). It is called the hot spot point (HSP). In order to fix the HSP, many studies have been performed. One of the most general hot spot fixing (HSF) methods is that the modification bias which consists of "Line-Resizing" and "Space-Resizing". In addition to the general rule biasing method, resolution enhancement techniques (RET) which includes the inverse lithography technology (ILT) and model based assist feature (MBAF) have been adapted to remove the hot spot and to maximize the process window. If HSP is found during OPC verification stage, various HSF methods can be applied. However, HSF process added on regular OPC procedure makes OPC turn-around time (TAT) increased. In this paper, we introduce a new HSF method that is able to make OPC TAT shorter than the common HSF method. The new HSF method consists of two concepts. The first one is that OPC target point is controlled to fix HSP. Here, the target point should be moved to optimum position at where the edge placement error (EPE) can be 0 at critical points. Many parameters such as a model accuracy or an OPC recipe become the cause of larger EPE. The second one includes controlling of model offset error through target point adjustment. Figure 1 shows the case EPE is not 0. It means that the simulation contour was not targeted well after OPC process. On the other hand, Figure 2 shows the target point is moved -2.5nm by using target point control function. As a result, simulation contour is matched to the original layout. This function can be powerfully adapted to OPC procedure of memory and logic devices.
Double parton effects for jets with large rapidity separation
Szczurek, Antoni; Cisek, Anna; Maciuła, Rafal
2015-04-10
We discuss production of four jets pp → jjjjX with at least two jets with large rapidity separation in proton-proton collisions at the LHC through the mechanism of double-parton scattering (DPS). The cross section is calculated in a factorizaed approximation. Each hard subprocess is calculated in LO collinear approximation. The LO pQCD calculations are shown to give a reasonably good descritption of CMS and ATLAS data on inclusive jet production. It is shown that relative contribution of DPS is growing with increasing rapidity distance between the most remote jets, center-of-mass energy and with decreasing (mini)jet transverse momenta. We show also result for angular azimuthal dijet correlations calculated in the framework of k{sub t} -factorization approximation.
ManeParse : A Mathematica reader for Parton Distribution Functions
NASA Astrophysics Data System (ADS)
Clark, D. B.; Godat, E.; Olness, F. I.
2017-07-01
Parton Distribution Functions (PDFs) are essential non-perturbative inputs for calculation of any observable with hadronic initial states. These PDFs are released by individual groups as discrete grids as a function of the Bjorken- x and energy scale Q. The LHAPDF project maintains a repository of PDFs from various groups in a new standardized LHAPDF6 format, additionally older formats such as the CTEQ PDS grid format are still in use. ManeParse is a package that provides access to PDFs within Mathematica to facilitate calculation and plotting. The program is self-contained so there are no external links to any FORTRAN, C or C++ programs. The package includes the option to use the built-in Mathematica interpolation or a custom cubic Lagrange interpolation routine which allows for flexibility in the extrapolation (particularly at small x-values). ManeParse is fast enough to enable simple calculations (involving even one or two integrations) in the Mathematica framework.
Transverse momentum-dependent parton distribution functions in lattice QCD
Engelhardt, Michael G.; Musch, Bernhard U.; Haegler, Philipp G.; Negele, John W.; Schaefer, Andreas
2013-08-01
A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.
Transverse momentum-dependent parton distribution functions from lattice QCD
Michael Engelhardt, Philipp Haegler, Bernhard Musch, John Negele, Andreas Schaefer
2012-12-01
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses 369MeV and 518MeV, focusing in particular on the dependence of these shifts on the staple extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the light cone.
Global NLO Analysis of Nuclear Parton Distribution Functions
Hirai, M.; Kumano, S.; Nagai, T.-H.
2008-02-21
Nuclear parton distribution functions (NPDFs) are determined by a global analysis of experimental measurements on structure-function ratios F{sub 2}{sup A}/F{sub 2}{sup A{sup '}} and Drell-Yan cross section ratios {sigma}{sub DY}{sup A}/{sigma}{sub DY}{sup A{sup '}}, and their uncertainties are estimated by the Hessian method. The NPDFs are obtained in both leading order (LO) and next-to-leading order (NLO) of {alpha}{sub s}. As a result, valence-quark distributions are relatively well determined, whereas antiquark distributions at x>0.2 and gluon distributions in the whole x region have large uncertainties. The NLO uncertainties are slightly smaller than the LO ones; however, such a NLO improvement is not as significant as the nucleonic case.
Modeling Human Visual Perception for Target Detection in Military Simulations
2009-06-01
Distractor Trials . . . . . . . . . . . . . . . . . . . 72 a. Number of Fixations Until the First Target Fixation . . 73 b. Time Until the First Target...Target and Distractor Trials . . . . . . . . . . . . . . . . . . . . . 84 h. Discussion . . . . . . . . . . . . . . . . . . . . . . . . 85 viii 4...Target and Hiding Location/ Distractor Trials . . . . . . . . . . 89 a. Number of Fixations Until Target Fixation . . . . . . . 90 b. Time Until Target
Modeling and Targeting MYC Genes in Childhood Brain Tumors.
Hutter, Sonja; Bolin, Sara; Weishaupt, Holger; Swartling, Fredrik J
2017-03-23
Brain tumors are the second most common group of childhood cancers, accounting for about 20%-25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors.
Modeling and Targeting MYC Genes in Childhood Brain Tumors
Hutter, Sonja; Bolin, Sara; Weishaupt, Holger; Swartling, Fredrik J.
2017-01-01
Brain tumors are the second most common group of childhood cancers, accounting for about 20%–25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors. PMID:28333115
Investigating GPDs in the framework of the double distribution model
NASA Astrophysics Data System (ADS)
Nazari, F.; Mirjalili, A.
2016-06-01
In this paper, we construct the generalized parton distribution (GPD) in terms of the kinematical variables x, ξ, t, using the double distribution model. By employing these functions, we could extract some quantities which makes it possible to gain a three-dimensional insight into the nucleon structure function at the parton level. The main objective of GPDs is to combine and generalize the concepts of ordinary parton distributions and form factors. They also provide an exclusive framework to describe the nucleons in terms of quarks and gluons. Here, we first calculate, in the Double Distribution model, the GPD based on the usual parton distributions arising from the GRV and CTEQ phenomenological models. Obtaining quarks and gluons angular momenta from the GPD, we would be able to calculate the scattering observables which are related to spin asymmetries of the produced quarkonium. These quantities are represented by AN and ALS. We also calculate the Pauli and Dirac form factors in deeply virtual Compton scattering. Finally, in order to compare our results with the existing experimental data, we use the difference of the polarized cross-section for an initial longitudinal leptonic beam and unpolarized target particles (ΔσLU). In all cases, our obtained results are in good agreement with the available experimental data.
Bacigalupi, J.; Mani, S.; Pellett, D.; Choudhary, B.; Kapoor, V.; Shivpuri, R.; Zutshi, V.; Baker, W.; Johnstone, C.; Lukens, P.; Skow, D.; Apanasevich, L.; Bromberg, C.; Huston, J.; Maul, A.; Miller, R.; Sorrell, L.; Yosef, C.; Chang, P.; Dlugosz, W.; Garelick, D.; Glaubman, M.; Lirakis, C.; Striley, D.; Yasuda, T.; Gutierrez, P.; Kuehler, J.; Hartman, K.; Oh, B.Y.; Toothacker, W.; Whitmore, J.J.; Blusk, S.; Chung, W.H.; Engels, E. Jr.; Shepard, P.; Weerasundara, D.; Begel, M.; de Barbaro, L.; DeSoi, W.; Dunlea, J.; Fanourakis, G.; Ferbel, T.; Ftacnik, J.; Ginther, G.; Lobkowicz, F.; Mansour, J.; Osborne, G.; Prebys, E.; Roser, R.; Slattery, P.; Varelas, N.; Zielinski, M.
1998-09-01
Inclusive {pi}{sup 0} and direct-photon cross sections in the kinematic range 3.5{lt}p{sub T}{lt}12 GeV/c with central rapidities (thinspy{sub cm} ) are presented for 530 and 800 GeV/c proton beams and a 515 GeV/c {pi}{sup {minus}} beam incident on Be targets. Current next-to-leading-order perturbative QCD calculations fail to adequately describe the data for conventional choices of scales. Kinematic distributions from these hard scattering events provide evidence that the interacting partons carry significant initial-state parton transverse momentum (k{sub T} ). Incorporating these k{sub T} effects phenomenologically greatly improves the agreement between calculations and the measured cross sections. {copyright} {ital 1998} {ital The American Physical Society}
Targeted mutation of zebrafish fga models human congenital afibrinogenemia
Fish, Richard J.; Di Sanza, Corinne
2014-01-01
Mutations in the human fibrinogen genes can lead to the absence of circulating fibrinogen and cause congenital afibrinogenemia. This rare bleeding disorder is associated with a variable phenotype, which may be influenced by environment and genotype. Here, we present a zebrafish model of afibrinogenemia. We introduced targeted mutations into the zebrafish fga gene using zinc finger nuclease technology. Animals carrying 3 distinct frameshift mutations in fga were raised and bred to produce homozygous mutants. Using a panel of anti-zebrafish fibrinogen antibodies, fibrinogen was undetectable in plasma preparations from homozygous mutant fish. We observed hemorrhaging in fga mutants and reduced survival compared with control animals. This model will now serve in the search for afibrinogenemia modifying genes or agents and, to our knowledge, is the first transmissible zebrafish model of a defined human bleeding disorder. PMID:24553182
Targeted mutation of zebrafish fga models human congenital afibrinogenemia.
Fish, Richard J; Di Sanza, Corinne; Neerman-Arbez, Marguerite
2014-04-03
Mutations in the human fibrinogen genes can lead to the absence of circulating fibrinogen and cause congenital afibrinogenemia. This rare bleeding disorder is associated with a variable phenotype, which may be influenced by environment and genotype. Here, we present a zebrafish model of afibrinogenemia. We introduced targeted mutations into the zebrafish fga gene using zinc finger nuclease technology. Animals carrying 3 distinct frameshift mutations in fga were raised and bred to produce homozygous mutants. Using a panel of anti-zebrafish fibrinogen antibodies, fibrinogen was undetectable in plasma preparations from homozygous mutant fish. We observed hemorrhaging in fga mutants and reduced survival compared with control animals. This model will now serve in the search for afibrinogenemia modifying genes or agents and, to our knowledge, is the first transmissible zebrafish model of a defined human bleeding disorder.
Modeling the electromobility of ions in a target tissue.
Hickey, Joseph D; Gilbert, Richard
2003-12-01
Electroporation is a clinical and laboratory technique for the delivery of molecules to cells. This method imposes electric fields onto cells or tissues through the use of electrodes and a set of electrical parameters to ultimately incorporate molecules into the cells. Clinical applications may include using directional fields to bring therapeutics to the target tissues before triggering an electroporation event. The choice of applicator may also have a significant influence on this molecular flow. Modeling ionic flow in tissues will yield insight into selecting the appropriate parameters or electroporation signature for a desired target application. In this paper, the motion of tissue injected ions was modeled for two common electroporation applicator configurations-the parallel plate, and the four needle electrodes. This electric field induced fluid flow model predicts that the parallel plate applicator ultimately directs the movement of an ionic therapeutic in a forward manner with side motion due only to obstruction, while the four-needle applicator directs anisotropic flow within the field ultimately forcing the therapeutic into a mound at the fringes of the induced electric field.
Neuroinflammatory targets and treatments for epilepsy validated in experimental models.
Aronica, Eleonora; Bauer, Sebastian; Bozzi, Yuri; Caleo, Matteo; Dingledine, Raymond; Gorter, Jan A; Henshall, David C; Kaufer, Daniela; Koh, Sookyong; Löscher, Wolfgang; Louboutin, Jean-Pierre; Mishto, Michele; Norwood, Braxton A; Palma, Eleonora; Poulter, Michael O; Terrone, Gaetano; Vezzani, Annamaria; Kaminski, Rafal M
2017-07-01
A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Models for discovery of targeted therapy in genetic epileptic encephalopathies.
Maljevic, Snezana; Reid, Christopher A; Petrou, Steven
2017-10-01
Epileptic encephalopathies are severe disorders emerging in the first days to years of life that commonly include refractory seizures, various types of movement disorders, and different levels of developmental delay. In recent years, many de novo occurring variants have been identified in individuals with these devastating disorders. To unravel disease mechanisms, the functional impact of detected variants associated with epileptic encephalopathies is investigated in a range of cellular and animal models. This review addresses efforts to advance and use such models to identify specific molecular and cellular targets for the development of novel therapies. We focus on ion channels as the best-studied group of epilepsy genes. Given the clinical and genetic heterogeneity of epileptic encephalopathy disorders, experimental models that can reflect this complexity are critical for the development of disease mechanisms-based targeted therapy. The convergence of technological advances in gene sequencing, stem cell biology, genome editing, and high throughput functional screening together with massive unmet clinical needs provides unprecedented opportunities and imperatives for precision medicine in epileptic encephalopathies. © 2017 International Society for Neurochemistry.
Virtual photon structure functions and the parton content of the electron
Drees, M. ); Godbole, R.M. )
1994-09-01
We point out that in processes involving the parton content of the photon the usual effective photon approximation should be modified. The reason is that the parton content of virtual photons is logarithmically suppressed compared to real photons. We describe this suppression using several simple, physically motivated [ital Ansa]$[ital uml---tze]. Although the parton content of the electron in general no longer factorizes into an electron flux function and a photon structure function, it can still be expressed as a single integral. Numerical examples are given for the [ital e][sup +][ital e][sup [minus
Optical model analyses of heavy ion fragmentation in hydrogen targets
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.
1994-01-01
Quantum-mechanical optical-model methods for calculating cross sections for the fragmentation of high-energy heavy ions by hydrogen targets are presented. The cross sections are calculated with a knockout-ablation collision formalism which has no arbitrary fitting parameters. Predictions of elemental production cross sections from the fragmentation of 1.2A Ge(V(La-139) nuclei and of isotope production cross sections from the fragmentation of 400A MeV(S-32) nuclei are in good agreement with recently reported experimental measurements.
Target discrimination using computational vision human perception models
NASA Astrophysics Data System (ADS)
Lindquist, George H.; Witus, Gary; Cook, Thomas H.; Freeling, J. Richard; Gerhart, Grant R.
1994-07-01
The current DoD target acquisition models have two primary deficiencies: they use simplistic representations of the vehicle and background signatures, and a highly simplified description of the human observer. The current signature representation often fails for complex signature configurations, yields inaccurate detectability and marginal pay-off predictions for low signature vehicles, is not extensible to false alarms and temporal cues, and precludes vehicle design guidance and diagnosis. The current human observer model is simplified to the same degree as the signature representation, and as such is not extensible to high fidelity signature representations. In answer to the noted deficiencies, we have developed the TARDEC visual model (TVM). We have adopted an alternative approach that is based on emerging academic computational vision models (CVM). Our approach is tailored to visual signatures, though the model is applicable to thermal, SAR as well as other categories of imagery. Color imagery, input to the model, is initially transformed into a 3D color-opponent space comprising luminance, red-green, and yellow- blue axes. Each plane in the color-opponent space is then decomposed by local, oriented spatial frequency analyzers (Gabor or wavelet filters) in keeping with current knowledge of retinal/cortical processing. Signal-to-noise statistics are then calculated on each channel, appropriately aggregated over all channels, and used within the signal detection theory context to predict detection and false alarm probabilities.
Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.
Broome, Scott Thomas; Flint, Gregory Mark; Dewers, Thomas; Newell, Pania
2015-11-01
This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.
Targeting Smoothened Sensitizes Gastric Cancer to Chemotherapy in Experimental Models
Ma, Huifa; Tian, Yongsheng; Yu, Xiangyang
2017-01-01
Background The Hedgehog pathway receptor smoothened (SMO) has critical roles in tumor progression. However, whether SMO is a key factor regulating gastric cancer chemotherapy resistance is unknown. Material/Methods We investigated the potential functions of SMO in inducing gastric cancer paclitaxel resistance in clinical samples, gastric cancer cell lines (424GC and AGS), and subcutaneous syngeneic mouse models. Results We found high SMO expression in paclitaxel-resistant gastric cancer clinical samples. Paclitaxel gastric cancer cells had higher SMO expression than in drug-sensitive cells. Upregulating SMO expression induced paclitaxel resistance in gastric cells lines via enhancing cell proliferation and inhibiting apoptosis. The combination of IPI-926, an inhibitor of SMO, with paclitaxel decreased cell viability of paclitaxel-resistant gastric cancer cells in vitro and controlled tumor growth in animal models. Conclusions The Hedgehog pathway receptor SMO is an important regulator of gastric cancer paclitaxel resistance and could be a target for sensitizing paclitaxel-resistant tumors. PMID:28350784
DISSECTING OCD CIRCUITS: FROM ANIMAL MODELS TO TARGETED TREATMENTS.
Ahmari, Susanne E; Dougherty, Darin D
2015-08-01
Obsessive-compulsive disorder (OCD) is a chronic, severe mental illness with up to 2-3% prevalence worldwide. In fact, OCD has been classified as one of the world's 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms.([1]) Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. © 2015 Wiley Periodicals, Inc.
Dissecting OCD Circuits: From Animal Models to Targeted Treatments
Ahmari, Susanne E.; Dougherty, Darin D.
2015-01-01
Obsessive Compulsive Disorder (OCD) is a chronic, severe mental illness with up to 2–3% prevalence worldwide, which has been classified as one of the world’s 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms 1. Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. PMID:25952989
Target space pseudoduality in supersymmetric sigma models on symmetric spaces
NASA Astrophysics Data System (ADS)
Sarisaman, Mustafa
We discuss the target space pseudoduality in supersymmetric sigma models on symmetric spaces. We first consider the case where sigma models based on real compact connected Lie groups of the same dimensionality and give examples using three dimensional models on target spaces. We show explicit construction of nonlocal conserved currents on the pseudodual manifold. We then switch the Lie group valued pseudoduality equations to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations. We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric spaces), we investigate pseudoduality transformation on the symmetric space sigma models in the third chapter. We see that there can be mixing of decomposed spaces with each other, which leads to mixings of the following expressions. We obtain the pseudodual conserved currents which are viewed as the orthonormal frame on the pullback bundle of the tangent space of G˜ which is the Lie group on which the pseudodual model based. Hence we obtain the mixing forms of curvature relations and one loop renormalization group beta function by means of these currents. In chapter four, we generalize the classical construction of pseudoduality transformation to supersymmetric case. We perform this both by component expansion method on manifold M and by orthonormal coframe method on manifold SO( M). The component method produces the result that pseudoduality transformation is not invertible at all points and occurs from all points on one manifold to only one point where riemann normal coordinates valid on the second manifold. Torsion of the sigma model on M must vanish while it is nonvanishing on M˜, and curvatures of the manifolds must be constant and the same because of anticommuting grassmann numbers. We obtain
Likelihood of achieving air quality targets under model uncertainties.
Digar, Antara; Cohan, Daniel S; Cox, Dennis D; Kim, Byeong-Uk; Boylan, James W
2011-01-01
Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.
Single perturbative splitting diagrams in double parton scattering
NASA Astrophysics Data System (ADS)
Gaunt, Jonathan R.
2013-01-01
We present a detailed study of a specific class of graph that can potentially contribute to the proton-proton double parton scattering (DPS) cross section. These are the `2v1' or `single perturbative splitting' graphs, in which two `nonperturbatively generated' ladders interact with two ladders that have been generated via a perturbative 1 → 2 branching process. Using a detailed calculation, we confirm the result written down originally by Ryskin and Snigirev — namely, that the 2v1 graphs in which the two nonperturbatively generated ladders do not interact with one another do contribute to the leading order proton-proton DPS cross section, albeit with a different geometrical prefactor to the one that applies to the `2v2'/`zero perturbative splitting' graphs. We then show that 2v1 graphs in which the `nonperturbatively generated' ladders exchange partons with one another also contribute to the leading order proton-proton DPS cross section, provided that this `crosstalk' occurs at a lower scale than the 1 → 2 branching on the other side of the graph. Due to the preference in the 2v1 graphs for the x value at which the branching occurs, and crosstalk ceases, to be very much larger than the x values at the hard scale, the effect of crosstalk interactions is likely to be a decrease in the 2v1 cross section except at exceedingly small x values (≲ 10-6). At moderate x values ≃ 10-3 -10-2, the x value at the splitting is in the region ≃ 10-1 where PDFs do not change much with scale, and the effect of crosstalk interactions is likely to be small. We give an explicit formula for the contribution from the 2v1 graphs to the DPS cross section, and combine this with a suggestion that we made in a previous publication, that the `double perturbative splitting'/`1v1' graphs should be completely removed from the DPS cross section, to obtain a formula for the DPS cross section. It is pointed out that there are two potentially concerning features in this equation, that
Human endotoxemia: a model for mechanistic insight and therapeutic targeting.
Lowry, Stephen F
2005-12-01
The diversity of phenotypic manifestations, comorbidities, and therapeutic algorithms in patients with severe inflammation have confounded efforts to translate mechanistic insights from the bench top to the bedside. This dilemma has negatively impacted upon many therapeutic interventions that exhibited seemingly well-reasoned preclinical portfolios. Prudence urges the assessment of potent immunoregulatory therapies, wherever possible, in models that replicate the clinical phenotype absent overt manifestations of genetically or environmentally modified processes. The healthy human model of endotoxin administration (systemic or endobronchial) provides such an opportunity and has been used to great advantage for gaining insight into mechanisms of disease and for determination of therapeutic signal strength. When thoughtfully interpreted, the model may provide proof of principle as well as lessen the unpredictability of clinical responses. Although the broad characteristics of this model are well described in the literature, it is recognized that this model does not fully replicate the magnitude of initial inflammatory stress nor the latent spectrum of inflammation/sepsis-inducible organ system pathologies. Nevertheless, the similarities between the early, transient clinical phenotype, inducible physiochemical change, and biochemical pathway activation of this model to the early hyperdynamic phase of resuscitated injury and infection are striking. Rational testing of a therapeutic mechanism requires a quantifiable and reproducibly altered marker of the hypothetical mechanism. Given the modest nature of endotoxin induced insult, interventions that demonstrate target specific efficacy in conjunction with attenuated phenotype responses are more likely to exhibit efficacy within lower risk patient populations. By contrast, the model cannot predict clinical efficacy among higher risk patients nor in those who have endured extended periods of inflammatory stress.
Hard processes at high energies in the Reggeized-parton approach
NASA Astrophysics Data System (ADS)
Karpishkov, A. V.; Nefedov, M. A.; Saleev, V. A.; Shipilova, A. V.
2017-09-01
Dominant contributions to the cross sections of hard processes at high energies come from the processes with multi-Regge kinematics which reflect the Reggeization of partonic amplitudes as a fundamental property of quantum-field gauge theories. The report briefly describes the Reggeized-parton approach based on the k T factorization at high energies and on the Lipatov's effective field theory for Reggeized gluons and quarks.
Prompt photon photoproduction at HERA with non-collinear parton dynamics
Lipatov, A. V.; Zotov, N. P.
2011-07-15
We investigate the prompt photon photoproduction at HERA within the framework of the k{sub T}-factorization approach to QCD. Our consideration is based on the off-shell matrix elements for the underlying partonic subprocesses and the Kimber-Martin-Ryskin (KMR) unintegrated parton densities in the proton. We also use the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) unintegrated gluon as well as valence and sea quark distributions.
Constitutive models in WONDY for penetration studies into rock targets
Norwood, F.R.
1981-09-01
Computer simulation appears to be the easiest way of providing a fairly complete description of the physical problem of earth penetration by projectiles. This simulation is limited by the lack of information on the behavior of geologic targets under dynamic loading and also by the description of the constitutive model for the geologic material. Several constitutive models are presented for possible applications to the rock and rock-like materials. Using material property data for Antelope tuff, the required set of constants for each model was selected and used in predicting, for a penetration event, stress distributions on the penetrator surface and also penetration histories. For each of these three models, the average decelerations lie close to the values computed for coefficients of friction of zero and 0.1. Assuming zero friction, curves of deceleration as a function of penetration depth were calculated for the various models. These curves were higher than the experimental curve for the first meter of penetration. This seems to indicate that the models considered here do not contain all the physical details needed for a more accurate prediction. In studies of friction at high speed, the coefficient of friction has been found to increase qualitatively as an exponential function as the velocity decreases. This might possibly explain the lock-in phenomenon occurring at the end of a penetration event. As part of the present study, parameter variation studies were conducted to determine which material properties would be most significant in earth penetration by projectiles. Material compressibility, cohesive strength and internal friction angle were examined in detail. The internal friction angle was found to be the most important and cohesive strength the least important parameter in contributing to the resistive forces experienced by a projectile during penetration.
Triple Parton Scatterings in High-Energy Proton-Proton Collisions.
d'Enterria, David; Snigirev, Alexander M
2017-03-24
A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σ_{eff,TPS}. The value of σ_{eff,TPS} is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σ_{eff,TPS}=12.5±4.5 mb. Estimates for triple charm (cc[over ¯]) and bottom (bb[over ¯]) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc[over ¯], bb[over ¯] cross sections. At sqrt[s]≈100 TeV, about 15% of the pp collisions produce three cc[over ¯] pairs from three different parton-parton scatterings.
M. Anselmino, H. Avakian, D. Boer, F. Bradamante, M. Burkardt, J.P. Chen, E. Cisbani, M. Contalbrigo, D. Crabb, D. Dutta, L. Gamberg, H. Gao, D. Hasch, J. Huang, M. Huang, Z. Kang, C. Keppel, G. Laskaris, Z-T. Liang, M.X. Liu, N. Makins, R.D. Mckeown, A. Metz, Z-E. Meziani, B. Musch, J-C. Peng, A. Prokudin, X. Qian, Y. Qiang, J.W. Qiu, P. Rossi, P. Schweitzer, J. Soffer, V. Sulkosky, Y. Wang, B. Xiao, Q. Ye, Q-J. Ye, F. Yuan, X. Zhan, Y. Zhang, W. Zheng, J. Zhou
2011-03-01
We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse momentum dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single spin asymmetries (SSA) from semi-inclusive deep-inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D (`D) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the sea quark region along with a study of their evolution.
Automated parton-shower variations in PYTHIA 8
Mrenna, S.; Skands, P.
2016-10-03
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separately preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. In conclusion, the formalism also allows for the enhancement of rare partonic splittings, such as g→bb¯ and q→qγ, to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.
EPPS16: nuclear parton distributions with LHC data.
Eskola, Kari J; Paakkinen, Petja; Paukkunen, Hannu; Salgado, Carlos A
2017-01-01
We introduce a global analysis of collinearly factorized nuclear parton distribution functions (PDFs) including, for the first time, data constraints from LHC proton-lead collisions. In comparison to our previous analysis, EPS09, where data only from charged-lepton-nucleus deep inelastic scattering (DIS), Drell-Yan (DY) dilepton production in proton-nucleus collisions and inclusive pion production in deuteron-nucleus collisions were the input, we now increase the variety of data constraints to cover also neutrino-nucleus DIS and low-mass DY production in pion-nucleus collisions. The new LHC data significantly extend the kinematic reach of the data constraints. We now allow much more freedom for the flavor dependence of nuclear effects than in other currently available analyses. As a result, especially the uncertainty estimates are more objective flavor by flavor. The neutrino DIS plays a pivotal role in obtaining a mutually consistent behavior for both up and down valence quarks, and the LHC dijet data clearly constrain gluons at large momentum fraction. Mainly for insufficient statistics, the pion-nucleus DY and heavy-gauge-boson production in proton-lead collisions impose less visible constraints. The outcome - a new set of next-to-leading order nuclear PDFs called EPPS16 - is made available for applications in high-energy nuclear collisions.
Automated parton-shower variations in PYTHIA 8
Mrenna, S.; Skands, P.
2016-10-03
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separatelymore » preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. In conclusion, the formalism also allows for the enhancement of rare partonic splittings, such as g→bb¯ and q→qγ, to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.« less
Automated parton-shower variations in pythia 8
NASA Astrophysics Data System (ADS)
Mrenna, S.; Skands, P.
2016-10-01
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separately preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. The formalism also allows for the enhancement of rare partonic splittings, such as g →b b ¯ and q →q γ , to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.
EPPS16: nuclear parton distributions with LHC data
NASA Astrophysics Data System (ADS)
Eskola, Kari J.; Paakkinen, Petja; Paukkunen, Hannu; Salgado, Carlos A.
2017-03-01
We introduce a global analysis of collinearly factorized nuclear parton distribution functions (PDFs) including, for the first time, data constraints from LHC proton-lead collisions. In comparison to our previous analysis, EPS09, where data only from charged-lepton-nucleus deep inelastic scattering (DIS), Drell-Yan (DY) dilepton production in proton-nucleus collisions and inclusive pion production in deuteron-nucleus collisions were the input, we now increase the variety of data constraints to cover also neutrino-nucleus DIS and low-mass DY production in pion-nucleus collisions. The new LHC data significantly extend the kinematic reach of the data constraints. We now allow much more freedom for the flavor dependence of nuclear effects than in other currently available analyses. As a result, especially the uncertainty estimates are more objective flavor by flavor. The neutrino DIS plays a pivotal role in obtaining a mutually consistent behavior for both up and down valence quarks, and the LHC dijet data clearly constrain gluons at large momentum fraction. Mainly for insufficient statistics, the pion-nucleus DY and heavy-gauge-boson production in proton-lead collisions impose less visible constraints. The outcome - a new set of next-to-leading order nuclear PDFs called EPPS16 - is made available for applications in high-energy nuclear collisions.
Energy flow along the medium-induced parton cascade
Blaizot, J.-P.
2016-05-15
We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs. The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.
Automated parton-shower variations in PYTHIA 8
Mrenna, S.; Skands, P.
2016-10-03
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separately preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. In conclusion, the formalism also allows for the enhancement of rare partonic splittings, such as g→bb¯ and q→qγ, to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.
Parton distribution functions, αs, and heavy-quark masses for LHC Run II
NASA Astrophysics Data System (ADS)
Alekhin, S.; Blümlein, J.; Moch, S.; PlačakytÄ--, R.
2017-07-01
We determine a new set of parton distribution functions (ABMP16), the strong coupling constant αs and the quark masses mc, mb and mt in a global fit to next-to-next-to-leading order (NNLO) in QCD. The analysis uses the MS ¯ scheme for αs and all quark masses and is performed in the fixed-flavor number scheme for nf=3 , 4, 5. Essential new elements of the fit are the combined data from HERA for inclusive deep-inelastic scattering (DIS), data from the fixed-target experiments NOMAD and CHORUS for neutrino-induced DIS, data from Tevatron and the LHC for the Drell-Yan process and the hadro-production of single-top and top-quark pairs. The theory predictions include new improved approximations at NNLO for the production of heavy quarks in DIS and for the hadro-production of single-top quarks. The description of higher twist effects relevant beyond the leading twist collinear factorization approximation is refined. At NNLO, we obtain the value αs(nf=5 )(MZ)=0.1147 ±0.0008 .
Informing Pedagogy Through the Brain-Targeted Teaching Model
Hardiman, Mariale
2012-01-01
Improving teaching to foster creative thinking and problem-solving for students of all ages will require two essential changes in current educational practice. First, to allow more time for deeper engagement with material, it is critical to reduce the vast number of topics often required in many courses. Second, and perhaps more challenging, is the alignment of pedagogy with recent research on cognition and learning. With a growing focus on the use of research to inform teaching practices, educators need a pedagogical framework that helps them interpret and apply research findings. This article describes the Brain-Targeted Teaching Model, a scheme that relates six distinct aspects of instruction to research from the neuro- and cognitive sciences. PMID:23653775
Informing pedagogy through the brain-targeted teaching model.
Hardiman, Mariale
2012-01-01
Improving teaching to foster creative thinking and problem-solving for students of all ages will require two essential changes in current educational practice. First, to allow more time for deeper engagement with material, it is critical to reduce the vast number of topics often required in many courses. Second, and perhaps more challenging, is the alignment of pedagogy with recent research on cognition and learning. With a growing focus on the use of research to inform teaching practices, educators need a pedagogical framework that helps them interpret and apply research findings. This article describes the Brain-Targeted Teaching Model, a scheme that relates six distinct aspects of instruction to research from the neuro- and cognitive sciences.
Target detection in hyperspectral imagery using forward modeling and in-scene information
NASA Astrophysics Data System (ADS)
Axelsson, Maria; Friman, Ola; Haavardsholm, Trym Vegard; Renhorn, Ingmar
2016-09-01
This work addresses the problem of detecting and classifying materials and targets in hyperspectral images based on their reflectance spectrum. Accurate target detection in hyperspectral imagery requires a radiative transfer model that maps between the spectral reflectance domain and the measured radiance domain. Such a model can be employed in two ways for detection - using atmospheric compensation, where the measured hyperspectral radiance image is converted to a reflectance image, and using forward modeling, where the target reflectance spectrum is converted to an at-sensor target radiance spectrum. This work presents a forward modeling detection method that utilizes in-scene information to estimate the parameters in the radiative transfer model. Uncertainty in the radiative transfer model and variability of the target spectra are captured using a constrained subspace model for the target. Target detection using library spectra and target rediscovery are evaluated in hyperspectral images of a complex urban scene.
Airborne electromagnetic modelling options and their consequences in target definition
NASA Astrophysics Data System (ADS)
Ley-Cooper, Alan Yusen; Viezzoli, Andrea; Guillemoteau, Julien; Vignoli, Giulio; Macnae, James; Cox, Leif; Munday, Tim
2015-10-01
Given the range of geological conditions under which airborne EM surveys are conducted, there is an expectation that the 2D and 3D methods used to extract models that are geologically meaningful would be favoured over 1D inversion and transforms. We do after all deal with an Earth that constantly undergoes, faulting, intrusions, and erosive processes that yield a subsurface morphology, which is, for most parts, dissimilar to a horizontal layered earth. We analyse data from a survey collected in the Musgrave province, South Australia. It is of particular interest since it has been used for mineral prospecting and for a regional hydro-geological assessment. The survey comprises abrupt lateral variations, more-subtle lateral continuous sedimentary sequences and filled palaeovalleys. As consequence, we deal with several geophysical targets of contrasting conductivities, varying geometries and at different depths. We invert the observations by using several algorithms characterised by the different dimensionality of the forward operator. Inversion of airborne EM data is known to be an ill-posed problem. We can generate a variety of models that numerically adequately fit the measured data, which makes the solution non-unique. The application of different deterministic inversion codes or transforms to the same dataset can give dissimilar results, as shown in this paper. This ambiguity suggests the choice of processes and algorithms used to interpret AEM data cannot be resolved as a matter of personal choice and preference. The degree to which models generated by a 1D algorithm replicate/or not measured data, can be an indicator of the data's dimensionality, which perse does not imply that data that can be fitted with a 1D model cannot be multidimensional. On the other hand, it is crucial that codes that can generate 2D and 3D models do reproduce the measured data in order for them to be considered as a plausible solution. In the absence of ancillary information, it could
Cellular communication and “non-targeted effects”: Modelling approaches
NASA Astrophysics Data System (ADS)
Ballarini, Francesca; Facoetti, Angelica; Mariotti, Luca; Nano, Rosanna; Ottolenghi, Andrea
2009-10-01
During the last decade, a large number of experimental studies on the so-called "non-targeted effects", in particular bystander effects, outlined that cellular communication plays a significant role in the pathways leading to radiobiological damage. Although it is known that two main types of cellular communication (i.e. via gap junctions and/or molecular messengers diffusing in the extra-cellular environment, such as cytokines, NO etc.) play a major role, it is of utmost importance to better understand the underlying mechanisms, and how such mechanisms can be modulated by ionizing radiation. Though the "final" goal is of course to elucidate the in vivo scenario, in the meanwhile also in vitro studies can provide useful insights. In the present paper we will discuss key issues on the mechanisms underlying non-targeted effects and cell communication, for which theoretical models and simulation codes can be of great help. In this framework, we will present in detail three literature models, as well as an approach under development at the University of Pavia. More specifically, we will first focus on a version of the "State-Vector Model" including bystander-induced apoptosis of initiated cells, which was successfully fitted to in vitro data on neoplastic transformation supporting the hypothesis of a protective bystander effect mediated by apoptosis. The second analyzed model, focusing on the kinetics of bystander effects in 3D tissues, was successfully fitted to data on bystander damage in an artificial 3D skin system, indicating a signal range of the order of 0.7-1 mm. A third model for bystander effect, taking into account of spatial location, cell killing and repopulation, showed dose-response curves increasing approximately linearly at low dose rates but quickly flattening out for higher dose rates, also predicting an effect augmentation following dose fractionation. Concerning the Pavia approach, which can model the release, diffusion and depletion/degradation of
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.
2015-03-01
The expression "multiple parton interactions" (MPI) denotes a conjectured QCD mechanism representing contributions from secondary (semi)hard parton scattering to the transverse azimuth region (TR) of jet-triggered p-p collisions. MPI is an object of underlying-event (UE) studies that consider variation of TR nch or pt yields relative to a trigger condition (leading hadron or jet pt). An alternative approach is 2D trigger-associated (TA) correlations on hadron transverse momentum pt or rapidity yt in which all hadrons from all p-p events are included. Based on a two-component (soft+hard) model (TCM) of TA correlations a jet-related TA hard component is isolated. Contributions to the hard component from the triggered dijet and from secondary dijets (MPI) can be distinguished, including their azimuth dependence relative to the trigger direction. Measured e+-e- and p-p¯ fragmentation functions and a minimum-bias jet spectrum from 200 GeV p-p¯ collisions are convoluted to predict the 2D hard component of TA correlations as a function of p-p collision multiplicity. The agreement between QCD predictions and TA correlation data is quantitative, confirming a dijet interpretation for the TCM hard component. The TA azimuth dependence is inconsistent with conventional UE assumptions.
Flavour symmetry breaking in the kaon parton distribution amplitude
none,
2014-11-01
We compute the kaon's valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its Poincaré-covariant Bethe–Salpeter wave-function onto the light-front. At a scale ζ = 2 GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 12–16% away from its position in QCD's conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on themore » difference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, FK/Fπ=1.23 at spacelike-Q2=17 GeV2, which compares satisfactorily with the value of 0.92(5) inferred in e+e- annihilation at s=17 GeV2.« less
How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function
NASA Astrophysics Data System (ADS)
Manohar, Aneesh; Nason, Paolo; Salam, Gavin P.; Zanderighi, Giulia
2016-12-01
It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton (e p ) scattering data, in effect viewing the e p →e +X process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process with a flavor changing photon-lepton vertex. We write its cross section in two ways: one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of e p data, we constrain the photon PDF at the level of 1%-2% over a wide range of momentum fractions.
Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models.
French, Dorothy M; Lin, Benjamin C; Wang, Manping; Adams, Camellia; Shek, Theresa; Hötzel, Kathy; Bolon, Brad; Ferrando, Ronald; Blackmore, Craig; Schroeder, Kurt; Rodriguez, Luis A; Hristopoulos, Maria; Venook, Rayna; Ashkenazi, Avi; Desnoyers, Luc R
2012-01-01
The fibroblast growth factor (FGF)-FGF receptor (FGFR) signaling system plays critical roles in a variety of normal developmental and physiological processes. It is also well documented that dysregulation of FGF-FGFR signaling may have important roles in tumor development and progression. The FGFR4-FGF19 signaling axis has been implicated in the development of hepatocellular carcinomas (HCCs) in mice, and potentially in humans. In this study, we demonstrate that FGFR4 is required for hepatocarcinogenesis; the progeny of FGF19 transgenic mice, which have previously been shown to develop HCCs, bred with FGFR4 knockout mice fail to develop liver tumors. To further test the importance of FGFR4 in HCC, we developed a blocking anti-FGFR4 monoclonal antibody (LD1). LD1 inhibited: 1) FGF1 and FGF19 binding to FGFR4, 2) FGFR4-mediated signaling, colony formation, and proliferation in vitro, and 3) tumor growth in a preclinical model of liver cancer in vivo. Finally, we show that FGFR4 expression is elevated in several types of cancer, including liver cancer, as compared to normal tissues. These findings suggest a modulatory role for FGFR4 in the development and progression of hepatocellular carcinoma and that FGFR4 may be an important and novel therapeutic target in treating this disease.
Software Reuse Targeted at Community Developed Simulation Models
NASA Astrophysics Data System (ADS)
Quenette, S.
2008-12-01
In the development of software simulations of long term geodynamics models, it becomes quickly apparent that a spectrum of fine to coarse grain software reuse is desirable. There is an extensive set of space and time scale-crossing phenomena that can be viewed as similar in their building blocks. If this view is taken, blocks can be targeted for optimisation or improvement, and new more powerful systems of blocks can be developed. Furthermore these contributions can be made by niche specialists and their communities, rather than the productive output of one. Thus achieving higher quality systems more rapidly. Presented is an approach, and the implemented StGermain platform, that encourages reuse of known common components, but systematically adapt to accept new componentry as they are contributed over time. The items for reuse span computational, numerical, constitutive and geophysical concerns. With 5years of application of the approach and platform, discussed is the uptake of derived works through programs such as AuScope and CIG, and how these contributions need an effective curation and testing process to ensure effective reuse.
The application of antitumor drug-targeting models on liver cancer.
Yan, Yan; Chen, Ningbo; Wang, Yunbing; Wang, Ke
2016-06-01
Hepatocarcinoma animal models, such as the induced tumor model, transplanted tumor model, gene animal model, are significant experimental tools for the evaluation of targeting drug delivery system as well as the pre-clinical studies of liver cancer. The application of antitumor drug-targeting models not only furnishes similar biological characteristics to human liver cancer but also offers guarantee of pharmacokinetic indicators of the liver-targeting preparations. In this article, we have reviewed some kinds of antitumor drug-targeting models of hepatoma and speculated that the research on this field would be capable of attaining a deeper level and expecting a superior achievement in the future.
1995-09-01
predictor variable which are unbiased in the sense that they are accurate at both high and low detection probabilities. We validate the confidence ... interval using a second data set that was not used in the development of this phase of the target detection model.
Nachtmann, O.
2014-11-15
We review ideas on the structure of the QCD vacuum which had served as motivation for the discussion of various non-standard QCD effects in high-energy reactions in articles from 1984 to 1995. These effects include, in particular, transverse-momentum and spin correlations in the Drell–Yan process and soft photon production in hadron–hadron collisions. We discuss the relation of the approach introduced in the above-mentioned articles to the approach, developed later, using transverse-momentum-dependent parton distributions (TDMs). The latter approach is a special case of our more general one which allows for parton entanglement in high-energy reactions. We discuss signatures of parton entanglement in the Drell–Yan reaction. Also for Higgs-boson production in pp collisions via gluon–gluon annihilation effects of entanglement of the two gluons are discussed and are found to be potentially important. These effects can be looked for in the current LHC experiments. In our opinion studying parton-entanglement effects in high-energy reactions is, on the one hand, very worthwhile by itself and, on the other hand, it allows to perform quantitative tests of standard factorisation assumptions. Clearly, the experimental observation of parton-entanglement effects in the Drell–Yan reaction and/or in Higgs-boson production would have a great impact on our understanding how QCD works in high-energy collisions.
Modeling to Support the Development of Habitat Targets for Piping Plovers on the Missouri River
Buenau, Kate E.
2015-05-05
Report on modeling and analyses done in support of developing quantative sandbar habitat targets for piping plovers, including assessment of reference, historical, dams present but not operated, and habitat construction calibrated to meet population viability targets.
Qweak Data Analysis for Target Modeling Using Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Moore, Michael; Covrig, Silviu
2015-04-01
The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target met the design goals of < 1 % luminosity reduction and < 5 % contribution to the total asymmetry width (the Qweak target achieved 2 % or 55 ppm). State of the art time dependent CFD simulations are being developed to improve the predictions of target noise on the time scale of the electron beam helicity period. These predictions will be bench-marked with the Qweak target data. This work is an essential ingredient in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).
Parton shower uncertainties in jet substructure analyses with deep neural networks
NASA Astrophysics Data System (ADS)
Barnard, James; Dawe, Edmund Noel; Dolan, Matthew J.; Rajcic, Nina
2017-01-01
Machine learning methods incorporating deep neural networks have been the subject of recent proposals for new hadronic resonance taggers. These methods require training on a data set produced by an event generator where the true class labels are known. However, this may bias the network towards learning features associated with the approximations to QCD used in that generator which are not present in real data. We therefore investigate the effects of variations in the modeling of the parton shower on the performance of deep neural network taggers using jet images from hadronic W bosons at the LHC, including detector-related effects. By investigating network performance on samples from the Pythia, Herwig and Sherpa generators, we find differences of up to 50% in background rejection for fixed signal efficiency. We also introduce and study a method, which we dub zooming, for implementing scale invariance in neural-network-based taggers. We find that this leads to an improvement in performance across a wide range of jet transverse momenta. Our results emphasize the importance of gaining a detailed understanding of what aspects of jet physics these methods are exploiting.
Partonic structure of neutral pseudoscalars via two photon transition form factors
Raya, Khepani; Ding, Minghui; Bashir, Adnan; ...
2017-04-10
Here, the γγ* → ηc,b transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting γγ* → ηc form factor, Gηc(Q2), is consistent with available data; significantly, at accessible momentum transfers, Q2Gηc(Q2) lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear understanding of the distribution of valence quarks within mesons thus emerges, a picture whichmore » connects Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Model.« less
2006-05-31
patterns for eyeball measurements, and the use of sinewaves is consistent with our sensor model. Fourier theory is used to model system blur and noise...behavior into the Fourier frequency domain model. It is understood that sinewave measurements are not practical in the laboratory. However, there is...Laboratory Static Performance Model (Ratches 1975, 1976, and 2001). The NVL model used Fourier transform theory and communications theory concepts
Measurement of direct-photon production at the Fermilab Tevatron fixed target energies
Apanasevich, L.; Bacigalupi, J.; Pellett, D.; Tripathi, S.M.; Baker, W.; Johnstone, C.; Lukens, P.; Skow, D.; Begel, M.; Barbaro, L. de; DeSoi, W.; Dunlea, J.; Fanourakis, G.; Ferbel, T.; Ftacnik, J.; Ginther, G.; Lobkowicz, F.; Mansour, J.; Osborne, G.; Prebys, E.
2004-11-01
Measurements of the production of high transverse momentum direct photons by a 515 GeV/c {pi}{sup -} beam and 530 and 800 GeV/c proton beams in interactions with beryllium and hydrogen targets are presented. The data span the kinematic ranges of 3.5
parton-k{sub T} model.
NLC Polarized Positron Photon Beam Target Thermal Structural Modeling
Stein, W; Sheppard, J C
2002-06-11
The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.
QCD-aware partonic jet clustering for truth-jet flavour labelling
NASA Astrophysics Data System (ADS)
Buckley, Andy; Pollard, Chris
2016-02-01
We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudojet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging.
Revealing Partons in Hadrons: From the ISR to the SPS Collider
NASA Astrophysics Data System (ADS)
Darriulat, Pierre; di Lella, Luigi
2015-07-01
Our understanding of the structure of hadrons has developed during the seventies and early eighties from a few vague ideas to a precise theory, Quantum Chromodynamics, that describes hadrons as made of elementary partons (quarks and gluons). Deep inelastic scattering of electrons and neutrinos on nucleons and electron-positron collisions have played a major role in this development. Less well known is the role played by hadron collisions in revealing the parton structure, studying the dynamic of interactions between partons and offering an exclusive laboratory for the direct study of gluon interactions. The present article recalls the decisive contributions made by the CERN Intersecting Storage Rings and, later, the proton-antiproton SPS Collider to this chapter of physics.
Sound produced by a fast parton in the quark-gluon plasma is a "crescendo".
Neufeld, R B; Müller, B
2009-07-24
We calculate the total energy deposited into the medium per unit length by fast partons traversing a quark-gluon plasma. The medium excitation due to collisions is taken to be given by the well-known expression for the collisional drag force. The radiative energy loss of the parton contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. We derive a differential equation which governs how the spectrum of radiated gluons is modified when this energy loss is taken into account. This modified spectrum is then used to calculate the additional energy deposition due to the interactions of radiated gluons with the medium. Numerical results are presented for the medium response for the case of two energetic back-to-back partons created in a hard interaction.
Sound Produced by a Fast Parton in the Quark-Gluon Plasma is a ``Crescendo''
NASA Astrophysics Data System (ADS)
Neufeld, R. B.; Müller, B.
2009-07-01
We calculate the total energy deposited into the medium per unit length by fast partons traversing a quark-gluon plasma. The medium excitation due to collisions is taken to be given by the well-known expression for the collisional drag force. The radiative energy loss of the parton contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. We derive a differential equation which governs how the spectrum of radiated gluons is modified when this energy loss is taken into account. This modified spectrum is then used to calculate the additional energy deposition due to the interactions of radiated gluons with the medium. Numerical results are presented for the medium response for the case of two energetic back-to-back partons created in a hard interaction.
Jet-parton assignment in tbar tH events using deep learning
NASA Astrophysics Data System (ADS)
Erdmann, M.; Fischer, B.; Rieger, M.
2017-08-01
The direct measurement of the top quark-Higgs coupling is one of the important questions in understanding the Higgs boson. The coupling can be obtained through measurement of the top quark pair-associated Higgs boson production cross-section. Of the multiple challenges arising in this cross-section measurement, we investigate the reconstruction of the partons originating from the hard scattering process using the measured jets in simulated tbar tH events. The task corresponds to an assignment challenge of m objects (jets) to n other objects (partons), where m>= n. We compare several methods with emphasis on a concept based on deep learning techniques which yields the best results with more than 50% of correct jet-parton assignments.
Modeling to Target Conservation Practices: A Case Study
USDA-ARS?s Scientific Manuscript database
Targeted placement of agricultural conservation practices within rural watersheds can significantly increase the cost-effectiveness of these nonpoint source pollution reduction measures. However, agricultural management decisions are made primarily at the farm-level, with confidentiality concerns an...
Application of custom tools and algorithms to the development of terrain and target models
NASA Astrophysics Data System (ADS)
Wilkosz, Aaron; Williams, Bryan L.; Motz, Steve
2003-09-01
In this paper we give a high level discussion outlining methodologies and techniques employed in generating high fidelity terrain and target models. We present the current state of our IR signature development efforts, cover custom tools and algorithms, and discuss future plans. We outline the steps required to derive an IR terrain and target signature models, and provide some details about algorithms developed to classify aerial imagery. In addition, we discuss our tool used to apply IR signature data to tactical vehicle models. We discuss how we process the empirical IR data of target vehicles, apply it to target models, and generate target signature models that correlate with the measured calibrated IR data. The developed characterization databases and target models are used in digital simulations by various customers within the US Army Aviation and Missile Command (AMCOM).
Electromagnetic modelling of Ground Penetrating Radar responses to complex targets
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Giannopoulos, Antonis
2014-05-01
defined through a constant real value, or else its frequency-dispersion properties can be taken into account by incorporating into the model Debye approximations. The electromagnetic source can be represented as a simple line of current (in the case of two-dimensional models), a Hertzian dipole, a bow tie antenna, or else, the realistic description of a commercial antenna can be included in the model [2]. Preliminary results for some of the proposed cells are presented, obtained by using GprMax [3], a freeware tool which solves Maxwell's equations by using a second order in space and time Finite-Difference Time-Domain algorithm. B-Scans and A-Scans are calculated at 1.5 GHz, for the total electric field and for the field back-scattered by targets embedded in the cells. A detailed description of the structures, together with the relevant numerical results obtained to date, are available for the scientific community on the website of COST Action TU1208, www.GPRadar.eu. Research groups working on the development of electromagnetic forward- and inverse-scattering techniques, as well as on imaging methods, might test and compare the accuracy and applicability of their approaches on the proposed set of scenarios. The aim of this initiative is not that of identifying the best methods, but more properly to indicate the range of reliability of each approach, highlighting its advantages and drawbacks. In the future, the realisation of the proposed concrete cells and the acquisition of GPR experimental data would allow a very effective benchmark for forward and inverse scattering methods. References [1] R. Yelf, A. Ward, "Nine steps to concrete wisdom." Proc. 13th International Conference on Ground Penetrating Radar, Lecce, Italy, 21-25 June 2010, pp. 1-8. [2] C. Warren, A. Giannopoulos, "Creating FDTD models of commercial GPR antennas using Taguchi's optimisation method." Geophysics (2011), 76, article ID G37. [3] A. Giannopoulos, "Modelling ground penetrating radar by GPRMAX
nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties
Kusina, A.; Kovarik, K.; Jezo, T.; Clark, D. B.; Keppel, C.; Lyonnet, F.; Morfin, J. G.; Olness, F. I.; Owens, J. F.; Schienbein, I.; Yu, J. Y.
2015-09-04
We present the first official release of the nCTEQ nuclear parton distribution functions with errors. The main addition to the previous nCTEQ PDFs is the introduction of PDF uncertainties based on the Hessian method. Another important addition is the inclusion of pion production data from RHIC that give us a handle on constraining the gluon PDF. This contribution summarizes our results from arXiv:1509.00792, and concentrates on the comparison with other groups providing nuclear parton distributions.
NASA Astrophysics Data System (ADS)
Staśto, Anna M.; Golec-Biernat, Krzysztof
2017-04-01
In the first part of this contribution we discuss the problem of the initial conditions for the evolution of double parton distribution functions (PDFs). We show that one can construct a framework based on the expansion in terms of the Dirichlet functions in which both single and double PDFs satisfy momentum sum rules. In the second part, we propose how to include the transverse momentum dependence for the double parton distribution functions using the extension of the Kimber-Martin-Ryskin framework previously applied to the single PDFs.
Studies of Parton Propagation and Hadron Formation in the Space-Time Domain
Brooks, Will; Hakobyan, Hayk
2008-10-13
Over the past decade, new data from HERMES, Jefferson Lab, Fermilab, and RHIC that connect to parton propagation and hadron formation have become available. Semi-inclusive DIS on nuclei, the Drell-Yan reaction, and heavy-ion collisions all bring different kinds of information on parton propagation within a medium, while the most direct information on hadron formation comes from the DIS data. Over the next decade one can hope to begin to understand these data within a unified picture. We briefly survey the most relevant data and the common elements of the physics picture, then highlight the new Jefferson Lab data, and close with a prospective for the future.
Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function
NASA Astrophysics Data System (ADS)
Gao, Fei; Chang, Lei; Liu, Yu-xin
2017-07-01
We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Constraints on spin-dependent parton distributions at large x from global QCD analysis
Jimenez-Delgado, P.; Avakian, H.; Melnitchouk, W.
2014-09-28
This study investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x → 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.
Medium-induced gluon radiation in hard forward parton scattering in the saturation formalism
NASA Astrophysics Data System (ADS)
Munier, Stéphane; Peigné, Stéphane; Petreska, Elena
2017-01-01
We derive the medium-induced, fully coherent soft gluon radiation spectrum associated with the hard forward scattering of an energetic parton off a nucleus, in the saturation formalism within the Gaussian approximation for the relevant correlators of Wilson lines and for finite number of colors. The validity range of the result is rigorously specified by keeping track of the order of magnitude of subleading contributions to the spectrum. The connection between the saturation formalism and the opacity expansion used in previous studies of the same observable is made apparent. Our calculation sets the basis for further studies of the interplay between saturation and fully coherent energy loss in hard forward parton scattering.
Hautmann, F; Jung, H; Krämer, M; Mulders, P J; Nocera, E R; Rogers, T C; Signori, A
Transverse-momentum-dependent distributions (TMDs) are extensions of collinear parton distributions and are important in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library [Formula: see text], a tool to collect transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.
An O([alpha][sub s]) Monte Carlo for W production with parton showering
Baer, H.A.
1991-01-01
We construct an event generator for p[bar p][yields]W[sup +]X[yields]e[sup +][nu]X including complete O([alpha][sub s]) corrections, and interface with initial and final state parton showers. Problems with negative weights and with double counting higher order parton radiation are averted. We present results for W+n-jet production, and compare with results from complete tree-level calculations, and shower calculations off of the lowest order 2[yields]2 sub-process. We also compute the [sub qT](W) distribution, and compare with data.
An O({alpha}{sub s}) Monte Carlo for W production with parton showering
Baer, H.A.
1991-12-31
We construct an event generator for p{bar p}{yields}W{sup +}X{yields}e{sup +}{nu}X including complete O({alpha}{sub s}) corrections, and interface with initial and final state parton showers. Problems with negative weights and with double counting higher order parton radiation are averted. We present results for W+n-jet production, and compare with results from complete tree-level calculations, and shower calculations off of the lowest order 2{yields}2 sub-process. We also compute the {sub qT}(W) distribution, and compare with data.
nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties
Kusina, A.; Jezo, T.; Clark, D. B.; Keppel, Cynthia; Lyonnet, F.; Morfin, Jorge; Olness, F. I.; Owens, Jeff; Schienbein, I.
2015-09-01
We present the first official release of the nCTEQ nuclear parton distribution functions with errors. The main addition to the previous nCTEQ PDFs is the introduction of PDF uncertainties based on the Hessian method. Another important addition is the inclusion of pion production data from RHIC that give us a handle on constraining the gluon PDF. This contribution summarizes our results from arXiv:1509.00792 and concentrates on the comparison with other groups providing nuclear parton distributions.
2005-10-01
COMPLEX TARGETS IN COMPLEX CLUTTER AND PROPAGATION ENVIRONMENTS Black River Systems Company APPROVED FOR PUBLIC RELEASE... PROPAGATION ENVIRONMENTS 6. AUTHOR(S) Milissa Benincasa, Tapan Sarkar, Christopher Card, Carl Thomas, Eric Mokole, Douglas Taylor, Richard Schneible, Ravi...targets (today’s capability) to accurate modeling of complex targets in complex environments with all their associated scattering and propagation
The difficulty in measuring suitable targets when modeling victimization.
Popp, Ann Marie
2012-01-01
Target suitability is a critical theoretical concept for opportunity theory. Previous research has primarily measured this concept using demographic characteristics of the study participant, which is problematic. This study corrects the measurement problem by employing bullying variables as alternative measures of target suitability because they are arguably better at capturing the social and psychological vulnerability of the individual that is attracting motivated offenders. Using three waves (1999, 2001, & 2003) of the National Crime Victimization Survey (NCVS) School Crime Supplement (SCS), this research explores the impact of the bullying measures along with demographic characteristics and lifestyle measures on the likelihood that a student will experience victimization in school. The findings suggest that the bullying measures are better predictors of victimization over the demographic characteristics and lifestyle measures for all three waves. The findings highlight the need for better measures of target suitability, which capture the social and psychological vulnerability of victims to explain victimization.
Principles of miRNA-Target Regulation in Metazoan Models
Doxakis, Epaminondas
2013-01-01
MicroRNAs (miRs) are key post-transcriptional regulators that silence gene expression by direct base pairing to target sites of RNAs. They have a wide variety of tissue expression patterns and are differentially expressed during development and disease. Their activity and abundance is subject to various levels of control ranging from transcription and biogenesis to miR response elements on RNAs, target cellular levels and miR turnover. This review summarizes and discusses current knowledge on the regulation of miR activity and concludes with novel non-canonical functions that have recently emerged. PMID:23965954
NASA Astrophysics Data System (ADS)
Kovner, Alex; Rezaeian, Amir H.
2017-06-01
We introduce a technique to study double parton scattering (DPS) in the color-glass-condensate (CGC) approach. We show that the cross section of the DPS in the CGC approach is calculable in terms of new nonperturbative objects, generalized double transverse momentum-dependent parton distribution (2GTMD) functions. We investigate the production of pairs of prompt photons from two partons in the projectile hadron in high-energy proton-nucleus collisions. We show that even for independent partons in the projectile, the prompt photon correlation function exhibits Hanbury Brown and Twiss (HBT) correlations. The width of the HBT peak is controlled by the transverse distance between the partons of the pair, which is of the order of the proton size. Thus, the HBT measurements in two-particle production such as prompt photon pairs provide useful information about the nonperturbative 2GTMDs.
NASA Astrophysics Data System (ADS)
Gaunt, Jonathan R.; Maciuła, Rafał; Szczurek, Antoni
2014-09-01
The double parton distributions (dPDF), both conventional (i.e. double ladder) and those corresponding to 1→2 ladder splitting, are calculated and compared for different two-parton combinations. The conventional and splitting dPDFs have very similar shape in x1 and x2. We make a first quantitative evaluation of the single-ladder-splitting contribution to double parton scattering (DPS) production of two S- or P-wave quarkonia, two Higgs bosons and cc ¯cc ¯. The ratio of the single-ladder-splitting to conventional (i.e. double ladder against double ladder) contributions is discussed as a function of center-of-mass energy, mass of the produced system and other kinematical variables. Using a simple model for the dependence of the conventional two-parton distribution on transverse parton separation (Gaussian and independent of xi and scales), we find that the single-ladder-splitting (or 2v1) contribution is as big as the conventional (or 2v2) contribution discussed in recent years in the literature. In many experimental studies of DPS, one extracts the quantity 1/σeff=σDPS/(σSPS ,1σSPS,2), with σSPS ,1 and σSPS ,2 being the single scattering cross sections for the two subprocesses in the DPS process. Many past phenomenological studies of DPS have only considered the conventional contribution and have obtained values a factor of ˜2 too small for 1/σeff. Our analysis shows that it is important also to consider the ladder-splitting mechanism, and that this might resolve the discrepancy (this was also pointed out in a recent study by Blok et al.). The differential distributions in rapidity and transverse momenta calculated for conventional and single-ladder-splitting DPS processes are however very similar which causes their experimental separation to be rather difficult, if not impossible. The direct consequence of the existence of the two components (conventional and splitting) is the energy and process dependence of the empirical parameter σeff. This is
Modeling Criterion Shifts and Target Checking in Prospective Memory Monitoring
ERIC Educational Resources Information Center
Horn, Sebastian S.; Bayen, Ute J.
2015-01-01
Event-based prospective memory (PM) involves remembering to perform intended actions after a delay. An important theoretical issue is whether and how people monitor the environment to execute an intended action when a target event occurs. Performing a PM task often increases the latencies in ongoing tasks. However, little is known about the…
Ovarian Mouse Models with Targeted Fallopian Tubal Carcinogenesis
2013-09-01
target genetic deletions to the oviductal epithelium. We are currently performing selective genetic deletion of ovarian cancer genes, such as TP53 ...fallopian epithelium, oviductal epithelium, BRCA1, Rb, TP53 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES
Modeling Criterion Shifts and Target Checking in Prospective Memory Monitoring
ERIC Educational Resources Information Center
Horn, Sebastian S.; Bayen, Ute J.
2015-01-01
Event-based prospective memory (PM) involves remembering to perform intended actions after a delay. An important theoretical issue is whether and how people monitor the environment to execute an intended action when a target event occurs. Performing a PM task often increases the latencies in ongoing tasks. However, little is known about the…
Wang, Hongyuan; Zhang, Wei; Dong, Aotuo
2012-11-10
A modeling and validation method of photometric characteristics of the space target was presented in order to track and identify different satellites effectively. The background radiation characteristics models of the target were built based on blackbody radiation theory. The geometry characteristics of the target were illustrated by the surface equations based on its body coordinate system. The material characteristics of the target surface were described by a bidirectional reflectance distribution function model, which considers the character of surface Gauss statistics and microscale self-shadow and is obtained by measurement and modeling in advance. The contributing surfaces of the target to observation system were determined by coordinate transformation according to the relative position of the space-based target, the background radiation sources, and the observation platform. Then a mathematical model on photometric characteristics of the space target was built by summing reflection components of all the surfaces. Photometric characteristics simulation of the space-based target was achieved according to its given geometrical dimensions, physical parameters, and orbital parameters. Experimental validation was made based on the scale model of the satellite. The calculated results fit well with the measured results, which indicates the modeling method of photometric characteristics of the space target is correct.
Joint tracking algorithm using particle filter and mean shift with target model updating
NASA Astrophysics Data System (ADS)
Zhang, Bo; Tian, Weifeng; Jin, Zhihua
2006-10-01
Roughly, visual tracking algorithms can be divided into two main classes: deterministic tracking and stochastic tracking. Mean shift and particle filter are their typical representatives, respectively. Recently, a hybrid tracker, seamlessly integrating the respective advantages of mean shift and particle filter (MSPF) has achieved impressive success in robust tracking. The pivot of MSPF is to sample fewer particles using particle filter and then those particles are shifted to their respective local maximum of target searching space by mean shift. MSPF not only can greatly reduce the number of particles that particle filter required, but can remedy the deficiency of mean shift. Unfortunately, due to its inherent principle, MSPF is restricted to those applications with little changes of the target model. To make MSPF more flexible and robust, an adaptive target model is extended to MSPF in this paper. Experimental results show that MSPF with target model updating can robustly track the target through the whole sequences regardless of the change of target model.
Continuum fusion solutions for replacement target models in electro-optic detection.
Schaum, Alan
2014-05-01
The additive target model is used routinely in the statistical detection of opaque targets, despite its phenomenological inaccuracy. The more appropriate replacement target model is seldom used, because the standard method for producing a detection algorithm from it proves to be intractable, unless narrow restrictions are imposed. Now, the recently developed continuum fusion (CF) methodology allows an expanded solution set to the general replacement target problem. It also provides a mechanism for producing approximate solutions for the standard approach. We illustrate the principles of CF by using them to generate both types of answers for the correct detection model.
Geiger, K.; Longacre, R.; Srivastava, D.K.
1999-02-01
VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.
A Modeling Method of Multiple Targets Assignment under Multiple UAVs’ Cooperation
NASA Astrophysics Data System (ADS)
Wang, Q. H.; Wan, G.; Cao, X. F.; Xie, L. X.
2017-03-01
Aiming at the multiple UAVs’ cooperation in the complex environment, detailed analysis about targets assignment model is made in the paper. Firstly, three basic situations are discussed according to the quantitative relationship between the UAVs and the targets. Then in order to make the targets model more practical, the probability that the UAVs’ damage is also taken into consideration. Following, basic particle swarm optimization algorithm is adopted to solve the model which has great performance in efficiency and convergence. Finally, three-dimensional environment is simulated to verify the model. Simulation results show that the model is practical and close to the actual environment.
Making Sense in the City: Dolly Parton, Early Reading and Educational Policy-Making
ERIC Educational Resources Information Center
Hall, Christine; Jones, Susan
2016-01-01
In this paper, we present a case study of a philanthropic literacy initiative, Dolly Parton's Imagination Library, a book-gifting scheme for under 5s, and consider the impact of the scheme on literacy policy in the English city where it was introduced. We bring four lenses to bear on the case study. First, we analyse the operation of the scheme in…
Effects produced by multi-parton interactions and color reconnection in small systems
NASA Astrophysics Data System (ADS)
Cuautle, Eleazar; Ortiz, Antonio; Paić, Guy
2016-12-01
Multi-parton interactions and color reconnection can produce QGP-like effects in small systems, specifically, radial flow-like patterns. For pp collisions simulated with Pythia 8.212, in this work we investigate their effects on different observables like event multiplicity, event shapes and transverse momentum distributions.
Making Sense in the City: Dolly Parton, Early Reading and Educational Policy-Making
ERIC Educational Resources Information Center
Hall, Christine; Jones, Susan
2016-01-01
In this paper, we present a case study of a philanthropic literacy initiative, Dolly Parton's Imagination Library, a book-gifting scheme for under 5s, and consider the impact of the scheme on literacy policy in the English city where it was introduced. We bring four lenses to bear on the case study. First, we analyse the operation of the scheme in…
Note on lattice regularization and equal-time correlators for parton distribution functions
NASA Astrophysics Data System (ADS)
Rossi, G. C.; Testa, M.
2017-07-01
We show that a recent interesting idea to circumvent the difficulties with the continuation of parton distribution functions to the Euclidean region, which consists in looking at equal time correlators between proton states of infinite momentum, encounters some problems related to the power divergent mixing pattern of deep inelastic scattering operators, when implemented within the lattice regularization.
Can the triple-parton scattering be observed in open charm meson production at the LHC?
NASA Astrophysics Data System (ADS)
Maciuła, Rafał; Szczurek, Antoni
2017-09-01
We investigate whether the triple-parton scattering effects can be observed in open charm production in proton-proton collisions at the LHC. We use so-called factorized Ansatz for calculations of hard multiple-parton interactions. The numerical results for each parton interaction are obtained within the kT-factorization approach. Predictions for one, two and three c c bar pairs production are given for √{ s} = 7 TeV and √{ s} = 13 TeV. Quite large cross sections, of the order of milibarns, for the triple-parton scattering mechanism are obtained. We suggest a measurement of three D0 or three D0 bar mesons by the LHCb Collaboration. Confronting our results with recent LHCb experimental data for single and double D0 (or D0 bar) meson production we present our predictions for triple meson final state: D0D0D0 or D0 bar D0 bar D0 bar . We present cross sections for the LHCb fiducial volume as well as distributions for D0 meson transverse momentum and three-D0 meson invariant mass. The predicted visible cross sections, including the detector acceptance, hadronization effects and c →D0 branching fraction, is of the order of a few nanobarns. The counting rates including D0 →K-π+ branching fractions are given for known or expected integrated luminosities.
Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions
Prokudin, Alexey; Bacchetta, Alessandro
2013-10-01
We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.
Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions
Prokudin, Alexei; Bacchetta, Alessandro
2013-07-01
We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.
Drell-Yan Lepton pair production at NNLO QCD with parton showers
Hoeche, Stefan; Li, Ye; Prestel, Stefan
2015-04-13
We present a simple approach to combine NNLO QCD calculations and parton showers, based on the UNLOPS technique. We apply the method to the computation of Drell-Yan lepton-pair production at the Large Hadron Collider. We comment on possible improvements and intrinsic uncertainties.
Testing Measurement Invariance in the Target Rotated Multigroup Exploratory Factor Model
ERIC Educational Resources Information Center
Dolan, Conor V.; Oort, Frans J.; Stoel, Reinoud D.; Wicherts, Jelte M.
2009-01-01
We propose a method to investigate measurement invariance in the multigroup exploratory factor model, subject to target rotation. We consider both oblique and orthogonal target rotation. This method has clear advantages over other approaches, such as the use of congruence measures. We demonstrate that the model can be implemented readily in the…
Ocean-Atmosphere State Estimation and Targeted Observing using Coupled Model Ensembles
2013-09-30
1 Ocean-Atmosphere State Estimation and Targeted Observing using Coupled Model Ensembles Craig H. Bishop, PI Naval Research Laboratory...Targeted Observing using Coupled Model Ensembles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...forecast error covariance model for this coupled system is based solely on ensemble covariances because the pre-existing covariance model does not
NASA Astrophysics Data System (ADS)
Billy, Frédérique; Clairambault, Jean; Fercoq, Olivier; Lorenzi, Tommaso; Lorz, Alexander; Perthame, Benoît
2012-09-01
The main two pitfalls of therapeutics in clinical oncology, that limit increasing drug doses, are unwanted toxic side effects on healthy cell populations and occurrence of resistance to drugs in cancer cell populations. Depending on the constraint considered in the control problem at stake, toxicity or drug resistance, we present two different ways to model the evolution of proliferating cell populations, healthy and cancer, under the control of anti-cancer drugs. In the first case, we use a McKendrick age-structured model of the cell cycle, whereas in the second case, we use a model of evolutionary dynamics, physiologically structured according to a continuous phenotype standing for drug resistance. In both cases, we mention how drug targets may be chosen so as to accurately represent the effects of cytotoxic and of cytostatic drugs, separately, and how one may consider the problem of optimisation of combined therapies.
Manipulating MicroRNAs in Murine Models: Targeting the Multi-Targeting in Epilepsy
2017-01-01
MicroRNAs are small noncoding RNAs that work posttranscriptionally to negatively regulate protein levels. They influence neuronal and glial structure and function, neuroinflammatory signaling, cell death, neurogenesis, and other processes relevant to epileptogenesis. Functional studies using oligonucleotide inhibitors (antagomirs) and mimics (agomirs) to modulate microRNAs in rat and mouse models of epilepsy show effects on evoked and spontaneous seizures and attendant neuropathology. The present review summarizes recent findings and points to gaps in our knowledge of the underlying mechanisms and directions for the future. PMID:28331471
NASA Astrophysics Data System (ADS)
Friedman, Melvin
2014-05-01
The problem solved in this paper is easily stated: for a scenario with 𝑛 networked and moving imaging sensors, 𝑚 moving targets and 𝑘 independent observers searching imagery produced by the 𝑛 moving sensors, analytically model system target acquisition probability for each target as a function of time. Information input into the model is the time dependence of 𝘗∞ and 𝜏, two parameters that describe observer-sensor-atmosphere-range-target properties of the target acquisition system for the case where neither the sensor nor target is moving. The parameter 𝘗∞ can be calculated by the NV-IPM model and 𝜏 is estimated empirically from 𝘗∞. In this model 𝑛, 𝑚 and 𝑘 are integers and 𝑘 can be less than, equal to or greater than 𝑛. Increasing 𝑛 and 𝑘 results in a substantial increase in target acquisition probabilities. Because the sensors are networked, a target is said to be detected the moment the first of the 𝑘 observers declares the target. The model applies to time-limited or time-unlimited search, and applies to any imaging sensors operating in any wavelength band provided each sensor can be described by 𝘗∞ and 𝜏 parameters.
Correlated UV Through IR Signature Modeling of Targets and Backgrounds
1998-11-01
other high energy sources. In particular, variation of the sources as a function of time, wavelength and aspect angle is discussed, as these variations...sources as a function of time, wavelength and aspect angle is discussed, as these variations may be critical to the discrimination of targets...δt, a, v) = S f (λ, δλ)J (t)A(θ, φ)P(a)V (v)ψ (1) where A(θ, φ) is an aspect angle function that defines the relative magnitude of the source viewed
Neuromorphic Modeling of Moving Target Detection in Insects
2007-12-31
modeling - the implementation of STMD or related models in analog VLSI circuitry - was specified as an activity in the project proposal, but was de...lAmplifying Neural Behavior (Shoemaker) NMDA receptors are a class of metabotropic or second-messenger synaptic receptors that are typically activated...an analog VLSI model were to be fabricated). Below in Figure 6 are shown the results for a one-dimensional predictor network in response to data taken
Passive radar tracking of a maneuvering target using variable structure multiple-model algorithm
NASA Astrophysics Data System (ADS)
Mao, Yunxiang; Zhou, Xiaohui; Zhang, Jin
2013-03-01
The variable structure multiple-model (VSMM) algorithm to passive radar maneuvering target tracking problem is considered. A new VSMM design, expected mode augmentation based on likely model set (LMS-EMA) algorithm is presented. The LMS-EMA algorithm adaptively determines the fixed grid model set using likely model set (LMS) algorithm, and generates the expected mode based on this set. Then, the union of fixed grid model set and expected model is used to perform multiple-model estimation. The performance of the LMS-EMA algorithm is evaluated via simulation of a highly maneuvering target tracking problem.
Adaptive target detection in foliage-penetrating SAR images using alpha-stable models.
Banerjee, A; Burlina, P; Chellappa, R
1999-01-01
Detecting targets occluded by foliage in foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (UWB SAR) images is an important and challenging problem. Given the different nature of target returns in foliage and nonfoliage regions and very low signal-to-clutter ratio in UWB imagery, conventional detection algorithms fail to yield robust target detection results. A new target detection algorithm is proposed that (1) incorporates symmetric alpha-stable (SalphaS) distributions for accurate clutter modeling, (2) constructs a two-dimensional (2-D) site model for deriving local context, and (3) exploits the site model for region-adaptive target detection. Theoretical and empirical evidence is given to support the use of the SalphaS model for image segmentation and constant false alarm rate (CFAR) detection. Results of our algorithm on real FOPEN images collected by the Army Research Laboratory are provided.
A chest-shape target automatic detection method based on Deformable Part Models
NASA Astrophysics Data System (ADS)
Zhang, Mo; Jin, Weiqi; Li, Li
2016-10-01
Automatic weapon platform is one of the important research directions at domestic and overseas, it needs to accomplish fast searching for the object to be shot under complex background. Therefore, fast detection for given target is the foundation of further task. Considering that chest-shape target is common target of shoot practice, this paper treats chestshape target as the target and studies target automatic detection method based on Deformable Part Models. The algorithm computes Histograms of Oriented Gradient(HOG) features of the target and trains a model using Latent variable Support Vector Machine(SVM); In this model, target image is divided into several parts then we can obtain foot filter and part filters; Finally, the algorithm detects the target at the HOG features pyramid with method of sliding window. The running time of extracting HOG pyramid with lookup table can be shorten by 36%. The result indicates that this algorithm can detect the chest-shape target in natural environments indoors or outdoors. The true positive rate of detection reaches 76% with many hard samples, and the false positive rate approaches 0. Running on a PC (Intel(R)Core(TM) i5-4200H CPU) with C++ language, the detection time of images with the resolution of 640 × 480 is 2.093s. According to TI company run library about image pyramid and convolution for DM642 and other hardware, our detection algorithm is expected to be implemented on hardware platform, and it has application prospect in actual system.
Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery
Tan, Jifu; Wang, Shunqiang; Yang, Jie; Liu, Yaling
2013-01-01
Prediction of nanoparticle (NP) distribution in a vasculature involves transport phenomena at various scales and is crucial for the evaluation of NP delivery efficiency. A combined particulate and continuum model is developed to model NP transport and delivery processes. In the particulate model ligand-receptor binding kinetics is coupled with Brownian dynamics to study NP binding on a microscale. An analytical formula is derived to link molecular level binding parameters to particulate level adhesion and detachment rates. The obtained NP adhesion rates are then coupled with a convection-diffusion-reaction model to study NP transport and delivery at macroscale. The binding results of the continuum model agree well with those from the particulate model. The effects of shear rate, particle size and vascular geometry on NP adhesion are investigated. Attachment rates predicted by the analytical formula also agree reasonably well with the experimental data reported in literature. The developed coupled model that links ligand-receptor binding dynamics to NP adhesion rate along with macroscale transport and delivery processes may serve as a faster evaluation and prediction tool to determine NP distribution in complex vascular networks. PMID:23729869
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; Tikhonchuk, Vladimir
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; ...
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Dynamic Target Acquisition: Empirical Models of Operator Performance.
1980-08-01
tarjet to )e centered. At the beginning of those trials with ,i t.trqet present, ,t woiild I nywhere withln the center two-thirds (if the d%,,1 y. MD...Target Tpe Tank Half-Track Truck Low 0.206 0.169 0.191 Medium 0.252 0.205 0.226 High 0.253 o.I l 0.211 Speed FT_SEC. x_ Tarjet 7 ype Tank Half-Track Truck...1 25915 27212 I Scene Complexity Tarjet Type ORDERED MEANS 22521 23190 27743 NS 22521 * 23190 * 27743 I I I I I I I I *p •.05 1723 AOCDOPWOVELL
Lappi, T; Mäntysaari, H; Venugopalan, R
2015-02-27
We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multiparton Fock states in the nuclear wave functions. In particular, the saturation scale that characterizes this multiparton dynamics is significantly larger in central events relative to minimum bias events. As an application, we study the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.
Höche, Stefan; Schönherr, Marek
2012-11-01
We quantify uncertainties in the Monte Carlo simulation of inclusive and dijet final states, which arise from using the MC@NLO technique for matching next-to-leading order parton-level calculations and parton showers. We analyse a large variety of data from early measurements at the LHC. In regions of phase space where Sudakov logarithms dominate over high-energy effects, we observe that the main uncertainty can be ascribed to the free parameters of the parton shower. In complementary regions, the main uncertainty stems from the considerable freedom in the simulation of underlying events.
NASA Astrophysics Data System (ADS)
Pasquini, B.; Schweitzer, P.
2014-07-01
At leading twist the transverse momentum dependent parton distributions of the pion consist of two functions, the unpolarized f1,π(x,k⊥2) and the Boer-Mulders function h1,π⊥(x ,k⊥2). We study both functions within a light-front constituent model of the pion, comparing the results with different pion models and the corresponding nucleon distributions from a light-front constituent model. After evolution from the model scale to the relevant experimental scales, the results for the collinear pion valence parton distribution function f1,π(x) are in very good agreement with available parametrizations. Using the light-front constituent model results for the Boer-Mulders functions of the pion and nucleon, we calculate the coefficient ν in the angular distribution of Drell-Yan dileptons produced in pion-nucleus scattering, which is responsible for the violation of the Lam-Tung relation. We find a good agreement with the data, and carefully discuss the range of applicability of our approach.
Target mass corrections revisited
Steffens, F.M.; Melnitchouk, W.
2006-05-15
We propose a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q{sup 2} in the x{yields}1 limit. We illustrate the differences between the new approach and existing prescriptions by considering specific examples for the F{sub 2} and F{sub L} structure functions, and discuss the broader implications of our results, which call into question the notion of universal parton distribution at finite Q{sup 2}.
Target Mass Corrections Revisited
W. Melnitchouk; F. Steffens
2006-03-07
We propose a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q{sup 2} in the x {yields} 1 limit. We illustrate the differences between the new approach and existing prescriptions by considering specific examples for the F{sub 2} and F{sub L} structure functions, and discuss the broader implications of our results, which call into question the notion of universal parton distribution at finite Q{sup 2}.
CAD Model and Visual Assisted Control System for NIF Target Area Positioners
Tekle, E A; Wilson, E F; Paik, T S
2007-10-03
The National Ignition Facility (NIF) target chamber contains precision motion control systems that reach up to 6 meters into the target chamber for handling targets and diagnostics. Systems include the target positioner, an alignment sensor, and diagnostic manipulators (collectively called positioners). Target chamber shot experiments require a variety of positioner arrangements near the chamber center to be aligned to an accuracy of 10 micrometers. Positioners are some of the largest devices in NIF, and they require careful monitoring and control in 3 dimensions to prevent interferences. The Integrated Computer Control System provides efficient and flexible multi-positioner controls. This is accomplished through advanced video-control integration incorporating remote position sensing and realtime analysis of a CAD model of target chamber devices. The control system design, the method used to integrate existing mechanical CAD models, and the offline test laboratory used to verify proper operation of the control system are described.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Tang, Jing; Aittokallio, Tero
2014-01-01
Polypharmacology has emerged as novel means in drug discovery for improving treatment response in clinical use. However, to really capitalize on the polypharmacological effects of drugs, there is a critical need to better model and understand how the complex interactions between drugs and their cellular targets contribute to drug efficacy and possible side effects. Network graphs provide a convenient modeling framework for dealing with the fact that most drugs act on cellular systems through targeting multiple proteins both through on-target and off-target binding. Network pharmacology models aim at addressing questions such as how and where in the disease network should one target to inhibit disease phenotypes, such as cancer growth, ideally leading to therapies that are less vulnerable to drug resistance and side effects by means of attacking the disease network at the systems level through synergistic and synthetic lethal interactions. Since the exponentially increasing number of potential drug target combinations makes pure experimental approach quickly unfeasible, this review depicts a number of computational models and algorithms that can effectively reduce the search space for determining the most promising combinations for experimental evaluation. Such computational-experimental strategies are geared toward realizing the full potential of multi-target treatments in different disease phenotypes. Our specific focus is on system-level network approaches to polypharmacology designs in anticancer drug discovery, where we give representative examples of how network-centric modeling may offer systematic strategies toward better understanding and even predicting the phenotypic responses to multi-target therapies.
Frequency modulated continuous wave lidar performance model for target detection
NASA Astrophysics Data System (ADS)
Du Bosq, Todd W.; Preece, Bradley L.
2017-05-01
The desire to provide the warfighter both ranging and reflected intensity information is increasing to meet expanding operational needs. LIDAR imaging systems can provide the user with intensity, range, and even velocity information of a scene. The ability to predict the performance of LIDAR systems is critical for the development of future designs without the need to conduct time consuming and costly field studies. Performance modeling of a frequency modulated continuous wave (FMCW) LIDAR system is challenging due to the addition of the chirped laser source and waveform mixing. The FMCW LIDAR model is implemented in the NV-IPM framework using the custom component generation tool. This paper presents an overview of the FMCW Lidar, the customized LIDAR components, and a series of trade studies using the LIDAR model.
Model of ballistic targets' dynamics used for trajectory tracking algorithms
NASA Astrophysics Data System (ADS)
Okoń-FÄ fara, Marta; Kawalec, Adam; Witczak, Andrzej
2017-04-01
There are known only few ballistic object tracking algorithms. To develop such algorithms and to its further testing, it is necessary to implement possibly simple and reliable objects' dynamics model. The article presents the dynamics' model of a tactical ballistic missile (TBM) including the three stages of flight: the boost stage and two passive stages - the ascending one and the descending one. Additionally, the procedure of transformation from the local coordinate system to the polar-radar oriented and the global is presented. The prepared theoretical data may be used to determine the tracking algorithm parameters and to its further verification.
New model for learning ultrasound-guided needle to target localization.
Pollard, Brian A
2008-01-01
The acquisition of technical skills for the novice learner presents challenges for students and teachers alike. With the introduction of ultrasound techniques in regional anesthesia, there has been interest from residents, fellows, and staff to acquire the skills necessary to incorporate this technology into their everyday practice. However, as both ultrasound machines and commercial target models are inherently costly, there are often issues of accessibility that may affect the opportunity to learn the desired skills. Readily available extra-firm tofu, wood dowel, and electrical wire are easily composed to create models for learning ultrasound-guided needle manipulation. Wood and wire targets embedded in tofu present hypo- and hyper-echoic targets that allow the learner to appreciate the relationship between the two-dimensional ultrasound screen image and three-dimensional target planes. This report presents an inexpensive, variable complexity model for learning ultrasound-guided needle-to-target localization.
Nidhi; Glick, Meir; Davies, John W; Jenkins, Jeremy L
2006-01-01
Target identification is a critical step following the discovery of small molecules that elicit a biological phenotype. The present work seeks to provide an in silico correlate of experimental target fishing technologies in order to rapidly fish out potential targets for compounds on the basis of chemical structure alone. A multiple-category Laplacian-modified naïve Bayesian model was trained on extended-connectivity fingerprints of compounds from 964 target classes in the WOMBAT (World Of Molecular BioAcTivity) chemogenomics database. The model was employed to predict the top three most likely protein targets for all MDDR (MDL Drug Database Report) database compounds. On average, the correct target was found 77% of the time for compounds from 10 MDDR activity classes with known targets. For MDDR compounds annotated with only therapeutic or generic activities such as "antineoplastic", "kinase inhibitor", or "anti-inflammatory", the model was able to systematically deconvolute the generic activities to specific targets associated with the therapeutic effect. Examples of successful deconvolution are given, demonstrating the usefulness of the tool for improving knowledge in chemogenomics databases and for predicting new targets for orphan compounds.
Inorganic Nanovehicle Targets Tumor in an Orthotopic Breast Cancer Model
NASA Astrophysics Data System (ADS)
Choi, Goeun; Kwon, Oh-Joon; Oh, Yeonji; Yun, Chae-Ok; Choy, Jin-Ho
2014-03-01
The clinical efficacy of conventional chemotherapeutic agent, methotrexate (MTX), can be limited by its very short plasma half-life, the drug resistance, and the high dosage required for cancer cell suppression. In this study, a new drug delivery system is proposed to overcome such limitations. To realize such a system, MTX was intercalated into layered double hydroxides (LDHs), inorganic drug delivery vehicle, through a co-precipitation route to produce a MTX-LDH nanohybrid with an average particle size of approximately 130 nm. Biodistribution studies in mice bearing orthotopic human breast tumors revealed that the tumor-to-liver ratio of MTX in the MTX-LDH-treated-group was 6-fold higher than that of MTX-treated-one after drug treatment for 2 hr. Moreover, MTX-LDH exhibited superior targeting effect resulting in high antitumor efficacy inducing a 74.3% reduction in tumor volume compared to MTX alone, and as a consequence, significant survival benefits. Annexin-V and propidium iodine dual staining and TUNEL analysis showed that MTX-LDH induced a greater degree of apoptosis than free MTX. Taken together, our data demonstrate that a new MTX-LDH nanohybrid exhibits a superior efficacy profile and improved distribution compared to MTX alone and has the potential to enhance therapeutic efficacy via inhibition of tumor proliferation and induction of apoptosis.
Targeting forest management through fire and erosion modeling
William J. Elliot; Mary Ellen Miller; Nic Enstice
2016-01-01
Forests deliver a number of important ecosystem services, including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modelling study was conducted in a forested watershed in California, USA, to determine the risk of wildfire, and the potential post-fire sediment delivery from ~4-ha hillslope polygons within...
Combining fire and erosion modeling to target forest management activities
William J. Elliot; Mary Ellen Miller; Nic Enstice
2015-01-01
Forests deliver a number of important ecosystem services including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modeling study was carried out in a forested watershed in California to determine the risk of wildfire, and the potential post-fire sediment delivery from approximately 6-ha hillslope polygons...
Impact modeling and prediction of attacks on cyber targets
NASA Astrophysics Data System (ADS)
Khalili, Aram; Michalk, Brian; Alford, Lee; Henney, Chris; Gilbert, Logan
2010-04-01
In most organizations, IT (information technology) infrastructure exists to support the organization's mission. The threat of cyber attacks poses risks to this mission. Current network security research focuses on the threat of cyber attacks to the organization's IT infrastructure; however, the risks to the overall mission are rarely analyzed or formalized. This connection of IT infrastructure to the organization's mission is often neglected or carried out ad-hoc. Our work bridges this gap and introduces analyses and formalisms to help organizations understand the mission risks they face from cyber attacks. Modeling an organization's mission vulnerability to cyber attacks requires a description of the IT infrastructure (network model), the organization mission (business model), and how the mission relies on IT resources (correlation model). With this information, proper analysis can show which cyber resources are of tactical importance in a cyber attack, i.e., controlling them enables a large range of cyber attacks. Such analysis also reveals which IT resources contribute most to the organization's mission, i.e., lack of control over them gravely affects the mission. These results can then be used to formulate IT security strategies and explore their trade-offs, which leads to better incident response. This paper presents our methodology for encoding IT infrastructure, organization mission and correlations, our analysis framework, as well as initial experimental results and conclusions.
Modelling Sensor and Target effects on LiDAR Waveforms
NASA Astrophysics Data System (ADS)
Rosette, J.; North, P. R.; Rubio, J.; Cook, B. D.; Suárez, J.
2010-12-01
The aim of this research is to explore the influence of sensor characteristics and interactions with vegetation and terrain properties on the estimation of vegetation parameters from LiDAR waveforms. This is carried out using waveform simulations produced by the FLIGHT radiative transfer model which is based on Monte Carlo simulation of photon transport (North, 1996; North et al., 2010). The opportunities for vegetation analysis that are offered by LiDAR modelling are also demonstrated by other authors e.g. Sun and Ranson, 2000; Ni-Meister et al., 2001. Simulations from the FLIGHT model were driven using reflectance and transmittance properties collected from the Howland Research Forest, Maine, USA in 2003 together with a tree list for a 200m x 150m area. This was generated using field measurements of location, species and diameter at breast height. Tree height and crown dimensions of individual trees were calculated using relationships established with a competition index determined for this site. Waveforms obtained by the Laser Vegetation Imaging Sensor (LVIS) were used as validation of simulations. This provided a base from which factors such as slope, laser incidence angle and pulse width could be varied. This has enabled the effect of instrument design and laser interactions with different surface characteristics to be tested. As such, waveform simulation is relevant for the development of future satellite LiDAR sensors, such as NASA’s forthcoming DESDynI mission (NASA, 2010), which aim to improve capabilities of vegetation parameter estimation. ACKNOWLEDGMENTS We would like to thank scientists at the Biospheric Sciences Branch of NASA Goddard Space Flight Center, in particular to Jon Ranson and Bryan Blair. This work forms part of research funded by the NASA DESDynI project and the UK Natural Environment Research Council (NE/F021437/1). REFERENCES NASA, 2010, DESDynI: Deformation, Ecosystem Structure and Dynamics of Ice. http
Hypoxia in Models of Lung Cancer: Implications for Targeted Therapeutics
Graves, Edward E.; Vilalta, Marta; Cecic, Ivana K.; Erler, Janine T.; Tran, Phuoc T.; Felsher, Dean; Sayles, Leanne; Sweet-Cordero, Alejandro; –Thu Le, Quynh; Giaccia, Amato J.
2010-01-01
Purpose In order to efficiently translate experimental methods from bench to bedside, it is imperative that laboratory models of cancer mimic human disease as closely as possible. In this study we sought to compare patterns of hypoxia in several standard and emerging mouse models of lung cancer in order to establish the appropriateness of each for evaluating the role of oxygen in lung cancer progression and therapeutic response. Experimental Design Subcutaneous and orthotopic human A549 lung carcinomas growing in nude mice as well as spontaneous K-ras or Myc-induced lung tumors grown in situ or subcutaneously were studied using fluorodeoxyglucose (FDG) and fluoroazomycin arabinoside (FAZA) positron emission tomography (PET), and post-mortem by immunohistochemical observation of the hypoxia marker pimonidazole. The response of these models to the hypoxia-activated cytotoxin PR-104 was also quantified by formation of γH2AX foci in vitro and in vivo. Finally, our findings were compared with oxygen electrode measurements of human lung cancers. Results Minimal FAZA and pimonidazole accumulation was seen in tumors growing within the lungs, while subcutaneous tumors showed substantial trapping of both hypoxia probes. These observations correlated with the response of these tumors to PR-104, and with the reduced incidence of hypoxia in human lung cancers relative to other solid tumor types. Conclusions These findings suggest that in situ models of lung cancer in mice may be more reflective of the human disease, and encourage judicious selection of preclinical tumor models for the study of hypoxia imaging and anti-hypoxic cell therapies. PMID:20858837
NASA Astrophysics Data System (ADS)
Dehmollaian, Mojtaba
This thesis focuses on the application of radio waves for detection and recognition of visually obscured targets. To provide practical solutions, comprehensive forward and inverse models are needed to capture and exploit the physical phenomena involved. These models must accurately simulate wave propagation in the environment in which the target is imbedded, scattering from the target and wave interaction of the medium scatterers and the target. In this dissertation, two problems of major importance are investigated. The first problem is detection of complex targets camouflaged inside forest and the second problem pertains to imaging of building interiors and detection of targets within. In the early chapters, a hybrid target-foliage model is developed to investigate the scattering behavior of hard targets embedded inside a forest canopy. This model is composed of two parts, one for foliage and the other for hard targets. The connection between these two models that accounts for the first-order interaction between the foliage scatterers and the target is accomplished through the application of the reciprocity theorem. The foliage penetration model is based on the coherent single scattering theory, developed previously. The target scattering model is based on either exact numerical finite difference time domain technique or high frequency asymptotic iterative physical optics approximation. Having the hybrid target-foliage model, a polarization synthesis optimization method for improving signal to clutter ratio is presented, using genetic algorithms. In the later chapters, the problem of through-wall imaging using the synthetic aperture radar technique by employing ultra wideband antennas and scanning over a wide range of incidence angles is investigated. Theoretical and experimental studies on the effects of different walls on point target images are carried out and refocusing approaches are introduced to remove the wall effects and restore the image resolution
[Molecular model of anthrax toxin translocation into target-cells].
Noskov, A N
2014-01-01
Anthrax toxin is formed from three components: protective antigen (PA), lethal (LF) and edema (EF) factors. PA83 is cleaved by cell surface protease furin to produce a 63-kDa fragment (PA63). PA63 and LF/EF molecules are assembled to anthrax toxin complexes: oligomer PA63 x 7 + LF/EF x 3. Assembly is occurred during of binding with cellular receptor or near surface of target-cell. This toxin complex forms pore and induces receptor-mediated endocytosis. Formed endosome consists extracellular liquid with LF/EF and membrane-associated ferments (H+ and K+/Na+-ATPases) and proteins (receptors and others). H+ concentration is increased into endosome as result of K/Na-ATPase-dependent- activity of H+-ATPase. Difference of potentials (between endosome and intracellular liquid) is increased and LF/EF molecules are moved to pore and bound with PA63-oligomer to PA63 x 7 + LF/EF x 7 and full block pore (ion-selective channel). Endosome is increased in volume and induces increasing of PA63-oligomer pore to.size of effector complex: LF/EF x 7 + PAl7 x 7 = 750 kDa. Effector complex is translocated from endosome to cytosol by means high difference of potentials (H+) and dissociates from PA47 x 7 complex after cleavage of FFD315-sait by intracellular chymotrypsin-like proteases in all 7 molecules PA63. PA47 x 7 complex (strongly fixed in membrane with debris of hydrophobic loops) return into endosome and pore is destroyed. Endosome pH is decreased rapidly and PA47 x 7 complex is destroyed by endosomal/lysosomal proteases. Receptor-mediated endocytosis is ended by endosome recycling in cell-membrane.
Healthy latrine development model to achieve MDGs target
NASA Astrophysics Data System (ADS)
Soedjono, Eddy S.; Arumsari, Nurvita
2014-03-01
A case happened in Pungging sub-district was one example of low level healthy habits of East Java inhabitants. According to the data of Mojokerto district Health Service until the end of 2010, there are 219 families (or about 8% of total families in Pungging sub-district) which do not have their own latrine. Moreover, if we observe closely to their prosperity level, the percentage of disadvantaged families and prosperous level I is still adequately high about 29,54% of the total number of families in Pungging sub-district. Accordingly, comprehensive studies related to basic sanitation requirement need to be done, not only in the matter of quantity but also in the matter of quality. Furthermore, further studies on people's knowledge and understanding on healthy sanitation also needed in the effort to understand people's demand to own latrine (willingness to pay) and ability to pay. Consequently, the design of healthy latrine which agrees with people's demand and ability is needed in order to achieve the target of Open Defecation Free (ODF) in 2015. The research methodology includes literary study, data collection, data analysis, and healthy latrine design. Out of 75 respondents, only 32% of them who attended counselling program on healthy latrine and only 48% of them who have knowledge on healthy latrine, but in reality 96% of respondents stated that healthy latrine is important. Healthy latrine, according to the respondents, is a place of defecation (BAB) which has components like latrine bowl or septic tank. Estimation on WTP distribution which is divided in two categories; low category with range of willingness to pay from IDR 0 to IDR 200,000 is IDR 90,048,000. On the other hand, high category with range of willingness to pay more than IDR 1,000,000 is IDR 749,964,768. Estimation on respondents' ATP in the area of study on the sanitation maintenance service is from IDR 7,000 to IDR 30,000.
[Targeted molecular therapy based on advanced cancer stem cell model].
Hirao, Atsushi
2015-08-01
Improvement of cell purification and transplantation techniques have contributed to the identification of cell populations known as tumor-initiating cells (TICs). Although it was hypothesized that tumors are organized as hierarchies of tumor cells that are sustained by rare TICs, like normal tissue stem cells, there are several controversies towards such cancer stem cell model, e.g. reversible change of stem cell like population based on epigenetic changes, clonal genetic evolution and problems in xenotransplantation system. Despite complexity in cancer stem cell models, studies in cancer stem cell field have revealed that there are close relationship between cancer malignancy and stem cell properties, called "stemness". Understanding molecular mechanisms for controlling stemness would contribute to establishment of novel diagnostics or therapeutics for cancer.
Probabilistic Model of a Floating Target Behaviour in Rough Seas
2013-07-01
Honolulu, Hawaii, 1976, pp. 301-329. 10. Pierson, W. J., and Moskowitz, L . A proposed spectral form for fully developed wind seas based on the...175-181. 14. Torsethaugen, K. Simplified double peak spectral model for ocean waves. SINTEF Report STF80 A048052, SINTEF Fisheries and Aquaculture ...RELEASE USE ( L ) NEXT TO DOCUMENT CLASSIFICATION) Document (U) Title (U) Abstract (U) 4. AUTHOR(S) Rada Pushkarova 5
Inferring multi-target QSAR models with taxonomy-based multi-task learning.
Rosenbaum, Lars; Dörr, Alexander; Bauer, Matthias R; Boeckler, Frank M; Zell, Andreas
2013-07-11
A plethora of studies indicate that the development of multi-target drugs is beneficial for complex diseases like cancer. Accurate QSAR models for each of the desired targets assist the optimization of a lead candidate by the prediction of affinity profiles. Often, the targets of a multi-target drug are sufficiently similar such that, in principle, knowledge can be transferred between the QSAR models to improve the model accuracy. In this study, we present two different multi-task algorithms from the field of transfer learning that can exploit the similarity between several targets to transfer knowledge between the target specific QSAR models. We evaluated the two methods on simulated data and a data set of 112 human kinases assembled from the public database ChEMBL. The relatedness between the kinase targets was derived from the taxonomy of the humane kinome. The experiments show that multi-task learning increases the performance compared to training separate models on both types of data given a sufficient similarity between the tasks. On the kinase data, the best multi-task approach improved the mean squared error of the QSAR models of 58 kinase targets. Multi-task learning is a valuable approach for inferring multi-target QSAR models for lead optimization. The application of multi-task learning is most beneficial if knowledge can be transferred from a similar task with a lot of in-domain knowledge to a task with little in-domain knowledge. Furthermore, the benefit increases with a decreasing overlap between the chemical space spanned by the tasks.
Algorithm research on infrared imaging target extraction based on GAC model
NASA Astrophysics Data System (ADS)
Li, Yingchun; Fan, Youchen; Wang, Yanqing
2016-10-01
Good target detection and tracking technique is significantly meaningful to increase infrared target detection distance and enhance resolution capacity. For the target detection problem about infrared imagining, firstly, the basic principles of level set method and GAC model are is analyzed in great detail. Secondly, "convergent force" is added according to the defect that GAC model is stagnant outside the deep concave region and cannot reach deep concave edge to build the promoted GAC model. Lastly, the self-adaptive detection method in combination of Sobel operation and GAC model is put forward by combining the advantages that subject position of the target could be detected with Sobel operator and the continuous edge of the target could be obtained through GAC model. In order to verify the effectiveness of the model, the two groups of experiments are carried out by selecting the images under different noise effects. Besides, the comparative analysis is conducted with LBF and LIF models. The experimental result shows that target could be better locked through LIF and LBF algorithms for the slight noise effect. The accuracy of segmentation is above 0.8. However, as for the strong noise effect, the target and noise couldn't be distinguished under the strong interference of GAC, LIF and LBF algorithms, thus lots of non-target parts are extracted during iterative process. The accuracy of segmentation is below 0.8. The accurate target position is extracted through the algorithm proposed in this paper. Besides, the accuracy of segmentation is above 0.8.
NASA Astrophysics Data System (ADS)
Başokur, Ahmet T.; Akca, Irfan
2011-08-01
A new target-oriented parameterization scheme, named the object-based model, is suggested to represent man-made or natural targets as regular shapes embedded in a two-dimensional resistivity background. The numerical values of the target parameters (size, depth, location and resistivity) are estimated in three steps consisting of conventional regularized inversion, exclusion of anomalous regions and delineation of target bodies. The method produces sharp edges and sharp variation in intrinsic resistivity between the targets and background. The number of target objects is decided by the visual inspection of the 2D resistivity section derived from the application of a conventional cell-based regularized inversion. The 2D background is also extracted from the same section. A genetic algorithm approach is used at the final stage to test a large number of distinct models. Each test model consists of the same number of objects buried in the 2D background. The size, depth, location and resistivity of the targets are estimated from a class of models generated by the application of biological rules. The derived images of buried bodies have sharp edges and can then be understood by engineers and archeologists. However, if the hypothesis about the 'conceptual model' is very different from the geometry of the subsurface, the proposed approach will not be able to produce satisfactory results.
NASA Astrophysics Data System (ADS)
Modarres, M.; Masouminia, M. R.; Aminzadeh Nik, R.; Hosseinkhani, H.; Olanj, N.
2017-09-01
The present work is devoted to study the high-energy QCD events, such as the di-jet productions from proton-proton inelastic collisions at the LHC in the forward-center and the forward-forward configurations. This provides us with much valuable case study, since such phenomena can provide a direct glimpse into the partonic behavior of a hadron in a dominant gluonic region. We use the unintegrated parton distribution functions (UPDF) in the kt-factorization framework. The UPDF of Kimber et al. (KMR) and Martin et al. (MRW) are generated in the leading order (LO) and next-to-leading order (NLO), using the Harland-Lang et al. (MMHT2014) PDF libraries. While working in the forward-center and the forward-forward rapidity sectors, one can probe the parton densities at very low longitudinal momentum fractions (x). Such a model computation can provide simpler analytic description of data with respect to existing formalisms such as perturbative QCD. The differential cross-section calculations are performed at the center of mass energy of 7 TeV corresponding to CMS collaboration measurement. It is shown that the gluonic jet productions are dominant and a good description of data as well as other theoretical attempts (i.e. KS-linear, KS-nonlinear and rcBK) is obtained. The uncertainty of the calculations is derived by manipulating the hard scale of the processes by a factor of two. This conclusion is achieved, due to the particular visualization of the angular ordering constraint (AOC), that is incorporated in the definition of these UPDF.
COLLINEAR SPLITTING, PARTON EVOLUTION AND THE STRANGE-QUARK ASYMMETRY OF THE NUCLEON IN NNLO QCD.
RODRIGO,G.CATANI,S.DE FLORIAN, D.VOGELSANG,W.
2004-04-25
We consider the collinear limit of QCD amplitudes at one-loop order, and their factorization properties directly in color space. These results apply to the multiple collinear limit of an arbitrary number of QCD partons, and are a basic ingredient in many higher-order computations. In particular, we discuss the triple collinear limit and its relation to flavor asymmetries in the QCD evolution of parton densities at three loops. As a phenomenological consequence of this new effect, and of the fact that the nucleon has non-vanishing quark valence densities, we study the perturbative generation of a strange-antistrange asymmetry s(x)-{bar s}(x) in the nucleon's sea.
The Generalized Parton Distribution program after the Jefferson Lab 12 GeV upgrade
Franck Sabatie
2009-12-01
The Generalized Parton Distribution framework was introduced in the late 90's and describes the nucleon in a revolutionary way, correlating the information from both momentum and transverse position space into experimentally accessible functions. After a brief introduction, this article reviews the Jefferson Lab 6 GeV measurements of Deeply Virtual Compton Scattering in Halls A and B, which give a unique access to Generalized Parton Distributions (GPD). The second half of this article reviews the Jefferson Lab 12 GeV upgrade in general terms, and then focuses on the GPD program in Halls A and B. This second generation of experiments will yield more accurate, more complete data in a wider kinematical range than any experiment ever before, using the full capability of a higher beam energy, higher luminosities, upgraded detectors and refined extraction techniques.
Off-shell single-top production at NLO matched to parton showers
Frederix, R.; Frixione, S.; Papanastasiou, A. S.; Prestel, S.; Torrielli, P.
2016-06-06
We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the Herwig6 and Pythia8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. Furthermore, we formulate our approach so that it can be applied to the general case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.
Guzey, Vadim; Goeke, Klaus; Siddikov, Marat
2009-01-01
We generalize the leading twist theory of nuclear shadowing and calculate quark and gluon generalized parton distributions (GPDs) of spinless nuclei. We predict very large nuclear shadowing for nuclear GPDs. In the limit of the purely transverse momentum transfer, our nuclear GPDs become impact parameter dependent nuclear parton distributions (PDFs). Nuclear shadowing induces non-trivial correlations between the impact parameter $b$ and the light-cone fraction $x$. We make predictions for the deeply virtual Compton scattering (DVCS) amplitude and the DVCS cross section on $^{208}$Pb at high energies. We calculate the cross section of the Bethe-Heitler (BH) process and address the issue of the extraction of the DVCS signal from the $e A \\to e \\gamma A$ cross section. We find that the $e A \\to e \\gamma A$ differential cross section is dominated by DVCS at the momentum transfer $t$ near the minima of the nuclear form factor. We also find that nuclear shadowing leads
Double parton scattering in pair production of J /ψ mesons at the LHC revisited
NASA Astrophysics Data System (ADS)
Borschensky, Christoph; Kulesza, Anna
2017-02-01
Double parton scattering (DPS) is studied for the example of J /ψ pair production in the LHCb and ATLAS experiments of the Large Hadron Collider (LHC) at center-of-mass energies of √{S }=7 , 8, and 13 TeV. We report theoretical predictions delivered to the LHCb and ATLAS Collaborations adjusted for the fiducial volumes of the corresponding measurements during run I, and we provide new predictions at 13 TeV collision energy. It is shown that DPS can lead to noticeable contributions in the distributions of longitudinal variables of the di-J /ψ system, especially at 13 TeV. The increased DPS rate in double J /ψ production at high energies will open up more possibilities for the separation of single parton scattering and DPS contributions in future studies.
Off-shell single-top production at NLO matched to parton showers
Frederix, R.; Frixione, S.; Papanastasiou, A. S.; ...
2016-06-06
We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the Herwig6 and Pythia8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. Furthermore, we formulate our approach so that it can be applied to the generalmore » case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.« less
NASA Astrophysics Data System (ADS)
Kusina, A.; Stavreva, T.; Berge, S.; Olness, F. I.; Schienbein, I.; Kovařík, K.; Ježo, T.; Yu, J. Y.; Park, K.
2012-05-01
Global analyses of parton distribution functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions and new data sets have contributed to recent improvements. Despite these efforts, the strange quark parton distribution function has a sizable uncertainty, particularly in the small x region. We examine the constraints from experiment and theory, and investigate the impact of this uncertainty on LHC observables. In particular, we study W/Z production to see how the s quark uncertainty propagates to these observables, and examine the extent to which precise measurements at the LHC can provide additional information on the proton flavor structure.
The Brain-Targeted Teaching Model for 21st-Century Schools
ERIC Educational Resources Information Center
Hardiman, Mariale
2012-01-01
"The Brain-Targeted Teaching Model for 21st-Century Schools" serves as a bridge between research and practice by providing a cohesive, proven, and usable model of effective instruction. Compatible with other professional development programs, this model shows how to apply relevant research from educational and cognitive neuroscience to classroom…
Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; Ancu, Lucian Stefan; /Nijmegen U. /Serpukhov, IHEP
2011-01-01
Samples of inclusive {gamma} + 2 jet and {gamma} + 3 jet events collected by the D0 experiment with an integrated luminosity of about 1 fb{sup -1} in p{bar p} collisions at {radical}s = 1.96 TeV are used to measure cross sections as a function of the angle in the plane transverse to the beam direction between the transverse momentum (p{sub T}) of the {gamma} + leading jet system (jets are ordered in p{sub T}) and p{sub T} of the other jet for {gamma} + 2 jet, or p{sub T} sum of the two other jets for {gamma} + 3 jet events. The results are compared to different models of multiple parton interactions (MPI) in the pythia and sherpa Monte Carlo (MC) generators. The data indicate a contribution from events with double parton (DP) interactions and are well described by predictions provided by the pythia MPI models with p{sub T}-ordered showers and by sherpa with the default MPI model. The {gamma} + 2 jet data are also used to determine the fraction of events with DP interactions as a function of the azimuthal angle and as a function of the second jet p{sub T}.
Military target detection using spectrally modeled algorithms and independent component analysis
NASA Astrophysics Data System (ADS)
Tiwari, Kailash Chandra; Arora, Manoj K.; Singh, Dharmendra; Yadav, Deepti
2013-02-01
Most military targets of strategic importance are very small in size. Though some of them may get spatially resolved, most cannot be detected due to lack of adequate spectral resolution. Hyperspectral data, acquired over hundreds of narrow contiguous wavelength bands, are extremely suitable for most military target detection applications. Target detection, however, still remains complicated due to a host of other issues. These include, first, the heavy volume of hyperspectral data, which leads to computational complexities; second, most materials in nature exhibit spectral variability and remain unpredictable; and third, most target detection algorithms are based on spectral modeling and availability of a priori target spectra is an essential requirement, a condition difficult to meet in practice. Independent component analysis (ICA) is a new evolving technique that aims at finding components that are statistically independent or as independent as possible. It does not have any requirement of a priori availability of target spectra and is an attractive alternative. This paper, presents a study of military target detection using four spectral matching algorithms, namely, orthogonal subspace projection (OSP), constrained energy minimisation, spectral angle mapper and spectral correlation mapper, four anomaly detection algorithms, namely, OSP anomaly detector (OSPAD), Reed-Xiaoli anomaly detector (RXD), uniform target detector (UTD), a combination of RXD-UTD. The performances of these spectrally modeled algorithms are then also compared with ICA using receiver operating characteristic analysis. The superior performance of ICA indicates that it may be considered a viable alternative for military target detection.
A Model of False Alarms in Target Acquisition by Human Observers.
1995-09-01
alarms are expected on the average? 2. A descriptive model of the observer ensemble . How can variations among observers be quantified? This work...correlations do not persist for observers in a different test, who were conditioned to expect fewer targets. Observer state turns out to be a much...model is valid only for the specific high-target-density scenario of the Phase 1 test. It does not consider variation in the observer state . Until
A Mathematical Model for Calculating Non-Detection Probability of a Random Tour Target.
1985-12-01
model avoiding detection (i.e., surviving) to some specified time, t. This model assumes that there is a stationary searcher having a " cookie -cutter...a stationary searcher having a * cookie -cutter* sensor located in the center of the search area. A Monte-Carlo simulation/program was used to generate...thus has a " cookie -cutter" sensor with detection range R. [Ref. 1] 2. The Target Starting Position The target’s starting position is uniformly
Y. C. Chen; A. Afanasev; S. J. Brodsky; C. E. Carlson; Marc Vanderhaeghen
2004-03-01
We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer through the scattering off a parton in the proton. We relate the process on the nucleon to the generalized parton distributions which also enter in other wide angle scattering processes. We find that when taking the polarization transfer determinations of the form factors as input, adding in the 2 photon correction, does reproduce the Rosenbluth data.
Alwall, J.; Hoche, S.; Krauss, F.; Lavesson, N.; Lonnblad, L.; Maltoni, F.; Mangano, M.L.; Moretti, M.; Papadopoulos, C.G.; Piccinini, F.; Schumann, S.; Treccani, M.; Winter, J.; Worek, M.; /SLAC /Durham U., IPPP /Lund U. /Louvain U. /CERN /Ferrara U. /INFN, Ferrara /Athens U. /INFN, Pavia /Dresden, Tech. U. /Karlsruhe U., TP /Silesia U.
2007-06-27
We compare different procedures for combining fixed-order tree-level matrix-element generators with parton showers. We use the case of W-production at the Tevatron and the LHC to compare different implementations of the so-called CKKW and MLM schemes using different matrix-element generators and different parton cascades. We find that although similar results are obtained in all cases, there are important differences.
One-Loop Multi-Parton Amplitudes with a Vector Boson for the LHC
Berger, C.F.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Forde, D.; Ita, H.; Kosower, D.A.; Maitre, D.; /SLAC
2008-08-11
In this talk, we present the first, numerically stable, results for the one-loop amplitudes needed for computing W; Z + 3 jet cross sections at the LHC to next-to-leading order in the QCD coupling. We implemented these processes in BlackHat, an automated program based on on-shell methods. These methods scale very well with increasing numbers of external partons, and are applicable to a wide variety of problems of phenomenological interest at the LHC.
A memory-based model for planning target reach postures in the presence of obstructions.
Park, W; Singh, D; Martin, B J
2006-12-15
Existing posture prediction and motion simulation models generally lack the capability of simulating human obstruction avoidance during target reach. This compromises the utility of digital human models for ergonomics, as many design problems involve interactions between humans and obstructions. To address this problem, this paper presents a novel memory-based posture planning (MBPP) model, which plans reach postures that avoid obstructions. In this model, the task space is partitioned into small regions called cells. For a given human figure, each cell is linked to a memory that stores various alternative postures for reaching the cell. When a posture planning problem is given in terms of a target and an obstruction configuration, the model examines postures belonging to the relevant cell, selects collision-free ones and modifies them to exactly meet the hand target acquisition constraint. Simulation results showed that the MBPP model is capable of rapidly and robustly planning reach postures for various scenarios.
Stability of Wilkinson's linear model of prism adaptation over time for various targets.
Wallace, B
1977-01-01
Prism adaptation as measured by negative aftereffects (NA), proprioceptive shifts (PS), and visual shifts (VS) was assessed as a function of amount of exposure time and target specificity, whether an exposure and a test target background were the same or different, to determine the validity of Wilkinson's linear model (NA = PS + VS). With few exceptions the model was found to hold well up to 40 min of prism viewing regardless of type of exposure background. In addition target specificity affected magnitude of the NA component of adapation but not the PS and the VS components.
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher
2015-01-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106
Drug-target interaction prediction: databases, web servers and computational models.
Chen, Xing; Yan, Chenggang Clarence; Zhang, Xiaotian; Zhang, Xu; Dai, Feng; Yin, Jian; Zhang, Yongdong
2016-07-01
Identification of drug-target interactions is an important process in drug discovery. Although high-throughput screening and other biological assays are becoming available, experimental methods for drug-target interaction identification remain to be extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been developed to predict potential drug-target associations on a large scale. In this review, databases and web servers involved in drug-target identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art computational models for drug-target interactions prediction, including network-based method, machine learning-based method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-supervised models, which have essential difference in the adoption of negative samples. Although significant improvements for drug-target interaction prediction have been obtained by many effective computational models, both network-based and machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new evaluation validation framework and the formulation of drug-target interactions prediction problem by more realistic regression formulation based on quantitative bioactivity data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Acute care surgery practice model: Targeted growth for fiscal success.
Alexander, Matthew S; Nelson, Chris; Coughenour, Jeff; Levsen, Matthew A; Toliver, Carol L; Barnes, Stephen L
2013-10-01
Acute care surgery (ACS) remains in its infancy as a defined surgical specialty within hospital systems. Little has been published regarding the financial impact of this method of care delivery to hospital systems and departments when combining trauma, surgical critical care, emergent, and elective general surgery into a single practice model. We sought to compare hospital net income and divisional clinical productivity measures of a newly formed, university division of ACS based on patient type-trauma, emergency general surgery, and elective surgery-to determine the best avenues by which to focus on programmatic growth. Single calendar year, retrospective review of hospital system income and divisional fiscal productivity of specific patient visits by patient type (trauma, emergent, or elective) admitted to or discharged by the acute care surgeons. Demographic data, payor mix, patient volumes, and operative rates were determined for each patient type. Fiscal contribution by patient type to both hospital and clinical productivity were measured by hospital net income and divisional work relative value units (wRVU) production respectively. The Chi-square test for independence compared payor mix and analysis of variance was used for comparison of fiscal performance between patient types. We included 1,492 patients in the analysis of calendar year 2010; 1,056 trauma (67% male; mean age, 41.9; range, 0-102), 346 emergent (53% male; mean age, 44.6; range, 15-91), and 90 elective (51% male; mean age, 46; range, 16-87) patient encounters met criteria for analysis. There were no differences in payor mix between patient types. Significant differences were seen in average per patient encounter hospital net income, divisional wRVU production and duration of stay. The ACS team (n = 3) operated on 12% of trauma patients compared with 52% of emergent and 100% of elective surgery encounters. Hospital net income per patient was greatest for trauma encounters, whereas divisional
Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D' Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garcon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, Ian J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatie, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2015-03-19
Single-beam, single-target, and double-spin asymmetries for hard exclusive photon production on the proton e→p→e'p'γ are presented. The data were taken at Jefferson Lab using the CLAS detector and a longitudinally polarized ^{14}NH_{3} target. The three asymmetries were measured in 165 4-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of Generalized Parton Distributions. As a result, the measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H~ Compton Form Factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.
DESHPANDE,A.; VOGELSANG, W.
2007-10-08
The determination of the polarized gluon distribution is a central goal of the RHIC spin program. Recent achievements in polarization and luminosity of the proton beams in RHIC, has enabled the RHIC experiments to acquire substantial amounts of high quality data with polarized proton beams at 200 and 62.4 GeV center of mass energy, allowing a first glimpse of the polarized gluon distribution at RHIC. Short test operation at 500 GeV center of mass energy has also been successful, indicating absence of any fundamental roadblocks for measurements of polarized quark and anti-quark distributions planned at that energy in a couple of years. With this background, it has now become high time to consider how all these data sets may be employed most effectively to determine the polarized parton distributions in the nucleon, in general, and the polarized gluon distribution, in particular. A global analysis of the polarized DIS data from the past and present fixed target experiments jointly with the present and anticipated RHIC Spin data is needed.
Knowledge-based approach for generating target system specifications from a domain model
NASA Technical Reports Server (NTRS)
Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan
1992-01-01
Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.
Model emulates human smooth pursuit system producing zero-latency target tracking.
Bahill, A T; McDonald, J D
1983-01-01
Humans can overcome the 150 ms time delay of the smooth pursuit eye movement system and track smoothly moving visual targets with zero-latency. Our target-selective adaptive control model can also overcome an inherent time delay and produce zero-latency tracking. No other model or man-made system can do this. Our model is physically realizable and physiologically realistic. The technique used in our model should be useful for analyzing other time-delay systems, such as man-machine systems and robots.
Designing and modeling a centrifugal microfluidic device to separate target blood cells
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud
2016-03-01
The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ~100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s-1, recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells.
A model for the detection of moving targets in visual clutter inspired by insect physiology.
Wiederman, Steven D; Shoemaker, Patrick A; O'Carroll, David C
2008-07-30
We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an intriguing challenge, both from a physiological and a computational perspective. Previous research has characterized higher-order neurons within the fly brain, known as 'small target motion detectors' (STMD), that respond robustly to moving features, even when the velocity of the target is matched to the background (i.e. with no relative motion cues). We recorded from intermediate-order neurons in the fly visual system that are well suited as a component along the target detection pathway. This full-wave rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of opposite signs (suggesting separate ON and OFF channels) and fast adaptive temporal mechanisms, similar to other cell types previously described. From this physiological data we have created a numerical model for target discrimination. This model includes nonlinear filtering based on the fly optics, the photoreceptors, the 1(st) order interneurons (Large Monopolar Cells), and the newly derived parameters for the RTC. We show that our RTC-based target detection model is well matched to properties described for the STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear 'matched filter' to successfully detect most targets from the background. Importantly, this model can explain this type of feature discrimination without the need for relative motion cues.
Development of a target-site based regional frequency model using historical information
NASA Astrophysics Data System (ADS)
Hamdi, Yasser; Bardet, Lise; Duluc, Claire-Marie; Rebour, Vincent
2016-04-01
Nuclear power facilities in France were designed to withstand extreme environmental conditions with a very low probability of failure. Nevertheless, some exceptional surges considered as outliers are not properly addressed by classical frequency analysis models. If available data at the site of interest (target-site) is sufficiently complete on a long period and not characterized by the presence of an outlier, at-site frequency analysis can be used to estimate quantiles with acceptable uncertainties. Otherwise, regional and historical information (HI) may be used to mitigate the lack of data and the influence of the outlier by increasing its representativeness in the sample. several models have been proposed over the last years for regional extreme surges frequency analysis in France to take into account these outliers in the frequency analysis. However, these models do not give a specific weight to the target site and cannot take into account HI. The objective of the present work is to develop a regional frequency model (RFM) centered on a target-site and using HI. The neighborhood between sites is measured by a degree of physical and statistical dependence between observations (with a prior confidence level). Unlike existing models, the obtained region around the target site (and constituting the neighboring sites) is sliding from a target-site to another. In other words, the developed model assigns a region for each target site. The idea behind the construction of a frequency model favoring target sites and the principle of moving regions around these target-sites is the original key point of the developed model. A related issue regards the estimation of missed and/or ungauged surges at target-sites from those of gauged potential neighboring sites, a multiple linear regression (MLR) is used and it can be extended to other reconstitutions models. MLR analysis can be considered conclusive only if available observations at neighboring sites are informative enough
Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation
Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.
2016-01-01
Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709
Spatial-spectral signature modeling for solid targets in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Kaufman, Jason R.; Meola, Joseph
2017-05-01
Spatial-spectral feature extraction algorithms - such as those based on spatial descriptors applied to selected spectral bands within a hyperspectral image - can provide additional discrimination capability beyond traditional spectral-only approaches. However, when attempting to detect a target with such algorithms, an exemplar target signature is often manually derived from the hyperspectral images representation in the spatial-spectral feature space. This requires a reference image in which the targets location is known. Additionally, the scenebased signature captures only the representation of the target under certain collection conditions from a specific sensor, namely, illumination level and atmospheric composition, look angle, and target pose against a specific background. A detection algorithm utilizing this spatial-spectral signature (or the spatial descriptor itself) that is sensitive to changes in these collection conditions could suffer a loss in performance should the new conditions significantly deviate from the exemplars case. To begin to overcome these limitations, we formulate and evaluate the effectiveness of a modeling technique for synthesizing exemplar spatial-spectral signatures for solid targets, particularly when the spatial structure of the target of interest varies due to pose or obscuration by the background, and when applicable, the target temperature varies. We assess the impact of these changes on a group of spatial descriptors responses to guide the modeling process for a set of two-dimensional targets specifically designed for this study. The sources of variability that most affect each descriptor are captured in target subspaces, which then form the basis of new spatial-spectral target detection algorithms.
Modeling of remelting processes of metal targets using pulses of continuous laser with pre-impulses
NASA Astrophysics Data System (ADS)
Jach, Karol; Marczak, Jan; Świerczyński, Robert; Strzelec, Marek; Ostrowski, Roman; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Rycyk, Antoni; CzyŻ, Krzysztof
2016-12-01
The study presents preliminary results of theoretical analyses concerning interaction of quasi-cw laser radiation with an aluminium target. The range of laser power the authors were interested in was from 1 to 10 kW, and target thicknesses from 0.1 to 1 cm. It was also assumed that a laser beam diameter on the target (Al) was around 0.5 cm. A mathematicalphysical model of the phenomenon was based on the equation of conservation of energy (spatially one-dimensional model - (z,t)) taking into account: radiation absorption and transport inside the target, heat conduction, reflection of part of radiation from the target's surface, and heat losses in the processes of melting and evaporation. Coefficients of light absorption and reflection from the target's surface were described with semi-empirical expressions, which took into account their dependence on the temperature and density. Initially, a case of target static during heating was considered. Subsequently, the problem of enhancement of radiation interaction with the target (decrease of reflection coefficient) by the use of short (< 20 ns), high power pre-impulse was analyzed. The last case needed expansion of a set of equations with the continuity equation and the equation of motion, to take into account evaporation of target's surface under influence of the pre-impulse. It was shown that thermal effect of the pre-impulse is practically not influencing final depths of target remelting. On the other hand, damage (matting) of the target's surface by the pre-impulse, causing the decrease of reflection coefficient can have a substantial influence on the remelting depth.
Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.
1999-05-03
A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.
NASA Astrophysics Data System (ADS)
Sarkar, Debojit; Choudhury, Subikash; Chattopadhyay, Subhasis
2016-10-01
The mass ordering of v2hadron is regarded as one of the key signatures of collective behavior in ultrarelativistic heavy ion collisions. This observation has been found to be in compliance with the hydrodynamical response of a strongly interacting system to the initial spatial anisotropy. Flow coefficients measured with identified particles in p -Pb/d -Au collisions have shown similar mass-splitting of v2hadron indicating towards the presence of collective dynamics in small collision systems. Arguably, the small size in the overlap geometry of such colliding systems may not be suitable for hydrodynamical treatment that demands an early thermalization. Studies based on a multiphase transport model (AMPT) suggest that elliptic or triangular anisotropy is primarily due to the escape mechanism of partons rather than hydro-like collectivity and mass ordering of v2hadron can be generated from coalescence dynamics as implemented in string melting version of AMPT even when parton azimuthal directions are randomized. In this work, studies have been performed on p -Pb collisions at √{sN N}=5.02 TeV using AMPT model which has been found to explain the elliptic and triangular flow in such a system where the escape mechanism is the dominant source of flow generation. We report that the mass splitting of v2hadron can originate independently both at the partonic and hadronic level in the string melting version of the AMPT model.
NASA Astrophysics Data System (ADS)
Gaunaurd, G. C.; Strifors, H. C.; Sullivan, A.
2008-06-01
Using a Method-of-Moments (MoM) code, we earlier simulated ultra-wideband (UWB) returned echoes from two targets, one penetrable and one impenetrable, buried in a soil with known electric properties. The simple shape of mines, coupled with their predictable deployment in the ground, has also provided a fundamental understanding of the underlying backscatter phenomenology. In particular, the backscattered waveform from a mine can be decomposed into a collection of closely spaced copies of an elemental wave object with different amplitudes and time delays. This wave object is here defined as the derivative of the waveform incident on the target. The spacing of the copies or replicas of the wave object could be determined by the round trip time delay between scattering centers. This methodology was previously applied to impenetrable targets and is now applied also to a penetrable target. The previously computed returns from each target for a given incident pulse are modeled by a few copies of the elemental wave object with the time delay and amplitude of each copy taken as unknown parameters. These parameters are then determined by minimizing in the least square sense the difference between the MoM computed signal and the model signal using the differential evolution method (DEM). The methodology is extended by way of our previously developed target translated method (TTM) to approximate the computation of the backscattered model signal when the target is buried at a different depth in the soil with a different moisture content.
ERIC Educational Resources Information Center
Gabdulchakov, Valerian F.
2016-01-01
The subject of the study in the article is conceptual basis of construction of the target model of interaction between University and region. Hence the topic of the article "the Target model of strategic interaction between the University and the region in the field of education." The objective was to design a target model of this…
A physical model eye with 3D resolution test targets for optical coherence tomography
NASA Astrophysics Data System (ADS)
Hu, Zhixiong; Liu, Wenli; Hong, Baoyu; Hao, Bingtao; Wang, Lele; Li, Jiao
2014-09-01
Optical coherence tomography (OCT) has been widely employed as non-invasive 3D imaging diagnostic instrument, particularly in the field of ophthalmology. Although OCT has been approved for use in clinic in USA, Europe and Asia, international standardization of this technology is still in progress. Validation of OCT imaging capabilities is considered extremely important to ensure its effective use in clinical diagnoses. Phantom with appropriate test targets can assist evaluate and calibrate imaging performance of OCT at both installation and throughout lifetime of the instrument. In this paper, we design and fabricate a physical model eye with 3D resolution test targets to characterize OCT imaging performance. The model eye was fabricated with transparent resin to simulate realistic ophthalmic testing environment, and most key optical elements including cornea, lens and vitreous body were realized. The test targets which mimic USAF 1951 test chart were fabricated on the fundus of the model eye by 3D printing technology. Differing from traditional two dimensional USAF 1951 test chart, a group of patterns which have different thickness in depth were fabricated. By measuring the 3D test targets, axial resolution as well as lateral resolution of an OCT system can be evaluated at the same time with this model eye. To investigate this specialized model eye, it was measured by a scientific spectral domain OCT instrument and a clinical OCT system respectively. The results demonstrate that the model eye with 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.
3D modelling of the electromagnetic response of geophysical targets using the FDTD method
Debroux, P.S.
1996-05-01
A publicly available and maintained electromagnetic finite-difference time domain (FDTD) code has been applied to the forward modelling of the response of 1D, 2D and 3D geophysical targets to a vertical magnetic dipole excitation. The FDTD method is used to analyze target responses in the 1 MHz to 100 MHz range, where either conduction or displacement currents may have the controlling role. The response of the geophysical target to the excitation is presented as changes in the magnetic field ellipticity. The results of the FDTD code compare favorably with previously published integral equation solutions of the response of 1D targets, and FDTD models calculated with different finite-difference cell sizes are compared to find the effect of model discretization on the solution. The discretization errors, calculated as absolute error in ellipticity, are presented for the different ground geometry models considered, and are, for the most part, below 10% of the integral equation solutions. Finally, the FDTD code is used to calculate the magnetic ellipticity response of a 2D survey and a 3D sounding of complicated geophysical targets. The response of these 2D and 3D targets are too complicated to be verified with integral equation solutions, but show the proper low- and high-frequency responses.
Fitts' law model and target size of pointing devices in a vibration environment.
Liu, Chi No; Lin, Chiuhsiang Joe; Chao, Chin Jung
2007-12-01
This study examined models of Fitts' law and effective target widths of three pointing devices in vibration environments. From a research institute 10 employees, ages 26 to 31 years were recruited as paid subjects. Pointing tasks consisted of four square target sizes, four movement distances, and four target angles and were performed on a motion platform using a touch screen, a mouse, and a track ball. The platform simulated two levels of sea wave vibration environments besides a static one. Analysis showed effective target widths increased with vibration, indicating increased variability of the pointing task under vibration. The increase in the track ball was smaller, indicating resistance to motion disturbance. The study also suggests an enlarged target (button) size for the touch screen under the vibration environment. The findings have implications in motor control and human-computer interfacing.
Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling.
Xu, X; Narayanan, R M
2001-01-01
Two-dimensional (2-D) inverse synthetic aperture radar (ISAR) imaging has been widely used in target scattering diagnosis, modeling and target identification. A major shortcoming is that a 2-D ISAR image cannot provide information on the relative altitude of each scattering center on the target. In this paper, we present an interferometric inverse synthetic aperture radar (IF-ISAR) image processing technique for three-dimensional (3-D) target altitude image formation. The 2-D ISAR images are obtained from the signature data acquired as a function of frequency and azimuthal angle. A 3-D IF-ISAR altitude image can then be derived from two 2-D images reconstructed from the measurements by antennas at different altitudes. 3-D altitude image formation examples from both indoor and outdoor test range data are demonstrated on complex radar targets.
NASA Astrophysics Data System (ADS)
Wang, Chuanyun; Song, Fei; Qin, Shiyin
2017-02-01
Addressing the problems of infrared small target tracking in forward looking infrared (FLIR) system, a new infrared small target tracking method is presented, in which features binding of both target gray intensity and spatial relationship is implemented by compressive sensing so as to construct the Gaussian mixture model of compressive appearance distribution. Subsequently, naive Bayesian classification is carried out over testing samples acquired with non-uniform sampling probability to identify the most credible location of targets from background scene. A series of experiments are carried out over four infrared small target image sequences with more than 200 images for each sequence, the results demonstrate the effectiveness and advantages of the proposed method in both success rate and precision rate.
Validation of targets and drug candidates in an engineered three-dimensional cardiac tissue model.
Navé, Barbara T; Becker, Michael; Roenicke, Volker; Henkel, Thomas
2002-04-01
High-throughput target discovery confronts the biopharmaceutical industry with a plethora of target candidates. The validation of these candidates in disease-specific animal models often lacks the required throughput. Here, we discuss perspectives and limitations of a novel engineered three-dimensional cardiac tissue, which enables the influence of gene and drug intervention to be monitored on a cellular and molecular level under physiological conditions in sufficient throughput. The model is an extremely helpful filter to prioritize multiple development candidates before moving a project into large animal models with higher predictivity.
ERIC Educational Resources Information Center
Thompson, Bruce
2006-01-01
Value-added models, which rate schools for effectiveness while taking into account the poverty and other socioeconomic status of the students, are generating increased interest. This paper describes the use of one such model to evaluate whether school ratings changed when three new programs were introduced: the "Target Teach" curriculum…
Fakhar, Zeynab; Naiker, Suhashni; Alves, Claudio N; Govender, Thavendran; Maguire, Glenn E M; Lameira, Jeronimo; Lamichhane, Gyanu; Kruger, Hendrik G; Honarparvar, Bahareh
2016-11-01
An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.
An empirical target discharging model for direct-drive implosions on OMEGA
NASA Astrophysics Data System (ADS)
Sinenian, N.; Manuel, M. J.-E.; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Goncharov, V.; Delettrez, J.; Stoeckl, C.; Sangster, T. C.; Cobble, J.
2012-10-01
Capsule charging of inertial confinement fusion (ICF) targets, observed previously on OMEGA, is detrimental to achieving the high areal densities (ρR) required for ignition and gain. This is because the target potential traps energetic electrons that can preheat the fuel, raise the adiabat and degrade compression. The decay-time of this potential is therefore an important parameter for preheat calculations. A non-linear model of the electrical discharging of ICF capsules has been developed. The empirical model, which captures the essential dynamics of the target voltage decay, incorporates previous charged-particle spectroscopic and radiographic measurements of the fields. It is shown that return currents through the target support fiber have a profound effect on the voltage-decay time. Implications of these findings for inertial fusion energy (IFE) are considered. This work was supported in part by DOE, LLE and LLNL.
Spin-dependent parton distributions in the nucleon
I.C. Cloet; W. Bentz; A.W. Thomas
2005-04-01
Spin-dependent quark light-cone momentum distributions are calculated for a nucleon in the nuclear medium. We utilize a modified NJL model where the nucleon is described as a composite quark-diquark state. Scalar and vector mean fields are incorporated in the nuclear medium and these fields couple to the confined quarks in the nucleon. The effect of these fields on the spin-dependent distributions and consequently the axial charges is investigated. Our results for the ''spin-dependent EMC effect'' are also discussed.
Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.
Cao, Xiang; Zhu, Daqi; Yang, Simon X
2016-11-01
Target search in 3-D underwater environments is a challenge in multiple autonomous underwater vehicles (multi-AUVs) exploration. This paper focuses on an effective strategy for multi-AUV target search in the 3-D underwater environments with obstacles. First, the Dempster-Shafer theory of evidence is applied to extract information of environment from the sonar data to build a grid map of the underwater environments. Second, a topologically organized bioinspired neurodynamics model based on the grid map is constructed to represent the dynamic environment. The target globally attracts the AUVs through the dynamic neural activity landscape of the model, while the obstacles locally push the AUVs away to avoid collision. Finally, the AUVs plan their search path to the targets autonomously by a steepest gradient descent rule. The proposed algorithm deals with various situations, such as static targets search, dynamic targets search, and one or several AUVs break down in the 3-D underwater environments with obstacles. The simulation results show that the proposed algorithm is capable of guiding multi-AUV to achieve search task of multiple targets with higher efficiency and adaptability compared with other algorithms.
Characteristics of Bayesian Multiple Model Adaptive Estimation for Tracking Airborne Targets.
1985-12-01
due to atmospherics as previously discussed, in essence filtering the n’Ise corrupted measurement. The prediction allows the FLIR to anticipate target... predicted by the atmospheric turbulence states estimates. The modifications required to replace a single filter with the multiple model adaptive filtering...good state estimates before the maneuver is initiated. At time > 2.0 seconds the target performs a constant speed, constant pitch- rate pull-up
2017-03-01
gain. For accurate prediction of events of interest, the Targeted Information Gain for Error Reduction (TIGER) method is introduced to balance the...prediction of events of interest, the Targeted Information Gain for Error Reduction (TIGER) method is introduced to balance the placement of exploration...TIGER) method uses expected information gain to balance the placement of exploration points in the design space based on model accuracy and capturing
Sze, N N; Wong, S C; Lee, C Y
2014-12-01
In past several decades, many countries have set quantified road safety targets to motivate transport authorities to develop systematic road safety strategies and measures and facilitate the achievement of continuous road safety improvement. Studies have been conducted to evaluate the association between the setting of quantified road safety targets and road fatality reduction, in both the short and long run, by comparing road fatalities before and after the implementation of a quantified road safety target. However, not much work has been done to evaluate whether the quantified road safety targets are actually achieved. In this study, we used a binary logistic regression model to examine the factors - including vehicle ownership, fatality rate, and national income, in addition to level of ambition and duration of target - that contribute to a target's success. We analyzed 55 quantified road safety targets set by 29 countries from 1981 to 2009, and the results indicate that targets that are in progress and with lower level of ambitions had a higher likelihood of eventually being achieved. Moreover, possible interaction effects on the association between level of ambition and the likelihood of success are also revealed.
Modeling of target thermal structure effects on the performance of staring IR seekers
NASA Astrophysics Data System (ADS)
Borg, Eric J.
1994-07-01
The target thermal structure is playing a stronger role in modeling the performance of autonomous IR seekers to acquire and track targets. The impact of the target thermal structure on seeker and sensor acquisition has been previously reported. In this paper, the impact of the target's thermal structure on the acquisition and tracking capability of autonomous imaging IR seekers using staring focal plane arrays is assessed. This paper examines both the magnitude of the thermal structure, referred to as the vehicle's thermal standard deviation, and the distribution of the thermal structure, referred to as the power spectral density (PSD). The vehicle's thermal PSD is important in that it determines how much structure the seeker will see given the number of resolvable pixels the seeker has on the target. PSDs that reflect actual armored targets as well as simple warm bodies with a single hot spot are explored. PSDs that are necessary for targets to optimally match the background clutter are also addressed. In addition to the impact of the target's thermal structure, the impact of aliasing effects that can be present in staring seekers is discussed. Relative advantages of trading off resolution versus eliminating aliasing effects are presented.
Role of moving average analysis for development of multi-target (Q)SAR models.
Khatri, N; Dutt, R; Madan, A K
2015-01-01
In modern drug discovery era, multi target- quantitative structure activity relationship [mt- (Q)SAR] approaches have emerged as novel and powerful alternatives in the field of in-silico drug design so as to facilitate the discovery of new chemical entities with multiple biological activities. Amongst various machine learning approaches, moving average analysis (MAA) has frequently exhibited high accuracy of prediction of diverse biological activities against different biological targets and experimental conditions. Role of MAA in developing (Q)SAR models for prediction of single/dual or multi target activity has been briefly reviewed in the present article. Subsequently, MAA was successfully utilized for developing mt-(Q)SAR models for simultaneous prediction of anti-Plasmodium falciparum and anti-Trypanosoma brucei rhodesiense activities of benzyl phenyl ether derivatives. The statistical significance of models was assessed through intercorrelation analysis, sensitivity, specificity and Matthew's correlation coefficient. Proposed MAA based models were also validated using test set. High predictability of the order of 80% to 95% amalgamated with safety (indicated by high value of selectivity index) of proposed mt-(Q)SAR models justifies use of MAA in developing models in order to obtain more realistic and accurate results for prediction of anti-protozal activity against multiple targets. Active ranges of the proposed models can play a significant role in the development of novel, potent, versatile and safe anti-protozoal drugs with improved profile in terms of both anti-Plasmodium falciparum and anti-Trypanosoma brucei rhodesiense activities.
Albright, Brian J; Yin, Lin; Hegelich, Bjoorn M; Bowers, Kevin J; Huang, Chengkun; Fernandez, Juan C; Flippo, Kirk A; Gaillard, Sandrine; Kwan, Thomas J T; Henig, Andreas; Yan, Xue Q; Tajima, Toshi; Habs, Dieter
2009-01-01
A simple model has been derived for the expansion of a thin (up to 100s of nm thickness), solid-density target driven by an u.ltraintense laser. In this regime, new ion acceleration mechanisms, such as the Break-Out Afterburner (BOA) [1], emerge with the potential to dramatically improve energy, efficiency, and energy spread of laser-driven ion beams. Such beams have been proposed [2] as drivers for fast ignition inertial confinement fusion [3]. Analysis of kinetic simulations of the BOA shows two dislinct times that bound the period of enhanced acceleration: t{sub 1}, when the target becomes relativistically transparent to the laser, and t{sub 2}, when the target becomes classically underdense and the enhanced acceleration terminates. A silllple dynamical model for target expansion has been derived that contains both the early, one-dimensional (lD) expansion of the target as well as three-dimensional (3D) expansion of the plasma at late times, The model assumes that expansion is slab-like at the instantaneous ion sound speed and requires as input target composition, laser intensity, laser spot area, and the efficiency of laser absorption into electron thermal energy.
Pion Parton Distribution Function from DSE-QCD Moments
NASA Astrophysics Data System (ADS)
Khitrin, Konstantin; Cobos-Martinez, Javier; Roberts, Craig; Tandy, Peter
2012-10-01
We obtain the valence quark PDF of the pion from a direct formulation of the moments within a Euclidean-formated modeling of QCD. There are no limitations on the number of moments that can be obtained. This approach employs the ladder-rainbow (LR) truncation of the Dyson-Schwinger equation (DSE) formulation of QCD and eliminates an obstacle that hinders a direct approach to the PDF. Bethe-Salpeter wavefunctions and dressed quark propagators from previous extensive DSE-LR work are recast in a form that allows exact Feynman integral techniques. Performance of this approach will be assessed through results for the reconstructed PDF, and considerations of the momentum sum rule.
Modeling and simulation of micro-motion in the complex warhead target
NASA Astrophysics Data System (ADS)
Ning, Chao; Xiao, Zhihe; Wang, Chao; Yin, Hongcheng
2007-11-01
The micro-motion dynamics induce the micro-Doppler effect. The rotating motion of radar targets is introduced, the formulas of micro-Doppler for point-scatter model targets are derived, and some simulations for a warhead with a sphere-head cone is given in the paper. After geometrical modeling and meshing, the static RCS of the sphere-cone is calculated with PO+PTD. On the basis of the stationary modeling, a new method of quasi-dynamic electromagnetic modeling is provided. The time domain returned signal of coning warhead could be simulated in this method, after processing by time-frequency transform, the period of coning can be obtained. The simulation results are in agreement with the theoretical result. The method by geometrical model is more accurate than point-scatters model.
Polar versus Cartesian velocity models for maneuvering target tracking with IMM
NASA Astrophysics Data System (ADS)
Laneuville, Dann
This paper compares various model sets in different IMM filters for the maneuvering target tracking problem. The aim is to see whether we can improve the tracking performance of what is certainly the most widely used model set in the literature for the maneuvering target tracking problem: a Nearly Constant Velocity model and a Nearly Coordinated Turn model. Our new challenger set consists of a mixed Cartesian position and polar velocity state vector to describe the uniform motion segments and is augmented with the turn rate to obtain the second model for the maneuvering segments. This paper also gives a general procedure to discretize up to second order any non-linear continuous time model with linear diffusion. Comparative simulations on an air defence scenario with a 2D radar, show that this new approach improves significantly the tracking performance in this case.
A Quantitative Geochemical Target for Modeling the Formation of the Earth and Moon
NASA Technical Reports Server (NTRS)
Boyce, Jeremy W.; Barnes, Jessica J.; McCubbin, Francis M.
2017-01-01
The past decade has been one of geochemical, isotopic, and computational advances that are bringing the laboratory measurements and computational modeling neighborhoods of the Earth-Moon community to ever closer proximity. We are now however in the position to become even better neighbors: modelers can generate testable hypthotheses for geochemists; and geochemists can provide quantitive targets for modelers. Here we present a robust example of the latter based on Cl isotope measurements of mare basalts.
Murali, Reena; John, Philips George; Peter S, David
2015-05-15
The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model
Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco
2004-04-01
Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.
A Mathematical Model to Elucidate Brain Tumor Abrogation by Immunotherapy with T11 Target Structure
Chaudhuri, Swapna
2015-01-01
T11 Target structure (T11TS), a membrane glycoprotein isolated from sheep erythrocytes, reverses the immune suppressed state of brain tumor induced animals by boosting the functional status of the immune cells. This study aims at aiding in the design of more efficacious brain tumor therapies with T11 target structure. We propose a mathematical model for brain tumor (glioma) and the immune system interactions, which aims in designing efficacious brain tumor therapy. The model encompasses considerations of the interactive dynamics of glioma cells, macrophages, cytotoxic T-lymphocytes (CD8+ T-cells), TGF-β, IFN-γ and the T11TS. The system undergoes sensitivity analysis, that determines which state variables are sensitive to the given parameters and the parameters are estimated from the published data. Computer simulations were used for model verification and validation, which highlight the importance of T11 target structure in brain tumor therapy. PMID:25955428
Photon parton distributions in nuclei and the EMC effect
Frankfurt, Leonid; Strikman, Mark
2010-12-01
Photons as well as quarks and gluons are constituents of the infinite momentum frame (IMF) wave function of an energetic particle. They are mostly equivalent photons whose amplitude follows from the Lorentz transformation of the particle rest frame Coulomb field into the IMF and from the conservation of the electromagnetic current. We evaluate in a model independent way the dominant photon contribution \\propto \\alpha_{em}(Z^2/A^{4/3})\\ln(1/R_{A}m_{N}x) to the nuclear structure functions as well as the term \\propto \\alpha_{em}Z/A. In addition we show that the definition of x consistent with the exact kinematics of eA scattering (with exact sum rules) works in the same direction as the nucleus field of equivalent photons. Combined, these effects account for the bulk of the EMC effect for x\\le 0.5 where Fermi motion effects are small. In particular for these x the hadronic mechanism contribution to the EMC effect does not exceed \\sim 3% for all nuclei. Also the A-dependence of the hadronic mechanism of the EMC effect for x > 0.5 is significantly modified.
Photon parton distributions in nuclei and the EMC effect
Frankfurt, L.; Strikman, M.
2010-12-15
Photons, as well as quarks and gluons, are constituents of the infinite momentum frame (IMF) wave function of an energetic particle. They are mostly equivalent photons whose amplitude follows from the Lorentz transformation of the particle rest frame Coulomb field into the IMF and from the conservation of the electromagnetic current. We evaluate in a model independent way the dominant photon contribution {proportional_to}{alpha}{sub em}(Z{sup 2}/A{sup 4/3})ln(1/R{sub A}m{sub N}x) to the nuclear structure functions as well as the term {proportional_to}{alpha}{sub em}Z/A. In addition we show that the definition of x consistent with the exact kinematics of eA scattering (with exact sum rules) works in the same direction as the nucleus field of equivalent photons. Combined, these effects account for the bulk of the hadronic European Muon Collaboration (EMC) effect for x{<=}0.5 where Fermi motion effects are small. In particular, for these x the hadronic mechanism contribution to the EMC effect does not exceed {approx}3% for all nuclei. Also, the A dependence of the hadronic mechanism of the EMC effect for x>0.5 is significantly modified.
Electroproduction in the Target Fragmentation Region
NASA Astrophysics Data System (ADS)
Avagyan, Harut
2014-09-01
The Semi-Inclusive DIS process in the Target Fragmentation Region (TFR), when the hadron is produced in the fragmentation process of the target remnants, can be described through the so-called Fracture Functions (FFs). They represent the joint probability of producing the final hadron from the target remnants, when a parton of the target nucleon is struck by the virtual photon in a hard scattering process. Like the ordinary parton distribution functions, the FFs are universal objects, thus they can be measured in one experiment at a given hard scale and then used to make predictions for other experiments, at another hard scale. Measurements of the Lambda multiplicities and polarization asymmetries in TFR, in particular, will provide information on corresponding Fracture Functions. The study of its Q2 dependence at JLab and EIC also will test the perturbative framework implied by Fracture Functions, simultaneously encoding the information on the interacting parton and on the fragmentation of the spectator system. We will present ongoing studies of electroproduction in TFR at Jefferson Lab, and proposed future measurement at upgraded JLab and Electron Ion Collider.
3D modeling of large targets and clutter utilizing Ka band monopulse SAR
NASA Astrophysics Data System (ADS)
Ray, Jerry A.; Barr, Doug; Shurtz, Ric; Channell, Rob
2006-05-01
The U.S. Army Research, Development and Engineering Command at Redstone Arsenal, Alabama have developed a dual mode, Ka Band Radar and IIR system for the purpose of data collection and tracker algorithm development. The system is comprised of modified MMW and IIR sensors and is mounted in a stabilized ball on a UH-1 helicopter operated by Redstone Technical Test Center. Several missile programs under development require MMW signatures of multiple target and clutter scenes. Traditionally these target signatures have been successfully collected using static radars and targets mounted on a turntable to produce models from ISAR images; clutter scenes have been homogeneously characterized using information on various classes of clutter. However, current and future radar systems require models of many targets too large for turntables, as well as high resolution 3D scattering characteristics of urban and other non-homogenous clutter scenes. In partnership with industry independent research and development (IRAD) activities the U.S. Army RDEC has developed a technique for generating 3D target and clutter models using SAR imaging in the MMW spectrum. The purpose of this presentation is to provide an overview of funded projects and resulting data products with an emphasis on MMW data reduction and analysis, especially the unique 3D modeling capabilities of the monopulse radar flying SAR profiles. Also, a discussion of lessons learned and planned improvements will be presented.
Integrated modeling/analyses of thermal-shock effects in SNS targets
Taleyarkhan, R.P.; Haines, J.
1996-06-01
In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies, especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.
Simulating a target lesion for endoscopic submucosal dissection training in an ex vivo pig model.
Wang, Tsang-En; Wang, Horng-Yuan; Lin, Ching-Chung; Chen, Tung-Ying; Chang, Ching-Wei; Chen, Chih-Jen; Chen, Ming-Jen
2011-08-01
Currently, there is no training model that simulates the target lesion encountered during endoscopic submucosal dissection. To develop a novel method simulating a target lesion for endoscopic submucosal dissection. Training program with the use of an ex vivo porcine stomach model. Clinical skills training center. A pseudopolyp was created by using an esophageal variceal ligation device to simulate a protruding (0-Ip) lesion, and the pseudopolyp was transected with a snare cautery to simulate a depressed (0-IIc) lesion. Evaluate the histological depth of the target lesions and resected specimens. Histological findings of the simulated targets showed artificial ulcerative or polypoid lesions involving the muscularis mucosa or superficial submucosa. The resected specimen was limited to the submucosal layer, and no perforation was noted. Pilot study in an ex vivo porcine stomach model. The most important advantage of the model is to simulate realistic target lesions like those encountered in clinical practice in endoscopic submucosal dissection training. It allows trainees to practice how to make proper markings, delineate adequate safety margins, and properly manage different subtypes of early gastric cancer. Copyright © 2011 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
A model of echolocation of multiple targets in 3D space from a single emission.
Matsuo, I; Tani, J; Yano, M
2001-07-01
Bats, using frequency-modulated echolocation sounds, can capture a moving target in real 3D space. The process by which they are able to accomplish this, however, is not completely understood. This work offers and analyzes a model for description of one mechanism that may play a role in the echolocation process of real bats. This mechanism allows for the localization of targets in 3D space from the echoes produced by a single emission. It is impossible to locate multiple targets in 3D space by using only the delay time between an emission and the resulting echoes received at two points (i.e., two ears). To locate multiple targets in 3D space requires directional information for each target. The frequency of the spectral notch, which is the frequency corresponding to the minimum of the external ear's transfer function, provides a crucial cue for directional localization. The spectrum of the echoes from nearly equidistant targets includes spectral components of both the interference between the echoes and the interference resulting from the physical process of reception at the external ear. Thus, in order to extract the spectral component associated with the external ear, this component must first be distinguished from the spectral components associated with the interference of echoes from nearly equidistant targets. In the model presented, a computation that consists of the deconvolution of the spectrum is used to extract the external-ear-dependent component in the time domain. This model describes one mechanism that can be used to locate multiple targets in 3D space.
Modeling cognitive effects on visual search for targets in cluttered backgrounds
NASA Astrophysics Data System (ADS)
Snorrason, Magnus; Ruda, Harald; Hoffman, James
1998-07-01
To understand how a human operator performs visual search in complex scenes, it is necessary to take into account top- down cognitive biases in addition to bottom-up visual saliency effects. We constructed a model to elucidate the relationship between saliency and cognitive effects in the domain of visual search for distant targets in photo- realistic images of cluttered scenes. In this domain, detecting targets is difficult and requires high visual acuity. Sufficient acuity is only available near the fixation point, i.e. in the fovea. Hence, the choice of fixation points is the most important determinant of whether targets get detected. We developed a model that predicts the 2D distribution of fixation probabilities directly from an image. Fixation probabilities were computed as a function of local contrast (saliency effect) and proximity to the horizon (cognitive effect: distant targets are more likely to be found c close to the horizon). For validation, the model's predictions were compared to ensemble statistics of subjects' actual fixation locations, collected with an eye- tracker. The model's predictions correlated well with the observed data. Disabling the horizon-proximity functionality of the model significantly degraded prediction accuracy, demonstrating that cognitive effects must be accounted for when modeling visual search.